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ABSTRACT

We present a theory for interpreting the sodium lines detected in transmission spectra of exoplanetary atmospheres.
Previous analyses employed the isothermal approximation and dealt only with the transit radius. By recognizing
the absorption depth and the transit radius as being independent observables, we develop a theory for jointly
interpreting both quantities, which allows us to infer the temperatures and number densities associated
with the sodium lines. We are able to treat a non-isothermal situation with a constant temperature gradient.
Our novel diagnostics take the form of simple-to-use algebraic formulae and require measurements of the
transit radii (and their corresponding absorption depths) at line center and in the line wing for both sodium
lines. We apply our diagnostics to the HARPS data of HD 189733b, confirm the upper atmospheric heating
reported by Huitson et al., derive a temperature gradient of 0.4376± 0.0154 K km−1, and find densities
∼1–104 cm−3.
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1. INTRODUCTION

Due to its large cross section and favorable wavelength
range, the sodium doublet lines have been a boon to
astronomers seeking to characterize exoplanetary atmospheres
(Seager & Sasselov 2000; Brown 2001). In fact, the first
detection of an exoplanetary atmosphere (that of HD 209458b)
was accomplished via measuring the sodium doublet (Char-
bonneau et al. 2002). Ever since that discovery, sodium has
been detected in several hot Jupiters using both space- and
ground-based transmission spectroscopy (Redfield et al. 2008;
Sing et al. 2008a, 2008b, 2012; Snellen et al. 2008; Vidal-
Madjar et al. 2011; Wood et al. 2011; Huitson et al. 2012; Zhou
& Bayliss 2012; Pont et al. 2013; Nikolov et al. 2014; Burton
et al. 2015; Wyttenbach et al. 2015).

As better instruments come online and our ability to resolve
the sodium lines improves, it is worth revisiting and
redeveloping a theory of how to interpret them. From a remote
sensing perspective, a pair of fully resolved sodium lines can,
in principle, map out the temperature–pressure profile of an
atmosphere at high altitudes and yield the sodium abundance.
A quantity used to interpret absorption lines is the equivalent
width (Spitzer 1978; Draine 2011),
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where τ is the optical depth of the intervening material and λ

denotes the wavelength. The equivalent width is essentially the
width of a box with the same depth as the trough of the
absorption line, such that it encompasses the same area.

While it is not immediately obvious, Wλ and the transit
radius (R) are actually independent observables. A simple
thought experiment demonstrates this. Consider a fictitious star
that emits achromatically. At the exact moment of transit, one
may record an absorption spectrum of the exoplanetary
atmosphere. If the wavelength coverage is sufficient, the

sodium doublet and the continuum and thus Wλ may be
measured. To record the transit radius requires temporal
information: the change in flux in and out of transit. In short,
Wλ measures changes in absorption across wavelength, while R
derives from the change in flux across time. Certainly, stars are
not achromatic light sources and one needs to measure the
stellar lines in and out of transit to properly subtract out their
influence, but this is an observational, rather than a theoretical,
obstacle.
Nevertheless, a theoretical challenge with interpreting W, for

transmission spectra of exoplanets, is that the optical depth
depends on the transit radius and the radius itself depends on
wavelength (Figure 1). It is generally difficult to derive the
functional form of R(λ), but it is straightforward to measure it.
Additionally, while W is associated with a fixed sightline in
traditional studies of the interstellar medium, it is associated
with a set of sightlines in transmission spectra, each
corresponding to a different wavelength. Instead of a theory
for W, we develop one for Wλ(R). Observationally, it takes the
form,
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F
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c

where Fc is the flux associated with the continuum and F is the
flux at any point within the line. More specifically, both Fc and
F are integrated over a (small) wavelength interval δλ that is
chosen based on practical constraints. We shall term F/Fc the
absorption depth (and leave Wλ nameless).

2. THEORY

2.1. Order-of-magnitude Estimates

Since the line-center wavelength of both sodium lines is
λ0≈ 0.6 μm, the line-center frequency is ν0 = c/

The Astrophysical Journal Letters, 803:L9 (6pp), 2015 April 10 doi:10.1088/2041-8205/803/1/L9
© 2015. The American Astronomical Society. All rights reserved.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43094647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kevin.heng@csh.unibe.ch
http://dx.doi.org/10.1088/2041-8205/803/1/L9


λ0≈ 5 × 1014 Hz. This means that the Doppler line width is

n
G =

æ
è
ççç

ö
ø
÷÷÷

» ´
æ
è
ççç

ö
ø
÷÷÷

æ

è
çççç

ö

ø
÷÷÷÷

-

c

k T

m

T m

m

2

5 10 Hz
10 K 2

, (3)

D
0 B

1 2

9
3

1 2

H

1 2

where c is the speed of light, kB is the Boltzmann constant, T is
the temperature, m is the mean molecular mass, and mH is the
mass of the hydrogen atom. We assume that sodium is a trace
element in the atmosphere and that Doppler broadening is
mediated by a dominant buffer or inert gas (i.e., molecular
hydrogen).

By contrast, the natural line width is
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where A21≈ 6 × 107 s−1 is the Einstein A-coefficient. Further-
more, the damping coefficient associated with the Voigt profile is
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implying that the Voigt and Doppler profiles are essentially
identical near line center.

If pressure broadening is significant, then ΓL needs to be
replaced by ΓL + Γcoll in the Lorentz profile, where Γcoll is the
collisional frequency (Mihalas 1970). Pressure broadening is
similar in nature to Doppler broadening,
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where lmfp is the mean free path of collisions and sH2 ∼
10−15 cm2 is the cross section of collisions with hydrogen
molecules. Pressure broadening may be ignored if the pressure
being sensed is approximately
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We will neglect pressure broadening for our analysis of the
sodium lines, while being aware of a shortcoming of our

theory: we cannot directly diagnose the value of the total
pressure being sensed, since it is degenerate with the sodium
abundance. Non-Lorentzian corrections to the sodium line
wings are only important far away (100 ΓD) from line center
and for P 1 bar (Allard et al. 2012).
Consider a point on one of the sodium lines that is separated

by Δλ, in wavelength, from line center. In frequency, the
separation is Δν. If Δν = ΓD, then we have
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implying that the lines are tens of Doppler widths wide. Even
by moving 0.3 Å away from line center, one is already well into
the Lorentzian wings of the profile. In the line wings, we may
approximate the line shape with a Lorentz profile.
Collectively, the sodium line profile in hot exoplanetary

atmospheres (T ∼ 1000 K) is well approximated by a Doppler
core and Lorentzian wings (Figure 2), which allows us to
circumvent the more challenging task of inverting a Voigt
profile.

2.2. Review of Previous Analytical Formulae

In Fortney (2005), the assumptions of hydrostatic equili-
brium and an isothermal atmosphere led to an expression for
the number density,
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where nref is a reference value of the number density, z is the
height above some reference radius R, H≡ kB T/mg is the
pressure scale height, and g is the surface gravity. Using
Pythagoras’s theorem and assuming z R, Fortney (2005)

Figure 1. Schematic of transit radii associated with the line center and wings of
the sodium doublet. As each line is expected to have the largest cross section at
line center, the corresponding transit radius (R0) is the largest. In the line
wings, where the cross section is the smallest, the transit radius (R) is
correspondingly smaller. The illustration on the right reproduces the schematic
depicted in Fortney (2005).

Figure 2. Normalized Voigt, Doppler, and Lorentz profiles for a0 = 10−3 and
0.1. The former value is representative of the sodium lines in hot exoplanetary
atmospheres, while the latter value is presented as an extreme case. The line
core is well approximated by a Doppler profile out to several Doppler widths.
Beyond this, the line wings are better approximated by a Lorentz profile. From
inspecting these profiles, it is clear that the shape and normalization of the
Doppler core are insensitive to temperature, whereas the difference in
normalization between it and the Lorentzian wings serves as a temperature
diagnostic.
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obtained (see Figure 1 for the geometry)
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It follows that the optical depth of the chord associated with the
transit radius is
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where σ is the absorption cross section. In hindsight, one could
have obtained a quick answer by writing τ = nref σX and
recognizing that ~X HR is roughly the geometric mean of
two vastly different length scales, H and R.

Several properties associated with the formula of Fortney
(2005), restated in our Equation (11), are worth emphasizing.
First, it can only be applied to isothermal situations. Second, R
is a wavelength-dependent quantity. Third, since one is sensing
different values of R across wavelength, the value of nref
sampled varies as well. The number density can be fixed by
writing = ¢ -n n z Hexp( )ref ref , where ¢nref is its value in the
line wings. Unlike nref, ¢nref is a wavelength-independent
quantity.

The third line of reasoning allowed Lecavelier des Etangs
et al. (2008) to invert the expression for τ and obtain
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Since the transit radius always picks out τ ∼ 1 by definition and
T is not a wavelength-dependent quantity, it follows that
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The second term within the square brackets is typically smaller
than the first, i.e., l s l¶ ¶ ¶ ¶R(ln ) (ln ) , since we expect
the transit radius to vary by fractions of a percent, whereas the
cross section is expected to vary by orders of magnitude.
Dropping the second term reproduces Equation (2) of
Lecavelier des Etangs et al. (2008). Equation (13) is directly
applicable to situations where l¶ ¶z is constant (e.g., Rayleigh
scattering), but is less amenable to analyzing spectral line
shapes, where l¶ ¶z is non-constant by definition.

2.3. Obtaining Temperature and Density
in the Isothermal Limit

At line center, the absorption cross section of the sodium
atom is (Draine 2011)
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where flu is the oscillator strength. The mass and charge of the
electron are given by me and e, respectively.

By denoting the line-center value of Wλ as lW 0 , we may
express the line-center optical depth as
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where F0 and Fc are the flux at line center and of the
continuum, respectively. For the remainder of the study, we
shall deal only with the absorption depth as an observable. It
follows that the number density associated with line center is
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In the line wings, the optical depth is given by
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with the line shape (Φ) being approximated by a Lorentz
profile sufficiently far away from line center,
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The transit radius at line center (R0) and in the line wings (R)
are related by

= + DR R R. (19)0

Like R, ΔR is a wavelength-dependent observable. Equa-
tion (17) can be inverted to solve for the temperature,
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by eliminating n0 using Equation (16). We have defined the
diagnostic ratio as
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where Δλ≡ λ − λ0.
The temperature is mostly controlled by the difference in

transit radii between the line center and wings. Formally, rln
has a very weak dependence on T, so Equation (20) is not an
explicit formula for T. In practice, one sets T ∼ 1000 K,
measures or assumes all of the other parameter values, uses
Equation (20) to compute an updated value of T and iterates. A
converged answer should obtain within a few iterations.
Figure 3 shows calculations of n0 as a function of F0/Fc for

both sodium lines. For the sodium D1 line, we have used
λ0 = 5897.558 Å and flu = 0.320; for the sodium D2 line, we
have used λ0 = 5891.582 Å and flu = 0.641 (Draine 2011).
The D1 and D2 lines are sensing different altitudes within the
atmosphere. Figure 3 also shows the line-wing temperature as a
function of the diagnostic ratio.
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2.4. Obtaining Temperature and Density
in the Non-isothermal Case

We generalize to a non-isothermal situation by considering a
linear series expansion of the temperature,

= +
¶
¶

T T
T

z
z, (22)ref

where Tref is a reference temperature and we allow the
temperature gradient to be constant and either positive or
negative,

¶
¶
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z
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where T′ is always a positive number. We begin with
hydrostatic balance,

r
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¶
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z
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where P is the pressure and ρ = nm is the mass density. The
physical assumption being made is that the buffer or inert gas
(e.g., molecular hydrogen) is in hydrostatic equilibrium and the

collisional time between itself and the sodium atoms is so short
that the latter are effectively coupled to the former as a
single fluid.
By using the ideal gas law, P = n kB T, one obtains
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Here, º  ¢g g k T m˜ /B functions like an “effective gravity”
with an additional term associated with the constant tempera-
ture gradient. Completing the integration yields
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where the non-isothermal pressure scale height is H≡ Tref/T′
and the index,

º
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b
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is the ratio of the non-isothermal to the isothermal scale
heights.
For ¶ ¶ <T z 0, the minimum value of b is set by the

adiabatic lapse rate such that b ⩾ (2 + Ndof)/2, where Ndof is the
number of degrees of freedom of the buffer gas. For a diatomic
gas, we have Ndof = 5 and b ⩾ 3.5 (ignoring the vibrational
modes).
The chord optical depth is
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The integral in Equation (28) has no general analytical
solution. However, it is soluble if we consider integer values
of Nb. This is not unreasonable. For example, for HD 189733b,
Huitson et al. (2012) estimate T′≈ 1 K km−1, which yields
Nb≈ 5 for ¶ ¶ >T z 0. For Nb = 0, 2, 4, and 6, the integral is π,
π/2, 3π/8, and 5π/16, respectively. Essentially, the integral may
be represented as ζπ, where ζ≈ 0.1–1. Numerical evaluations
of the integral, over a continuous range of values of Nb, confirm
our intuition (not shown). The optical depth thus becomes

t zp s=
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è
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T

2
, (30)ref
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1 2

similar in spirit to its isothermal counterpart where we again
have the characteristic length scale being ~X HR . General-
izing from the isothermal situation, we note that nref, R and Tref
are wavelength-dependent quantities.

Figure 3. Sodium line diagnostics adopting m = 2mH, g = 103 cm s−2,
R0 = 1010 cm, ΔR = 108 cm, ζ = 0.5, and T′ = 1 K km−1 for illustration. Top
panel: the line-center number density. Bottom panel: the line-wing temperature.
For the non-isothermal cases, we set b = 2.5 (¶ ¶ >T z 0) and 3.5
(¶ ¶ <T z 0).
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At line center, we again assume a Doppler profile and derive
the number density,

zp l p
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an expression which holds for both ¶ ¶ >T z 0 and
¶ ¶ <T z 0. Unlike before, n0 now depends also on T′. In the
line wings, we can again assume a Lorentz profile, eliminate n0,
and obtain
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The definition for r is identical to the one stated in
Equation (21). It is worth noting that our expression for T, in
Equation (32), does not depend on ζ.

Equations (31) and (32) constitute an underdetermined
system: two equations and three unknowns (n0, T, ¢T ). We will
break this degeneracy by using measurements from both
sodium lines to determine T′.

3. APPLICATION TO DATA

To apply the diagnostics to data requires that both sodium
lines are at least partially resolved, such that for each line we
may measure the absorption depths at line center and in the line
wing. Generally, at the same distance (Δλ) from line center,
the line wings of the D1 and D2 sodium lines are sampling
different temperatures, which we denote by T1 and T2,
respectively. We denote the line-center temperatures by T0,1
and T0,2.

1. To determine if the system is isothermal, one computes
the ratio of the line-wing temperatures,

=
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T

R

R
, (33)1
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2

where ΔR1 and ΔR2 are the differences in transit radii,
between the line center and wing, for the D1 and D2 lines,
respectively. To a very good approximation, the preced-
ing expression holds regardless of whether one uses the
isothermal or non-isothermal formula for T. If T1 = T2,
the isothermal formulae in Equations (16) and (20) will
suffice.

2. If ¹T T1 2, then we first use the isothermal formula in
Equation (20) to estimate T1, T2 and

¶
¶
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T T

R R
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After assessing if the temperature gradient is positive or
negative, we use the appropriate non-isothermal formula
in Equation (32) to iterate for T1, T2, and T′.

3. With the value of T′ in hand, we may also estimate the
number densities using Equations (26) and (31).

We apply our diagnostics to the sodium doublet measured in
HD 189733b using HARPS ground-based data (Wyttenbach

et al. 2015). At line center, the absorption depths and transit
radii are

=  = 
=  = 

F F R R

F F R R

0.9960 0.0007, 1.227 0.021,

0.9936 0.0007, 1.277 0.020.(35)
c

c

0,1 0,1 J

0,2 0,2 J

At Δλ = 0.3 Å from line center, the absorption depths and
transit radii are
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F F R R

0.9987 0.0007, 1.168 0.022,
0.9974 0.0007, 1.196 0.022. (36)

c

c
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2 2 J

All quantities were extracted using Gaussian fits to the data.
The white-light radius used to normalize the transit radii is
(1.138 ± 0.027) RJ (Torres et al. 2008). We verified that
instrumental broadening is not a major source of error
(Wyttenbach et al. 2015).
To faciliate comparison with Huitson et al. (2012), we use

g = 2141 cm s−2 and m = 2.3mH for HD 189733b. We
propagate the data uncertainities in quadrature. Using the
isothermal formula, we obtain T1 = 3117 ± 79 and T2 = 4240
± 103 K. Next, we derive T1/T2 = 0.7284 ± 0.0256, which
indicates that the non-isothermal treatment is warranted. We
obtain

¶
¶

=  -T

z
0.4376 0.0154 K km , (37)1

thus confirming the positive temperature gradient reported by
Huitson et al. (2012). Our line-wing and line-center tempera-
tures are

=  = 
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T T

T T

2460 86 K, 4306 151 K,

3336 117 K, 5870 206 K. (38)
1 0,1

2 0,2

The number densities are
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3.990 0.140 cm ,
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1
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2
4 3
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3
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3

while b = 13.63 ± 0.48. If the abundance of sodium is solar,
then the total pressure implied is 5 nbar.
The temperatures and temperature gradient inferred using

our analytical diagnostics are in broad agreement with the
numerical models of Wyttenbach et al. (2015), applied to the
same data set.

4. CONCLUSION

We have presented a previously unelucidated theory for
inferring the temperatures, temperature gradient, and number
densities associated with the absorption depths and transit radii
of the sodium doublet lines. Our formalism is applicable to
other alkali metal lines such as potassium. Applying our
diagnostics to infrared lines of molecules requires the inclusion
of pressure broadening.
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