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Band gap control by an external field is useful in various optical, infrared and THz applications.
However, widely tunable band gaps are still not practical due to variety of reasons. Using the
orthogonal tight-binding method for π-electrons, we have investigated the effect of the external
electric field on a subclass of monolayer chevron-type graphene nanoribbons that can be referred
to as jagged graphene nanoribbons. A classification of such ribbons was proposed and band gaps
for applied fields up to the SiO2 breakdown strength (1 V/nm) were calculated. According to the
tight-binding model, band gap opening (or closing) takes place for some type of jagged graphene
nanoribbons in the external electric field that lays in the plane of the structure and perpendicular
to its longitudinal axis. Tunability of the band gap up to 0.6 eV is attainable for narrow ribbons. In
the case of jagged ribbons with armchair edges larger jags forming a chevron pattern of the ribbon
enhance the controllability of the band gap. For jagged ribbons with zigzag and armchair edges
regions of linear and quadratic dependence of the band gap on the external electric field can be
found that are useful in devices with controllable modulation of the band gap.

I. INTRODUCTION

Since it was obtained in a freestanding form graphene1

has been attracting the attention of the scientific commu-
nity both as an interesting object for fundamental study
(due to its massless Dirac fermions2) and as a base for
future technological advances, due to its chemical stabil-
ity, mechanical strength3, high electrical and thermal4,5

conductivities. Numerous graphene applications6 in-
clude field effect transistors7 and their interconnects8,9,
sensors10,11, hydrogen storage12, terahertz emitters13,14,
transparent electrodes etc. Many of these applications
would benefit from a full control over the band gap. For
instance, great efforts have been undertaken to develop
novel tunable sources and detectors of THz radiation15.
Speaking of electronic applications, one must confess that
there is a problem of contact resistance16 that can be eas-
ily overcome in all carbon electronic devices17, but this
again requires a complete control over the band gaps of
the nanostructures. Additionally, all carbon electronics
can be easily recycled and used in a closed-loop produc-
tion cycle. Therefore it is desirable to control the band
gap both by structural modification and external fields.

A number of techniques have been proposed for
band gap engineering in graphene: patterning of
graphene18,19, straining of graphene20–24, lateral confine-
ment of charge carries in one dimension in graphene
nanoribbon (GNR), vertical inversion symmetry break-
ing in bilayer graphene25,26 or trilayer graphene27. All
of them have some advantages and disadvantage, for
instance, patterning allows higher current compared to
GNR, while symmetry breaking by an external electric
field provides tunability of the band gap, giving rise to
tunable devices which is not the case for patterning or
carrier confinement.

The universal approach to band gap control was also

attempted in a combination of strategies. Recently, after
extensive theoretical study28,29, simultaneous lateral car-
rier confinement and vertical inversion symmetry break-
ing in bilayer GNRs to tune their band gaps and improve
the on/off ratio in logic devices has been experimentally
verified and reported30.

However, as was noticed earlier in the literature31–33,
owing to the presence of edges for GNR electric field
can have not only an out-of-plane direction that is nor-
mal to the ribbon plane, but also an in-plane one that
is transverse to the ribbon longitudinal axis. A crucial
difference between these two geometries of applied field
is that the latter may affect properties of one-layer sys-
tems. Even though width dependence was reported and
band gap increase for zigzag GNR width decrease was
shown31,33, quite wide ribbons were chosen for the sam-
ple study and the limit of this increase for narrow (sub-
5nm) GNR was not demonstrated. Probably, it could be
explained by the natural desire to be closer to experimen-
talists who were mostly limited at that time by electron
beam lithography and etching techniques of GNR pro-
duction. Taking into account the latest advances in GNR
synthesis, when GNRs with atomically precise edges were
synthesised and a bottom-up approach to synthesis of
chevron-type GNRs was demonstated34, one must feel
free to consider narrow GNRs. It is worth noticing that
considerable steps forward have been made in the tech-
nique scalability and processability. At the moment it is
possible to synthesize over 1 gram of ribbons in a sin-
gle synthesis35. Quite long (> 200 nm) ribbons can be
synthesized and modified in solution36 that allows their
deposition on any conductive or isolative substrate. Re-
cently heterojunctions in chevron-type nanoribbons were
also produced and investigated37. All of these experi-
mental efforts have resulted in the introduction of a new
class of carbon nanostructures of a chevron type and
their derivatives which are referred to by some authors
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as graphene nanowiggles. These structures have been
attracting much attention in last years5,38–43, although
their history can be traced back to the pioneering theo-
retical works44,45.
Here we investigate an effect of the in-plane homoge-

neous electric field for a subclass of chevron-type GNRs
and compare it with the effect for ordinary GNRs having
straight edges, e.g. GNRs of zigzag and armchair types.
In Section II we introduce the structures under consider-
ation and discuss their similarities and differences from
those in other recent works38–43. We also discuss the con-
nection of their description with that of straight GNRs.
Section III is devoted to the method used. In Section IV
we report on our obtained results. Finally, in Section V
we summarize our findings and present our conclusions.

II. STRUCTURES

In what follows we will refer to structures being stud-
ied as jagged graphene nanoribbons (JGNRs). The main
novelty of JGNR is so-called jags introduced in Ref.46.
However, in our case jags are placed asymmetrically on
both side of the ribbon so that the mirror reflection sym-
metry with respect to the ribbon longitudinal axis is bro-
ken. Breaking of the reflection symmetry admits the exis-
tence of very narrow ribbons of such class without a host
ribbon. They can be referred to as assembled graphene
nanoribbons, if one wants to highlight the fact that they
can be represented as a sequence of ordinary GNRs with
straight edges connected at a specific angle that can be
referred to as an apex one. In this regard JGNRs are like
GNWs in papers38–43. However, GNWs can have a trun-
cated jag form, while jag arms are always of equal lengths
so that they are reflection symmetric with respect to the
axis that is orthogonal to the longitudinal one. Con-
versely, JGNR edge form is always zigzag, whereas jag
arms can be of different lengths. Zigzag just mentioned
must not be confused with zigzag type of edge.
To describe a jag one needs two vectors L1 and L2.

Their magnitudes correspond to the jag arm lengths,
while the angle between them is the apex angle. In one
respect, JGNR is even more simple than GNR with sym-
metric positioning of jags46 because one edge of JGNR
can be obtained from another by mere translation on a
certain vector, which is reasonable to determine as width
vector W (See Fig.1). These three vectors describing the
macrostructure of the superlattice are the chief vectors
of JGNR, but they are still not connected with the mi-
crostructure of JGNR, e.g. there is no reference to the
graphene hexagon lattice. In the most general case they
could be any lattice vectors having the form

C = na1 +ma2; (1)

where a1 and a2 are the primitive translations of the
graphene lattice. Introducing the greatest common divi-
sor (d) of n and m, one can rewrite Eq.(1) in the form

C = d (v1a1 + v2a2) = dv; (2)

TABLE I. The coordinates of JGNR elementary vectors ℓ1,
ℓ2 and w in the basis of primitive translations of graphene

lattice a1 and a2.

Z60 Z120 A60 A120
ℓ1 (1, 0) (1,−1) (2,−1) (2,−1)
ℓ2 (0, 1) (0, 1) (1, 1) (−1, 2)
w (1, 1) (1, 0) (1, 0) (1, 1)

where v can be referred to as an elementary vector for
the specified direction as v1 and v2 do not have common
divisor except for unity. For two particular types of di-
rections in the graphene lattice that are referred to as
zigzag (Z) and armchair (A), the elementary vectors are

the smallest possible having magnitudes of
√
3a0 and 3a0,

respectively, where a0 is the distance between the near-
est carbon atoms. Therefore, in this work we restrict
the chief vectors L1, L2 and W only to these directions
depicted by 2-2 and 1-1 lines in the Fig.1.

As a result, one can label any JGNR by a set of three
integers corresponding to the chief vectors L1, L2 and
W . These integer indexes uniquely define JGNR if the
set of elementary vectors is known (see Table I). For one
set of elementary vectors there is a manifold of index sets,
therefore the set of elementary vectors can be considered
as characteristic of a JGNR type. But the set of vectors
are not so convenient for structure type labelling as an
index set for ribbon one. Therefore, taking into account
that structures corresponding to various vector sets dif-
fer from one another only by their edge types and apex
angles, we propose the following notation ”t”φ, where
”t” stands for ”type” and φ – for the apex angle. If one
demands the width vector to be a bisector of the apex an-
gle, then both jag arms have the same type of edges, e.g.
zigzag or armchair, and can be denoted as Z or A. Thus,
all variety of JGNR is reduced to four types Z60, Z120,
A60, A120 and within each type any ribbon is specified
by index set ⟨ℓ1, ℓ2;w⟩ (see Fig.2).

By means of the introduced vectors and indexes such
quantities as JGNR superlattice translation vector T and
the number of atoms in the unit cell N can be expressed:

T = L1 −L2; (3)

N = λw(ℓ1 + ℓ2); (4)

where λ = 2 in case of JGNR Z60, Z120, A60, and λ = 6
in case of JGNR A120. The difference in values of λ
arises due to our intention to preserve inversion symme-
try (There are two centres of such symmetry for each
JGNR, see Fig.1) of the structures. A smaller step in
the A-direction to increment width or smaller elementary
vector for width can be determined, but then inversion
symmetry on microstructure level for JGNR will be lost,
as shown in Fig.3. As one can see, there are three pos-
sible subtypes of JGNR A120 symmetric with respect to
inversion operation, but only one of them, see Fig.3 a),
can be rolled into a nanotube like JGNRs of other types
and only such ribbons will be considered further.
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FIG. 1. JGNRs characteristic vectors for zigzag a) and armchair b) ribbon orientations on a graphene sheet represented by
ribbons Z60⟨3, 3; 2⟩ and A60⟨2, 2; 3⟩, respectively. Lines 2-2 and 1-1 (insets) show all possible zigzag (Z) and armchair (A)
directions, respectively. L1, L2 and W are chief vectors, ℓ1, ℓ2 and w are elementary vectors, a1 and a2 are primitive
translations of the graphene lattice, T is the JGNR translation vector and I1,I2 are the centres of JGNR inversion symmetry.
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FIG. 2. JGNRs types represented by ribbons Z60⟨3, 3; 5⟩, Z120⟨3, 3; 5⟩, A60⟨3, 3; 5⟩ and A120⟨3, 3; 5⟩, respectively.

So far, only two points of view on the structure of
JGNR were mentioned. On one hand, it can be repre-
sented as a sequence of ordinary straight GNR pieces con-
catenated at specific angles, but on the other hand it can
be considered as an ordinary straight GNR with some
triangle areas cut to produce jags, but there are some
more of them, see Fig.4. Therefore the width introduced
above is not so a complete characteristic. However, on
its basis one can determine others. For instance, an effec-

tive width, e.g. the width of the GNR that one cut some
parts from to produce jagged edges, can be expressed as
follows:

W eff =
T × P 1(2) × T

T 2 , (5)

where P 1(2) = L1(2) + W . This definition is indepen-
dent on choice of vector L1 or L2 and is useful for result
comparison to clarify the role of jags in electronic prop-
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FIG. 3. JGNRs A120 subtypes. Ribbons shown on a), b), c) are symmetric, because their opposite edges highlighted by red
(top) and blue (bottom) can be superimposed by simple translation, e.g. they have inversion centres like I1,I2 in Fig.1. Ribbons
depicted on d), e), f) are asymmetric due to different sorts of their opposite edges. Only a) and f) ribbons can be smoothly

rolled into a nanotube. The framed ribbon is of the same A120 type as the one shown in Fig.2 d).

FIG. 4. JGNR Z60 ⟨5, 5; 6⟩ mapping onto straight GNRs, where W – JGNR and the straight ribbon width, Weff – the effective
ribbon width, Wh – the host ribbon width, W1 – the arm ribbon width.

erties of JGNR. Other characteristics closely related to
the width are widths of the JGNR arm ribbons which
have the form of

W 1(2) =
L1(2) ×W ×L1(2)

L2
1(2)

. (6)

For the present paper, as the width vector was chosen to
be the bisector of the apex angle, these two quantities
defined by Eq.(6) are equivalent. Finally, one can think
about some JGNRs as a host ribbon with attached tri-
angle fragments on both sides (see Fig.4), therefore for
quite wide JGNR one can introduce a host ribbon width:

W h = 2W −W eff . (7)

Equating the right hand side of Eq.(7) to zero, one can
easily obtain the criterion for the host ribbon presence

in the structure for each type of JGNRs: Z60 ℓ ≥ 2w,
Z120 ℓ ≥ 2w, A60 ℓ > 2w/3, A120 ℓ ≥ 2w. Such sim-
ple mapping of JGNR onto ordinary straight GNRs is
only possible in symmetric case when ℓ1 = ℓ2. As for
the asymmetric case, it is more complicated, because the
effective, the host and the straight ribbons become spe-
cific JGNRs with low values of indexes. Additionally, this
mapping would be of no practical use for ribbons from
the same class that can be compared straightforwardly.

III. METHOD

The electronic structure of the presented JGNRs was
investigated within the orthogonal tight-binding model
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for π-electrons. Electronic bands were obtained as eigen-
values for the matrix Hamiltonian H with elements of
the following form:

Hnn′ =
∑
i,j,q

tni exp (ikrnij) δrnij ,rn1−rn′q (8)

where rnij is a vector pointing the j-th position of the
i-th order nearest neighbour from the n-th atom position
in the unit cell of the structure, rnq is a radius-vector
pointing the position of the n-th atom in the q-th unit
cell. Within the tight-binding model, the so-called hop-
ping integral tni for n-th atom in the unit cell of the
structure is expressed as

tni = ⟨ϕn|Ĥ|ϕn+i⟩ , (9)

where Ĥ is a system Hamiltonian, ϕn is an atomic or-
bital of the n-th atom and i can be referred to as the
neighbour order. In the presence of an external field the
Hamiltonian takes form

Ĥ = Ĥ0 + Û , (10)

where Ĥ0 is the Hamiltonian of the system without ex-
ternal field, Û = −eEr is the potential energy operator
for a homogeneous electric field. Taking this into ac-
count one has tni = tni,0+δtni, with δtni = ⟨ϕn|Û |ϕn+i⟩.
Note that the external electric field is much less than the
atomic one, i.e.,

eE ≪ tn1,0
a0

, (11)

where tn1,0 ≈ 3 eV, a0 = 1.42Å. This allows one to
neglect any change in the atomic orbitals ϕn, ϕn+i due
to the field. It is also worth mentioning that we do not
expect large field enhancement at the sharp ends of jags
as their sizes in the structures considered are about 5nm,
which is quite small, and they are arranged periodically
in an infinite line so that their influence on each other
averages and reduces the resulting field.

As we are interested in the pure effect of the jagged
edges and its influence on electronic properties of JGNRs,
we eliminate possible differences of hopping integrals at
various sites within unit cell so that tni = ti; tni,0 =
ti,0; δtni = δti. In fact, the model of ideal geometry
was implemented, which is close to the real geometry of
the structure when dangling sp2 bonds at JGNR edges
are passivated with H atoms to form a strong C-H σ-
bonds. Nearest-neighbor C-H matrix elements associated
with these H-atoms do not appear explicitly in H0 be-
cause these σ orbitals are symmetric with respect to the
nodal plane of the π-orbitals and hence decouple from
the π-conduction bands described by H0. Also, because
C forms a strong covalent bond with H, the σ and σ∗

bands associated with these bonds lie far from EF and
hence need not be considered further.

It is worth noting that on one hand hopping integral
values at the edge can differ from those in the GNR in-
terior so that it could cause band gap opening in arm-
chair GNR47. But on the other hand, the same band
gap opening can be explained by accounting for higher
order hopping integrals48. A more accurate model taking
into account both effects was reported latter49. Interest-
ingly, a more precise model accounting for edge distor-
tions showed that this effect leads to a small correction
only for armchair ribbons of 3n series. However, it is very
unlikely that this small correction to the band gap does
affect its tunability. Therefore, admitting an error for the
band gap of no more than 10%, the nearest neighbours up
to the third order were taken into account and model pa-
rameters were chosen as proposed in the paper48: t0,0 = 0
eV, t1,0 = −3.2 eV, t2,0 = 0 eV t3,0 = −0.3 eV.

In the present paper we neglect screening effect and
assume that applied field influences directly each lattice
site. It seems reasonable for strong electric fields. How-
ever, for weak fields one should keep in mind that the
values presented should be interpreted as a value of an ef-
fective field. The applied electric field contributes mainly
to the site energy t0. In fact, there are additional terms
for higher order hopping integrals δt1...∞. To assess them
one can approximate carbon π-orbitals by pz wave func-
tions of the hydrogen like atom50:

ϕn(|r − rn|, θ) =
1

4
√
2π

(
Z

aB

)5/2

exp

(
−Z|r − rn|

2aB

)
|r − rn| cos θ, (12)

where Z = 6 (for carbon), aB is the Borh radius and θ is
the polar angle measured from the z-direction (in spher-
ical coordinate system), and calculate the ratios δti/ti,0.
Obviously, the value obtained for i = 0 is of greater
significance than any other. That is why we adopted
δt1...∞ ≈ 0, δt0 = −Er eV.

The band gap dependence on applied electric field was

investigated for electric strength magnitudes up to the
0.1 V/Å = 1 V/nm. This value is 10 times less than typ-
ical strength used in field emission calculations51,52, but
corresponds to the breakdown strength of electric field in
SiO2

53. Even though it seems to be a quite high mag-
nitude of field, it must be noticed that it still meets the
requirement of Eq.(11). It is often chosen as a natural
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upper limit by others26,29,33 for the electric field applied
normally to the plane of the structure. Thus, our choice
makes for an easier comparison of the two field arrange-
ments. It is worth noting that break down values are
very sensitive to the material used. For instance, in ex-
perimental work30 it was possible to increase the value
more than twice by using a combination of SiO2 with
HfO2, so that the resulting value was ∼ 0.033 V/Å, that
is only 3 times lower than mentioned above.

IV. RESULTS

Let us now consider typical JGNR band structures and
their changes in an external electric field. Throughout
this paper all ribbons are assumed to be laying in the
xy-plane and the y-axis is collinear with the ribbon trans-
lation vector so that transverse electric field strength has
only one non-zero component εx. In Fig.5, one can see
that the most profound changes take place for JGNR
Z60 and A120. In the first case, one deals with a band
gap opening while in the second case – with a band gap
closing. Surprisingly, there are no observable changes for
band gaps of JGNR Z120 and A60. However, some alter-
ations in Z120 and A60 band structures can be noticed.
For the sake of the clarity of the discussion, let us take
the following convention: all band are numbered by in-
dexes J so that the first conduction band corresponds to
J = 1 and first valence to J = −1 and so on. Then it can
be pointed out that a profound splitting takes place at
the edge of the Z120 Brillouin zone for bands J = ±1 and
J = ±2, respectively. Similar splitting but of less magni-
tude and shifted towards the center of Brillouin zone is
observed for A60 bands J = ±2 and J = ±3, correspond-
ingly. With respect to the ribbon A60 one must confess
that the least variations occur for bands J = ±1 com-
pared to equivalent bands of other ribbons presented. It
means that the effective mass of charge carriers changes
only slightly due to the presence of a transverse electric
field. In the case of Z120 ribbons the change of the ef-
fective mass for low doping concentrations should also be
negligible. However, more significant changes take place
for ribbons Z60 and A120. In both cases profound band
bending can be observed for the magnitude of electric
field εx = 0.05 V/Å. In general it can be seen that the
influence of the field is stronger at the edge of Brillouin
zone, as has already been shown in nanotube and nanohe-
lix superlattice properties analysis, which is very relevant
to a JGNR in the external electric field as it creates for
JGNR’s electron a periodic electrostatic potential similar
to that discussed in papers54–56.
Next we consider the band gap dependence on the mag-

nitude of the transverse electric field in more detail. Let
us proceed with the JGNR Z60. For Fig.6 we took a bit
wider ribbon Z60 ⟨3, 3; 9⟩ to show that for a high value

of the electric field strength of about 0.06 V/Å the band
gap closing can be observed. The next feature that can
be noticed in Fig.6 is dispersionless bands, whose posi-

tions clearly correlate with the magnitude of the external
field. These bands arise from zigzag edge states reported
in the paper57. However, as JGNR is a superlattice
with a longer translation period, its band structure if one
does not take into account interactions leading to band
anticrossing is a folded structure of straight GNR with
zigzag edges (ZGNR). As one can see, due to such fold-
ing these bands are absolutely dispersionless through out
the whole Brillouin zone compared to ZGNR where edge
bands are dispersionless only though the 1/3 of Brillouin
zone. Changing the superlattice period of translation T
by means of jag arms L1, L2 (see Eq.3) one can control
a number of foldings or put in other words a number of
dispersionless bands. Without the external electric field
almost all of them are degenerate, but with a switched on
field their splitting is observed. These bands must result
in sharp peaks in the density of states, whose positions
in turn must be field dependent as well. However, as
one can see from Fig.6 for the high magnitude of electric
strength of about 0.06 V/Å they drown among multitude
of other bands. But for narrower ribbons Z60 the density
of states arising from all other bands except edge ones
around the Fermi level is low in a quite wide region from
−1 to 1 eV, see Fig.7. It means that the peaks should
act in this region as energy levels and we showed it for
JGNR Z60 with w = 6 in Fig.7. Taking into account all
the just mentioned results, we predict that for JGNR Z60
with w = 4, .., 8 in an external transverse electric field,
a series of electromagnetic emission and absorption lines
will be observed and the number of lines will be consis-
tent with T . We tested that this result remains true for
asymmetric JGNRs Z60 characterized by indexes ℓ1 ̸= ℓ2
and for JGNRs Z60 of a slightly different structure, see
the Appendix.

Considering in Fig.8 the band gap closing for JGNR
A120, one must notice that this closing takes place ow-
ing to the splitting of bands J = ±1,±2 at the edge of
the Brillouin zone. This splitting leads to the band gap
shift in k-space from k = 0 for εx = 0 V/Å to the region

k > π/2 for εx = 0.06 V/Å. Although there are some
bands with low dispersion near energies ±1 eV their posi-
tions are not affected by the applied electric field. On the
contrary, the almost flatness of the bands J = ±1 can be
achieved for εx = 0.06 V/Å in k-space from k = π/2 to
k = π. It is very useful because it must increase the prob-
ability of interband transitions with frequency exactly
corresponding to the band gap due to higher density of
states on its both sides. It is very interesting to see how
the dependence of the band gap on transverse electric
field is affected by symmetric JGNR parameters w and
ℓ1 = ℓ2. These results are presented for JGNRs Z60 and
A120 in Fig.9. As it can be seen from Fig.9 a) the maxi-
mum value of the band gap opening (∼ 0.6 eV) is higher
for the narrower ribbon with w = 7 but it is attainable for
stronger transverse electric field ( 0.04 V/Å) compared to
Z60 ⟨3, 3; 8⟩ and ⟨3, 3; 9⟩, besides for the specified ribbon
the band gap cannot be closed within the restricted range
< 0.1 V/Å as for ribbon Z60 ⟨3, 3; 9⟩. For a low strength
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FIG. 6. The band structure evolution for increasing magnitude of transverse electric field for JGNRs Z60 ⟨3, 3; 9⟩ (left) and
atomic structure of the ribbon (right).

field < 0.02 V/Å the band gap opening for narrower Z60
is a bit less than for wider ones, but it results in more sig-
nificant divergence for greater difference of width indexes.
The influence of jag arm index on the band gap opening of
the ribbon Z60 shown in Fig.9 b) is opposite to what was
just mentioned. For higher indexes the maximum value
increases and drifts to greater values of εx while band
gap closing at εx = 0.1 V/Å is not affected by them.

In low strength fields the difference in band gap open-
ing is almost negligible. According to Fig.9 c) the band
gap closing does not take place immediately, and JGNRs
A120 ⟨3, 3; 6⟩ are quite resistant to low electric fields with

εx < 0.02 V/Å. However this resistance decreases if the
width index increases that leads to lower values of elec-
tric strength required to close the band gap completely:
εx = 0.055 V/Å for A120 ⟨3, 3; 8⟩ and εx = 0.08 V/Å for
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normalized density of states.
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A120 ⟨3, 3; 6⟩. Another fascinating feature of the ribbons
is the peak in the band gap dependence on electric field
strength observed for A120 ⟨3, 3; 7⟩ at εx = 0.85 V/Å.
This peak position shifts to lower magnitudes of εx as
the width index w increases while its height seems to
remain unaffected. This is quite strange taking into ac-
count that there is an obvious decrease of initial values of
the band gap, e.g. for εx = 0 V/Å, for greater indexes w.

Compared to this case the data presented in Fig.9 d) are
very different. While the decrease of initial values of the
band gap for incremented jag arm indexes ℓ1 and ℓ2 is
less than in Fig.9 c) for increasing w the resistance to the
band gap closing is of the same measure, e.g. achieved
at εx = 0.053 V/Å for A120 ⟨7, 7; 6⟩. This value is com-
pared to the value for A120 ⟨3, 3; 8⟩, however in the case
of A120 ⟨7, 7; 6⟩ one closes a wider band gap. In Fig.9 d)
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A120 c), d) with various width and jag arm indexes w, ℓ1 = ℓ2, correspondingly.

a peak similar to that one in Fig.9 c) in dependence of
Eg on εx is manifested. Its position shifts to lower εx for
greater ℓ1, ℓ2 and it resembles behaviour of the peak in
Fig.9 c) but its height decreases if jag arms indexes ℓ1,ℓ2
both increase.

It is obvious that the dependences Eg(εx) for Z60 and
A120 JGNRs presented in Fig. 9 cannot be described by
simple functions, however they can be approximated by
polynomials that are truncated Taylor series. Quite eas-
ily one can specify the regions where two or three terms of
Taylor expansion are necessary for a reasonable approxi-
mation. These regions correspond to liner and quadratic
dependences Eg(εx) and a good knowledge about them
is of great importance for possible application in linear
and non-linear devices, therefore we calculated the pa-

rameters characterizing the rate of the band gap open-
ing/closing and presented them in Table II. Moreover,
Table II enables comparison between two types of rib-
bons, which is difficult to do by means of plotting. Al-
though it might seem strange to compare different pat-
terns we want to notice that ribbon A120 placed in suffi-
ciently strong electric field so that the point of complete
band gap closing, for instance εx = 0.08 V/Å for A120
⟨3, 3; 6⟩, is achieved can work in the same regime as Z60
ribbon — metal–dielectric transition for decreasing field.
As can be clearly seen from the Table II the absolute
value of β is larger for all Z60 than for A120 ribbons pre-
sented in the Table II, that means their band gaps can
be controlled more efficiently.

Having studied the dependence of Eg on εx for
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TABLE II. Fitting of linear and quadratic regions of Eg(εx) curves for JGNRs presented in Fig.9.

βx+ α γx2 + βx+ α
JGNR α, eV β, eV·Å/V εmin, V/Å εmax, V/Å α, eV β, eV·Å/V γ, eV·Å2/V2 εmin, V/Å εmax, V/Å

Z60 ⟨3, 3; 7⟩ 0 23.3 0 0.010 0 29.8 -361.4 0.010 0.040
Z60 ⟨3, 3; 8⟩ 0 25.9 0 0.010 0 33.7 -526.3 0.010 0.035
Z60 ⟨3, 3; 9⟩ 0 29.6 0 0.007 0 35.7 -680.7 0.007 0.030
Z60 ⟨5, 5; 9⟩ 0 28.4 0 0.007 0 29.2 -425.5 0.007 0.045
Z60 ⟨7, 7; 9⟩ 0 27.0 0 0.007 0 27.7 -365.0 0.007 0.055
A120 ⟨3, 3; 6⟩ – – – – 0.7 0.6 -108.4 0.010 0.080
A120 ⟨3, 3; 7⟩ 0.8 -12.5 0.035 0.060 0.6 1.4 -177.8 0.010 0.035
A120 ⟨3, 3; 8⟩ 0.7 -12.5 0.025 0.050 0.5 2.1 -264.4 0 0.025
A120 ⟨5, 5; 6⟩ 1.0 -15.7 0.035 0.060 0.6 8.0 -349.5 0.010 0.035
A120 ⟨7, 7; 6⟩ 0.8 -14.8 0.020 0.050 0.5 9.5 -616.2 0.007 0.020

JGNRs Z60 and A120, we proceed with a comparison
of found patterns with similar ones for simple GNR with
zigzag and armchair edges, which will be referred to as
ZGNR(n) and AGNR(n), respectively, where n is a num-
ber of carbon atom pairs in the unit cell of the structure.
The mapping mentioned at the end of Sec.II is very use-
ful for doing this. Using the mapping based on Eqs.(5-7)
results presented in Fig.10 a)-d) were obtained. For the
sake of completeness ribbons Z60 and A120 with and
without host ribbons were considered. The presence of
the host ribbon in JGNR is our criterion for large values
of jag arm indexes ℓ1, ℓ2 with respect to width index w.
As can be seen from Fig.10 a) the dependence of Eg on
εx for Z60 ⟨3, 3; 9⟩ lays between curves for the straight
and the effective ribbons. There is no likeliness with the
arm ribbon that allows one to obtain high value for Eg of
about 0.8 eV but requires close to SiO2 breakdown elec-
tric strength magnitude. Comparing curves for the host
and Z60 ribbons, one can see that the former lays below
the latter for low values of εx ∼ 0.025 V/Å and above
for greater values of εx. In general, the curve for Z60 is
to a great extend similar to curves for effective, straight
and host ribbons especially in region of low values of
εx < 0.02 V/Å. However, Fig.10 b) provides quite differ-
ent results. The curve describing Eg vs. εx dependence
for Z60 ⟨12, 12; 6⟩ almost coincides with the curve for the

arm ribbon ZGNR(6) for εx < 0.02 V/Å and consider-
ably deviate from it at higher εx. It does not approach
curves for the effective ZGNR(24) or straight ZGNR(12).
The case of JGNR A120 ⟨3, 3; 6⟩ shown in Fig.10 c) signif-
icantly differs from that one of JGNRs Z60, because A120
ribbons have armchair edges while they are mapped onto
ZGNRs. However, in spite of the fact that the arm ribbon
for A120 ribbons has the same type of edges, one notice a
crucial difference between them. Firstly, it is impossible
to control band gap of AGNR(18), which is the arm one
for the A120 ⟨3, 3; 6⟩, by means of a transverse electric
field. And secondly, the value of the band gap is greater
for a jagged ribbon. In the Fig.10 d) one can see the ef-
fect of deeper jags which leads to the absence of the host
ribbon in A120 ⟨8, 8; 4⟩. This JGNR is a bit narrower
than that presented in the Fig.10 c), but its band gap is

closed nearly at the same magnitude of εx ∼ 0.08 V/Å as
for A120 ⟨3, 3; 6⟩. It is a straightforward result of jag arm
elongation that shifts this point of closing back to lower
values of εx after its shift to higher ones due to decre-
menting of width index w. It is also useful to compare
curves for A120 ribbons in Fig.10 c) and d) in the region
close to zero magnitude of electric field. One sees that
while the initial value of the band gap is greater for A120
⟨8, 8; 4⟩, Eg ∼ 0.8 eV compared to Eg ∼ 0.65 eV, the clos-
ing point is almost the same. Moreover, the drop in the
band gap of A120 ⟨8, 8; 4⟩ in the region of εx < 0.02 V/Å
is greater than for A120 ⟨3, 3; 6⟩ that means the band
gap of the former can be more readily controlled. In
all other respects Fig.10 c), d) demonstrate very simi-
lar curves behaviour, where observable distinctions can
be attributed only to quantitative differences of jagged
ribbon parameters and, consequently, the straight, effec-
tive and arm ribbons ones. For instance, curve for the
arm ribbon in Fig.10 d) is also field independent while
corresponds to a higher value of the band gap of about
0.6 eV compared to 0.4 eV in Fig.10 c). Finally, we re-
port on the effect of asymmetry ℓ1 ̸= ℓ2 on both JGNRs
Z60 and A120. Having analysed results for JGNRs and
ordinary straight GNRs, it is easy to comprehend data
shown in Fig.11 a) and b). The increment of just one
index ℓ2 results in Eg vs. εx curve evolution to the form
inherent for the arm ZGNR and AGNR, respectively. To
be more persuasive, we suggest the reader to look again
at the curves for ZGNR(14) and AGNR(18) in Fig.10 a)
and c), correspondingly. After that results in Fig.11 are
easy to understand. As in the case of Fig. 9 for rib-
bons in Fig.11 we specified linear and quadratic regions
of Eg(εx) and calculated parameters (see Table III). In
contrast to the data in Table II, absolute values of β for
different ribbons in Table III are very close and imply
approximately equal efficiency in the band gap control.

V. CONCLUSIONS

To summarize, in this paper we have studied a sub-
class of chevron-type GNRs – jagged graphene nanorib-
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FIG. 11. The influence of asymmetry ℓ1 ̸= ℓ2 on the electric field effect in JGNRs Z60 a) and A120 b).

TABLE III. Fitting of linear and quadratic regions of Eg(εx) curves for JGNRs presented in Fig.11. Fitting for ribbons
Z60⟨3, 3; 7⟩, A120⟨3, 3; 6⟩ is presented in Table II.

βx+ α γx2 + βx+ α
JGNR α, eV β, eV·Å/V εmin, V/Å εmax, V/Å α, eV β, eV·Å/V γ, eV·Å2/V2 εmin, V/Å εmax, V/Å

Z60 ⟨3, 5; 7⟩ 0 18.6 0 0.015 0 24.1 -208.9 0.015 0.06
Z60 ⟨3, 7; 7⟩ 0 18.0 0 0.010 0 17.9 -114.5 0.010 0.08
A120 ⟨3, 5; 6⟩ 1.1 -16.1 0.05 0.060 0.5 8.7 -239.4 0.020 0.05
A120 ⟨3, 7; 6⟩ 1.0 -14.1 0.04 0.055 0.2 24.4 -481.0 0.025 0.04

bons (JGNRs). It was shown that it is possible to con-
trol the band gap of two types of JGNRs, namely Z60
and A120, by an external transverse electric field, e.g.
applied in the plane of the ribbon normally to its lon-
gitudinal axis. The band gap opening is possible for
Z60 ribbons, while the band gap closing is characteris-
tic for A120 ribbons. In both cases the value of the band
gap opening/closing is greater for narrower ribbons and
requires stronger electric fields. As there is a natural
limit for electric strength values due to the breakdown
phenomenon, there must be an optimal value of ribbon
width providing the highest possible value of the band
gap. We argue that for εx,max = 0.1 V/Å, e.g. SiO2

as a substrate, the optimal width is about w ∼ 6. For
these values of width Z60 ribbons in a transverse elec-
tric field behave like a quantum dot system and series of
emission and absorption lines must be observed if they
are not forbidden by optical selection rules. Some en-
hancement in the controllability of the band gap in the
transverse electric field is achievable for A120 ribbons as
the longer jag arms the lower field is required to close the
band gap, while it is not the case for Z60 ones. Also we
must mentioned the second peak for A120 JGNR that
is seemed to be unique for this type of structures as it
was not mentioned for ordinary straight GNRs in the
paper31. Finally, we notice that the value of band gap

opening for Z60 is about 0.6 eV and so high that even
taking into account possible error in band gap evaluation
(≈ 10%) and assuming the same field screening (∼ 25%

for εx = 0.05 V/Å) as for bilayer graphene one can as-
sess band gap opening as no less than ∼ 0.4 eV that is
about twice larger than for bilayer graphene in a normal
electric field26. The value is also large compared to that
one for carbon nanotubes and can be implemented for
fabrication of all metallic transistors proposed firstly for
nanotubes in the paper58. Following the just mentioned
work, it seems reasonable even to combine normal and
transverse geometry to control conductivity of the chan-
nel and carrier concentration separately. Actually, sepa-
rate control of the band gap and the Fermi energy paves
the way to a new type of devices that could build a bridge
between optics and electronics. Speaking again of A120,
one must stress also the quite wide range of band gap
variation of about 0.6 eV. This property of A120 ribbons
could make them suitable candidates for infrared or THz
laser media with widely tunable irradiation frequency.
Although only a homogeneous transverse electric field
was considered we deem that the results obtained give
a hint on the effect of charge impurities on some types of
GNRs, however to prove the last statement another de-
tailed study is necessary. It is quite important to notice
that in spite of the fact that only graphene nanoribbons
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were considered in this study, its result can be relevant to
other structures with similar geometry produced by pat-
terned evaporation59 of H, O, F, atoms from the surface
of graphane, graphene oxide or graphene fluoride, respec-
tively, or substitution of BN atoms on C atoms in h-BN
layer60. As was shown in papers19,24,61, such structures
exhibit similar electronic properties to GNRs of the same
shape. After having written this paper we became aware
of recent results confirming spin ordering on the zigzag
edges at room temperature62. This effect can reduce the
range of tunability for Z60 ribbons and needs a separate
detailed investigation.
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Appendix: Realistic Z60 structure

Ribbons of Z60 type are good as a theoretical model
but unfortunately it is very likely that such configura-
tions are difficult to realize experimentally. Therefore
we decided to provide additional results to prove that
the found effect is not due to the peculiar structural
configuration associated with one carbon atom missing
in hexagons on the border between two jags but rather
due the ribbon chevron-type pattern and zigzag edge.
A structure with one carbon atom removed from the
jag apex and placed at the opposite edge to complete
hexagons seems to be more stable. Such structure can
be referred to as Z60r, where ”r” – stand for ”realistic”.
As one can see in Fig. 12, band gap opening and disper-
sionless band splitting in the external transverse electric
field can be found as well in structures of more energeti-
cally favourable configuration.
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