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ABSTRACT
Many gaseous planets and stars are rapidly rotating and can be approximately described by a
polytropic equation of state with index unity. We present the first exact analytic solution, under
the assumption of the oblate spheroidal shape, for an arbitrarily rotating gaseous polytrope
with index unity in hydrostatic equilibrium, giving rise to its internal structure and gravitational
field. The new exact solution is derived by constructing the non-spherical Green’s function
in terms of the oblate spheroidal wavefunction. We then apply the exact solution to a generic
object whose parameter values are guided by the observations of the rapidly rotating star α

Eridani with its eccentricity Eα = 0.7454, the most oblate star known. The internal structure
and gravitational field of the object are computed from its assumed rotation rate and size.
We also compare the exact solution to the three-dimensional numerical solution based on a
finite-element method taking full account of rotation-induced shape change and find excellent
agreement between the exact solution and the finite-element solution with about 0.001 per cent
discrepancy.

Key words: planets and satellites: gaseous planets – planets and satellites: interiors – stars:
interiors.

1 IN T RO D U C T I O N

A fully compressible polytropic gas with index unity obeying the
polytropic equation of state (EOS)

p∗ = K (ρ∗)2, (1)

where p∗ is the pressure, K is a constant and ρ∗ is the density, has
been widely employed to study the physical properties of gaseous
planets, exoplanets and stars (see for example, Chandrasekhar 1933;
Roberts 1962; Hubbard 1973; Stevenson 1982; Dintrans & Ouyed
2001; Horedt 2004; Kong et al. 2014). In this paper, the superscript ∗
is adopted to represent a dimensional variable and its corresponding
dimensionless variable is denoted without the superscript. Many as-
trophysical gaseous bodies are rapidly rotating, causing significant
departure from sphericity: the eccentricity at the one-bar surface is
ES = 0.4316 for Saturn (Seidelmann et al. 2007) while the star α

Eridani is marked by a much larger departure from sphericity with
the approximate eccentricity Eα = 0.7454 (Carciofi et al. 2008).

The rotational effect on the shape and physical structure of a
slowly rotating polytrope was first studied by Chandrasekhar (1933)
using a perturbation analysis. For an isolated, non-rotating and self-
gravitating body, the density distribution ρ∗ within the interior of
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the polytrope is spherically symmetric and described by the Lane–
Emden equation, a second-order ordinary differential equation that
can be readily solved to determine the one-dimensional density dis-
tribution. For a polytropic body that is slowly rotating with small
angular velocity � such that its departure from sphericity is slight,
Chandrasekhar (1933) introduced a small parameter ε ∼ �2 and
was able to solve for the density distribution ρ∗ of the slowly ro-
tating polytrope via a perturbation method in terms of the small
expansion parameter ε. Without developing a small parameter ex-
pansion, Roberts (1962) proposed a numerical method – which is
based on a variational principle that minimizes the sum of the in-
ternal energy, the kinetic energy of rotation and the gravitational
energy through selection of the best trial function – for obtaining
an approximate solution for a rapidly rotating polytrope. Recently,
particular attention is being paid to the highly accurate solution
for rapidly rotating giant planets, which is largely motivated by
the ongoing Juno mission that will make high-precision measure-
ments of the gravitational field of Jupiter (see for example, Hubbard
1999; Helled, Schubert & Anderson 2009; Kaspi et al. 2010; Kong,
Zhang & Schubert 2012). Interpretation of these gravitational mea-
surements requires a highly accurate description of the shape and
internal density structure of the planet and, hence, the effect of ro-
tational distortion can no longer be treated as a small perturbation
on a spherically symmetric state. Kong et al. (2013) proposed a
hybrid inverse numerical method using a finite-element formula-
tion for calculating the non-spherical shape and physical structure
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of rapidly rotating gaseous bodies valid for arbitrary angular ve-
locity �, and Hubbard (2013) developed a radially discontinuous
numerical model using concentric Maclaurin spheroids valid for a
moderate angular velocity.

This paper reports a breakthrough in this classical problem by
obtaining the first exact analytic solution, under the assumption of
the oblate spheroidal shape, for a rapidly rotating gaseous polytrope
with index unity valid for arbitrary angular velocity. There exist at
least three inherent mathematical difficulties in studying the shape
and physical structure of a rapidly rotating polytrope marked by a
large deviation from sphericity: (i) a Lane–Emden-type of differ-
ential equation describing the one-dimensional density distribution
no longer exists in non-spherical geometry; (ii) non-spherical coor-
dinates such as oblate spheroidal coordinates need to be employed
in the mathematical analysis dramatically increasing the complex-
ity of the analysis and, more significantly, (iii) practically useful
mathematical tools for analysing the problem of a rapidly rotating
polytrope were not available. An essential mathematical tool in de-
riving the exact solution for a rapidly rotating gaseous polytrope is
the oblate spheroidal wavefunction (Chu & Stratton 1941; Morse
& Feshbach 1953; Flammer 1957) which has had many applica-
tions in non-astrophysical problems. For example, the spheroidal
wavefunction was applied to the problem of designing a spheroidal
antenna (Chu & Stratton 1941); the problem of acoustic scattering
by a solid spheroid was solved using the spheroidal wavefunc-
tion (Spence & Granger 1951); and Asano & Yamamoto (1975)
employed the spheroidal wavefunction for solving the problem of
light scattering by a spheroidal object. By contrast, the spheroidal
wavefunction has never been applied to any astrophysical problem.
This is perhaps due to the fact that the solution of an astrophysi-
cal problem, as discussed in the present investigation, requires the
accurate computation of all the eigenvalues of the spheroidal wave-
function in an oblate spheroid of arbitrary eccentricity, representing
a mathematically nearly intractable problem because the eigenval-
ues involve the transcendental equation of an infinitely continued
fraction. It was not until a decade ago that Van Buren & Boisvert
(2002, 2004) found a practical way of accurately computing all
the eigenvalues of the spheroidal wavefunction which is adopted
in this investigation. It represents the first application of the oblate
spheroidal wavefunction to an astrophysical problem.

In what follows, we begin in Section 2 by presenting the model
and governing equations for rapidly rotating polytropes with index
unity in hydrostatic equilibrium. This is followed in Section 3 by
deriving, via use of the spheroidal wavefunction, the exact solu-
tion based on the non-spherical Green’s function. In Section 4, we
calculate the exact solution for a generic object whose parameter
values are guided by the observations of the rapidly rotating star α

Eridani, the most oblate body observed so far, and then compare
the exact solution to the three-dimensional finite-element solution.
While Section 5 discusses the virial test of the equilibrium solution,
the paper closes with a summary and some remarks in Section 6.

2 MO D E L A N D G OV E R N I N G E QUAT I O N S

Our polytropic model for rapidly rotating gaseous planets and stars
employs the widely used three assumptions (Chandrasekhar 1933;
Roberts 1962; Hubbard 1999): (i) the star/planet with mass M is
isolated and rotating uniformly about the z-axis with angular ve-
locity � ẑ with � > 0 whose hydrostatic equilibrium is in the state
of rigid-body rotation; (ii) the star/planet is axially symmetric with
respect to the rotation axis and its shape can be described by an
oblate spheroid of eccentricity E with polar radius Rp and equa-

torial radius Re (Re > RP) that is still within the stable limit; and
(iii) the EOS for the gaseous star/planet is given by the polytropic
law with index unity. The assumption of an oblate spheroidal shape
has been generally adopted in studying the hydrostatic equilib-
rium of rapidly rotating gaseous planets and stars (see for example,
Roberts 1962; Kong et al. 2013). James (1964) found that the result
without making use of this assumption is consistent with that of
Roberts (1962) who used the assumption.

In an inertial frame of reference, the hydrostatic equilibrium of
a rapidly rotating polytrope is governed by the dimensional equa-
tions

u∗ · ∇u∗ = − 1

ρ∗ ∇p∗ − ∇V ∗
g , (2)

∇2V ∗
g = 4πGgρ

∗, (3)

p∗ = K(ρ∗)2, (4)

∇ · (
u∗ρ∗) = 0, (5)

where the velocity u∗ is given by � ẑ × r∗ with r∗ being the po-
sition vector, p∗ is the pressure, ρ∗ is the density of the poly-
tropic gas, K is a constant, V ∗

g is the gravitational potential and
Gg = 6.673 84 × 10−11 m3 kg−1 s−2 is the universal gravitational
constant. Equations (2)–(5) are solved subject to the two boundary
conditions

p∗ = 0 (6)

V ∗
g + V ∗

c = constant, (7)

at the outer bounding surface S of the rapidly rotating polytrope,
where V ∗

c = −|� ẑ × r∗|2/2 is the centrifugal potential. The sec-
ond boundary condition (7) represents the free surface condition re-
quired in the hydrostatic equilibrium of the rotating polytrope. Note
that equation (5) is automatically satisfied because ∂ρ∗/∂φ∗ = 0,
where φ∗ is the azimuthal angle.

With the length-scale Re and the density scale M/R3
e , there arises

the two dimensionless parameters,

α = 2πGgR
2
e

K
, β = �2R5

e

MK
,

where α > 0 and β > 0, that characterize the physical properties
of a rapidly rotating spheroidal polytrope. The rotation parameter
β provides a measure of the centrifugal force. It is mathemati-
cally convenient (Zhang, Liao & Earnshaw 2004; Kong, Zhang &
Schubert 2010) to adopt oblate spheroidal coordinates, (ξ , η, φ), de-
fined by the coordinate transformation with Cartesian coordinates

x = f
√

(1 + ξ 2)(1 − η2) cos φ,

y = f
√

(1 + ξ 2)(1 − η2) sin φ,

z = f ξη,

where ξ = constant represents a confocal oblate spheroid, η = con-

stant describes confocal hyperboloids and f =
√

R2
e − R2

p/Re > 0

is the common focal length of an oblate spheroidal polytrope whose
bounding surface S is described by

ξ = ξo =
√

1

E2
− 1 with 0 < E < 1.
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In the oblate spheroidal system, the interior domain D of a rapidly
rotating spheroidal polytrope is defined by

−1 ≤ η ≤ 1, 0 ≤ ξ ≤
√

1

E2
− 1, 0 ≤ φ ≤ 2π.

In the present problem, the shape parameter, the size of eccentricity
E , is generally unknown and can be determined by making use of
the free surface condition (7).

By combining the equations (2)–(4) into a single equation to-
gether with oblate spheroidal coordinates (ξ , η, φ), we derive a
single dimensionless equation governing the density distribution of
the rotating polytrope,

∂

∂ξ

[(
1 + ξ 2

) ∂ρ

∂ξ

]
+ ∂

∂η

[(
1 − η2

) ∂ρ

∂η

]

+
[

ξ 2 + η2

(1 + ξ 2)(1 − η2)

]
∂2ρ

∂φ2
+ c2

(
ξ 2 + η2

)
ρ = βf 2(ξ 2 + η2),

(8)

where φ denotes the dimensionless density and c = f
√

α. The
boundary conditions (6) and (7) become

0 = ρ, (9)

constant =
∫
D

ρ
(

r ′) d3r ′

|r − r ′| + βE2

4α
(1 + ξ 2)(1 − η2) (10)

on the bounding surface S of the rotating polytrope, where
∫
D d3r ′

represents the volume integral over the oblate spheroidal domain D.
We shall first use the iterative method (Kong et al. 2012) to search
for the hydrostatic equilibrium solution that satisfies (10).

In order to find an equilibrium solution satisfying (10), we intro-
duce an auxiliary function, || dVt/ dη||2, defined as∣∣∣∣∣∣∣∣ dVt

dη

∣∣∣∣∣∣∣∣
2

= 1

2π

∫
S

∣∣∣∣ ∂

∂η

[ ∫
D

ρ
(

r ′) d3r ′

|r − r ′|

+ βc2

4α
(1 + ξ 2)(1 − η2)

]
ξ=ξo

∣∣∣∣2

dS, (11)

where
∫
S dS represents the surface integral over the bounding sur-

face S of the oblate spheroid. We state that the system is at the equi-
librium when the auxiliary function || dVt/ dη||2 reaches a minimum
that is small but usually non-zero (Kong et al. 2012). Another way
of searching for the equilibrium solution of rapidly rotating bodies
is through the virial criterion (Chandrasekhar 1981; Espinosa Lara
& Rieutord 2007), which will also be discussed. Different criteria
will lead to slightly different shapes of a rotating body.

The main object of our analysis is to find an exact solution ρ to
equation (8) satisfying the boundary condition (11) with an arbitrary
shape parameter E and rotation parameter β. This is because the
solution satisfying both the boundary conditions (11) and (10) can
be found by performing an appropriate iterative process (Kong et al.
2012).

3 TH E E X AC T SO L U T I O N

An exact solution ρ of equation (8) subject to condition (11) can be
expressed in the form

ρ(r ′) = f 3β

∫ ξ0

0

∫ +1

−1

∫ 2π

0
(ξ 2 + η2)G(r; r ′) dφ dη dξ, (12)

where G(r; r ′) = G(ξ, η, φ; ξ ′, η′, φ′) denotes the Green function
that satisfies the equation

∂

∂ξ

[(
1 + ξ 2

) ∂G

∂ξ

]
+ ∂

∂η

[(
1 − η2

) ∂G

∂η

]

+
[

ξ 2 + η2

(1 + ξ 2)(1 − η2)

∂2G

∂φ2

]
+ c2

(
ξ 2 + η2

)
G

= 1

f
δ(ξ − ξ ′)δ(η − η′)δ(φ − φ′), (13)

where δ(x) denotes the standard delta function, subject to the bound-
ary condition

G(ξ = ξ0, η, φ; ξ ′, η′, φ′) = 0. (14)

The main task of our analysis is then to derive the Green function G
for the interior domain D of a rapidly rotating polytrope satisfying
both (13) and (14).

We begin the analysis from the general Green’s function G that
satisfies only (13)

G(r; r ′) = ei
√

α|r−r ′ |

|r − r ′| ,

which can be expanded in terms of the oblate spheroidal radial
function Rmn and the oblate spheroidal angle function Smn (Flammer
1957):

G(r; r ′) =
∞∑

n=0

n∑
m=0

AmnSmn(η)Smn(η′) cos m(φ − φ′){
R(1)

mn(iξ )R(3)
mn(iξ ′) when ξ < ξ ′,

R(1)
mn(iξ ′)R(3)

mn(iξ ) when ξ > ξ ′,
(15)

where Amn are the complex coefficients to be determined, i =√−1, m is the azimuthal wavenumber, n is the angle wavenumber,
R(1)

mn(iξ ) denotes the spheroidal radial function of the first kind while
R(3)

mn(iξ ) is the spheroidal radial function of the third kind. We need
to define the spheroidal angle function Smn(ξ ) and the spheroidal
radial functions R1

mn(iξ ) and R3
mn(iξ ) in the expansion (15). First,

the spheroidal angle function Smn(η) is the solution of the ordinary
differential equation

0 = d

dη

[
(1 − η2)

d

dη
Smn(η)

]

+
(

λmn + c2η2 − m2

1 − η2

)
Smn(η), (16)

which defines an eigenvalue problem in the interval −1 ≤ η ≤ 1 with
the real and generally non-integer eigenvalues λmn. Equation (16) is
derived using the standard procedure of separation of variables from
the homogeneous part of equation (13). As discussed by Flammer
(1957), the angle function Smn(η) can be expressed in terms of an
infinite sum of associated Legendre functions P m

l in the form

Smn(η) =
∞∑

r=0,1

′
dmn

r P m
m+r (η), (17)

where the symbol
∑′ means that the summation starts from r = 0

over even subscripts if (n − m) is even but it begins from r = 1 over
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odd subscripts if (n − m) is odd. The expansion coefficients dmn
r are

determined by the recurrence relation

− (2m + r + 2)(2m + r + 1)c2

(2m + 2r + 3)(2m + 2r + 5)
dmn

r+2 +
[

(m + r)(m + r + 1)

− λmn − 2(m + r)(m + r + 1) − 2m2 − 1

(2m + 2r − 1)(2m + 2r + 3)
c2

]
dmn

r

− r(r − 1)c2

(2m + 2r − 3)(2m + 2r − 1)
dmn

r−2 = 0 (18)

for r ≥ 2. In (18), λmn is the eigenvalue given by a solution of the
transcendental equation

γ m
r − λmn − βm

r

γ m
r−2 − λmn − βm

r−2
γ m
r−4−λmn···

= βm
r+2

γ m
r+2 − λmn − βm

r+4

γ m
r+4−λmn− βm

r+6
γm
r+6−λmn ···

, (19)

with γ m
r defined as

γ m
r = (m + r)(m + r + 1) − c2

2

×
[

1 − 4m2 − 1

(2m + 2r − 1)(2m + 2r + 3)

]
, when r ≥ 0,

and βm
r being

βm
r = r(r − 1)(2m + r)(2m + r − 1)c4

(2m + 2r − 1)2(2m + 2r − 3)(2m + 2r + 1)
,

when r ≥ 2. While the continued fraction on the left side of equation
(19) is finite, the right-hand side contains an infinitely continued
fraction. The value of dmn

0 or dmn
1 required in the recurrence relation

(18) is chosen such that∫ 1

−1
Smn(η)Smn′ (η) dη = δnn′ .

We have adopted an accurate method proposed by Van Buren &
Boisvert (2002, 2004) for computing the eigenvalues λmn and the
spheroidal angle function Smn(η). Secondly, the spheroidal radial
function Rmn(iξ ) represents a solution of the ordinary differential
equation

0 = d

dξ

[
(1 + ξ 2)

d

dξ
Rmn(iξ )

]

−
(

λmn − c2ξ 2 − m2

1 + ξ 2

)
Rmn(iξ ). (20)

Equation (20) is also derived using the standard procedure of sep-
aration of variables from the homogeneous part of equation (13).
There exist two different kinds of spheroidal radial functions satis-
fying equation (20), denoted by R1

mn(iξ ) and R2
mn(iξ ), that can be

expressed as (Flammer 1957)

R(1)
mn(iξ ) = 1

∞∑
r=0,1

′
dmn

r
(2m+r)!

r!

(
1 + ξ 2

ξ 2

)(1/2)m

×
∞∑

r=0,1

′
ir+m−ndmn

r

(2m + r)!

r!
jm+r (ciξ ),

R(2)
mn(iξ ) = 1

∞∑
r=0,1

′
dmn

r
(2m+r)!

r!

(
1 + ξ 2

ξ 2

)(1/2)m

×
∞∑

r=0,1

′
ir+m−ndmn

r

(2m + r)!

r!
nm+r (ciξ ),

where jl(ciξ ) and nl(ciξ ) are the modified spherical Bessel and
Neumann functions. Thirdly, the spheroidal radial function of the
third kind R(3)(iξ ) is obtained simply through a combination of R(1)

mn

and R(2)
mn

R(3)(iξ ) = R(1)(iξ ) + iR(2)(iξ ). (21)

The Wronskian of R(1)
mn and R(2)

mn is

W
[
R(1)

mn, R
(2)
mn

] = R(1)
mn(iξ )

dR(2)
mn

dξ
− R(2)

mn(iξ )
dR(1)

mn

dξ

= − 1

c(1 + ξ 2)
, (22)

which is always non-zero within the oblate spheroid and will be
needed in deriving the Green function.

By substituting the expansion (15) into (13), integrating the re-
sulting equation with respect to ξ over the infinitesimal interval
[ξ ′ − 0, ξ ′ + 0] and making use of the Wronskian (22), we obtain
the coefficients Amn given by

Amn = − i
√

α(2 − δ0m)

2π
. (23)

In other words, the general Green’s function G is of the form

G(r; r ′) =
∞∑

n=0

n∑
m=0

−i
√

α(2 − δ0m)

2π
Smn(η)Smn(η′)

⎧⎨⎩ cos m(φ − φ′)R(1)
mn(iξ )R(3)

mn(iξ ′) when ξ < ξ ′,

cos m(φ − φ′)R(1)
mn(iξ ′)R(3)

mn(iξ ) when ξ > ξ ′.

By assuming that a rotating polytrope is axially symmetric in hy-
drostatic equilibrium, only the axisymmetric component marked by
m = 0 is needed, leading to the simplified Green’s function

G(ξ, η; ξ ′, η′) =
∞∑

n=0

−i
√

α

2π
S0n(η)S0n(η′)

×
⎧⎨⎩ R

(1)
0n (iξ )R(3)

0n (iξ ′) when ξ < ξ ′,

R
(1)
0n (iξ ′)R(3)

0n (iξ ) when ξ > ξ ′,
(24)

that satisfies equation (13) but not the boundary condition (14).
In order that the Green function G satisfies both equations (13)

and (14), the expression (24) needs to be modified by adding an
extra term involving the boundary condition (14), which yields

G(ξ, η; ξ ′, η′) = − i
√

α

2π

∞∑
n=0

S0n(η)S0n(η′)

×
[
R

(1)
0n (iξ )R(3)

0n (iξ ′) − R
(3)
0n (iξ0)

R
(1)
0n (iξ0)

R
(1)
0n (iξ )R(1)

0n (iξ ′)

]
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Table 1. Several parameters used in our calculation for a generic object
whose values are guided by the observations of the rapidly rotating star
α Eridani.

Parameter Value Source

M 9.7466 × 1030 kg Levenhagen & Leister (2006)
Veqsin i 225 km s−1 Slettebak (1982)
i 65 deg Carciofi et al. (2008)
Re 8.3520 × 109m Domiciano de Souza et al. (2003)
� 2.9725 × 10−5 s−1 Derived

when ξ < ξ ′, and

G(ξ, η; ξ ′, η′) = − i
√

α

2π

∞∑
n=0

S0n(η)S0n(η′)

×
[
R

(1)
0n (iξ ′)R(3)

0n (iξ ) − R
(3)
0n (iξ0)

R
(1)
0n (iξ0)

R
(1)
0n (iξ ′)R(1)

0n (iξ ))

]
when ξ > ξ ′. The above expressions for G can be further simplified
by taking their real part

G(ξ, η; ξ ′, η′) =
√

α

2π

∞∑
n=0

S0n(η)S0n(η′)

×
[
R

(1)
0n (iξ )R(2)

0n (iξ ′) − R
(2)
0n (iξ0)

R
(1)
0n (iξ0)

R
(1)
0n (iξ )R(1)

0n (iξ ′)

]
(25)

when ξ < ξ ′, and

G(ξ, η; ξ ′, η′) =
√

α

2π

∞∑
n=0

S0n(η)S0n(η′)

×
[
R

(1)
0n (iξ ′)R(2)

0n (iξ ) − R
(2)
0n (iξ0)

R
(1)
0n (iξ0)

R
(1)
0n (iξ ′)R(1)

0n (iξ ))

]
(26)

when ξ > ξ ′. Expressions (25) and (26) represent the Green function
that is derived for the first time for the interior of an oblate spheroid
of arbitrary eccentricity satisfying both (13) and (14). With the
Green function given by equations (25) and (26), the exact solution
ρ for an axisymmetric rotating polytrope is

ρ = 2πf 3β

∫ ξ0

0

∫ +1

−1
(ξ 2 + η2)G(ξ, η; ξ ′, η′) dη dξ, (27)

where the two-dimensional integration can be readily performed.

4 T H E E X AC T A N D N U M E R I C A L S O L U T I O N S
F O R A N O B J E C T W I T H C H A R AC T E R I S T I C S
SIMILAR TO α E R I DA N I

We now apply the exact solution (27) to a generic object whose
parameter values are guided by the observations of the rapidly ro-
tating star α Eridani, the most oblate body observed so far (Carciofi
et al. 2008; Domiciano de Souza et al. 2014). It should be noted
that massive star α Eridani is likely to be fully radiative and, hence,
the size of its polytropic index would be larger than unity. Nev-
ertheless, we chose parameter values for a generic object guided
by the observations of the rapidly rotating star α Eridani as a sim-
ple example for the application of our new exact solution method.
The parameter values used in our calculation are given in Table 1,
where Veq denotes the rotational speed projected on the equator
of the object, i is the inclination angle between the rotational axis
and the line-of-sight and � is the angular velocity of rotation. The

Table 2. Several values of
the accurate eigenvalues λ0n

of the spheroidal wavefunc-
tion computed, following the
work of Van Buren & Boisvert
(2002, 2004), for the oblate
spheroid of eccentricity E =
0.745 356 with c = 3.053 955.

n The eigenvalues λ0n

0 −4.547 720
1 −4.129 856
2 2.147 617
3 7.457 724
4 15.430 830
5 25.394 476
6 37.376 726
7 51.366 121
8 67.359 275
9 85.354 588

perturbation theories based on an expansion using a small rotation
parameter around sphericity or the discontinuous numerical method
using concentric Maclaurin spheroids are inapplicable to the present
problem because of the large derived eccentricity E = 0.745 356. In
our calculation, we regard the equatorial radius Re, the mass M and
the rotation rate � as given while the density ρ(ξ , η), the pressure
p(ξ , η) and the sizes of K and E are to be determined by an iterative
method (Kong et al. 2012).

With the eccentricity E = 0.745 356, we first compute the eigen-
values λ0n and the corresponding spheroidal wave functions S0n(η)
and R0n(ξ ) required in the Green function G (25) and (26). Several
typical values of the eigenvalue λ0n for E = 0.745 356 are listed
in Table 2. With the availability of the Green function G together
with the parameters provided in Table 2, we can, starting from an
initial trial value K = K0, compute an exact solution (27) for the
density ρ(ξ , η) that satisfies the boundary condition (11) on the
bounding surface S of the body. In general, the solution ρ(ξ , η) at
K = K0 is inconsistent with the equilibrium condition (10) on S. It
is then straightforward to repeat this process with different values
of K, through a proper iterative scheme, to determine a particular
value K = Kα such that the hydrostatic equilibrium condition (10)
is also satisfied. The requirement of hydrostatic equilibrium (10)
yields K = Kα = 1.7500 × 109 Pa m6 kg−2 which, along with the
parameters in Table 1, yields α = 16.787 95 and β = 2.114 48 and
c = 3.053 955. Fig. 1(a) depicts the two-dimensional density distri-
bution ρ(η, ξ ) in hydrostatic equilibrium for a model of the rapidly
rotating object computed from the exact solution (27). When the
internal density distribution ρ(η, ξ ) is available, we can compute its
external gravitational potential Vg in the dimensionless form

Vg(r) = −
∫
D

ρ(r ′)d3r ′

|r − r ′| for |r| ≥ 1, (28)

which, using spherical polar coordinates (r, θ , φ) with θ = 0 at
the axis of rotation, can be further expanded in terms of the zonal
gravitational coefficients Jn,

Vg = −1

r

[
1 −

∞∑
n=2

Jn

(
1

r

)n

Pn(cos θ )

]
for r ≥ 1, (29)

where Pn is normalized such that∫ π

0
P 2

n (cos θ ) sin θ dθ = 2

2n + 1
.

MNRAS 448, 456–463 (2015)

 by guest on February 6, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


An exact solution for rotating polytropes 461

Figure 1. The density distribution ρ(ξ , η) in a meridional plane for a
polytropic object with characteristics similar to the rapidly rotating star α

Eridani, representing the solution of (8) for E = 0.745 356, α = 16.787 95,
β = 2.114 48 and c = 3.053 955: (a) the density distribution ρ obtained
from the exact solution (27) and (b) the density distribution ρ from the
finite-element solution.

Table 3. Gravitational zonal coeffi-
cients Jn in the expansion (29) ob-
tained from the exact solution, denoted
as (Jn)exact, and from the finite-element
solution, denoted as (Jn)num, for a poly-
tropic model of a highly rotating ob-
ject. The solution ρ for equation (8)
used in evaluating Jn in (30) is obtained
using E = 0.745 356, α = 16.787 95,
β = 2.114 48 and c = 3.053 955.

n (Jn)exact × 106 (Jn)num × 106

2 57 385.71 57 385.72
4 −8427.06 −8427.10
6 1788.66 1788.58
8 −467.38 −467.54
10 140.23 139.95

The zonal gravitational coefficients Jn in equation (29) are com-
puted, via the exact solution ρ(η, ξ ) given by equation (27), by
integrating

Jn = 2n + 1

2

∫ π

0

[
−

∫
D

ρ(r ′)d3r ′

|r − r ′|
]

|r|=1

Pn(cos θ ) sin θ dθ. (30)

Several values of the zonal gravitational coefficients Jn, up to n = 10,
computed from the exact solution through (30), are listed in Table 3
for a polytropic object with properties similar to the rapidly rotating
star α Eridani.

Another objective of the present investigation is to check the accu-
racy of the numerical solution that is based on a three-dimensional
finite-element method (Kong et al. 2013). Of course, the finite-
element solution can also be used to validate the exact solution given
by equation (27). Since the detail of the finite-element method is

Figure 2. Sketch of the three-dimensional tetrahedral mesh for an oblate
spheroid of eccentricity E = 0.745 356 containing the 30 000 tetrahedral el-
ements. In our actual numerical computation, 32 × 106 tetrahedral elements
are used.

discussed in Kong et al. (2013), only a brief description is presented
here.

We first construct a three-dimensional finite-element mesh by
making a tetrahedralization of an oblate spheroid of eccentricity
E = 0.745 356. A sketch of the tetrahedral finite-element mesh for
the oblate spheroid is illustrated in Fig. 2. In comparison to a spec-
tral or finite difference method, the finite-element method is free
of the pole and central numerical singularities. We use a Galerkin
weighted residual approach in the finite-element formulation of
equation (8). Although only 30 000 tetrahedral elements are dis-
played in Fig. 2, 32 × 106 tetrahedral elements are used in our actual
numerical computation for the result reported in this paper. Fig. 1(b)
shows the two-dimensional hydrostatic density distribution ρ(η, ξ )
for a polytropic model of the highly rotating object computed from
the three-dimensional finite-element method. Several values of the
zonal gravitational coefficients (Jn)num, up to n = 10, computed
from the finite-element solution, are listed in Table 3. There are no
noticeable differences between the exact and numerical solutions
depicted in Fig. 1 and, moreover, the values of the zonal coeffi-
cients in Table 3, (Jn)exact and (Jn)num, show an excellent agreement
with about 0.001 per cent discrepancy for the leading coefficients.
Furthermore, we may introduce � defined as

� = ||ρexact(r) − ρnum(r)||2
||ρexact(r)||2 ,

where

||g(r)||2 =
[∫

D
|g(r)|2d3r

]1/2

,

to measure the difference between the exact and numerical solution.
It is found that � = 1.50 × 10−5, which is consistent with the values
of the gravitational zonal coefficients (Jn)exact and (Jn)num given in
Table 3.
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5 A N EQU ILIBRIUM SOLUTION BA SED O N
T H E V I R I A L C R I T E R I O N

Equations (2)–(4) can be written in the dimensionless form

0 = −∇p − ρ∇Vg − ρ∇Vc, (31)

where

p = 2π

α
ρ2,

Vg = −
∫
D

ρ(r ′)d3r ′

|r − r ′| ,

Vc = −1

2

2πβ

α
s2,

and where s is the distance from the rotation axis. At the hydrostatic
equilibrium, the virial criterion (Chandrasekhar 1981; Eriguchi &
Mueller 1985; Espinosa Lara & Rieutord 2007),

0 =
∫
D

−r · ∇pd3r

+
∫
D

ρ(r)r · ∇
(∫

D

ρ(r ′)d3r ′

|r − r ′|
)

d3r + πβ

α

∫
D

ρr · ∇s2d3r,

must be satisfied, where D denotes the three-dimensional non-
spherical domain of a rapidly rotating gaseous body. Each integral
in the virial identity can be further simplified, yielding

0 = 6π

α

∫
D

ρ2d3r

+ 1

2

∫
D

ρVgd3r + 2πβ

α

∫
D

ρs2d3r, (32)

where we have used the boundary condition required at the bounding
surface of the body. It is expected that each integral in equation (32)
is of order unity.

With the equilibrium solution given by ρ(ξ , η), E = 0.751 600,
α = 16.787 95 and β = 2.114 48 derived from the virial criterion,
we can readily compute each integral in equation (32):

6π

α

∫
D

ρ2d3r = −1.331 545 3005,

1

2

∫
D

ρVgd3r = 0.231 643 799 15,

2πβ

α

∫
D

ρs2d3r = 1.099 964 8116,

where −1.331 545 3005 + 0.231 643 799 15 + 1.099 964 8116 =
6.3310 × 10−5. With a more accurate solution given by ρ(ξ , η),
E = 0.751 688 72, α = 16.787 95 and β = 2.114 48, each integral
in equation (32) becomes

6π

α

∫
D

ρ2d3r = −1.333 367 4317,

1

2

∫
D

ρVgd3r = 0.231 803 621 61,

2πβ

α

∫
D

ρs2d3r = 1.101 563 8106,

which give rise to −1.333 367 4317 + 0.231 803 621 61 +
1.101 563 8106 = 5 × 10−10. The satisfaction of the virial identity
with a very high accuracy × 10−10 at the hydrostatic equilibrium not
only indicates the accuracy of the solution but also reconfirms that

an oblate spheroid provides an excellent approximation to the shape
of rotating gaseous polytropes with index unity (Roberts 1962).

6 SU M M A RY A N D R E M A R K S

The present investigation derives the first exact solution for an ar-
bitrarily rotating gaseous polytrope with index unity in hydrostatic
equilibrium, which represents important progress on this classical
problem since Chandrasekhar (1933) derived the first approximate
solution for slowly rotating polytropic planets and stars. We ap-
ply the exact solution, as an example, to a polytropic object with
properties similar to the rotating star α Eridani, and compute its
internal structure and gravitational field from the observed rota-
tion rate and size. Comparison between the exact solution and the
three-dimensional finite-element solution shows an excellent agree-
ment with about 0.001 per cent discrepancy. The different criteria,
given by equations (11) and (32), lead to slightly different shapes of
the object marked by �E = 0.006, representing less than 1 per cent
change. In the present problem, we have solved the inhomogeneous
partial differential equation (8) whose right-hand side is constant,
corresponding to the shape and physical structure of rotating poly-
tropic planets and stars in hydrostatic equilibrium. With little mod-
ification, the analytical method proposed in this study can also be
applied to other astrophysical or planetary physical problems that
are governed by an inhomogeneous partial differential equation
whose right-hand side is a function of the spatial variables ξ and η.

Finally, we provide some remarks on the state of rigid-body
rotation in hydrostatic equilibrium which has usually been assumed
in the figure theory of rotating gaseous bodies (see for example,
Chandrasekhar 1933; Roberts 1962; Hubbard 2013). It is important
that the realistic fluid in rotating gaseous planets or stars is slightly
viscous: the viscosity ν may be small but ν �= 0. A state of the
hydrostatic equilibrium may be regarded as the final state of a
force-free initial value problem (Greenspan 1968). Suppose that a
gaseous planet or star is rotating with uniform angular velocity � ẑ
along with an arbitrary but physically acceptable initial velocity
û∗

0 and density profile ρ∗
0 . We may write, in an inertial frame of

reference, the total velocity û(r∗, t) and the total density ρ̂(r∗, t) in
the tensor notation

ûi(r∗, t)∗ =u∗
i (r∗)+v∗

i (r∗, t) and ρ̂(r∗, t)=ρ∗(r∗)+ρ̃∗(r∗, t),

where u∗ = � ẑ × r∗ while v∗(r∗, t) and ρ̃∗(r∗, t) denote the time-
dependent parts of the solution for the initial value problem. In the
inertial frame of reference using the tensor notation, the evolution
of the initial value problem towards the state of the hydrostatic
equilibrium is governed by the equations

∂v∗
i

∂t∗ + (u∗
j + v∗

j )
∂(u∗

i + v∗
i )

∂x∗
j

= − 1

(ρ∗ + ρ̃∗)

∂p∗

∂x∗
i

− ∂V ∗
g

∂x∗
i

+ ν

{
∂2(u∗

i + v∗
i )

∂x∗
j ∂x∗

j

+ 2

3

∂

∂x∗
i

[
∂(u∗

k + v∗
k )

∂x∗
k

]}
, (33)

∂2V ∗
g

∂x∗
j ∂x∗

j

= 4πG(ρ∗ + ρ̃∗), (34)

p∗ = K(ρ∗ + ρ̃∗)2, (35)

∂ρ̃∗

∂t∗ = ∂

∂x∗
j

[
(ρ∗ + ρ̃∗)(u∗

j + v∗
j )

]
. (36)
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It is well known (Greenspan 1968) that the time-dependent part
of the solution v∗

i (r∗, t) and ρ̃∗(r∗, t), starting from an arbitrary
initial state, will always approach zero after a sufficiently long time,
leading to the equations given by (2)–(4). In other words, the state
of hydrostatic equilibrium is always stationary in the inertial frame
of reference and marked by v∗

i (r∗, t) = 0 and ρ̃∗(r∗, t) = 0 with

ν �= 0 and ν

{
∂2u∗

i

∂x∗
j ∂x∗

j

+ 2

3

∂

∂x∗
i

[
∂u∗

k

∂x∗
k

]}
= 0.

This means that in writing the governing equations (2)–(4) for hy-
drostatic equilibrium of a rotating gaseous polytrope, we have im-
plicitly used the fact that the fluid is viscous (ν �= 0) and, hence, that
rigid-body rotation represents the only state of hydrostatic equi-
librium. The viscous term is not included in equation (2) simply
because it vanishes exactly in hydrostatic equilibrium.
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