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Abstract

This thesis examines how novel invariants called the ”stability index” as proposed

by Podvigina and Ashwin can be used to characterize the local geometry of riddled

basins of attraction for both skew and non-skew product systems. In particular, it

would be interesting to understand how the stability index behaves on the basin

boundary between multiple basins of attraction. Then we can ask this question:

How can we identify when a basin is riddled? To answer this, we present three

models with the presence of riddled basins.

In the first model, we present a skew product system of a simple example of a

piecewise linear map. We prove that the riddled basin occurs within a certain range

of parameter and calculate the stability index analytically for this map. Our results

for the stability index at a point show that for Lebesgue almost all points in the map,

the index is positive and for some points the index may be negative. We verify these

results with our numerical computation for this index. We also make a corollary

claiming that the formula for the stability index at a point can be expressed in terms

of the stability index for an attractor and Lyapunov exponents for this map. This

suggests that this index could be useful as a diagnostic tool to study bifurcation of

the riddled basins of attraction.

In the second model, we refer to a skew product map studied by Keller. Previously,

Keller computed the stability index for an attractor in his map whereas in this thesis,

we use an alternative way to compute the index; that is on the basins of attraction

for Keller’s map, found by inverting his map. Using the same map, we also verify

maximum and minimum measures as obtained in his paper by studying Birkhoff

averages on periodic points of Markov map in his system. We also conjecture result

by Keller and Otani on the dimension of zero sets of invariant graph (i.e. basin

boundary) that appears in Keller’s map to a complete range of a parameter in the

map.

The last model is a non-skew product map which is also has a riddled basin. For

this map, we compute the stability index for an attractor on the baseline of the

map. The result indicates that the index is positive for Lebesgue almost all points

whenever the riddled basin occurs.
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1 Introduction

In dynamical systems, every attractor has a basin of attraction, a set of initial points

whose orbits are attracted to the attractor, i.e. basin with positive measure. This

thesis will deal with a special and interesting type of basin of attraction; exists be-

cause of the symmetries in dynamical systems, the so-called riddled basin; a basin

that has positive measure but contains no open sets [1]. The non-riddled basin is in

some sense trivial (an open set must has positive Lebesgue measure) and not inter-

esting, whereas a riddled basin is a highly non-trivial set and has very complicated

structure. Generally speaking, a basin is said to be riddled if for any point that ap-

proaches the attractor in the basin, there is a point nearby that escapes to a basin

of another attractor [49]. This type of basin was introduced by Alexander et al. [1]

in 1992 and has been studied afterwards in several papers including Sommerer and

Ott [61], Ott et al. [58], Ott et al. [57], Ashwin et al. [6; 7], Buescu [17] and Ashwin

and Terry [8]. We discuss the definition more precisely in Section 2.4.

We show a schematic diagram for a riddled basin in Figure 1.1 where we refer to

Camargo et al. [18]. Ott et al. [58; 57] states that to have a riddled basin, there

must exists an attractor for which all points in its basin of attraction have pieces of

another attractor basin arbitrarily nearby. That is, if p is any point in the basin,

then, for every ε, however small, there are displacements δ, where |δ| < ε, such that

the point p + δ is in the basin of another attractor. In addition, the set of these

points has nonzero phase space volume (positive Lebesgue measure).

Riddled basins can be found in many models of systems of physical and biological

interest, for example in learning dynamical systems [55], coupled chaotic oscillators

[6; 69], mechanical systems [67], electronic systems [54] and especially in coupled

maps [32]. In addition, the applications of riddling can also appear in forced double-

well Duffing oscillator [57; 58; 61], coupled nonlinear electronic circuits [6; 33],

coupled elastic arches [67], ecological population model [21], chemical reactions of

the Belouzov-Zhabotinsky type [68] and in models of interdependent open economies

[72].

In fact all of the above authors investigate the global structure of the basin, but none

of them consider for the local structure. In this work, we will introduce a stability

index to quantify the local structure of the riddled basins. The stability index was
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..
P

attractor A

containing A

attractor C

orbit 
to A

|ε|
orbit
to C

invariant subspace N

(off N)

Figure 1.1 Schematic diagram [18] showing a situation with a riddled basin of attraction.
This picture shows that there are two attractors A and C with basins Â and Ĉ. Basin Â
is riddled by basin Ĉ if for every point p in Â, a small ball of radius ε centred at p, Bε(p),
has a positive Lebesgue measure of points belonging to basin Ĉ, irrespective of how small
ε might be.

introduced recently by Podvigina and Ashwin [59] to characterize the local structure

of basins of heteroclinic attractors and we will adapt their definition to characterize

the local geometry of riddled basin more precisely.

In this thesis, we concentrate on discrete time systems which can be written as

xn+1 = f(xn),

where x ∈ Rn and f : Rn → Rn. Such systems are generated by iteration of a map

f .

The riddled basin can be found in skew product dynamical systems. In this thesis,

we present some examples of skew product systems including a system which we

modified from Ott et al. [57] and also one from Keller [44]. We consider a skew

product on a space B = X × Y where X is the base space and Y is the fibre space.

For each x ∈ X, the set {x} × Y is the fibre over x [2]. The skew product system

T : B → B can be written as

T (x, y) = (f(x), g(x, y)), (1.1)

where f(x) is the base map from a base space to itself. For any x ∈ X the fibre map

g(x, y) maps the fibre over x to a fibre over f(x) [2]. In other words, the set {x}×Y
is mapped to the set {f(x)} × Y by the fibre map g(x, y). Note that x dynamics

evolve independently of y dynamics in the base map [30]. See also [2; 4; 62; 64] for

futher discussion about skew product systems. In Alsedá and Misiurewicz [2], they

explain basic differences between a skew product system with a ”usual” system; for

example in terms of the space of convergence of orbits to the attractor in a system.

In particular, in the usual system, this convergence is in the whole metric space

while in the skew product system, this convergence is fibrewise, i.e. on the sets
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1. Introduction

{x} × Y .

In fact, these systems may have attractors of the form of invariant graphs, where

these invariant graphs play role as the boundary between the basins of attraction.

With the presence of this boundary, one can characterize the convergence of orbits

of points in the basins whether they start from below or above the invariant graph.

For example, if the point starts from below the invariant graph, then its orbit will

converge to an attractor in lower basin. Meanwhile, if the point starts from above the

invariant graph, then its orbit will goes to an attractor in upper basin. To detect the

riddled basin, the stability index is applied where we take a neighbourhood around

a point in the attractor on the baseline and investigate the proportions of points

that converge to an attractor as the size of the neighbourhood is varied. We will

explain precisely about the invariant graph in the next section and in Chapter 3 for

definition of the stability index.

In Figure 1.2 we show the relations between three main topics in this thesis which

consist of the riddled basins, the skew product systems and the stability index. Note

that the non-skew product systems can also have attractors with riddled basins.

Riddled

product
 Skew

systems

basins

attractor with
may have 

Stability
  index

characterizes

Figure 1.2 The relations between the three main topics that are analyzed in this thesis.

1.1 Invariant graph

From (1.1), we consider a map f : T → T where T denotes 1-dimensional torus

T = R/Z and g : I → I where I = [0,∞).

Definition 1.1 If T : T× I → T× I is a skew product and ϕ : T→ I is a function,

we say ϕ is an invariant graph for T if {(θ, ϕ(θ)) : θ ∈ T} is T -invariant.

An invariant graph, if it exists, is a very useful tool to connect the base dynamics

with the fibre dynamics. Generally speaking, it is an invariant set that is the graph

of a function ϕ from the base space T to the fibre space I [62]. For example, Stark

[62; 63], Kaplan et. al [41] and Hirsch et. al [34] have investigated existence and
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regularity properties of invariant graphs in skew product systems. Another example

is from Hadjiloucas et. al [31] where they consider the regularity of invariant graphs

of skew product systems with uniform hyperbolic in the base map and both uniform

and non-uniform contraction in the fibre map.

Invariant graphs also play a similarly important role in skew product systems as

fixed points, for the case of unperturbed maps. However, in contrast to fixed points,

we can characterize invariant graphs into two types. In the simpler case, the graph

is continuous and in the more complicated case, it is non-continuous graph [37].

Invariant graphs have been applied in many branches of nonlinear dynamics and

have become a subject of interest by many authors such as Stark [62; 63], Campbell

[19], Broomhead [16], Jäger [37; 38], etc.

Here we define three different types of continuity of a function. Let h : T→ I be a

function where I is a real interval.

Definition 1.2 (Upper semi-continuous) A function h is upper semi-continuous

if for all θ ∈ T and ε > 0, there is a δ > 0 such that for all θ̃;

θ − δ < θ̃ < θ + δ =⇒ h(θ̃) < h(θ) + ε. (1.2)

Definition 1.3 (Lower semi-continuous) A function h is lower semi-continuous

if for all θ ∈ T and ε > 0, there is a δ > 0 such that for all θ̃;

θ − δ < θ̃ < θ + δ =⇒ h(θ)− ε < h(θ̃). (1.3)

Definition 1.4 (Continuous) A function h is said to be continuous if for all θ ∈ T
and ε > 0, there is a δ > 0 such that for all θ̃;

θ − δ < θ̃ < θ + δ =⇒ h(θ)− ε < h(θ̃) < h(θ) + ε. (1.4)

In other words, h is continuous if and only if it is both upper and lower semi-

continuous.

For example, Stark [62] proves the existence of a continuous invariant graph (when-

ever the contraction in the fibre map is uniform) in the following theorem [62,

Theorem 2.1] for one-dimensional fibres

Theorem 1.1 Let f : T→ T and g : T×I → I. Suppose that (f, g) : T×I → T×I
is a skew product with f invertible satisfying the uniform contraction∣∣∣∣dg(n)

dx
(θ)

∣∣∣∣ ≤ cδn,
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for all θ ∈ T and x ∈ I and some 0 < δ < 1, c > 0 where g(n)θ is the second

component of (f, g)n. Then there exists a continuous function ϕ : T → I such that

the graph of ϕ is (f, g)-invariant and attracting for all (θ, x) ∈ T× I.

However, in many cases, invariant graphs maybe discontinuous even if they are

attracting. For instance, Jäger [37] considers a continuous skew product map

T : T× I → T× I,

defined by

T (θ, x) = (f(θ), g(θ, x)), (1.5)

where all of the fibre maps g are monotonically increasing on I. We refer to Wheeden

and Zygmund [66] for the definition of a function to be monotonic increasing and

below we show in the case of fibre maps:

Definition 1.5 (Monotonic increasing in fibre) A function g is monotonic in-

creasing in fibre map if for all x1, x2 ∈ I such that x1 ≤ x2 and θ ∈ T, then

g(θ, x1) ≤ g(θ, x2),

where this means that if we start with higher value, then its image cannot be lower

than the lower value.

If ϕ : T→ I is an invariant graph for T

T (θ, ϕ(θ)) = (f(θ), ϕ(f(θ))) (1.6)

or equivalently,

g(θ, ϕ(θ)) = ϕ(f(θ)) (1.7)

for all θ ∈ T. We show action of the skew product T in (1.6) as in Figure 1.3.

I

..(θ,ϕ(θ))

(  (θ),ϕ(  (θ)))ff

Figure 1.3 The schematic diagram showing the action of skew product T on the invariant
graph ϕ.
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Now, suppose that K ⊆ T × I is a compact invariant set. We can define upper

bounding graph of K as

ϕ+(θ) = max{x ∈ I : (θ, x) ∈ K}. (1.8)

Thus by compactness of K, ϕ+(θ) will be upper semi-continuous. In the same way,

one can define the lower bounding graph of K:

ϕ−(θ) = min{x ∈ I : (θ, x) ∈ K},

which is also invariant. The following lemma proves that the upper bounding graph

ϕ+(θ) is invariant. Note that this has been stated in Jäger’s paper [37] but we give

a proof here for completeness of this research project.

Lemma 1.1 Let ϕ+(θ) be as in (1.8) and g is monotonic increasing in the fibre.

Then ϕ+(θ) is invariant.

Proof. From (1.7) and (1.8), we have that for all θ ∈ T,

g(θ, ϕ+(θ)) = g(θ,max{x ∈ I : (θ, x) ∈ K}),

= max{g(θ, x) : (θ, x) ∈ K},

but (θ, x) ∈ K if and only if

T (θ, x) = (f(θ), g(θ, x)) ∈ K,

i.e. the images are also in K since K is invariant. Thus,

g(θ, ϕ+(θ)) = max{g(θ, x) : (f(θ), g(θ, x)) ∈ K},

= max{z : (f(θ), z) ∈ K},

= ϕ+(f(θ)). �

Note that the proof that ϕ−(θ) is invariant is similar replacing max by min.

Now we want to prove that ϕ+(θ) is upper semi-continuous. This also has been

stated in Jäger’s paper [37] but we give the proof here.

Theorem 1.2 Let T : T× I → T× I be a continuous skew product where the fibre

map is monotonic increasing and K is a compact invariant set. Then the upper

bounding graph ϕ+(θ) is upper semi-continuous.
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Proof. Suppose ϕ+(θ) is not upper semi-continuous at some θ ∈ T. Then there is

an ε > 0 such that for all δ > 0 there exists θ̃ such that

θ − δ < θ̃ < θ + δ.

We pick δ = 1/n and let θ̃n be such that

|θ − θ̃n| <
1

n
and ϕ+(θ̃n) > ϕ+(θ) + ε.

By compactness, there is a subsequence θ̃nk such that ϕ+(θ̃nk) → H ≥ ϕ+(θ) + ε

and θ̃nk → θ as k → ∞. However, since ϕ+(θ) is already a maximum as in (1.8),

there is no such H. Thus, we have proved that ϕ+(θ) is upper semi-continuous. �

We can also show that the lower bounding graph ϕ−(θ) is lower semi-continuous by

using the contradiction of Definition 1.3.

Jäger [37] called the set K ’filled-in’ where

K = [ϕ−, ϕ+] = {(θ, x) : ϕ−(θ) ≤ x ≤ ϕ+(θ).}

Interestingly, under certain circumstances K represents the global attractor [30] of

system F , which is defined as

K =
⋂
n∈N

T n(T1 × I).

Although we have explained that invariant graphs appear in the skew product sys-

tems, not all skew product systems have invariant graphs. In this work, we will

consider some skew product systems which have non-continuous invariant graphs.

1.2 Thesis outline

This thesis is mainly about the characterization of stability index on the local struc-

ture of riddled basins of attraction for both skew product and non-skew product

maps.

The rest of this thesis is organized as follows. In Chapter 2, we review the theory

of dynamical systems in the contexts of topological and measurable dynamics. We

consider systems defined on metric spaces (X, d) by a continuous map f : X → X.

We introduce the concepts of metric spaces and ω-limit set of the orbits fn in the

first and second sections respectively. In Section 2.3 we discuss some background

on measure theory as we use the Lebesgue measure ` to measure the basins of the
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attractor. In this section, we also discuss one of techniques in dimension theory,

namely, Hausdorff measure and its dimension where we will use them to estimate

the dimension of zero and non-zero sets of the invariant graph for Keller’s map. To

define an attractor A, some basic notions including basins of attraction B(A) and

Milnor attractor are discussed in Section 2.4. Follow from these, a formal definition

for riddled basin is given where it has positive Lebesgue measure, i.e. `(B(A)) > 0

but does not contain any open set. In Section 2.5, we review ergodic theory which

involves the study of invariant measures for measurable transformations f . We will

use one of the main results of ergodic theory, namely Birkhoff’s Ergodic Theorem to

calculate the stability index for a simple example of piecewise linear map in Chapter

4. Moreover, in Section 2.6 two examples of Markov maps are explored namely the

doubling map and the more generalized skewed doubling map, where both of them

satisfy the piecewise expanding and Markov properties.

In the first section of Chapter 3, we discuss the stability index defined for a point

as initially proposed by Podvigina and Ashwin [59]. As we said earlier, the stability

index has been applied firstly in the case of heteroclinic cycles. In Section 3.2, we

relate the results obtained by Podvigina and Ashwin [59] and Lohse [52] with our

stability index. Next, in Section 3.3, we give a stronger result on the basic properties

of the stability index for the point by showing that the proportion of the points

that are attracted to A inside the ε-neighbourhood is exponentially asymptotically

tightly bounded (denoted as Θ̃) by εc for some constants c. Section 3.4 is our first

result where we establish a relation between the stability index at a point and the

local dimension of measures. This result was suggested by Tobias Jäger (private

communication). Finally, we introduce the stability index modified from [59] for a

set of in particular for the attractor A.

In Chapter 4, we use an analytical approach in order to compute the stability index

for riddled basin for a simple example of a skew product system. We consider a

piecewise expanding linear map which has two coexisting Milnor attractors where

the first basin is riddled with the second basin. Hence, our first aim of this chapter

is to prove the existence of this riddled basin. Before we do the proof, we define the

boundary between the two basins in Section 4.2. To show the presence of riddled

basin, we prove in our main theorem, Theorem 4.4 in Section 4.3. First we show

that the measure for both basins is full since for almost all points that start below

the boundary will tend to the first basin and for almost all points that start above

the boundary will tend to the second basin. Secondly, we prove that the first basin

can has either positive or zero measure depending on the range of the parameters.

Finally we show that the second basin is everywhere dense and has positive measure

in any neighbourhood in the whole space X. After that, we calculate the stability

index both at a point as well as for the attractor in sections 4.4 and 4.5 respectively.
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Interestingly, we obtain that the formula of the stability index at a point contains

the formula of stability index for the attractor and the local Lyapunov exponents

where we produce this result as in Corollary 4.8. This is obtained only when the

limit of the stability index converges or exists. We also show that it is possible to

obtain a case where the limit is not converge in Section 4.6. Instead, the index

oscillates between the liminf and limsup. Our main results for the stability indices

are of theorems 4.5, 4.6, 4.7 and 4.9. All materials in this chapter are original.

We use Keller’s skew product map [44] in both Chapter 5 and 6. Chapter 5 is about

the numerical computation of the stability index for the points on the attractor. In

[44], Keller computed the stability index for the points under the invariant graph.

In our study, we take another approach to understand his map, i.e. by inverting

the map to obtain attractors whose basins of attraction have a basin boundary. By

doing so, the invariant graph which is an attractor in Keller’s map becomes a basin

boundary in the inverse map. In Chapter 6 we present the computation of Birkhoff

averages for periodic points in Markov maps where we verify the maximum and

minimum measures as obtained in Keller [44, Example 1]. Furthermore, we also

investigate the dimension for both zero and non-zero sets for the invariant graph

using the Hausdorff dimension. To do this, we conjecture Theorem 2 in Keller and

Otani [46] to a complete range of parameter r of Keller’s map.

In Chapter 7, we consider a non-skew product map with a riddled basin from Ashwin

et al. [6; 7] and we compute the stability index numerically for the attractor of the

system.

We complete our work by summarizing our contributions in this thesis mainly for the

stability index for the local geometry of riddled basins in Chapter 8. We also discuss

some limitations of our results which we think it is possible to obtain more general

results on the stability index. Some appendices regarding the basic asymptotic

notations and MATLAB and Maple codes for the three models are also included.
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2 Topological and Measurable

Dynamics

In this chapter we discuss some topological and measure properties of dynamical sys-

tems. Generally speaking, topological dynamics investigates the asymptotic proper-

ties of the orbits in dynamical systems. In particular, it is a study of a topological

space X with continuous transformations f . We begin by reviewing metric spaces

and mappings together with the ω-limit set of the orbits of points x in the system.

In order to discuss measurable dynamics, we give some background of measure

theory and we relate this with the section of attractors in dynamical systems in the

sense that every basin has its own measure where we equip this basin with Lebesgue

measure. In this thesis, we use this measure to approximate the measure for the

riddled basins. Besides Lebegue measure, we also consider the Dirac delta measure;

a measure which we compute for the periodic points. Moreover, we briefly discuss

Hausdorff measure and Hausdorff dimension.

Moreover, we explore some basic ideas of ergodic theory including the well-known

result; Birkhoff’s Ergodic Theorem which was established by George Birkhoff in

1931. This result can be used to compute the averages of periodic points which

approach to certain limits. We also present the well-known example of Markov

maps where one can investigate the behaviour of orbits using symbolic dynamics.

Finally, we discuss the Lyapunov exponents which measures the complexity (or

chaos) of a system. In this thesis, we will use the Lyapunov exponents to identify

the riddled basin in the skew product system and properties of these are very useful

to characterize attractors in a system.

2.1 Metric spaces

Let X be a nonempty set. A function d : X ×X → R is a metric on X, also called

a distance function, assigning to each ordered pair (x, y) a nonnegative real number

d(x, y), satisfying the following properties:
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(i) (Positivity): If x 6= y, then d(x, y) > 0.

(ii) d(x, x) = 0 for all x ∈ X.

(iii) (Symmetry): d(x, y) = d(y, x) for all x, y ∈ X.

(iv) (Triangle inequality): d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The set X together with a metric d, (X, d) is called a metric space. Also, one calls

d(x, y) the distance from x to y [13].

Let X be a metric space. For any x ∈ X, and any ε > 0, an open ball of radius ε

around x is the set

Bε(x) = {y ∈ X : d(y, x) < ε},

and a closed ball of radius ε around x is defined by

Uε(x) = {y ∈ X : d(y, x) ≤ ε}.

We can think of Bε(x) and Uε(x) as small neighbourhoods around the point x. The

notation of Bε(x) will be used throughout this thesis as it appears in the definition

of stability index. Other important definitions for this thesis are as follows:

Definition 2.1 (Open set [66]) A set U is said to be open in X if for each point

x in U , there exists a real number ε > 0 such that any open ball of radius ε around

x is contained in U , i.e.,

∀x ∈ U ∃ε > 0 such that Bε(x) ⊂ U. (2.1)

Definition 2.2 (Closed set [66]) A set U is called closed if the complement of U

is open.

Definition 2.3 (Closure of a set [66]) The closure of U , written as U , is the

union of a set U and all its limit points, i.e.

U = U ∪ {x : |xk → x| → 0 as k →∞ for a sequence {xk} of U}.

In fact, we can write Bε(x) = Uε(x).

Definition 2.4 (Dense set [66]) A set U ⊂ X is said to be dense in X if for

every x ∈ X and ε > 0, there is a point x̃ ∈ U such that 0 < |x − x̃| < ε. Thus U

is dense in X if every point of X is a limit point of U .

Definition 2.5 (Compact set [26]) A set U ⊂ X is compact if any collection of

open sets which covers U (i.e. with union containing U) has a finite subcollection
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which also covers U .

Note that if U ∈ Rn, then U is compact if and only if it is closed and bounded [66].

2.2 Mappings: Fixed, periodic and pre-periodic

points

From now on, we will denote X as a metric space. We may often suppose that

f : X → X is a continuous map; where the definition is as below:

Definition 2.6 (Continuous map [51]) Let X be a metric space. A map f :

X → X is said to be continuous if for every open set U ⊂ X, f−1(U) is open in X.

In other words, f is continuous if the preimage of any open set is an open set.

The orbit of a point x0 ∈ X is

{fn(x0)}∞n=0 = {x0, f(x0), f(f(x0)), . . . , fn(x0), . . .},

where fn denotes the nth iterate of f , i.e.,

fn(x0) = f(f(f(. . . f(f(x0)) . . . ))), n ≥ 0.

The point x0 ∈ X is a fixed point for f : X → X if:

f(x0) = x0.

The point x0 ∈ X is a periodic point of period n for f : X → X if:

fn(x0) = x0,

for some n > 0. Therefore we say n is the period of x0 and {x0, f(x0), f 2(x0), . . . , fn−1(x0)}
is a period-n orbit of f . We can define the ω-limit set, from the orbit of x as follows:

Definition 2.7 (ω-limit set [4]) Let x ∈ X. The ω-limit set ω(x) is defined as

ω(x0) = {limits of fn(x0) as n→∞} =
⋂
m≥0

⋃
n≥m

fn(x0). (2.2)
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2.3 Measure theory

A measure is a way of assigning a ’size’ on a set such that if a set is decomposed

into a finite or infinite (but still countable) number of pieces, then the size of the

whole is the sum of the sizes of the pieces. A particularly important example is the

Lebesgue measure on a Euclidean space Rn. For definitions in measure theory, we

mainly refer to the books by Walters [65] and Falconer [26].

Definition 2.8 (σ-algebra [65]) Let X be a set. A collection B of subsets of X

is called σ-algebra if:

(i) X ∈ B.

(ii) if B ∈ B then X \B ∈ B.

(iii) if Bn ∈ B for n ≥ 1 then
⋃∞
n=1 Bn ∈ B.

We then call the pair (X,B) a measurable space. Note that from the condition (iii)

above, B is closed under countable unions. However, when B is closed under finite

unions, we have that if B1, . . . , Bn ∈ B, then
⋃n
i=1 Bi ∈ B. In this case we call B

an algebra of subsets of X. Thus, it is clear that every σ-algebra is an algebra [65].

Now we introduce Borel sets B which are defined to be the smallest collection of

subsets of X which have the following properties [26]:

(a) every open set and every closed set is a Borel set, i.e. if U is open or closed then

U ∈ B.

(b) the union of every finite or countable collection of Borel sets is a Borel set, i.e.

if {Ui} ∈ B is countable, then ∪i Ui ∈ B.

(c) the intersection of every finite or countable collection of Borel sets is a Borel

set, i.e. if {Ui} ∈ B is countable, then ∩i Ui ∈ B.

In other words, the Borel sets B are generated from the open sets (or closed sets)

through the operations of countable union and countable intersection. Moreover,

for a metric space X, the collection of all the Borel sets on X forms a σ-algebra,

known as the Borel σ-algebra. This Borel σ-algebra is the σ-algebra generated by

the open sets (or by the closed sets) [65]. We will still use the notation B to denote

a Borel σ-algebra for later use.

Now we want to define a measure on the Borel sets. Any measure defined on the

Borel sets is called a Borel measure. Let X ⊂ Rn. One can define a Borel measure

for each subset of X as follows:
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Definition 2.9 (Borel measure [26]) µ is said to be a measure on Rn if µ assigns

a non-negative number, possibly ∞, to each subset of Rn such that

(a) µ(∅) = 0, (null empty set)

(b) µ(A) ≤ µ(B) if A ⊂ B where A,B ∈ B, (monotonicity)

(c) If A1, A2, . . . is a countable (or finite) sequence of sets then

µ

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai), (countable subadditivity)

and if Ai are disjoint Borel sets, the following equality holds:

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai),

where Ai ∈ B.

We call µ(A) the measure of the set A. Note that condition (a) says that the empty

set has zero measure, condition (b) says that a larger set has larger measure and

condition (c) says that if a set is a union of a countable number of pieces (which may

overlap) then the sum of the measure of all pieces is at least equal to the measure

of the whole set. If a set is decomposed into a countable number of disjoint Borel

sets then the total measure of the pieces equals the measure of the whole [26].

According to Walters [65], we call a triple (X,B, µ) a measure space. If µ(X) <

∞, then we say µ is a finite measure. Moreover, if µ(X) = 1, then we call µ

is a probability measure and (X,B, µ) is said to be a probability space. From the

above definition, any measure µ defined on the Borel σ-algebra is also called a Borel

probability measure. Therefore, throughout this thesis, we will denoteM(X) the set

of all Borel probability measures on X.

2.3.1 Examples of measures

In this section, we consider two examples of measures, namely the Lebesgue measure

and the Dirac delta measure.

Lebesgue measure

The Lebesgue measure is a standard way to measure a set of the n-dimensional

Euclidean space. It is in fact a generalization of ’length’ or ’area’ or ’volume’
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to a large collection of subsets of Rn which includes the Borel sets [25]. For in-

stances, 1-dimensional Lebesgue measure `1 coincides with the measure of length,

2-dimensional Lebesgue measure `2 with the measure of area and 3-dimensional

Lebesgue measure `3 with the measure of volume.

For `1, the length of open and closed intervals is `1(a, b) = `1[a, b] = b − a. If

Ai = ∪i[ai, bi] is a finite or countable union of disjoint intervals, then the sum of the

length of the intervals is `1(A) =
∑

(bi − ai).

Definition 2.10 (1-dimensional Lebesgue measure [25]) Let A be an arbitrary

subset of Rn. Then the 1-dimensional Lebesgue measure of A, `1(A) is defined as

`1(A) = inf

{
∞∑
i=1

(bi − ai) : A ⊂
∞⋃
i=1

[ai, bi]

}
,

which can be generalized to the n-dimensional case:

Definition 2.11 (n-dimensional Lebesgue measure [25]) If A = {(x1, . . . , xn) ∈
Rn : ai ≤ xi ≤ bi}, then the n-dimensional Lebesgue measure `n is given by

`n(A) = inf

{
∞∑
i=1

voln(Ai) : A ⊂
∞⋃
i=1

Ai

}
,

where voln(A) = (b1 − a1)(b2 − a2) . . . (bn − an).

Throughout this thesis, we will denote the n-dimensional Lebesgue measure on Rn

by `(·) if the context is clear.

Dirac delta measure

In general, the delta function can be defined either as a distribution or as a measure.

We define the delta function as a function from Borel subsets of X to {0, 1}, i.e.,

δx(A) : B→ {0, 1}

and for a given x ∈ X the measure is defined by

δx(A) =

1 if x ∈ A,

0 if x /∈ A,
(2.3)

for every measurable set A ∈ B. Then δx is said to be the Dirac delta measure

supported at x. We can also think this as a point mass concentrated at x since the
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support of δx is a singleton {x}. In this thesis, we will use δx on the periodic points

in order to compute the Birkhoff averages for the case of skew product system.

2.3.2 The restriction of Lebesgue measure

The restriction of any measure to a Borel set is also a measure.

Definition 2.12 (Restriction of a measure to a Borel set [26]) Let ` be a mea-

sure on Rn and N a Borel subset of Rn. We define a measure µ on Rn the restriction

of ` to N by

µ(A) = `(A ∩N),

for every set A. Then µ is a measure on Rn with support contained in N .

The above measure can also be written as `|N(A).

The restriction of a measure is also a measure because one can verify that the

following properties hold:

(a) `|N(A) = `(A ∩N) > 0. (nonnegativity)

(b) Suppose B ⊆ A, which implies B ∩N ⊆ A ∩N . Then

`|N(B) = `(B ∩N) ≤ `(A ∩N) = `|N(A). (monotonicity)

(c) If A1, A2 ∈ B then

`|N(A1 ∪ A2) = `(A1 ∪ A2 ∩N),

= `(A1 ∩N ∪ A2 ∩N) ≤ `(A1 ∩N) + `(A2 ∩N),

= `|N(A1) + `|N(A2). (subadditivity)

We will use `|N(A) to relate the stability index with the local dimension of measures

in Chapter 3.

2.3.3 Local dimensions of measures

In this section, we discuss the notion of lower and upper local dimension for a

measure. In fact, we are interested in the dimension of sets rather than just the

measure of the sets. Some authors use the term of pointwise dimension instead of

local dimension. This local dimension is basically related to the measure of small

balls in the phase space and the local dimension of a point is always defined with
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respect to a measure. This local dimension was introduced by Young [71] and has

been studied by many papers for examples Farmer et al. [27], Ledrappier and Young

[50], Young [70], Barreira et al. [11], Barreira and Wolf [12] and Olsen [56].

The following definition of lower and upper local dimension can be used to charac-

terize the local geometrical stucture of measure ` and are also important tools in

the theory of dimension of dynamical systems [10; 24; 35; 71]. In Falconer [25], the

lower and upper local dimension of a measure µ at x ∈ X with respect to µ are

defined respectively by

dimlocµ(x) = lim inf
ε→0

log µ(Bε(x))

log ε

and

dimlocµ(x) = lim sup
ε→0

log µ(Bε(x))

log ε
,

where Bε(x) is the ε-neighbourhood around x. This local dimension exists at x if

dimlocµ(x) = dimlocµ(x), and we will use dimloc µ(x) to denote the common value,

i.e. the local dimension of the measure µ at point x is

dimloc µ(x) = lim
ε→0

log µ(Bε(x))

log ε
, (2.4)

provided that this limit exists.

2.3.4 Hausdorff measure and its dimension

In this section, we introduce the notions of Hausdorff measure and its dimension.

Generally speaking, Hausdorff dimension for a point is zero, Hausdorff dimension

for a line or curve is 1, Hausdorff dimension for a plane is 2, etc. Meanwhile with

Hausdorff measure, we are counting the number of points in a set, measure the length

of a curve in a set, measure the area, volume, etc [26]. We refer their definitions in

Falconer’s book [26].

Let (X, d) be a metric space. For any subset U ⊂ X, the diameter of U is defined

as

|U | := sup{d(x, y) : x, y ∈ U},

i.e., the greatest distance between any two points in U . If {Ui} is a countable (or

finite) collection of sets of diameter at most δ that cover S, i.e. S ⊂
⋃∞
i=1 Ui with

0 ≤ |Ui| ≤ δ for each i, we say {Ui} is a δ-cover of S.

Suppose that S is a subset of X and α is a non-negative number. For any δ > 0 we

31



2. Topological and Measurable Dynamics

define

Hα
δ (S) := inf

{
∞∑
i=1

|Ui|α : {Ui} is a δ-cover of S

}
. (2.5)

From the above, we want to minimize the sum of αth powers of the diameters. As

δ decreases, the permissible covers of S in (2.5) is reduced. Therefore the infimum

Hα
δ (S) approaches to a limit as δ → 0. Thus, we can define α-dimensional Hausdorff

measure of S

Hα(S) = lim
δ→0
Hα
δ (S), (2.6)

where this limit exists for all Borel subsets of X.

Definition 2.13 ([26]) The Hausdorff dimension of S ⊂ X is defined to be

dimH(S) = inf{α : Hα(S) = 0} = sup{α : Hα(S) =∞}.

From this definition, we say that dimH(S) can be defined as the infimum of the set

α = [0,∞) such that the α-dimensional Hausdorff measure of S (in (2.6)) is zero.

Similarly, it can also be defined as the supremum of the set α = [0,∞) such that

the α-dimensional Hausdorff measure of S is infinite. Note also that α can be both

integer and non-integer values.

In fact, this Hausdorff measure can be related to the Lebesgue measure where in

the space of Rn, the n-dimensional Hausdorff measure, within a constant multiple,

is just the n-dimensional Lebesgue measure `n (Definition 2.11). More precisely, if

S is a Borel set of Rn, then

Hn(S) = c−1
n voln(S),

where cn is the volume of an n-dimensional ball of diameter 1 and voln is n-

dimensional Lebesgue measure. If n is even, then

cn =
πn/2

2n(n/2)!
,

and if n is odd, then

cn =
π(n−1)/2((n− 1)/2)!

n!
.

See examples in [26]. In this thesis, we will use Hausdorff dimension for both zero and

non-zero sets of invariant graph for a skew product system which will be discussed

in Chapter 6. Recall that from Definition 1.1, we know that the invariant graph

ϕ : T → I. The zero set of ϕ is the subset of T on which ϕ(θ) = 0 where θ ∈ T.
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More precisely, we denote

ϕ−1(0) = {θ ∈ T : ϕ(θ) = 0}.

Meanwhile the non-zero set of ϕ is the subset of T on which ϕ is nonzero, i.e. it is

the complement of the zero set of ϕ [48].

2.3.5 Absolute continuity of measures

In this study, we will consider the case where a measure µ is absolutely continuous

with respect to (w.r.t.) the Lebesgue measure `. Let (X,B) be a measurable space

and let ` and µ be two measures on (X,B).

Definition 2.14 (Absolute continuity [66]) The measure µ on Borel subsets A

of B is absolutely continuous w.r.t. ` if µ(A) = 0 for every A ⊂ B such that

`(A) = 0 1. If ` is finite, i.e. `(X) < ∞, then for any ε > 0, there is δ > 0 such

that µ(A) < ε for every A ⊂ B if `(A) < δ.

From the above definition, we can also say that µ is absolutely continuous w.r.t. `

if

∀A ⊂ B, `(A) = 0 =⇒ µ(A) = 0.

The theorem below is a consequence from the above definition.

Theorem 2.1 (Radon-Nikodym [66]) If µ is absolutely continuous w.r.t. `, there

exists a unique Lebesgue integrable function f ∈ L1(B) such that

µ(A) =

∫
A

f d` (2.7)

for every measurable Borel subsets A ⊂ B.

Moreover, we call f = dµ
d`

the Radon-Nikodym derivative that is depends on two

measures, µ and ` [43].

2.4 Attractors in dynamical systems

Recall that we consider X to be a metric space and f : X → X to be a continuous

map. Before we proceed with definition of riddled basins, let us review some basic

concepts that are vital in the study of topological dynamics.

1Mathematically, µ is absolutely continuous w.r.t. ` if µ(A) = 0 ∀A ∈ {A ⊂ B : `(A) = 0}.
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2.4.1 Basic definitions

We begin this subsection with the definition of invariant set. Some examples of

invariant sets are the fixed points, periodic orbits, limit cycles and attractors. More

precisely,

Definition 2.15 (Invariant set [29]) A compact set A ⊂ X is a forward invariant

set (or backward invariant set) if x ∈ A implies that f(x) ∈ A (or f−1(x)). A is

invariant if it is both forward invariant and backward invariant.

Note that the ω-limit set as defined in Definition 2.7 is an invariant set, in particular

invariant under f . Following from the definition of ω-limit set, Milnor [54] defines

basin of attraction as

Definition 2.16 (Basin of attraction) The basin of attraction B(A) is the set of

points x ∈ X whose ω-limit set is contained in A, i.e.,

B(A) = {x ∈ X : ω(x) ⊂ A}, (2.8)

where the ω(x)-limit set of x is as defined in (2.2).

Alexander et al. [1] describes that the word ’contained in’ in the above definition

means the set of points whose orbits are asymptotic to A. The basin of attraction

in (2.8) can also be written as

B(A) = {x ∈ X : ω(x) ⊂ A} = {x : lim
n→∞

d(fn(x), A)→ 0}, (2.9)

where d(x,A) = infy∈A |x− y| is the Hausdorff distance.

We use the definition of basin of attraction to define the notions of attractor. In

1985, Milnor [54] introduced the definition of an attracting set or attractor as follows:

Definition 2.17 (Milnor attractor) A compact invariant subset A ⊂ X is called

an attractor if it satisfies the following conditions:

(i) the basin of attraction B(A), consisting of all points x ∈ X for which ω(x) ⊂ A,

must have strictly positive Lebesgue measure.

(ii) there is no strictly smaller closed set A′ ⊂ A so that B(A′) = B(A) up to a set

of Lebesgue measure zero.

In the skew product case, the attractor is defined only by considering attraction in

the fibres. In particular, the distance of a point c from the attractor A is measured

as the distance of c from the intersection of the attractor A and the fibre containing

c. As a consequence, the attraction means that this distance goes to zero [2].
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Ashwin et al. [7] characterize other commonly considered notions of attraction as

follows.

Definition 2.18 (Lyapunov stable) A is Lyapunov stable if for any neighbour-

hood U of A there exists a neighbourhood V of A s.t. fn(V ) ⊂ U for all n ∈ N.

Definition 2.19 (Asymptotically stable attractor) A is an asymptotically sta-

ble attractor if it is Lyapunov stable and B(A) contains a neighbourhood of A.

2.4.2 Attractors with riddled basins

In this subsection, we first discuss the notion of the riddled basin as defined by

Alexander et al. [1].

Definition 2.20 (Riddled basin [1]) The basin of attraction of an attractor is

riddled if its complement intersects every disk in a set of positive measure.

Note that the term ’disk’ in the above definition refers to the open ball with radius

ε > 0 or the ε-neighbourhood in our case.

To be more specific, let X be a metric space and let f : X → X be a continuous

map. Suppose A is an attractor for f and A is a compact invariant set A ⊂ X. We

recall that Bε(x) the open ball with radius ε at point x in X. Previously, Ashwin

et al. [7] has defined the following:

Definition 2.21 (Riddled and intermingled basins [7]) A Milnor attractor A

has a riddled basin if for all x ∈ B(A) and ε > 0, then

`(Bε(x) ∩ B(A))`(Bε(x) ∩ B(A)c) > 0. (2.10)

If there is another Milnor attractor C such that B(A)c in (2.10) can be replaced with

B(C), then the basin of A is riddled with the basin of C. If B(A) and B(C) are

riddled with each other (i.e. B(A) is riddled with B(C) and B(C) is riddled with

B(A)), then the basins are intermingled.

In this thesis, we will consider for more specific case where there are only two

attractors such that the basin of one of the attractor is riddled with the basin of the

other attractor:

Definition 2.22 The basin of a Milnor attractor A is riddled with the basin of a

second Milnor attractor C, if for all ε > 0 and x ∈ B(A),

`(Bε(x) ∩ B(A)) > 0 and `(Bε(x) ∩ B(C)) > 0. (2.11)
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The above definition says that basin of A is riddled with basin of C, where if we

take any point x in the first basin B(A), then there is a positive probability that

the nearby point y within Bε(x) will be inside the second basin B(C). Note that if

B(C) is open and dense in X and A is a Milnor attractor then `(Bε(x)∩B(C)) > 0

for any x ∈ B(A) and ε > 0 and this implies that basin of A is riddled with basin

of C. Thus, the condition (2.11) must be satisfied.

2.5 Ergodic theory

In this section, we discuss some essential concepts from ergodic theory. Generally

speaking, ergodic theory is the study of invariant measures for a measurable trans-

formation f : X → X. Let (X,B, µ) be a probability space. If A ∈ B, we can

define

f−1(A) = {x ∈ X|f(x) ∈ A},

where f−1(A) is the pre-image of A under f .

Definition 2.23 [65] A transformation f : X → X is measurable if for all A ∈ B

we have f−1(A) ∈ B.

2.5.1 Invariant measures

An invariant measure is a measure that is preserved by maps. There is a paper

by Hunt et al. [36] which discusses some examples of maps that have invariant

measures.

Definition 2.24 ([9]) Let f : X → X be a measurable transformation. A measure

µ in X is said to be f -invariant if

µ(A) = µ(f−1A), (2.12)

for all A ∈ B.

From Section 2.3, we recall that M(X) is the set of all Borel probability measures

on X. Now let X be a metric space and f : X → X a continuous transformation.

Then we say f induces a map on M(X) where f :M(X) →M(X) which implies

that (fµ)(A) = µ(f−1A). Here we are interested with the members of M(X) that

are invariant for f . Therefore we define the following
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Definition 2.25 ([65]) Let P(f) be the set of all f -invariant probability measures,

i.e.

P(f) = {µ ∈M(X) | fµ = µ}.

From this definition, P(f) ⊂M(X). The above set consists of all µ ∈M(X) which

makes f as a measure-preserving transformation (m.p.t.) of (X,B, µ).

Definition 2.26 ([65]) f : X → X is an m.p.t. for µ ∈ M(X) if f is measurable

and µ(f−1(A)) = µ(A) for all A ∈ B.

2.5.2 Ergodic measures

Definition 2.27 ([9]) A measure µ ∈ P(f) is said to be ergodic for f if for any

f -invariant measurable set A ⊂ X (means that f−1A = A) either µ(A) = 0 or

µ(X \ A) = 0.

We denote the set of ergodic measures by E(f) and therefore E(f) ( P(f).

The following theorem shows a fundamental result from ergodic theory which was

proved by G.D. Birkhoff in 1931. We denote L1(X) the set of Lebesgue integrable

functions from X to R. Note that this theorem holds if and only if µ is ergodic.

Theorem 2.2 (Birkhoff’s Ergodic Theorem [14]) Let f : X → X be a measur-

able transformation and let ϕ : X → R be a measurable function. For each µ ∈ P(f)

and ϕ ∈ L1(X), if µ is an invariant ergodic probability measure, then for µ-almost

all x ∈ X the following holds

lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) =

∫
ϕ dµ. (2.13)

In particular, the limit exists for µ-almost all x ∈ X.

The left hand side of (2.13) shows how often the orbit of x (namely x, f(x), f 2(x), . . .)

lies in A while the right hand side is the measure of A. The function ϕ can be defined

as a characteristic function for some subset A ⊂ X such that

ϕ(x) =

{
1 if x ∈ A,
0 if x /∈ A.
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2.5.3 Invariant probability measures on periodic points

We illustrate the particular case of a measure µ on a periodic point x. Suppose that

x = fn(x) is a periodic point with period n. Then the probability measure

µ =
1

n

n−1∑
i=0

δf i(x), (2.14)

satisfies (2.12) and µ(X) = 1, and so is an invariant probability measure. So from

(2.13);

∫
ϕ dµ =

∫
ϕ(x)

1

n

n−1∑
i=0

δf i(x)(x) dx

=
1

n

n−1∑
i=0

∫
ϕ(x) δf i(x)(x) dx

=
1

n

n−1∑
i=0

ϕ(f i(x)).

We use Theorem 2.2 above to compute the Birkhoff averages (on the left hand side

of (2.13)) for periodic points for the case of a Markov map in Chapter 5.

2.6 Examples: Markov maps

Markov map is a very useful tool in the theory of dynamical systems, where it allows

one to use the methods of symbolic dynamics. We follow the notations from Pollicott

and Yuri [60] and Jenkinson and Pollicott [39]. In here we discuss the its properties

for both doubling and skewed doubling maps folllowed by discussion of the invariant

measures for both maps.

2.6.1 Dynamical setting

Let I = [0, 1] be an interval. Let also I = {Ii}ki=1 be a partition of the interval I into

a finite number of closed sub-intervals Ii = [xi−1, xi] for i = 1, . . . , k, with endpoints

0 = x0 < x1 < · · · < xk = 1.

Definition 2.28 (Markov map [60]) We consider a map T : I → I which C1

and monotone for each open intervals int(Ii) = (xi−1, xi) and in order for T to be a

Markov map, therefore it must satisfy the following properties:
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(i) Piecewise expanding: There exists λ > 1 such that for all x ∈ ∪iint(Ii) we

have |T ′(x)| ≥ λ.

(ii) Markov property: If T (int(Ii)) ∩ int(Ij) 6= ∅, then T (int(Ii)) ⊃ int(Ij) for

i, j = 1, . . . , k.

For this piecewise expanding Markov interval map, we can define a k × k matrix A

with entries either 0 or 1 as in the following definition.

Definition 2.29 (Transition matrix [60]) A transition matrix A is defined by

A(i, j) =

1 if T (int(Ii)) ∩ int(Ij) 6= ∅,

0 if T (int(Ii)) ∩ int(Ij) = ∅.
(2.15)

The first condition in (2.15) can also be written as T (int(Ii)) =
⋃
j:A(i,j)=1 Ij. In this

case, we call I a Markov partition for T , and this Markov partition is not unique

since any refinement
∨n−1
i=0 T

−iI is also a Markov partition [39]. Note that if I,J
are partitions, then I

∨
J = {Ii ∩ Jj : Ii ∈ I, Jj ∈ J }.

2.6.2 Example 1: The doubling map

We consider the one-dimensional doubling map T : [0, 1)→ [0, 1] defined by

T (x) = 2x (mod 1), (2.16)

with the associated partitions {I1, I2} where I1 = [0, 1/2) and I2 = [1/2, 1]. Note

that we can also write (2.16) as follows:

T (x) =

2x if 0 ≤ x < 1/2,

2x− 1 if 1/2 ≤ x ≤ 1.
(2.17)

Note that this map satisfies property (i) in Definition 2.28 where it is piecewise

expanding since the slope for every partition is 2, i.e. T ′(x) = 2 > 1. This map also

satisfies the Markov property since the images of I1 and I2 are equal to the union of

the two partitions, i.e. T (0, 1/2) = T (1/2, 1) = (0, 1) ⊃ (0, 1/2) ∪ (1/2, 1). For this

map, the symbolic dynamics is captured by the transition graph given schematically

in Figure 2.1. Hence, the transition matrix for this map is

A =

(
1 1

1 1

)
. (2.18)
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I1 I 2
(a)

Figure 2.1 The transition graph for doubling map T and skewed doubling map Ts.

2.6.3 Example 2: The skewed doubling map

In this section, we introduce a generalization of the doubling map (2.17) to a skewed

doubling map. It is so-called because the division of the interval into [0, s) and [s, 1]

is not necessarily symmetric; and the usual doubling map is the special case for

s = 1/2. This skewed doubling map has been studied by some authors including

Ashwin [5] and Georgiou et al. [28].

We consider the one-dimensional map Ts : [0, 1]→ [0, 1]

Ts(x) =

x
s

if 0 ≤ x < s,

x−s
1−s if s ≤ x ≤ 1,

(2.19)

where we assume that s ∈ [0, 1] and the corresponding partition is {[0, s), [s, 1]}.
This map is also a piecewise expanding map since its derivatives are bounded away

from 1, i.e. T ′s(x) = 1/s > 1 for interval [0, s) and T ′s(x) = 1/(1− s) > 1 for interval

[s, 1]. It also satisfies the Markov property such that T (intIi) ⊃ I1 ∪ I2 for i = 1, 2.

In addition, this map shares the same symbolic dynamics as T and therefore has

the same transition matrix as in (2.18) and transition graph (Figure 2.1).

However, this map has different behaviour compared to T in terms of proportion of

time the orbit of point x visiting in a certain interval. For the map T , the proportion

of time the orbit in T that lies in each interval is the same, i.e. (1/2, 1/2), whereas

in Ts the proportion of time the orbit lies in [0, s) is s and the proportion of time

the orbit lies in [s, 1] is 1− s where s 6= 1/2.

2.6.4 Invariant measures for Markov maps

It is a well-known fact that the doubling map preserves the Lebesgue measure for

which it is T -invariant. Here we would like to show that the Lebesgue measure is

also invariant for the skewed doubling map. Let Ts be as in (2.19). Let ` be the

Lebesgue measure on the Borel σ-algebra B of the interval [0, 1]. Then the inverse

map T−1
s : [0, 1]→ [0, 1] is given by

T−1
s (x) =

sx if 0 ≤ x < s,

(1− s)x+ s if s ≤ x ≤ 1.
(2.20)
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II

T(x)

x
1/2

0

I1

2I

1 2

(a)

x0

I1

2I

sI1 I2

T (x)s

(b)

Figure 2.2 The schematic diagrams showing a) the doubling map T and b) the skewed
doubling map Ts with associated partition Ii. Both maps are Markov maps since they
have derivative bounded away from 1 at each interval Ii and satisfy the Markov property
such that T (int(Ii)) ⊃ I1 ∪ I2 for i = 1, 2.

In order to show that the Lebesgue measure ` is invariant for Ts, first we show that

for any subinterval [a, b] ⊂ [0, 1], we have (2.12). By (2.20) we get

T−1
s ([a, b]) = [sa, sb] ∪ [(1− s)a+ s, (1− s)b+ s].

To show the invariance, we find the measure for the above set;

`(T−1
s ([a, b]) = `([sa, sb] ∪ [(1− s)a+ s, (1− s)b+ s]),

= sb− sa+ (1− s)b+ s− (1− s)a− s,

= b− a,

= `([a, b]),

where this shows that (2.12) holds for all intervals. Secondly, since if J = ∪iJi is a

(finite or countable) union of disjoint intervals Ji = [ai, bi], we have

`(J) =
∑
i

|bi − ai|,

we also have that `(f−1(J)) = `(J) holds for all J such that J is the algebra of finite

unions of intervals. Finally, if the σ-algebra B is generated by an algebra A, then `

is invariant for Ts if and only if

`(f−1(A)) = `(A),

for all A ∈ A. Thus, this shows that it is sufficient to check only for the elements of

algebra A where this implies that it also holds for all Borel measurable sets A ∈ B

[53].

Besides Lebesgue measure, there are many other invariant measures for Markov
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maps. This is because Markov maps are non-invertible maps and therefore have

infinitely many periodic points which implies that there are infinitely many invariant

measures in these maps [23]. For example, we can consider the Dirac delta measure

on the fixed point. Both maps T and Ts have fixed points at 0 and 1, i.e. δ0 and

δ1 respectively. Thus the Dirac delta measures at these points of T and Ts are

invariant. In this thesis, we use both the Lebesgue and the Dirac delta measures.

Moreover, there is a theorem from de Melo and van Strien [23] proving that Markov

maps have a measure that is absolutely continuous w.r.t the Lebesgue measure.

Theorem 2.3 ([23]) Let f : X → X be a Markov map and let ∪iIi be the associated

partition. Then there exists a f -invariant probability measure µ on the Borel sets of

X which is absolutely continuous w.r.t. the Lebesgue measure.

Proof. See [23], Theorem 2.2. �

It has been revealed [23] that the existence of an invariant measure which is abso-

lutely continuous w.r.t. the Lebegue measure ` is associated to chaotic dynamics in

the maps.

2.7 Lyapunov exponents

Lyapunov exponents are classical tools to measure complexity or chaos in a system.

They were introduced around year 1900 when J. Hadamard employ them to prove

the hyperbolicity of geodesic flows on manifolds. We first give their definition in Rd

and in terms of the interval maps [15].

Let f : Rd → Rd be a measurable map and let x ∈ Rd. There are real numbers

−∞ ≤ λ(1)(x) < λ(2)(x) < · · · < λ(r(x))(x) <∞,

where r(x) is an integer with 1 ≤ r(x) ≤ d and linear subspaces of Rd

{0} = V (0)(x) ⊂ V (1)(x) ⊂ · · · ⊂ V (r(x))(x) = Rd

such that

lim
n→∞

1

n
log

∣∣∣∣dfndx (x) · v
∣∣∣∣ = λ(i)(x)

for all v ∈ V (i)(x) \ V (i−1)(x), i = 1, . . . , r(x). The numbers λ(1)(x), . . . , λ(r(x))(x)

are called the Lyapunov exponents of f at x and V (1)(x) ⊂ · · · ⊂ V (r(x))(x) = Rd is

called the associated filtration. For example, if X is the interval I = [0, 1], then we
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have only one Lyapunov exponent given by [15]

Λf (x) = lim
n→∞

1

n
log

∣∣∣∣dfndx (x)

∣∣∣∣ .
Moreover, to compute the Lyapunov exponents, we can use Birkhoff’s ergodic theo-

rem which was discussed in Section 2.5. Therefore the Lyapunov exponent for µ is

given by

λµ =

∫
log

∣∣∣∣ dfdx(x)

∣∣∣∣ dµ(x). (2.21)

If µ is ergodic, then by the Birkhoff’s ergodic theorem in (2.13), (2.21) is equal to

the time average for log |Df(x)| as follows:

λµ =

∫
log

∣∣∣∣ dfdx(x)

∣∣∣∣ dµ(x) = lim
n→∞

1

n

n−1∑
i=0

log

∣∣∣∣ dfdx(f i(x))

∣∣∣∣ , (2.22)

for µ-almost all points x [39].

2.7.1 Lyapunov exponents for attractor in a skew product

map

Lyapunov exponents are very useful for identifying riddled basins. From our dis-

cussion in Section 2.4, we know that a basin is riddled if and only if the basin has

positive measure.

Recall that our skew product system has the form

F (x, y) = (f(x), g(x, y)),

where f only depends on x and is independent from y. Let N = {(x, 0)} be an

invariant subspace under F such that F (N) ⊂ N and we denote the restriction of

F to N as FN : N → N . Let A be an attractor for F with basin B(A). For each

point (x, 0) ∈ A, it has at most two Lyapunov exponents; one is Lyapunov exponent

that measures the exponential rate of stretching on A when F is restricted to x-axis

and the other Lyapunov exponents measures the exponential rate of expansion on

A on y-axis [1]. In this thesis, we denote for both Lyapunov exponents as λ‖ and λ⊥

respectively. If λ⊥ is negative, this means that A attracts a set of positive Lebesgue

measure, and the nearer the point to A the larger the proportion of points that are

in B(A) [1].
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The Lyapunov exponent in x-direction is denoted by

λ‖(x) = lim
n→∞

1

n

n−1∑
i=0

log

∣∣∣∣ dfdx(f i(x))

∣∣∣∣ ,
for µ-almost all x and the Lyapunov exponent in y-direction is denoted by

λ⊥(x) = lim
n→∞

1

n

n−1∑
i=0

log

∣∣∣∣∂g∂y (f i(x), 0)

∣∣∣∣ .
for µ-almost all x. We shall use these Lyapunov exponents and the formula in (2.22)

on our example of piecewise linear map in Chapter 4.
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3 Basic properties of stability

index and relation to local

dimension of measures

The stability index was introduced by Podvigina and Ashwin [59] to characterize

the local geometry of basins of attraction for heteroclinic cycles. Recently this

index has been employed by Keller [44] for chaotically driven concave maps. More

recently, Lohse [52] and Castro and Lohse [20] used it to understand stability of

simple heteroclinic networks in R4. In this thesis, we will apply the stability index

to study the local geometry of riddled basins of attraction.

In this chapter we first redefine the stability index for a point from [59]. Next, we

give stronger results on the basic properties of the stability index using notation

from asymptotic analysis. In addition, we relate the stability index and the local

dimension of measures using the restriction of Lebesgue measure on a set. Besides

computing the stability index at a point, one can also define it for any set (i.e. for

limit cycle, attractor etc.) in the basins of attraction. We therefore introduce a

definition of stability index for a set at the end of this chapter.

3.1 The stability index

In the following, we denote by Bε(x) an ε-neighbourhood of a point x ∈ X. Let A

be any invariant set in X and B(A) its basin of attraction.

Definition 3.1 (Stability index [59]) For a point x ∈ X and ε > 0, define

Σε(x) :=
`(Bε(x) ∩ B(A))

`(Bε(x))
, (3.1)

i.e.,

1− Σε(x) :=
`(Bε(x) ∩ B(A)c)

`(Bε(x))
, (3.2)
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3. Basic properties of stability index and relation to local dimension of measures

where 0 ≤ Σε(x) ≤ 1. Then the stability index of A at x is defined to be

σ(x) := σ+(x)− σ−(x), (3.3)

where

σ−(x) := lim
ε→0

[
log(Σε(x))

log ε

]
, σ+(x) := lim

ε→0

[
log(1− Σε(x))

log ε

]
,

as long as these limits converge.

We use the convention that σ−(x) = ∞ if there is ε > 0 such that Σε(x) = 0 and

σ+(x) =∞ if there is ε > 0 such that Σε(x) = 1, or of the limits are infinite. Then

we can assume that σ(x) ∈ [−∞,∞].

This stability index σ(x) of a point x ∈ A is related to the local geometry of basins of

attraction of A. If σ(x) > 0, this means that there is an increasingly large proportion

of points that are attracted to A as the neighbourhood Bε(x) shrinks, i.e. Σε(x)

goes to 1 as ε → 0. On the other hand, if σ(x) < 0, this means that there is a

decreasingly small proportion of points that are attracted to A as Bε(x) shrinks,

i.e. Σε(x) goes to 0 as ε→ 0 [20]. We show the schematic diagram for the relation

between stability index with the local geometry of basins of attraction in Figure 3.1.

. .

σ(  )x > 0 σ(  )x < 0

εε

Basin of A

B
as

in
 o

f 
A

xx

Figure 3.1 The schematic diagram showing the relation of stability index for a point x
with the geometry of the basins of attraction. The dashed area represents B(A) while the
blank area represents the basin complement B(A)c. For σ(x) > 0, the measure of basin
B(A) that is in the ε-neighbourhood Bε(x) goes to 1 as ε→ 0. For σ(x) < 0, the measure
of basin B(A)c that is in the ε-neighbourhood Bε(x) goes to 1 as ε→ 0.

We also discuss some sufficient conditions for the convergence to fail and so σ(x) is

not well-defined. We prove this in the last section of next chapter.
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3. Basic properties of stability index and relation to local dimension of measures

3.2 Background study: stability index for

heteroclinic cycles

The stability index was introduced to describe the local geometry of the basin of

attraction of an invariant set. This quantity was first used on the basin of attraction

of invariant set, in particular of heteroclinic cycles by Podvigina and Ashwin [59].

In fact, this index is also useful to study other types of invariant sets. It has been

stated in [59] that this index is very useful in describing the structure of invariant

sets for riddled and intermingled basins. Therefore, in this thesis, we will apply

the stability index on the invariant set which is an attractor with riddled basin of

attraction.

In some cases, the index can be expressed in terms of other quantities from the

dynamics. For example, Podvigina and Ashwin [59] and Lohse [52] computed the

stability index in terms of eigenvalues of the linearization at equilibria of an ordinary

differential equation. Keller showed [44] that for a skew product map there may

be a formula for the stability index in terms of Lyapunov exponents and Loynes’

exponent. In our case, we will compare our stability index with those of Keller [44].

3.3 Basic properties of stability index

In this section, we give more precise results than [59] for basic properties of sta-

bility index in terms of asymptotic notation. In [59], they used asymptotic upper

bound (denoted as ’big Oh’ (O)) whereas in this thesis, we use stronger notion of an

exponentially asymptotically tight bound (denoted as ’big theta tilde’ (Θ̃)). There-

fore, we would like to show that Σε(x) and 1−Σε(x) in (3.1) and (3.2) respectively

are exponentially asymptotically tight bound by εσ−(x) and εσ+(x) respectively, i.e.,

Σε(x) = Θ̃(εσ−(x)) and 1−Σε(x) = Θ̃(εσ+(x)) respectively. We give the definition of

Θ̃ and details in Appendix A.

Theorem 3.1 Suppose x is such that σ−(x) and σ+(x) exist. For a point x ∈ X
and ε > 0, Σε(x) = Θ̃(εσ−(x)) and 1− Σε(x) = Θ̃(εσ+(x)).

Proof. Suppose that limε→0
log Σε(x)

log ε
= σ−(x) > 0. Then for all δ > 0, there exists

0 < ε0 < 1 such that for 0 < ε ≤ ε0,∣∣∣∣ log Σε(x)

log ε
− σ−(x)

∣∣∣∣ < δ,
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3. Basic properties of stability index and relation to local dimension of measures

i.e.,

σ−(x)− δ < log Σε(x)

log ε
< σ−(x) + δ,

if and only if

(σ−(x)− δ) log ε > log Σε(x) > (σ−(x) + δ) log ε.

Then

log ε(σ−(x)−δ) > log Σε(x) > log ε(σ−(x)+δ),

and by dropping the ’log’ we get

ε(σ−(x)−δ) > Σε(x) > ε(σ−(x)+δ),

i.e.,

ε−δε(σ−(x)) > Σε(x) > εδε(σ−(x)).

Therefore, for all δ > 0, there exist constants c1 > 0, c2 > 0 and for all 0 < ε ≤ ε0

such that

c1ε
δεσ−(x) < Σε(x) < c2ε

−δεσ−(x).

as ε → 0. This shows that Σε(x) is bounded above and below by εσ−(x), i.e.,

Σε(x) = Θ̃(εσ−(x)). Using the similar way, we obtain for 1− Σε(x) = Θ̃(εσ+(x)). �

Thus, using this theorem, we summarize some basic properties of this index [59,

Lemma 2.2] in the following lemma.

Lemma 3.1 Suppose that σ(x) is defined for some x ∈ X ⊂ Rn, then the following

hold:

(a) If one of σ±(x) converges to a positive value then the other converges to zero

(i.e. only one of σ+(x) and σ−(x) can be non-zero).

(b) If σ(x) = c > 0, then 1− Σε(x) = Θ̃(εc) (in particular Σε(x)→ 1 as ε→ 0).

(c) If σ(x) = −c < 0, then Σε(x) = Θ̃(εc) (in particular Σε(x)→ 0 as ε→ 0).

Proof.

(a) Note that if σ−(x) > 0, then limε→0 Σε(x) = 0. This implies that 1 − Σε(x)

converges to 1 as ε → 0 and so σ+(x) = 0. On the other hand, if σ+(x) > 0,

then limε→0 1−Σε(x) = 0. This implies that Σε(x) converges to 1 as ε→ 0 and

so σ−(x) = 0.

(b) Follows from noting in (a) that c = σ(x) = σ+(x) > 0 and σ−(x) = 0. Hence

we have from the definition of σ+(x) that 1− Σε(x) = Θ̃(εc) as ε→ 0.
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(c) Follows from noting in (a) that

−c = σ(x) = σ+(x)− σ−(x) = 0− c = −c,

and so σ−(x) = c and σ+(x) = 0. Hence we have from the definition of σ−(x)

that Σε(x) = Θ̃(εc) as ε→ 0. �

Moreover, it has been proved in [59] that the stability index is in fact constant along

the orbit of x. In other words, the value of stability index for a point is same as the

value of the stability index for its orbits, i.e. σ(x) = σ(fn(x)).

Theorem 3.2 [59] Let X be a compact invariant set for a continuously differen-

tiable map f . Then for any point x ∈ X, the stability index σ(x) is constant along

orbits (or trajectories for flows) whenever it exists.

Proof. See [59], Theorem 2.2. �

3.4 Relation between stability index and local

dimension of measures

There is a connection between the stability index and the local dimension of mea-

sures. In fact, the stability index consists of the difference of two local dimension

of measures, namely of the measures µ and ` where µ is the restriction of Lebesgue

measure ` to a set N . We give the proof in this section.

To show this, we use the definition of restriction of measures in Section 2.3.2 and

the local dimension of measures in Section 2.3.3. This connection was pointed out

to us by Tobias Oertel-Jäger (personal communication).

Theorem 3.3 If A is a compact set and N a set with positive Lebesgue measure,

D(x) = limε→0
log `(Bε(x)∩N)

log ε
and D(x) = limε→0

log `(Bε(x)∩Nc)
log ε

, then

σ(x) = D(x)−D(x).

Proof. Suppose the local dimension of the measure µ = `|N at x is D(x). Recall
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that from the definition of σ−(x) in Definition 3.1 we have

σ−(x) = lim
ε→0

log
(
`(Bε(x)∩N)
`(Bε(x))

)
log ε

,

= lim
ε→0

log `(Bε(x) ∩N)− log `(Bε(x))

log ε

= lim
ε→0

log µ(Bε(x))

log ε
− lim

ε→0

log `(Bε(x))

log ε

= dimloc µ(x)− dimloc `(x),

= D(x)− d.

(3.4)

where d is the dimension of the phase space Rd. Here, µ(Bε(x)) denotes the re-

striction of ` to N , i.e., µ(Bε(x)) = `|N(Bε(x)) = `(Bε(x) ∩N) for all x. A similar

relation also hold for σ+(x) where:

σ+(x) = lim
ε→0

log
(
`(Bε(x)∩Nc)
`(Bε(x))

)
log ε

,

= lim
ε→0

log `(Bε(x) ∩N c)− log `(Bε(x))

log ε

= lim
ε→0

log µ(Bε(x))

log ε
− lim

ε→0

log `(Bε(x))

log ε

= dimloc µ(x)− dimloc `(x),

= D(x)− d.

(3.5)

The µ(Bε(x)) denotes the restriction of ` to N c, i.e., µ(Bε(x)) = `|Nc(Bε(x)) =

`(Bε(x)∩N c) for all x and D(x) is the local dimension of µ = `|Nc . Therefore, from

the definition of stability index in (3.3), we have

σ(x) = D(x)−D(x). �

3.5 Stability index for a set

In [59], the stability index has been computed for an individual point. In this thesis,

we also consider the stability index for a set.

Definition 3.2 Let A ⊂ X be an invariant set and let ε > 0. We define

Σε(A) :=
`(Bε(A) ∩ B(A))

`(Bε(A))
, (3.6)

so that

1− Σε(A) :=
`(Bε(A) ∩ B(A)c)

`(Bε(A))
, (3.7)
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where Bε(A) is an ε-neighbourhood of the set A, B(A) is basin of attraction of the

set A and B(A)c is the complement of B(A). Note that 0 ≤ Σε(A) ≤ 1. Then the

stability index for the invariant set A is defined to be

σ(A,B(A)) := σ+(A)− σ−(A), (3.8)

which exists when the following converge:

σ−(A) := lim
ε→0

log(Σε(A))

log ε
, σ+(A) := lim

ε→0

log(1− Σε(A))

log ε
. (3.9)
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4 Stability index for an attractor

in a piecewise linear map

In this chapter, we consider a simple example of a skew product system, namely

a piecewise linear map F from [0, 1]2 to itself. In this thesis, this map contains

points (θ, x) ∈ [0, 1]2. This map is slightly modified from Ott et al. [57] in the sense

that we assume there is a second attractor at x = 1 while [57] consider x > 1 as

a second attractor. In this model, there can be two coexisting Milnor attractors

such that basin of the first attractor is riddled with basin of the second attractor.

We wish to examine the existence of this riddled basin by measuring its Lebesgue

measure. The main results for proving riddled basin are theorems 4.1, 4.2, 4.3 and

4.4. Then we compute the stability index for a point as well as for an attractor in

the system and we show the results in theorems 4.5, 4.6, 4.9 and 4.7 which includes

the non-convergence of the stability index.

4.1 The model: piecewise linear map

We consider the skew product transformation in the unit square (θ, x) ∈ [0, 1]2

F (θ, x) = (Ts(θ), h(θ, x)) (4.1)

where the base map

Ts(θ) =

{
θ
s

if 0 ≤ θ < s,
θ−s
1−s if s < θ ≤ 1,

(4.2)

is the skewed doubling map of (2.19) and the fibre map

h(θ, x) =


min(γx,1) if 0 ≤ θ < s and 0 ≤ x < 1,

δx if s < θ ≤ 1 and 0 ≤ x < 1,

1 if x = 1,

(4.3)

where 0 < s < 1, γ > 1, 0 < δ < 1. Note that γ and δ represent expansion and

contraction respectively. For this model, we study the special case γ = 1/δ. We
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4. Stability index for an attractor in a piecewise linear map

define here that

κ := 1− 2s, (4.4)

which will be used later in Section 4.3.

To describe system (4.1), we start by choosing θ0 randomly in [0, 1]. Then from

(4.2), its orbit, θn spends a proportion s in 0 ≤ θn < s and a proportion 1 − s in

s < θn ≤ 1. Next, if we choose x0 = 0, then by the first and second conditions in

(4.3), xn remains zero for all θ. Hence, this clearly shows that x = 0 is an invariant

set. On the other hand, if x0 = 1, then by the last condition in (4.3) xn remains 1

for all θ. Thus, this shows that x = 1 is also an invariant set. To be more precise,

we denote

A0 = [0, 1]× {0},

A1 = [0, 1]× {1},

and note that A0 and A1 are disjoint compact invariant sets. The basins are

B0 := B(A0) = {(θ, x) : d(F n(θ, x), A0)→ 0 as n→∞},

B1 := B(A1) = {(θ, x) : d(F n(θ, x), A1)→ 0 as n→∞},

where d(x,A) = infy∈A ‖x− y‖ and where F n(θ, x) is the nth iterate of (θ, x). Since

our base map is Markov we can divide [0, 1]2 using the following partition:

[0, 1]2 =
∞⋃
k=1

Xk,

where

Xk = Xk,1

⋃̇
Xk,2,

Xk,1 = [0, s]× [δk, δk−1],

Xk,2 = [s, 1]× [δk, δk−1],

where
⋃̇

denotes the disjoint union.1 Therefore, we now have the partitions Xk,1

which are on the left of s and Xk,2 on the right of s, for k = 1, 2, 3, . . .. We show

the map (4.1) as a schematic diagram in Figure 4.1. For Xk,1, the map F on Xk,1

goes up one level above and occupy the whole of Xk−1, for k ≥ 2. Meanwhile the

mapping F on Xk,2 goes down one level and occupy the whole of Xk+1 for k ≥ 1.

Moreover, from the last condition in (4.3), the map F on X1,1 goes up and occupy

1Note that the skew product map F (4.1) is Markov but has an infinite number of pieces in the
partition.
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4. Stability index for an attractor in a piecewise linear map

the whole of A1. More precisely, we note

F (Xk,1) = Xk−1 for k ≥ 2, (4.5)

F (X1,1) = A1, (4.6)

F (Xk,2) = Xk+1 for k ≥ 1. (4.7)

For examples, F (X2,1) = X1,1

⋃̇
X1,2 and F (X1,2) = X2,1

⋃̇
X2,2. We show schematic

diagrams for (4.5), (4.6) and (4.7) in Figure 4.2-4.4 respectively.

1

δ

δ

x

θ

A

s0

2

1
X X

X X

1

A
0

...
...

δ
k

..

.

1,1 1,2

2,1X X2,2

3,1 3,2

Figure 4.1 The schematic diagram for map F (4.1).

F

Figure 4.2 The effect of F on Xk,1 for k ≥ 2, stretches by 1/s in the θ-direction and
expands by γ = 1/δ in the x-direction.

F

A1

Figure 4.3 The effect of F on X1,1: F (X1,1) = A1.

4.2 Basin boundary between B0 and B1

Before we proceed proving the existence of a riddled basin, we would like to prove

that there is a boundary between basins B0 and B1. Thus, in this section, Lemma

4.1 proves the behaviour of orbit of (θ0, x0) and following from this, we manage to

define the basin boundary ϕ̂∞(θ) in Definition 4.1. We also investigate how the orbit

of (θ, x0) behaves as it starts from below or above ϕ̂∞(θ) (Lemma 4.2). We end this

section by characterizing the zero and non-zero sets for ϕ̂∞(θ) in Lemma 4.3.
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F

Figure 4.4 The effect of F on Xk,2 for k ≥ 1, stretches by 1/(1− s) in the θ-direction and
shrinks by δ in the x-direction.

First we consider [s, 1] ⊂ [0, 1] and we want to investigate how frequently the orbit

of a point θ ∈ T under the skewed doubling map Ts(θ) visit the right interval [s, 1].

Let us define

nk(θ) :=

{
0 if T ks (θ) < s,

1 if T ks (θ) ≥ s,
(4.8)

for k = 0, . . . , N − 1 where nk(θ) is the characteristic function

nk(θ) = χ[s,1](T
k
s (θ)).

Then we can define

iN(θ) :=
N−1∑
k=0

nk(θ), (4.9)

which denote the number of the first N points in the orbit of θ that lie in [s, 1] and

iN(θ)

N
=

1

N

N−1∑
k=0

nk(θ)

denotes the proportion of the first N points in the orbit of θ that lie in [s, 1]. Hence

lim
N→∞

iN(θ)

N
= lim

N→∞

1

N

N−1∑
k=0

nk(θ) (4.10)

denotes the frequency with which the orbit of θ lie in [s, 1]. Since ` is ergodic, we

can apply the Birkhoff’s Ergodic Theorem which says that for `-almost all θ ∈ [0, 1]

lim
N→∞

1

N

N−1∑
k=0

nk(θ) = lim
N→∞

1

N

N−1∑
k=0

χ[s,1](T
k
s (θ)) =

∫ 1

0

χ[s,1](y)d`(y) = 1− s, (4.11)

i.e. the proportion of time that the orbit of θ spends in the interval [s, 1] is equal to

the length of the interval itself, i.e. 1− s.

Moreover, from the skew product transformation F in (4.1), let us denote the iter-

ations (θN , xN) = FN(θ0, x0) for N ≥ 0. We note that θN = TNs (θ) and define{
yk = δnk−1(θ)δ−(1−nk−1(θ))yk−1,

y0 = x0,
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so that

yN = δ2iN (θ)−Nx0, (4.12)

where iN(θ) is as defined in (4.9). More precisely,

Lemma 4.1 Suppose (θN , xN) = FN(θ0, x0) for N ≥ 0. Let yN = δ2iN (θ)−Nx0.

Then θN = TNs (θ) and

xN =

{
yN if max{y` : 1 ≤ ` ≤ N} < 1,

1 otherwise.

Proof. Note that if x1 < 1 then

x1 = y1 = δn0(θ)δ−(1−n0(θ))y0.

Similarly, if x` < 1 for 1 ≤ ` ≤ N then

xN = yN = δnN−1(θ)δ−(1−nN−1(θ))yN−1.

On the other hand, if y` ≥ 1 for some ` then xN = 1 for all N ≥ `.

This means that as long as yN < 1, xN = yN but when yN ≥ 1, we will only take

the maximum value xN = 1. �

From the above lemma, we can now define a basin boundary where xN = yN if

max{y` : 1 ≤ ` ≤ N} < 1 for all N which means that xN = yN if

sup
N≥0
{yN} < 1.

Using (4.12),

sup
N≥0
{δ2iN (θ)−Nx0} < 1.

We have

sup
N≥0
{δ2iN (θ)−N}x0 < 1

which implies

x0 <
1

supN≥0{δ2iN (θ)−N}
,

this is

x0 < inf
N≥0
{δN−2iN (θ)}.

Thus, the basin boundary is defined from the right hand side in the above equation.
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Definition 4.1 The basin boundary is defined as follows:

ϕ̂∞(θ) = inf
N≥0

{
δN−2iN (θ)

}
.

The following lemma shows that ϕ̂∞(θ) determines the orbit of (θ, x0) depending on

whether it starts from below or above the basin boundary.

Lemma 4.2 Suppose (θN , xN) = FN(θ0, x0) for N ≥ 0.

(i) If x0 < ϕ̂∞(θ) then xN = yN for all N .

(ii) If x0 > ϕ̂∞(θ) there exists M such that xN = 1 for all N ≥M .

Proof. (i) If x0 < ϕ̂∞(θ), then by Definition 4.1; x0 < infN≥0(δN−2iN (θ)) which

implies that
x0

infN≥0{δN−2iN (θ)}
< 1,

this is

sup
N≥0
{δ2iN (θ)−Nx0} < 1.

Thus, we have

sup
N≥0
{yN} < 1

which implies

yN < 1 for all N ∈ N.

By Lemma 4.1, we have xN = yN for all N ∈ N.

(ii) If x0 > ϕ̂∞(θ), then x0 > infN≥0{δN−2iN (θ)} which implies that

sup
N≥0
{δ2iN (θ)−Nx0} > 1,

and so

sup
N≥0
{yN} > 1

which implies that

yN > 1 for some N ∈ N.

By Lemma 4.1, xk = 1 for all k ≥ N . �

Below we characterize the zero and non-zero sets of ϕ̂∞(θ).

Lemma 4.3 Suppose θ is such that limN→∞
iN (θ)
N

converges.

(i) If limN→∞
iN (θ)
N

< 1
2
, then θ ∈ ϕ̂−1

∞ (0).
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(ii) If limN→∞
iN (θ)
N

> 1
2
, then θ /∈ ϕ̂−1

∞ (0).

Proof. We denote the zero set of ϕ̂∞(θ) by ϕ̂−1
∞ (0).

(i) Note that θ ∈ ϕ̂−1
∞ (0) if and only if

inf
N≥0

{
δN−2iN (θ)

}
= 0.

By taking logs;

inf
N≥0

log
{
δN−2iN (θ)

}
= −∞.

Then

lim inf
N→∞

(N − 2iN(θ)) log δ = −∞.

Dividing by log δ;

lim inf
N→∞

(N − 2iN(θ)) =∞.

Dividing by N and noting that the sequence iN(θ)/N converges means that;

lim
N→∞

(
1− 2iN(θ)

N

)
= α > 0.

Solving the above, we obtain

lim
N→∞

iN(θ)

N
=

1

2
− α

2
= β <

1

2
.

Thus this proves that θ ∈ ϕ̂−1
∞ (0) when limN→∞

iN (θ)
N

< 1
2
.

(ii) Meanwhile θ /∈ ϕ̂−1
∞ (0) if and only if

inf
N≥0

{
δN−2iN (θ)

}
> 0.

By taking logs;

inf
N≥0

log
{
δN−2iN (θ)

}
> −∞.

Then

lim inf
N→∞

(N − 2iN(θ)) log δ > −∞.

Dividing by log δ;

lim inf
N→∞

(N − 2iN(θ)) >∞.

Dividing by N and noting that the sequence iN(θ)/N converges means that;

lim
N→∞

1− 2iN(θ)

N
> α > 0.
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Solving the above then we obtain

lim
N→∞

iN(θ)

N
>

1

2
− α

2
= β >

1

2
.

Thus this proves that θ /∈ ϕ̂−1
∞ (0) when limN→∞

iN (θ)
N

> 1
2
. �

4.3 Proving the existence of a riddled basin

First, in Theorem 4.1, we show that B1 has positive measure. Secondly, in Theorem

4.2, we show that the union of B0 and B1 has full measure. Then, in Theorem

4.3, we prove that B0 has either positive or zero measure which depends on specific

range. Finally in Theorem 4.4 we prove that B0 is riddled with B1.

Theorem 4.1 For any 0 < s < 1 and 0 < δ < 1, we have that `(B1) > 0.

Proof. This follows by noting that X1,1 ⊂ B1 since F (X1,1) = A1 where A1 ⊂ B1,

so `(X1,1) ≤ `(B1) and using the assumptions that 0 < s < 1 and 0 < δ < 1, the

measure of `(X1,1) = s(1− δ) > 0 and so `(B1) > 0. �

Note that the above theorem implies that A1 is an attractor since it attracts a set

of positive measure, i.e. `(B1) > 0 (this satisfies the first condition for A1 to be a

Milnor attractor).

The theorem below proves that the union of the basins of A0 and A1 has full measure.

Theorem 4.2 For any 0 < δ < 1, 0 < s < 1, s 6= 1/2 and almost all θ,

(i) if x0 < ϕ̂∞(θ), then (θ, x0) ∈ B0,

(ii) if x0 > ϕ̂∞(θ), then (θ, x0) ∈ B1.

Hence `(B0 ∪B1) = 1.

Proof.

(i) By taking the logs of (4.12), we get

log yN − log x0 = (2iN(θ)−N) log δ.

Dividing each side by N log δ to get

log yN − log x0

N log δ
=

2iN(θ)

N
− 1.
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We know from (4.11) that for `-almost all θ, limN→∞
iN (θ)
N

= 1 − s, hence we

have

lim
N→∞

log yN − log x0

N log δ
= lim

N→∞
2(1− s)− 1,

lim
N→∞

log yN − log x0

N log δ
= lim

N→∞
1− 2s.

Recall that κ := 1− 2s in (4.4), so that

lim
N→∞

log yN − log x0

N log δ
= lim

N→∞
1− 2s = κ. (4.13)

Rearranging (4.13) we get

lim
N→∞

log yN − log x0

N
= κ log δ.

This means that if κ < 0 (or s > 1/2), then

lim
N→∞

log yN − log x0

N
= κ log δ > 0.

We recall that log δ < 0 since 0 < δ < 1. For this case, since the right hand

side is positive, therefore log yN → ∞ as N → ∞. This implies that yN > 1

and from Lemma 4.2(ii), xN = 1 for some N . Thus, for `-almost all θ and

almost all x0 there exists (θ, x0) in the basin of A1, i.e. (θ, x0) ∈ B1.

(ii) On the other hand, if κ > 0 (or s < 1/2), then

lim
N→∞

log yN − log x0

N
= κ log δ < 0,

which means that log yN → −∞ as N → ∞. This implies that yN → 0 as

N → ∞. Thus, for `-almost all θ there exists an x0 such that yN < 1 and

from Lemma 4.2(i), xN = yN for all N . Thus (θ, x0) ∈ B0 for `-almost all θ

and almost all x0. Therefore, from both cases we have shown above, almost

all points (θ, x0) are either in B0 or B1, i.e. (θ, x0) ∈ B0 ∪ B1 and hence

`(B0 ∪B1) = 1. �

Note that we do not consider the case when s = 1/2 in the above theorem.

Below we prove B0 can has positive or zero measure depending on the values of s.

Theorem 4.3 For any 0 < δ < 1,

(i) `(B0) > 0 if s < 1/2,

(ii) `(B0) = 0 if s > 1/2.
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Proof. Suppose that A is any invariant set in [0, 1]2 for F . Let Ai,j = A ∩Xi,j and

Li,j := `(Ai,j). Before we proceed the proofs for first and second cases above, we

need to obtain the general solution for Li,j.

From (4.5), when A ∩Xk,1 we have

F (Ak,1) = F (A ∩Xk,1),

= A ∩Xk−1,

= A ∩
(
Xk−1,1

⋃̇
Xk−1,2

)
,

= (A ∩Xk−1,1)
⋃̇

(A ∩Xk−1,2) ,

= Ak−1,1

⋃̇
Ak−1,2 for k ≥ 2. (4.14)

Meanwhile from (4.7), when A ∩Xk,2 we have

F (Ak,2) = F (A ∩Xk,2),

= A ∩Xk+1,

= A ∩
(
Xk+1,1

⋃̇
Xk+1,2

)
,

= (A ∩Xk+1,1)
⋃̇

(A ∩Xk+1,2) ,

= Ak+1,1

⋃̇
Ak+1,2 for k ≥ 1. (4.15)

Since we define Li,j = `(Ai,j), then we can write (4.14) and (4.15) in the form of

Li,j. Note that F |Xk,1 stretches by 1/s in the θ-direction and expands by γ = 1/δ

in the x-direction. Meanwhile, F |Xk,2 stretches by 1/(1 − s) in the θ-direction and

shrinks by δ in the x-direction. Thus for any invariant set A, if Li,j = `(A ∩Xi,j),

we have the following:

1

sδ
Lk,1 = Lk−1,1 + Lk−1,2 for k ≥ 2, (4.16)

δ

1− s
Lk,2 = Lk+1,1 + Lk+1,2 for k ≥ 1, (4.17)

where Lk,1 = `(Ak,1) = δs`(F (Ak,1)) from the left hand side of (4.14) and Lk,2 =

`(Ak,2) = ((1− s)/δ)`(F (Ak,2)) from the left hand side of (4.15).

We can solve (4.16) to get

Lk,2 =
1

sδ
Lk+1,1 − Lk,1 (4.18)
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and substitute into (4.17) and obtain the second-order linear recurrence equation

1

sδ
Lk+2,1 −

1

s(1− s)
Lk+1,1 +

δ

1− s
Lk,1 = 0. (4.19)

We solve the above equation for Lk,1 by noting that Lk,1 = rk is a solution if and

only if
1

sδ
rk+2 − 1

s(1− s)
rk+1 +

δ

1− s
rk = 0.

Dividing each term by rk, we get

1

sδ
r2 − 1

s(1− s)
r +

δ

1− s
= 0.

From (4.4) we have s = 1−κ
2

and 1− s = 1+κ
2

for −1 < κ < 1, then

2

δ(1− κ)
r2 − 4

(1− κ)(1 + κ)
r +

2δ

(1 + κ)
= 0,

r2 − 2δ

(1 + κ)
r +

δ2(1− κ)

(1 + κ)
= 0,

[r − δ]
[
r − δ(1− κ)

(1 + κ)

]
= 0.

Thus, for κ 6= 0 (s 6= 1/2) we have two solutions for r where

r1 = δ, r2 = δ̃ =
δ(1− κ)

(1 + κ)
.

Hence the general solution of (4.19) is

Lk,1 = K1r
k
1 +K2r

k
2 ,

= K1δ
k +K2δ̃

k, (4.20)

for some constants K1 and K2. Further on, we now find the values of K1 and K2 in

order to determine the measure of Lk,1 and Lk,2.

(i) First, we consider the case s > 1/2 (which implies that −1 < κ < 0). Note also

that

Lk,1 = `(Bk,1) = `(B ∩Xk,1) ≤ `(Xk,1) =
s(1− δ)

δ
δk (4.21)

where Bk,1 = B ∩Xk,1 and where s(1−δ)
δ

δk is the area for the whole Xk,1. Since

Lk,1 has the form as (4.20), therefore

K1δ
k +K2δ̃

k ≤ s(1− δ)
δ

δk
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which decays like δk as k →∞. Dividing each term by δk;

K1 +K2

(
δ̃

δ

)k

≤ s(1− δ)
δ

.

We can see that from the above equation that the inequality is not satisfied

since K2 grows exponentially (unbounded) from s(1−δ)/δ. Therefore we must

assume that K2 = 0, and for this case of κ < 0, the only possible solution is

Lk,1 = K1δ
k. By comparing this to (4.21);

0 ≤ Lk,1 = K1δ
k ≤ s(1− δ)

δ
δk,

then we have

0 ≤ K1 ≤
s(1− δ)

δ
.

For this case, if we consider A = B1 = B(A1) and we know the fact that

all points in X1,1 are definitely in B1, i.e. X1,1 ⊆ B1 where this means that

X1,1 = B1 ∩ X1,1. From the assumption, B1 ∩ X1,1 = B1,1 and therefore

B1,1 = X1,1 which implies that `(B1,1) = `(X1,1), i.e. L1,1 = `(X1,1).

Since L1,1 = `(X1,1), therefore from (4.21),

L1,1 =
s(1− δ)

δ
δ. (4.22)

We know previously that Lk,1 = K1δ
k, and so when k = 1, we have that

L1,1 = K1δ. By comparing this with (4.22), we finally obtain that

K1 =
s(1− δ)

δ
. (4.23)

In general the solution for Lk,1 when K2 = 0 and κ < 0 is

Lk,1 =
s(1− δ)

δ
δk = `(Xk,1) for k ≥ 1. (4.24)

By substituting (4.24) into (4.18), we obtain the general solution for Lk,2;

Lk,2 =
(1− s)(1− δ)

δ
δk = `(Xk,2) for k ≥ 1. (4.25)

By using the sum of a geometric progression, the sum of both Lk,1 and Lk,2

are
∞∑
k=1

Lk,1 =
∞∑
k=1

s(1− δ)
δ

δk =
s(1− δ)

δ

δ

1− δ
= s
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and

∞∑
k=1

Lk,2 =
∞∑
k=1

(1− s)(1− δ)
δ

δk =
(1− s)(1− δ)

δ

δ

1− δ
= 1− s.

If we define Lk = Lk,1 +Lk,2 = `(B∩Xk,1)+`(B∩Xk,2) = `(B∩(Xk,1∪Xk,2) =

`(B ∩Xk), then

`(B1) =
∞∑
k=1

Lk, (4.26)

= s+ (1− s),

= 1.

Therefore we have that `(B1) = 1 Lebesgue full measure. Since one basin has

full measure, then by Theorem 4.2, `(B0) = 0.

(ii) Secondly, we consider the case s < 1/2 (which implies that 0 < κ < 1). To find

L1,1, we recall that all points in X1,1 will definitely go to A1 (this follows from

(4.6)) where A1 is in B1. We have obtained that the L1,1 = `(X1,1) for previous

case since `(X1,1 ∩B1) = `(X1,1). But if we consider A = B0,

Li,j = `(B0 ∩Xi,j)

then L1,1 = 0. Following from (4.20) for k = 1, we have that

K1δ +K2δ̃ = 0

because L1,1 = 0. We can solve for K2;

K2 =
−K1δ

δ̃
.

To solve K1, we can take the largest possible set with asymptotically full

measure from (4.21) such that

Lk,1
`(Xk,1)

→ 1 as k →∞.

Note also from (4.21) that `(Xk,1) = s(1− δ)δk−1. Then

Lk,1
s(1− δ)δk−1

=
K1δ

k +K2δ̃
k

s(1− δ)δk−1
,

=
K1δ

s(1− δ)
+

K2δ

s(1− δ)

(
δ̃

δ

)k

.
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Since δ̃ < δ, as k →∞ then

K1δ

s(1− δ)
= 1.

Solving this we get

K1 =
s(1− δ)

δ
.

Hence the general solution from (4.20) for Lk,1 in this case is

Lk,1 =
s(1− δ)

δ
δk − s(1− δ)

δ̃
δ̃k,

= s(1− δ)[δk−1 − δ̃k−1]. (4.27)

Now in order to find Lk,2, we need to substitute the above value of Lk,1 into

(4.18)

Lk,2 = (1− s)(1− δ)δk−1 +
sδ − δ̃
δδ̃

(1− δ)δ̃k. (4.28)

Thus the sum for Lk for this case is

`(B0) =
∞∑
k=1

Lk,

=
∞∑
k=1

Lk,1 +
∞∑
k=1

Lk,2,

= s− s(1− δ)
1− δ̃

+ (1− s) +
(sδ − δ̃)(1− δ)

δ(1− δ̃)
,

= 1− δ̃(1− δ)
δ(1− δ̃)

,

=
2κ

(1− δ) + κ(1 + δ)
, (4.29)

where this shows that the values of 0 < `(B0) < 1 since κ > 0. Hence for

0 < κ < 1, by Theorem 4.1, 0 < `(B1) < 1. For this case, A0 is an attractor

since it attracts a set of positive measure, i.e. `(B0) > 0 (this satisfies the first

condition for A0 to be a Milnor attractor). �

Recall we denote B0 and B1 the basins of A0 and A1 respectively. Next theorem

proves that the basin of A0 is riddled with basin of A1. According to Alexander et.

al [1], two steps are required to prove a basin is riddled:

(1) We must show that a set of positive measure is attracted to A0.

(2) We must show that there are infinitely many points near the attractor A0 re-

pelled from it.
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Whereas in this thesis, we divide our proof into 4 steps as discussed in the following

theorem.

Theorem 4.4 For any 0 < δ < 1 and s < 1/2, B0 is riddled with B1.

Proof. To prove that B0 is riddled with B1, the following should be satisfied:

(i) B0 ∪B1 is full measure, i.e. `(B0 ∪B1) = 1 as proved in Theorem 4.2.

(ii) Both basins have positive measure, i.e. `(B0) > 0 and `(B1) > 0 where

B0 ∩B1 = ∅ as proved in Theorem 4.3.

(iii) We need to show that B1 is dense in [0, 1]2. For any point θ ∈ [0, 1] with

itinerary as in (4.8), there is a nearby point θ̃ within any neighbourhood of θ

such that θ̃ ends with infinite number of 0s. Then by Lemma 4.3, limN→∞ iN(θ)

will converge to 0, which implies that limN→∞ iN(θ)/N < 1/2, which means

that θ̃ is in the zero set of the basin boundary. This means there are ’cusps’

of instability at all points (θ̃, 0) on the θ-axis and this shows that B1 is dense.

Thus, this proves that B1 is dense. We show the schematic of the cusps in

Figure 4.5.

0 1

attractor A0

θ
∼

Figure 4.5 The schematic diagram showing the cusp at point (θ̃, 0) on the attractor
A0.

(iv) We need to show that B1 has positive measure on any neighbourhood in [0, 1]2.

The interior of X1,1 is open and thus has positive Lebesgue measure. B1 in

fact the union of all the preimages of X1,1. Therefore it contains open sets in

any neighbourhood within [0, 1]2. Note that an orbit is in B1 if and only if it

ends in X1,1 after some number of finite iterates. �

4.4 Stability index for (θ, 0)

From Theorem 4.4, we know that `(B0) > 0 when s < 1/2 such that B0 is a

riddled basin. Thus we are interested to compute the stability index for this range

to characterize the riddled basin for this system. Recall that we have defined the

ergodic measures in Definition 2.27 and in this chapter we denote E(Ts) the set of

all invariant ergodic measures for the map Ts(θ) such that µ ∈ P(Ts). We note here
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4. Stability index for an attractor in a piecewise linear map

that there is a special case Lebesgue measure µ = `1. In fact we can relate the

stability index with the Lyapunov exponents. In this section, we relate the stability

index to the Lyapunov exponents.

We show the Lyapunov exponents for the map F at (θ, 0) as in the following lemmas.

Lemma 4.4 Suppose t :=
∫ s

0
dµ(θ) for any µ ∈ E(Ts). Then the Lyapunov exponent

in the base direction is

λ‖(θ) = −t log s− (1− t) log(1− s).

Proof. Note that as µ is a probability measure, we have that 1 − t =
∫ 1

s
dµ(θ). If

µ is ergodic, then for µ-almost all θ,

λ‖(θ) = lim
N→∞

1

N

N−1∑
k=0

log
dTs
dθ

(T ks (θ)),

=

∫
log

dTs
dθ

(θ) dµ(θ),

=

∫ t

θ=0

log

(
1

s

)
dµ(θ) +

∫ 1

θ=t

log

(
1

1− s

)
dµ(θ),

= log

(
1

s

)∫ t

θ=0

dµ(θ) + log

(
1

1− s

)∫ 1

θ=t

dµ(θ),

= t log

(
1

s

)
+ (1− t) log

(
1

1− s

)
,

= −t log s− (1− t) log(1− s). � (4.30)

Lemma 4.5 Suppose t :=
∫ s

0
dµ(θ) for any µ ∈ E(Ts). Then the Lyapunov exponent

in the fibre direction is

λ⊥(θ) = (1− 2t) log δ.

Proof. If µ is ergodic, then for µ-almost all θ,

λ⊥(θ) = lim
N→∞

1

N

N−1∑
k=0

log
dh

dθ
(T ks (θ)),

=

∫
log

dh

dθ
(θ) dµ(θ),

=

∫ t

θ=0

log

(
1

δ

)
dµ(θ) +

∫ 1

θ=t

log δ dµ(θ),

= t log

(
1

δ

)
+ (1− t) log δ,

= −t log δ + (1− t) log δ,

= (1− 2t) log δ. � (4.31)
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4. Stability index for an attractor in a piecewise linear map

Note also that λ‖(θ) is always positive but λ⊥(θ) can be either positive or negative

depending on the values of t. In particular, if t < 1/2, then λ⊥(θ) is negative and if

t > 1/2, then λ⊥(θ) is positive.

Below we show the main result of stability index index at (θ, 0) in terms of the

Lyapunov exponents.

Theorem 4.5 For s < 1/2, any 0 < δ < 1 and any µ ∈ E(Ts), for µ-almost all θ;

σ(θ, 0) =


log δ̃−log δ

log δ

(
λ‖(θ)−λ⊥(θ)

λ‖(θ)

)
> 0 if λ‖(θ)− λ⊥(θ) > 0,(

λ‖(θ)−λ⊥(θ)

λ‖(θ)

)
< 0 if λ‖(θ)− λ⊥(θ) < 0,

(4.32)

where λ‖(θ) and λ⊥(θ) are the Lyapunov exponents in the base and fibre directions

as defined in Lemma 4.4 and Lemma 4.5 respectively.

Proof. See Section 4.4.1. �

The next theorem is a consequence of Theorem 4.5 for a special case µ = `1.

Theorem 4.6 For s < 1/2, any 0 < δ < 1 and `1 ∈ E(Ts),

(i) For `1-almost all θ, we have θ with positive stability index, i.e. σ(θ, 0) > 0,

(ii) There exists a θ with negative stability index (i.e. σ(θ, 0) < 0) if and only if

δ < s.

Proof.

(i) If 0 < δ < 1 and s < 1/2, then for `1-almost all θ we have from (4.30) and

(4.31) that

λ‖(θ) = −s log s− (1− s) log(1− s) > 0,

and

λ⊥(θ) = (1− 2s) log δ < 0,

respectively, for µ = `1. Note that t =
∫ s

0
d` = s. So

σ(θ, 0) =
log δ̃ − log δ

log δ

(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
,

=
log δ̃ − log δ

log δ
· −s log s− (1− s) log(1− s)− (1− 2s) log δ

−s log s− (1− s) log(1− s)
> 0,

(4.33)

where log δ̃−log δ
log δ

> 0 since δ̃ < δ. Then λ‖(θ)− λ⊥(θ) > 0 and therefore we will

always have σ(θ, 0) > 0.
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4. Stability index for an attractor in a piecewise linear map

(a) (b)

Figure 4.6 The numerical approximation of riddled basin for model in (4.1). The black
strips represent basin B0 and the orange area is the basin B1. (a) When δ = 0.8 and
s = 0.49, the stability index is positive for Lebesgue measure almost all θ. This corresponds
to Case I in the proof of Theorem 4.5. (b) When δ = 0.3 and s = 0.49, the stability index
is negative for some points θ with the condition that δ < s (see Theorem 4.6). This
corresponds to Case II in the proof of Theorem 4.5.

(ii) If λ‖(θ) < λ⊥(θ) and t :=
∫ s

0
dµ(θ) for some µ ∈ E(Ts), then

σ(θ, 0) =

(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
,

=
−t log s− (1− t) log(1− s)− (1− 2t) log δ

−t log s− (1− t) log(1− s)
. (4.34)

We wish to find a µ such that σ(θ, 0) < 0 for µ-almost all θ. Note that

inf
0<t<1

(λ‖(θ)− λ⊥(θ)) = − log s+ log δ.

So, if − log s + log δ < 0, we have log δ < log s if and only if δ < s. Then this

means that there are θ with σ(θ, 0) < 0. �

We show the riddled basins with the corresponding positive and negative stability

indices in Figure 4.6 within the scale (θ, x) ∈ [0, 1] × [0, 1]. Moreover, we also plot

the stability index for various 0 < δ < 1 in Figure 4.7. Our numerical result is

indeed agrees with our proof in Theorem 4.6 where for `1-almost all θ, σ(θ, 0) > 0

and for some θ, σ(θ, 0) < 0 if and only if δ < s where s = 0.49. These positive and

negative stability indices indicate that there are points θ̃ within neighbourhood of

θ that end up in B1.
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Figure 4.7 The stability index σ(θ, 0) for the piecewise linear map (4.1) over parameter
δ = 0.01, . . . , 0.99 and fixed value s = 0.49 for a typical point θ = 0.9643. The tanh(θ) = 1
here shows that σ = +∞. The index increases from negative value monotonically to
positive value then jumps to +∞. Notice that there is no σ(θ, 0) = −∞ since we only
consider the range s < 1/2 for which the riddled basin occurs such that the basin B0

always has positive measure.

4.4.1 Proof of Theorem 4.5

Note that the computation of the above stability index is only for Lebesgue almost

all θ. We can also compute for more general θ by also considering any other ergodic

measures that is preserved by Ts, not only for the Lebesgue measure `-almost all θ.

There are uncountably many ergodic measures for this map, including the periodic

measures (Dirac delta measures), Lebesgue measures, Bernoulli measures etc. This

can be done by considering for example all possible Bernoulli measures µt.

In this section, we prove Theorem 4.5. The aim is to show that the first case gives

positive stability index while the second case gives negative stability index. We also

express the formulae for the stability indices in terms of the Lyapunov exponents of

system F in (4.1).

For any point θ ∈ T, its orbit has the characteristic function as defined in (4.8).

Now we take a nearby point θ̃ ∈ T within a neighbourhood of θ with the following

itinerary function

nk(θ̃) :=

{
0 if T ks (θ̃) < s,

1 if T ks (θ̃) ≥ s.

If this nearby point θ̃ has an orbit that always follow the orbit of θ, then we can

define the following

IN(θ) := {θ̃ ∈ T : nk(θ̃) = nk(θ) for k = 0, . . . , N − 1}, (4.35)

where we will have different IN(θ) for different θ andN . Note that T ks (IN(θ)) ⊂ Ink(θ)
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4. Stability index for an attractor in a piecewise linear map

for k = 0, . . . , N − 1 where

{
I0 = [0, s),

I1 = [s, 1),
and after Nth iterations IN(θ) will be

mapped to the whole of base space T, i.e.,

TNs (IN(θ)) = T.

Note also that T ks |IN (θ) is invertible for k = 0, . . . , N , i.e.,

(TNs |IN (θ))
−1(T) = IN(θ). (4.36)

We note that the 1-dimensional Lebesgue measure for any invariant set A under the

skewed doubling map is

`1(Ts(A)) =

{
`1(A)
s

if A ⊂ I0,
`1(A)
1−s if A ⊂ I1,

where 1/s and 1/(1 − s) are the slopes in I0 and I1 respectively. So, by using

invertibility in (4.36), one can find the one-dimensional Lebesgue measure of the set

IN(θ) in (4.35) as

`1(IN(θ)) = sN−iN (θ)(1− s)iN (θ)`1(T)

= sN−iN (θ)(1− s)iN (θ), (4.37)

where `1(T) = 1, (1 − s)iN (θ) describes number of times the orbit of θ lies in [s, 1]

(this follows from (4.9)) and sN−iN (θ) describes the number of times the orbit of θ

lies in [0, s].

Now we want to construct the neighbourhoods of point (θ, 0). From (4.37), we need

to pick N such that

sN−iN (θ)(1− s)iN (θ) = 2ε (4.38)

in the θ-direction. We can consider the neighbourhoods of (θ, 0) by

UN,M(θ) := {(θ̃, x) : θ̃ ∈ IN(θ), x < δM} (4.39)

and UN,M(θ) ≈ Bε(θ, 0) if (4.38) is satisfied at δM = ε in x-direction, where M =
log ε
log δ

. To put it simply, this means that the neighbourhood is 2ε in the θ-direction

and ε in the x-direction.

First we consider for Case I. After N iterates, the neighbourhood UN,M(θ) expands

under the skew product transformation F such that

FN(UN,M(θ)) = T× [0, δQε(θ)], (4.40)

71



4. Stability index for an attractor in a piecewise linear map

for some Qε(θ), where this means that after Nth iterations, δM expands to δQε(θ) by

considering the shrinking and expanding rates, i.e. δiN (θ) and
(

1
δ

)N−iN (θ)
respectively.

Hence we have

δQε(θ) = δM × δiN (θ) × δ−N+iN (θ),

= δM+2iN (θ)−N . (4.41)

We show the sketch of UN,M(θ) after N iterates in Figure 4.8.

δ  = εM

0 .
(θ,0)

(θ)IN

δQ

0 1

1

1

1

F N

Figure 4.8 Case I: The schematic diagram showing the Nth iterates of UN,M (θ) (red box)
where δM expands to δQε(θ) and IN (θ) to T. The black strips denote the basin B0.

From the above we consider for the case

Qε(θ) = M + 2iN(θ)−N ≥ 0. (4.42)

Notice that from (4.40), the 2-dimensional Lebesgue measure for UN,M(θ) after Nth

iterations is

`2(FN(UN,M(θ))) = 1× δQε(θ).

Now from the above we want to find the 2-dimensional Lebesgue measure for

UN,M(θ). To measure this, we find the preimages of FN(UN,M(θ)) such that

`2(UN,M(θ)) = 1× δQε(θ) × sN−iN (θ) × (1− s)iN (θ) × δ−2iN (θ)+N ,

= δM × sN−iN (θ) × (1− s)iN (θ). (4.43)

So far, we have computed FN(UN,M) and its measure `2(FN(UN,M)). Now, in order

to compute the stability index at point (θ, 0), we need to find the proportion of B0

that is in UN,M(θ). To compute this, we first use the results from Theorem 4.3 in

the case of s < 1/2 where we refer Lk,1 in (4.27) and Lk,2 in (4.28) to find Lk. Recall
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4. Stability index for an attractor in a piecewise linear map

that Lk = `2(Xk ∩B0) where Xk = Xk,1 ∪Xk,2. We can find Lk by

Lk = Lk,1 + Lk,2,

= s(1− δ)(δk−1 − δ̃k−1) + (1− s)(1− δ)δk−1 +
(sδ − δ̃)(1− δ)

δ
δ̃k−1,

= s(1− δ)δk−1 + s(1− δ)δ̃k−1 + (1− s)(1− δ)δk−1 +
(sδ − δ̃)(1− δ)

δ
δ̃k−1,

= (1− δ)δk−1[s+ 1− s] + (1− δ)δ̃k−1

[
−s+

sδ − δ̃
δ

]
,

= (1− δ)δk−1 − (1− δ)δ̃k−1

(
δ̃

δ

)
,

= (1− δ)

(
δk−1 − δ̃k

δ

)
. (4.44)

Then we can find the sum of Lk from level δQε(θ) up to δk (for k = Qε(θ)+1, . . . ,∞)

by

L+
Qε(θ)

= `2(FN(UN,M(θ) ∩B0)) =
∞∑

k=Qε(θ)+1

Lk =
∞∑

k=Qε(θ)+1

(1− δ)δk−1 −
∞∑

k=Qε(θ)+1

(1− δ)
δ

δ̃k,

=
(1− δ)δQε(θ)

1− δ
− (1− δ)δ̃Qε(θ)+1

δ(1− δ̃)
,

= δQε(θ) − (1− δ)δ̃Qε(θ)+1

δ(1− δ̃)
. (4.45)

So we obtain the proportion as

Σε(θ, 0) =
`(UN,M(θ) ∩B0)

`(UN,M(θ))
,

=
`2(FN(UN,M(θ) ∩B0))

`2(FN(UN,M(θ))
,

=
L+
Qε(θ)

δQε(θ)
,

= 1−
(

1− δ
1− δ̃

)(
δ̃

δ

)Qε(θ)+1

. (4.46)

This means that as ε→ 0 we have that M →∞, hence Qε(θ)→∞ and since δ̃ < δ,

limε→0 Σε(θ, 0) = 1 and by Lemma 3.1(b) this implies that σ−(θ, 0) = 0. Meanwhile

1− Σε(θ, 0) =

(
1− δ
1− δ̃

)(
δ̃

δ

)Qε(θ)+1

. (4.47)
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Since σ−(θ, 0) = 0, from Lemma 3.1(b) we want to show that

1− Σε(θ, 0) = Θ̃(εσ+(θ,0)). (4.48)

To prove the above, we need to find the values of Qε(θ) in (4.47) where Qε(θ) has

been defined in (4.42). Previously, we know that M = log ε/ log δ. Let µt be the

Bernoulli measure 2 such that the frequency of visiting the left interval is t, i.e.

t :=

∫ s

0

dµt(θ) =

∫ 1

0

χ[0,s)(θ)dµt(θ),

where 0 < t < 1. We know from Birkhoff’s Ergodic Theorem in (4.11) that for

µt-almost all θ and for large N ,

iN(θ) ≈ (1− t)N.

By substituting this into (4.38);

2ε ≈ sN−(1−t)N(1− s)(1−t)N ,

≈ sNt(1− s)N(1−t).

By taking logs for small ε we have

log ε ≈ Nt log s+N(1− t) log(1− s),

≈ N(t log s+ (1− t) log(1− s)).

Therefore we obtain N as

N ≈ log ε

t log s+ (1− t) log(1− s)
.

Now substitute M and N into (4.42) to give

Qε(θ) :=
log ε

log δ
+ (1− 2t)

log ε

t log s+ (1− t) log(1− s)
,

:= log ε

(
1

log δ
+

1− 2t

t log s+ (1− t) log(1− s)

)
,

:=
log ε

log δ

(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
. (4.49)

2Let σ :
∑

2 →
∑

2 be a full shift on two symbols. Let t = (t1, t2) be a probability vector (i.e.
t1, t2 ≥ 0 and t1 + t2 = 1) and let µt be the Bernoulli measure determined by t, i.e., on cylinder
sets: ut[z0, . . . , zn−1] = pz0 · · · pzn−1 [60]. In this chapter, when t = s, the Bernoulli measure is
equivalent to Lebesgue measure where we now have Bernoulli (s, 1− s)-measure.
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Then from (4.47), we can define the constant K = 1−δ
1−δ̃ and express it in logs’ form;

1− Σε(θ, 0) = Ke
log

“
δ̃
δ

”Qε(θ)+1

,

= Ke(Qε(θ)+1)(log δ̃−log δ),

= Ke(log δ̃−log δ)e(log δ̃−log δ)Qε(θ),

= K̃e
(log δ̃−log δ) log ε

log δ

„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
,

= K̃e

“
log δ̃−log δ

log δ

”„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
log ε

,

= K̃elog ε

„
log δ̃−log δ

log δ

« λ‖(θ)−λ⊥(θ)

λ‖(θ)

!
,

= K̃ε

“
log δ̃−log δ

log δ

”„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
, (4.50)

where K̃ = Ke(log δ̃−log δ). Therefore by comparing the above with (4.48), we have

σ+(θ, 0) =

(
log δ̃ − log δ

log δ

)(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
, σ−(θ, 0) = 0.

Thus as long as Qε(θ) ≥ 0, the stability index at point (θ, 0) is

σ(θ, 0) = σ+(θ, 0)− σ−(θ, 0),

=

(
log δ̃ − log δ

log δ

)(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
, (4.51)

where λ‖(θ) and λ⊥(θ) are as obtained in (4.30) and (4.31) respectively. For this

case, this index is always positive since A0 is an attractor. Qε(θ) → ∞ as ε → 0 if

and only if from (4.49) we have that λ‖(θ)− λ⊥(θ) > 0 i.e. λ‖(θ) > λ⊥(θ).

Now, we consider for Case II. On the other hand, for this case we consider for

Qε(θ) = M + 2iN(θ)−N < 0.

The Nth iterates for UN,M(θ) now is

FN(UN,M(θ)) = T× [0, 1].

The mapping is just T× [0, 1] since we have assume for this model that everything

that is larger than 1 (i.e. x > 1) will be mapped to A1. In particular,

FN : IN(θ)× [0, δM−Qε(θ)]→ T× [0, 1],

and

FN : IN(θ)× [δM−Qε(θ), δM ]→ T× {1} = A1.
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We show the the sketch of UN,M(θ) for this case in Figure 4.9.

0 .
(θ,0)

(θ)IN

0 1

1

1

1

FN

δ
δ

M

M−Q

Figure 4.9 Case II: The schematic diagram showing the Nth iterates of UN,M−Qε(θ)(θ) =
IN (θ) × [0, δM−Qε(θ)] (lower red box) where it mapped to T × [0, 1]. The Nth iterates of
the upper red box is just A1 = T× {1}.

To compute the proportion of B0 that is in the UN,M(θ), we use (4.45) to compute

L+
0 from level δ0 = 1 up to δk (for k = 1, . . . ,∞);

L+
0 = `2(FN(UN,M(θ) ∩B0)) =

∞∑
k=1

Lk = 1−
(

1− δ
1− δ̃

)(
δ̃

δ

)
.

Then the proportion is

Σε(θ, 0) =
`2(UN,M−Qε(θ)(θ) ∩B0)

`2(UN,M(θ))
,

=
`2(UN,M−Qε(θ)(θ) ∩B0)

`2(UN,M−Qε(θ)(θ))
·
`2(UN,M−Qε(θ)(θ)

`2(UN,M(θ))
,

=
`2(FN(UN,M−Qε(θ)(θ) ∩B0))

`2(FN(UN,M−Qε(θ)(θ))
· IN(θ)× δM−Qε(θ)

IN(θ)× δM
,

=
L+

0

1
δ−Qε(θ),

= L+
0 δ
−Qε(θ),

= K̂δ−Qε(θ), (4.52)

where K̂ = L+
0 = 1−

(
1−δ
1−δ̃

)(
δ̃
δ

)
. Note that from the above `2(UN,M−Qε(θ)(θ)∩B0) ≈

`2(FN(UN,M−Qε(θ)(θ) ∩ B0)) and `2(UN,M−Q(θ)) ≈ `2(FN(UN,M−Qε(θ)(θ)) since FN

is linear and invertible on UN,M(θ). It is clear from (4.52) that Σε(θ, 0) does not

converge to 1, i.e. we can show that

Σε(θ, 0) = Θ̃(εσ−(θ,0)).
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To prove this, we use the values of Qε(θ) in (4.49) into (4.52);

Σε(θ, 0) ≈ K̂δ−Qε(θ) = K̂elog δ−Qε(θ) ,

= K̂e−Qε(θ) log δ,

= K̂e
− log δ log ε

log δ

„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
,

= K̂e
−

„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
log ε

,

= K̂elog ε
−
 
λ‖(θ)−λ⊥(θ)

λ‖(θ)

!
,

= K̂ε
−

„
λ‖(θ)−λ⊥(θ)

λ‖(θ)

«
.

Therefore we have

σ−(θ, 0) = −
(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
.

By Lemma 3.1(c)), 1 − Σε → 1 as ε → 0 and this implies that σ+(θ, 0) = 0. Thus

as long as Qε(θ) < 0, the stability index at point (θ, 0) now is

σ(θ, 0) = σ+(θ, 0)− σ−(θ, 0) =

(
λ‖(θ)− λ⊥(θ)

λ‖(θ)

)
,

since σ+(θ, 0) = 0. For this case, as Q → −∞ and as ε → 0, we have from (4.49)

that λ‖(θ)− λ⊥(θ) < 0 i.e. λ⊥(θ) > λ‖(θ). This index now is always negative. �

In fact, the proof of Theorem 4.5 can be related to Lemma 4.2 where Lemma 4.2

describes the behaviour of (θN , xN). In the first case, if xN < 1, then it will stay

inside T × [0, 1]. Thus by Theorem 4.5 this corresponds that xN will be within

δQε(θ) < 1 as Qε(θ) → ∞. From the calculation of the stability index in the proof,

the point (θN , xN) has positive stability index.

On the other hand, for the second case, by Lemma 4.2, if xN > 1, then it will be

mapped just to T×{1}. By Theorem 4.5, now δQε(θ) > 1 as Qε(θ)→ −∞. From the

calculation of stability index in the proof, the point (θN , xN) has negative stability

index.

4.5 Stability index for the attractor

In Section 4.4, we have proved the stability index at point (θ, 0) where for almost

all θ, they have positive stability index, while for some θ, they can have negative

stability index. Besides calculating this index for a point (θ, 0), in this section we

also formulate the stability index for the whole attractor A0 = [0, 1] × {0}. This

means that we are no longer considering a specific θ. Our next result, Theorem 4.7,
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4. Stability index for an attractor in a piecewise linear map

can be related to that of Theorem 4.5.

Theorem 4.7 For s < 1/2, any 0 < δ < 1 and ε > 0,

σ(A0) =
log δ̃ − log δ

log δ
,

where A0 is the attractor at the baseline.

Proof. Since for this case we consider for the A0, then we have for the θ-direction

that

I0(θ) = T.

Then the neighbourhood of A0 is

U0,M = {(θ̃, x) : θ̃ ∈ I0(θ), x < δM},

where U0,M ≈ Bε(A0) which also satisfies at δM = ε, i.e. M = log ε
log δ

. This means

that the area of U0,M is

Vm = `(Bε(A0)) = 1× δM = δM .

We show the sketch of U0,M in Figure 4.10.

0 1

1

δ  = εM

B0

Figure 4.10 The schematic diagram showing the neighbourhood of the attractor A0 =
[0, 1]×{0} represented by the red box U0,M = T× [0, δM ]. We recall that the black strips
B0 is the basin of A0.

Now, to determine the measure of B0 that is in U0,M , we use (4.45) to find the area

from level δM to δk (for k = M + 1, . . . ,∞) which gives

L+
m = `(Bε(A0) ∩B0),

=
∞∑

k=M+1

Lk,

= δM −
(

1− δ
1− δ̃

)
· δ̃

M+1

δ
.
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4. Stability index for an attractor in a piecewise linear map

Then the proportion is

Σε(A0) =
L+
m

Vm
=
δM −

(
1−δ
1−δ̃

)
· δ̃M+1

δ

δM
,

= 1−
(

1− δ
1− δ̃

)(
δ̃

δ

)M+1

.

From the above, as M →∞ and since δ̃ < δ, Σε(θ, 0) converges to 1 and by Lemma

3.1(b) this implies that σ−(A0) = 0. Therefore

1− Σε(A0) =

(
1− δ
1− δ̃

)(
δ̃

δ

)M+1

,

= Kεσ+(A0),

where K =
(

1−δ
1−δ̃

)
e(log δ̃−log δ) is the constant and where e

M log
“
δ̃
δ

”
= e

log ε
log δ

(log δ̃−log δ),

then we have

σ+(A0) =
log δ̃ − log δ

log δ
.

Since σ−(A0) = 0, then the stability index for the attractor A0 is as follows

σ(A0) = σ+(A0)− σ−(A0),

=
log δ̃ − log δ

log δ
. � (4.53)

By comparing with Theorem 4.5, we have the following corollary.

Corollary 4.8 For s < 1/2, any 0 < δ < 1 and any µ ∈ E(Ts), for µ-almost all θ;

σ(θ, 0) =

 σ(A0) · λ‖(θ)−λ⊥(θ)

λ‖(θ)
> 0 if λ‖(θ)− λ⊥(θ) > 0,

λ‖(θ)−λ⊥(θ)

λ‖(θ)
< 0 if λ‖(θ)− λ⊥(θ) < 0,

(4.54)

where σ(A0) is the stability index of A0.

Notice that the formula for σ(A0) in (4.53) does not depend on θ while σ(θ, 0)

depends on θ. This result was inspired by Keller’s result in [44] which will be

discussed in Chapter 5.
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4. Stability index for an attractor in a piecewise linear map

4.6 Criteria for non-convergence of the stability

index

In the previous section, we have proved that the stability index exists for almost

all θ. This is due to the fact that the limit limN→∞ iN(θ)/N in (4.10) converges to

some value. However, there are some points for which such limit does not converge

and therefore we discuss the non-convergence of the stability index in this section.

For this case, the stability index will oscillates between the lim inf and lim sup. To

be more precise;

Theorem 4.9 Suppose θ is such that

lim sup
N→∞

iN(θ)

N
6= lim inf

N→∞

iN(θ)

N
.

Then σ(θ, 0) will not converge.

Proof. From (4.42) if the limit limN→∞
iN (θ)
N

does not converge, then we have

t = lim sup
N→∞

iN(θ)

N
,

and

t = lim inf
N→∞

iN(θ)

N
.

According to the stability index’s formula, we have from (4.50) that

log(1− Σ(θ, 0))

log ε
= log K̃ +

Qε(θ)

log ε

(
log δ̃ − log δ

log δ

)
. (4.55)

Let us denote

q(θ) := lim
ε→0

Qε(θ)

log ε
,

where Qε(θ) is as in (4.49). If q(θ) does not converge, then σ(θ, 0) does not converge

as well. In particular, if we denote

q̄(θ) := lim sup
ε→0

Qε(θ)

log ε
,

and

q(θ) := lim inf
ε→0

Qε(θ)

log ε
,

then from (4.55) we have either

lim sup
ε→0

log(1− Σ(θ, 0))

log ε
= log K̃ + q̄(θ)

(
log δ̃ − log δ

log δ

)
,
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4. Stability index for an attractor in a piecewise linear map

or

lim inf
ε→0

log(1− Σ(θ, 0))

log ε
= log K̃ + q(θ)

(
log δ̃ − log δ

log δ

)
.

This means that σ+(θ, 0) oscillates between the lim inf and lim sup. The same

also true for σ−(θ, 0). Thus, this proved that σ(θ, 0) does not converge when the

limN→∞
iN (θ)
N

does not converge. �

In fact, Jordan et al. [40] have discussed about the non-convergence of the limit of

iN(θ)/N and presented some examples for sequence of θ for which the limit does not

converge.

Example 4.6.1 ([40]) Consider the sequence starting with 0, followed by 2 ones,

followed by 22 zeros, followed by 23 ones, and so on, i.e.

{θn} = 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, . . . .

For this example, the limis set of iN(θ)/N is [1/3, 2/3].
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5 Stability index σ(v) for Keller’s

map

In this chapter, we study a skew product map proposed by Keller [44]. We first

investigate behaviour of the invariant graph as we vary parameter r in the system.

For this map, Keller has computed a stability index (though not in our sense) for

map F . However, in our study we compute the stability index for the inverse map

F−1 where the attractor in F become a repellor and is a boundary between the

basins of attraction. Thus, the existence of more than one basin shows that we

again have a riddled basin. This enables us to compute the stability index for this

system which has riddled basin of attraction.

5.1 The model

Keller [44] considers a skew product system where the base map Ŝ : Θ → Θ is

hyperbolic, with fibre maps of the form x 7→ ĝ(θ)h(x) where ĝ : Θ → (0,∞) is

a measurable map and h : I → R+ is a strictly increasing, concave function with

h(0) = 0 and h′(0) = 1. He considers the baker transformation as the base map for

this system. Let Θ = [0, 1)2 and Ŝ : Θ→ Θ be the base map which is defined by

Ŝ(θ) = Ŝ(u, v) =


(
u
s
, sv
)

if u < s,(
u−s
1−s , s+ (1− s)v

)
if u ≥ s,

(5.1)

where s ∈ (0, 1). Meanwhile the fibre maps Fθ : I → I are defined by

Fθ(x) = ĝ(θ)h(x), (5.2)

where ĝ(θ) = ĝ(u, v) = g(Π(u, v)) = g(v) for some g : T → (0,∞). The skew

product system is the transformation

F : Θ× I → Θ× I,
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5. Stability index σ(v) for Keller’s map

defined by

F (θ, x) = (Ŝ(θ), Fθ(x)). (5.3)

We can generate a dynamical system from (5.3) by iterating the map F . Thus, after

n-iterations we will have that

F n(θ, x) = (Ŝn(θ), F n
θ (x))

for (θ, x) ∈ Θ× I and n ∈ N0 and where Fθ is a cocycle over the map Ŝ and we can

compute that

F n
θ (x) = FŜn−1θ ◦ · · · ◦ Fθ(x),

F 0
θ (x) = x,

for all n ∈ {1, 2, 3, . . .}, θ ∈ Θ and x ∈ I.

Furthermore, for the skew product system in (5.3), Keller assumes that there exists

a Markov map S : T→ T which is a factor map of Ŝ−1 defined by

S(v) =

v
s

for v < s,

v−s
1−s for v ≥ s,

(5.4)

with T = [0, 1]. Note that this map is called the skewed doubling map in Subsection

2.6.3.

5.1.1 Invariant graphs

Recall that we have introduced the invariant graphs in Section 1.1. In this chapter,

we differentiate two notations of invariant graphs, namely ϕ̂∞(θ) and ϕ∞(v).

For the skew product system in (5.3), the global attractor is given as:

K = {(θ, x) ∈ Θ× I : 0 ≤ x ≤ ϕ̂∞(θ)}, (5.5)

where ϕ̂∞ : Θ → I is the maximal invariant graph which satisfies the following

invariance property

F (θ, ϕ̂∞(θ)) = (Ŝ(θ), ϕ̂∞(Ŝ(θ))), (5.6)

or equivalently,

Fθ(ϕ̂∞(θ)) = ϕ̂∞(Ŝ(θ))

for all θ ∈ Θ. We show action of the skew product F (5.6) schematically in Figure

5.1.
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Θ

I

(θ,ϕ  (θ))

(  (θ),0)Ŝ(  ,0)θ

(  (θ),ϕ  (  θ))Ŝ Ŝ

.

.
.

.^

^

Figure 5.1 The schematic diagram showing the action of skew product F on the two
invariant graphs, given by ϕ̂∞ and 0.

The function ϕ̂∞(θ) is defined as in Keller and Otani [46, Lemma 1] and the proof

showing that this function is invariant is given in Keller [42, p.144-145].

Lemma 5.1 The maximal F -invariant function ϕ̂∞ : Θ→ I is defined by

ϕ̂∞(θ) = lim
n→∞

ϕ̂n(θ) = inf
n
ϕ̂n(θ),

where ϕ̂n(θ) = F n
Ŝ−nθ

(a).

Proof. Define for n ∈ N,

ϕ̂n : Θ→ I,

ϕ̂n(θ) = F n
Ŝ−nθ

(a)

where a = sup(θ,x) Fθ(x). Then

ϕ̂n+1(θ) = F n
Ŝ−nθ

(FŜ−(n+1)θ(a)).

Therefore we can conclude that

ϕ̂n+1(θ) ≤ F n
Ŝ−nθ

(a) = ϕ̂n(θ).

Since the above sequence is decreasing and bounded below by 0, then by the Mono-

tone Convergence Theorem, the limit of a decreasing sequence is its infimum. Hence

ϕ̂∞(θ) = lim
n→∞

ϕ̂n(θ) = inf
n
ϕ̂n(θ)

is well-defined. �

Moreover, the function ϕ̂∞ is always invariant. We can define the following:

(a) the baseline of the skew product system

Φ0 = {(θ, 0) : θ ∈ Θ} (5.7)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

v

x

(a)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

10

12

uv

x

(b)

Figure 5.2 (a) The two-dimensional attractor which is the invariant graph ϕ∞(v) for the
Keller’s map (5.3) for r = 2.5. (b) The three-dimensional invariant graph for the baker
map on (u, v, x)-axis.

(b) and the nontrivial invariant graph

Φ+ = {(θ, ϕ∞) : θ ∈ Θ}. (5.8)

Both Φ0 and Φ+ have been proved to be invariant in [46].

We note from [44] that since ĝ depends only on Π(θ), then the graph ϕ̂∞(θ) also

depends on Π(θ) such that ϕ̂∞(θ) = ϕ∞(Π(θ)) = ϕ∞(v) for a measurable function

ϕ∞ : T→ I.

From (5.3), the mapping of the Keller’s map is as follows:

F

 u

v

x

→
 Ŝ

(
u

v

)
g(v)h(x)

 , (5.9)

with Ŝ = Ŝ1(u, v) = (u
s
, sv) if 0 ≤ u < s, Ŝ = Ŝ2(u, v) = (u−s

1−s , s+(1−s)v) if s ≤ u <

1, g(v) = r · (1 + ε+ cos(2πv)), h(x) = arctan(x), where s = 0.45, ε = 0.01, r = 2.5.

In order to plot the invariant graph ϕ∞(v), we choose a random point (u0, v0, x0)

and iterate it for several thousands times to remove any transient point. Then we

plot several hundred thousands iterations for two-dimensional (vn, xn) and three-

dimensional (un, vn, xn). The figures for the invariant graph are shown in Figure

5.2.
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5.1.2 Critical values of parameter r for invariant graph

In this section, we show the invariant graph for different values of parameter r as

depicted in Figure 5.3. We can clearly see from this figure that there is transition of

the invariant graph from ϕ∞(v) = 0 to ϕ∞(v) > 0. There are 3 critical parameters

for this invariant graph. In this section we explain about these critical parameters.

We denote the set of S-invariant Borel probability measures and its subset of ergodic

measures by P(S) and E(S) respectively. S is the Markov map as in (5.4) and here

we consider

G(µ) =

∫
log g dµ such that µ ∈ P(S). (5.10)

Notice that {G(µ) : µ ∈ P(S)} ⊆ R. Therefore, we can define for measures µ+, µac

and µ− respectively as:

G(µ+) = sup{G(µ) : µ ∈ P(S)} = sup
µ∈P(S)

G(µ), (5.11)

G(µac) = G(`) where ` is the Lebesgue measure, (5.12)

G(µ−) = inf{G(µ) : µ ∈ P(S)} = inf
µ∈P(S)

G(µ). (5.13)

Note that the G(µac) in (5.12) needs to be defined since it is a well-known fact that

S has a unique invariant probability measure µac absolutely continuous w.r.t. ` on

T [44].

Assuming that these three quantities are not equal, there exist 4 possible cases which

are:

(i) G(µ−) < G(µac) < G(µ+) < 0.

(ii) G(µ−) < G(µac) < 0 < G(µ+).

(iii) G(µ−) < 0 < G(µac) < G(µ+).

(iv) 0 < G(µ−) < G(µac) < G(µ+).

In this study, we consider for all the cases above. Therefore, to find the critical

values, we characterize them in terms of µ+, µac and µ− and by referring the above

cases, we obtain that there are value rc1 , rc2 , rc3 such that

(i) when r = rc1 , G(µ+) = 0,

(ii) when r = rc2 , G(µac) = 0,

(iii) when r = rc3 , G(µ−) = 0.
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From numerical approximation as we will show in Chapter 6, we obtained the critical

values as follow:

(i) rc1 ≤ 0.49751,

(ii) rc2 = 1.7364,

(iii) rc3 ≥ 3.5441.

Note that our numerical computations suggest that we have equalities in both (i)

and (iii) above. We need these values in this chapter in order to compute the

stability index for the inverse of this skew product map, that is to detect the range

of parameters r for which that riddled basin exists.

(a) r = 0.2 (b) r = 1.7

(c) r = 2.5 (d) r = 4

Figure 5.3 The invariant graphs on (v, x)-axis for various r. For (a), when r < rc1 , the
invariant graph is zero everywhere, i.e. ϕ∞(v) = 0 for all v. In (b), some points in the
invariant set start to diverge away from x = 0. In (c), when rc1 ≤ r ≤ rc2 , ϕ∞(v) > 0 for
almost all v and in (d), the invariant graph is strictly positive for all v.
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5.2 Keller’s stability index for F

Keller [44] picks a point (v, 0) on the baseline x = 0 under the invariant graph and

defines a local stability index σ(v) in the following way:

σ(v) = σ+(v)− σ−(v),

where

σ−(v) = lim
ε→0

log Σε(v)

log ε
, σ+(v) = lim

ε→0

log(1− Σε(v))

log ε
,

with

Σε(v) =
1

ε|Uε(v)|

∫
Uε(v)

min{ϕ∞(t), ε}dt

and

1− Σε(v) =
1

ε|Uε(v)|

∫
Uε(v)

(ε− ϕ∞(t))+dt,

where Uε(v) = (v − ε, v + ε) are neighbourhoods with size 2ε. Note that this

definition is not the stability index as we define in Chapter 3; in this case

there is a single attractor. Since Keller’s map has only one attractor, everything

that is in [0, 1]×R+ in Figure 5.2(a) is in fact the basin of attraction for the attractor.

He computes the stability index by taking a point on the baseline and estimates the

area under the invariant graph to obtain the following proportion:

Σε(v) =
`((Uε(v)× [0, ε]) ∩N)

`(Uε(v)× [0, ε])
,

where N = {(t, x) : 0 ≤ x ≤ ϕ∞(t)}. Note that N is not simply the basin of an

attractor. In our case, we will invert Keller’s map and obtain two attractors where

each of them has its own basin of attraction, namely one attractor is at x = 0 and

the other is at x = 1. We show that N is the basin of the attractor in x = 0 for

inverse map. We will compute the stability index by taking a point on the attractor

at x = 0 and then within a neighbourhood of the point we find the proportion of

points that are attracted to this attractor. Keller has chosen a point under the

invariant graph (attractor), whereas in our case we choose a point on the attractor

as defined in Definition 3.1.

Keller then formulated his main results of the stability index at point v as follows

[44, Theorem 2.5].

Theorem 5.1 Let v ∈ T1 and any µ ∈ E(S), for µ-almost all v;

σ(v) =

{
s∗ · Γ(v)+Λ(v)

Λ(v)
> 0 if Γ(v) + Λ(v) > 0,

Γ(v)+Λ(v)
Λ(v)

< 0 if Γ(v) + Λ(v) < 0,
(5.14)
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where s∗ > 0 is the Loynes’ exponent obtained from a certain thermodynamic pres-

sure function, Γ(v) and Λ(v) are local Lyapunov exponents for F (5.3), in particular

for the fibre map and base map respectively.

If we compare the theorem above with our result in Corollary 4.8 in the previous

chapter, it suggests that s∗ is in fact the stability index for the attractor A0 in our

system in (4.1). Note that Keller defined the s∗ using concepts from the thermody-

namic formalism whereas the stability index for the attractor can be defined purely

in geometric terms.

5.3 Inverse of Keller’s map

Keller [44] computed the stability index for the invariant graph for the skew product

system F . In this thesis, we use a different approach to compute the stability index,

which is by considering the basins of attraction for system F . To obtain these basins

we need to invert map F and by doing this, the invariant graph for F become a

boundary of the basins in F−1.

Let F (u, v, x)→ (u′, v′, x′), therefore F−1(u′, v′, x′)→ (u, v, x), i.e.,

F−1

 S

(
u

v

)
g(v)h(x)

→
 u

v

x

 ,

Hence for the following two cases;

(i) For 0 ≤ v < s;

F−1


u
s

sv

g(v) arctan(x)

→
 su′

v′

s

tan( x′

g(v)
)

 ,

i.e.,

F−1


u
s

sv

g(v) arctan(x)

→


su′

v′

s

tan( x′

g( v
′
s

)
)

 .

(ii) For s ≤ v < 1;

F−1


u−s
1−s

s+ (1− s)v
g(v) arctan(x)

→
 (1− s)u′ + s

v′−s
1−s

tan( x′

g(v)
)

 ,
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(a) r=0.2 (b) r=1.7

(c) r=2.5 (d) r=4.0

Figure 5.4 The basin of attraction for the inverse map G(u, v, x) (5.15) for various r on
(v, x)-plane. The black area represents the basin where the points go to x = 0 (denoted
as B(v, 0)) and the orange area represents the basin for the points go to x =∞ (denoted
as (B(v, 0))c). Note that the black area is in fact the area under the invariant graph while
the orange area is the area above the invariant graph.

i.e.,

F−1


u−s
1−s

s+ (1− s)v
g(v) arctan(x)

→


(1− s)u′ + s
v′−s
1−s

tan( x′

g( v
′−s
1−s )

)

 .

In summary, let G = F−1 and by ignoring the (′) sign above, the inverse map is as

follows:

G(u, v, x) =


(
su, s−1v, tan

(
x

g( v
s

)

))
if 0 ≤ v < s,(

(1− s)u+ s, (1− s)−1(v − s), tan
(

x
g( v−s

1−s )

))
if s ≤ v < 1.

(5.15)

Using this inverse map, we obtain the basins of attraction for the map F . These

basins are depicted as in Figure 5.4 where the black area denotes the basin of

attraction for the points go to x = 0 and the orange area shows the basin of attraction

for the points move away to x =∞.
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5.4 Numerical computation of stability index for

F−1: results and discussion

Here we discuss difference appearance of Figure 5.2(a) and Figure 5.4. Figure 5.2(a)

shows that the blue points represent the invariant graph ϕ∞(v) which is also the

attractor. As we said earlier, to plot the map F , we pick a random point (u0, v0, x0)

and iterate it for a while to remove transient points. Then we iterate more to obtain

(un, vn, xn), i.e., let

F : [0, 1)2 × R+ → [0, 1)2 × R+,

ϕ∞(v) is the attractor and suppose that

(un, vn, xn) = F n(u0, v0, x0).

Then |ϕ∞(vn) − xn| → 0 as n → ∞ for almost all (u0, v0) and all x0 > 0. The

invariant graph has been plotted in Figure 5.2(a) for points (vk, xk).

On the other hand, by finding the inverse for Keller’s map, we obtained the basin of

attraction as in Figure 5.4 where the attracting invariant graph for F has become

the repellor for F−1 and plays a role as the boundary of the basins of attraction.

As we iterate backward, the point will either goes to 0 or ∞. If the point started

below the invariant graph, then it will go to 0, otherwise if the point started above

the invariant graph, it will end up goes to ∞, i.e., let

G : [0, 1)2 × R+ → [0, 1)2 × R+,

and let G = F−1 be the inverse map. Suppose that

(ũn, ṽn, x̃n) = Gn(ũ0, ṽ0, x̃0).

Therefore,

(i) if 0 < x̃0 < ϕ∞(ṽ), then x̃n → 0 as n→ −∞, or

(ii) if x̃0 > ϕ∞(ṽ), then x̃n →∞ as n→ −∞,

for almost all (ũ0, ṽ0) and all x0 6= ϕ∞(ṽ). Note that for both maps F and G, if

x0 = 0 then xn = 0 as x = 0 is the invariant set for both fibre maps in (5.2) and

(5.15). We show schematically comparison between Keller’s map F and the inverse

map G in Figure 5.5.

Recall that for Keller’s map, the stability index was estimated by taking an individ-

ual point v on the baseline x = 0 and compute the fraction of Σε(v, 0) by considering
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Figure 5.5 The mechanisms in map F (5.9) and map G (5.15). In (a), all points x > 0 in
[0, 1]× [0, 8] attracted to ϕ∞ and from the sketch of xn+1 versus xn, points x0 that start
both from left or right of ϕ∞ will go to one number only, i.e. to ϕ∞. In (b), points x that
start from below ϕ∞ will attracted to the baseline x = 0 while points start from above
ϕ∞ will go to x =∞. This can be seen clearly in the sketch of xn+1 versus xn where for
two points start from left or right of ϕ∞, one will go to 0 and the other will diverge away
to ∞.
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5. Stability index σ(v) for Keller’s map

the area under the invariant graph ϕ∞(v) [45]. We have stated the stability index

for Keller’s map in Section 5.2.

In our case, we use Definition 3.1 to compute the stability index σ((v, 0),B(v, 0))

for the point (v, 0) in the basin of attraction of the attractor at x = 0 where the

basin for the inverse map F−1 is obtained as in Figure 5.4.

We denote Bε(v, 0) the ε-neighbourhood of point (v, 0) and B(v, 0) the basin of

attraction for (v, 0). We take a point (v, 0) in the basin B(v, 0) and define that

Σε(v, 0) = `(Bε(v,0)∩B(v,0))
`(Bε(v,0))

,

i.e.,

1− Σε(v, 0) = `(Bε(v,0)∩(B(v,0))c)
`(Bε(v,0))

.

Then the stability index for the point (v, 0) is

σ((v, 0),B(v, 0)) = σ+((v, 0),B(v, 0))− σ−((v, 0),B(v, 0)), (5.16)

which exists when the following converge:

σ−((v, 0),B(v, 0)) = lim
ε→0

log(Σε(v, 0))

log ε
, σ+((v, 0),B(v, 0)) = lim

ε→0

log(1− Σε(v, 0))

log ε
.

To compute the fraction of Σε(v, 0), we first transform the basin of attraction in

Figure 5.4 to the basin using the random number generator (RNG) in Matlab.

Thus, we show the random basin in Figure 5.6. In fact, the measure ` is computed

by counting the random points generated in Bε(v, 0). Now the proportion Σε(v, 0)

can be calculated as follows:

Σε(v, 0) =
# of blue points in the Bε(v, 0)

# of blue and yellow points in the Bε(v, 0)
. (5.17)

First, we compute the proportion of (5.17) for the blue points over the whole points

(blue points and yellow points) as we increase the parameter r in the fibre map of

F . From Figure 5.7, we can see that the proportion increases as we increase the

parameter r. This is due to the increasing number of blue points when r is increased

from 0 to larger values. Figure 5.7 is produced for fixed size of ε-neighbourhood for

r = 0, . . . , 4.

Secondly, from Figure 5.6, we pick a particular random point (v, 0) in the basin and

take a neighbourhood around this point to plot how the proportion varies when we

decrease the size of the ε-neighbourhood. The result is shown as in Figure 5.8. From

this figure, it shows that as ε→ 0, Σε(v, 0)→ 1. For r = 0.2, the proportion is zero
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Figure 5.6 The basin of attraction generated using random number generator for G(u, v, x)
(5.15) for various r. The blue points represent the basin B(v, 0) and the yellow points
represent (B(v, 0))c. We can see that the number of blue dots increasing as we increase r
since the proportion of the black region of the basin of attraction in Figure 5.4 increases
as we increase r as well.
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Figure 5.7 The proportion of the blue dots over the whole image from Figure 5.6 for the
inverse map G(u, v, x) (5.15). This proportion starts from 0 then increases monotonically
as r increases where Σε(v, 0) = 0 means that all the points are in (B(v, 0))c, i.e. the yellow
dots.

everywhere since there are no points that go to x = 0 (i.e. no blue points). Besides,

we can also see that as r increases, Σε(v, 0)→ 1 much faster than the lower r.

Then according to the stability index formula in (5.16), we can compute σ−((v, 0),B(v, 0))

from the slope of the graph of log(Σε(v)) against log(ε) and for σ+((v, 0),B(v, 0)),

we find the slope of log(1− Σε(v)) against log(ε). The result is depicted as in Fig-

ure 5.9 for example for r = 2.5. From this figure, since σ−((v, 0),B(v, 0)) = 0 and

σ+((v, 0),B(v, 0)) =∞, the stability index for r = 2.5 is ∞.

We also compute the stability index for various r in Figure 5.10. Our numerical

computation shows that the index increases monotonically from −∞ to ∞. For

lower r, σ((v, 0),B(v, 0)) = −∞ indicates that `(B(v, 0)) = 0 since all points in

the ε-neighbourhood of (v, 0) are attracted to (B(v, 0))c. This corresponds to the

case where ϕ∞(v) = 0 for all v. Then for larger r, we can see that the index varies

from 0 to positive values, where this means that the basin B(v, 0) is riddled with

(B(v, 0))c. There are points nearby within the neighbourhood of (v, 0) that are in

(B(v, 0))c. Further increasing r, we have σ((v, 0),B(v, 0)) = ∞ which shows that

the basin B(v, 0) has full measure such that all points in the ε-neighbourhood are

attracted to x = 0. This corresponds that ϕ∞(v) is strictly positive for all v.

We compare our result on stability index on the riddled basin with Keller’s result

[44] for the same map where we agree that the index is positive for `-almost all v.
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Figure 5.8 The proportion of the blue points over the ε for G(u, v, x) (5.15). When r < rc1 ,
the proportion is zero everywhere since all points are in (B(v, 0))c, i.e. no blue points.
When r ≥ rc1 , Σε(v, 0) → 1 as ε → 0 where for higher value of r, Σε(v, 0) converges to 1
faster than the lower r. This is due to the increasing number of blue points as we decrease
the size of ε-neighbourhood.
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Figure 5.9 Computation of the stability index for G(u, v, x) (5.15) for r = 2.5. (a)
σ−((v, 0),B(v, 0)): log(Σε(v, 0)) versus log(ε) where the slope is 0. (b) σ+((v, 0),B(v, 0)):
log(1− Σε(v)) versus log(ε) where the slope is ∞.

96



5. Stability index σ(v) for Keller’s map

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r

ta
nh

(σ
)

Figure 5.10 The stability index σ((v, 0),B(v, 0)) for the inverse map G(u, v, x) (5.15) over
parameter r = 0, . . . , 5 for the typical point v = 0.7927. Here −1 and 1 represent that the
indices are −∞ and ∞ respectively. When 0 < r < rc2 , σ((v, 0),B(v, 0)) = −∞ since the
proportion of points that are in B(v, 0) is zero for all v. When rc2 < r < rc3 , the index
starts from 0 and increases monotonically to positive value where in this range the riddled
basin occurs. As r increases in this range, there are less and less nearby points within the
neighbourhood of (v, 0) that belong to (B(v, 0))c. Then as r > rc3 , σ((v, 0),B(v, 0)) =∞
since all points in the ε-neighbourhood of (v, 0) attracted to the attractor in B(v, 0).
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6 Birkhoff averages for periodic

orbits and the zero set of the

invariant graph

This chapter is a continuation from the previous chapter. We will look in much

more depth into the system, not just the typical points as in previous chapter, but

also at all possible values of v by looking at the dimension of a set. First, we will

compute averages of periodic points for the skewed doubling map used in Keller’s

paper [44] where its periodic points are computed using the method of symbolic

dynamics. These averages are computed using Birkhoff averages. Next, we will also

be looking at the size of zero and nonzero sets of the invariant graph in terms of the

Hausdorff dimension. To do this, we define these sets and discuss some of their basic

properties. We make a conjecture to improve Theorem 2 from Keller and Otani [46]

for a complete range of parameter r.

6.1 Birkhoff averages for periodic points

In this section, we study the behaviour of the orbits of periodic points in the Markov

map S in (5.4). Such orbits are characterized by their symbolic sequences which

are generated by the Markov partition. Our aim is to compute the maximum and

minimum averages for the periodic points obtained where we associate this to the

maximum and minimum measures for system F in (5.3).

6.1.1 Computations of periodic points using symbolic

dynamics

To study the behaviour of the orbits of the periodic points, we use the method of

symbolic dynamics which we mainly refer to Glendinning’s book [29]. This method

uses some symbols to represent the sequence of orbits in the interval map. Therefore

to set up the symbolic dynamics for this map, we must first define what is meant by
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6. Birkhoff averages for periodic orbits and the zero set of the invariant graph

a partition. Strictly speaking, a partition is a division of the interval into pairwise

disjoint subintervals.

For the map S, we divide its interval T = [0, 1] into two subintervals. Hence, we

can write T = [0, s) ∪ (s, 1] = I0 ∪ I1 and for the coding we use the binary symbols

’0’ for I0 which is for the left interval and ’1’ for I1 which is for the right interval of

the map such that

nk(v) =

0 if Sk(v) ∈ I0,

1 if Sk(v) ∈ I1,
(6.1)

for k = 0, . . . , N − 1. Furthermore, the orbit of the point v can be found using the

transformation S. In fact, the role of S is to shift the sequence of binary digits one

place to the left. In particular, if a point v has a binary sequence 001, then the

effect of S is 001, 010, 100. Also if v has a binary sequence 011, then the effect of S

is 011, 110, 101. We can clearly seen that each number in the sequence moves one

step to the left after each iteration.

Moreover, in the case of periodic orbit, for each period n, S has 2n periodic points

since there are 2n different sequences of 0s and 1s of period n. For instance, period

3 has 23 = 8 possible finite binary sequences which are 000, 001, 010, 011, 100, 101,

110, 111. Given a point v0 ∈ T, we can consider the orbit of this point as

{v0, S(v0), S2(v0), . . .},

which is obtained by iterating the map S. In this map, we can find more than one

periodic point. For this map, v0 is periodic if

Sn(v0) = v0.

The points obtained are denoted as {v0, v1, v2, . . . , vn−1}. This means that after nth

iteration, the last point is in fact the starting point v0. We find the periodic points

for the Markov map according to the chosen number of periodic orbit and further we

also show how to measure the integral over the delta functions for all of the periodic

points.

For example, Keller has chosen a period-3 orbit 001 for the Markov map S and the

points obtained are at v0 = 0.10255, v1 = 0.22788 and v2 = 0.50640 with s = 0.45.

Here we would like to verify the computation for these periodic points. Since our

v0 = 0.10255 < s, therefore the first condition in (5.4) is used;

S(0.10255) =
0.10255

0.45

= 0.22788.
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We denote this last number as v1 = 0.22788 and since this v1 is smaller than s as

well, hence

S(0.22788) =
0.22788

0.45

= 0.50640.

Now we denote v2 = 0.50640 > s, so we use the second condition in (5.4) and get:

S(0.50640) =
0.50640− 0.45

1− 0.45

= 0.10255.

Notice that the last number is same as v0 after three iterations and therefore this

proved that those three points satisfy the period-3-orbit. In fact, we can simplify

the computations above as:

S(v0) = v1

S(v1) = v2

S(v2) = v0.

We show this period-3 orbit on the Markov map in Figure 6.1.

Figure 6.1 The iterations for period-3-orbit 001 on the Markov map (5.4).

6.1.2 Examples of more periodic orbits

We also show the results for more periodic points that can be obtained from the

Markov map (5.4) in Figure 6.2. Keller has used 001 and the sequence is 001001001 . . . .
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In addition, the sequences in the caption of Figure 6.2 have the following meanings:

01 = 0101010101 . . .

011 = 011011011 . . .

0001 = 000100010001 . . .

001100 = 001100001100001100 . . . .

(a) (b)

(c) (d)

Figure 6.2 The iterations for Markov map (5.4) for various number of periodic orbits. (a)
The period-2 orbit for 01. (b)The period-3 orbit for 011. (c) The period-4 orbit for 0001.
(d)The period-6 orbit for 001100.

6.1.3 Results: maximum and minimum averages

In this section, we compute the averages of G(µ+), G(µac) and G(µ−) as defined

in (5.11), (5.12) and (5.13) respectively. Therefore, to compute the averages for

periodic points, we use the Birkhoff averages from the left hand side of (2.13), in

particular

1

n

n−1∑
i=0

log g(vi) =
1

n

n−1∑
i=0

log(r × (1 + ε+ cos(2πvi))),
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where n is the number of period to return to v0. We note that the quantity
∫

log g dµ

in (5.10) is in fact the Lyapunov exponent in fibre direction at (v, 0) for map F ,

obtained from (5.2).

From (2.14), we have defined that the Dirac delta measure is supported on the points

in a given periodic orbits in general. In this case, we will define such measure on

the periodic points v in Keller’s map. For instance, for the period-1 orbit at points

v = 0 and v = 1, we define the Dirac delta measures at 0 and 1 by µ+ = δ0, then

G(µ+) has the following average:

G(µ+) =

∫
A

log g(v) dµ+,

≥
∫
A

log g(v) δ0(v) dv,

= log g(0),

= log r × (1 + ε+ cos(2π(0))),

= log(r × 2.01). (6.2)

The same is also true for v = 1 where the average is log(r× 2.01). Meanwhile, since

G(µac) is absolutely continuous w.r.t. Lebesgue measure `, therefore the measure is

defined as µac = `, then G(µac) has the following average:

G(µac) =

∫
A

log g(v) d`,

=

∫ 1

0

log g(v) dv,

=

∫ 1

0

log[r × (1 + ε+ cos(2π(v))] dv,

=

∫ 1

0

log r dv +

∫ 1

0

log(1 + ε+ cos(2π(v)) dv,

= log r − 0.551843,

= log r + log e−0.551843,

= log(r × e−0.551843),

= log(r × 0.57589). (6.3)

For the period-3 orbit 001 at points v0 = 0.10255, v1 = 0.22788 and v2 = 0.50640,

we define the Dirac delta measures at v0, v1 and v2 as

µ− =
1

3
(δv0 + δv1 + δv2).
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Then the average of G(µ−) is

G(µ−) =

∫
A

log g(v) dµ−,

≤
∫
A

log g(v)

(
1

3
(δv0 + δv1 + δv2)dv

)
,

=
1

3
(log g(v0) + log g(v1) + log g(v2)),

= log(g(v0)g(v1)g(v2))
1
3 , (6.4)

= log(r3 × (1 + ε+ cos(2π(v0))(1 + ε+ cos(2π(v1))(1 + ε+ cos(2π(v2)))
1
3 ,

= log(r × 0.28216). (6.5)

In fact, by equating (6.2), (6.3) and (6.4) to zero, one obtains the values of rc1 ,

rc2 and rc3 respectively. We show the plots of log g corresponding for these three

averages in Fig. 6.3.

(a) (b) (c)

Figure 6.3 Plots of log g over v = 0, . . . 1 for r = 2.5. (a) The period-1 points at v = 0 and
v = 1. (b) Absolutely continuous w.r.t. Lebesgue measure means integration of the log g
for the whole v = 0 . . . , 1. (c) The period-3 points.

As a result, we plot the average of log g against the periodic points for fixed r =

2.5 for variety number of periodic points in Figure 6.4. Clearly we obtained that

for each period, it has its own average, and what is more, different period gives

different values of averages. To exemplify, for the case of r = 2.5, period-1 which

contains v = 0 and v = 1 has average 1.6144, period-2 01 which consists of points

v = 0.26910 and v = 0.5980 has average 0.0374, period-3 001 which has points

at v = 0.10255, 0.22788 and 0.50640 has average of −0.3490, period-3 011 which

has points at v = 0.36333, 0.80741 and 0.64983 has average of 0.38769, period-4

0001 which has points at v = 0.04317, 0.09593, 0.21318 and 0.47374 has average

of 0.35459 and so on. To put it simply, for a particular value of parameter r,

it will gives a set of periodic points with particular value of their averages. Our

numerical computations suggest that for r = 2.5, period-1 gives maximum average

which corresponds to maximum average for G(µ) while period-3 001 gives minimum

average which corresponds to minimum average for G(µ).
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(a) Period 1. (b) Periods 1 and 2.

(c) Periods 1, 2 and 3. (d) Periods 1, 2, 3, 4 and 5.

Figure 6.4 The distribution of the average of G(µ) for r = 2.5 for different number of
periodic points N . The red circles denote the periodic points while the vertical lines
represent the G(µac) = 0.36445 for all N , absolutely continuous w.r.t. Lebesgue measure.

Moreever, as we vary r, we still have the same periodic points for each period, except

that this time their averages are different (See Figure 6.5). This is due to the quantity

of log(r · (1 + ε+ cos(2πv))). From this figure, we notice that as we increase r, the

averages are also increase. Note also that the plots of Figure 6.5(a), 6.5(b), 6.5(c)

and 6.5(d) are corresponding to cases (i), (ii), (iii) and (iv) respectively from Section

5.1.2. In fact, case (i) implies that ϕ∞(v) = 0 since G(µ) < 0 for all S-invariant

probability measures µ and case (iv) implies that ϕ∞(v) > 0 since G(µ) > 0 for

all such µ. Our numerical results also indicate that the measure µ+ = δ0 for the

period-1 orbit always maximizes G(µ) while the measure µ− for the period-3 orbit

001 always minimizes the G(µ) for all N ≥ 1 where these results have been obtained

by Keller in his paper [44]. Thus, this means that the result obtained by him is

verified here by our numerical computations.

6.2 Properties of the zero set of the invariant

graph

This section is devoted to investigating the ”size” of zero set of the invariant graph

ϕ∞(v) for Keller’s map in terms of Hausdorff dimension dimH . In particular, we

will study the changes of the size of this set which is influenced by the parameter
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(a) r = 0.2 (b) r = 1.7

(c) r = 2.5 (d) r = 4

Figure 6.5 Comparisons for N = 10 and various r where the horizontal lines represent
G(µac). Notice that the location of G(µac) changes from negative to positive as we change
r. The top two points in each figure represent G(µ+) where they are always maximum
for all r, i.e. at v = 0 and v = 1. Meanwhile the lowest three points for the period-3
orbit 001 at v = 0.10255, 0.22788 and 0.5064 are always minimum for all r. From Section
5.1.2 (a) corresponds to case (i) with G(µac) = −2.16128, (b) corresponds to case (ii)
with G(µac) = −0.646154, (c) corresponds to case (iii) with G(µac) = 0.36445 and (d)
corresponds to case (iv) with G(µac) = 0.83445.

r in the fibre maps in the skew product system in [44]. We denote ϕ∞,r(v) to show

dependency of the invariant graph on r. In fact, Keller and his coworker have studied

the transition from ϕ∞,r(v) = 0 to ϕ∞,r(v) > 0 in terms of Hausdorff dimension [46].

Their results show that for r smaller than rc1 , ϕ∞,r(v) = 0, while for r larger than

rc3 , ϕ∞,r(v) > 0. To study this transition, both zero and non-zero sets of ϕ∞(v)

need to be defined. We refer to Keller et al. [45] and Keller and Otani [46] for their

definitions.

The zero set is defined by

Nr = {θ ∈ Θ : ϕ∞,r(v) = 0}. (6.6)

whereas for the nonzero set;

N c
r = Θ \Nr = {θ ∈ Θ : ϕ∞,r(v) > 0}. (6.7)
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6. Birkhoff averages for periodic orbits and the zero set of the invariant graph

Below we show some basic properties of the zero set [46, Remark 2]:

(a) Nr is invariant under the skew product map F (5.3).

(b) For r < s, we have ϕ∞,r(θ) ≤ ϕ∞,s(θ) for all θ ∈ Θ. Hence Nr ⊇ Ns.

In property (a), the zero set Nr is obtained when the baseline collides with the

nontrivial invariant graph, i.e.

Nr = Φ0 ∩ Φ+

where Φ0 and Φ+ have been defined in (5.7) and (5.8) respectively. Since both Φ0

and Φ+ are invariant, then the intersection is also an invariant. We prove this in

the following theorem.

Lemma 6.1 Let A,B ⊆ Θ × I. If F (A) = A and F (B) = B, and F is invertible,

then F (A ∩B) = A ∩B.

Proof. The sets (θ, x) ∈ A if and only if F (θ, x) ∈ A and so (θ, x) ∈ B if and only

if F (θ, x) ∈ B. Then F (A∩B) = A∩B = F−1(A∩B) since F is also invertible. �

For the property (b), if r < s, then

r · (1 + ε+ cos(2πv)) · h(x) < s · (1 + ε+ cos(2πv)) · h(x),

Fθ,r(x) < Fθ,s(x),

F n
Ŝ−nθ,r

(x) < F n
Ŝ−nθ,s

(x),

lim
n→∞

F n
Ŝ−nθ,r

(x) ≤ lim
n→∞

F n
Ŝ−nθ,s

(x),

lim
n→∞

ϕ̂n,r(θ) ≤ lim
n→∞

ϕ̂n,s(θ),

ϕ̂∞,r(θ) ≤ ϕ̂∞,s(θ),

Nr ⊇ Ns.

This means that Nr has bigger zeros (larger size of zero set) than Ns when r < s.

6.2.1 Dimension of the zero set of the invariant graph, from

Keller and Otani [46]

Previously, we have shown that there are three critical values for parameter r, namely

at rc1 , rc2 and rc3 in Chapter 5. In here, we are interested to estimate the dimensions

for both Nr and N c
r for all values of r in terms of Hausdoff dimension analytically.

In Keller and Otani [46], they consider the dimension for both sets on the open

interval (rc1 , rc3). However, in this study, we would like to extend their results by
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6. Birkhoff averages for periodic orbits and the zero set of the invariant graph

also looking at what happen to the dimension outside (rc1 , rc3) as well as at the

boundaries, i.e. at rc1 and rc3 . We discuss this as in the following conjecture which

relies on the results in [46, Theorem 2], but here we also clarify the dimension at

the boundaries.

Conjecture 6.1 There is a real continuous function D : [rc1 , rc3 ] → [0, 1] that is

analytic on (rc1 , rc3) such that

(i) D(rc2) = 1, D′′(rc2) < 0

(ii) D′(r)

{
<

>

}
0 for r

{
>

<

}
rc2 .

(iii) dimH(Nr) =


2 for r ≤ rc2 ,

D(r) + 1 for rc2 ≤ r ≤ rc3 ,

0 for r > rc3 .

dimH(N c
r ) =


0 for r ≤ rc1 ,

D(r) + 1 for rc1 < r ≤ rc2 ,

2 for r ≥ rc2 .

From the above conjecture, we consider a function D from the closed interval [rc1 , rc3 ]

that maps to [0, 1]. Statements (i) and (ii) have already been proved in [46, Theo-

rem 2]. In (i) they proved that the function D is a unimodal map on the interval

(rc1 , rc3) and has a critical point at rc2 , D is monotone increasing on the left of rc2

and monotone decreasing on the right of rc2 . In (ii), the first derivative D′(r) is pos-

itive shows that the function D is increasing for rc1 < r < rc2 and the first derivative

D′(r) is negative shows that the function D is decreasing for rc2 ≤ r ≤ rc3 .

In (iii), we first consider for the zero set Nr as defined in (6.6). Note that we use

the dimension 2 instead of 1 since we consider the two-dimensional (u, v). When

r ≤ rc2 , we observe that Nr has dimension 2 since the zero set of invariant graph

ϕ∞,r(v) stays along the x = 0 for all u and v. Next, when rc2 ≤ r ≤ rc3 , we are

using the result in [46, Theorem 2] that the dimension of Nr now is less than 2 since

the size of Nr decreases as r increases. We also observe that the dimension of Nr

decreases monotonically from 2 to 1 as shown in Figure 6.6. Finally, when r > rc3 ,

the dimension of Nr is 0 as there is no more Nr on (u, v)-axis.

Secondly, we also consider for nonzero set N c
r as defined in (6.7). When r ≤ rc1 ,

we can see from the Figure 5.3(a) that there is no N c
r on x = 0, i.e., there is

no ϕ∞,r(v) > 0 for all u and v and therefore the dimension is 0. Next, when

rc1 < r ≤ rc2 , we use the result in [46, Theorem 2] that the dimension is now

between 1 and 2 but this time the dimension of N c
r increases monotonically from 1
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6. Birkhoff averages for periodic orbits and the zero set of the invariant graph

to 2 since the size of N c
r increases as r increases (See Figure 6.6). Finally, as r ≥ rc2 ,

N c
r has the dimension 2 for all u and v since ϕ∞,r(v) now is strictly positive.

r
r cr c1

r c2

0

2

1

H

}D(r)+1

r(   ) H

3

N dimdim
Hdim

r
c(    )N

Figure 6.6 The schematic diagram showing Hausdorff dimension dimH for both zero set Nr

and non-zero set N c
r as r varies from small values to large values. The solid lines represent

the dimension of Nr while the dashed lines represent the dimension of N c
r . The maximum

dimension 2 is achieved when r ≤ rc2 since the set Nr occupies along the baseline x = 0
for all v. As r is increased from rc2 to rc3 , the size of Nr decreased and so its dimension.
As r > rc3 , the dimension is zero for all v. Meanwhile the non-zero set N c

r has dimension
0 when r ≤ rc1 since ϕ∞,r(v) = 0 for all v and thus no non-zero set within this range.
Further as rc1 increases to rc2 , its dimension increasing monotonically from 1 to 2 as more
and more points escape from the invariant set x = 0. Finally it attains the maximum
dimension at 2 as there are dense set of non-zero set of ϕ∞,r(v) when r ≥ rc2 .

6.3 Summary for results on the stability index

σ((v, 0),B(v, 0)) and dimH(Nr)

We recall that the invariant graph ϕ∞(v) is the attractor for F (5.3). In this section,

we summarize the stability index for the basin of the attractor (obtained in Chapter

5) and the dimension of the zero set of the attractor in Table 6.1 for different range

of parameter r. We note that the riddled basin occurs within rc2 ≤ r ≤ rc3 . In

fact, at r = rc1 and at r = rc3 , these correspond to the extremal period-3 orbit and

period-1 orbit respectively. From Conjecture 6.1, when r = rc3 , dimH(Nr) = 1 can

possibly be justified by noting that the extremal period-1 orbit is still nonlinearly

stable.
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6. Birkhoff averages for periodic orbits and the zero set of the invariant graph

Range of r σ((v, 0),B(v, 0)) dimH(Nr)
r ≤ rc2 −∞ 2

rc2 ≤ r ≤ rc3 positive monotonic decreasing from 2 to 1
r > rc3 ∞ 0

Table 6.1 This table shows summary for stability index for the basin of the attractor ϕ∞(v)
and the dimension for the zero set of ϕ∞(v).
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7 Stability index σ(A) for a set

and attractor in Ashwin’s model

In both chapters 4 and 5, we have computed the stability index for a class of skew

product systems which exhibit the riddled basins. In this chapter, we compute the

stability index for a non-skew product map which also has a riddled basin. We

consider a map proposed in Ashwin et al. [6; 7] where it is a coupled identical

chaotic electronic circuits system. This map has two Milnor attractors, one at

baseline x2 = 0 and the other at infinity.

We observe that geometry of the basins of attraction changes as we vary a parameter

in this map. The riddled basin happens within a certain range of this parameter. To

compute the stability index for such basin, we also use the random number generator

in MATLAB for the purpose of counting the number of points that are in the basins

of attraction of the attractor A. In this chapter we compute the stability index for

the attractor using the concept of stability index defined for a set as we introduce

in Definition 3.2.

We first discuss about the global geometry of the basins of attraction for this map

and secondly to concentrate on the computation of stability index for the local ge-

ometry of these basins of attraction by considering a neighbourhood of the attractor

A.

7.1 The model

We consider the following: Suppose that fα,ν,ε : M →M is a smooth mapping where

M is a compact subset of X such that fα,ν,ε has an invariant subspace N ⊂M . Let

A be an invariant set which is an attractor when the dynamics is restricted to N .

Let fα,ν,ε be a three-parameter map of R2 to itself that is equivariant under Z2
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7. Stability index σ(A) for a set and attractor in Ashwin’s model

generated by (x1, x2) 7→ (−x1, x2) given by

fα,ν,ε

(
x1

x2

)
=

(
3
√

3
2
x1(x2

1 − 1) + εx1x
2
2

νe−αx
2
1x2 + x3

2

)
(7.1)

where α, ν, ε are three normal parameters [3] restricted to N and ν is a bifurcation

parameter. This map is in fact an extension of a cubic logistic equation h : R→ R
which is given by

h(x) =
3
√

3

2
x(x2 − 1). (7.2)

Note that on the invariant subspace N , i.e. when x2 = 0, h has an asymptotically

stable attractor A = [−1, 1]×{0} which is independent of α, ν and ε. In this study,

the values of α = 0.7 and ε = 0.5 are fixed and the parameter ν is varied. These

values of α and ε are chosen based on the work by [6; 7].

It also has been calculated that for this map the transitions of the attractor A from

one behaviour to another behaviour were investigated by varying ν which happen

at the following values [6; 7]:

(a) When ν = 1, the attractor A looses its asymptotic stability.

(b) When ν = 1.285, A experiences a blowout bifurcation.

(c) When ν = 1.538, there is a bifurcation to normal repulsion.

We redepict from [7] the three critical curves above in Figure 7.1.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
(α,v)−plane

Figure 7.1 The plot of the three critical curves on (α, ν)-plane: the lower line ν = 1
represents the value where A looses its asymptotic stability while the upperline ν = 1.538
is where the bifurcation to the normal repulsion occurs. The middle line ν = 1.285 is
where the blowout bifurcation takes place.
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7. Stability index σ(A) for a set and attractor in Ashwin’s model

7.2 Behaviour of map fα,ν,ε

In this section, we study behaviour of the map fα,ν,ε by varying the value of ν and

fixing parameters α and ε. The changes of these behaviour are in fact dependent on

the geometry of the basins of attraction of A. The theorem below shows different

behaviour for different ranges of ν with fixed α = 0.7 and ε = 0.5.

Theorem 7.1 [7] The behaviour of the map fα,ν,ε is as follows:

(a) When 0 ≤ ν < 1, A is an asymptotically stable attractor.

(b) When 1 < ν < 1.285, A is a Milnor attractor whose basin is riddled with that

of the attractor at infinity.

(c) When 1.285 < ν < 1.538, A is a chaotic saddle.

(d) When ν > 1.538, A is a normally repelling chaotic saddle.

Proof. See [7].

Recall that from previous section, the blowout bifurcation happens when ν = 1.285.

From the above theorem, this means that the basin is riddled before the blowout

bifurcation takes place.

7.2.1 Geometry of basins of attraction by varying ν

In this section, we show the basins of attraction for the map fα,ν,ε for α = 0.7,

ε = 0.5 and various ν in Figure 7.2. The black area denotes the basin of attraction,

B(A), i.e. the points that are attracted to the baseline x2 = 0 and all the figures

are shown in the rectangle (x1, x2) ∈ [−1.5, 1.5]× [−1.1, 1.1]. Meanwhile, the orange

area indicates the complement of the basin of attraction, B(A)c for the points that

are attracted to ∞. We can see that the area of basin B(A) shrinks as we increase

the parameter.

From the above theorem, when 0 < ν < 1, the attractor A is asymptotically stable.

This means that all the points in ε-neighbourhood of A are attracted to A = [−1, 1]×
{0}, i.e. `(B(A)) = 1. The geometry for basins of attraction within this range is

corresponds to Figure 7.2(a). When 1 < ν < 1.285, A is no longer stable where it is

now a Milnor attractor with riddled basin such that there are nearby points in the

ε-neighbourhood of A belong to B(A)c. From Definition 2.22 we have `(B(A)) > 0

and `(B(A)c) > 0. This is corresponds to Figure 7.2(b).
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(a) (b)

(c) (d)

Figure 7.2 The basins of attraction for fα,ν,ε with α = 0.7, ε = 0.5 and various ν. The black
region corresponds to basin of attraction where the initial conditions are attracted to x2 =
0 (B(A)) while orange region corresponds to basin of attraction where the initial conditions
attracted to x2 = ±∞ (B(A)c). (a) For ν = 0.9, the attractor A is asymptotically stable.
(b) For ν = 1.28, A is a Milnor attractor with riddled basin where the basin B(A) is riddled
the basin at ∞. Here both B(A) and B(A)c have positive measure. (c) For ν = 1.285, the
blowout bifurcation occurs. (d) For ν = 1.48, A is a chaotic saddle where the basin B(A)
has zero measure.

Further, when ν > 1.285, all the points in the ε-neighbourhood of A are now at-

tracted to the attractor at ∞ in B(A)c where A now is a chaotic saddle. The

corresponding basin is shown in Figure 7.2(d). Since there is no orbit attracted to

A, this implies that `(B(A)) = 0.

7.3 Approximating Lebesgue measure for a set

`(A)

Before we compute the stability index for the attractor A, we first need to transform

the basins of attraction images in Figure 7.2 to dots points images to calculate the

proportions in (3.6) and (3.7). To do this, we use RNG in MATLAB to generate
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(a) ν = 0.9
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(b) ν = 1.28
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(c) ν = 1.48

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(d) ν = 1.6

Figure 7.3 The images of basins of attraction which are transformed from Figure 7.2 using
RNG. The blue points represent the points that go to x2 = 0 and this corresponds to
B(A). While the yellow points represent for the points that repelled away to x2 =∞ and
this corresponds to B(A)c.

random points thoroughout the images.

By using the RNG, we use two ’for’ loops; the first loop is to test whether the

point is in B(A) by iterating the point several thousands times. We encode nits to

represent the number of iterations needed in the MATLAB codes. The second loop

is to produce points that are in the ε-neighbourhood of the attractor A where we

encode this number in MATLAB as nii.

Therefore, as a result, we show the basins of attraction generated by using RNG in

Figure 7.3. In this figure, the blue points represent B(A) which corresponds to the

black area in Figure 7.2, while the yellow points represent B(A)c which corresponds

to the orange area in Figure 7.2. By obtaining these random basins, it make it

possible to measure ` by counting the blue and yellow points.

By using the results in Figure 7.3, we would like to investigate how the proportion

of the image that is in B(A) varies with parameter ν in (7.1) looks like. To do

this, we fix nits = 20 and nii = 2500 for various ν. This is shown in Figure 7.4
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where the results indicate that the proportion Σε(A) decreases as ν increases. This

is because the number of blue points over the yellow points in Figure 7.3 decreases

as ν increases. Further, we also vary the nits and nii to see how the convergence

of Σε(A) looks like. This is depicted in Figure 7.5. We notice that by increasing

nits, Σε(A) converges to 0 faster than lower nits. While by varying nii, it gives the

results that are approximately same with each other.

In fact, we can rewrite the proportions (3.6) and (3.7) as:

Σε(A) =
# of blue points inside the ε-neighbourhood of A

# of blue and yellow points inside the ε-neighbourhood of A
(7.3)

and

1− Σε(A) =
# of yellow points inside the ε-neighbourhood of A

# of blue and yellow points inside the ε-neighbourhood of A
. (7.4)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ν

Σ ε(A
)

Figure 7.4 The proportion Σε(A) as in (3.6) versus ν = 0.9, ..., 1.8 with nits = 20 and
nii = 2500. The proportion decreases as we increase ν since the black region becomes
smaller and smaller as we increase ν. This corresponds to Figure 7.2.

In the next section, we will focus on the local geometry of the basins of attraction

as depicted in Figure 7.2 where we will compute the stability index for the attractor

A.

7.4 Computations of σ(A,B(A))

To compute this index, we divide into several steps. According to the stability

index’s formula in Definition 3.5, we need to choose an ε-neighbourhood around the

attractor A. We already know that A = [−1, 1]× {0}. In our study, we choose the

ε-neighbourhood on the x1-axis as [−1− ε, 1 + ε] and [−ε, ε] on the x2-axis.

First, we compute Σε(A) by changing the size of the ε-neighbourhood. Therefore,
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Figure 7.5 The patterns of proportion by varying the (a) nits with nii = 2500. As we
increase nits, Σε(A) converges to 0 faster than the lower nits. (b) nii with nits = 20.
The patterns do not change much for all the nii chosen.

the result is as in Figure 7.6 where generally, Σε(A) → 1 as ε → 0. In particular,

when ν < 1, there is a critical εc where the proportion Σε increases and finally hits 1

as ε→ 0, see Figure 7.6(a). When Σε(A) = 1, this means that the ε-neighbourhood

only filled with the points that go to the baseline x2 = 0 (i.e. the blue points).

When 1 < ν < 1.285, Σε(A) → 1 as ε → 0 but never reaches 1. This propor-

tion increases as more and more points that go to the baseline occupy in the ε-

neighbourhood around A (see Figure 7.6(b)). When ν > 1.285, all points are now

go to ∞ and stay in B(A)c. Thus this means that `(B(A)) = 0 and therefore the

proportion Σε(A) is zero everywhere for all ε (see Figure 7.6(c)).

Next, in order to obtain σ−(A) from (3.9), we plot log(Σε(A)) versus log ε where

the slope of the curve gives the values of σ−(A). We show the results for ν =

0.9, 1.28, 1.48 in Figure 7.7. Here the slopes are σ−(A) = 0, 0,∞ respectively. We

also do the plot for σ+(A) by plotting log(1 − Σε(A)) versus log ε where the slope

gives the values of σ+(A). We plot this for the same values of ν in Figure 7.8

and now σ+(A) = ∞, 0.52, 0 respectively. To compute the slopes, we fit the data

points obtained in Figure 7.7 and 7.8 with regression lines. Therefore from (3.8),

σ(A,B(A)) =∞, 0.52,−∞ for ν = 0.9, 1.28, 1.48 respectively.

Follows from this, we also compute σ(A,B(A)) for ν = 1.2, . . . , 1.4 and see how the

pattern of stability index looks like as we vary ν. We observe that σ(A,B(A)) varies

continuously and monotonically decreases from ∞ to −∞. See Figure 7.9. Based

on Figure 7.9, the index varies with ν as follows:

(a) When 0 < ν < 1, σ(A,B(A)) =∞.

(b) When 1 < ν < 1.285, σ(A,B(A)) > 0.
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(a) ν = 0.9
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(b) ν = 1.28
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(c) ν = 1.48

Figure 7.6 The proportion Σε(A) of the points that go to the baseline x2 = 0 (refer to the
blue points in Figure 7.3). (a) As ε→ 0, the proportion of the blue points over the whole
points in the ε-neighbourhood increases and finally hits 1 as the ε-neighbourhood only
filled with the blue points. There is a critical εc = 1.585 that changes from lower positive
value to 1. (b) The proportion increases but never hits 1 as ε → 0. Note that the initial
values of the proportion at this stage are less than (a) since the area of the blue points
smaller when ν decereases. (c) At this stage, the blue points only stay on the invariant
set A, not lingering around in the basin B(A), therefore since there are no points inside
B(A), Σε(A) = 0 for all ε.
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Figure 7.7 Computation of σ−(A) for fα,ν,ε: log(Σε(A)) versus log(ε). (a) For ν = 0.9, the
slope is 0. (b) For ν = 1.28, the slope is 0. (c) For ν = 1.48, the slope is ∞.
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Figure 7.8 Computation of σ+(A) for fα,ν,ε: log(1−Σε(A)) versus log(ε). (a) For ν = 0.9,
the slope is ∞. (b) For ν = 1.28, the slope is 0.52. (c) For ν = 1.48, the slope is 0.
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(c) When ν > 1.285, σ(A,B(A)) = −∞.

The result in (b) above also agrees with Theorem 4.6(i) and Keller’s result [44] where

for `-almost all points x1, the stability index σ(A,B(A)) is positive when the riddled

basin occurs.
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Figure 7.9 The numerical approximation of stability index σ(A,B(A)) (3.8) for the attrac-
tor A = [−1, 1] × {0} for fα,ν,ε by varying ν. The values of 1 and −1 represent that the
indices are +∞ and −∞ respectively. When 0 < ν < 1, σ(A,B(A)) = ∞ since all points
in the ε-neighbourhood of A belong to B(A). When 1 < ν < 1.285, σ(A,B(A)) decreases
from positive value down to 0 since more and more points belong to B(A)c. Then at
ν = 1.285, it jumps straight to −∞. For ν ≥ 1.285, σ(A,B(A)) = −∞ because all the
points in the ε-neighbourhood of A are in B(A)c.
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8 Discussion and conclusions

This thesis is devoted to an investigation of the structure of invariant sets of riddled

basins of attraction in discrete dynamical systems. The stability index is used to

describe the local structure of the riddled basins. Our numerical calculation of the

stability index shows that this index depends on the local structure of the basins

of attraction of the invariant sets. We have considered the stability index for both

points and attractors in this thesis.

In Chapter 3, we have discussed the basic properties of stability index using stronger

notion than [59] where we have shown that εσ−(x) and εσ+(x) are exponentially asymp-

totically tight bounds for the proportions Σε(x) and 1−Σε(x) respectively. We also

pointed out the relation between stability index with local dimension of measures

in Theorem 3.3 using the restriction of Lebesgue measure to any measurable set N .

Another significant contribution in this chapter is that we also defined the stability

index for a set as well as for a point [59].

We first applied the stability index to a simple example of a piecewise linear skew

product system in Chapter 4. In the first part of this chapter, we have proved in

Theorem 4.4 that there exists a riddled basin for this map. In the second part, we

have shown that in the case of riddled basin,

1. For Lebesgue almost all points in the invariant set, the stability indices are

positive.

2. There may be some points in the invariant set that have negative stability

index.

These results depend on the values of parameters δ and s as shown in Theorem 4.6;

for example the stability index is negative when δ < s. Moreover, Corollary 4.8 states

that the stability index of a point can be computed in terms of Lyapunov exponents

and the stability index for a set (which plays as Loynes’ exponent in Keller’s paper

[44]). However, there are also some points for which the limits of stability indices

do no converge. We showed some sufficient conditions for the non-convergence of

the stability index in Theorem 4.9.

Recall that we have considered Keller’s map [44] in both Chapter 5 and Chapter
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8. Discussion and conclusions

6. Before we compute the stability index numerically, we compared Keller’s result

on stability index in Theorem 5.1 with our result in Conjecture 4.8. We observed

that the stability index for the attractor in our piecewise linear map is in fact the

Loynes’ exponent in Keller’s map. We define our stability index for the attractor

purely in terms of geometry whereas Keller defines the Loynes’ exponent in terms of

thermodynamic pressure function. Although Keller’s definition of stability index is

not the same as ours, we can relate this by noting that the stability index of Keller

correponds to our stability index for the inverse of Keller’s map. In fact, Keller’s

map has only one attractor while the inverse map has two attractors, namely at zero

and ∞.

In Chapter 6, we numerically verified the maximum and minimum invariant proba-

bility measures µ obtained in Keller’s paper [44]. This was done by computing the

Birkhoff averages on the periodic points in the skewed doubling map. The results

show that period-1 orbit always gives maximum measure µ for all r while period-3

orbit always gives minimum measure µ for all r. We also discussed the result of

Keller and Otani [46] on the dimension of zero and non-zero sets of invariant graph

by including the dimensions at the critical values rc1 and rc3 . We present this in

Conjecture 6.1. We believe that it is also possible to compute stability indices for

the periodic points since from Figure 6.5, every period-n point has its own average.

This means that limit of iN/N exists and implies that limit of stability index con-

verges to some value. Besides, we know exactly the value of the proportion of time

whether the orbit lands on left or right intervals. For example, for the period-3 001,

the proportion of time that the orbit lands on the left interval is 2/3 and 1/3 on the

right interval. We can then use the formula of stability index for a point as obtained

in (4.32) to compute the stability indices for the periodic orbits.

Chapter 7 is the only chapter which considers a non-skew product map; we have

computed the stability index for a riddled basin attractor of such a map. However,

as we notice in this chapter, the basin boundary need not be an invariant graph

as in chapters 4 and 5. One of advantages of having an invariant graph is that we

can characterize the convergence of orbits of points whether they start from above

or below the invariant graph. With this convergence of the orbits, we are able to

identify the riddled basin where such basin is characterized by the stability index.

This is not possible in this case.

Alongside the numerical computations of σ in Chapter 5 and 7, we noticed that the

values of σ are different from the theoretical values. An exact σ from numerical

computations is impossible to obtain although we would like to understand the

sources of the errors. Some questions include: How many iterations (nits) should

be used to test whether a point is in the basin or not? How many points (nii) should

be produced in the ε-neighbourhood around the point of the attractor to get more
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8. Discussion and conclusions

exact proportions? How to characterize whether a point is in the riddled basin or

not?

Currently, the analytical results for the stability indices that we give in this thesis

are restricted to one example of a piecewise linear map, as obtained in Chapter 4.

In this thesis we have compared our result with Keller’s stability index. We notice

that his result is more general in the sense that he uses the powerful techniques

of thermodynamic formalism to obtain the stability index. It would be of interest

to see whether these techniques can be generalized to understand stability index in

other (e.g. non-skew product) cases.
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A Asymptotic notations

We give a brief review of definitions of several types of asymptotic notation and

properties of O, Ω, Θ and Θ̃ as ε → 0. The notation of O, Ω and Θ have been

introduced by Knuth [47] in 1976.

Big oh (O)

Definition A.1 Let f(ε) and g(ε) be two functions. The set O(g(ε)) is defined as

O(g(ε)) = {f(ε)| ∃ c, ε0 > 0,∀ 0 < ε ≤ ε0 : 0 ≤ f(ε) ≤ cg(ε)}.

We say that g(ε) is asymptotic upper bound for f(ε).

Big omega (Ω)

Definition A.2 Let f(ε) and g(ε) be two functions. The set Ω(g(ε)) is defined as

O(g(ε)) = {f(ε)| ∃ c, ε0 > 0,∀ 0 < ε ≤ ε0 : 0 ≤ cg(ε) ≤ f(ε)}.

Here we say that g(ε) is asymptotic lower bound for f(ε).

Big theta (Θ)

Definition A.3 Let f(ε) and g(ε) be two functions. The set Θ(g(ε)) is defined as

Θ(g(ε)) = {f(ε)| ∃ c1, c2, ε0 > 0,∀ 0 < ε ≤ ε0 : 0 ≤ c1g(ε) ≤ f(ε) ≤ c2g(ε)}.

Here we write f(ε) = Θ(g(ε)) and g(ε) is said to be an asymptotically tight bound

for f(ε), i.e. f(ε) has both upper and lower bounds. This can also be written as:

f(ε) = Θ(g(ε)) = O(g(ε)) ∩ Ω(g(ε)).
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A. Asymptotic notations

Big theta ’tilde’(Θ̃)

From our personal communication with Professor Quentin F. Stout from University

of Michigan and by referring to a book by Crandall and Pomerance [22], we introduce

a new notation of Θ̃(g(ε)) where we define as:

Θ̃(g(ε)) = {f(ε)| ∀ δ > 0,∃c1, c2, ε0 > 0,∀ 0 < ε ≤ ε0 : 0 ≤ c1ε
δg(ε) ≤ f(ε) ≤ c2ε

−δg(ε)},

where we can see that the upper bound is of the form c2ε
−δg(ε) and c1ε

δg(ε) for

the lower bound, i.e., f(ε) = Θ̃(g(ε)) means f ∈ Ω(g(ε)εδ) and f ∈ O(g(ε)ε−δ) for

δ > 0 which Stout calls it as ”soft theta”. In this thesis, we call Θ̃ as exponentially

asymptotically tight bound.

Lemma A.1 Suppose f(ε) = Θ̃(g(ε)) and h(ε) = Θ̃(j(ε)). Then

f(ε) · h(ε) = Θ̃(g(ε) · j(ε)),

and
f(ε)

h(ε)
= Θ̃

(
g(ε)

j(ε)

)
.

Proof. From the above definition, f(ε) = Θ̃(g(ε)) means f(ε) = O(g(ε).ε−δ) and

f(ε) = Ω(g(ε).εδ) while h(ε) = Θ̃(j(ε)) means h(ε) = O(j(ε).ε−δ) and h(ε) =

Ω(j(ε).εδ). For the upper bound, for all δ > 0, there exist c1 > 0, c2 > 0, ε1 > 0,

ε2 > 0 such that

f(ε) ≤ c1 · ε−δ · g(ε) for ε ≤ ε1,

h(ε) ≤ c2 · ε−δ · j(ε) for ε ≤ ε2.
(A.1)

Let ε0 = max(ε1, ε2) and c0 = c1 · c2. Consider the product f(ε)× h(ε) for ε ≤ ε0:

f(ε)× h(ε) ≤ c1 · ε−δ · g(ε)× c2 · ε−δ · j(ε)

≤ c0(ε−δ · g(ε)× ε−δ · j(ε)).
(A.2)

Thus, f(ε) · h(ε) = O(ε−δ · g(ε)× ε−δ · j(ε)).

For the lower bound, for all δ > 0, there exist c3 > 0, c4 > 0, ε3 > 0, ε4 > 0 such

that

f(ε) ≥ c3 · εδ · g(ε) for ε ≤ ε3,

h(ε) ≥ c4 · εδ · j(ε) for ε ≤ ε4.
(A.3)
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A. Asymptotic notations

Let ε0 = max(ε3, ε4) and c0 = c3 · c4. Consider the product f(ε)× h(ε) for ε ≤ ε0:

f(ε)× h(ε) ≥ c3 · εδ · g(ε)× c4 · εδ · j(ε)

≥ c0(εδ · g(ε)× εδ · j(ε)).
(A.4)

Thus, f(ε) · h(ε) = Ω(εδ · g(ε)× εδ · j(ε)). Therefore, f(ε) · h(ε) = Θ̃(g(ε) · j(ε)).

For the second part, for upper bound, from (A.1), f(ε)/h(ε) can be both

f(ε)

h(ε)
≤ c1 · ε−δ · g(ε)

c2 · ε−δ · j(ε)
,

or
f(ε)

h(ε)
≥ c1 · ε−δ · g(ε)

c2 · ε−δ · j(ε)
,

since 1
h(ε)
≥ 1

c2·ε−δ·j(ε) . This means that f(ε)
h(ε)

= O
(
ε−δ·g(ε)
ε−δ)·j(ε)

)
or f(ε)

h(ε)
= Ω

(
ε−δ·g(ε)
ε−δ·j(ε)

)
.

Similar things happen for lower bound where from (A.3), since 1
h(ε)
≥ 1

c2·ε−δ·j(ε) ,

f(ε)

h(ε)
≥ c3 · εδ · g(ε)

c4 · εδ · j(ε)
,

or
f(ε)

h(ε)
≤ c3 · εδ · g(ε)

c4 · εδ · j(ε)
,

i.e., f(ε)
h(ε)

= Ω
(
εδ·g(ε)
εδ·j(ε)

)
or f(ε)

h(ε)
= O

(
εδ·g(ε)
εδ·j(ε)

)
. Therefore, it is proved that f(ε)

h(ε)
=

Θ̃
(
g(ε)
j(ε)

)
. �
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B MATLAB codes for Chapter 4

Codes for Figure 4.6

1 %% plo t bas in s f o r PWL map
2 %% black = bas in B 0
3 %% orange = bas in B 1
4

5 %% t e s t f o r 3 ca s e s : i ) d e l t a = 0 . 8 , s = 0 .49 ( r idd l ed , sigma>0 f o r
almost a l l po in t s )

6 %% i i ) d e l t a = 0 . 8 , s = 0 .51 ( no bas in )
7 %% i i i ) d e l t a = 0 . 3 , s = 0 .49 ( r idd l ed , sigma<0 at

some po in t s )
8

9 c l e a r a l l ;
10 %% parameters
11 d e l t a =0.8
12 s =0.49
13

14 %% number o f i t e r a t i o n s f o r every po in t s to t e s t whether in B 0
15 n i t s =10000;
16 xx=ze ro s ( n i t s , 2 ) ;
17

18 %% i t e r a t i o n s
19 ntheta =500;
20 nx=500;
21

22 %% a x i s
23 thetamin =0;
24 thetamax=1;
25 xmin=0;
26 xmax=1;
27

28 %% To s e t the s i z e o f vec to r
29 yy=ze ro s ( ntheta , nx ) ;
30 ytheta=ze ro s ( ntheta , nx ) ;
31 yx=ze ro s ( ntheta , nx ) ;
32

33

34 f o r i t h e t a =1: ntheta
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B. MATLAB codes for Chapter 4

35 xx (1 , 1 ) =(thetamax−thetamin ) ∗( i t h e t a / ntheta )+thetamin ;
36 f o r i x =1:nx
37 xx (1 , 2 ) =(xmax−xmin ) ∗( i x /nx )+xmin ;
38

39 ytheta ( i the ta , i x )=xx (1 , 1 ) ;
40 yx ( i the ta , i x )=xx (1 , 2 ) ;
41

42 f o r i =2: n i t s
43 theta=xx ( i −1 ,1) ;
44 x=xx ( i −1 ,2) ;
45 %% apply PWL map
46 i f x<1
47 i f theta<s
48 xx ( i , 1 )=theta / s ;
49 xx ( i , 2 ) =(1/ d e l t a ) ∗x ;
50 e l s e
51 xx ( i , 1 ) =(theta−s ) /(1− s ) ;
52 xx ( i , 2 )=d e l t a ∗x ;
53 end
54 e l s e
55 xx ( i , 2 ) =1;
56 end
57 end
58 yy ( i the ta , i x )=min ( abs ( x ) ,1 ) ;
59 end
60 end
61

62 %% c r e a t e f i g u r e g raph i c s o b j e c t s
63 f i g u r e (1 ) ;
64 c l f ;
65

66 %% c r e a t e s a pseudoco lor p l o t with c o l o r s are determined by yy . The
minimum and maximum of yy are a s s i gned the f i r s t and l a s t c o l o r s in

the colormap . This i s a two−dimens iona l p l o t .
67 pco lo r ( ytheta , yx , yy ) ;
68

69 %% s e t c o l o r shading p r o p e r t i e s . Bes ides ’ f l a t ’ , can a l s o use ’ face ted ’
or ’ in te rp ’ .

70 shading f l a t
71 %% l a b e l f o r x−a x i s and y−a x i s .
72 x l a b e l ( ’ \ theta ’ ) ;
73 y l a b e l ( ’ x ’ ) ;
74

75 %% ’ colormap ’ s e t the c o l o r f o r pco l o r . ’ copper ’ v a r i e s smoothly from
black to br i gh t copper , can a l s o use other commands such as ’ winter
’ , ’ autumn ’ , ’ grey ’ , e t c .

76 %% i f the l a s t po int g i v e s va lue 0 , then c o l o r b lack ; i f the va lue i s
1 , then c o l o r orange

77 colormap copper ;
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78 %% to show c o l o r s c a l e
79 %co lo rba r
80

81 hold on
82 y2=r e c t a n g l e ( ’ p o s i t i o n ’ , [ 0 . 3 , 0 . 0 , 0 . 2 , 0 . 1 ] , ’ EdgeColor ’ , ’m’ ) ;
83 p lo t ( ytheta , y2 ) ;
84

85 keyboard ;

Codes for Figure 4.7

1 %% s t a b i l i t y index vs d e l t a f o r PWL map
2

3 c l e a r a l l ;
4

5 %% parameter
6 s =0.49
7

8 %% p e r i o d i c point , s e l e c t random point between 0 and 1
9 the tape r i od = 0.9643

10

11 %% number o f i t e r a t i o n s f o r every po in t s
12 n i t s =5000;
13

14 %% number o f e p s i l o n va lue s used
15 np=20;
16

17 %% number and range o f va lue s f o r parameter scan in de l t a
18 nde l ta =100;
19 deltamin =0.01;
20 deltamax =0.99;
21

22 %% number o f po in t s sampled in de l ta−neighbourhood o f a t t r a c t o r
23 n i i =10000;
24

25 %% Scans over range o f parameter d e l t a
26 f o r i d e l t a =1: nde l ta
27 %% s e t value o f parameter
28 d e l t a =(deltamax−deltamin ) ∗( i d e l t a −1)/( ndelta −1)+deltamin
29 d e l t a v a l ( i d e l t a )=d e l t a ;
30

31 xx=ze ro s ( n i t s , 2 ) ;
32 pp=ze ro s (1 , np ) ;
33 yp=ze ro s (1 , np ) ;
34

35 %% scan through va lue s o f e p s i l o n f o r f i x e d d e l t a
36 f o r id =1:np
37 e p s i l o n =10ˆ(− id /5)
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38 %% d e f i n e neighbourhood o f B 0
39 thetamin=thetaper iod−e p s i l o n ;
40 thetamax=the tape r i od+e p s i l o n ;
41 xmin=0;
42 xmax=e p s i l o n ;
43

44 %% number o f po in t s in the bas in o f a t t r a c t i o n B 0
45 nb=0;
46

47 %xx (1 , 1 ) =0.48932792356723;
48 f o r i i =1: n i i
49 xx (1 , 1 ) =(thetamax−thetamin ) ∗ rand+thetamin ; %i n i t i a l
50 xx (1 , 2 ) =(xmax−xmin ) ∗ rand+xmin ; %i n i t i a l
51

52 ytheta ( i i )=xx (1 , 1 ) ;
53 yx ( i i )=xx (1 , 2 ) ;
54 f o r i =2: n i t s
55 %u=xx ( i −1 ,1) ;
56 theta=xx ( i −1 ,1) ;
57 x=xx ( i −1 ,2) ;
58 %% apply i n v e r s e map
59 i f x<1
60 i f theta<s
61 xx ( i , 1 )=theta / s ;
62 xx ( i , 2 )=min ((1/ de l t a ) ∗x , 1 ) ;
63 e l s e
64 xx ( i , 1 ) =(theta−s ) /(1− s ) ;
65 xx ( i , 2 )=d e l t a ∗x ;
66 end
67 e l s e
68 xx ( i , 2 ) =1;
69 end
70 end
71 yy ( i i )=min ( abs ( x ) ,1 ) ;
72 i f yy ( i i )<1
73 nb=nb+1;
74 thetab (nb , 1 )=ytheta ( i i ) ;
75 xb (nb , 1 )=yx ( i i ) ;
76 end
77 end
78 % dp( id ) = the d e l t a used
79 % yp ( id ) g i v e s the propor t ion o f the de l ta−nbhd in the bas in
80 dp( id )=e p s i l o n ;
81 yp ( id )=(nb) /( n i i ) ;
82

83 % get e s t imate s f o r 95% CI us ing modi f i ed Wald method
84 temp=(nb+2)/( n i i +4) ;
85 ypp ( id )=temp ;
86 ypu ( id )=min ( temp−1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,1 ) ;
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87 ypl ( id )=max( temp+1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,0 ) ;
88 end
89 %% look at f i n a l approximation :
90 % i f i t i s ze ro or 1 then c l a s s i f y sigma
91 i f yp (np)==1
92 sigma=I n f
93 e l s e i f yp (np)==0
94 sigma=−I n f
95 e l s e i f yp (np)>0 & yp (np)<1
96 %% yp inc r ea s i ng , so assume that yp−>1 as de l ta−>0
97 % so that sigma −=0; need to f i n d sigma +
98 % yp2 i s approximation f o r l og (1−Sigma del ta )
99 yp2=log (max(1−yp , 1 e−10) ) ;

100 ldp=log (dp) ;
101 f i g u r e (1 ) ;
102 c l f ;
103 [ p , S]= p o l y f i t ( ldp , yp2 , 1 ) % Degree 1 f i t
104 f=po lyva l (p , ldp ) ;
105 a=p (1) ; %s l ope
106 b=p (2) ; %i n t e r c e p t
107 % Plot the data and the f i t .
108 hdata=p lo t ( ldp , yp2 , ’−m’ ) ;
109 hold on
110 hbound=p lo t ( ldp , l og (1−ypu ) , ’−−m’ ) ;
111 p lo t ( ldp , l og (1−ypl ) , ’−−m’ ) ;
112 hold on
113 h f i t=p lo t ( ldp , f , ’b− ’ ) ;
114 hold on
115 % Add p r e d i c t i o n i n t e r v a l s to the p l o t .
116 [Y,DELTA] = po lyva l (p , ldp , S) ;
117 hconf=p lo t ( ldp ,Y−DELTA, ’b−− ’ ) ;
118 p lo t ( ldp ,Y+DELTA, ’b−− ’ ) ;
119 approx a=round (100∗ a ) /100 ; % round f o r d i s p l a y
120 %% l a b e l f o r x−a x i s and y−a x i s .
121 x l a b e l ( ’ ln (\ e p s i l o n ) ’ ) ;
122 y l a b e l ( ’ ln (1−\Sigma \ e p s i l o n ) ’ ) ;
123 l egend ( [ hdata , hbound , h f i t , hconf ] , ’ yp ’ , ’95% CI f o r yp ’ , ’ f i t ’ , ’

95% CI f o r f i t ’ ) ;
124 t i t l e ( [ ’The s l ope f o r \ d e l t a= ’ , num2str ( d e l t a ) , ’ i s ’ , num2str (

approx a ) , ’ . ’ ] ) ;
125 sigma=a
126 end
127 s i g v a l ( i d e l t a )=sigma
128 end
129 f i g u r e (2 ) ;
130 c l f ;
131 p lo t ( de l t ava l , tanh ( s i g v a l ) ) ;
132 x l a b e l ( ’ \ d e l t a ’ ) ;
133 y l a b e l ( ’ tanh (\ sigma ) ’ ) ;
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Codes for Figure 5.2

1 %% plo t f o r Figure 1 in K e l l e r 2014
2 f unc t i on a t t r a c t o r
3 t t r a n s =2000
4 t s t e p s =80000
5

6 u0=0.1
7 v0 =0.765344
8 x0 =0.00001;
9 %% i f x0=0, i t w i l l g ive i n v a r i a n t s e t only s i n c e h (0 )=0

10 %% i f x0 negat ive , w i l l g ive lower graph , symmetry
11

12 f o r i =1: t t r a n s
13 [ u1 , v1 , x1]=F( u0 , v0 , x0 ) ;
14 u0=u1 ;
15 v0=v1 ;
16 x0=x1 ;
17 end
18

19 xx (1 , 1 )=u0 ;
20 xx (1 , 2 )=v0 ;
21 xx (1 , 3 )=x0 ;
22 f o r i =1: t s t e p s
23 [ u1 , v1 , x1]=F( xx ( i , 1 ) , xx ( i , 2 ) , xx ( i , 3 ) ) ;
24 xx ( i +1 ,1)=u1 ;
25 xx ( i +1 ,2)=v1 ;
26 xx ( i +1 ,3)=x1 ;
27 end
28

29 % plo t x vs . v
30 f i g u r e (1 )
31 c l f
32

33 % plo t 2d
34 p lo t ( xx ( : , 2 ) , xx ( : , 3 ) , ’ . ’ , ’ MarkerSize ’ , 3 ) ;
35 x l a b e l ( ’ v ’ ) ;
36 y l a b e l ( ’ x ’ ) ;
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37

38 % plo t 3d
39 f i g u r e (2 )
40 c l f
41 p lo t3 ( xx ( : , 1 ) , xx ( : , 2 ) , xx ( : , 3 ) , ’ . ’ , ’ MarkerSize ’ , 3 ) ;
42 x l a b e l ( ’u ’ ) ;
43 y l a b e l ( ’ v ’ ) ;
44 z l a b e l ( ’ x ’ ) ;
45

46 keyboard
47 re turn
48

49 f unc t i on [ u1 , v1 , x1]=F( u0 , v0 , x0 )
50 beta =0.01
51 e p s i l o n =0.01
52 s =0.45
53 r =2.5
54

55 i f u0<s
56 u1=u0/ s ;
57 v1=v0∗ s ;
58 e l s e
59 u1=(u0−s ) /(1− s ) ;
60 v1=s+(1−s ) ∗v0 ;
61 end
62 x1=r ∗(1+ e p s i l o n+cos (2∗ pi ∗v0 ) ) ∗atan ( x0 ) ;
63 re turn

Codes for Figure 5.4

1 %% plo t f o r bas in s f o r Ke l l e r ’ s map
2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7 r =2.5
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =100;
11 xx=ze ro s ( n i t s , 3 ) ;
12

13 %% nv i s f o r s imu la t i on and nx i s f o r i t e r a t i o n s
14 nv=500;
15 nx=500;
16 vmin=0;
17 vmax=1;
18 xmin=0;
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19 xmax=8;
20

21 %% To s e t the s i z e o f vec to r
22 yy=ze ro s (nv , nx ) ;
23 yv=ze ro s (nv , nx ) ;
24 yx=ze ro s (nv , nx ) ;
25

26 xx (1 , 1 ) =0.48932792356723;
27 f o r i v =1:nv
28 xx (1 , 2 ) =(vmax−vmin ) ∗( i v /nv )+vmin ;
29 f o r i x =1:nx
30 xx (1 , 3 ) =(xmax−xmin ) ∗( i x /nx )+xmin ;
31 yu ( iv , i x )=xx (1 , 1 ) ;
32 yv ( iv , i x )=xx (1 , 2 ) ;
33 yx ( iv , i x )=xx (1 , 3 ) ;
34 f o r i =2: n i t s
35 u=xx ( i −1 ,1) ;
36 v=xx ( i −1 ,2) ;
37 x=xx ( i −1 ,3) ;
38 %% apply i n v e r s e map
39 i f v<s
40 xx ( i , 1 )=u∗ s ;
41 xx ( i , 2 )=v/ s ;
42 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
43 i f xa<pi /2
44 xx ( i , 3 )=tan ( xa ) ;
45 e l s e
46 xx ( i , 3 )=I n f ;
47 end
48 e l s e
49 xx ( i , 1 )=s+(1−s ) ∗u ;
50 xx ( i , 2 ) =(v−s ) /(1− s ) ;
51 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
52 i f xa<pi /2
53 xx ( i , 3 )=tan ( xa ) ;
54 e l s e
55 xx ( i , 3 )=I n f ;
56 end
57 end
58 end
59 yy ( iv , i x )=min ( abs ( x ) , p i /2) ;
60 end
61 end
62 %% c r e a t e f i g u r e g raph i c s o b j e c t s
63 f i g u r e (1 ) ;
64 c l f ;
65

66 %% c r e a t e s a pseudoco lor p l o t with c o l o r s are determined by yy . The
minimum and maximum of yy are a s s i gned the f i r s t and l a s t c o l o r s in
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the colormap . This i s a two−dimens iona l p l o t .
67 pco lo r ( yv , yx , yy ) ;
68 %% s e t c o l o r shading p r o p e r t i e s . Bes ides ’ f l a t ’ , can a l s o use ’ face ted ’

or ’ in te rp ’ .
69 shading f l a t
70 %% l a b e l f o r x−a x i s and y−a x i s .
71 x l a b e l ( ’ v ’ ) ;
72 y l a b e l ( ’ x ’ ) ;
73

74 %% ’ colormap ’ s e t the c o l o r f o r pco l o r . ’ copper ’ v a r i e s smoothly from
black to br i gh t copper , can a l s o use other commands such as ’ winter
’ , ’ autumn ’ , ’ grey ’ , e t c .

75 %% i f the l a s t po int g i v e s va lue 0 , then c o l o r b lack ; i f the va lue i s
1 , then c o l o r orange

76 colormap copper ;
77 %% to show c o l o r s c a l e
78 %co lo rba r
79

80 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

81 keyboard ;

Codes for Figure 5.6

1 %% plo t f o r bas in us ing RNG
2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7 r =2.5
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =100;
11 xx=ze ro s ( n i t s , 3 ) ;
12

13 %% n i i i s number o f po in t s generated in [ 0 , 1 ] x [ 0 , 8 ]
14 n i i =10000;
15 vmin=0;
16 vmax=1;
17 xmin=0;
18 xmax=8;
19

20 %% To s e t the s i z e o f vec to r
21 yy=ze ro s ( n i i , 1 ) ;
22 yu=ze ro s ( n i i , 1 ) ;
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23 yv=ze ro s ( n i i , 1 ) ;
24 yx=ze ro s ( n i i , 1 ) ;
25 xb=ze ro s (1 , 1 ) ;
26 yb=ze ro s (1 , 1 ) ;
27 %% number o f po in t s in the bas in o f a t t r a c t i o n in x=0
28 nb=0;
29

30 xx (1 , 1 ) =0.48932792356723;
31 f o r i i =1: n i i
32 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
33 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
34 yu ( i i )=xx (1 , 1 ) ;
35 yv ( i i )=xx (1 , 2 ) ;
36 yx ( i i )=xx (1 , 3 ) ;
37 f o r i =2: n i t s
38 u=xx ( i −1 ,1) ;
39 v=xx ( i −1 ,2) ;
40 x=xx ( i −1 ,3) ;
41 %% apply i n v e r s e map
42 i f v<s
43 xx ( i , 1 )=u∗ s ;
44 xx ( i , 2 )=v/ s ;
45 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
46 i f xa<pi /2
47 xx ( i , 3 )=tan ( xa ) ;
48 e l s e
49 xx ( i , 3 )=I n f ;
50 end
51 e l s e
52 xx ( i , 1 )=s+(1−s ) ∗u ;
53 xx ( i , 2 ) =(v−s ) /(1− s ) ;
54 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
55 i f xa<pi /2
56 xx ( i , 3 )=tan ( xa ) ;
57 e l s e
58 xx ( i , 3 )=I n f ;
59 end
60 end
61 end
62 yy ( i i )=min ( abs ( x ) , p i /2) ;
63 i f yy ( i i )<pi /2
64 nb=nb+1; % nb i s number o f po in t s in bas in x=0
65 vb (nb , 1 )=yv ( i i ) ;
66 xb (nb , 1 )=yx ( i i ) ;
67 end
68 end
69 %% c r e a t e f i g u r e g raph i c s o b j e c t s
70 f i g u r e (1 ) ;
71 c l f ;
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72

73 hold on ;
74 %% c r e a t e s a pseudoco lor p l o t with c o l o r s are determined by yy . The

minimum and maximum of yy are a s s i gned the f i r s t and l a s t c o l o r s in
the colormap . This i s a two−dimens iona l p l o t .

75 p lo t ( yv , yx , ’ . y ’ ) ; %p lo t ye l low po in t s only ( n i i )
76 p lo t (vb , xb , ’ . b ’ ) ; %p lo t blue po in t s only (nb)
77

78 %% l a b e l f o r x−a x i s and y−a x i s .
79 x l a b e l ( ’ v ’ ) ;
80 y l a b e l ( ’ x ’ ) ;
81

82 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

83 keyboard ;

Codes for Figure 5.7

1 %% plo t propor t ion o f po in t s in bas in x=0 f o r var i ous r
2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7

8 %% number o f i t e r a t i o n s f o r every po in t s
9 n i t s =20;

10 xx=ze ro s ( n i t s , 3 ) ;
11

12 %% i n i t i a l cond i t i on
13 % xx (1 , 1 ) =0.1 ;
14 % xx (1 , 2 ) =0.765344;
15 % xx (1 , 3 ) =0.00001;
16

17 %% number o f parameter va lue s to be used
18 nr =20;
19 rmin =0.2 ;
20 rmax =3.54;
21

22 pp=ze ro s (1 , nr ) ;
23 yp=ze ro s (1 , nr ) ;
24

25 %% n i i i s number o f po in t s generated in [ 0 , 1 ] x [ 0 , 8 ]
26 %nu=50;
27 n i i =10000;
28 %umin=0;
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29 %umax=1;
30 vmin=0;
31 vmax=1;
32 xmin=0;
33 xmax=8;
34

35 %% Scans over range o f parameters
36 f o r i r =1: nr
37 %% s e t value o f parameter
38 r=(rmax−rmin ) ∗( i r /nr )+rmin
39

40 %% To s e t the s i z e o f vec to r
41 yy=ze ro s ( n i i ) ;
42 yu=ze ro s ( n i i ) ;
43 yv=ze ro s ( n i i ) ;
44 yx=ze ro s ( n i i ) ;
45 vb=ze ro s (1 , 1 ) ;
46 xb=ze ro s (1 , 1 ) ;
47 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
48 nb=0;
49

50 xx (1 , 1 ) =0.48932792356723;
51 f o r i i =1: n i i
52 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
53 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
54 yu ( i i )=xx (1 , 1 ) ;
55 yv ( i i )=xx (1 , 2 ) ;
56 yx ( i i )=xx (1 , 3 ) ;
57 f o r i =2: n i t s
58 u=xx ( i −1 ,1) ;
59 v=xx ( i −1 ,2) ;
60 x=xx ( i −1 ,3) ;
61 %% apply i n v e r s e map
62 i f v<s
63 xx ( i , 1 )=u∗ s ;
64 xx ( i , 2 )=v/ s ;
65 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
66 i f xa<pi /2
67 xx ( i , 3 )=tan ( xa ) ;
68 e l s e
69 xx ( i , 3 )=I n f ;
70 end
71 e l s e
72 xx ( i , 1 )=s+(1−s ) ∗u ;
73 xx ( i , 2 ) =(v−s ) /(1− s ) ;
74 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
75 i f xa<pi /2
76 xx ( i , 3 )=tan ( xa ) ;
77 e l s e
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78 xx ( i , 3 )=I n f ;
79 end
80 end
81 end
82 yy ( i i )=min ( abs ( x ) , p i /2) ;
83 i f yy ( i i )<pi /2
84 nb=nb+1;
85 vb (nb , 1 )=yv ( i i ) ;
86 xb (nb , 1 )=yx ( i i ) ;
87 end
88 end
89 pp( i r )=r ;
90 % f i n d propor t ion o f image that i s in bas in o f a t t r a c t i o n x=0
91 yp ( i r )=(nb) /( n i i ) ;
92 end
93

94 %% c r e a t e f i g u r e g raph i c s o b j e c t s
95 f i g u r e (1 ) ;
96 c l f ;
97

98 p lo t (pp , yp ) ;
99 x l a b e l ( ’ r ’ ) ;

100 y l a b e l ( ’ \Sigma \ e p s i l o n (v , 0 ) ’ ) ;
101

102 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

103 keyboard ;

Codes for Figure 5.8

1 %% plo t propor t ion o f po in t s in bas in x=0 by varying e p s i l o n
neighbourhood

2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7 r =2.5
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =50;
11 xx=ze ro s ( n i t s , 3 ) ;
12 np=20;
13

14 n i i =10000;
15 pp=ze ro s (1 , np ) ;
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16 yp=ze ro s (1 , np ) ;
17

18 f o r id =1:np
19 d e l t a =10ˆ(− id /5)
20 %% d e f i n e neighbourhood o f y=0
21 vmin=0.45− d e l t a ;
22 vmax=0.45+ d e l t a ;
23 xmin=0;
24 xmax=d e l t a ;
25

26 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
27 nb=0;
28

29 %% To s e t the s i z e o f vec to r
30 xb=ze ro s (1 , 1 ) ;
31 yb=ze ro s (1 , 1 ) ;
32

33 xx (1 , 1 ) =0.48932792356723;
34 f o r i i =1: n i i
35 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
36 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
37 yu ( i i )=xx (1 , 1 ) ;
38 yv ( i i )=xx (1 , 2 ) ;
39 yx ( i i )=xx (1 , 3 ) ;
40 f o r i =2: n i t s
41 u=xx ( i −1 ,1) ;
42 v=xx ( i −1 ,2) ;
43 x=xx ( i −1 ,3) ;
44 %% apply i n v e r s e map
45 i f v<s
46 xx ( i , 1 )=u∗ s ;
47 xx ( i , 2 )=v/ s ;
48 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
49 i f xa<pi /2
50 xx ( i , 3 )=tan ( xa ) ;
51 e l s e
52 xx ( i , 3 )=I n f ;
53 end
54 e l s e
55 xx ( i , 1 )=s+(1−s ) ∗u ;
56 xx ( i , 2 ) =(v−s ) /(1− s ) ;
57 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
58 i f xa<pi /2
59 xx ( i , 3 )=tan ( xa ) ;
60 e l s e
61 xx ( i , 3 )=I n f ;
62 end
63 end
64 end
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65 yy ( i i )=min ( abs ( x ) , p i /2) ;
66 i f yy ( i i )<pi /2
67 nb=nb+1;
68 vb (nb , 1 )=yv ( i i ) ;
69 xb (nb , 1 )=yx ( i i ) ;
70 end
71 end
72 pp( id )=d e l t a ;
73 yp ( id )=nb/ n i i ;
74 ypp=(nb+2)/( n i i +4) ;
75 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
76 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
77 end
78

79 %% c r e a t e f i g u r e g raph i c s o b j e c t s
80 f i g u r e (1 ) ;
81 c l f ;
82

83 p lo t (pp , yp , pp , ypl , ’−−r ’ , pp , ypu , ’−−r ’ ) ;
84 %% l a b e l f o r x−a x i s and y−a x i s .
85 x l a b e l ( ’ \ e p s i l o n ’ ) ;
86 y l a b e l ( ’ \Sigma \ e p s i l o n ’ ) ;
87

88 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

89 keyboard ;

Codes for Figure 5.9(a)

1 %% plo t f o r sigma −
2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7 r =2.5
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =50;
11 xx=ze ro s ( n i t s , 3 ) ;
12 np=20;
13

14 n i i =10000;
15 pp=ze ro s (1 , np ) ;
16 yp=ze ro s (1 , np ) ;
17
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18 f o r id =1:np
19 d e l t a =10ˆ(− id /5)
20 %% d e f i n e neighbourhood o f x=0
21 vmin=0.45− d e l t a ;
22 vmax=0.45+ d e l t a ;
23 xmin=0;
24 xmax=d e l t a ;
25

26 %% number o f po in t s in the bas in o f a t t r a c t i o n in x=0
27 nb=0;
28 xb=ze ro s (1 , 1 ) ;
29 yb=ze ro s (1 , 1 ) ;
30

31 xx (1 , 1 ) =0.48932792356723;
32 f o r i i =1: n i i
33 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
34 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
35 yu ( i i )=xx (1 , 1 ) ;
36 yv ( i i )=xx (1 , 2 ) ;
37 yx ( i i )=xx (1 , 3 ) ;
38 f o r i =2: n i t s
39 u=xx ( i −1 ,1) ;
40 v=xx ( i −1 ,2) ;
41 x=xx ( i −1 ,3) ;
42 %% apply i n v e r s e map
43 i f v<s
44 xx ( i , 1 )=u∗ s ;
45 xx ( i , 2 )=v/ s ;
46 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
47 i f xa<pi /2
48 xx ( i , 3 )=tan ( xa ) ;
49 e l s e
50 xx ( i , 3 )=I n f ;
51 end
52 e l s e
53 xx ( i , 1 )=s+(1−s ) ∗u ;
54 xx ( i , 2 ) =(v−s ) /(1− s ) ;
55 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
56 i f xa<pi /2
57 xx ( i , 3 )=tan ( xa ) ;
58 e l s e
59 xx ( i , 3 )=I n f ;
60 end
61 end
62 end
63 yy ( i i )=min ( abs ( x ) , p i /2) ;
64 i f yy ( i i )<pi /2
65 nb=nb+1;
66 vb (nb , 1 )=yv ( i i ) ;
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67 xb (nb , 1 )=yx ( i i ) ;
68 end
69 end
70 pp( id )=log ( d e l t a ) ;
71 yp ( id )=log (nb/ n i i ) ;
72 ypp=(nb+2)/( n i i +4) ;
73 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
74 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
75 end
76

77 %% c r e a t e f i g u r e g raph i c s o b j e c t s
78 f i g u r e (1 ) ;
79 c l f ;
80 p lo t (pp , yp , pp , l og ( ypl ) , ’−−r ’ , pp , l og ( ypu ) , ’−−r ’ ) ;
81 %% l a b e l f o r x−a x i s and y−a x i s .
82 x l a b e l ( ’ l og (\ e p s i l o n ) ’ ) ;
83 y l a b e l ( ’ l og (\ Sigma \ e p s i l o n ) ’ ) ;
84

85 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

86 keyboard ;

Codes for Figure 5.9(b)

1 %% plo t f o r s igma +
2 c l e a r a l l ;
3

4 %% parameters
5 e p s i l o n =0.01
6 s =0.45
7 r =2.5
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =50;
11 xx=ze ro s ( n i t s , 3 ) ;
12 np=20;
13

14 n i i =10000;
15 pp=ze ro s (1 , np ) ;
16 yp=ze ro s (1 , np ) ;
17

18 f o r id =1:np
19 d e l t a =10ˆ(− id /5)
20 %% d e f i n e neighbourhood o f x=0
21 vmin=0.45− d e l t a ;
22 vmax=0.45+ d e l t a ;
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23 xmin=0;
24 xmax=d e l t a ;
25

26 %% number o f po in t s in the bas in o f a t t r a c t i o n in x=0
27 nb=0;
28 xb=ze ro s (1 , 1 ) ;
29 yb=ze ro s (1 , 1 ) ;
30

31 xx (1 , 1 ) =0.48932792356723;
32 f o r i i =1: n i i
33 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
34 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
35 yu ( i i )=xx (1 , 1 ) ;
36 yv ( i i )=xx (1 , 2 ) ;
37 yx ( i i )=xx (1 , 3 ) ;
38 f o r i =2: n i t s
39 u=xx ( i −1 ,1) ;
40 v=xx ( i −1 ,2) ;
41 x=xx ( i −1 ,3) ;
42 %% apply i n v e r s e map
43 i f v<s
44 xx ( i , 1 )=u∗ s ;
45 xx ( i , 2 )=v/ s ;
46 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
47 i f xa<pi /2
48 xx ( i , 3 )=tan ( xa ) ;
49 e l s e
50 xx ( i , 3 )=I n f ;
51 end
52 e l s e
53 xx ( i , 1 )=s+(1−s ) ∗u ;
54 xx ( i , 2 ) =(v−s ) /(1− s ) ;
55 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;
56 i f xa<pi /2
57 xx ( i , 3 )=tan ( xa ) ;
58 e l s e
59 xx ( i , 3 )=I n f ;
60 end
61 end
62 end
63 yy ( i i )=min ( abs ( x ) , p i /2) ;
64 i f yy ( i i )<pi /2
65 nb=nb+1;
66 vb (nb , 1 )=yv ( i i ) ;
67 xb (nb , 1 )=yx ( i i ) ;
68 end
69 end
70 pp( id )=log ( d e l t a ) ;
71 yp ( id )=log (1−nb/ n i i ) ;
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72 ypp=(nb+2)/( n i i +4) ;
73 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
74 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
75 end
76

77 %% c r e a t e f i g u r e g raph i c s o b j e c t s
78 f i g u r e (1 ) ;
79 c l f ;
80 p lo t (pp , yp , pp , l og (1−ypl ) , ’−−r ’ , pp , l og (1−ypu ) , ’−−r ’ ) ;
81 %% l a b e l f o r x−a x i s and y−a x i s .
82 x l a b e l ( ’ l og (\ e p s i l o n ) ’ ) ;
83 y l a b e l ( ’ l og (1−\Sigma \ e p s i l o n ) ’ ) ;
84

85 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

86 keyboard ;

Codes for Figure 5.10

1 %% plo t s t a b i l i t y index vs parameter r
2 c l e a r a l l ;
3

4 %% parameters f o r Ke l l e r ’ s map ( arXiv )
5 e p s i l o n =0.01
6 s =0.45
7

8 %% p e r i o d i c point , b e f o r e t h i s we use v=0.45
9 vper iod = 0.7927

10

11 %% number o f i t e r a t i o n s f o r every po in t s
12 n i t s =5000;
13

14 %% number o f d e l t a va lue s used
15 np=20;
16

17 %% i n i t i a l c o n d i t i o n s
18 % xx (1 , 1 ) =0.1 ;
19 % xx (1 , 2 ) =0.765344;
20 % xx (1 , 3 ) =0.00001;
21

22 %% number and range o f va lue s f o r parameter scan in r
23 nr =100;
24 rmin =0.0 ;
25 rmax =5.0;
26

27 %% number o f po in t s sampled in de l ta−neighbourhood o f a t t r a c t o r
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28 n i i =10000;
29

30 %% Scans over range o f parameter r
31 f o r i r =1: nr
32 %% s e t value o f parameter
33 r=(rmax−rmin ) ∗( i r −1)/( nr−1)+rmin
34 r v a l ( i r )=r ;
35

36 xx=ze ro s ( n i t s , 3 ) ;
37 pp=ze ro s (1 , np ) ;
38 yp=ze ro s (1 , np ) ;
39

40 %% scan through va lue s o f d e l t a f o r f i x e d r
41 f o r id =1:np
42 d e l t a =10ˆ(− id /5)
43 %% d e f i n e neighbourhood o f y=0
44 vmin=vperiod−d e l t a ;
45 vmax=vper iod+d e l t a ;
46 xmin=0;
47 xmax=d e l t a ;
48

49 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
50 nb=0;
51

52 xx (1 , 1 ) =0.48932792356723;
53 f o r i i =1: n i i
54 xx (1 , 2 ) =(vmax−vmin ) ∗ rand+vmin ;
55 xx (1 , 3 ) =(xmax−xmin ) ∗ rand+xmin ;
56 yu ( i i )=xx (1 , 1 ) ;
57 yv ( i i )=xx (1 , 2 ) ;
58 yx ( i i )=xx (1 , 3 ) ;
59 f o r i =2: n i t s
60 u=xx ( i −1 ,1) ;
61 v=xx ( i −1 ,2) ;
62 x=xx ( i −1 ,3) ;
63 %% apply i n v e r s e map
64 i f v<s
65 xx ( i , 1 )=u∗ s ;
66 xx ( i , 2 )=v/ s ;
67 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗( v/ s ) ) ) ) ;
68 i f xa<pi /2
69 xx ( i , 3 )=tan ( xa ) ;
70 e l s e
71 xx ( i , 3 )=I n f ;
72 end
73 e l s e
74 xx ( i , 1 )=s+(1−s ) ∗u ;
75 xx ( i , 2 ) =(v−s ) /(1− s ) ;
76 xa=x /( r ∗(1+ e p s i l o n+cos (2∗ pi ∗ ( ( v−s ) /(1− s ) ) ) ) ) ;

147



C. MATLAB codes for Chapter 5

77 i f xa<pi /2
78 xx ( i , 3 )=tan ( xa ) ;
79 e l s e
80 xx ( i , 3 )=I n f ;
81 end
82 end
83 end
84 yy ( i i )=min ( abs ( x ) , p i /2) ;
85 i f yy ( i i )<pi /2
86 nb=nb+1;
87 vb (nb , 1 )=yv ( i i ) ;
88 xb (nb , 1 )=yx ( i i ) ;
89 end
90 end
91 % dp( id ) = the d e l t a used
92 % yp ( id ) g i v e s the propor t ion o f the de l ta−nbhd in the bas in x

=0
93 dp( id )=d e l t a ;
94 yp ( id )=(nb) /( n i i ) ;
95

96 % get e s t imate s f o r 95% CI us ing modi f i ed Wald method
97 temp=(nb+2)/( n i i +4) ;
98 ypp ( id )=temp ;
99 ypu ( id )=min ( temp−1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,1 ) ;

100 ypl ( id )=max( temp+1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,0 ) ;
101 end
102 %% look at f i n a l approximation :
103 % i f i t i s ze ro or 1 then c l a s s i f y sigma
104 i f yp (np)==1
105 sigma=I n f
106 e l s e i f yp (np)==0
107 sigma=−I n f
108 e l s e i f yp (np)>0 & yp (np)<1
109 %% yp inc r ea s i ng , so assume that yp−>1 as de l ta−>0
110 % so that sigma −=0; need to f i n d sigma +
111 % yp2 i s approximation f o r l og (1−Sigma del ta )
112 yp2=log (max(1−yp , 1 e−10) ) ;
113 ldp=log (dp) ;
114 f i g u r e (1 ) ;
115 c l f ;
116 [ p , S]= p o l y f i t ( ldp , yp2 , 1 ) % Degree 1 f i t
117 f=po lyva l (p , ldp ) ;
118 a=p (1) ; %s l ope
119 b=p (2) ; %i n t e r c e p t
120 % Plot the data and the f i t .
121 hdata=p lo t ( ldp , yp2 , ’−m’ ) ;
122 hold on
123 hbound=p lo t ( ldp , l og (1−ypu ) , ’−−m’ ) ;
124 p lo t ( ldp , l og (1−ypl ) , ’−−m’ ) ;
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125 hold on
126 h f i t=p lo t ( ldp , f , ’b− ’ ) ;
127 hold on
128 % Add p r e d i c t i o n i n t e r v a l s to the p l o t .
129 [Y,DELTA] = po lyva l (p , ldp , S) ;
130 hconf=p lo t ( ldp ,Y−DELTA, ’b−− ’ ) ;
131 p lo t ( ldp ,Y+DELTA, ’b−− ’ ) ;
132 approx a=round (100∗ a ) /100 ; % round f o r d i s p l a y
133 %% l a b e l f o r x−a x i s and y−a x i s .
134 x l a b e l ( ’ ln (\ d e l t a ) ’ ) ;
135 y l a b e l ( ’ ln (1−\Sigma \ d e l t a ) ’ ) ;
136 l egend ( [ hdata , hbound , h f i t , hconf ] , ’ yp ’ , ’95% CI f o r yp ’ , ’ f i t ’ , ’

95% CI f o r f i t ’ ) ;
137 t i t l e ( [ ’The s l ope f o r r= ’ , num2str ( r ) , ’ i s ’ , num2str ( approx a )

, ’ . ’ ] ) ;
138 sigma=a
139 end
140 s i g v a l ( i r )=sigma
141 end
142 f i g u r e (2 ) ;
143 c l f ;
144 p lo t ( rva l , tanh ( s i g v a l ) ) ;
145 x l a b e l ( ’ r ’ ) ;
146 y l a b e l ( ’ tanh (\ sigma ) ’ ) ;
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Codes for Figure 6.2

Programme for periodic points

> restart : with(plots) :

> stair := v− > ([v, v], [v, g(v)]);

> staircase := proc(v0, a, b, n)

localv, count, Curves, Staircase,Dots;

uses plots;

Curves := plot([v, g(v)], v = a..b, colour = [red, blue], discont = true);

v[0] := v0;

for count from 1 to n− 1 do

v[count] := g(v[count− 1])

end do;

Staircase := plot([seq(stair(v[j]), j = 0..n− 1)], colour = black);

Dots := plot([[v[0], v[0]]]),

plot([[v[n− 1], g(v[n− 1])]]);

display([Curves, Staircase,Dots]);

end proc;

Period 2 orbit 01

> g := v− > piecewise(v < s, (v)/(s), v > s, (v − s)/((1− s))) :

s := 0.45 :

staircase(0.26910299, 0, 1, 3);

Period 3 orbit 001

> g := v− > piecewise(v < s, (v)/(s), v > s, (v − s)/((1− s))) :

s := 0.45 :

staircase(0.10255, 0, 1, 4);

Period 4 orbit 0001
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> g := v− > piecewise(v < s, (v)/(s), v > s, (v − s)/((1− s))) :

s := 0.45 :

staircase(0.04317, 0, 1, 5);

Period 6 orbit 001100

> g := v− > piecewise(v < s, (v)/(s), v > s, (v − s)/((1− s))) :

s := 0.45 :

staircase(0.1430177987, 0, 1, 7);

Codes for Figure 6.5

Plot for averages for periodic points over parameter ν.

> restart();with(combinat, cartprod);with(plots) :

> epsilon := 0.01; s := 45/(100);

> g := v− > r ∗ (1 + epsilon+ cos(2 ∗ Pi ∗ v))

> g(v)

> G := v− > log(g(v))

> G(v)

> f [0] := v− > v/(s)

> f [1] := v− > (v − s)/((1− s))

> N := 10; r := 2.5;

> Aveac := int(G(v), v = 0..1); %% find average for G(v)

> CL := {};

> Ave := [ ] : BigG := [ ] :

for n from 1 to N do;

T := cartprod([[0, 1]$n]);

while not T [finished] do;

C := T [nextvalue]();

ff [1] := f [C[1]] :

for k from 2 to n do :

ff [k] := f [C[k]]@ff [k − 1] :

end do :
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fff := fsolve(ff [n](v) = v, v) :

ffff := (G(fff) +
∑n−1

i=1 G((ff [i])(fff)))/(n) :

Ave := [op(Ave), evalf(ffff)$n] :

for m from 1 to n do :

BigG := [op(BigG), ff [m](fff)] :

end do :)

end do :)

end do :)

p3 := pointplot(BigG,Ave, axes = boxed, color = ”Red”, labels = [v, averageoflogg],

labeldirections = [”horizontal”, ”vertical”], title = ”N = 10”) :

p4 := plot([[0., Aveac], [1.0, Aveac]]) :

display([p3, p4]);

152



E MATLAB codes for Chapter 7

Codes for Figure 7.2

1 %% plo t f o r t r a j e c t o r i e s f o r a planar map with a r i d d l e d bas in
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
5 alpha =0.7
6 e p s i l o n =0.5
7 nu=0.9
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =200;
11 xx=ze ro s ( n i t s , 2 ) ;
12

13 %% i n i t i a l cond i t i on
14 xx (1 , 1 ) =0.4 ;
15 xx (1 , 2 ) =0.20001;
16

17 %% nx i s f o r s imu la t i on and ny i s f o r i t e r a t i o n s
18 nx=1000;
19 ny=1000;
20 xmin=−1.5;
21 xmax=1.5;
22 ymin=−1.5;
23 ymax=1.5;
24

25 %% To s e t the s i z e o f vec to r
26 yy=ze ro s (nx , ny ) ;
27 yx1=ze ro s (nx , ny ) ;
28 yx2=ze ro s (nx , ny ) ;
29

30 %% 3.0 i s (xmax−xmin ) and −1.5 i s xmin . 2 . 2 i s (ymax−ymin ) and −1.1 i s
ymin . There fore the range o f a x i s i s : [−1.5 1 .5 −1.1 1 . 1 ]

31 f o r i x =1:nx
32 xx (1 , 1 ) =(xmax−xmin ) ∗( i x /nx )+xmin ;
33 f o r i y =1:ny
34 xx (1 , 2 ) =(ymax−ymin ) ∗( i y /ny )+ymin ;
35 yx1 ( ix , i y )=xx (1 , 1 ) ;
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36 yx2 ( ix , i y )=xx (1 , 2 ) ;
37 f o r i =2: n i t s
38 x1=xx ( i −1 ,1) ;
39 x2=xx ( i −1 ,2) ;
40 %% equat ion f o r f ( x 1 , x 2 )
41 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
42 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
43 end
44 %% yy g i v e s the va lue s between 0 and 1
45 yy ( ix , i y )=min ( abs ( x2 ) , 1 . 0 ) ;
46 end
47 end
48

49 %% c r e a t e f i g u r e g raph i c s o b j e c t s
50 f i g u r e (1 ) ;
51 c l f ;
52

53 %% c r e a t e s a pseudoco lor p l o t with c o l o r s are determined by yy . The
minimum and maximum of yy are a s s i gned the f i r s t and l a s t c o l o r s in

the colormap . This i s a two−dimens iona l p l o t .
54 pco lo r ( yx1 , yx2 , yy ) ;
55 %% s e t c o l o r shading p r o p e r t i e s . Bes ides ’ f l a t ’ , can a l s o use ’ face ted ’

or ’ in te rp ’ .
56 shading f l a t
57 %% l a b e l f o r x−a x i s and y−a x i s .
58 x l a b e l ( ’ x 1 ’ ) ;
59 y l a b e l ( ’ x 2 ’ ) ;
60 %% ’ colormap ’ s e t the c o l o r f o r pco l o r . ’ copper ’ v a r i e s smoothly from

black to br i gh t copper , can a l s o use other commands such as ’ winter
’ , ’ autumn ’ , ’ grey ’ , e t c .

61 %% i f the l a s t po int g i v e s va lue 0 , then c o l o r b lack ; i f the va lue i s
1 , then c o l o r orange

62 colormap copper ;
63 %% to show c o l o r s c a l e
64 %co lo rba r
65

66 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

67 keyboard ;

Codes for Figure 7.3

1 %% plo t random bas in us ing random number generato r (RNG)
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1( c ) from Ashwin Buescu Stewart 1996
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5 alpha =0.7
6 e p s i l o n =0.5
7 nu=0.9
8

9 %% number o f i t e r a t i o n s f o r every po in t s
10 n i t s =40;
11 xx=ze ro s ( n i t s , 2 ) ;
12

13 %% i n i t i a l cond i t i on
14 % xx (1 , 1 ) =0.4 ;
15 % xx (1 , 2 ) =0.20001;
16

17 %% n i i i s number o f po in t s generated in [ −1 . 5 , 1 . 5 ] x [ −1 . 5 , 1 . 5 ]
18 n i i =10000;
19 xmin=−1.5;
20 xmax=1.5;
21 ymin=−1.5;
22 ymax=1.5;
23

24 %% To s e t the s i z e o f vec to r
25 yy=ze ro s ( n i i , 1 ) ;
26 yx1=ze ro s ( n i i , 1 ) ;
27 yx2=ze ro s ( n i i , 1 ) ;
28 xb=ze ro s (1 , 1 ) ;
29 yb=ze ro s (1 , 1 ) ;
30 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
31 nb=0;
32

33 %% 3.0 i s (xmax−xmin ) and −1.5 i s xmin . 2 . 2 i s (ymax−ymin ) and −1.1 i s
ymin . There fore the range o f a x i s i s : [−1.5 1 .5 −1.1 1 . 1 ]

34 f o r i i =1: n i i
35 %% random number between xmin & xmax
36 xx (1 , 1 ) =(xmax−xmin ) ∗ rand+xmin ;
37 %% random number between ymin & ymax
38 xx (1 , 2 ) =(ymax−ymin ) ∗ rand+ymin ;
39 yx1 ( i i )=xx (1 , 1 ) ;
40 yx2 ( i i )=xx (1 , 2 ) ;
41 f o r i =2: n i t s
42 x1=xx ( i −1 ,1) ;
43 x2=xx ( i −1 ,2) ;
44 %% equat ion f o r f ( x 1 , x 2 )
45 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
46 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
47 end
48 %% yy g i v e s the va lue s between 0 and 1
49 yy ( i i )=min ( abs ( x2 ) , 1 . 0 ) ;
50 i f yy ( i i )<1.0
51 nb=nb+1;
52 xb (nb , 1 )=yx1 ( i i ) ;
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53 yb (nb , 1 )=yx2 ( i i ) ;
54 end
55 end
56

57 %% c r e a t e f i g u r e g raph i c s o b j e c t s
58 f i g u r e (1 ) ;
59 c l f ;
60

61 hold on ;
62

63 %% c r e a t e s a pseudoco lor p l o t with c o l o r s are determined by yy . The
minimum and maximum of yy are a s s i gned the f i r s t and l a s t c o l o r s in

the colormap . This i s a two−dimens iona l p l o t .
64 p lo t ( yx1 , yx2 , ’ . y ’ ) ;
65 p lo t (xb , yb , ’ . b ’ ) ;
66

67 %% s e t c o l o r shading p r o p e r t i e s . Bes ides ’ f l a t ’ , can a l s o use ’ face ted ’
or ’ in te rp ’ .

68 shading f l a t
69 %% l a b e l f o r x−a x i s and y−a x i s .
70 x l a b e l ( ’ x 1 ’ ) ;
71 y l a b e l ( ’ x 2 ’ ) ;
72

73 %% stops execut ion o f the f i l e and g i v e s c o n t r o l to the keyboard . To
terminate the keyboard mode , type ’ return ’ and then pr e s s Enter . To

terminate the keyboard mode and e x i t the funct ion , type ’ dbquit ’
and then pr e s s Enter .

74 keyboard ;

Codes for Figure 7.4

1 %% plo t f o r the propor t ion over nu
2 %% use random number genera to r
3 %% use n i i i n s t ead o f nx∗ny ( without g r id )
4 c l e a r a l l ;
5

6 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
7 alpha =0.7
8 e p s i l o n =0.5
9

10 %% number o f i t e r a t i o n s f o r every po in t s
11 n i t s =20;
12 xx=ze ro s ( n i t s , 2 ) ;
13

14 %% i n i t i a l cond i t i on
15 % xx (1 , 1 ) =0.4 ;
16 % xx (1 , 2 ) =0.20001;
17
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18 %% number o f parameter va lue s to be used
19 np=20;
20 pmin =0.9;
21 pmax=1.8;
22

23 pp=ze ro s (1 , np ) ;
24 yp=ze ro s (1 , np ) ;
25

26 %% approximate the r eg i on in phase space us ing n i i without g r i d p o i n t s
27 n i i =2500;
28 xmin=−1.5;
29 xmax=1.5;
30 ymin=−1.5;
31 ymax=1.5;
32

33 %% Scans over range o f parameters
34 f o r ip =1:np
35 %% s e t value o f parameter
36 nu=(pmax−pmin ) ∗( ip /np)+pmin
37

38 %% To s e t the s i z e o f vec to r
39 yy=ze ro s ( n i i ) ;
40 yx1=ze ro s ( n i i ) ;
41 yx2=ze ro s ( n i i ) ;
42

43 %% Scans over range [ xmin , max ] x [ ymin , ymax ]
44 f o r i i =1: n i i
45 %% random number between xmin & xmax
46 xx (1 , 1 ) =(xmax−xmin ) ∗( rand (1 ) )+xmin ;
47 %% random number between ymin & ymax
48 xx (1 , 2 ) =(ymax−ymin ) ∗( rand (1 ) )+ymin ;
49 yx1 ( i i )=xx (1 , 1 ) ;
50 yx2 ( i i )=xx (1 , 2 ) ;
51 f o r i =2: n i t s
52 x1=xx ( i −1 ,1) ;
53 x2=xx ( i −1 ,2) ;
54 %% equat ion f o r f ( x 1 , x 2 )
55 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
56 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
57 end
58 %% yy g i v e s the va lue s between 0 and 1
59 yy ( i i )=min ( abs ( x2 ) , 1 . 0 ) ;
60 end
61 pp( ip )=nu ;
62 % f i n d propor t ion o f image that i s in bas in o f a t t r a c t i o n
63 yp ( ip )=1−sum(sum( yy==1.0) ) /( n i i ) ;
64

65 end
66 %% plo t propor t ion in bas in o f a t t r a c t i o n o f y=0 vs parameter
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67 p lo t (pp , yp , ’b ’ ) ;
68 x l a b e l ( ’ \nu ’ ) ;
69 y l a b e l ( ’ \Sigma \ e p s i l o n (A) ’ ) ;
70 l egend ( ’ n i t s =20 ’ , ’ n i t s =30 ’ , ’ n i t s =60 ’ , ’ n i t s =100 ’ , ’ n i t s =400 ’ ) ;

Codes for Figure 7.6

1 %% plo t propor t ion Sigma over eps i l on−neighbourhood
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
5 alpha =0.7
6 e p s i l o n =0.5
7 nu=0.9
8 np=20
9

10 %% number o f i t e r a t i o n s f o r every po in t s
11 n i t s =300;
12 xx=ze ro s ( n i t s , 2 ) ;
13

14 %% n i i i s number o f po in t s generated in [ −1 . 5 , 1 . 5 ] x [ −1 . 5 , 1 . 5 ]
15 n i i =10000;
16 pp=ze ro s (1 , np ) ;
17 yp=ze ro s (1 , np ) ;
18

19 f o r id =1:np
20 d e l t a =10ˆ(− id /5)
21 xmin=−1−d e l t a ;
22 xmax=1+d e l t a ;
23 ymin=−d e l t a ;
24 ymax=d e l t a ;
25

26 %% To s e t the s i z e o f vec to r
27 xb=ze ro s (1 , 1 ) ;
28 yb=ze ro s (1 , 1 ) ;
29 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
30 nb=0;
31

32 %% 3.0 i s (xmax−xmin ) and −1.5 i s xmin . 2 . 2 i s (ymax−ymin ) and −1.1 i s
ymin . There fore the range o f a x i s i s : [−1.5 1 .5 −1.1 1 . 1 ]

33 f o r i i =1: n i i
34 %% random number between xmin & xmax
35 xx (1 , 1 ) =(xmax−xmin ) ∗ rand+xmin ;
36 %% random number between ymin & ymax
37 xx (1 , 2 ) =(ymax−ymin ) ∗ rand+ymin ;
38 yx1 ( i i )=xx (1 , 1 ) ;
39 yx2 ( i i )=xx (1 , 2 ) ;
40 f o r i =2: n i t s

158



E. MATLAB codes for Chapter 7

41 x1=xx ( i −1 ,1) ;
42 x2=xx ( i −1 ,2) ;
43 %% equat ion f o r f ( x 1 , x 2 )
44 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
45 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
46 end
47 %% yy g i v e s the va lue s between 0 and 1
48 yy ( i i )=min ( abs ( x2 ) , 1 . 0 ) ;
49 i f yy ( i i )<1.0
50 nb=nb+1;
51 xb (nb , 1 )=yx1 ( i i ) ;
52 yb (nb , 1 )=yx2 ( i i ) ;
53 end
54 end
55 pp( id )=d e l t a ;
56 ymax=0.1;
57 yp ( id )=sum(sum( yy<ymax) ) /( n i i ) ;
58 % f o r modi f i ed Wald eqn
59 ypp=(sum(sum( yy<ymax) ) +2)/( n i i +4) ;
60 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
61 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
62 end
63

64 %% plo t S igma eps i l on vs e p s i l o n with CI us ing modi f i ed wald equat ion
65 p lo t (pp , yp , pp , ypl , ’−−r ’ , pp , ypu , ’−−r ’ ) ;
66

67 %% l a b e l f o r x−a x i s and y−a x i s .
68 x l a b e l ( ’ \ e p s i l o n ’ ) ;
69 y l a b e l ( ’ \Sigma \ e p s i l o n (A) ’ ) ;

Codes for Figure 7.7

1 %% plo t f o r sigma −
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
5 alpha =0.7
6 e p s i l o n =0.5
7 nu=0.9
8 np=20
9

10 %% number o f i t e r a t i o n s f o r every po in t s
11 n i t s =300;
12 xx=ze ro s ( n i t s , 2 ) ;
13

14 %% n i i i s number o f po in t s generated in [ −1 . 5 , 1 . 5 ] x [ −1 . 5 , 1 . 5 ]
15 n i i =10000;
16 pp=ze ro s (1 , np ) ;
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17 yp=ze ro s (1 , np ) ;
18

19 %% scan over d e l t a
20 f o r id =1:np
21 d e l t a =10ˆ(− id /5)
22 xmin=−1−d e l t a ;
23 xmax=1+d e l t a ;
24 ymin=−d e l t a ;
25 ymax=d e l t a ;
26

27 %% To s e t the s i z e o f vec to r
28 xb=ze ro s (1 , 1 ) ;
29 yb=ze ro s (1 , 1 ) ;
30

31 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
32 nb=0;
33

34 %% 3.0 i s (xmax−xmin ) and −1.5 i s xmin . 2 . 2 i s (ymax−ymin ) and −1.1 i s
ymin . There fore the range o f a x i s i s : [−1.5 1 .5 −1.1 1 . 1 ]

35 f o r i i =1: n i i
36 %% random number between xmin & xmax
37 xx (1 , 1 ) =(xmax−xmin ) ∗ rand+xmin ;
38 %% random number between ymin & ymax
39 xx (1 , 2 ) =(ymax−ymin ) ∗ rand+ymin ;
40 yx1 ( i i )=xx (1 , 1 ) ;
41 yx2 ( i i )=xx (1 , 2 ) ;
42 f o r i =2: n i t s
43 x1=xx ( i −1 ,1) ;
44 x2=xx ( i −1 ,2) ;
45 %% equat ion f o r f ( x 1 , x 2 )
46 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
47 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
48 end
49 %% yy g i v e s the va lue s between 0 and 1
50 yy ( i i )=min ( abs ( x2 ) , 1 . 0 ) ;
51 i f yy ( i i )<1.0
52 nb=nb+1;
53 xb (nb , 1 )=yx1 ( i i ) ;
54 yb (nb , 1 )=yx2 ( i i ) ;
55 end
56 end
57 pp( id )=log ( d e l t a ) ;
58 temp ( id )=n i i−sum(sum( yy==1.0) ) ;
59 yp ( id )=log ( ( temp ( id ) ) /( n i i ) ) ;
60 ypp=(temp ( id ) +2)/( n i i +4) ;
61 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
62 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
63 end
64
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65 f i g u r e (1 ) ;
66

67 %% plo t with CI f o r l og ( S igma del ta ) vs l og ( d e l t a )
68 p lo t (pp , yp , pp , l og ( ypl ) , ’−−r ’ , pp , l og ( ypu ) , ’−−r ’ ) ;
69

70 %% l a b e l f o r x−a x i s and y−a x i s .
71 x l a b e l ( ’ l og (\ e p s i l o n ) ’ ) ;
72 y l a b e l ( ’ l og (\ Sigma \ e p s i l o n (A) ’ ) ;

Codes for Figure 7.8

1 %% plo t f o r s igma +
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
5 alpha =0.7
6 e p s i l o n =0.5
7 nu=1.48
8 np=20
9

10 %% number o f i t e r a t i o n s f o r every po in t s
11 n i t s =300;
12 xx=ze ro s ( n i t s , 2 ) ;
13

14 %% n i i i s number o f po in t s generated in [ −1 . 5 , 1 . 5 ] x [ −1 . 5 , 1 . 5 ]
15 n i i =10000;
16 pp=ze ro s (1 , np ) ;
17 yp=ze ro s (1 , np ) ;
18

19 f o r id =1:np
20 d e l t a =10ˆ(− id /5)
21 xmin=−1−d e l t a ;
22 xmax=1+d e l t a ;
23 ymin=−d e l t a ;
24 ymax=d e l t a ;
25

26 %% To s e t the s i z e o f vec to r
27 xb=ze ro s (1 , 1 ) ;
28 yb=ze ro s (1 , 1 ) ;
29

30 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
31 nb=0;
32

33 %% 3.0 i s (xmax−xmin ) and −1.5 i s xmin . 2 . 2 i s (ymax−ymin ) and −1.1 i s
ymin . There fore the range o f a x i s i s : [−1.5 1 .5 −1.1 1 . 1 ]

34 f o r i i =1: n i i
35 %% random number between xmin & xmax
36 xx (1 , 1 ) =(xmax−xmin ) ∗ rand+xmin ;
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37 %% random number between ymin & ymax
38 xx (1 , 2 ) =(ymax−ymin ) ∗ rand+ymin ;
39 yx1 ( i i )=xx (1 , 1 ) ;
40 yx2 ( i i )=xx (1 , 2 ) ;
41 f o r i =2: n i t s
42 x1=xx ( i −1 ,1) ;
43 x2=xx ( i −1 ,2) ;
44 %% equat ion f o r f ( x 1 , x 2 )
45 xx ( i , 1 ) =2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗x2 ˆ2 ;
46 xx ( i , 2 )=nu∗exp(−alpha ∗x1 ˆ2) ∗x2+x2 ˆ3 ;
47 end
48 %% yy g i v e s the va lue s between 0 and 1
49 yy ( i i )=min ( abs ( x2 ) , 1 . 0 ) ;
50 i f yy ( i i )<1.0
51 nb=nb+1;
52 xb (nb , 1 )=yx1 ( i i ) ;
53 yb (nb , 1 )=yx2 ( i i ) ;
54 end
55 end
56 pp( id )=log ( d e l t a ) ;
57 temp ( id )=n i i−sum(sum( yy==1.0) ) ;
58 yp ( id )=log (1−(temp ( id ) ) /( n i i ) ) ;
59 ypp=(temp ( id ) +2)/( n i i +4) ;
60 ypu ( id )=min ( ypp+1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 1 ) ;
61 ypl ( id )=max(ypp−1.96∗( s q r t ( ( ypp∗(1−ypp ) ) / n i i ) ) , 0 ) ;
62 end
63

64 f i g u r e (1 ) ;
65

66 %% plo t with CI f o r l og (1−Sigma del ta ) vs l og ( d e l t a )
67 p lo t (pp , yp , pp , l og (1−ypl ) , ’−−r ’ , pp , l og (1−ypu ) , ’−−r ’ ) ;
68

69 %% l a b e l f o r x−a x i s and y−a x i s .
70 x l a b e l ( ’ l og (\ e p s i l o n ) ’ ) ;
71 y l a b e l ( ’ l og (1−\Sigma \ e p s i l o n (A) ’ ) ;

Codes for Figure 7.9

1 %% Cal cu l a t e s s t a b i l i t y index ver sus nu f o r a t t r a c t o r [−1 ,1 ] x{0}
2 c l e a r a l l ;
3

4 %% parameters f o r Fig 1 from Ashwin Buescu Stewart 1996
5 alpha =0.7
6 e p s i l o n =0.5
7

8 %% number and range o f va lue s f o r parameter scan in nu
9 nn=41

10 numin=0
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11 numax=1.6
12

13 %% number o f i t e r a t i o n s to t e s t whether in bas in o f y=0 a t t r a c t o r
14 n i t s =10000;
15

16 %% number o f d e l t a va lue s used
17 np=10
18

19 %% number o f po in t s sampled in de l ta−neighbourhood o f a t t r a c t o r
20 n i i =50000;
21

22 %% scan through va lue s o f nu
23 f o r in =1:nn
24 nu=(numax−numin ) ∗( in−1)/(nn−1)+numin
25 nuval ( in )=nu ;
26

27 xx=ze ro s ( n i t s , 2 ) ;
28 pp=ze ro s (1 , np ) ;
29 yp=ze ro s (1 , np ) ;
30

31 %% scan through va lue s o f d e l t a f o r f i x e d nu
32 f o r id =1:np
33 d e l t a =10ˆ(− id /5)
34 %% d e f i n e neighbourhood o f y=0
35 xmin=−1−d e l t a ;
36 xmax=1+d e l t a ;
37 ymin=−d e l t a ;
38 ymax=d e l t a ;
39

40 %% number o f po in t s in the bas in o f a t t r a c t i o n in y=0
41 nb=0;
42

43 %% sample po in t s in ( r e c t angu l a r ) neighbourhood o f a t t r a c t o r
44 f o r i i =1: n i i
45 %% random number between xmin & xmax
46 x=(xmax−xmin ) ∗ rand+xmin ;
47 %% random number between ymin & ymax
48 y=(ymax−ymin ) ∗ rand+ymin ;
49 %% t e s t i f po int i s in bas in o f a t t r a c t i o n o f y=0
50 f o r i =2: n i t s
51 x1=x ;
52 y1=y ;
53 %% equat ion f o r f ( x 1 , x 2 )
54 x=2.5981∗x1 ∗( x1ˆ2−1)+e p s i l o n ∗x1∗y1 ˆ2 ;
55 y=nu∗exp(−alpha ∗x1 ˆ2) ∗y1+y1 ˆ3 ;
56 end
57 %% yy ( i i ) g i v e s the va lue s between 0 and 1
58 yy ( i i )=min (y , 1 . 0 ) ;
59 %% i f yy ( i i )<1 then assume in bas in o f y=0
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60 i f yy ( i i )<1.0
61 nb=nb+1;
62 end
63 end
64 % dp( id ) = the d e l t a used
65 % yp ( id ) g i v e s the propor t ion o f the de l ta−nbhd in the bas in
66 dp( id )=d e l t a ;
67 yp ( id )=(nb) /( n i i ) ;
68

69 % get e s t imate s f o r 95% CI us ing modi f i ed Wald method
70 temp=(nb+2)/( n i i +4) ;
71 ypp ( id )=temp ;
72 ypu ( id )=min ( temp−1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,1 ) ;
73 ypl ( id )=max( temp+1.96∗ s q r t ( ( temp∗(1−temp ) ) /( n i i +4) ) ,0 ) ;
74 end
75 %% look at f i n a l approximation :
76 % i f i t i s ze ro or 1 then c l a s s i f y sigma
77 i f yp (np)==1
78 sigma=I n f
79 e l s e i f yp (np)==0
80 sigma=−I n f
81 e l s e i f yp (np)>0 & yp (np)<1
82 %% yp inc r ea s i ng , so assume that yp−>1 as de l ta−>0
83 % so that sigma −=0; need to f i n d sigma +
84 % yp2 i s approximation f o r l og (1−Sigma del ta )
85 yp2=log (max(1−yp , 1 e−10) ) ;
86 ldp=log (dp) ;
87 f i g u r e (1 ) ;
88 c l f ;
89 [ p , S]= p o l y f i t ( ldp , yp2 , 1 ) % Degree 1 f i t
90 f=po lyva l (p , ldp ) ;
91 a=p (1) ; %s l ope
92 b=p (2) ; %i n t e r c e p t
93 % Plot the data and the f i t .
94 hdata=p lo t ( ldp , yp2 , ’−m’ ) ;
95 hold on
96 hbound=p lo t ( ldp , l og (1−ypu ) , ’−−m’ ) ;
97 p lo t ( ldp , l og (1−ypl ) , ’−−m’ ) ;
98 hold on
99 h f i t=p lo t ( ldp , f , ’b− ’ ) ;

100 hold on
101 % Add p r e d i c t i o n i n t e r v a l s to the p l o t .
102 [Y,DELTA] = po lyva l (p , ldp , S) ;
103 hconf=p lo t ( ldp ,Y−DELTA, ’b−− ’ ) ;
104 p lo t ( ldp ,Y+DELTA, ’b−− ’ ) ;
105 approx a=round (100∗ a ) /100 ; % round f o r d i s p l a y
106 %% l a b e l f o r x−a x i s and y−a x i s .
107 x l a b e l ( ’ ln (\ d e l t a ) ’ ) ;
108 y l a b e l ( ’ ln (1−\Sigma \ d e l t a ) ’ ) ;
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109 l egend ( [ hdata , hbound , h f i t , hconf ] , ’ yp ’ , ’95% CI f o r yp ’ , ’ f i t ’ , ’
95% CI f o r f i t ’ ) ;

110 t i t l e ( [ ’The s l ope f o r \nu= ’ , num2str (nu) , ’ i s ’ , num2str (
approx a ) , ’ . ’ ] ) ;

111 sigma=a
112 end
113 s i g v a l ( in )=sigma
114 end
115

116 f i g u r e (2 ) ;
117 c l f ;
118 p lo t ( nuval , tanh ( s i g v a l ) ) ;
119

120 x l a b e l ( ’ \nu ’ ) ;
121 y l a b e l ( ’ tanh (\ sigma ) ’ ) ;
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[49] Y.-C. Lai and T. Tél. Transient chaos: complex dynamics on finite-time scales.

Springer, New York, 2011.

[50] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms: Part ii:

relations between entropy, exponents and dimension. Annals of Mathematics,

122:540–574, 1985.

[51] J.M. Lee. Introduction to topological manifolds. Springer-Verlag, New York,

2000.

[52] A.S. Lohse. Attraction properties and non-asymptotic stability of simple hete-

roclinic cyccles and networks in R4. PhD thesis, Universität Hamburg, 2014.

[53] J. Marklof and C. Ulcigrai. Dynamical systems and ergodic theory. Lecture

notes, 2014.

169



Bibliography

[54] J. Milnor. On the concept of attractor. Communications in Mathematical

Physics, 99:177–195, 1985.

[55] H. Nakajima and Y. Ueda. Riddled basins of the optimal states in learning

dynamical systems. Physica D, 99:35–44, 1996.

[56] L. Olsen. Multifractal analysis of divergence points of deformed measure the-

oretical birkhoff averages. Journal de Mathématiques Pures et Appliquées,
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