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ABSTRACT

To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass
stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number.
The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight
into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation
explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars,
and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars
rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the
period–mass diagram for the Kepler field, notably: the particular shape of the “upper envelope” of the distribution,
suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape
of the “lower envelope,” corresponding to the location where stars transition between magnetically saturated and
unsaturated regimes.
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1. INTRODUCTION

This Letter presents a formulation for the global angular
momentum loss of Sun-like stars, defined here as stars with
less than ∼1.3 M�, which have outer convective envelopes and
are magnetically active. The goal is to develop a comprehensive
physical model for the evolution of stellar angular momentum
that (1) explains both the age-dependence and mass-dependence
of observed stellar spin rate distributions and (2) is fully
consistent with our current best understanding of stellar wind
dynamics, magnetic properties, and mass-loss rates.

The work is both motivated and enabled by large samples of
stellar rotation periods, now existing for several clusters, span-
ning an age range of ∼106−9 yr (Irwin & Bouvier 2009; Bouvier
et al. 2014). When plotted in period–color (or period–mass) di-
agrams, the distributions exhibit a complex but apparently co-
herent evolution with cluster age (Barnes 2003). This evolution
includes a relatively smooth dependence on stellar mass, from
∼1.3 M� down to the substellar limit. In general, during the first
several hundred megayears, lower mass stars take longer to spin
down than higher mass stars. Second, and somewhat paradox-
ically, after ∼100 Myr, the slowest rotators begin to converge
toward a narrow “sequence” in which the lower mass stars rotate
more slowly than higher mass stars. This behavior, particularly
of the slowly rotating sequence, gave birth to gyrochronology
(Barnes 2003; Soderblom 1983; Skumanich 1972), the idea that
stellar ages may be inferred solely from rotation period and
mass. Gyrochronology will become increasingly important for
recent and future data sets (e.g., from exoplanet transit searches)
that provide rotation period measurements of large samples of
stars with unknown ages. The best current example is the mea-
surement of 34,000 rotation periods in the Kepler mission field
of view by Mcquillan et al. (2014).

The present model builds upon many previous works, includ-
ing theoretical developments of how magnetized stellar winds

remove angular momentum (Schatzman 1962; Mestel 1968;
Weber & Davis 1967; Kawaler 1988; Matt et al. 2012), models
for the evolution of stellar spin rate in time (e.g., MacGregor
& Brenner 1991; Denissenkov et al. 2010; Scholz et al. 2011;
Reiners & Mohanty 2012; Gallet & Bouvier 2013; van Saders &
Pinsonneault 2013; Brown 2014), and gyrochronology relations
(Barnes 2003, 2010; Mamajek & Hillenbrand 2008; Meibom
et al. 2009).

Much of the difficulty in predicting stellar wind torques arises
from the uncertainty (both observational and theoretical) in our
knowledge of the magnetic and stellar wind properties of stars.
Despite significant progress in measurements of the mass-loss
rates of Sun-like stars (Wood et al. 2005), theoretical predictions
of wind properties (Suzuki et al. 2013; Cranmer & Saar 2011),
mapping of the surface magnetic fields (Donati & Landstreet
2009), and dynamo models (Miesch & Toomre 2009; Brun
et al. 2014), we are still working to understand how these
properties depend upon stellar mass, rotation rate, and time.
Observations of various indicators of magnetic activity (Noyes
et al. 1984a; Reiners et al. 2009; Pizzolato et al. 2003; Mamajek
& Hillenbrand 2008; Wright et al. 2011; Vidotto et al. 2014), as
well as theoretical models for magnetic field generation (Durney
& Latour 1978; Noyes et al. 1984b; Baliunas et al. 1996; Jouve
et al. 2010), suggest that a key parameter for stellar magnetism
is the Rossby number,

Ro ≡ (Ω∗τcz)
−1, (1)

where Ω∗ is the angular rotation rate of the star, and τcz is
the convective turnover timescale, characterized by the size
of a convective region divided by the convective velocity. For
slowly rotating stars, magnetic properties appear to correlate
strongly with Ro. Below a critical value of the Rossby number,
Rosat, various magnetic activity indicators appear to “saturate”
in the sense that they have an approximately constant maximal
value (independent of Ro). The value at which the saturated/
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unsaturated transition occurs can be specified by a constant

χ ≡ Ro�
Rosat

≡ Ωsatτcz

Ω�τcz�
, (2)

where “�” refers to solar values. Saturation occurs for Ro �
Ro�/χ , and χ defines the critical rotation rate, Ωsat (or period
Psat ≡ 2π/Ωsat), for any star with known τcz/τcz�. The various
studies cited above suggest that χ lies in the approximate range
of 10–15.

The model presented here reproduces some previously unex-
plained features in period–mass diagrams and also places con-
straints on the scaling of magnetic activity with Rossby number
and stellar mass.

2. STELLAR WIND TORQUE MODEL

2.1. General Formulation

Models of stellar wind dynamics (Kawaler 1988; Matt et al.
2012) show that the torque on the star can be written generically,

T = T�

(
M∗
M�

)−m (
R∗
R�

)5m+2

×
(

B∗
B�

)4m (
Ṁw

Ṁ�

)1−2m (
Ω∗
Ω�

)
, (3)

where M∗ and R∗ are the stellar mass and radius, B∗ the magnetic
field strength on the stellar surface, and Ṁw the global mass
outflow rate. The exponent factor m is determined primarily
by the magnetic field geometry and wind acceleration profile
(Réville et al. 2015) and likely falls in the range m = 0.20–0.25
(Washimi & Shibata 1993; Matt & Pudritz 2008; Ud-Doula et al.
2009; Pinto et al. 2011; Matt et al. 2012).

Given the uncertainties in both B∗ and Ṁw, we adopt a
generic combined relationship based upon the rotation activity
phenomenology discussed in Section 1,

(
B∗
B�

)4m (
Ṁw

Ṁ�

)1−2m

= Q

(
Ro�
Ro

)p

(unsaturated), (4)

(
B∗
B�

)4m (
Ṁw

Ṁ�

)1−2m

= Qχp (saturated), (5)

which inherits the degeneracy between B∗ and Ṁw from
Equation (3). The exponent p encapsulates the dependence
of this combined activity factor on the Rossby number. The
generic scale factor Q has a yet unknown dependence on stellar
parameters, which is determined empirically in Section 2.2.

A combination of Equations (1)–(5) results in a bifurcated
equation for the stellar wind torque,

T = − T0

(
τcz

τcz�

)p (
Ω∗
Ω�

)p+1

(unsaturated), (6)

T = − T0χ
p

(
Ω∗
Ω�

)
(saturated), (7)

where T0 = T0(T�,M∗, R∗,Q,m) does not depend upon the
spin rate or τcz. For the remainder of this work, we adopt χ = 10,
consistent with rotation activity relationships and within the
range used in spin-evolution models cited in Section 1. We also
adopt p = 2, which gives the unsaturated spin scaling (T ∝ Ω3

∗)
most commonly used in the literature. Table 1 lists the values of
all adopted parameters in the present work.

Table 1
Adopted Parameter Values

Symbol Adopted Value Description

χ 10 Inverse critical Rossby number for
magnetic saturation (solar units)

p 2 Rotation activity scaling, Equation (4)
M� 1.99 × 1033 g Solar mass
R� 6.96 × 1010 cm Solar radius
Ω� 2.6 × 10−6 Hz Solar (solid body) angular rot. rate
I� 1.05 × 1054 g cm2 Solar moment of inertia
t� 4.55 × 109 yr Solar age
τcz� 12.9 days Normalization for conv. turnover time

2.2. Observationally Inferred Torque Scaling

It is clear from the derivation above that T0 should have a
complex dependence on stellar parameters, depending on m and
Q. Given the uncertainty associated with these quantities, we
used the observed stellar spin rates to infer a dependence of T0
on stellar mass. We tested various scalings for T0 and settled
on one that is a compromise between physical motivation and
simplicity. Specifically, we adopt

T0 = 9.5 × 1030 erg

(
R∗
R�

)3.1 (
M∗
M�

)0.5

. (8)

For the empirically derived scaling of Equation (8) to be
consistent with Equations (3)–(7), the general formulation
requires that T� = 9.5 × 1030 erg and

Q =
(

R∗
R�

)3.1−(5m+2) (
M∗
M�

)0.5+m

. (9)

2.3. Analysis of Spin Down in Time

Using the torque defined by Equations (6)–(8), we can now
solve an angular momentum equation to obtain the spin rate
of any star as a function of time, t. Under the simplifying
assumptions of solid body rotation and that the stellar moment
of inertia, I∗, is constant in time (approximately true for main-
sequence stars), there are analytic solutions given by

Ω∗ = Ωie
−t/τsat (saturated), (10)

lim
Ω∗�Ωsat

(
Ω∗
Ω�

)
→

(τunsat

t

) 1
p

(unsaturated), (11)

where Ωi is the “initial” spin rate corresponding in practice to
some very young age (t � τsat), and two spin-down timescales
are defined as

τsat ≡ I∗Ω�
T0χp

(12)

τunsat ≡ I∗Ω�
T0p

(
τcz�
τcz

)p

. (13)

Equation (11) predicts the spin rate only in the asymptotic limit
of Ω∗ � Ωsat. Stars generally begin their lives with rotation
rates in the saturated regime. Equation (10) then applies until a
time when the spin rate decreases to the critical spin rate, Ωsat,
after which all spin rates asymptotically converge and approach
Equation (11). This converged spin rate is independent of the
initial value, Ωi , and decreases as a simple power law in time,
reproducing the Skumanich (1972) relationship for p = 2.
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Figure 1. Spin-down time in the saturated (lower solid line; fast-rotation) and
unsaturated (upper solid line; slow-rotation) regimes vs. stellar mass. The overall
slope of τ vs. M∗ has an opposite sign in each regime. This slope change
explains why lower mass stars remain rapid rotators for longer than higher
mass stars and, simultaneously, why slowly rotating stars form a sequence in
which the lower mass stars rotate more slowly than higher mass stars. The
broken lines show the two spin-down times for other models in the literature:
dashed—modified Kawaler formulation (e.g., van Saders & Pinsonneault 2013);
long-dashed—Barnes (2010, B10); dotted—Reiners & Mohanty (2012, RM12);
dot-dashed—van Saders & Pinsonneault (2013, vSP13).

To illustrate the effect of the torque in each regime, Figure 1
shows the spin-down times (Equations (12) and (13)), as a
function of stellar mass. For the figure, we use values of I∗
from stellar models of Baraffe et al. (1998) at an age of 2 Gyr,
and compute τcz using the model effective temperatures with
Equation (36) of Cranmer & Saar (2011). The saturated spin-
down time (lower line) represents the e-folding time of the
spin rate, since the spin down is approximately exponential
(Equation (10)). Once stars are in the unsaturated regime, τunsat
(upper line) corresponds to the age at which the converged spin
rate equals the solar rate, Ω�; τunsat also predicts the mass-
dependence of the converged spin rates at any age (according to
Equation (11)).

Since χ and p are constants, the difference in the mass-
dependence of τsat and τunsat is due entirely to the factor of τ

p
cz

(appearing only in τunsat). This difference is enough to reverse
the sense of the mass-dependence in the two regimes: higher
mass stars spin down the most quickly in the saturated regime,
but in the unsaturated regime, lower mass stars spin down the
most quickly.

Figure 1 also shows the equivalent spin-down times for some
models in the literature, with τunsat normalized to the Sun.
Of these, the vSP13 and B10 models are the most similar to
the present model in both saturated and unsaturated regimes.
However, all models differ by more than a factor of two in some
mass range. All models therefore predict significantly different
spin down behavior, and the present model has been tuned (via
Equation (8)) to best reproduce the observed phenomenology
presented in Section 3. The key strength of the present model is
its formulation, which connects the observed spin evolution to
the scaling of magnetic field strengths and mass-loss rates.

3. EVOLUTION OF A SYNTHETIC CLUSTER

3.1. Initial Conditions

To compare with observations, we computed the evolution of
stellar spin rates for a synthetic cluster of 500 stars. We started
the evolution from an age of 5 Myr in order to avoid the earliest
phases, where the spin distributions are poorly understood (and

likely due to processes not included here). The cluster initially
has a random and uniform distribution in stellar mass (in the
range 0.1–1.3 M�) and in the logarithm of rotation period (in the
range 0.8–15 days). The left panel of Figure 2 shows this initial
distribution, compared with the ∼2 Myr old cluster ONC (data
from Stassun et al. 1999; Herbst et al. 2001, 2002; Rodrı́guez-
Ledesma et al. 2009). The figure demonstrates that the initial
conditions approximate the general range of rotation periods
observed in young clusters, with no attempt to fit or explain the
detailed distribution.

3.2. Spin Evolution

Starting from the initial condition, we solved the angular
momentum equation

dΩ∗
dt

= T

I∗
− Ω∗

I∗

dI∗
dt

, (14)

for each star, using a forward-timestepping Euler method, and
assuming solid-body rotation. The torque was specified by
Equations (6)–(8) (and Equation (2) determining the saturated/
unsaturated transition) and values in Table 1. At each timestep,
we interpolated the stellar parameters R∗, I∗, and dI∗/dt from
a grid of pre-computed (non-rotating) stellar evolution tracks of
Baraffe et al. (1998) and computed τcz from the prescription of
Cranmer & Saar (2011).

The evolution proceeds as follows. During the first several
tens of megayears, all stars are contracting and spin up by a factor
of 5–10, as they approximately conserve angular momentum
(the torques are negligible on this timescale). When the stars
reach the main sequence, their structure stabilizes and they
begin their spin down. Once Ω∗ < Ωsat, their spin rates
rapidly converge toward the asymptotic spin rate predicted by
Equation (11). This evolution and the formation of a converged,
slow-rotator sequence occurs first for the highest mass stars and
proceeds in a continuous manner toward lower masses. Figure 2
(right panel) and Figure 3 show the synthetic cluster after it has
evolved to ages between 500 Myr and 4 Gyr.

3.3. Comparison with Observations

3.3.1. Praesepe Cluster

The right panel of Figure 2 compares the rotation periods in
the ∼580 Myr old Praesepe cluster (observed by Agüeros et al.
2011) to the synthetic cluster at a similar age. Two key observed
features are reproduced by the synthetic cluster. First, there is a
population of rapid rotators, exhibiting a wide range of rotation
rates and a trend such that the lowest mass stars are, on average,
more rapidly rotating than higher mass stars. In the models, the
wide range is a consequence of the initial distribution, but the
trend with mass is due to the fact that lower mass stars take
longer to spin down in the saturated regime (see Figure 1).

The second feature reproduced by the models is the pop-
ulation of stars that have converged onto a relatively narrow
sequence (following an approximate upper limit in period). In
the models, the existence of a converged sequence is due to the
stars entering the unsaturated regime, where the torque depends
strongly upon rotation rate. The trend of rotation rate with mass
is due to the fact that lower mass stars generally spin down
quicker than higher mass stars once in the unsaturated regime
(Figure 1).

A few observed features are not reproduced by the model.
The first is a handful of stars rotating more rapidly than the
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Figure 2. Observed rotation periods (red stars) from the ONC (left panel) and Praesepe (right panel) compared to our synthetic cluster stars (black diamonds). The
left panel shows the synthetic initial conditions, chosen to approximate the observed range, but not the detailed distribution. The right panel shows the synthetic
cluster, evolved to a similar age as Praesepe (as indicated). For reference, the green solid line shows the theoretical asymptotic spin rate of Equation (11), and the
blue dotted line delimits magnetically saturated and unsaturated stars. The model explains both the existence of rapidly rotating, low-mass stars, as well as the general
mass-dependence of the slow-rotator sequence.

synthetic cluster stars (in the range 0.7–1 M�), which suggests
a modified torque for these stars. Second is the population of
slow rotators (in the range 0.35–0.6 M�) that appear to extend
the slow-rotator sequence to lower masses than in the synthetic
cluster. This discrepancy likely arises from a deviation from
solid-body rotation (which the model assumes). Studies that
included internal angular momentum transport (MacGregor
& Brenner 1991; Gallet & Bouvier 2013; Charbonnel et al.
2013; Denissenkov 2010) indicate that internal differential
rotation manifests as an increased spin down at early times,
followed by a convergence toward the solid-body solution at
later times. The predicted asymptotic spin rate (green line in
Figure 2) roughly traces the observed sequence over its full mass
range, giving support for the mass-dependence of the torque,
even though the solid-body approximation does not capture
all details.

3.3.2. Kepler Field

Figure 3 compares the measured rotation periods in the Kepler
field (Mcquillan et al. 2014, hereafter MMA14) to the synthetic
cluster, shown at three different ages. The figure only shows
stars with measured rotation periods, comprising 26% of the
total Kepler main-sequence sample, and possessing a range of
unknown ages. Within the framework of our model, we interpret
some broad features of the observed spin distribution in the
Kepler field.

First, there is a well-defined “upper envelope” to the distribu-
tion of observed rotation periods (corresponding approximately
to the 95th percentile of the distribution), which coincides with
the 4 Gyr old synthetic cluster, for stars with �0.5 M�, includ-
ing the apparent “dip” or change in slope around 0.6 M�. This
dip has not been previously reproduced by any model. The co-
incidence with the model suggests that the existence and shape
of the observed upper envelope is real (rather than being due to
observational bias) and also corresponds to an age of ∼4 Gyr
(also noted by MMA14). At masses below 0.5 M�, the mis-
match between the synthetic cluster and observations indicates
that the low-mass, unsaturated stars require a stronger torque
than the model predicts.

There is also a relatively sharp “lower envelope” in the
observed distribution of Figure 3, also noted by MMA14, most

pronounced for stars with �0.9 M�. This lower envelope has
not been previously explained, but it corresponds remarkably
well to the location of the critical rotation period (blue dotted
line), which delineates the saturated and unsaturated regimes in
our model. As is apparent in the right panel of Figure 2, the spin
rates of stars begin to converge after crossing this critical rotation
period. Thus, in a distribution of stars with a range of ages, the
model predicts that the density of stars will increase at a rotation
period slightly larger than the critical period, as observed. Recall
that the critical rotation period (Equation (2)) is set by a constant
saturation level, χ , and the mass-dependent convective turnover
timescale, τcz. Thus, the coincidence of Psat with the lower
envelope of the Kepler spin distribution supports the modeled
relationship between convection, magnetic activity (including
saturation), and spin evolution. Furthermore, independent of any
model, the lower envelope coincides precisely with the slow-
rotator sequence observed in the youngest clusters in which
this feature appears (those with ages of ∼100 Myr, not shown;
Bouvier et al. 2014). This comparison with young clusters, as
well as with the present model, suggests that the Kepler field has
a substantial population of stars with ages less than ∼500 Myr
(also noted by MMA14).

4. DISCUSSION AND CONCLUSIONS

The model presented here builds upon the ideas and successes
of many previous works (cited in Section 1), notably in the
explanation for a saturation of the torque at high spin rates
and a Skumanich-style spin down at later times. However, the
present model provides a new formulation that reproduces some
previously unexplained phenomena, particularly related to the
mass-dependence of observed features in Figures 2 and 3.

A number of observed phenomena that are not reproduced
by the model will require further improvements; for example,
the model does not well produce the Kepler field slow rotators
for masses below 0.5 M�, which suggests (for example) that the
adopted values of τcz may not be appropriate for these stars; the
overall interpretation of the Kepler field star ages (Section 3.3.2)
should be tested by population studies; a fraction of stars (e.g.,
in Praesepe) appear to converge onto the unsaturated sequence
at an earlier time than the models, suggesting a deviation from
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Figure 3. Observed rotation periods in the Kepler field (red symbols), plotted over the syntetic cluster, shown at three different ages: 500 Myr (lower group of
black diamonds), 1.5 Gyr (green diamonds), and 4.0 Gyr (upper group of black diamonds). The blue dotted line shows the rotation period dividing the saturated and
unsaturated regimes. The coincidence of Psat with the “lower envelope” of the Kepler stars, suggests that this feature is explained by the convergence of stellar spin
rates, occurring after stars enter the unsaturated regime. The coincidence of the oldest models with the observed “upper envelope” suggests that ∼95% of the sample
stars are younger than ∼4 Gyr.

solid-body rotation; and the present model does not explain the
“initial” conditions or any of the more detailed structure present
in the spin distributions of young stars (see Herbst et al. 2001;
Henderson & Stassun 2012; Brown 2014).

Much of the success of the present model derives from the
empirical mass-scaling of the torque, given by Equation (8). This
is not a unique solution, and the physics suggest a dependence
on more complex stellar properties than M∗ and R∗ (e.g., Ṁw

may depend on coronal Alfvén wave flux; Cranmer & Saar
2011). However, for any other formulation to work as well, the
included physics must conspire to scale like Equation (8).

Fitting the present model to observations provides constraints
on the physical parameters Ṁw, B∗, χ , p, and m, all of
which are connected to the physics and phenomenology of
magnetic properties and wind dynamics in Sun-like stars. For
the parameters adopted here and a dipolar magnetic field (i.e.,
m = 0.22), the model’s torque could arise from the simple
scalings6B∗ ∝ Ro−1 and Ṁw ∝ M1.3

∗ Ro−2. These scalings
can be compared to models and observations and do not appear
unreasonable. Thus, a key advantage of our formulation is that it
provides a basic framework for a self-consistent physical picture
of stellar evolution that includes the effects of magnetic activity,
mass loss, and rotation.
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