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Summary: In this paper we present a novel, flexible, and multi-purpose class of designs for initial exploration

of the parameter spaces of computer models, such as those used to study many features of the environment.

The idea applies existing technology aimed at expanding a Latin Hypercube (LHC) in order to generate

initial LHC designs that are composed of many smaller LHC’s. The resulting design and its component

parts are designed so that each is approximately orthogonal and maximises a measure of coverage of the

parameter space. Designs of the type advocated for in this paper are particularly useful when we want to

simultaneously quantify parametric uncertainty and any uncertainty due to the initial conditions, boundary

conditions, or forcing functions required to run the model. This makes the class of designs particularly suited

to environmental models such as climate models which contain all of these features. The proposed designs

are particularly suited to initial exploratory ensembles whose goal is to guide the design of further ensembles

aimed at, for example, calibrating the model. We introduce a new emulator diagnostic that exploits the

structure of the advocated ensemble designs and allows for the assessment of structural weaknesses in the

statistical modelling. We provide illustrations of the method through a simple example and describe a 400

member ensemble of the NEMO ocean model designed using the method. We build an emulator for NEMO

using the created design to illustrate the use of our emulator diagnostic test.
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1. INTRODUCTION

The use of complex mathematical models, typically in the form of coupled ordinary, partial

or stochastic differential equations, to describe complex physical systems is important in

many diverse scientific disciplines. Where these equations cannot be solved analytically and

must, instead, be solved numerically using computer simulations, the developed models are

referred to in the statistics literature as ‘computer models.’ Such models are ubiquitous

in environmental applications, with examples including models used to study the risk and

impacts of natural hazards such as volcano eruptions and tsunamis; and models used to study

the past present and future behaviour of the Earth’s climate. The study of complex systems,

such as the climate, using computer models introduces a number of sources of uncertainty

that must be quantified so that appropriate inferences about the system can be made and

to facilitate decision making. Quantifying this uncertainty through the design and analysis

of computer experiments has become an active and important avenue of statistical research,

and a rich methodology for addressing typical problems now exists (Santner et al., 2003).

That methodology is based on emulators, sometimes referred to as ‘surrogate models’.

An emulator is a stochastic representation of the computer code that, for any setting of

the inputs to the model (what we will also refer to as the model parameters), returns a

prediction for the model response and an uncertainty on that prediction. This is powerful

because an emulator can produce a prediction in a fraction of the time required to run the

computer model. Computer models can take anywhere from a few seconds to a few months

to evaluate for any particular choice of the inputs, so an emulator, once built, becomes

an invaluable tool for exploring the parameter space, calibrating the model, and providing

decision support. There are now published statistical methodologies using emulators to assist

in each of these problems (see, for example, Oakley and O’Hagan, 2004; Lee et al., 2011;

Kennedy and O’Hagan, 2001; Vernon et al., 2010; Williamson and Goldstein, 2012).

An emulator is built by first systematically sampling the input parameter space to design a
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set of “training runs”, typically referred to as an “ensemble” in the environmental literature,

and using the ensemble to fit the emulator. The central role played by the emulator has lead

to a large literature on designs aimed at building accurate emulators. Before any runs of the

model have been observed, this design is most likely to take the form of a “space filling”

design: a design aimed at exploring as much of the parameter space as possible. Many classes

of space filling designs have been proposed, including Sobol sequences (Fang et al., 2005),

Orthogonal arrays (Tang, 1993) and Latin Hypercubes (LHC’s) (McKay et al., 1979), with

the latter being the most popular in practice.

A Latin Hypercube of size n divides each dimension of the input space into n bins and

ensures exactly one point is sampled from each bin. The sampling can be done with respect

to any prior distribution on the parameters, but in a purely exploratory design, such as

those we are discussing in this paper, it is most common to use a uniform LHC, whereby

the range of each input is divided into n equally spaced intervals and the resulting LHC

represents each interval exactly once. There is now a considerable literature on space filling

LHC designs focused on constructing designs so that they satisfy one or a number of desirable

properties. For example, they can be designed to have a specified correlation structure (Iman

and Conover, 1982), to be orthogonal or nearly orthogonal (Sun et al., 2009; Gu and Yang,

2013) or to maximise some measure of coverage such as the minimum distance between

points as in the case of maximin LHC’s (Morris and Mitchell, 1995).

The popularity of LHC’s has led to research into extending initial LHC designs in a way

that retains the properties of the original. Indeed the interest in Sobol sequence designs was

due to the ability to add to the design once created (Challenor, 2011). The rationale is that,

having spent an initial budget of model runs on an n-point LHC, we may get access to

further runs and would like to know where to put them. Sallaberry et al. (2008) introduced

a method for doubling the size of a LHC whilst retaining approximately the same rank

correlation structure. They provide an algorithm for extending a LHC of size m into one of
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size 2m and state that the algorithm could be generalised to extend to any size km, with k

a positive integer. In this paper we will provide this generalisation.

It is the view of this author that, having run an initial exploratory ensemble using a space

filling design, an optimal “second wave” ensemble design is unlikely to take the form of a

LHC or even be space filling, and that information from the initial ensemble should be used

to guide the analyst towards regions of interest that may be more heavily sampled, and

away from uninformative or unphysical regions of space, (see, for example, Loeppky et al.,

2009). For example, suppose an initial ensemble of climate model runs allowed us to confirm

that a half of our parameter space contained only ice planets. We would be very reluctant

to spend about half of our remaining run budget exploring this region of parameter space

in a second ensemble as we would if our design was a LHC in the full space, because we

are interested in the behaviour of the model when the global temperature is not completely

unphysical. However, the ability to expand space filling designs may be extremely useful in

the construction of the initial design itself.

There are a number of reasons we might wish to do this. One such reason may be found

in the desire to construct robust emulators of the model. Typically, an emulator is built

using part, or all, of an ensemble and then validated using a number of diagnostic checks

(Bastos and O’Hagan, 2009). Some of the more powerful tests involve assessing the predictive

performance of the emulator on as yet unseen runs. If subsets of the design have similar

properties to the whole, for example if they are also LHC’s, these can be left out and used

in validation and diagnostic checking that aims to assess performance throughout parameter

space.

Perhaps the best case for designs of the type advocated here, is for computer models

whose output depends on uncertain initial conditions, forcings, or boundary conditions.

Environmental models are typically of this variety and, indeed, climate models have all three

properties. For a climate model, the initial conditions represent the temperature, salinity
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and momentum of air/water for every grid box in the model at the time any parameters

are changed, or any forcings (e.g. increasing CO2 or aerosols) are applied, and boundary

conditions, for example, might tell the model what to do with water at the poles. Initial

condition uncertainty (and the other sources) must be addressed as part of the emulation

and analysis of the model output. To quantify initial condition (IC) uncertainty, for example,

part of the ensemble requires no change to the parameters whilst the initial conditions are

varied. If the IC uncertainty does not depend on the parameters, the “initial condition

ensemble” can be run in isolation, merely factoring into budget constraints. However, in our

experience this is not the case, and the sensitivity to the IC’s depends on where you are in

parameter space. If our master space filling design is constructed using smaller space filling

designs with the same property, we can select one of these sub-designs and vary the initial

conditions for each member of it, This enables us to model the IC uncertainty as a function

of the parameters by emulating the variance as a first step to emulating the full model, (see

Vernon and Goldstein, 2010, 2014, for examples emulating the variance then the mean in

systems biology).

Sliced Latin Hypercubes (Qian, 2012; Huang et al., 2014; Yin et al., 2014; Ai et al., 2013)

are Latin Hypercubes that are constructed using a set of smaller Latin Hypercubes. These

designs are most similar to the ones we introduce in this paper. Indeed k-extended LHC’s may

be seen as a special case of a sliced LHC where instead of the design generation algorithm

focussing on setting all smaller sub-LHC’s and the main together (in order to optimise some

criterion), ours are “grown” from a master LHC. Though sliced LHC’s would allow us to

achieve better emulator diagnostics (as described later) than a standard LHC (just as the

method we will advocate here would), the existence of an important sub LHC from which

the design is “grown” will be more useful for exploring IC uncertainty.

Nested Latin Hypercubes (Qian, 2009) are Latin Hypercube designs that contain a sub-

design that is also a Latin Hypercube. They are motivated by computer experiments for
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hierarchies of computer models of different fidelity or resolution. Many expensive models can

take so long to run, that only a handful of runs can be performed. However, low resolution

versions often exist that can be used to assist in emulation of the high resolution version.

The idea is that a large design is used to emulate the low resolution model, and then this

information plus a small design on the high resolution model is used to emulate the model of

interest (see, for example, Williamson et al., 2012). Nested Latin Hypercubes are one type

of design aimed at simultaneously designing for both of these experiments at the same time.

We might view the designs advocated in this paper as containing useful features of both

nested and sliced LHC’s.

In this paper we generalise the algorithm of Sallaberry et al. (2008) to the case where

k ≥ 2, in order to construct initial LHC designs that are made up of many LHC’s. We term

our designs “k-extended Latin Hypercubes”. We also present an algorithm for ensuring that

sub-designs and the whole design are “orthogonal-maximin” designs using a definition similar

to that used by Joseph and Hung (2008). We discuss exploring IC uncertainty and emulator

diagnostics with k-extended LHC’s, and introduce a new form of diagnostic available for

ensembles generated from k-extended LH designs. We apply the technology to the design of

an exploratory ensemble of the NEMO ocean model (Madec, 2008) at 2o resolution, and we

use the ensemble to emulate the model, and validate our emulator. We also provide R-code

in the supplementary material that can be used to generate designs of the type described in

the paper.

In Section 2 we formally define Latin Hypercubes and present the k-extension algorithm. In

Section 3 we introduce an algorithm for generating orthogonal-maximin k-extended LHC’s

and compare these designs to sliced LHC’s in a simple numerical example. In Section 4

we argue for the application of our approach to quantifying initial condition uncertainty in

certain applications and present a novel emulator diagnostic available for ensembles with

these designs. Section 5 describes the design of our ocean model ensemble and illustrates the
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use of our new emulator diagnostic. Section 6 contains discussion. A technical appendix

contains two results and proofs required by the algorithm of Section 3. The R code

implementing the design algorithm is part of the supplementary material.

2. LATIN HYPERCUBES AND K-EXTENSIONS

2.1. Latin Hypercubes

Let f(x) denote a computer model with input vector x = (x1, . . . , xm)T , with x in a

continuous, predefined real space X which can be scaled to the unit hypercube [0, 1]m.

Throughout this paper we assume that nothing is known about f , other than the parameter

ranges that define X , so that, as part of an initial exploratory design, we do not favour

points in any particular regions of X by imposing probability distributions on each of the m

inputs.

Let rj denote the range of xj and suppose that each rj is divided into n equal intervals

rij, i = 1, . . . , n, then an n-point Latin Hypercube, X = (x1, . . . ,xn)T , is such that there

is a unique row of X, xk, with xkj ∈ rij for j = 1, . . . ,m and i = 1, . . . , n. In words, each

sub-interval rij is represented exactly once in the LHC, X.

A LHC is easily generated by first selecting an rij for j = 1, . . . ,m, and then uniformly

choosing a point from the identified rectangular solid ri11 × ri22 × · · · × rimm (rijj is a

particular sub-interval chosen for variable j, so at this first step, each ij ∈ {1, . . . , n}). This

obtains x1. Remove the selected rijj from the set of available sub-intervals {r1j, . . . , rnj} for

j = 1, . . . ,m, then repeat the procedure for identifying a solid, obtaining a new point x2,

reducing the set of subintervals and so on until x1, . . . ,xn have been generated. There are

statistical software packages such as lhs in R, that have been developed to do this.

This procedure can be used to generate a LHC, but it is no guarantee of generating a good

one with desirable space filling properties. For example, there is no reason that the resulting
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design shouldn’t have points close together or be highly correlated. ‘Optimal’ LHC algorithms

attempt to generate a LHC with desirable properties. For example, a maximin LHC seeks to

maximise the minimum distance between points. This can be done by generating a random

LHC using the above procedure then permuting the entries in each column in order to

optimise some pre-chosen criterion. The function maximin in the lhs package in R performs

this function in order to maximise the minimum distance between points.

A useful way to think about generating LHC’s for us will be to consider integer LHC’s,

whereby the n×m LHC has each column filled by some permutation of the integers {1,. . . ,

n}. The ith row of this matrix, (i1, . . . , im) with ik ∈ {1, . . . , n}, identifies the ranges of

subintervals {ri11, . . . , rimm}, pointing to a solid, ri11 × · · · × rimm, from which xi can be

chosen as described above. We can easily permute the entries of any individual column or of

multiple columns in order to generate new LHC’s. The integer representation of the LHC,

X, can be viewed as a rank representation of the design, with the rank of each input k in

the jth design point being the jkth entry of the integer LHC used to generate X. This idea

is central to extension of LHC’s proposed by Sallaberry et al. (2008), which we will describe

in more generality here. It will also be useful to us in optimising our LHC and its component

parts.

2.2. k-Extended Latin Hypercubes

We now present our generalisation of the extension algorithm of Sallaberry et al. (2008).

Though Sallaberry et al. (2008) describe the algorithm for extending an n-point LHC into

a 2n point LHC and state that it can be generalised to extension to kn point LHC’s with

positive integer k, we present the algorithm for kn points directly. We do this because firstly,

the extension to the general case is not trivial, and secondly, because our goal is to produce

initial designs that are themselves LHC’s made up of many component LHC’s with the whole

and component parts satisfying desirable properties. In particular, we will want to maximise
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some measure of coverage, as will be described in Section 3, and produce a design where

each variable is as orthogonal as possible. The reasoning behind the latter design goal is to

ensure identifiability of main parameter effects during emulation. Our ultimate aim is to use

the design to build a robust emulator that can then be used in any given UQ method or in

order to guide future designs to regions of the parameter space that are important.

What follows is a description and justification of the procedure followed by a technical

statement of the algorithm. We start by generating an n-point LHC, starting with an integer

version and selecting the actual values in X as described in the previous section. We ensure

that our initial design has desirable properties (e.g. coverage) at this stage by ensuring our

design optimises some pre-chosen criterion, as described in Section 3. An example 8-point

LHC in 2-dimensions is shown in Figure 1 with the points representing the rows of X and

the shaded boxes representing the rows of the integer LHC chosen to generate the points.

For example, the left most shaded region represents the row of the integer LHC with entries

{1, 3}.

[Figure 1 about here.]

Our goal is to end up with a kn-point LHC comprising k n-point LHC’s, so we require

a further k − 1 extensions to this LHC. For the first extension we choose another integer

LHC so that both it and the 2n×m matrix of integers formed by stacking the two integer

LHC’s row-wise meet our criteria described in Section 3. This second integer LHC identifies

the m-dimensional rectangular solids in which the new points will reside, as depicted for our

ongoing example in part (a) of Figure 4. We now divide each of the identified solids into km

equally sized solids by dividing the range of each input within that solid into k identically

sized bins, as shown in part (b) of Figure 4.

For each sub-solid within each solid specified by our new integer LHC, we can search each

dimension of the current LHC, X, for a point anywhere in the design within the range of

the dimension in question determined by the chosen sub-solid. One can view this exercise
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as looking through our chosen sub-solid along each of its dimensions to see if any existing

design points are visible. Note that (k − 1)m of these sub-solids will have no visible points

along any of the dimensions. Select one of these sub-solids at random and uniformly select

a point within it. Repeat this for each solid identified by the integer LHC and extend the

design X by adding the n new rows identified by this procedure. Note X is no longer a LHC,

but it is a design comprising 2 n-point LHC’s.

We now repeat this process a further (k-2) times. First choosing an n-point integer LHC

with desirable properties when combined with all other integer LHC’s used in the design,

then dividing each identified solid into km identically sized solids before looking along each

dimension of the design through each sub-solid in order to identify all sub-solids with no

visible points along any dimensions. When adding the jth additional n-member LHC to the

original X, there will be (k − j)m such solids from which a sub-solid may be selected at

random and a design point selected uniformly from within. This is shown for a 5-extended

LHC of dimension 2 and size 40 in Figure 5. Part (a) of Figure 5 shows the process after

2-extensions with the 3 chosen integer LHC’s highlighting the selected solids coloured in red,

cyan and green, and the chosen points in black. Note that along any of the sub rows/columns

there is a maximum of 1 point. When the final extension occurs, exactly 1 sub-solid in each

identified solid will be eligible for a new point, and, following its placement and addition of

all points into X, every one of the kn equally sized sub-intervals of each dimension of X will

be represented exactly once in X. So X is a kn LHC comprised of k n-point LHC’s where

the whole and the sequentially generated sub designs have been engineered to have desirable

properties. This is depicted for our on-going example in part (b) of Figure 5.

2.3. k-Extended Latin Hypercube generation algorithm

Step 1 Choose an n-point integer LHC with optimal properties (see Section 3) and use the

procedure defined in Section 2.1 to generate an n-point LHC, X, of points in X . Set
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counter c = 2.

Step 2 Choose a new n-point integer LHC with optimal properties (see Section 3) and with

similar properties when stacked by row with the previous c− 1 integer LHC’s used in

the procedure.

Let si represent rectangular solid i, i = 1, . . . , n, represented by the ith row of the new

integer LHC, Iij, j = 1, . . . ,m, where si = rIi11 × · · · × rIimm.

Step 3 For each i = 1, . . . , n, divide si into km identically sized sub-solids by dividing each edge

rIijj of si into k equally spaced intervals ρ
[l]
ij for l = 1, . . . , k; j = 1, . . . ,m; and with each

sub-solid of the form

ψil = ρ
[l1]
i1 × · · · × ρ

[lm]
im , l = (l1, . . . , lm)T .

Step 4 For each i = 1, . . . , n, identify the (k − c+ 1)m solids ψil such that Xtj /∈ ρ
[lj ]
ij for

t = 1, . . . , (c− 1)n and j = 1, . . . ,m, and choose one at random. Label this choice

ψ∗il = ρ
∗[l1]
i1 × · · · × ρ

∗[lm]
im .

Step 5 Define the matrix X̃ij by uniformly sampling from ψ∗il. Specifically, by sampling

uniformly from each of the intervals ρ
∗[lj ]
ij for j = 1, . . . ,m.

Step 6 Let

Xij =


Xij i = 1, . . . , (c− 1)n

X̃ij i = (c− 1)n+ 1, . . . , cn.

Let c = c+ 1, if c > k STOP, else go back to Step 2.
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3. GENERATING ORTHOGONAL MAXIMIN K-EXTENDED LATIN

HYPERCUBES

It is the goal of this paper to advocate for k-extended LHC’s as a good initial exploratory

design capable of allowing us to build and validate an emulator that can then be used by

the analyst, perhaps in further interrogation of the model. Hence our two main criteria will

be that the design is “space filling” so that we explore as much of the parameter space as

possible, and also that it is uncorrelated, so that the main effects, at least, are identifiable

during the statistical modelling phase.

To achieve this we use the idea of finding what Joseph and Hung (2008) termed “orthogonal-

maximin Latin Hypercubes”, defined to minimise a weighted sum of measures of total

correlation in the design and coverage on an appropriate scale. We work with M c, the integer

representation of the design at step 2 of the k-extension algorithm, where each column of M c

has c permutations of the integers {1, . . . , n}. The correlation component of the Joseph and

Hung (2008) criterion is the average square correlation on the lower triangle of the design’s

correlation matrix:

ρ2 =
2
∑m

i=1

∑i−1
j=1 ρ

2
ij

m(m− 1)
ρij = corr

[
M c

,i,M
c
,j

]
.

Coverage is measured using the φp statistic

φp =

(cn
2 )∑

i=1

1

dpi


1/p

with d1, . . . , d(cn
2 ) the inter site distances in M c, d(s, t) =

∑m
j=1 |sj − tj|. This is the same

criterion commonly minimised in the design literature when looking for maximin designs as

it can be shown that as p gets large, minimising φp is equivalent to finding the minimum di

and maximising it (Morris and Mitchell, 1995).
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Joseph and Hung (2008) ensure that the two criterion are on the same scale by deriving

upper and lower bounds φp,U and φp,L for φp, and then their criterion is

ψp = ωρ2 + (1− ω)
φp − φp,L

φp,U − φp,L

(1)

for weight ω that can be chosen by the analyst to represent their preferences for orthogonality

or coverage. We will use a similar criterion to theirs to optimise each phase of our k-extension.

However, we need a slightly different version of φp to assess the coverage of the designs formed

at step 6 of the algorithm and this leads to different bounds φp,L and φp,U .

We define

di =
m∑
j=1

dj,i i = 1, . . . ,

(
cn

2

)
,

where the dj,i are inter site distances for column j of M c. Because we are extending an

original LHC, each column of M c will have c repeats of the integers {1, . . . , n}. This means

that some of the dj,is as defined above, are zero, which leads to a theoretical upper bound

φp,U of ∞. To overcome this, we set any zero dj,i to 1/k, the smallest distance between

the centres of the sub-solids that the k-extended points will eventually occupy. With this

modification to φp, we can show that

φp,L ≤ φp ≤ φp,U

with

φp,L =

(
cn

2

)1/p

/d̄, φp,U =

(
kpnc(c− 1)

2m
+

n−1∑
i=1

c2(n− i)
mip

)1/p
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and

d̄ =
mnc (ck(n2 − 1) + 3(c− 1))

6k
(
cn
2

)
A derivation of these bounds is given in the appendix. With the criterion ψp as in (1) in

place, we can use a simulated annealing algorithm to ensure each extension to the design

at step 2 minimises ψp. This is a common approach to optimising a criterion in computer

experiment design since it was proposed by Morris and Mitchell (1995). The idea for general

LHC’s is to choose a random column and to permute two of the entries (the result is still a

LHC). If the criterion improves the new LHC is accepted, else it is accepted with probability

exp{−(ψp,new − ψp,old)/t}, where t is a pre-chosen “temperature”. A simulated annealing

algorithm will repeat this many times, whilst slowly reducing t, until it has converged on

the design with the optimum ψp.

We take this same approach, but, as we are extending the LHC sequentially, we preserve the

first (c− 1)n rows of M c and only allow elements of the last n rows of the candidate design to

be permuted within randomly selected columns. Aside from this modification to which rows

may be permuted, the algorithm we use is that established in Morris and Mitchell (1995)

as applied to ψp (also described in Joseph and Hung, 2008), hence we do not reproduce it

here.

A particular advantage of our approach to sequentially extending a LHC over a sliced

LHC is that each of the designs corresponding to the first n, 2n, . . . , kn points is optimal

with respect to ψp (given the previous sub-designs) so can be considered an orthogonal-

maximin design (though only the first and the last of these are LHC’s). This can be useful,

for example, for experiments that have to be queued on supercomputers where, for whatever

reason, it is possible that not every run will be completed. This is not uncommon in these

situations. For example, if there is a deadline, run time of the model plus the supercomputers

workload and the priorities of your job on the system may mean that only the first N , say
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(with N < kn) are completed in time. Our design construction would ensure that there was

a sub-design of ln(l < k) runs that were optimally orthogonal and space filling (via ψp and

given the previous (l − 1) sub-designs) consisting of l n-member LHC’s. The criterion we

present here is implemented in the R-code that accompanies the paper.

Before proceeding to compare the performance of orthogonal-maximin k-extended LHC’s

with other designs, we note here that our k-extension algorithm, when finding an orthogonal-

maximin k-extended LHC, only optimises our criterion for the integer LHC’s that make up

the design. Step 4 and 5 of our procedure put the extended points in random available sub-

regions of the solids identified by our integer design. A future extension of this methodology

might look at selecting optimal sub-region location for the extra points.

3.1. Numerical comparison of a k-extended LHC and a sliced LHC

We illustrate the differences between sliced LHC’s and k-extended LHC’s through a short

numerical example. The R package SLHD generates maximin sliced Latin Hypercubes. Our

comparison makes use of sliced LHC’s generated by this package, and maximin LHC’s

generated by the maximinLHS function in the package lhs. Both packages are freely available

online from CRAN. We compare these with performance of k-extended orthogonal-maximin

LHC’s generated using the algorithm above and optimising ψp with p = 50 and ω = 0.2

reflecting a leaning towards obtaining space filling designs over orthogonality.

For both tests we compare a full LHC of size 40 with 2 columns on [0, 1], made with 5, 8

member LHC’s (as in our earlier example). The maximin LHC will be 40× 2 and will not

be composed of 5 smaller LHC’s as with our other designs. Figure 2 compares the values of

ρ2 (solid lines) and φ50 (dashed lines) calculated on the scaled representation of the designs.

Blue lines represent the k-extended LHC, red the sliced LHC and green the maximin LHC.

Darker lines in each colour represent the values of the statistics for the individual sub-LHC’s

and lighter lines represent the cumulative values calculated using the first slice, the first 2
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combined and so on. As the maximin LHC is not made up of individual sub-LHC’s, only the

values for the full design are plotted.

[Figure 2 about here.]

Focussing first on coverage measured by φ50, we note that the maximin sliced LHC with a

value of around 6.8 outperforms the k-extended LHC (19.1) and the maximin LHC (21.2) on

the full LHC. Though it is expected that the sliced LHC should outperform the k-extended

LHC here as it has been set up to optimise this statistic in particular, it is strange that

the maximin LHC should be beaten at all. Further investigation of φ50 for 40× 2 LHC’s

generated by maximinLHS gave a sampling distribution containing values as small as 9.1

and as large as 45, though values for the other two algorithms remained consistent around

those generated here. As both the k-extended LHC and the sliced LHC are valid designs for

maximinLHS, we can conclude that this is probably an issue with the internal optimiser used

for this function.

Though the sliced LHC provides better coverage for the larger LHC, the k-extended LHC

has better coverage for the first LHC and the composite of the first and second, and has

similar coverage properties for the 4th and 5th sub-LHC’s. Though not guaranteed, because

the k-extended LHC is optimising a weighted sum of the correlation and the coverage, as

we have a larger weight on coverage we should expect the k-extended LHC to outperform

the sliced LHC for the first LHC at least (and perhaps number of composites). Whilst the

sliced LHC is maximin for the whole design, the k-extended LHC is “optimal” (w.r.t. ψ50)

for the first sub-design, then for the first 2, given the first, then for the first 3 given the first

2, etc. The importance placed on the first sub-LHC is particularly appropriate in situations

where the first design will be used to quantify any parametric dependence on initial condition

uncertainty (see Section 4 for detailed discussion).

The k-extended LHC outperforms the maximin-sliced LHC across the board for ρ2, though,

as correlation is not accounted for by the sliced LHC generation method, this shouldn’t be
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surprising. We note, in particular, the low correlation for the first LHC in the k-extended

LHC. As with the results on coverage, a key advantage of using k-extended LHC’s is that

the first design is optimised and so can be used as a lynch pin for the design (as would be

the case for a nested LHC). We discuss this further below.

4. EXPLORATORY DESIGNS WITH K-EXTENDED LHC’S

In this section we discuss two important ways in which the features of this type of exploratory

design can be exploited in applications: the quantification of initial condition uncertainty and

the generation of novel emulator diagnostics.

4.1. Initial condition uncertainty and stochastic models

In many applications, the initial conditions at which the model ought to be run are uncertain,

and that uncertainty propagates to the output. This is particularly true for models that are

what Williamson and Blaker (2014) referred to as “structurally chaotic”. A structurally

chaotic model is deterministic, meaning that running the model twice for the same set of

inputs and initial conditions will lead to exactly the same output. However, slight changes

to either can have a substantial effect on the evolution of any time series output, though this

effect would be ‘averaged out’ if taking a long term mean. This has also been referred to as

“sensitive dependence on initial conditions” (Rougier, 2013).

This is the case with climate and other environmental models, where though long term

trends and averages would generally be preserved by a slight change to the initial conditions,

the evolution of the time series and the ‘weather’ at any time point may be quite different. If

the goal of an analysis with a climate model is to infer something about the climate response

to short term forcing, such as that which may be expected in the first half of the 21st century,

then the model’s initial conditions may have a non-negligible effect on the model output.
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Hence the uncertainty in the computer model response due to the initial conditions should

be quantified. In the climate literature this source of uncertainty is generally referred to as

internal variability.

The contribution of this source of uncertainty need not be constant throughout parameter

space. Whilst it may be natural to start with an emulator of the form

f(x) = g(x) + δ (2)

where g(x) represents the signal that might be emulated normally via a Gaussian process

(see, for example Sacks et al., 1989; Haylock and O’Hagan, 1996), and noise process δ ∼

N(0, σ2) (normality is used for illustration here rather than being crucial to the argument),

it is more reasonable to expect

f(x) = g(x) + δ(x), δ(x) ∼ N(0, σ2(x)) (3)

where the variance of the noise process depends on the model parameters in some way.

In order to quantify initial condition uncertainty under (2), we require repeated runs in

input space where initial conditions are changed, (see Deser et al., 2012, for an example of

this approach applied to a climate model). The ‘initial condition ensemble’ as it is referred

to in the climate literature, could then be used to estimate σ. However, under (3), our goal

should be to model σ as a function of x, thus describing how initial condition uncertainty

varies with the parameters. We then require a design in X at which to vary the initial

conditions. As this design will be used to emulate σ(x) in the same way we would emulate

any computer model, any properties we consider important to preserve in our design for the

computer model (in this paper we have focussed on orthogonality and good coverage), will

also be desirable to preserve in this design.

As part of an initial exploratory design then, it seems natural to want to spend some of
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the runs on quantifying σ(x) and some modelling g(x). A k-extended LHC is a natural way

of simultaneously achieving both goals. We have a LHC design that can be used to get g(x)

and a small part of that design is also a separate LHC which we can use to run an initial

condition ensemble. This argument also applies to stochastic simulators, where running the

model at the same choice of the parameters would lead to different answers. In applications

with these simulators, it is already practice to emulate the variance as a function of the

parameters (Vernon and Goldstein, 2010, 2014), though designs for these simulators have

tended to use a number of repeats for every explored parameter choice. K-extended LHC’s

would provide an alternative that allows the budget of runs to be more flexibly divided

between the goals of modelling σ(x) and g(x).

We note that, as described above, a nested LHC is as useful, if not equivalent to the

k-extended LHC in terms of simultaneously exploring parameter and initial condition

uncertainty. However, the k-extended form has more flexibility, allowing us, for example,

to devote two of our sub-LHC’s to initial condition ensembles so that we have an initial

condition ensemble for training and one for validation. Before moving on it is worth noting

that we have not commented on how the run budget should be divided between changes

to the initial conditions and to the parameters. This would provide an interesting avenue

of further research. However, we suspect that the answer to this may be problem specific

and that an initial exploratory design aimed at gaining enough information to answer this

question may be required anyway.

4.2. Emulator diagnostics

The exploratory designs we advocate for here are intended to be used to build emulators,

which may then be used for whatever analysis is deemed important, including the designing

of subsequent runs in regions of the parameter space of interest that are identified by the

emulator. For example, history matching, a statistical method that uses emulators to rule
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out regions of input space that lead to unphysical models (Craig et al., 1996; Vernon et al.,

2010), points to a region of input space that may be explored by further experiment. Other

subsequent designs for the computer model may be used to reduce emulator uncertainty

(Loeppky et al., 2009), search for an optimal parameter setting (Gramacy and Lee, 2011) or

reduce uncertainty in a specific model-based forecast (Craig et al., 2001).

Of importance to any of the above mentioned methods, or, indeed, any analysis using an

emulator in place of a computer model, is the accuracy of the emulator. Namely, that the

predictions made by the emulator and the uncertainty on those predictions is consistent with

untested model output. Validation and diagnostic checking aim to assess the quality of an

emulator.

Suppose we are building an emulator to address the response to the model inputs only, the

function g(x) in Equations (2) and (3). A typical emulator for output i of g(x) is then

gi(x) =
∑
j

βijhj(x)⊕ εi(x) (4)

where h(x) is a vector of basis functions in x, εi(x) is a weakly stationary Gaussian process

and the symbol ⊕ indicates the addition of independent terms. Emulation involves selecting

h(x), then fitting matrix β and the elements of a covariance function for ε(x), perhaps using

kriging or Bayesian methods (see, for example, Santner et al., 2003; Haylock and O’Hagan,

1996; Lee et al., 2011).

There are a number of methods available for performing diagnostic checking of the

emulator fit. For an overview see Bastos and O’Hagan (2009). One powerful method involves

reserving an input from the design, fitting the emulator using the chosen h(x) and covariance

parameters, then predicting the reserved point. Doing this for each point and plotting the

results is known as a “leave one out diagnostic plot”. By observing how often the true points

lie within the relevant confidence or credible intervals specified by the emulator, the quality

of the fit can be judged.
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Leaving out subsets of the design is another version of this diagnostic and is one that

allows the analyst to explore the sensitivity of any prior choices (such as those in h(x)) to

the chosen subset. Ideally, however, these subsets would not all be clustered in one region

of the input space as this might mislead the fitting of h(x) and convince the analyst that a

design that really was robust was flawed based on a test of a non-balanced subset of it.

K-extended LHC designs lend themselves naturally to this type of diagnostic checking, as

the kn member design actually has k “space filling” sub-designs contained within it. Each

sub-design may be reserved from the whole and the emulator fit with the remaining points.

Note that the remaining points do not form a LHC, but are still well spread in the input

space because they comprise (k − 1) space filling LHC’s of size n. The reserved points can be

predicted using the emulator built without them and the predictions compared with the true

values. We now have n prediction errors corresponding to a LHC (the reserved sub-design) in

the inputs. We term this diagnostic a Leave One Latin Hypercube Out (LOLHO) diagnostic

and it is available for k-extended and sliced LHC’s.

We plot the prediction with error bars representing the uncertainty in the prediction from

the emulator and overlay the true values. We do this for each LHC in the full design,

leaving that LHC out, refitting the emulator using the rest of the design, then plotting the

predictions and truth, against the fitted values or against each parameter in x. These plots

we term LOLHO diagnostic plots. They allow us to check the consistency of our uncertainty

specification, as in the leave one out situation, by seeing if enough/too many points are

within the error bars, as well as finding any systematic sources of prediction error in certain

locations of the parameter space that we may correct for, perhaps by adding further terms

to h(x), or otherwise.

We produce k LOLHO plots, one for each of the different sub-hypercubes, as part of

diagnostic checking and emulator validation, before finally using the full LHC to construct

our emulator if we are happy with the diagnostics. We demonstrate the use of LOLHO plots

21



Environmetrics D. Williamson

in Section 5. Note that we should still perform some other diagnostic checks on our final

model (see Bastos and O’Hagan, 2009).

5. K-EXTENDED LHC DESIGN OF A CLIMATE MODEL ENSEMBLE

5.1. The model and its parameter space

We are interested in finding settings of the NEMO ocean model (Madec, 2008) that remove

certain biases currently present in the model versions being explored by various projects

concerned with the model. NEMO is an ocean model which takes, as inputs, atmospheric

forcing files, and settings of parameters to control sub-gridscale mixing. Figure 3 shows

the output global mean temperature and salinity depth profiles for the current standard 2o

version of the model (blue line) compared to the observed temperature and salinity (red line,

with dashed lines representing the observation uncertainty). The grey lines represent runs

at the alternative parameter settings described in this section.

[Figure 3 about here.]

Following the approach of Williamson et al. (2014), where versions of the HadCM3 climate

model (Gordon et al., 2000) were found with dramatically improved ocean circulations, the

ultimate goal will be to history match the 2o version we have over several experiments wherein

which the ocean model is run at parameter settings chosen from within a region of parameter

space that is not ruled out yet (NROY) by comparisons to observations. Emulators are built

using these runs, and are then used to further reduce NROY space. History matching is an

established statistical methodology for focussing a search for informative models through

successive waves of comparison to observations. Craig et al. (1996) first applied it to oil

reservoir models, and it has also been applied to Galaxy formation models (Vernon et al.,

2010) and climate models (Edwards et al., 2011; Williamson et al., 2013).
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In all but the first wave, the parameter space will not be transformable to the unit

hypercube (and may not even be simply connected depending on the constraints imposed

by the observations), so special designs will be required to fill these spaces (for example

Williamson and Vernon, 2014). However, the initial parameter space, containing 1 switch

variable with 2 settings and 20 continuous parameters defined on a hypercube with the

ranges for each input elicited by the author from the developer of the code, Gurvan Madec,

must be explored somehow and our preference is for a LHC design. As has been common in

many applications we have worked on, very little is known about how the model will respond

to the sort of large changes to the parameters that are possible in an elicited design space.

Indeed, discovering how this response surface behaves is of great interest to the modellers

involved.

The model is extremely computationally expensive, taking approximately 7.5 hours to

complete 30 years of model time on the UK supercomputer ARCHER. Running expensive

climate models on supercomputers lends itself well to batch design. During the same 7.5

hours, we can run hundreds of parallel simulations. However, the pre- and post-processing of

this information requires human effort, hence the modellers prefer to run in relatively large

batches. We allocated 400 runs to this initial exploration of parameter space.

5.2. Experimental design

In order to quantify the major sources of uncertainty, it will be important to quantify

uncertainty due to model parameters and due to perturbations to the initial conditions.

Normally called “internal variability” by climate modellers, this initial condition uncertainty

will also depend on the model parameters. Much of this variability will be driven by the

variability in the atmospheric forcing we impose upon the model and how it interacts with

the ocean physics. There are two main options regarding the atmospheric forcing. We can

force the model using observations taken over a 30 year period, or we can apply a constant
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forcing using a climatology. Initially, our collaborators prefer to apply climatological forcing

to enable them to better understand the parametric response and to assist rapid convergence

to equilibrium from rest. We run the model for 180 model years under climatological forcing,

resubmitting the ensemble every 30 years, and perform our analysis on the results.

At this point, it makes little sense to waste a large amount of computing resource and

storage varying the initial conditions under climatological forcing, as the internal variability

will be damped by the constant atmosphere. However, having spun the model up and

allowed the parametric effect to be observed, we can continue each run applying the observed

atmosphere. When the oceanographers decide to run these experiments then, at this point,

initial condition uncertainty will become important and we may want to use some of our

computing resource to vary the initial conditions. To ensure that we can do this effectively

when the time comes, we create our 400 member ensemble using a 25-extended 16 point LHC

generated using the algorithm of Section 2. When we then perturb the initial conditions, we

can choose one of these LHC’s and select 7 initial condition perturbations for each member.

This would increase the ensemble size to 512, which is the largest size we can run without

doubling the number of processors that need to be reserved on the supercomputer. This

breakdown of our budget was chosen so that we felt we would have “enough” repeats to

approximate the internal variability, and so that our initial condition ensemble was spread

out “enough” to capture any parameter-dependencies in the initial condition uncertainty.

However, this particular breakdown of the design is not only useful if, in the future, we

intend to explore the response to changes in the initial conditions. It allows us to build

emulators with LOLHO diagnostics as described in Section 4.2. There were 2 settings of

the only switch in the model. For the first 16-member LHC, that which is earmarked for

initial condition perturbations if the modellers decide to run those experiments, we select 8

runs at each setting of the switch and configured them in order to minimize the maximum

absolute correlation between the switch vector and any continuous input in the design. We
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then selected 4 sub-LHC’s at random and fixed the switch at its first setting, and 4 more at

the other. This allows us to model differences between emulators developed for each switch

setting if it becomes apparent that these are substantial. The remaining 16 LHC’s were

each randomly assigned 8 values at each of the two settings. The configurations of all of

the 25 switch vectors were then fixed, however, in order to minimize any correlation we

may have introduced into the system, we searched through 1000 permutations of the last 24

vectors (preserving the order within each vector) for the lowest maximum absolute correlation

between the switch vector and each continuous parameter vector in the large design. We note

that with such a small sample size compared with the number of possible permutations, this

configuration of switch settings is unlikely to be optimal with respect to, say, ρ2. Optimally

configuring k-extended LHC’s with switch variables would be an interesting topic of further

investigation.

5.3. Emulating the ocean model

We will emulate the global mean sea surface temperature (SST) over the last 30 years of

the model output. SST is the ocean quantity for which we have the most complete real

world data, so it is logical as part of our wider goal of history matching to begin with this

output. Our emulator takes the form of model (4). We only provide brief details of the

statistical modelling here, as neither emulation techniques, nor the emulation of this ocean

GCM are the main topic of this paper. We report only the details required in order to present

novel emulator diagnostics based on having a k-extended Latin Hypercube design. Results of

history matching ORCA2 to SST and to other variables will be presented in another paper.

We begin the emulation process by searching for the regressors in the vector h(x) of

Equation (4) using a forwards and backwards stepwise selection method, discussed in the

appendix of Williamson et al. (2013). We then construct a Gaussian process emulator using

the technology described by Haylock and O’Hagan (1996) and Kennedy and O’Hagan (2001),
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but adding a nugget term (so fitting model (2), see Andianakis and Challenor, 2012). The

covariance function for the Gaussian process was a power exponential form with power 1.9,

as opposed to the usual fully Gaussian function with power 2, as it has been argued that

this is often too smooth (Bayarri et al., 2007).

We use the reference prior for the mean and variance parameters of the emulator as in

Haylock and O’Hagan (1996), but specify a prior distribution for the correlation lengths

and the nugget term (the latter is actually a parameter specifying the proportion of the

residual variation (from the regression surface) that is uncorrelated “noise”). Our prior for the

nugget is Beta(3.8, 1.7), with the beta parameters selected by elicitation using the MATCH

elicitation tool (Morris et al., 2014). To specify a prior for the correlation parameters, we

use the half-length correlation idea, which forms the prior question as one of thinking about

a prior for the correlation between ε(x1) and ε(x2) where x1 and x2 are equal for all but

the parameter in question, and where the distance between x1 and x2 is equal to half of the

range of the parameter in question. We use a Beta prior for the half length correlations of

each parameter and elicit the parameters using the MATCH tool so that the prior for each

half length correlation was Beta(2.9, 5). This prior form allows us to derive our priors for the

actual correlation parameters (see Williamson and Blaker, 2014, for more details).

To avoid running a long MCMC whenever we want to evaluate the emulator, we fix

the correlation and nugget parameters after conditioning on the ensemble, as suggested

by Kennedy and O’Hagan (2001). We choose to fix these at their maximum a posteriori

(MAP) estimates instead of maximum likelihood estimates, as these account for our prior

modelling. MAP estimates are obtained using simulated annealing. We generate LOLHO

plots by leaving out each of the 25 16-member sub-LHC’s that make up our k-extended

Latin Hypercube design, in turn, and refitting the emulator to the remaining ensemble.

Each time we us the same h(x) and correlation parameters and recondition the prior with

the reduced ensemble.
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5.4. LOLHO diagnostics

We present two LOLHO plots in Figures 6 and 7. Each panel represents a left out LHC,

with the black points and error bars representing the emulator prediction and 2 standard

deviation prediction interval (conditioned on the MAP estimates for the correlation lengths

and nugget) (see, for example, Craig et al., 1996). The true values are plotted in either green,

if they are within 2 standard deviations of the prediction, or red (and larger) otherwise. Figure

6 plots each left out LHC against the parameter rn lc, the coefficient for Langmuir cells

in the vertical mixing scheme, and Figure 7 plots each LHC against rn ediff, a coefficient

controlling the vertical behaviour of eddies. In both figures, from the left the first 4 panels

depict LOLHO plots for the four hypercubes with the switch exclusively in its first setting,

the next 4 in its second setting and the remaining panels represent a balanced design in the

switches.

The plots indicate that the emulator represents the model well. The prediction intervals are

approximately 95%, so we should expect around 20 points not to be within the uncertainty

bounds, and we see 18. Additionally, we would be concerned if any of the red points were

very far from the error bars, indicating a miss-specification of the variance across parameter

space. We do not see any such points. Broadly, the plots indicate that there is little difference

in our predictive capabilities for any setting of the switches. Figure 8 shows box plots for

100 predictions of the emulator at each switch setting, 100 alternative parameter choices,

indicating that there is very little difference between the model output for the different switch

settings in the full parameter space.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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The breakdown of the diagnostic into distinct LHC’s allows us to assess whether there

are any areas of parameter space that do not validate well. For example, if the emulator

were a good representation of our uncertainty, then the number of failures (red dots) in any

individual panel, should be approximately Binomial(16, 0.05). Hence we can compute the

probability of seeing more than one failure in a given LHC (approximately 0.19), and the

probability that we see more than 3 failures in one LHC (as we do in the 8th panel). Having

5 LHC’s out of 25 with more than one fail is consistent with our uncertainty specification.

The probability of more than 3 failures is 0.007, hence we might view the 8th left out LHC

as unusual and look at it in more detail.

We might start by seeing how unusual this result is. Suppose we view our LOLHO

diagnostic as a sample from a Binomial(25, 0.007) distribution with success defined to be

viewing more than 3 non-validating points in any plot. Then the chance of having observed

at least one such plot is 0.16, which is not particularly rare, though perhaps merits some

investigation. Comparing the relevant panel in Figures 6 and 7, we can see that three of

the failures are in the same corner of parameter space, where rn ediff is large and rn lc

is small. Exploring some of the other panels we see that this pattern is repeated (e.g. 2nd,

19th, 22nd and 23rd panels). The diagnostic hence suggests that our emulator may require

more uncertainty in this corner of parameter space.

Whether we attempt to build this into a refined statistical model or not will depend on

the purpose of the emulator. For example, if history matching reveals that this corner of

parameter space leads to output that is far away from the observations, we may be happy

with our current level of accuracy as we will cut this region of parameter space out anyway.

Similarly, if this corner is always contained in the NROY region, again we would be happy

to take this emulator forward because our next design will be able to increase our density of

model runs in this region and we will be able to build a new, accurate, emulator anyway. If we

are calibrating, and this region of parameter space appears to produce predictions that are
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close to observations, we might seriously consider building a more accurate emulator for the

given region of parameter space as our emulators here will be influential for our calibrated

predictions.

Figure 9 presents the more traditional leave one out (LOO) diagnostic (again plotted

against parameters rn lc and rn ediff). The emulator does pass this test, but we do not

have the insight into the problem corner of parameter space as with the LOLHO plot. Along

with traditional LOO plots, LOLHO plots offer valuable additional diagnostic information.

[Figure 7 about here.]

6. DISCUSSION

We have presented a class of exploratory ensemble designs based on extending an algorithm

for adding to existing designs first introduced by Sallaberry et al. (2008) that we call k-

extended latin hypercubes (LHC’s). They are comprised of k smaller, equally sized, LHC’s

each added sequentially so that the composite design at each stage is “optimal”. Though an

analyst may choose any such properties to optimise using our algorithm, we also provide a

criterion and algorithm for finding what we term “orthogonal-maximin k-extended LHC’s.”

K-extended LHC’s are different from nested LHC’s (Qian, 2009) in that though each sub-cube

may be thought of as nested in the overall design, the entire large design is comprised of the

union of such smaller LHC’s. They can be thought of as a type of sliced LHC (Qian, 2012),

LHC’s that are entirely comprised of smaller LHC’s, with a construction that is focussed on

optimising the composite designs of size n, 2n, . . . , kn, sequentially.

We have argued for their use in applications such as those involving experiments with

climate models, where the chaotic behaviour of the processes in the model means that the

output varies with the initial conditions at which the model is run, so that some part of

the design must be devoted to quantifying this uncertainty and its relationship to the model
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parameters. A particular advantage of k-extended LHC’s in these applications is that we may

optimise a single sub-LHC to be used for modelling initial condition uncertainty throughout

the parameter space. Given an optimal configuration of the first sub-LHC, further LHC’s

are added to the design so that the composite design is optimal subject to the constraints

imposed by the previous design. This property will be particularly useful in situations where

the experiments are queued on supercomputers and when there is a chance, for whatever

reason, that the whole queue may not complete before a deadline.

We described a novel emulator diagnostic called “leave one LHC out” (LOLHO) plot, based

on extending “leave one out” methods. This diagnostic can be used for emulators built using

k-extended and sliced LHC’s. We provided a k-extended LHC design for a real ocean model,

the NEMO ocean model, that must be run on a supercomputer and showed the results of

our emulation and LOLHO diagnostics for the largest ensemble of runs of the NEMO we are

aware of, run using a k-extended LHC design. Though storage and allocated run-time are

factors affecting how such experiments are managed, often one of the biggest overheads is

the time and experience of the modeller required to submit and manage the ensemble. If the

storage and run time are available, a large ensemble takes the same amount of man-hours to

manage as a small one, so that the preference is often for fewer experiments (to the extent

that this is possible whilst meeting the experimental goals) with larger ensembles at each

step.

At the early stage of such a project, when little or nothing is known about how the model

will respond to parameter changes, but where you may have been asked to use a large

portion of your run budget, a design such as the one advocated here, where multiple sources

of uncertainty can be addressed within one large LHC, is ideal. Though constructing a more

involved LHC design, such as an orthogonal-maximin k-extended LHC (or even a sliced LHC)

might be more effort and personal computer time than using existing code to construct a

more traditional maximin LHC, the computer time and effort will pale into comparison when
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compared with the cost (both in time and money) of the supercomputer experiment itself.

Space filling designs such as LHC’s are only useful up to a point. Following an exploratory

first experiment, it will be clear, after emulation of the computer model, that certain regions

of parameter space are irrelevant to the analysis. For example, in a climate model we may

have an ice planet or no polar sea ice in winter, so that the model is a long way from the real

world (and our uncertainty in our emulator predictions effectively means that we are sure

that this is the case). Perhaps the most interesting avenue for future research in the design

of experiments will be in designs that aim to “fill” the remaining space, however complex

its shape, in some optimal way. Dragulic et al. (2012) began to think about this problem

for parameter spaces with known constraints on the input variables. In many applications,

however, all we have is a membership rule for parameter space with potentially very complex,

unconnected shapes. Optimal designs in such spaces would have wide applicability for multi-

wave computer experiments.
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APPENDIX

DERIVING BOUNDS FOR THE COVERAGE STATISTIC

We take the same approach as Joseph and Hung (2008) in deriving the bounds for φp in

Section 3. Joseph and Hung (2008) first prove 2 lemmas, and use these to derive bounds.

The first of these applies directly to designs generated during k-extension unchanged, so we

simply state it as a result and refer interested readers to Joseph and Hung (2008) for the

proof.

Result 1 Consider a set of positive values dj,1, dj,2, . . . , dj,l and write dj,(1) ≤ · · · ≤ dj,(l) for

j = 1, . . . ,m. Then

l∑
i=1

1∑m
j=1 dj,i

≤
l∑

i=1

1∑m
j=1 dj,(i)

The second of the required lemmas establishes the value of d̄, the average intersite distance

in our design. However, because at step 2 of the k-extension algorithm for any value of c

we do not have an integer LHC, but rather a composite of c n×m integer LHC’s, we must

state and prove a new result.

Lemma 1 For any value c at step 2 of the k-extension algorithm, the integer representation

of the current design and proposed extension, M c, has average intersite distance

d̄ =
mnc (ck(n2 − 1) + 3(c− 1))

6k
(
cn
2

)
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Proof. With our definition of di, we have

(
cn

2

)
d̄ =

(cn
2 )∑

i=1

di =
n∑

i=2

i−1∑
j=1

d(si, sj)

=
m∑
l=1

n∑
i=2

i−1∑
j=1

|sil − sjl|+ 1{sil = sjl}/k.

However, every column of M c contains c permutations of the integers {1, . . . , n}, so

(
cn

2

)
d̄ = m

n∑
i=2

i−1∑
j=1

|si1 − sj1|+ 1{si1 = sj1}/k.

Assessing a column with c 1s then c 2s and so on, ending with c ns, we can write

(
cn

2

)
d̄ = m

n∑
i=1

c∑
j=1

(
i∑

l=1

(l − 1)c

)
+mn

c−1∑
j=1

(c− j)/k

=
m

2

(
n∑

i=1

c2i(i− 1) +
nc(c− 1)

k

)

and the result follows.

The lower bound φp,L =
(
cn
2

)1/p
/d̄ is established on page 184 of Joseph and Hung (2008) as

they show that using Lagrange multipliers to minimise
(

1
dpi

)1/p
subject to

∑(cn
2 )

i=1 d̄ gives the

optimal solution when d1 = d2 = · · · = d(cn
2 ) = d̄.

For the upper bound, because we have di =
∑m

j=1 dj,i for i = 1, . . . ,
(
cn
2

)
, by result 1

φp =

(cn
2 )∑

i=1

1

dpi


1/p

≤

(cn
2 )∑

i=1

1∑m
j=1 d

p
j,i


1/p

≤

(cn
2 )∑

i=1

1∑m
j=1 d

p
j,(i)


1/p

,

where now, for each column of the design, the inter site distances are ordered in the same

way by the right most expression. For given n and c, each column will have
∑c−1

l=1 l inter site

distances of 1/k and then, for each h ∈ {1, . . . , (n− 1)}, there will be c2(n− h) inter site
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distances of h. Hence

φp ≤

(cn
2 )∑

i=1

1∑m
j=1 d

p
j,(i)


1/p

=

(
nkpc(c− 1)

2m
+

n−1∑
i=1

c2(n− i)
mip

)1/p

= φp,U .
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Figure 1. An 8-point LHC in 2 dimensions generated via an integer LHC. The shaded boxes highlight the solids identified by the

integer LHC, with the points representing the LHC in [0, 1]2
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Figure 2. Comparing orthogonality and coverage of a sliced LHC, a k-extended LHC and a maximin LHC. Red lines show the sliced

LHC performance, blue the k-extended LHC and green the maximin LHC. Darker colours represent the values of each measure for each

individual sub-LHC (hence there are no dark green lines) and lighter colours represent the cumulative values of each measure using the

first 8, 16, 24, 32 and 40 points in the design. Solid lines represent ρ2 and dashed lines are φ50 both calculated using the scaled design

values.
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Figure 3. Global mean temperature and salinity depth profiles for the NEMO ensemble (grey lines) with the standard setting of the

parameters (blue depth profile) and the observed profiles (with uncertainty) the red solid and dashed lines.
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Figure 4. (a) The integer LHC used to generate the first extension of our example 8-point LHC in 2 dimensions. The cyan panels

highlight the new integer LHC that will be used to generate new points. (b) Dividing each solid in the identified integer LHC into km

equally sized solids. One of the mini-solids that has no points along it in either dimension will be chosen at random to contain the new

LHC points for each of the larger cyan solids identified by the integer LHC.
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Figure 5. (a) The first 3 8-point LHC’s generated during application of the extension algorithm with the different coloured grid squares

representing the 3 integer LHC’s used to identify the regions of the new points. (b) The full 40 point LHC comprising 5 8-point LHC’s.

The integer LHC’s used to generate each extension are highlighted as different coloured grid squares.
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Figure 6. LOLHO plots for each of the 25 16-member sub-LHC’s that made up our ocean model design. Each panel is constructed by

removing a sub LHC from the design, refitting our emulator using the same basis function and correlation parameters, and predicting

the model output. The predictions and 2 standard deviation prediction intervals are in black. The true values are in either green, if

they are within 2 standard deviations of the prediction, or red otherwise. The x-axis in each plot is the parameter rn lc, the coefficient

for Langmuir cells in the vertical mixing scheme.
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Figure 7. LOLHO plots against rn ediff, a coefficient controlling vertical eddies, for each of the 25 16-member sub-LHC’s that made

up our ocean model design.
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Figure 8. Boxplots illustrating the differences between emulator predictions for 100 new points in the continuous parameter space for

each setting of the model switch
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Figure 9. Traditional Leave One Out plots against rn lc and rn ediff.
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