
Please cite: Chang, T.J., Wang C.H., Chen, A.S., 2015, A novel approach to model dynamic flow interactions 
between storm sewer system and overland surface for different land covers in urban areas, Journal of 
Hydrology, doi: 10.1016/j.jhydrol.2015.03.014, in press. 

 

A novel approach to model dynamic flow interactions between 

storm sewer system and overland surface for different land covers 

in urban areas 

Tsang-Jung Chang1,2, Chia-Ho Wang1 and Albert S. Chen3,* 

1 Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 

Taiwan 
2 Center for Weather and Climate Disaster Research, National Taiwan University, Taipei, 

Taiwan 
3 Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, 

University of Exeter, Exeter, United Kingdom 

Abstract 

In this study, we developed a novel approach to simulate dynamic flow interactions 

between storm sewers and overland surface for different land covers in urban areas. 

The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) 

and the two-dimensional (2D) overland flow model (OFM) with different techniques 

depending on the land cover type of the study areas. For roads, pavements, plazas, 

and so forth where rainfall becomes surface runoff before entering the sewer system, 

the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is 

drained to the sewer network via inlets, which is regarded as the input to 1D SFM. 

For green areas on which rainfall falls into the permeable ground surface and the 

generated direct runoff traverses terrain, the deduction rate is applied to the rainfall 

for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage 

facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-

runoff process is simulated using the hydrological module in the 1D SFM where no 

rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic 

simulations in the sewer network. Where the flow in the drainage network exceeds 

its capacity, a surcharge occurs and water may spill onto the ground surface if the 

pressure head in a manhole exceeds the ground elevation. The overflow discharge 
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from the sewer system is calculated by the 1D SFM and considered a point source in 

the 2D OFM. The overland flow will return into the sewer network when it reaches an 

inlet that connects to an un-surcharged manhole. In this case, the inlet is considered 

as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The 

proposed approach was compared to other five urban flood modelling techniques 

with four rainfall events that had previously recorded inundation areas. The merits 

and drawbacks of each modelling technique were compared and discussed. Based 

on the simulated results, the proposed approach was found to simulate floodings 

closer to the survey records than other approaches because the physical rainfall-

runoff phenomena in urban environment were better reflected. 

Keywords: Coupled 1D/2D flood model; Dynamic flow interaction; Model 

comparison; Overland flow; Roof drainage; Storm sewer flow. 

1 Introduction 

Sewer drainage systems are essential infrastructures in modern cities to convey the 

runoff during storm events. Like all structural measures, the design capacity of a 

drainage system limits its ability to cope with runoff that exceeds the design 

standard. To assess the performance of drainage networks during heavy rainfall 

events, numerical models have become a popular solution for flood risk analysis. 

Among numerical models, one-dimensional (1D) sewer flow models (SFMs) are the 

most commonly used tool because of the relatively simple model construction, the 

high efficiency and the shorter runtime for simulations. Many 1D software packages 

are currently available to simulate the hydraulic performance of urban drainage 

systems. The Storm Water Management Model (SWMM) is an open-source model 

with complete functions (Rossman, 2010) such that it has been widely adopted in 

academic studies (Oraei Zare et al., 2012; Ranger et al., 2011) and by commercial 
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software packages like MIKE SWMM (DHI Software, 2014) and XP-SWMM (XP 

Solutions, 2013). Other software packages with different hydraulic solvers, such as 

MIKE MOUSE (DHI Software, 2014) and InfoWorks ICM (Innovyze, 2014) are also 

popular in industrial practices. 

The sole use of a 1D SFM can only predict, in terms of ground surface, the 

surcharge volume from the drainage system, which is translated into the flood depth 

of a sub-catchment using a depth-volume or area-volume function. This approach 

assumes no flow interaction between sub-catchments, which over-simplifies the 

surface runoff1  dynamic, especially for flat areas, such that Djordjević et al. (1999) 

proposed the 1D/1D dual drainage approach, which regards surface flow paths and 

detention ponds as a further drainage network to convey surface runoffs and to 

improve the modelling result. With an improved data acquisition algorithm to 

enhance the representation of surface drainage network, the 1D/1D dual drainage 

models can produce accurate results along pathways and inside ponds (Allitt et al., 

2009; Leandro et al., 2009; Maksimović et al., 2009). Nevertheless, the assumption 

that the flow is confined by the drainage system becomes invalid when the flood 

depth is greater than the bank of a flow path or the crest of a pond, the runoff 

movement no longer follows the predetermined pathways and the overland flooding 

outside pathways and ponds occurs. The 1D SFMs and the 1D/1D dual drainage 

models will not be able to simulate the situation properly and the two-dimensional 

(2D) overland flow model (OFM) is required for such analysis (Chang et al., 2011; 

Kao and Chang, 2012). 

                                            

1
 In this paper, the ‘surface runoff’ represents the water flow on the surface that can be simulated by 

either 1D OFMs or 2D OFMs. 
The ‘overland flow’ means the water travelling outside the pre-defined surface pathways (e.g. roads, 
open drainage channels), which can only be described by 2D OFMs. 
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The growing capability of computing tools, the availability of high-resolution data and 

the demand for detailed information on the location of floods and their magnitude, 

have increased the applications of 2D OFMs in recent years (Néelz and Pender, 

2013). To simulate detailed flood propagation on the ground surface, many physical-

based 2D OFMs for solving shallow water equations (SWEs) have been developed. 

Hunter et al. (2008), and Néelz and Pender (2013) have compared the performance 

of a wide range of 2D flood models using common test cases. These include 

academic research models (e.g. LISFLOOD-FP, Bates et al., 2010; UIM, Chen et al., 

2012) and commercial software (e.g. MIKE FLOOD, DHI Software, 2012; ISIS 2D, 

Halcrow, 2012; InfoWorks ICM, Innovyze, 2012). The models adopt different 

governing equations (such as full SWEs or simplified approximation), computing 

grids (irregular meshes or regular cells) and parallelisation techniques (OpenMP, 

OpenMPI and GPU) to simulate flooding. The results (Néelz and Pender, 2013) 

showed that although most 2D flood models can produce similar results, the details 

for some critical conditions would vary significantly due to the assumptions or nature 

of different models. 

The Environment Agency developed the first national surface water map for England 

and Wales using the JFlow-DW (Lamb et al., 2009) on a five metre resolution grid 

that disregarded the function of the sewer network. This type of approach is referred 

to as the 2D OFM only in the later sections in the study. Subsequently , the updated 

Flood Map for Surface Water (uFMfSW) for England and Wales (Environment 

Agency, 2013) on a 2m resolution grid was produced using an improved model 

JFlow+ 2D (Crossley et al., 2010a, 2010b). The function of the sewer network was 

represented by subtracting a constant rate of rainfall in the uFMfSW. It is herein 

referred to as the 2D OFM with rainfall reduction approach. Chen et al. (2009) 
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represented the function of sewer drainage system with a constant infiltration rate in 

the 2D OFM in a case study in south east London. Unlike the reduced rainfall rate 

used in the uFMfSW (Environment Agency, 2013) such that the excess runoff cannot 

be collected by sewer system in the 2D OFM, Chen et al.’s approach (2009) allows 

the surface water to be drained when the capacity in the sewer network is available. 

Hsu et al. (2000) used the surcharge hydrographs at manholes calculated by the 

SWMM as inputs to a 2D OFM to simulate urban flooding. The assumption that the 

flow can only move from the sewer system to the ground surface, but not vice versa, 

failed to accurately describe the phenomenon that occurs where surface runoff re-

enters the drainage system. Hence, in such a combined SFM/OFM approach, the 

flood extent and depths tend to be over-estimated in downstream areas. The initial 

rainfall-runoff process was simulated by the RUNOFF module of SWMM and applied 

to manholes directly as the input of the EXTRAN module. Therefore, the information 

of flooding during this initial phase within manhole sub-catchments was presented as 

excess volume, as with the surcharge volume in the 1D SFM only approach. The 

detailed flood dynamic on the ground surface in this phase was disregarded. 

To improve the overestimation drawback of the combined SFM/OFM approach, 

some academic researchers have attempted new coupling methodologies (Hsu et 

al., 2002; Seyoum et al., 2012). The 1D SFM and the 2D OFM use different 

computing time steps due to the nature of the problem (Chen et al., 2007), and the 

2D OFMs often adopt adaptive time steps to speed up simulations (Bates et al., 

2010; Hunter et al., 2005). To avoid further errors occurring in model coupling 

because of different time steps being used in different models, Chen et al. (2007) 

suggested a solution for time synchronisation between 1D SFM and 2D OFM to 

ensure exact values are exchanged during model communications. 
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Commercial software developers also provide various 2D modelling products that 

are bi-directionally coupled with 1D channel or 1D sewer models. SOBEK is a fully 

coupled hydraulic model that is able to simulate sewer, channel and overland flows 

concurrently (Deltares systems, 2014). In SOBEK, three manhole types, such as 

closed, reservoir and loss, can be set for modelling. The closed type does not allow 

the water to escape from the 1D sewer system such that no flow exchange with the 

2D overland surface will occur. For the reservoir type, a storage area above a 

manhole is defined as a pond for keeping the surcharged water to represent the 

flooding on the 2D overland surface, despite no 2D OFM being involved. For the loss 

type, the water exceeding the surface level above a manhole will be removed from 

1D SFM and added to the 2D OFM. XP-SWMM 2D (Phillips et al., 2005) was 

developed by adding the TUFLOW 2D module (Syme, 2001) with the XP-SWMM 1D 

model to enhance its capability for urban flood modelling. Similar integration was 

also applied to couple the 1D river, the 2D overland and the 1D sewer models as the 

ISIS-TUFLOW-PIPE (Halcrow, 2013). The MIKE Urban (DHI Software, 2014) has 

seen the integration of MIKE 11, MIKE MOUSE/SWMM and MIKE FLOOD models to 

simulate combined river, sewer and floodplain modelling. Coupling the 2D cells 

within a given radius from a manhole with sewer nodes is used (DHI Software, 2014) 

for collecting the runoff from or distributing the surcharge to the 2D computing 

domain. Similarly, the InfoWorks 2D module also has been integrated with the 

InfoWorks CS and InfoWorks RS for 1D/2D modelling in both sewers and rivers. 

InfoWorks links the 2D mesh to sewer nodes as 2D, Gully 2D or Inlet 2D types and 

uses equations corresponding to those types for determining the interacting 

discharge between the 1D sewer and 2D overland flow (Innovyze, 2014).  
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The aforementioned academic and commercial models for coupling the 1D SFM and 

the 2D OFM can be classified into two methodologies, i.e. the coupled SFM/OFM 

approach (e.g. Chen et al., 2007; Seyoum et al., 2012) and the coupled OFM/SFM 

approach (e.g. Hsu et al., 2002). Commercial packages like SOBEK, MIKE Urban 

and InfoWorks provide both coupling approaches in model settings, nevertheless, 

they only allow a single approach to be used in a single simulation. 

The coupled SFM/OFM approach directly applies all the rainfall to the 1D SFM, 

which usually adopts a hydrological model to calculate the inflow discharges of 

manholes for hydraulic modelling. The sewer flow is simulated first and then the 

surcharge from manholes triggers flood simulations in the 2D OFM. This coupling 

method enhances the description of bi-directional flow interactions between the 

sewer system and the overland surface. For built-up areas in which building roofs 

have a rainfall collection system installed to drain rainfall on the roof directly to the 

storm sewer networks, the coupled SFM/OFM approach is also applicable if the 

excess water beyond the roof inlet capacity is confined by the retaining walls, which 

is not generally considered as flooding. 

However, as with the combined SFM/OFM approach assuming that a sub-

catchment’s runoff is collected via gullies and completely drained to the sewer 

networks via manholes, the initial surface runoff dynamic between the runoff origin 

and the receiving manhole is simulated by hydrological model and simplified as a 

representing volume of depth of a sub-catchment. Thus, the coupled SFM/OFM 

approach can only deal with the surcharge-induced inundation in urban areas and 

flood underestimation errors may occur if the rainfall intensity exceeds the capacity 

of the inlet in the sewer system. The more exceedance this has, the more errors will 

occur. 
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In contrast, in open spaces in urban areas, the rainfall falls to the ground surface and 

becomes direct runoffs traversing a substantial distance along the terrain before 

reaching a drainage inlet or manhole. The simplified representation of the initial 

rainfall-runoff dynamic using the coupled SFM/OFM approach will not be able to 

describe the phenomena accurately such that the coupled OFM/SFM is required. In 

the coupled OFM/SFM approach, rainfall is applied to the 2D OFM and a 100% 

runoff coefficient is used for manmade surfaces such as roads, pavements, plazas, 

while a deduction factor is applied to natural open spaces such as green areas to 

account for the soil infiltration. 

The above review demonstrates that a strong link between 1D sewers and 2D 

overland flow for different land covers in urban areas is fundamental; however, it has 

not yet been the subject of in depth study. This study aims to develop a novel 

approach that couples 1D SFM and 2D OFM to simulate dynamic flow interactions 

between storm-sewers and overland surface for different land covers and flat 

building roofs in urban flood modelling. The details of different modelling approaches 

will be described in the next section, followed by the section of model applications. 

The modelling results of the proposed approach and those that adopt other 

published urban flood modelling techniques are compared and discussed in the 

proceeding section. Finally, we will conclude with the main research findings and 

provide suggestions for helping practitioners to select an appropriate approach for 

urban flood simulations. 

2 Methodology 

2.1 Hydraulic models 

We used the 1D SWMM (version 4.4h) with 2D OFM for urban flood simulations in 

this paper. The SWMM version 4.4h, instead of the latest version 5.x, was used as it 
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was written in FORTRAN code, also employed in the 2D model. The source code in 

SWMM was modified to include the 2D overland flow routing module. We understand 

that improvments have been made to the computing engine and bugs have been 

fixed in the SWMM 5 code. In our case, we did not experience bug related difficulties 

while carrying out this study but were unable to take advantage of the improved 

computing engine. 

2.1.1 Governing equation for 1D SFM 

The 1D SWEs are used as the governing equation for solving sewer flow. In this 

paper, the continuity equation for manhole is modified as Eq. (1) to include the flow 

interaction with the 2D OFM. 
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where, h  is the water head at manhole; t  is time; 
kpQ is the discharge of the k th pipe 

connecting to the manhole (positive for entering flow, negative for exiting flow);  
ki

Q  

is the discharge of the k th inlet from overland surface or upstream subcatchment; sQ  

is the surcharge discharge leaving the sewer system to the overland surface; mA is 

the surface of manhole. 

For the flow in pipes, SWMM assumes the outflow equals to the inflow and combines 

the momentum equation and the continuity equation, as shown in Eq. (2), to slove 

the average discharge in a pipe. 
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where, pQ  is the discharge in the pipe; g  is gravitational acceleration; pA is the 

cross-sectional area of the pipe; fS is the friction slope from Manning’s equation; pV  
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is the velocity in the pipe. Details about equation solving in SWMM can be found in 

Roserner et al. (1988). 

2.1.2 Governing equation for 2D OFM 

2D OFM assumes that that the acceleration term is small in comparison with the 

gravitation and friction terms, such that the inertial term of the SWEs is disregarded 

and the governing equations are written as: 
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where, d  is the water depth, u  and v  are the velocity components in the x  and y  

directions, respectively, zdh   is the water surface elevation, 
3

4

222

d

vuun
Sfx


  

and 
3

4

222

d

vuvn
Sfy


  are friction slopes along the x  and y  directions, respectively. 

 tyxqs ,,  and  tyxqi ,,  are the rate of water entering and leaving ground surface per 

unit area, which are expressed as 
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in which, I is the rainfall excess intensity,  tyxQ kks ,,  is the manhole surcharge, 

 tyxQ kki ,,  is the inlet discharge, where the manhole surcharges and inlet discharge 
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occur in sewer systems are considered as point sources and sinks in 2D overland 

flow.  kks yxA ,  represents the distributed area of manhole surcharge,  kki yxA ,  is 

the catchment area for inlet at the point  kk yx , , and   is the Dirac delta function. 

In Eqs. (4) and (5), it is assumed that the influx direction of rainfall or manhole 

effluent is normal to the overland surface and the inlet drainage leaves with 

practically the overland flow velocity components u  and v  (Abbott and Minns, 1998). 

The unknowns d , u  and v  in Eqs. (3) to (5) are solved by an alternating direction 

explicit scheme. The derivation of finite difference method was depicted in an earlier 

paper (Hsu et al., 2000). 

2.1.3 Interaction between sewer and overland flow 

When the water level in a manhole reaches the ground elevation, the surcharge 

occurs such that the flow will move from the sub-surface to the surface system. The 

surcharge from manhole  tyxQ kks ,,  is calculated by the EXTRAN module in the 

SWMM and assumed to be distributed uniformly in the adjacent area  kks yxA ,  

around location  kk yx ,  for use by overland flow model.  

In contrast, the surface runoff may be collected by inlets and drained to the sewer 

network. The water in the neighbouring area  kki yxA ,  is collected by the inlet at 

location  kk yx ,  and drains to sewer systems through the manhole junction that the 

inlet connects to. Various types of inlets, such as curb-opening inlet, gutter inlet and 

grated inlet (Mays, 2011) can be used in urban drainage systems and the capacity 

 kkd yxQ ,  can be determined based on their design. Where surcharge does not 

occur, the overland flow drains at the discharge of inlet capacity unless the flow rate 

is under the design capacity. The inlet discharge  tyxQ kki ,,  is expressed as follows: 
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where,  tyxd kk ,,  is the water depth at location  kk yx ,  and time t ,  kkd yxQ ,  is the 

design capacity of the inlet at location  kk yx , , which is a given constant. In the case 

that the manhole which the inlet connects to is unsurcharged, the water in the 

neighbouring area  kki yxA ,  drains with the rate  tyxQ kki ,,  shown in Eq. (8). In 

contrast, if the manhole is surcharged, (implying that the water is surcharging to 

overland instead of entering sewer) the inlet discharge  tyxQ kki ,,  is set to zero. 

2.2 Approaches for 2D flood modelling 

2.2.1 2D OFM only 

Only the 2D OFM is used for hydraulic modelling, i.e.  tyxQ kks ,,  and  tyxQ kki ,,  are 

zero in Eqs. (6) and (7) in this approach. Rainfall is applied to the ground surface 

directly and the generated runoff only travels along the terrain. 

2.2.2 2D OFM with rainfall reduction or infiltration rate  

This approach is almost identical to the 2D OFM only. The sole difference is that a 

reduction factor for discounting the rainfall is used to mimic the function of the sewer 

network. The reduction factor is determined based on the design capacity of the 

drainage system, the blockage condition and the impervious area ratio. The factor is 

case study dependent and it may be determined based on the design standard of a 

city’s sewer system. For example, the uFMfSW adopted 0.7 as the runoff coefficient 

and an additional 12mm/h reduction to account for the infiltration and the function of 

urban drainage systems (Environment Agency, 2013). Burton et al. (2010) 

considered the British Standard BS EN 752 (British Standards Institution, 1998) and 
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used one in twenty year design rainfall for setting up an infiltration rate to reflect the 

function of drainage in 2D OFM. 

2.3 Approaches for 2D flood modelling with 1D SFM 

2.3.1 Combined SFM/OFM 

The combined SFM/OFM approach assumes that all the runoff of a sub-catchment is 

collected via gullies and drained to the sewer networks via manholes. The initial 

surface runoff dynamics between the runoff origin and the receiving manhole are 

calculated by using the SWMM RUNOFF module and are used as inflow discharges 

of manholes in EXTRAN module. After the SWMM simulations, the surcharges from 

manholes are considered as point sources  tyxQ kks ,,  in the 2D OFM simulations. 

No return flow from surface to sub-surface is allowed to occur in the approach, i.e. 

  0,, tyxQ kki . SFM and OFM are executed sequentially and only one directional 

flow interaction can be simulated, so the approach is regarded as combined 

SFM/OFM. 

2.3.2 Coupled SFM/OFM  

The coupled SFM/OFM approach allows the flow between the sewer system and 

overland surface to interact bi-directionally. The rainfall is applied to the SWMM 

RUNOFF module to calculate the inflow discharges of manholes for the EXTRAN 

module, which means that the initial surface runoff dynamics between the runoff 

origin and the receiving manhole are disregarded. After the SWMM simulations, the 

surcharges from manholes are considered as point sources  tyxQ kks ,,  in the 2D 

OFM simulations. The surface runoff will return to the sewer system when it reaches 

an inlet that is connected to an unsurcharged manhole. If a manhole is not 

surcharged but runoff on the ground surface is present, the drainage discharge will 
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be calculated using Eq. (6) and added to the inflow of the connected manhole. The 

 tyxQ kki ,,  of all inlets that a manhole is connected to are summarised as the inflow 

discharge of the SWMM, whereas  tyxqi ,,  is considered as point sinks in the 2D 

OFM. The rainfall is input to the SFM first and the OFM is triggered by the sewer 

surcharge such that the approach is classified as coupled SFM/OFM.  

2.3.3 Coupled OFM/SFM  

Instead of using the SWMM RUNOFF module to calculate the surface runoff drained 

to manholes, the rainfall is applied to the ground surface directly for the 2D OFM. 

The surface runoff only flows into the sewer system after having being collected by 

inlets, where  tyxQ kki ,,  is not zero. Where the flow exceeds the sewer capacity, it 

may return from sub-surface to the ground surface via a surcharged manhole as a 

point source  tyxQ kks ,,  in the 2D OFM. The rainfall is input to the OFM first and the 

SFM is triggered by the drainage flows such that the approach is considered as 

coupled OFM/SFM.  

2.3.4 Mixed SFM/OFM and OFM/SFM coupling  

In urban areas, the transport process between the storm sewer flow and the surface 

runoff differs for various land covers. As shown in Figure 1a, the runoff generated by 

rainfall in open spaces propagates on the ground surface until it infiltrates into soil 

(developed and undeveloped green area lands), or drains to the storm sewer via 

inlets or gullies (roads, pavements, plazas), or detents in water fields (creeks, ponds). 

The coupled OFM/SFM approach described in section 2.3.3 is adopted for modelling 

the flow dynamic in the open spaces. The open spaces may have different densities 

of inlets to collect the surface runoff. The setting of inlets depends on the design 

standard of urban drainage for different land uses.  
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For roads, pavements, and plazas, the surface is considered as 100% impervious, 

such that the rainfall was directly applied to the 2D OFM. In the case of water fields 

such as creeks and ponds, the water will accumulate and then overflow. If the water 

level becomes higher than the surrounding terrain elevation, the 2D OFM only 

approach described in section 2.2.1 is used. For green area, where some rainfall 

may infiltrate the soil and the remainder becomes direct runoff travelling along the 

terrain, the rainfall applied onto these surface types would be reduced by a constant 

value to represent the soil infiltration rate, (depending on the soil type). As the direct 

runoff traverses the terrain, it may have dynamic flow interactions between sewer 

system and overland surface via inlets for developed green lands; however, no inlet 

was set for undeveloped green lands and therefore no flow interaction between the 

surface and the sewer systems will occur. Consequently, coupled OFM/SFM 

approach and 2D OFM with rainfall reduction approach rate are applied to developed 

and undeveloped lands, respectively.  

For built-up areas shown in Figure 1b, the computing procedure employed is 

dependent on the rainfall intensity and roof type. For buildings with rainfall collection 

systems on their roofs, each roof can be considered as a sub-catchment with a 

series of collecting gullies, inlets and vertical pipes installed to drain the water on the 

roof directly to the storm sewer networks. If the generated runoff on the roof does not 

exceed the design capacity of the collecting inlet, the rainfall is applied to the SWMM 

RUNOFF module to calculate the discharge of the manhole connected to the roof 

inlet. The rainfall in the area is set as zero in the 2D OFM. The computing procedure 

is the same as the coupled SFM/OFM approach, as described in section 2.3.2. 

If the generated runoff on the roof exceeds the design capacity of the collecting inlets, 

the excess runoff may remain on the roof or spill to the neighbouring ground surface, 
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depending on the type of roof. For flat roofed buildings with retaining walls to confine 

the excess runoff, the roof acts as a storage pond, in which excess water remains 

within in, to be released into the sewer afterward. Each building is regarded as a 

sub-catchment with a catchment area equivalent to that of the roof in question. A 

node with a small cross-sectional area for each building is set in SWMM with crown 

elevation set at roof height. A pipe is set to connect each inlet node with its collecting 

manhole. The size of the pipe is set to restrict the discharge that can reflect the inlet 

capacity such as the excess water which will be ponded on the roof sub-catchment 

before entering the sewer system. The design capacity per square metre for roof 

drainage is the same value for all buildings, which is determined by the intensity of 

design rainfall, but the total inlet capacity of every building varies because the roof 

areas of buildings are different. 

For other roof conditions, including (1) roofs without a rainfall collection system; (2) 

roofs with rainfall collection systems but no retaining walls and (3) roofs with rainfall 

collection systems and retaining walls but the ponding water level on the roof is more 

elevated than the crest of the retaining walls, the excess runoff will discharge to the 

neighbour ground directly. Consequently, the coupled OFM/SFM approach will be 

required to describe the dynamic. If roof heights are included in the DEM, the rainfall 

can be applied to the building cells in the 2D OFM. Nevertheless, such DEM 

application implies that the buildings are flood-proof which may not be accurate in all 

instances. In contrast, if the bare terrain DEM is used, a pre-processing algorithm will 

be required to apply the rainfall on the roof to its neighbouring cells, receiving the 

excess runoff in the 2D OFM. This is because the DEM represents the elevation 

inside a building, where the rainfall cannot enter directly and the excess runoff from 

the roof may flow to a direction different from the ground slope.  
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3 Case study description 

3.1 Study area 

In this paper, we adopted the Sanxia district, located in the south-western part of 

New Taipei City, Taiwan, as the study area. The region, as shown in 

 

Figure 2, has an area 2.77 km2 and is surrounded by hills to the west, the flood 

levees along the Sanxia River to the south, a local expressway to the east, and 
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Highway No. 3 is to the north. 

 

Figure 3 shows the surface elevation of the study area. The highest and lowest 

elevations of the area are 81.3m and 25.2m above the mean ocean datum, 

respectively, and its elevation decreases north-eastward. 
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(a) 

 

(b) 
Figure 4a and 4b display the land uses and land covers of the study area, 

respectively. There are eight land-use types in Figure 4a, and this district is mostly a 
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residential region with a university campus. In Figure 4b, the area can be classified 

into five different land cover types, including built-up areas, roads and plazas, water 

fields, developed green lands and undeveloped green lands. The land cover 

information is used to set up the parameters and its modelling method in the mixed 

SFM/OFM and OFM/SFM coupling approach. The main soil type in the study area is 

clay with poor drainage condition such that 3mm is used for natural land cover to 

reflect the soil infiltration (Landon, 1984).  

The region is an isolated urban drainage area due to its geographic conditions. The 

storm sewer system in this district, as shown in 

 

Figure 5, includes nine networks that collect the runoff and drain to the detention 

pond inside the university campus or to the Sanxia River. The design rainfall 

intensity of the storm sewer system is 40 mm/h, equivalent to a five-year return 

period event. A flap valve is installed at the downstream end of each network to 
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prevent the backwater coming from the river when the water level in the river 

channel is higher than the one at the sewer outlet. A pumping station has also been 

built at the downstream of each network to pump the water out of the region as the 

downstream water level is too high to drain the runoff by gravity.  

3.2 Flood events 

Two short and two long-duration rainfall events were selected to compare detailed 

flood propagation processes for different modelling approaches. In these four flood 

events, the flooded areas were all recorded and delineated by the New Taipei City 

Government immediately after their occurrences.  

3.2.1 Short duration rainfall events 

In June 2012, a series of storms hit the northern Taiwan and resulted in two flooding 

events in the study area within one week, 12th and 15th June.   
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(a) (b) 

  
(c) (d) 

Figure 6a shows the rainfall hyetograph of the 12th June event. The total rainfall was 

159 mm within five hours with the peak rainfall 17 mm occurred between 5:50 and 

6:00, and the peak hourly accumulation 69 mm between 5:50 and 6:50.   
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(a) (b) 

  
(c) (d) 

Figure 6b shows the rainfall hyetograph of the 15th June event. The rainfall duration 

was shorter but with a higher intensity. A total of 101 mm was recorded within two 

hours with a peak rainfall between 17:20 and 17:30. The peak hourly intensity was 

77 mm at the hour between 17:00 and 18:00. 
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(a) (b) 

  
(c) (d) 

Figure 7a and 7b provide the recorded inundation areas of both events, respectively. 

For the 12th June event, the inundation area was about 4.6 hectares, and the depths 

were between 20 and 80 cm. The flooding started at 6:30 and ended at 9:00. For the 

15th June event, the inundation area was about 4.3 hectares, and the depths ranged 

from 30 to 100 cm. The maximum inundation depth was about 100 cm which 

occurred at the gate of university campus, and the flooding lasted from 17:20 to 

18:00. 

3.2.2 Long duration rainfall events 

From 24th to 25th June 2011, Typhoon Meari brought 143 mm rainfall during 14 hours 

to the study area and caused urban inundation. As shown in   
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(a) (b) 

  
(c) (d) 

Figure 6c, the peak rainfall 9 mm of the event occurred between 7:00 and 7:10, and 

the hourly rainfall between 7:00 and 8:00 was 38 mm.   
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(a) (b) 

  
(c) (d) 

Figure 7 shows the recorded inundation areas were quite sporadic. The total flooded 

area was about 1.9 hectares with flood depths between 20 and 50 cm. 

From 31st July to 2nd August 2012, Typhoon Saola attacked Taiwan and caused 

severe inundation in the study area.   
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(a) (b) 

  
(c) (d) 

Figure 6d shows the rainfall hyetograph of the event, which had total 335 mm in 36 

hours with the peak intensity 47 mm/h occurred between 06:30 and 07:30.   
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(a) (b) 

  
(c) (d) 

Figure 7d gives the recorded inundation areas. The total flooded area was about 4.3 

hectares, and the inundation depths ranged from 20 to 60 cm. 

3.3 Numerical simulation details 

We simulated the flow in the sewer network with the SWMM and the overland flow 

with a 2D OFM using various model combining/coupling methodologies described in 

section 2.2 and 2.3. The sewer network includes 395 manholes and 23.1 km of 387 

pipes with a diameter greater than 50 cm. The Manning’s roughness coefficient was 

0.015 for all pipes. For the 2D OFM, a 5m resolution digital elevation model (DEM) of 

bare terrain was used for the whole study area. We only considered the flat building 

roof with retaining walls, the main roof type in our case study, and adopted the 

coupled SFM/OFM for the built-up area. The Building Technical Regulations 
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(Construction and Planning Agency, 2014) in Taiwan specify that the heights of 

retaining walls on the roof should be between 1.1m and 1.5m such that the ponding 

water caused by rainfall is unlikely to overspill to neighbouring ground surface. 

Bare terrain was used for the 2D OFM such that the surface runoff may travel 

through buildings once the flooding exceeds the ground elevation of building sites. 

Some other 2D OFMs (Environment Agency, 2013; Gironás et al., 2009) increased 

elevation of buildings or lowered the street level to try and prevent flood water 

traversing buildings, which to an extent reflects real world conditions (presence of 

road curb, raised building base, blockage due to the presence of building walls). 

Nevertheless, for severe flood conditions, the water level may still reach the raised 

ground elevation and propagate through buildings. The bare DEM of the study area 

has shown the difference between street level and building site of elevation. To 

further reflect the influence of building walls and basement storage on flood dynamic, 

it will require extra effort to set the parameters correctly, which is beyond the scope 

of the paper. Therefore, we ignored these factors and used the bare DEM without 

further processing in the 2D OFM in the paper. 

For the case study area, the inlets are densely distributed with spacing less than 5m 

(the grid resolution of 2D modelling) along roads, therefore the inlets were uniformly 

set except for the central lanes of roads which were wider than 10m (i.e., more than 

width of two cells), where the runoff will only be drained via the inlets along the 

roadsides. We did not consider the drains inside buildings, which are normally 

connected to the separate sewerage systems, so the surface runoff could only enter 

the sewer network from inlets outside buildings. Therefore, apart from the roof inlets 

included for the mixed SFM/OFM and OFM/SFM coupling approach, the inlet 
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settings were the same for all the coupling approaches (the coupled SFM/OFM, the 

coupled OFM/SFM, and the mixed SFM/OFM and OFM/SFM coupling). 

The time steps for the SWMM and the 2D OFM were 1s and 0.5s, respectively. The 

observations of the nearest rain gauge of various flood events, as shown in   
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(c) (d) 

Figure 6, were considered to be uniformly distributed in the whole study area; 

however, the rainfall was applied to the SWMM or the 2D OFM depending on the 

land cover type as shown in   
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(a) 

 

(b) 
Figure 4b. Similarly, the Manning’s roughness coefficients were also set based on 

three land cover types: (1) 0.02 for roads, plazas, pavements, etc.; (2) 0.08 for green 
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lands, parks, etc.; and (3) 0.05 for built-up areas.  

4 Results and discussion 

4.1 Performance indicators 

In this paper, we adopted the confusion matrix (Aronoff, 1982; Congalton, 1991; 

Purnami et al., 2010) to calculate the indicators for evaluating the performance of the 

six modelling approaches. Table 1 shows the four categories of the possible 

agreement between the simulation results and the observations. True Positive (TP) 

represents the amount that the model correctly predicted, i.e. hit, the flooding as 

observed. False Positive (FP) means the number that the model wrongly predicted 

the flooding, i.e. false alarmed, which did not occur. False Negative (FN) denotes the 

number that the model failed to predict the flooding, i.e. missed, that was observed. 

True Negative (TN) indicates the number that the model rightly predicted no flooding, 

i.e. correct rejected, which neither occurred.  

Three indicators, including Accuracy (ACC), Sensitivity (True Positive Rate; TPR) 

and Precision (Positive predictive value; PPV), as defined in Eqs. (9), (10) and (11), 

respectively, were then used to evaluate the goodness of modelling results. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (9) 

𝑇𝑃𝑅 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
  (10) 

𝑃𝑃𝑉 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
  (11) 

4.2 Accuracy 

 

Simulation 
Observation 

Positive Negative 
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Positive True positive (TP) 
False positive 

(FP) 

Negative False negative (FN) 
True negative 

(TN) 

 

Table 2 lists the indicators of all the simulated events for different modelling 

approaches. Each of   
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(e) (f) 

Figure 8 to  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11 shows the modelled flood extents of the six approaches and the recorded 

flood areas (red boundary polygons) of a simulated event. Although the ACCs of the 

2D OFM only approach for all the simulated events were around 0.85, the results of 

other approaches were obviously better (above 0.94). The 2D OFM only approach 
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ignored the sewer function and produced more runoff travelling along the surface. 

The water ponded in low-lying areas could not flow into the sewer network such that 

the results over-estimated the flood depths and extents. 

The 2D OFM with rainfall reduction subtracts at a constant rate from the rainfall input 

to mimic the storm sewer drainage capacity without running a SFM. The approach to 

an extent reflected the function of storm sewer drainage such that the ACCs were 

better than the ones using the 2D OFM only approach. The combined SFM/OFM 

approach assumed that the runoffs were collected by the drainage system first, and 

the surcharge from the sewer network induced surface flooding. The consideration of 

the sewer function reduced the flooding on the surface and produced more accurate 

results than the 2D OFM only approach. The coupling approaches (the coupled 

SFM/OFM, the coupled OFM/SFM, and the mixed SFM/OFM and OFM/SFM 

coupling) described the bi-directional interactions between the surface and sub-

surface systems better than the non-coupling approaches (the 2D OFM only, the 2D 

OFM with rainfall reduction, and the combined SFM/OFM) such that the ACCs were 

further improved.  

4.3 Precision and sensitivity 

The improvement of ACCs in the 2D OFM with rainfall reduction and the combined 

SFM/OFM approaches were mainly on the predictions of TN, which occurred in most 

areas of the modelling domain and outweighed other factors. We further investigated 

the indicators for precision (PPV) and sensitivity (TPR), and found the two 

approaches performed worse than the coupling approaches. 

The 2D OFM with rainfall reduction approach assumed that a part of the surface 

runoff was drained directly to the sewer network regardless of the flow condition in 

the pipes. The surcharge from the sewer was not taken into account in this 
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approach. Hence, the results had high FNs and low TPRs in the areas where flood 

was incurred by surcharges. In contrast, in cases where rainfall intensity exceeded 

the sewer capacity, the sewer system might not be able to digest the excess runoff 

immediately, such that the surface water would drain to the sewer later or from other 

downstream inlets. The 2D OFM with rainfall reduction was incapable of simulating 

the dynamic such as the excess runoff accumulated in the depressions, which was 

the same as the 2D OFM only approach. The results had wider flood areas outside 

the recorded extents, as shown in the sub-figures b of   
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Figure 8 to  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11, although the water could be drained to the sewer networks. Hence, the 

2D OFM with rainfall reduction approach had high FPs that led to low PPVs. 

For the combined SFM/OFM approach, the initial rainfall-runoff dynamic on the 

surface was not simulated by the 2D OFM such that the modelling results missed 
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flood prediction in upstream sub-catchments. Hence, the FNs were high and the 

TPRs were low. For areas where the surcharges from the sewer network caused 

flooding, the model assumption only allowed one-way interaction between the sub-

surface and the surface systems and restricted the water movement vice versa. The 

modelled flooding extents and depths were over-estimated, which resulted in FPs 

and low PPVs. 

The main difference between the 2D OFM with rainfall reduction and the combined 

SFM/OFM approaches was that the former had wider flood extents in the upstream 

sub-catchment of the sewer network. The runoff simply accumulated in the 

depressions on the ground surface although sewer systems existed in those areas 

because the 2D OFM with rainfall reduction approach did not allow the excess runoff 

to drain. The combined SFM/OFM approach had larger flood extents in downstream 

regions because the surcharged water could not flow back to the sewers. 

For the coupling approaches, the mixed SFM/OFM and OFM/SFM coupling had the 

best results for all three indicators. The sub-figures d of   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11 show that the coupled SFM/OFM approach had many flooding spots along 

the roads due to surcharges from manholes, where no flood extent was recorded. 

The coupled SFM/OFM collected the rainfall directly to the sewer system without 

considering the capacity of inlets, which allowed more runoff to enter the drainage 
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network and caused higher surcharge rate at downstream manholes where the flow 

concentrated to. Hence, this led to greater FPs and low precision (PPVs) than the 

ones obtained from the other two coupling approaches. 

In contrast, the coupled OFM/SFM allowed the initial runoff to propagate along the 

surface before reaching an inlet. In Taiwan, the runoff on the roof is normally 

confined by the walls surrounding the roof and collected by the inlet. In this study, 

the bare terrain elevation was used and the walls surrounding the roof were 

excluded. In the coupled OFM/SFM approach, when the rainfall intensity exceeds 

the inlet capacity, the water will flow toward neighbour cells, instead of staying on the 

roof and being drained subsequently. Therefore, more runoff was produced and 

caused more flooding at the downstream of upstream sub-catchments where the 

inlets were unable to digest the surface flow. This resulted in lower discharge in the 

sewer pipes and less surcharge from downstream manholes. Therefore, the flooding 

was over-estimated at the downstream of upstream sub-catchments and under-

estimated in downstream areas. The over-estimations (FPs) were not as 

great/significant as the ones of the coupled SFM/OFM, so the PPVs were better. For 

the under-estimations, the continuous intense rainfall brought by typhoons generated 

more runoff than the discharge that the inlets were able to deal with. More water 

accumulated at the downstream of upstream sub-catchments such that the 

surcharges from downstream manholes reduced significantly in the coupled 

OFM/SFM approach that led to higher missed predictions (FNs). Therefore, the 

performances of sensitivity (TPRs) for typhoon events were worse than the ones 

using the coupled SFM/OFM approach. 

The mixed SFM/OFM and OFM/SFM coupling approach distinguished the flow 

dynamics for the open spaces and the built-up areas. The inlet capacity in the 
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OFM/SFM limited the surface runoff entering the sewer network, and the SFM/OFM 

for the roof sub-catchments prevents the runoff on the roof spilling to the open 

spaces. The model setting reflected the rainfall-runoff progress in urban areas closer 

to the physical phenomena such that it reduced both the over- and under-

estimations. The comparison of six modelling approaches has shown that the mixed 

SFM/OFM and OFM/SFM coupling approach a better method for urban flood 

modelling. 

4.4 Data requirements and model applicability 

The DEM and the land uses information are essential to set up topography and 

roughness, respectively, for all above approaches in urban flood modelling. The 2D 

OFM with rainfall reduction or infiltration rate approach requires expert knowledge to 

determine the parameters for reflecting the sewer capacity or the soil infiltration. 

Sewer network data are necessary for the approaches that include SFM. Due to the 

dense distribution of inlets in the case study area, which have been described in 

previous section, and 5m resolution grid used for modelling, a simple procedure was 

implemented using road polygons in geographic information system (GIS) to set up 

inlets for grid cells along roadsides, but not for the cells in the central lanes of wide 

roads. In general, the combined SFM/OFM, the coupled SFM/OFM and the coupled 

OFM/SFM are using the same data, but applying different methods to connect the 

SFM and the OFM. We further utilised the land cover data to set up the infiltration 

rate of OFM in the mixed SFM/OFM and OFM/SFM coupling approach, which could 

be applied to the other three combined/coupled approaches as well. 

The mixed SFM/OFM and OFM/SFM coupling requires additional information of 

building layouts to set up roof inlets linking to the sewer system. This is based on the 

condition that most buildings roofs in the case study area are flat with retaining walls, 
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which act as temporary detention ponds during heavy rainfall events. For other roof 

conditions (e.g. slope roofs, or flat roofs without retaining walls) that the excess 

runoff on the roof may discharge directly to the neighbour cells of buildings, there are 

two possible ways to simulate the process. (1) If the bare terrain elevations are used 

in modelling, a pre-processing algorithm would be needed to assign the rainfall on 

the roof to the neighbour ground cells. Otherwise, the cells inside buildings may 

receive rainfall and be flooded, even for minor rainfall events, which would not reflect 

the physical phenomena properly. (2) If the roof heights are adopted in modelling, 

inlets without surface ponding area could be set along the edges of buildings to 

reflect the function of intercepting gullies. For the excess runoffs, the slope between 

roof and ground cells will automatically direct the water to the lower ground cells. 

However, the use of roof elevations implies that inside of buildings will be completely 

flood proof. When the street water levels exceed the ground elevation of building 

sites, the flood could enter the buildings via their entrances, if there is no further 

protection. In this case, the modelling with roof elevations could underestimate the 

flood depth inside buildings and overestimate the inundation on the streets. A further 

study would be carried out in the future to investigate the applicability of these 

possible solutions. 

5 Conclusions 

We developed a novel approach for urban flood modelling that reflects the rainfall-

runoff processes for different land covers and flat building roofs with retaining walls, 

and the dynamic flow interactions between the storm sewer system and the ground 

surface in urban areas. The proposed approach was compared to five other urban 

flood modelling techniques with four rainfall events that have recorded flood areas. 
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Based on the comparative results, the present research has led to the following 

conclusions: 

1. Three indicators were adopted to evaluate the model performance and the results 

show that all approaches had good agreement with the recorded flood extents. 

The 2D OFM approach ignored the function of sewer networks and produced the 

least accurate results. However, the calculation of ACC includes the TN, which 

overweighed other factors such that the accuracies of the other five approaches 

were too close to conclude.  

2. The comparison of the precision and sensitivity indicators, which have excluded 

TNs, helped to differentiate the performance of models. The 2D OFM with rainfall 

reduction and the combined SFM/OFM had much lower PPVs and TPRs than the 

coupling approaches because the latter considered the bi-directional interactions 

between the surface and the sewer systems so the results were closer to the 

reality. The mixed SFM/OFM and OFM/SFM coupling approach adopted different 

methods to simulate the rainfall-runoff in urban areas based on the characteristics 

of the land cover and successfully reduced the over-predictions of flooding at the 

downstream of upstream sub-catchments, and also decreased the under-

predictions of flooding caused by manhole surcharges in downstream areas. 

3. The 2D OFM with rainfall reduction, which uses a discount factor to replace storm 

sewer drainage capacity, the ACC indicator is greater than 0.94 for all simulated 

events. Regardless of the discrepancy between the modelled and actual flood 

locations, the approach is still a useful alternative solution for modelling where 

there is an absence of sewer information. The combined SFM /OFM approach can 

be used to estimate the potential flood areas, with ACC greater than 0.96, for the 

planning of regional flood relief measures when a high level of accuracy of exact 
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flood locations is not required.  

4. The coupled SFM/OFM and the coupled OFM/SFM can produce more accurate 

results, with better TPRs and PPVs, because of the improved methodology to 

describe the flow dynamics between the surface and the sewer systems but both 

models are subject to their assumptions such that larger errors will occur for the 

applications of extreme rainfall events. 

5. The mixed SFM/OFM and OFM/SFM coupling approach required limited 

additional information and pre-processing to set up the roof inlets for modelling. 

Yet, the approach can surpass the limit of dealing extreme rainfall events and 

consequently provide best ACCs, TRPs and PPVs,  which describe the flood 

dynamics in urban areas with flat roof buildings better than other approaches 

compared in the paper. 
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 (b) 

Figure 1 Schematics of urban drainage physics. 
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Figure 2  Location of the study area. 
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Figure 3 The digital elevation map of the study area. 
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(b) 

Figure 4  (a) The land-use and (b) the land-cover maps of the study area. 
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Figure 5 The storm drainage system in the study area. 
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(a) (b) 

  
(c) (d) 

Figure 6 The rainfall hyetographs of the events, (a) 12 June 2012, (b) 15 June 

2012, (c) Typhoon Meari (2011), and (d) Typhoon Saola (2012). 
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(a) (b) 

  
(c) (d) 

Figure 7 The recorded inundation areas of the events, (a) 12 June 2012, (b) 15 

June 2012, (c) Typhoon Meari (2011), and (d) Typhoon Saola (2012). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8 The modelled flood extents of the six approaches and the recorded flood 

areas (red boundary polygons) for the 12 June 2012 event, (a) the 2D 

OFM only, (b) the 2D OFM with rainfall reduction, (c) the combined 

SFM/OFM approach, (d) the coupled SFM/OFM approach, (e) the coupled 

OFM/SFM approach, and (f) the mixed SFM/OFM and OFM/SFM 

approach. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9 The modelled flood extents of the six approaches and the recorded flood 

areas (red boundary polygons) for the 15 June 2012 event, (a) the 2D 

OFM only, (b) the 2D OFM with rainfall reduction, (c) the combined 

SFM/OFM, (d) the coupled SFM/OFM, (e) the coupled OFM/SFM, and (f) 

the mixed SFM/OFM and OFM/SFM coupling. 
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(c) (d) 

  
(e) (f) 

Figure 10 The modelled flood extents of the six approaches and the recorded flood 

areas (red boundary polygons) for Typhoon Meari (2011), (a) the 2D OFM 

only, (b) the 2D OFM with rainfall reduction, (c) the combined SFM/OFM, 

(d) the coupled SFM/OFM, (e) the coupled OFM/SFM, and (f) the mixed 

SFM/OFM and OFM/SFM coupling. 
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(c) (d) 

  
(e) (f) 

Figure 11 The modelled flood extents of the six approaches and the recorded flood 

areas (red boundary polygons) for Typhoon Saola (2012), (a) the 2D OFM 

only, (b) the 2D OFM with rainfall reduction, (c) the combined SFM/OFM, 

(d) the coupled SFM/OFM, (e) the coupled OFM/SFM, and (f) the mixed 

SFM/OFM and OFM/SFM coupling. 
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Table 1 Confusion matrix 

Simulation 
Observation 

Positive Negative 

Positive True positive (TP) 
False positive 

(FP) 

Negative False negative (FN) 
True negative 

(TN) 

 

Table 2 The indicators of all the simulated events for different modelling 

approaches. 

Event Indicator 
2D OFM 

only 

2D OFM / 
rainfall 

reduction 

Combined 
SFM/OFM 

Coupled 
SFM/OFM 

Coupled 
OFM/SFM 

Mixed 
SFM/OFM & 
OFM/SFM 

12 June 
2012 

ACC 0.87 0.94 0.96 0.98 0.99 0.99 

TPR 0.54 0.39 0.27 0.61 0.59 0.76 

PPV 0.07 0.13 0.15 0.39 0.59 0.79 

15 June 
2012 

ACC 0.88 0.95 0.98 0.98 0.99 0.99 

TPR 0.65 0.50 0.34 0.53 0.60 0.76 

PPV 0.08 0.15 0.26 0.38 0.55 0.72 

Typhoon 
Meari 

ACC 0.89 0.99 0.97 0.98 0.99 0.99 

TPR 0.32 0.26 0.05 0.61 0.50 0.79 

PPV 0.02 0.29 0.01 0.21 0.70 0.72 

Typhoon 
Saola 

ACC 0.85 0.96 0.96 0.98 0.99 0.99 

TPR 0.55 0.44 0.28 0.67 0.58 0.77 

PPV 0.06 0.20 0.12 0.36 0.64 0.72 

 


