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Abstract

Many infectious diseases are not maintained in a state of equilibrium but exhibit significant fluctuations in prevalence over
time. For pathogens that consist of multiple antigenic types or strains, such as influenza, malaria or dengue, these
fluctuations often take on the form of regular or irregular epidemic outbreaks in addition to oscillatory prevalence levels of
the constituent strains. To explain the observed temporal dynamics and structuring in pathogen populations,
epidemiological multi-strain models have commonly evoked strong immune interactions between strains as the
predominant driver. Here, with specific reference to dengue, we show how spatially explicit, multi-strain systems can exhibit
all of the described epidemiological dynamics even in the absence of immune competition. Instead, amplification of natural
stochastic differences in disease transmission, can give rise to persistent oscillations comprising semi-regular epidemic
outbreaks and sequential dominance of dengue’s four serotypes. Not only can this mechanism explain observed differences
in serotype and disease distributions between neighbouring geographical areas, it also has important implications for
inferring the nature and epidemiological consequences of immune mediated competition in multi-strain pathogen systems.
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Introduction

Mathematical models based upon the various derivatives of the

classic susceptible-infected-recovered (SIR) framework have greatly

improved our understanding of the transmission and population

dynamics of many important pathogens [1,2]. Common to this

class of models is their propensity to exhibit damped oscillations

around an approaching equilibrium where the rate of new

infections equals the loss from the infectious pool due to recovery.

In reality, however, many infectious diseases will not remain in this

state of equilibrium but instead exhibit persistent oscillations,

ranging from seasonal increases in incidence rates to multi-annual

epidemic outbreaks. Measles and influenza are just two examples

of pathogens for which incidence levels can vary by orders of

magnitude within a single year [3,4]. External forces are often

incorporated into models to reflect a seasonal increase or decrease

in the number of infectious contacts or vector densities, for

example, which move the system’s dynamics away from its natural

equilibrium into a regime characterised by periodic or chaotic

oscillations, akin to those observed in nature [5,6].

For antigenically diverse pathogens, periods of high or low

infection rates or the timing by which one dominant antigenic

strain is replaced by another strain, are often out of sync with those

dictated by the external forces, however. Theoretical studies have

therefore concentrated on biological or pathogen-intrinsic factors

instead. Immunological interactions between the constituent

strains in the form of cross-immunity or cross-enhancement have

been repeatedly highlighted as some of the most important

determinants of the epidemiological dynamics of multi-strain

pathogens. Under this scenario, enhanced competition for

susceptible hosts can offer a temporary selective advantage to a

particular strain or subset of strains, causing their amplification

and subsequent decline. This process of immune-mediated

selection has been proposed to underlie the population biology

of a variety of important pathogens, including the influenza virus

[7], Plasmodium falciparum [8], Vibrio cholerae [9], dengue virus [10–

12], respiratory syncytial virus [13] and rotavirus [14].

Whereas many deterministic multi-strain models rely on the

presence of immune interactions to destabilize the system, existing

natural variabilities or stochasticities in the interactions between

the relevant players have also been shown sufficient to generate

regular or chaotic oscillations in single-strain and ecological

predator-prey systems [15–19]. Furthermore, demographic sto-

chasticities have been found to play an important role when

relaxing the assumption of homogeneous mixing and when taking

spatial ecological aspects into consideration. In this scenario,

spatial heterogeneities due to host-population structure or local

ecological variations can create short-lived spatial refuges [20] and

significantly affect pathogen persistence [21–23].

The consideration of spatio-temporal variations is of particular

importance for vector-borne pathogens, where the underlying

drivers of the observed epidemiologies may be confounded by

substantial heterogeneities in host and vector densities through

space and time, as in the case of the dengue virus (DENV).

DENV’s population comprises four antigenically related viral

groups, or serotypes (DENV1-4), that are the cause of clinically

indistinguishable illnesses in humans. Different immunological

interactions in the form of antibody-dependent enhancement

(ADE) or temporary and/or partial cross-immunity have been

independently proposed as the driving forces behind the virus’
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complex epidemiology that comprises multi-annual epidemic

outbreaks and sequential replacement of dominant serotypes

[10–12,24–27]. Although these differential equation models

qualitatively capture dengue’s epidemiological dynamics, they do

not consider the natural variability in disease transmission across

time and space and thus cannot account for observed differences

in incidence and serotype distribution within endemic regions (see

e.g. [28]). Meta-population and agent-based models allow a more

explicit description and investigation of demographic and spatial,

ecological stochasticities [29–31], and thus provide a natural

alternative to study these host-pathogen systems.

Here, using dengue as a case study, we show that heterogene-

ities and stochasticities underlying host-vector contacts can give

rise to persistent oscillations in multi-strain pathogen systems, even

in the absence of immune competition between antigenic types.

We demonstrate that viral persistence is significantly enhanced

through the temporal generation of susceptibility pockets within

the population, leading to highly heterogeneous distributions in

disease and serotype prevalence that can explain observed

geographic differences in dengue endemic regions. Complimen-

tary to immune interaction, host demographic factors and vector

ecologies thus emerge as important drivers of dengue’s epidemi-

ological dynamics.

Results

To examine the effects of spatial structuring and stochasticities

in disease transmission on the qualitative dynamics of a multi-

strain pathogen system, and understand how this might help

explain some of the observed epidemiological features of dengue,

we first extended a previously analysed single-strain model with

homogeneous mixing [18] to incorporate multiple strains; for this

part we used the original parameter set for direct comparison

between this extended and the original model (see Materials and

Methods). We then developed this model into a dengue-specific

framework by including mosquito vectors, seasonality and spatial

population structuring, together with dengue-relevant parameter

values (see Table 1). Unless stated otherwise, we analysed the

dynamical behaviour of these models in the absence of immuno-

logical strain interactions except for the prevention of superinfec-

tion. The epidemiological frameworks of both models are detailed

in the Material and Methods section.

Non-spatial dynamics
Using a stochastic, agent-based framework we first analysed the

dynamics of a host-pathogen system comprising 4 co-circulating

Table 1. Parameters and values for 4-serotype dengue model.

Parameter Description Value [range] Reference

1/dh intrinsic incubation period 2 days [2–7] [66]

1/ch human infectious period 4 days [4–12] [67,68]

1/ah period of temporary cross-immunity 2–12 months [2–12] [46]

Ehn
human-to-vector transmission probability 0.5 per bite [0.33–1] [46,69]

1/nh average life-span (human) 60 years - -

wh enhancement in secondary heterologous infections) 1–2 - -

M vectors per human host 0.7–1.2 [0.3–20] [70]

av mosquito biting rate 0.6 per day [0.33–1] [71]

1/dv extrinsic incubation period 6 days [6–12] [51]

Evh vector-to-human transmission probability) 0.5 per bite [0.33–1] [46,69]

1/nv average life-span (mosquito) 23 days [8–42] [71,72]

m external infection rate 0.000005 per day - -

Nh human host population size 100000 - -

v human daily mobility [0–1] - -

ah Weibull scale (humans) 0.0055 - -

bh Weibull shape (humans) 5.5 - -

an Weibull scale (mosquito) 0.04 - -

bn Weibull shape (mosquito) 4 - -

doi:10.1371/journal.pcbi.1003308.t001

Author Summary

The population dynamics of multi-strain pathogens are
often characterized by persistent and irregular fluctuations
in disease incidence and strain prevalence levels over time.
Previous theoretical approaches have often evoked strong
immunological interactions between individual strains,
such as cross-immunity, in order to explain these complex
epidemiologies; however, spatial segregation between
hosts and stochastic heterogeneities in transmission
success are rarely considered in these studies. Here, with
specific reference to dengue, we show that the stochasti-
cities underlying disease transmission within a spatially
explicit, agent-based model can give rise to multi-annual
epidemic outbreaks and fluctuating pathogen population
structures - even in the absence of immune competition.
In contrast to previous modeling studies, which have
resulted in ambiguous predictions about the exact nature
and strength of interactions between dengue’s four
serotypes, our results present a parsimonious, demograph-
ic mechanism, that highlights the importance of spatial
ecology for understanding and interpreting the epidemi-
ological dynamics of dengue and other multi-strain
pathogen systems.

Persistent Oscillations in Spatial Dengue Model
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antigenic types under the assumption of homogeneous mixing

within the population. Contrasting the predictions of deterministic

multi-strain models, in which the dynamics inevitably converge

towards a stable equilibrium in the absence of strong immune

competition, the system exhibited sustained oscillations in the total

number of infections and out-of-phase oscillations in strain

prevalence, as illustrated in Figure 1A. In agreement with

previously studied stochastic single-strain systems [17,18], these

dynamics are driven by the amplification of stochastic effects at the

individual level, which keep each strain in a transient regime

rather than approaching the expected deterministic equilibrium.

At the same time, short-term stochastic differences in each strain’s

transmission success accumulate in time and start to generate

significant asymmetries in the immunity profile within the host

population, which then leads to the desynchronisation between

strains.

This extreme case of minimal strain interaction more resembles

a system of four co-circulating but unrelated pathogens. Not

surprisingly, therefore, we found that the periods of oscillations in

total incidence and strain prevalence were essentially the same,

determined by the parameters relating to pathogen transmission

and host demography (Figure S1A in electronic supplementary

material). In the case of dengue, however, differences between the

inter-epidemic period and average cycle length in strain preva-

lence have been well documented [32]. We therefore extended the

model to incorporate mosquito vectors and used dengue-relevant

epidemiological parameters values (see Table 1) to investigate the

effect of stochastic amplifications on the virus’s epidemiological

dynamics and inter-epidemic periods. The resulting qualitative

dynamics in terms of persistent oscillations in incidence and

serotype prevalence appeared invariant to the addition of

mosquito vectors but showed a significant increase in average

disease prevalence (Figure 1B). This increase was mainly caused by

a reduction in the risk of stochastic extinction due to the inclusion

of viral incubation periods as well as the increase in the basic

reproductive number from R0&3:5 in the directly transmission

model to R0&4 in the vector model. Importantly, also, we started

to observe a divergence between the epidemic and serotype

periodicities (figure S1B in electronic supplementary material) and

also found epidemic peaks more likely to be comprised of multiple

serotypes.

Further including seasonality through annual variations in

mosquito densities (see Material and Methods) resulted in dengue-

like epidemiological behaviour with a distinct seasonal signature,

strong multi-annual periodicities in incidence and fluctuating

distribution in serotype prevalence (Figure 1C). This behaviour

was further accompanied by a considerable increase in peak

incidence levels and more pronounced epidemic troughs, which

could partly be explained by an increase in the average R0 to &6
but also by the strong synchronizing effect of vector seasonality on

serotype dynamics.

Spatial dynamics of dengue-specific model
We hypothesized that the occurrence of large epidemic

outbreaks (as seen in Figure 1C) was partly facilitated by our

assumption of homogeneous mixing, which facilitates rapid disease

transmission throughout the whole population. We thus restruc-

tured our model into a meta-population formulation by subdivid-

ing the human and mosquito populations into sets of spatially

arranged communities (see Material and Methods) and examined

the effect of spatial segregation between hosts on the epidemio-

logical dynamics of this multi-strain system. Within this set-up we

assumed that individuals get infected predominantly by mosqui-

toes of their own and surrounding communities and with a small

probability, v, by mosquitoes from distant communities through

(temporal) human movements, or visits, to these communities. We

argued that because of the limited flight range of Aedes mosquitoes,

human movement is more important for long-distance transmis-

sion [33] and therefore assumed v to be independent of

geographic distance, contrasting continuous and distance-depen-

dent dispersal kernels often employed in spatial ecological models

(but also see [33] and [34] for alternative realisations).

Figure 1. Epidemiological dynamics of a multi-strain system
with homogeneous mixing. (A) The simulated time series of an
agent-based, multi-strain model of a directly transmitted pathogen
show irregular oscillations in total (black lines, top graphs) and strain-
specific (coloured lines, bottom graphs) even in the absence of
immunological interactions or asymmetries between pathogen strains.
(B) Changing the system to describe a vector-transmitted pathogen,
including intrinsic and extrinsic incubation periods, results in an overall
increase in mean incidence and decrease in the risk of stochastic
extinction. (C) Further including seasonal variations in mosquito
densities results in multi-annual epidemic outbreaks followed by severe
transmission bottlenecks. Parameters are given in Material and Methods
(A) and in Table 1 (B and C, with M~0:65 in B).
doi:10.1371/journal.pcbi.1003308.g001

Persistent Oscillations in Spatial Dengue Model
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With the addition of this spatial component the system exhibited

more defined seasonal dynamics as well as a lower variability in

the epidemic behaviour (Figure 2A), with the overall temporal

dynamics closely resembling epidemiological time series from

dengue endemic regions with the characteristic multi-annual

cycles in epidemic outbreaks and sequential serotype dominance

(Figure 2B showing data from Puerto Rico, and Figure S2 showing

data from Thailand, Mexico and Vietnam). The periodicity in

serotype prevalence also increased and settled onto a 8–9 year

cycle (figure S1C in electronic supplementary material), which is in

line with the suggested periodicity derived from epidemiological

time series [32] (also apparent from Figure 2B) and dengue’s

phylodynamics in Thailand [25].

In agreement with previous studies on meta-populations, the

spatial segregation between hosts enhanced global disease

persistence (compare e.g. baseline incidence in Figures 1C and

2A) but at the same time facilitated local extinction [17,22,35].

This created a spatially heterogeneous susceptibility landscape

within the population (Figure 3A, left panel) upon which

individual serotypes were sequentially selected and amplified,

frequently exhibiting locally propagating waves (Figure 3A, middle

panel). This heterogeneity in susceptibility and disease prevalence

also affected the timing between heterologous infections, here

referred to as heterologous exposure period, or HEP, leading to a

highly variable, spatio-temporal distribution in HEP across the

population (Figures 3A, right panel). We argued that these self-

emergent phenomena could explain some of the spatial epidemi-

ological differences in dengue-endemic countries, where markedly

different distributions in serotype prevalence can be observed

between geographically neighbouring regions or between urban

and suburban districts (Figure 3B). Importantly, these differences

would be masked if only aggregate data were being considered.

The effects of population structure and host mobility
The spatio-temporal dynamics illustrated in Figures 2 and 3

clearly demonstrate the importance of human and vector

demographic heterogeneities for the population dynamics of

dengue [36–38], which in our case are the result of stochasticities

and spatial restrictions in disease transmission. To further address

the effects of spatial structuring and host mobility on our simulated

epidemiologies, we quantified key epidemiological properties, such

as mean prevalence (averaged over humans and vectors),

extinction risk and serological age-profiles in the population, in

response to changes in these parameters.

Increasing spatial structuring, and thereby decreasing the size of

each sub-population, reduced the variability in total annual

outbreak size and local serotype co-circulation (Figure 4A), here

defined as the percent time where multiple serotypes are present in

a given patch. Although the overall force of infection was not

affected by the increase in population structure, as evidenced by

the constant average ages of primary or secondary infections (right

panel, Figure 4A), total infection prevalence increased as a result of

a reduction in the risk of serotype extinction. This indicates that

spatial segregation between hosts greatly reduces the propensity

for large-scale, population-encompassing outbreaks by restricting a

pathogen’s access to the susceptible pool, which is also in

agreement with previous studies in the context of disease

transmission through complex or/and heterogeneous networks

[17,35,39].

In contrast to population structuring, increasing the probability

of transmission between hosts of distant communities, v, as a

proxy for daily human mobility, had a more homogenizing effect

and led to an increase in local viral co-circulation (Figure 4B).

More frequent and brief localized outbreaks could be observed,

resulting in increased epidemic variability. However, this increase

in outbreak size variability did not equate to an increase in mean

infection prevalence levels because of localised extinction risk. In

other words, the heterogeneous distribution of herd-immunity [40]

to individual serotypes (as illustrated in Figures 3A–C) within the

spatially structured population counteracts the occurrence of

population-wide outbreaks that are otherwise expected from the

synchronizing effect of higher mobility or dispersal rates [22,41].

The effect of host mobility on spatial synchrony
We next analysed the degree of epidemic synchrony, or

coherence, between communities under variations in host

mobility. As mentioned above, the rate at which human hosts

acquire infections in geographically distant communities, v, has a

significant effect on viral co-circulation and hence the susceptibil-

ity/immunity landscape in the population. This is further

illustrated in Figure 5A for two different values of v, showing a

transition to a less variable but a more patchy distribution of

susceptibility to DENV1 with an increasing rate of long-distance

transmission events. When disease transmission was predominant-

ly local (v~0:0001), as expected, we observed that spatial

synchrony was dependent on spatial distance (blue line in

Figure 2. Temporal epidemiological patterns of dengue. (A)
Model output. Structuring the host population into a (20 by 20) lattice
of smaller sub-communities results in lower epidemic variability in the
simulated epidemiological dynamics and higher out-of-season viral
persistence. The average level of disease prevalence is &300 per
100000 individuals and the proportion of the population fully
susceptible to dengue is &0:08. Parameters as in Table 1 with
v~0:0001. The overall qualitative behaviour in incidence and serotype
oscillations are in good agreement with dengue characteristic
epidemiologies. (B) Empirical data. Time series of reported cases of
DF and DHF in Puerto Rico in the period 1986–2012 (top) showing a
clear seasonal signature and multi-annual epidemic outbreaks. Plotting
adjusted serotype-specific incidence (bottom) illustrates the sequential
replacement of dominant serotypes over time.
doi:10.1371/journal.pcbi.1003308.g002

Persistent Oscillations in Spatial Dengue Model
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Figure 5B, and Figure S3). In contrast, as a result of a reduction in

locally acquired infection with increasing v, epidemic synchrony

between neighbouring communities was disrupted, causing an

overall low but homogeneous spatial coherence across the

population (v~0:3, red line in Figure 5B). These results are in

general agreement with a growing body of studies on dengue’s

epidemic, spatial scale. For instance, cases appear to cluster at the

level of households or neighborhoods [42], whereas epidemics

across larger regions present strong spatial dependence [43] and

appear to follow a power-law distribution, implying that outbreaks

are predominantly driven by a limited set of spatial clusters [44].

It should be noted that migration, or dispersal, has previously

been shown to increase synchronization between populations

within different spatially explicit model frameworks [22,41].

However, this is not necessarily the case when local demographic

stochasticity is considered [19,34]. For instance, within a spatially

extended meta-population model, Blasius et al. demonstrated that

phase-locking amongst patches is easily achieved by dispersal rates,

while peak and trough abundances in each patch can remain

chaotic and variably uncorrelated [34]. The same effect is

observed in the local dynamics of the patches within our

framework (see Figure S3A and S3B for examples). It is thus not

surprising that we only find low-to-intermediate coherence across

space, even between close-range patches (Figure 5B).

The effects of serotype immune interactions
Although dengue-characteristic dynamics could be obtained

even in the absence of immune interaction between the virus’s four

serotypes, temporary (serotype-transcending) cross-immunity and

ADE have previously been proposed as important drivers of

dengue epidemiology, and we therefore analysed their effects

within this spatial setting. As demonstrated in Figures 3A and 4

(right panels), the time required for an individual to acquire a

secondary, heterologous infection (HEP) was on average in the

order of 4–5 years. While this is in general agreement with a

previous study from Thailand [45], and might also explain the

peak in older children in the age-profiles of dengue haemorrhagic

fever (DHF) in endemic regions [32], it is much higher than the

reported 3–9 months period of serotype-transcending immunity

following a primary infection [46]. Consequently, and contrary to

previous predictions based on continuous and homogeneous

mixing models, the inclusion of temporary cross-immunity did

not have a significant effect on the simulated, qualitative

epidemiologies within our stochastic and spatially explicit frame-

work. When quantifying key epidemiological characteristics under

changes to the duration of temporary immunity, we found that

only once this period increased beyond 12 months there was a

small, negative effect on infection prevalence and epidemic

variability (Figure 6A). On the other hand, even short periods of

transcending immunity had a significant effect on both serotype

extinction risk and periodicity, suggesting its regulatory role on

how the different viruses can explore the susceptibility (spatial)

landscapes.

In contrast to temporary cross-immunity, immune enhance-

ment through the process of ADE had a more noticeable and

anticipatory effect. That is, increasing the probability of transmis-

sion through the enhancement of secondary, heterologous

infections led to an increase in disease prevalence along with an

increase in epidemic variability, serotype co-circulation and viral

extinction risk (Figure 6B), which is broadly in line with previous

Figure 3. Spatial epidemiological patterns. (A) Local viral extinction generates a highly heterogeneous immunity landscape, shown as a
snapshot (at year = 80) of the population-wide susceptibility level to DENV1 (left). The spatial prevalence of individual serotypes is equally
heterogeneous, driven by serotype-specific susceptibility and here shown as the cumulative incidence of DENV1 for the following 3 seasons (middle).
Spatial heterogeneity in serotype prevalence and exposure causes a highly variable distribution in the heterologous exposure period (HEP), or timing
between consecutive, heterologous infections(right). (B) Significant differences in serotype prevalence can be observed on multiple geographical
scales during a single season within endemic regions, which would be hidden by just considering aggregated data: between rural and urban Thailand
(left) and within Ho Chi Minh City (middle). Simulation output (right) showing similar patterns in serotype distribution, where a community in the
center of the lattice exhibits dissimilar serotype prevalence levels compared to the aggregated meta-population data, taken from the last 2 years of
the simulation shown in Figure 2A.
doi:10.1371/journal.pcbi.1003308.g003

Persistent Oscillations in Spatial Dengue Model
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studies [10,12,24]. The increase in prevalence did not significantly

affect the average age at which individuals experience their first

infection, however, whereas the age of secondary infection showed

a more dramatic reduction. In fact, due to the combined effect of

elevated serotype co-circulation and an increase in the suscepti-

bility to secondary infections through ADE, even moderate levels

of enhancement caused the HEP to go below the average time at

which individuals experience their first infection. Hence, in the

presence of population structure, ADE, and especially its proposed

susceptibility enhancing manifestation, may induce a signature in

the epidemiological age-profiles of the population that is

characterised by a longer period for first infection than the time

required for heterologous exposure, which has indeed been

observed in studies of clinical infections in dengue endemic areas

[32,45,47].

Model behaviour under changes in R0

Finally we turned our attention to the effect of changes to

disease transmission within this spatial setting. Differences in the

estimates of a pathogen’s transmission potential, or R0, can be

attributed to a multitude of factors, and in the case of dengue, this

has resulted in a wide spectrum of estimations, ranging in values

from close to 1 to bigger than 20 (see Table S1 for an overview).

To quantify the effects of changes to viral transmission, and R0 in

general, we analysed the model behaviour, in the absence of

immune interactions, under variations in key parameters related to

dengue’s basic reproductive number, whose derivation within this

framework can be found in the Material and Methods section.

Specifically, we investigated the effects of R0 through variations

in the probability of transmission per mosquito bite, using both

symmetric and asymmetric transmission probabilities, viral incu-

bation periods (both intrinsic and extrinsic) and mosquito vector

density. The results were mostly in accordance with those expected

from increasing parameters related to R0 in equivalent continuous

multi-strain models and can be found in Figure S4 in Supple-

mentary Material; here, we only highlight two of the more

important findings. First, assuming symmetric transmission prob-

abilities between host and vectors we found that the viral

extinction risk was not monotonously associated with changes in

transmissibility and was in fact minimized for R0[½4,6� (Figure

S4A), in range with estimations using age-stratified indexation of

sero-conversion rates [48]. Notably, this was also the range in

which the age profiles of infection where more similar to what is

commonly described for endemic regions in South East Asia

Figure 4. Effects of population structuring and host mobility. (A) Increasing host population structure results in a significant reduction in
epidemic variability (blue line in left panel), extinction risk (green line, middle panel), longer periods of serotype oscillations (blue line, middle panel)
and serotype co-circulation (red line, middle panel). This increase in viral persistence also causes higher mean prevalence (red line, left panel). The age
of primary or subsequent infections are not affected by changes to population structuring (right panel). (B) Host mobility, v, counteracts the effects
of population structure (here using a 20620 lattice) and leads to an increase in epidemic variability and therefore extinction risk. In both (A) and (B),
the average age of infection is not affected as the mean force of infection is maintained. Note, the oscillatory behavior in serotype prevalence is
maintained given the parameter variations, with periods between 7 and 10 years in (A) and between 7 and 9 years in (B). Extinction risk is defined as
the percent of time individual serotypes remain bellow a critical threshold of 10 infected hosts (human or mosquito). For ease of comparison,
epidemiological variables (except age) are normalised to the case of no structuring in (A) and no host mobility in (B), with ratios above 1 representing
an increase and below 1 a decrease. Dashed vertical and horizontal lines mark the parameter set of Figure 2. Shown are the means and deviations for
25 stochastic simulations.
doi:10.1371/journal.pcbi.1003308.g004

Persistent Oscillations in Spatial Dengue Model
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[32,45,49,50]. Secondly, our model confirmed that changes in the

extrinsic incubation period had a much more dramatic effect on

dengue epidemiology than incubation periods in the human host

(Figure S4D and S4E), as this directly affects the duration of

infectiousness in the mosquito. Crucially, this re-emphasizes the

notion that seasonally driven temperature, and its effect on viral

incubation, is as important a determinant of dengue epidemiology,

as is vector density [51].

Discussion

Understanding the evolutionary forces that shape the spatio-

temporal patterns of pathogen populations is essential for disease

control and public health planning. Important new insights into

the population dynamics of host-pathogen systems have been

gained by the application of deterministic mathematical models to

the study of many important infectious diseases [1]. Nevertheless,

stochastic and discrete events significantly influence the real world

counterpart of such systems and their explicit incorporation can

provide alternative frameworks in which to examine major

determinants of the observed epidemiologies [17,39,52,53]. In

this context, demographic stochasticity has been suggested to be

an important driver for population oscillations in single-strain

epidemiological systems [5,6,17,18]. Here we advanced upon

previous findings by studying the dynamical behavior of dengue’s

four antigenic types within a stochastic and spatially explicit

framework.

Dengue’s epidemiological dynamics have been the focus of

extensive theoretical research that often concentrated on the

immunological interactions between its four serotypes [10–12,24–

26]. Protective and infection-enhancing effects of cross-reacting

antibodies have been well documented both in vivo and in vitro

[46,54,55]. Less clear, however, is their contributing effect to

disease transmission and general epidemiology. For example,

although a short period of 3 to 9 months of serotype-transcending

immunity following a primary infection has been demonstrated by

direct experiment, the average time between consecutive, heter-

ologous infections is often found to be an order of magnitude

higher [45]. Equally, despite the reported increase in within-host

viral replication through antibody-dependent enhancement of

secondary, heterologous infections and observed correlations

between disease severity and previous exposure, it is currently

not known if and how much this increase in viral load contributes

to total dengue transmission, especially when taking into

consideration that severe, clinical cases may constitute only a

small fraction of all dengue infections [32,45], and that viraemia

appears to peak earlier but also clears faster during secondary,

heterologous infections [56].

In contrast to previous model predictions, our results could not

ascertain a decisive role of either temporary cross-immunity or

ADE in driving the complex epidemiological dynamics of dengue.

That is, while our findings do not question the pathological or

clinical significance of immune interactions per se, they suggest that

the strength of within-host serotype interactions, and therefore the

consequences of acquired immunity, are unlikely to be the sole

drivers of the complex epidemiological dynamics of dengue.

Crucially, the results herein presented further suggest that such

cross-immunological reactions, at least within biological reason-

able ranges, would not cause significant spatio-temporal signatures

that could allow the inference of their presence to be unambig-

uously resolved from studying epidemiological time series alone.

More detailed data, for example from human infectivity studies

that relate infection history with clinical outcome and infection/

transmission probabilities, are essential to close the gap in our

understanding of the full transmission potential of dengue.

Furthermore, to better understand the importance of host

demographic factors and spatial ecology highlighted in this work,

a phylodynamics approach could be considered in which the

spatio-temporal evolution of dengue genotypes is simulated and

compared to available data from different settings across the

endemicity spectrum.

Dengue’s recent molecular evolution is characterized by strong

intra-serotype purifying selection with no clear trend for contin-

uous antigenic change. As DENV has evolved to replicate

efficiently in both the vertebrate and arthropod hosts, it is thought

to express a compromise genome in which most structural

mutations are expected to be deleterious and selectively removed

from the population [57]. On the other hand, strong ecological

bottlenecks and inter-serotype competition can severely hamper

the emergence of viral mutants even if they express advantageous

phenotypes [58]. The cyclical replacement of dengue’s four

serotypes is therefore not expected to be driven by the same

inter-strain selective forces that have (reportedly) shaped the

phylodynamics of antigenically rapidly evolving pathogens, such as

influenza A [59], for example. It instead argues for a critical role of

demographic and ecological stochasticities underlying both

dengue’s epidemiology and molecular evolution.

The strong impact of host population structures and mobility

highlighted in this work also corroborates the hypothesis that

Figure 5. Effects of host mobility on spatial coherence. (A)
Increasing the probability of long-distance transmission, v, as a proxy
for increased daily (human) mobility, results in a less variable but more
patchy immunity landscape across the population, as shown as a
snapshot of the DENV1 susceptibility levels across the population. (B)
This effect on spatial heterogeneity in population-level immunity is also
reflected in terms of spatial coherence between communities, here
shown as Pearson’s r between communities along the diagonal.
Whereas predominantly local transmission results in a sharp decrease
in spatial coherence with distance (v~0:0001, blue line), high host
mobility leads to a generally low and homogeneous degree of
coherence across the population (v~0:3, red line), due to the nature
of mobility here assumed to be stochastic both in time and space.
doi:10.1371/journal.pcbi.1003308.g005
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DENV’s (re-)emergence and world-wide success is mainly due to

current demographic and ecological trends rather than viral

adaptation [39,57]. To understand dengue’s epidemiology in the

long-term, it is therefore crucial to establish how these meta-

population disease dynamics correlate with evolutionary con-

straints and respective selective signatures. Importantly, the

discrete nature of our framework and its meta-population

formulation readily allow to explore more realistic population

structures, including heterogeneities in (host and vector) popula-

tion sizes and/or connectivity between sub-populations, for

example by means of complex network structures, and to simulate

viral evolution in time and space within these frameworks. Our

model thus presents itself as a good starting point for a more

thorough investigation of DENV’s phylodynamics [60].

Accounting for community-specific vector control and drug

intervention policies is equally possible within this meta-population

formulation and constitutes another important extension for future

studies on the control of vector-borne diseases. For example,

candidate vaccines against dengue that are in advanced stages of

clinical trials might require a prime-boost protocol running over a

period of up to 12 months, which has been indicated as a potential

concern due to the risk of severe disease during the time when

antibody-levels are at sub-neutralizing titers [61,62]. By repro-

ducing the spatial heterogeneity in disease prevalence and serotype

distribution we found the timing between consecutive, heterolo-

gous infections to be highly variable in space. Our observations

thus reassert that spatially explicit epidemiological frameworks, as

the one presented here, are essential for assessing the risks and

efficacies of vaccine introduction strategies against dengue [62].

In summary, the results presented here have highlighted the

importance of considering spatial segregation between individual

hosts and vectors and stochasticities in disease transmission for

understanding the epidemiology of dengue and other related

pathogens. Previous theoretical studies have demonstrated that

immune interactions can significantly influence the population

dynamics of multi-strain pathogen systems. The inclusion of host

and vector ecologies adds to this understanding and provides

complimentary hypotheses about the underlying causes for the

oscillatory nature in incidence and serotype distributions that

commonly characterize their complex epidemiologies.

Materials and Methods

Individual-based models
To study the stochastic dynamics of a multi-strain pathogen we

used an individual-based model, realised as a discrete-time,

random process with finite state-space (Markov chain), is which

a state refers to the host’s epidemiological profile, such as infection

Figure 6. Effects of serotype immune interactions within structured populations. (A) The epidemiological effects of temporary cross-
immunity, 1=ah , on mean prevalence level, epidemic variability or average age of infection only become apparent when the period of immunity
increases beyond 12–24 months. Longer periods hamper variant transmission and lead to a decrease in mean disease prevalence and significant
increase in the age of heterologous infection. (B) Antibody-dependent enhancement, wh , which simultaneously increases susceptibility to and
transmissibility of secondary, heterologous infections causes an overall increase in the force of infection and more variable epidemic behaviour. Due
to higher susceptibility and co-circulation this also leads to a drop in the age of primary and particularly secondary infection. The oscillatory behavior
in serotype prevalence is maintained given the parameter variations, with periods between &8 and &12 years in (A) and between &6 and &9 years
in (B). For ease of comparison, epidemiological variables (except age) are normalised to the case of no cross-immunity, with ratios above 1
representing an increase and below 1 a decrease. Dashed vertical and horizontal lines mark the parameter set of Figure 2. Shown are the means and
deviations for 25 stochastic simulations.
doi:10.1371/journal.pcbi.1003308.g006
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status and immune history. Demographic, biological and ecolog-

ical stochasticities were derived from the probabilistic nature of

state transitions, e.g. in the probability that the bite of an infectious

mosquito leads to an infection. The size of the host population was

kept constant with deaths being replaced by newborns. We

assumed an age-dependent risk of mortality for both humans and

mosquitoes, described by the continuous Weibull distribution:

mi(t)~
ai

b
ai
i

tai{1e{(t=bi )ai
, i[fh,vg

where t is the host age, and ai and bi are the shape and scale

parameters, respectively.

Direct transmission model. The initial, direct transmission

model without spatial structuring (homogeneous mixing model) is

based on the model analysed by Alonso et al. [18] but here extended

to incorporate four co-circulating strains. We assumed contacts to

take place between two individuals chosen randomly from the host

population, with c as the average number of contacts per individual

per time step and E the probability of transmission from an infected

to a susceptible host. For each pathogen strain (or serotype) i, the

expected number of infective contacts per time step was therefore

given as bIi~cEIi. Following infection, individuals retained full

immunity against the infecting strain but remained susceptible to all

other strains; for simplicity we did not consider co-infection with two

or more strains. For this model only, we used parameter values

based on those from Alonso et al. [18]: transmission probability

b~0:1175, daily contact rate per host c~10, infectious period

1=c~3 days, average host life span 1=n~50 years, daily external

infection rate m~1E{5, and host population size N~100000.

The basic reproductive number, R0, for this model is simply given as

R0~b=(czn), as in a classical SIR epidemiological model.

Dengue model. To model the population dynamics of dengue

and its four serotypes (DENV1-4) we extended the initial model (see

above) and added mosquito vectors to the system together with the

virus’s intrinsic (human host) and extrinsic (mosquito host)

incubation periods, dh and dv, respectively. Only the susceptible,

exposed and infectious states of the epidemiologically relevant adult

life-stage of the mosquito were considered. To account for seasonal

variation in vector densities, we assumed an annually driven

mosquito birth rate, with the maximum number of vectors per

human determined by M, as previously used in [58]. Mosquitoes

had a per-day biting rate of av and, throughout the study, we

assumed equal transmission probabilities in human-to-vector and

vector-to-human transmission, Ehv and Evh, respectively (the effects of

asymmetries in transmission probabilities can be found in supple-

mentary material). To study the effect of immunological interactions

between serotypes, we considered (i) temporary, serotype-tran-

scending immunity, where individuals are fully protected against

further challenge for a period 1=ah months after recovery, and (ii)

antibody-dependent enhancement through an increase in suscep-

tibility and infectivity of heterologous, secondary infections, wh.

However, in the majority of our analyses, we did not consider

immune interactions beyond the prevention of super-infections. For

both the human and mosquito hosts we assumed age-dependent

mortality rates (see above) with average life expectancies of

1=nh~60 years and 1=nv~23 days for humans and mosquitoes,

respectively. With the consideration of the mosquito-vector, the

expression for the basic reproductive number changed to

R0~
M a2

v Evh Ehv dvdh

nv(chznh)(dhznh)(dvznv)
,

which has also been used by Wearing and Rohani [11]. We

assumed an R0&6, which is within the range of values estimated

from dengue endemic settings and those used in previous theoretical

studies (see Table S1 for an overview of R0 estimates, methodologies

and references). Note, parameters values for this model were

dengue-specific and therefore differed from those of the initial,

direct transmission model. A full parameter list with values used,

biological ranges and references can be found in Table 1.

Host population structure
Spatial structure was added by subdividing the host population

into a spatially organized set of communities, forming a squared

and non-wrapping lattice wherein each community Cj had Kj

neighbors (). Individuals were assumed to mix homogeneously

within each Cj , such that each mosquito bite took place between a

vector and human chosen randomly from this community. We

further assumed that mosquitoes disperse only locally, implying

that each vector in community Cj will only bite human individuals

belonging to the set of communities fCj ,Ck[Kjg, i.e. within Cj

and its neighboring communities. Long distance transmission was

considered through human movement by allowing mosquitoes to

bite humans of randomly chosen, distant patches with probability

v (the probability of human hosts temporarily ‘visiting’ these

communities), which reduces the local transmission rate to 1{v.

This formulation differs from the ones considered in other meta-

population studies, which often assume a constant (continuous),

and possibly distance-dependent migration or dispersal term

between any two patches or communities.

Dengue data
Temporal. Dengue incidence data for Puerto Rico (Figure 2)

was provided by M. Johansson from the CDC Dengue Branch,

comprising clinically suspected cases of dengue fever (DF) and

dengue hemorrhagic fever (DHF) in Puerto Rico between 1986–

2012. Serotype-specific testing has varied over time, so we adjusted

the serotype-specific incidence data proportionally to match the

incidence of all suspected cases by month. A slightly shorter time

series had previously been published and analysed in [63].

Monthly incidence of suspected DF or DHF cases in Mexico

1985–2011 (Figure S2A, top) was obtained from the Mexican

Secretariat of Health (www.epidemiologia.salud.gob.mx/dgae/

infoepid/inicio_anuarios.html). Annual incidence of DHF in

Thailand 1973–2009 (Figure S2A, bottom) was obtained from

the Annual epidemiological surveillance reports published by the

Ministry of Public Health epid.moph.go.th. Dengue serotype

prevalence for Thailand 1973–1999 (Figure S2B, top) was based

on children hospitalized at the Queen Sirikit National Institute of

Child Health in Bangkok, as previously published in [32].

Serotype prevalence in Vietnam (Figure S2B, bottom) is based

on data from the southern 20 provinces of Viet Nam over the

period 1996–2008, as previously published in [64].

Spatial. Spatial serotype data for Ho Chi Minh City

(Figure 3B, left panel) was provided by C. Simmons from the

Oxford University Clinical Research Unit (OUCRU), Viet Nam,

and represents 290 dengue cases in children presenting to the

outpatients department of three large hospitals in Ho Chi Minh

City during the season 2010—2011. Spatial, or district, informa-

tion was based on residency of the patient, and the distinction

between urban and suburban setting was based on the district’s

population density according to official census data. Spatial

serotype data for Thailand during the 2005/2006 season

(Figure 3B, right panel), including spatial information, was

obtained from [28,65].
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Supporting Information

Figure S1 Epidemic periodicities of a 4-strain pathogen
system. The global wavelet spectrum (GWS) is obtained by

averaging the local wavelet power spectrum (LWPS) across time

and is analogous to a traditional Fourier spectrum. (A) For a

directly transmitted pathogen and homogeneous mixing the model

generates main epidemic periods that are essentially within the

same range for both the pathogen and each of its variants. (B)

Using a dengue-like framework including a vector population and

intrinsic and extrinsic incubation periods increases both the

epidemic and serotype-specific periods, which also start to diverge.

(C) Assuming a spatially structured host and vector population plus

seasonality results in a variety of epidemic frequencies for both the

pathogen and individual variants. For the pathogen, the strongest

period is determined by the annual variation in vector densities,

whereas the variants settle close to a 8–9 year periods, similar to

those suggested from dengue-endemic regions.

(PDF)

Figure S2 Characteristic dengue epidemiologies from
different endemic settings. (A) Time courses of dengue

incidence display strong seasonal signatures (top, monthly cases

DF/DHF in Mexico) and multi-annual cycles in epidemic

outbreaks (bottom, annual cases of DHF in Thailand). (B) Relative

serotype prevalence in Thailand (top) and Vietnam (bottom) shows

sequential replacement in serotype dominance. See Materials and

Methods for sources of data.

(PDF)

Figure S3 Wavelet coherence between communities
with increasing spatial distance. (A–D)Analysed are the

prevalence time series of DENV1 in different communities over a

100 year time course with increased spatial distance along the

lattice diagonal, relative to the reference community 1 (corner).

The 2D (wavelet coherence) plots show a significant reduction in

synchrony between the time series in a time- frequency plane,

indicating the loss of similarities (coherence) in serotype behaviour

among distant communities. The arrows represent the relative

phase, which is a local measure of the delay between the two time

series, as a function of scale (frequency) and position (time). Only

for communities at close range (A, B), phase-synchrony can be

observed, although peak abundances can remain chaotic and

variably uncorrelated due to local demographic stochasticity.

Parameters as in Figure 2 of the main text; wavelet coherence was

obtained using a Morlet wavelet with a 100 months smoothing

window.

(PDF)

Figure S4 Model sensitivity to changes in parameters
relating to R0. Various human- and vector-associated param-

eters (rows) were varied and their impact on key epidemiological

variables (columns) quantified. (A) Transmissibility to humans and

mosquitoes with EHV ~EVH ; (B) Transmissibility to mosquitoes

(EHV ) only; (C) Transmissibility to humans (EVH ) only; (D) Intrinsic

incubation period (dH ); (E) extrinsic incubation period (dV ); (F)

number of mosquitoes per human host (M ). The according basic

reproductive number, R0, is given by the second x-axis (bottom).

The oscillatory behavior in serotype prevalence is maintained

given the parameter variations, since the range in serotype

epidemic periodicity remains several times above the 1 year

(seasonally driven) pathogen epidemic period. The extinction risk

is defined as the percent of time individual serotypes remain bellow

a critical threshold of 10 infected hosts (human or mosquito), and

serotype co-circulation is defined as the percent time where

multiple serotypes are present in a given patch (meta-population

average). For ease of comparison, epidemiological variables

(except age) are normalised to the case of lowest parameter value,

with ratios above 1 representing an increase and below 1 a

decrease. Dashed lines mark the parameter set of Figure 2 in the

main text. Shown are the means and deviations for 25 stochastic

simulations. Other parameter values as in Table 1 in the main

text.

(PDF)

Table S1 R0 estimates for dengue (reproduced from
[73]).

(PDF)
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