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Abstract

We suggest a definition for a type of chimera state that appears in networks of
indistinguishable phase oscillators. Defining a “weak chimera” as a type of invariant
set showing partial frequency synchronization, we show that this means they cannot
appear in phase oscillator networks that are either globally coupled or too small. We
exhibit various networks of four, six and ten indistinguishable oscillators where weak
chimeras exist with various dynamics and stabilities. We examine the role of Kuramoto-
Sakaguchi coupling in giving degenerate (neutrally stable) families of weak chimera
states in these example networks.

1 Introduction

Coupled oscillator systems are a rich source of examples of high dimensional dy-
namical behaviour as well as a class of systems that can be used to understand a
range of emergent dynamical phenomena. One of these phenomena, where there
is apparent coexistence of coherent and incoherent behaviour, has been called a
chimera state. This paper proposes a definition of a “weak chimera” for finite
networks of coupled indistinguishable phase oscillators. This definition is rela-
tively easily checkable from the dynamics and allows us to prove existence as well
as investigating stability and bifurcations of weak chimeras in small networks.
Although chimeras in many high dimensional systems are not weak chimeras in
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the sense we define here, we suggest that weak chimeras may be responsible for
organizing the dynamics of more general chimera states.

Kuramoto’s model for globally coupled phase oscillators

θ̇i =
d

dt
θi = ωi −

K

N

N
∑

j=1

sin(θi − θj)

with θi ∈ [0, 2π), ωi and K constant [15] has been used for many years as a prototype of
an oscillator system where sufficiently strong K > 0 will result in synchrony. Dynamically
more complex solutions include partial synchrony or clustering. For phase oscillator networks
that are not globally coupled, some intriguing solutions were first noted by Kuramoto and
Battogtokh [16] and named “chimera states” by Abrams and Strogatz [1, 2]. In these states,
the oscillators split into two (or more) regions one of which is coherent while the other is
incoherent, in some sense.

A number of authors have studied chimera states in a wide range of contexts, for example
[18, 19, 22, 29, 24] and it seems that rather than being exceptional they are, in some sense,
prevalent. Most work on chimeras has however not attempted to make a rigorous definition
of chimera state that can easily be applied to small systems. For instance, [2] state that “For
certain choices of parameters and initial conditions, the array would split into two domains:
one composed of coherent, phase-locked oscillators, coexisting with another composed of
incoherent, drifting oscillators” but in particular, the words “domain”, “incoherence” and
“drifting” need careful interpretation before they can be applied to small systems.

The paper is organized as follows: In section 2 we consider some basic dynamical prop-
erties of networks of indistinguishable phase oscillators and propose a definition of weak
chimera state for these systems. Section 3 gives a basic result on the non-existence of weak
chimera states for globally coupled phase oscillator networks, and then looks at minimal
networks of four, six and ten phase oscillators where a modular structure allows us to prove
there are weak chimera attractors. The detailed dynamics of these examples are at least
quasiperiodic but may in principle be much more complex - for example, the ten oscillator
example has a weak chimera attractor that is an attracting heteroclinic network. Section 4
discusses an example of a non-modular network (a ring of six oscillators with nearest and
next-nearest neighbour coupling) where one can find attracting weak chimera states and
investigate the bifurcations that create them. Finally, Section 5 discusses some of the con-
sequences and limitations of these results. In particular we note that the special case of
Kuramoto-Sakaguchi coupling (often considered for phase oscillator chimera examples) has
families of weak chimeras with degenerate stability. We suggest that this may be related to
the fact that chimeras appear to be transients in simulations of small networks [30].
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2 Weak chimeras in networks of indistinguishable phase

oscillators

Consider a system ofN coupled phase oscillators described as an ODE on the torus (θ1, . . . , θN) ∈
T
N = [0, 2π)N :

θ̇i = ωi +

N
∑

j=1

Kijg(θi − θj) (1)

where Kij is the strength of coupling, ωi is the natural frequency of the ith oscillator and
g(φ) is a smooth 2π-periodic coupling function. The phase oscillators are identical if ωi = ω,
and if we are interested in phase differences, we can set ω = 0 without loss of generality. We
consider Hansel-Mato-Meunier coupling [12, 5] with parameters α and r:

g(φ) = − sin(φ− α) + r sin(2φ) (2)

which reduces to Kuramoto-Sakaguchi coupling [26] for r = 0.
We say the oscillators are indistinguishable if the oscillators are identical and interchange-

able in the sense that they have the same number and strength of inputs [7, Def 3.2]. Let
SN denote the permutation group acting on the N oscillator phases. Equivalent ways of
expressing this are:

(a) Only one equation is needed to specify the system, up to permutation of indices.

(b) There are N permutations σi ∈ SN with σi(i) = i for i = 1, · · · , N such that the
matrix Kij satisfies

Kij = kσi(j)

for some vector ki and for all i 6= j; namely the matrix is a permutation of a vector of
coupling strengths.

(c) The system is invariant under a permutation symmetry group that acts transitively on
the set of N oscillators.

Figures 1 and 4 illustrate some examples of small networks where the oscillators are indis-
tinguishable. We say oscillators i and j on a trajectory of the system (1) are frequency
synchronized if

Ωij := lim
T→∞

1

T
[θi(T )− θj(T )] = 0

where we choose continuous representatives for θi(t), θj(t) (N.B. is not necessary for the
oscillators to have well-defined frequencies for the system to be frequency synchronized [13]).

We say A ⊂ T
N is a weak chimera state for a coupled phase oscillator

system if it is a connected chain-recurrent [10] flow-invariant set such
that on each trajectory within A there are i, j and k such that Ωij 6= 0
and Ωik = 0.
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We do not place any restriction on the dynamical behaviour or stability of A: if it is of
saddle type or has neutral stability the behaviour would only be visible as a transient for
typical initial conditions [30]. If A is the ω-limit of some initial condition then A is connected
and chain-recurrent [10]. Hence we include these as necessary conditions for the dynamics
of A to be visible in the long-term behaviour of a single trajectory.

Due to the drift of the incoherent region, the chimera states of [16, 1, 2] for large N are
in fact not weak chimeras. However as we discuss in Section 5, unstable weak chimeras may
play an important role in organizing such chimeras in coupled phase oscillator networks, just
as unstable periodic orbits play an important role in organizing chaotic dynamics.

There is an element of surprise in the definition of weak chimera: one might expect
systems of indistinguishable phase oscillators to always have frequency synchrony, but we
will see that this is not the case for many networks. However, for some types of network
there are obstructions to the existence of weak chimera states. For other networks we find
parameters with attracting weak chimera states where the following hold:

(a) there are at least four oscillators

(b) at least two different coupling strengths are present in the network

(c) there are at least two Fourier components in the coupling function (i.e., if coupling
function is (2), then r 6= 0).

Note that (b) necessarily implies (a) for indistinguishable phase oscillators. Examples in
the literature suggest that (c) is not necessary for existence of weak chimera states but we
believe it may be for weak chimera states to be bistable with full synchrony.

3 Indistinguishable phase oscillators and weak chimera

states

For global (equal and all-to-all) coupling we write Kij = K and the system has full per-
mutation symmetry SN [7]. As a consequence there is an invariant subspace corresponding
to θi = θj (modulo 2π) for any i 6= j. The presence of (N − 1)! of these codimension one
invariant subspaces implies that there will be a permutation of the oscillators k(j) such that

θk(1) ≤ θk(2) ≤ · · · ≤ θk(N) ≤ θk(1) + 2π (3)

is satisfied along the trajectory. This can be used to show a result (already effectively stated
in [2]):

Theorem 1 [7, Lemma 5.3] For global coupling of N identical phase oscillators with Kij =
K and any g(φ), all trajectories of (1) are frequency synchronized. Hence no weak chimera
states are possible in such a system.
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Figure 1: Example networks of (a) four, (b) six and (c) ten indistinguishable oscillators
that permit robust weak chimera states. The solid line indicates bidirectional coupling with
strength 1 while the dashed line indicates bidirectional coupling with strength ǫ (for clarity
in (c), only oscillator one is shown with its full set of connections). Each the networks has
a modular structure, i.e. they decouple into a number of smaller networks for ǫ = 0.

This result does not generalise to more general oscillators with global coupling as higher
dimensional systems do not necessarily satisfy (3). Indeed, [27, 28] find chimera states in
globally coupled networks with two-dimensional oscillators.

In the remainder of this section we show that weak coupling between two subnetworks
(or modules) can give rise to weak chimera states; in particular for the networks shown in
Figure 1.

3.1 Four oscillator example: stable weak chimera with in-phase

and anti-phase groups

Consider the system (1,2) for N = 4 with coupling as in Figure 1(a) and coupling strengths
Kij ∈ {1, ǫ}. This means that (1) can be written as

θ̇1 = ω + (g(θ1 − θ3) + g(0)) + ǫ(g(θ1 − θ2) + g(θ1 − θ4))

θ̇2 = ω + (g(θ2 − θ4) + g(0)) + ǫ(g(θ2 − θ3) + g(θ2 − θ1))

θ̇3 = ω + (g(θ3 − θ1) + g(0)) + ǫ(g(θ3 − θ2) + g(θ3 − θ4)) (4)

θ̇4 = ω + (g(θ4 − θ2) + g(0)) + ǫ(g(θ4 − θ1) + g(θ4 − θ3)).

Theorem 2 There is an open set of (r, α) such that the four-oscillator system (4,2) has an
attracting weak chimera state for ǫ = 0 that persists for all ǫ with |ǫ| sufficiently small.

Proof: We write φ1 = θ1 − θ3, φ2 = θ2 − θ4, φ3 = θ1 − θ2 and gij = g(θi − θj) so that (4)
becomes

φ̇1 = g13 − g31 + ǫ(g12 + g14 − g32 − g34)

φ̇2 = g24 − g42 + ǫ(g21 + g23 − g41 − g43)

φ̇3 = g13 − g24 + ǫ(g12 + g14 − g21 − g23).
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If we write g(φ) = (p(φ) + q(φ))/2 where p is even and q is odd then we have

φ̇1 = q(φ1) + ǫ(g(φ3) + g(φ3 + φ2)− g(−φ1 + φ3)− g(φ2 + φ3 − φ1))

φ̇2 = q(φ2) + ǫ(g(−φ3) + g(φ1 − φ3)− g(−φ2 − φ3)− g(φ1 − φ2 − φ3)) (5)

φ̇3 = g(φ1)− g(φ2) + ǫ(g(φ3) + g(φ3 + φ2)− g(−φ3)− g(φ1 − φ3))

Now consider the case ǫ = 0 and φ = φi with i = 1, 2: these satisfy φ̇ = q(φ) where

q(φ) = g(φ)− g(−φ) = −2 sinφ cosα + 2r sin(2φ) = 2 sinφ (− cosα + 2r cos φ) ,

which for (r, α) in the region of bistability of in-phase and antiphase solutions (resp. φ = 0
and φ = π) with q(φ) = 0. Note that q′(0) = −2 cosα + 4r and q′(π) = 2 cosα + 4r, so
there is bistability when q′(0) < 0 and q′(π) < 0. This is the case if − cosα + 2r < 0 and
cosα + 2r < 0, i.e. when r < −(cosα)/2 and r < (cosα)/2. This can be satisfied in the
region of (r, α) where

r < min{cosα,− cosα}/2 = −| cosα|/2. (6)

Consider an initial condition (φ1, φ2, φ3) = (0, π, ξ). For ǫ = 0, this initial condition lies on
the periodic orbit (φ1(t), φ2(t), φ3(t)) = (0, π,Ωt+ ξ) where Ω := g(0)− g(π) = 2 sinα inde-
pendent of r. This periodic orbit is a compact recurrent invariant set that is not frequency
synchronized as long as α 6= kπ, k ∈ Z.

This periodic orbit is stable with Floquet exponents given by 0, q′(0)2π/Ω and q′(π)2π/Ω.
Finally, hyperbolicity of the linearly stable periodicity implies unique continuation of this
stable periodic orbit under small perturbations of parameters - in particular for any (r, α)
satisfying (6) and α 6= kπ there is an ǫ0(r, α) such that there is persistence of this weak
chimera state for all ǫ where |ǫ| < ǫ0(r, α). QED

We do not give upper bounds on ǫ0(r, α) except to note that ǫ0 ց 0 on any path where
r + | cosα|/2 ր 0. From Theorem 1, the weak chimera state must disappear for ǫ = 1,
hence ǫ0(r, α) < 1. This weak chimera is degenerate at r = 0 as there is no bistability
of in-phase and antiphase synchrony in this case. The curve r = −1

2
cosα corresponds

to a subcritical pitchfork bifurcation in the invariant plane φ1 = 0 of the stable cycle with
coordinate φ2 = π and two saddle periodic orbits with coordinates φ2 = ± arccos(cosα/(2r))
for ǫ = 0. The curve r = 1

2
cosα corresponds to a subcritical pitchfork bifurcation in the

invariant plane φ2 = π of the same stable cycle with φ1 = 0 and two saddle cycles with
φ1 = ± arccos(cosα/(2r)).

The system Figure 1(a) can be generalized by specifying coupling ǫ1 from θi to θi+1 and
with coupling ǫ2 from θi to θi−1 (Z4 symmetry). Theorem 2 can be generalised in this case
as follows: for ǫ1 = ǫ2 = ǫ, the plane φ1 = 0 is invariant and there is a weak chimera with
φ1 = 0. For ǫ1 6= ǫ2 the plane φ1 = 0 is no longer invariant but can still be shown to contain
a weak chimera.
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Figure 2: Example of a weak chimera attractor in the six oscillator system (7,2) as in
Figure 1(b). The oscillators i = 1, 2, 3 limit to an approximately splay phase state while the
oscillators i = 4, 5, 6 limit to in-phase. The left panel shows convergence of [θi(T )−θ6(T )]/T
towards well-defined frequency differences Ωi,6 such that Ω1,6 = Ω2,6 = Ω3,6 6= 0 and Ω4,6 =
Ω5,6 = 0. The right panel illustrates that the dynamics of the phase differences relative to
the 6th oscillator is quasiperiodic.

3.2 A six oscillator example: stable weak chimera with in-phase

and splay-phase groups

Consider the system with N = 6 in Figure 1(b) where

θ̇i+3j = ω +
3

∑

k=1

[g(θi+3j − θk+3j) + ǫg(θi+3j − θk+3j+3)] (7)

with i = 1, . . . , 3, j = 0, 1 and all subscripts are taken modulo 6. For (2) with r = −0.15,
α = −1.7 and ǫ = 0.1 there are chimera states where three of the oscillators are in-phase and
the other three are close to a splay-phase (rotating wave, Z3) periodic orbit; see Figure 2.

One can see this as follows: for ǫ = 0 the systems splits into two groups of N = 3 oscilla-
tors with all-to-all coupling and bistability of in-phase and splay-phase (anti-phase/rotating
wave) solutions [5, Fig 1]. These solutions have distinct frequencies, so for 0 < ǫ ≪ 1 the
system has attracting weak chimeras that are robust to small changes in the parameters.

3.3 A ten oscillator example: stable weak chimera with in-phase
and heteroclinic cycle groups

Consider the network Figure 1(c) consisting of two groups of all-to-all coupled five oscillators
and weak coupling between the groups, i.e.

θ̇i+5j = ω +

5
∑

k=1

[g(θi+5j − θk+5j) + ǫg(θi+5j − θk+5j+5)] (8)
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Figure 3: Example of a weak chimera attractor in the system of ten oscillators (8,9) in
Figure 1(c) where one group of five undergoes heteroclinic switching; see text for details.
The oscillators i = 1, 2, 3, 4, 5 approach heteroclinic cycle while oscillators i = 6, 7, 8, 9, 10
are in-phase at a different frequency. The left panel shows convergence of [θi(T )− θ10(T )]/T
towards well-defined frequency differences Ωi,10 such that Ωi,10 6= 0 for i = 1, 2, 3, 4, 5 while
Ωi,10 = 0 for the remaining group. The right panel illustrates that the dynamics of the
phase differences relative to the 10th oscillator is not simply periodic or quasiperiodic but
switches between a number of saddle periodic orbits. As time progresses, the time spent
near a periodic orbit gets progressively longer and longer.

where i = 1, . . . , 5, j = 0, 1 and all subscripts are taken modulo 10. We choose

g(φ) = − sin(φ− α) + r sin(2φ− β) (9)

with r = 0.2, α = 4.67398, β = 4.51239, ω = 0.1 and ǫ = 0.1 such that there is a weak
chimera where one group is in-phase while the other approaches a stable heteroclinic at-
tractor; see Figure 3. For ǫ = 0 where the two networks decouple, each is multistable with
two attractors; in-phase synchrony and a heteroclinic network between 30 saddle periodic
orbits are attractors. In the absence of noise, there will be switching between the saddle
periodic orbits that progressively slows down; see [6] for a more detailed description of the
heteroclinic network attractor,

3.4 Weak chimera states and modular networks

One can generalize the previous examples to networks of indistinguishable phase oscillators
with modular structure. More precisely, suppose we have a system of n = mk oscillators,
θ ∈ T

m×k, with m > 1 and k > 1 are integers, governed by

θ̇ij = ω +
k

∑

q=1

[

Kij,iqg(θij − θiq) + ǫKij,pq

m
∑

p=1,p 6=i

g(θij − θpq)

]

(10)

where i = 1, . . . , m, j = 1, . . . , k, Kij,pq ∈ {0, 1} and g is a smooth period coupling function
(there will be constraints on Kij,pq for the oscillators to be indistinguishable). In such a
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Figure 4: More examples of indistinguishable oscillator networks with modular structure:
each of these decouples into more than one identical networks on setting the coupling on the
dashed lines to zero.

case we say the system splits into m modules of k oscillators. The network decouples in the
case ǫ = 0 into m uncoupled but identical modules (networks) of k phase oscillators. Each
module is governed by the following equations for θ ∈ T

k, for some Ljq ∈ {0, 1}:

θ̇j = ω +
k

∑

q=1

Ljqg(θj − θq). (11)

If the module is multistable one can obtain sufficient conditions for the existence weak
chimera states for ǫ > 0. Even for the case of modules with a hyperbolic periodic attractor,
the product attractor is not hyperbolic - it has m Lyapunov exponents that are zero and in
general we expect a very rich set of possible dynamics (including chaos) for arbitrarily small
perturbations. This should gives a technique to prove the existence of stable weak chimeras
in networks such as Figure 4.

4 Weak chimera states in non-modular networks

For the modular networks considered in the previous section, the factorization into mul-
tistable modules enables one to understand weak chimeras as robust phenomena in such
networks. It is also suggestive of the idea that chimeras are associate with “spatial chaos” -
an exponential scaling of the number of attractors as the number of modules goes to infinity
[20]. Nonetheless, many of the chimeras that have hitherto been investigated in the litera-
ture do not have this modular structure. This section considers some six oscillator networks
where there can be bifurcations to weak chimera states.
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Figure 5: (a) Six oscillators with nearest and next-nearest neighbour coupling. (b) Six
oscillators with nearest neighbour coupling only. (c) Six oscillator system with three inputs
to each oscillator; each of these networks has six indistinguishable oscillators and supports
weak chimera states (see text for details).

4.1 Stable and neutral weak chimeras in six oscillator networks

Three non–global coupling structures of six indistinguishable oscillators are shown in Fig-
ure 5. For each of these networks and coupling (2) there can be attracting weak chimera
states. For example, each of three systems has a stable weak chimera for α = 1.6, r = −0.01.

Consider the network Figure 5(a) governed by

θ̇i = ω +
∑

|j−i|=1,2

g(θi − θj) (12)

with coupling (2) and indices taken modulo 6.
Chimera states have been investigated in similar systems, for example by Maistrenko

and co-workers; for example [22, 20] and transient chimeras have been found for coupling (2)
with r = 0 (Kuramoto-Sakaguchi), where the length of transient scales exponentially with
the size of the system [30].

Table 1 summarises the invariant subspaces for (12), cf. [7, Table 2]. In addition to
symmetry-forced subspaces, the coupling structure means that there are a number of ad-
ditional invariant subspaces associated with certain quotient networks; see Antoneli and
Stewart [4]. The three-cell quotients are illustrated in Figure 6 (see also [3]).

There is an open set of parameters near α = 1.56, r = −0.1 where the system has stable
weak chimeras that become marginally stable for r → 0. Figure 7 illustrates such a solution
that is in the invariant subspace A7 ⊂ A1:

(θ1, . . . , θ6) = (φ1, φ2, φ1, φ1 + π, φ2, φ1 + π). (13)

Interestingly, the same dynamics can be found within A1 and A2 as both have the quotient
network III in Figure 6. Other invariant subspaces, for example the subspace A6:

(θ1, θ2, θ3, θ4, θ5, θ6) = (φ1, φ1 + π, φ2, φ1, φ1 + π, φ2 + π)

has weak chimera solutions that are stable for r = 0 and π/2 < α < π.

10



Subspace Typical point Dim Reduced system
Σ (θ1, . . . , θ6)
D6 (a, a, a, a, a, a) 1
D

−
6 (a, a+ π, a, a+ π, a, a+ π) 1

Z
1
6 (a, a + ζ, a+ 2ζ, a+ 3ζ, a+ 4ζ, a+ 5ζ) 1

Z
2
6 (a, a+ 2ζ, a+ 4ζ, a, a+ 2ζ, a+ 4ζ) 1

D3 (a, b, a, b, a, b) 2
Z3 (a, b, a+ 2ζ, b+ 2ζ, a+ 4ζ, b+ 4ζ) 2
D2 (a, b, a, a, b, a) 2
D

−
2 (a, b, a, a+ π, b+ π, a+ π) 2

Z
1
2 (a, b, c, a, b, c) 3 I

Z
2
2 (a, b, c, a+ π, b+ π, c+ π) 3 II

A0 (a, b, c, a, d, e) 5
A1 (a, b, c, a, c, b) 3 III
A2 (a, b, b, a, c, c) 3 III
A3 (a, b, c, a+ π, c+ π, b+ π) 3 IV
A4 (a, b, b+ π, a+ π, c+ π, c) 3 IV
A5 (a, a+ π, b, a, a + π, b) 2
A6 (a, a+ π, b, a, a+ π, b+ π) 2
A7 (a, a+ π, b, a + π, a, b) 2

Table 1: Invariant subspaces for the six oscillator system Figure 5(a) for ζ := π/3 and
a, b, c, d, e, f are arbitrary phases. The three-oscillator reduced systems are shown in Figure 6.
The subspaces Ai are not invariant due to symmetries; rather they are “exotic balanced
polydiagonals” in the terminology of [4] that are invariant due to the form of coupling in the
system.

1a b

c
I II

1a b

c
III

1a b

c
IV

1a b

c

Figure 6: Three-cell quotient networks of the network Figure 5(a). The solid arrows denote
an input to one cell from another while the dashed arrows indicate an input that includes a
phase shift of the phase by π. Note that quotients I, II have symmetry D3 while III, IV have
symmetry Z2.
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Figure 7: A stable weak chimera state in the ring of six phase oscillators (12,2) showing
timeseries θi(t) for α = 1.56, r = −0.1. Observe that the frequency of the second and
fifth oscillators clearly differ from the frequency of the others. This attractor coexists with
in-phase synchrony.

4.2 Weak chimeras and bifurcations for the six-oscillator system

We give a detailed (but not comprehensive) analysis of the dynamics of (12) in particular
within A1. Re-writing the system (12) in the subspace A1 (13) gives

φ̇1 = ω + 2g(φ1 − φ2) + 2g(φ1 − φ3)

φ̇2 = ω + 2g(φ2 − φ1) + g(φ2 − φ3) + g(0)

φ̇3 = ω + 2g(φ3 − φ1) + g(φ3 − φ2) + g(0)

(14)

which corresponds to the three-oscillator quotient system III from Figure 6. Defining ξ =
φ1 − φ3, η = φ2 − φ3 and ξ − η = φ1 − φ2, the system (14) can be written in terms of phase
differences:

ξ̇ = 2g(ξ − η) + 2g(ξ)− 2g(−ξ)− g(−η)− g(0)

η̇ = 2g(η − ξ) + g(η)− 2g(−ξ)− g(−η).
(15)

For coupling (2) and α = π/2, r = 0 this simplifies to

ξ̇ = −2 cos(η − ξ) + cos η + 1

η̇ = −2 cos(η − ξ) + 2 cos ξ.
(16)

The vector field (16) has zero divergence - all equilibria are centres or saddles and any
periodic orbit is neutrally stable. There is a “band” of neutrally stable weak chimera solutions
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that wind around ξ and “islands” of neutrally stable periodic solutions that are not weak
chimeras; see for example Figure 8(d). Figure 9 shows the branches of equilibrium and
periodic solutions on varying α for r = 0. One can verify that there are stable weak chimera
states within A1 for |α−π/2| and small but non-zero r; these are connected via a homoclinic
bifurcation to the branches in Figure 9. Many of these are also stable transverse to A1

though we do not compute these in detail.
Bifurcations for the system (15,2) were computed using XPPAUT [9] and dstool [8] and

include the following.1 Lower case letters refer to Figure 8 while capital letters refer to
Figure 9. There is an Andronov-Hopf bifurcation for the contractible (non-chimera) cycle
for 0 < α < π/2 on increasing r (for example, for α = 1.5, r = 0.011707) and B,O. There is
a homoclinic bifurcation of a non-chimera cycle at N,M ; transition from (b) to (c) and (e) to
(f). There is a saddle-connection for the weak chimera-cycle A,C,E,K and (g), (k). There
is a saddle-node bifurcation of two weak chimera-cycles at L and a pitchfork bifurcation of
three weak chimera cycles at B, with transition from (i) to (j). There is a saddle-node for
the equilibria at I,H and (l). There is a pitchfork of equilibria at (b) with α ≈ 2.91) which
is degenerate for at J,D r = 0, α = 0 and α = π.

For r = 0 there is a line of degenerate bifurcations D,B,O that are resolved into generic
saddle node bifurcations I,H on taking r 6= 0. For r = 0, the only branch of stable weak
chimeras BC is for α > π/2 while there can be multistability in the region BL between
in-phase, weak chimera and “non-chimera” periodic orbits for r 6= 0.

Finally, we note that the network Figure 5(b) has attracting periodic weak chimera
solutions in the invariant subspace A4, while the network Figure 5(c) has periodic weak
chimera states belong to the invariant subspace (a, b, c, c+π, b+π, a+π). The latter system
also appears to have weak chimera states for the special case of Kuramoto–Sakaguchi coupling
(r = 0).

5 Discussion

This paper proposes a definition of weak chimera state for indistinguishable networks of
identical phase oscillator networks, based on nontrivial clustering of frequencies. Our defi-
nition makes only minimal restrictions on the dynamics and stability of a weak chimera; we
find examples of quasiperiodic and heteroclinic chimeras but there is nothing to stop weak
chimeras being chaotic in systems for higher N . Our definition is restrictive in that we only
consider phase oscillators coupled through indistinguishable coupling, though this can be
generalised e.g. to coupled chaotic oscillators with an observable whose average is different
for different oscillators in an attractor of the network. It should be straightforward to extend
the notion of indistinguishable oscillator network to coupled cell networks with one cell type
[11].

We do not attempt here to characterize the behaviour of weak chimeras in the limit
N → ∞. The Antonsen-Ott ansatz [23] has been very successfully used to understand

1Note that in order to path-follow weak chimeras, the trajectories are not closed curves in phase coordi-
nates - instead one must embed into a higher dimensional system where they do close.
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Figure 8: Phase portraits for the reduced system (15,2) in the ξ, η ∈ [0, 2π) plane. Red —
attractor, blue — repellor, green — saddle, magenta — neutral, homo/heteroclinic cycle.
The parameter values are as follows: (a) r = 0, α = 0.5, (b) r = 0, α = 1.3, (c) r = 0,
α = 1.5, (d) r = 0, α = π/2, (e) r = 0, α = 1.64, (f) r = 0, α = 1.84, (g) r = 0,
α = 2.16205, (h) r = 0, α = 2.22, (i) r = −0.01, α = 1.561, (j) r = −0.01, α = 1.558, (k)
r = −0.01, α = 1.5517, (l) r = −0.01, α = 1.97794. The periodic orbits that wind around
the ξ direction of the torus are weak chimera states while the contractible periodic orbits
are not weak chimeras; see text for more details.
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Figure 9: Top: Bifurcation diagram for the reduced system (15,2) (a) for the Kuramoto-
Sakaguchi case r = 0 and (b) for r = −0.01. Red lines indicate stable equilibria, black are
unstable equilibria. Green/blue/cyan lines indicate unstable/stable/neutral periodic orbits.
Observe the bifurcations and non-generic “vertical branches” of periodic orbits for α = π/2
that resolve into several generic branches of periodic orbits for r 6= 0 while BC and KL are
branches of stable weak chimera states. Bottom: Close-up of some branches for r = −0.01;
see text for more details.
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chimera states (for example, in [17, 18, 21, 25]), though the coupling we consider (2) only
allows this ansatz to be applied in cases where there is the clear degeneracy r = 0. As
chimeras are associated with coexistence of “coherent” and “incoherent” clusters, a good
definition of chimera will require a discussion of scaling properties of these cluster sizes,
which we have not done here. These scaling of properties will need to be verified in families
of networks rather than for individual networks.

Chimeras in larger systems are often observed to exhibit slow and random drift of the
incoherent clusters, for example see [30]. This means that a stable chimera may have iden-
tical frequencies when computed over long enough timescales, unless the regions of different
behaviour are “pinned” to fixed domains. We suggest that weak chimeras, while not stable
in such a situation, will serve to organize the behaviour within the attractor.

Finally, our study suggests a reason why chimeras appear to be transients [30] for
Kuramoto-Sakaguchi coupling in small systems of phase oscillators. Many of the weak
chimeras for the four oscillator system (4,2) and the six oscillator system (12,2) have de-
generate stability for r = 0. This means that transients near weak chimeras may have very
long lifetimes. However, generic reductions of phase oscillator systems will have r 6= 0 [14]
and non-degenerate stability.
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