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The electromagnetic response of two-dimensional square arrays of perfectly conducting square patches, and
their complementary structures, is modeled utilizing a modal matching technique and employing Babinet’s
principle. This method allows for the introduction of progressively higher diffracted orders and waveguide
modes to be included in the calculation, hence aiding understanding of the underlying causal mechanism for
the observed response. At frequencies close to, but below, the onset of diffraction, a near-complete reflection
condition is predicted, even for low filling fractions: conversely, for high filling fractions a near-complete
transmission condition results. These resonance phenomena are associated with evanescent diffraction, which
is sufficiently strong to reverse the step change in transmission upon establishment of electrical continuity; i.e.,
the connected structure demonstrates increased transmission with increasing filling fraction.
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The response of periodic metallic media to electromag-
netic �EM� radiation has long been of interest to scientists
across many diverse fields. For example, the topical field
of study of surface plasmonics is often considered to have
begun with the seminal result of Wood’s in 1902, when
he observed anomalous reflection bands from metallic grat-
ings in the optical domain.1 Thin structured metal films
are of interest as they act as frequency selective surfaces
�FSSs� �Refs. 2 and 3� and have numerous applications in-
cluding shields for metallic radomes,4 optical beam splitters,5

and electromagnetic screening in medical and military
applications.6 Regular arrays of square patches and their in-
verse structures have been shown to act as low and high pass
frequency filters, respectively.7

Standing EM surface waves established because of the
periodicity of structured films result in band gaps at certain
frequencies,8,9 in analogy to the electron band gaps in semi-
conductors. According to Munk,3 work on periodic photonic
surfaces occurred as early as 1919. However, the seminal
result with regards to the microwave regime is generally con-
sidered to have occurred in 1967 when extraordinary trans-
mission through periodically arrayed holes was observed by
Ulrich.7 In the wider scientific community this phenomenon
was not generally appreciated until 1998 when Ebbesen et
al.2 observed that subwavelength holes in thin metal screens
provided enhanced optical transmission at frequencies near
to the onset of diffraction.

The EM response of these and similar structures have
been modeled in various ways, including transmission line
models,7,10,11 finite-element model �FEM� methods12 as well
as modal-matching methods9,13–17 to name but a few. To gain
an understanding of the physics underlying the observed re-
sponses an analytical modal matching method similar to that
presented by McPhedran,18 later adapted by Hendry et al.,16

has been employed here. This method differs from some
other methods9,14,15 in that it includes the contributions from
multiple-order waveguide modes, diffracted evanescent
waves, and finite depth holes in the calculation16 and is more
similar to the approach used by Mary et al.19 Another impor-
tant difference between this and some of the other analytical
models9,14,17,20 is that this approach does not involve describ-
ing the system in terms of effective material parameters. The

system investigated comprises a two-dimensional �2D�
square array of square holes in a sheet of perfect electrical
conductor �PEC� �structure A�� and its complementary sys-
tem �structure A� �Fig. 1�a��. A full and detailed analysis
of structure A is unnecessary due to Babinet’s principle.21

Babinet’s principle states that the sum of the transmission
through an infinitely thin perforated screen, with the trans-
mission through the complementary structure rotated by
90° about the normal to its plane, is equal to unity. �It is
worth noting that, in the context of the present work, this is
equivalent to a rotation of the incident polarization with no
rotation of the structures.� The study of complementary
structures by application of Babinet’s principle has numerous
precedents.1,7,22–25 For finite thickness systems Babinet’s
principle is no longer exact, nevertheless it can still be used
to guide our understanding.26

In the calculation of the transmission and reflection
through the sample there are three distinct regions of space to

FIG. 1. Schematic showing: �a� investigated system; structure A
and its complementary system A�; �b� defined regions �I–III� of the
system used by the modal matching method.
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be considered. These are the semi-infinite vacuum regions
above �region I� and below �region III� the film, and the
composite film itself �region II� �Fig. 1�b��. Considering the
hole array �structure A�� initially, the electric fields in the
vacuum regions above and below the film can be described
by a two-dimensional Fourier-Floquet expansion of the dif-
fracted orders, �Eqs. �1�–�4��. Note that the time-dependent
field component, exp�i�t�, has been omitted throughout for
simplicity,
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The diffracted orders are denoted by m and n, the wave vec-
tor of the diffracted order by k, the period of the array by d,
and the field amplitude by Am,n. For the vacuum region
above the film �region I� there will be an additional term for
the incident field.

Within the layer, the electric fields are only present in the
cavities, within which they can be described as waveguide
modes �Eqs. �5�–�9��,
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The order of the waveguide modes are denoted by s and t
and the associated propagation constant is given by qz

s,t, the
hole side length by a, and the permittivity within the cavity
by �h. The field amplitudes are denoted by Bi

s,t and Ci
s,t. Us-

ing Maxwell’s equations, the magnetic field H, can be ob-
tained for all three regions. The tangential boundary condi-
tions require that the electric field must be continuous at each
interface across the entire unit cell while the magnetic field
must be continuous across the aperture at each interface. Ap-
plication of these boundary conditions and utilization of the
orthogonality condition of the eigenmodes result in pairs of
coupled equations in terms of the unknown amplitude coef-
ficients. These equations can be solved to determine an ana-
lytical form for the complex transmission and reflection am-
plitude coefficients,
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A full description of this method is given by Hendry et al.16

and therefore is not repeated here.
This analytical method provides a complete solution by

allowing any number of diffracted �propagating or evanes-
cent� and waveguide modes to be included in the calculation.
This flexibility allows us to gain an understanding of the
influence of specific orders on the structure’s overall EM
response. Figure 2�a� compares numerical results using the
modal matching method �for the first three diffracted orders�
with a FEM model27 for the transmission through a hole
array with pitch �d� of 10 mm and hole side �a� of 3 mm
illuminated at normal incidence where the incident field vec-
tor is polarized along the hole side. At a frequency of
�29.5 GHz, just below the onset of diffraction, a peak of
near-complete transmission is observed despite the system
being a well-connected structure �i.e., a structure that per-
haps would conventionally be assumed to be a low pass
FSS�, and the metal filling fraction being 91%. This response
is expected as hole array resonances have been well docu-
mented as discussed earlier.9,15,16 Correspondingly, the
complementary structure of metal patches �structure A� ex-
hibits enhanced reflection on resonance �not illustrated� de-
spite very low metal occupancy.

Figure 2�b� illustrates the use of Babinet’s principle21 with
this method. Babinet’s principle has been applied to the
transmission results from the hole array to produce the trans-
mission results for the complementary patch array, these are
then compared to the full solution produced by a FEM �Ref.
27� model. The agreement is excellent and thus gives confi-
dence in the use of this analytical technique which is far less
computationally intensive than full solver, numerical meth-
ods. Further, the primary advantage of this technique is that
it allows further investigation of the form of the fields and
the EM response observed resulting in an improved physical
understanding of the response.
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Analysis of the resulting equations for the transmission
and reflection coefficients shows the dominance of scattering
from a particular grating vector, as also reported by Bravo-
Abad et al.17 However, further analysis is needed to under-
stand the reason for this dominance. Consider the transmis-
sion for structure A� for radiation incident in the xy plane; as
the structure is two dimensional, it is only necessary to con-
sider the first-order waveguide mode �i.e., s=1; t=0 for
transverse electric �TE� and s=0; t=1 for transverse mag-
netic �TM��. The inclusion of the orders in the calculation is
purely as a “matching condition” across the interfaces, and
therefore the first-order mode is sufficient to provide an ac-
curate representation of the behavior. Applying these simpli-
fications gives the following general equation for the trans-
mission amplitude coefficient:

tp,q =

��

c
�2


��

c
�2

− �kx�2

�Q0,0,s,t���
p,q

Qp,q,s,t

�
m,n
� �kz

m,n�2 + �kx +
2m�

d
�2

kz
m,n


�Qm,n,s,t��Qm,n,s,t

,

�14�

where

Qm,n,s,t = �
0

a �
0

a

sin� s�y

a
�cos� t�x

a
�exp�− i�kx +

2m�

d
�x	exp�− i�ky +

2n�

d
�y	dxdy . �15�

The diffracted orders above the film are denoted by m and n,
the diffracted orders below the film by p and q, and Qm,n,s,t

represent the “overlap integrals” produced by applying the
boundary and orthogonality conditions. The observed reso-
nance occurs in the nondiffracting region and therefore only
the specular transmission is required �i.e., p=q=0�. The re-
sulting expression for the transmission is given by
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Examination of Eq. �16� shows that the transmission reaches

a maximum when �
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d
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entiating and substituting the full expression for kz
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be determined that for �m ,0� orders this condition occurs
when �

c →
2�kx+ 2m�
d �; and for �0,n� orders when �

c

�
2��kx�2+2� n�
d �2�. Further investigation reveals that for in-

cident TE polarization, the �m ,0� orders dominate the effect,
as predicted, due to the associated overlap integrals, Q, also
being large under this condition; while for incident TM po-
larization, the Q terms are large for the �0,n� orders. The
electric field on the surface of the film in region III is de-
scribed by

FIG. 2. �Color online� �a� Comparison between modal matching
model with third family of evanescent orders in the calculation,
compared to a full solution FEM model for structure A� with a
=3 mm and d=10 mm. �b� Comparison between modal matching
model data after application of Babinet’s principle with a full solu-
tion FEM model for structure A with a=3 mm and d=10 mm.
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At the resonant condition for TE polarized radiation, this
field is dominated by the tm,0 exp�i�kx+ 2m�

d �x� term. This
term describes a surface plane-wave component propagating
in the x direction with wave vector �kx+ 2m�

d �. Using the
same approach, it can be shown that for incident TM polar-
ization, the dominant term is given by t0,n exp�i� 2n�

d �y� de-
scribing a surface plane-wave component propagating in the
y direction.

Conversely, for the patch array �structure A�, Babinet’s
principle predicts that it is the TE polarization that will result
in a dominant surface plane-wave component propagating in
the y direction and the TM polarization is required to pro-
duce a dominant component propagating in the x direction.
These wave components can be interpreted by considering

an incident electric field upon the patch array �structure A�
that induces a dipolar response in the patches. Each of these
dipoles radiate and the strong radiated fields are in a plane
orthogonal to the orientation of the dipoles. This dipolar in-
terpretation is well known and has been used to describe the
system in the small-patch limit.25 This leads to regions of
enhanced electric �E� fields in the spaces between the
patches orthogonal to the polarization direction. The result-
ant large modulation in electric field in this reflects the fact
that scattering from the grating vector perpendicular to the
polarization dominates the response �Fig. 3�a��. Figure 3�b�
shows the electric field enhancement for structure A, pro-
duced using a commercial FEM program,27 8 mm below the
array. Close to the film, there is strong modulation in both
directions �not shown�, however, exploring the fields further
away shows that the scattering from the grating vector par-
allel to the incident field, �m ,0�, decays very quickly with
distance, and the scattering from �0,n� dominates.

Dipoles are also induced in the hole array upon applica-
tion of an electric field; however, these are not discrete di-
poles as this is a connected structure and therefore supports

FIG. 3. �a� Schematic of dipole array description showing the
regions of enhanced E field for structure A; �b� E field plots using
a commercial FEM program �Ref. 27� 8 mm below the structure
showing the E field enhancement for structure A with the incident E
field polarized along the y axis illustrating the domination of scat-
tering from the �0,kg� grating.

FIG. 4. �a� Schematic of surface current description showing the
regions of enhanced H field for structure A� �b� H field plots using
a commercial FEM program �Ref. 27� 8 mm below the structure
showing the H field enhancement for structure A� with the incident
E field polarized along the x axis illustrating the domination of
scattering from the �m ,0� grating.

FIG. 5. Dispersion plots using the modal
matching model for the transmission for TM and
TE polarizations for structures A and A� with a
=6 mm and d=10 mm. The complementary na-
ture of the responses between the two arrays is
clearly evident.
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real surface currents. These surface currents run parallel to
the E field but due to the presence of the holes, there is
enhancement of the surface current density at the narrowest
point �between the holes�. This results in regions of enhanced
magnetic �H� fields orthogonal to the surface current direc-
tion. Similarly to the patch array, it is these regions of en-
hanced field and the resultant field modulation that leads to
the scattering from the grating vector parallel to the polar-
ization dominating the response, i.e., �0,n� �Fig. 4�.

Babinet’s principle describes a complementary relation-
ship between the transmission response of a 2D PEC screen
and its inverse. The analytical data �Fig. 5� indicate that for
different polarizations in each array, the incident radiation
preferentially scatters more strongly from one grating. In the
patch array, for TM polarization the mode closely follows the
�0, 1� and �0,−1� diffracted light lines while for TE polar-
ization, it follows the �−1,0� and �1, 0� light lines. This is
shown in Fig. 5 and the complementary nature is clearly
evident in the nondiffracting region below the light line.

This complementary relationship between the observed
enhanced responses of hole and patch arrays raises the inter-
esting question as to how the observed response will behave
as the fill fraction of a patch array increases to the point at
which the system becomes electrically connected. Consider a
square array of square PEC patches rotated by 45° about
their center in vacuum �structure B� and its inverse �structure
B�� �Fig. 6�a��. This somewhat unconventional geometry re-
sults in electrical continuity being established at 50% metal
fill fraction unlike for structure A where electrical connectiv-
ity does not result until 100% fill fraction. While the re-
sponse of films as a function of fill fractions has been inves-
tigated before,15 these investigations tend to be on either
electrically connected or disconnected systems such as struc-
ture A and A�. The self-similarity that results for structures B
and B� allows the microwave response of both systems for
the entire range of filling fractions to be predicted by only
considering filling fractions between 0% and 50% for one of

the structures and employing Babinet’s principle to predict
the response of the complementary structure.

The modal matching method is now applied to analyze
the response of structure B�. Although the electric fields in
regions I and III can still be described by a 2D Fourier-
Floquet expansion of the diffracted orders of the form de-
scribed in Eqs. �1� and �2�, �1�x ,y� now takes the form

�1�x,y� = exp�i
2m�

d � x + y

2

�	exp�ikxx�exp�i
2n�

d � y − x

2

�	exp�ikyy� . �18�

All symbols have the same meaning as defined before. The
equations describing the waveguide modes are unchanged;
however, care must be taken when applying the orthogonal-
ity and boundary conditions to ensure that the boundaries are
defined correctly with respect to the rotated hole.

For low frequencies a “step change” from high to low
transmission occurs when electrical continuity is established
�for structure B this is at 50% occupancy�, although as the
frequency is increased this step change is expected to be
“softened.” The 13 GHz data of Fig. 6�b� illustrates this
softened response caused by the influence of evanescent
diffraction. However, as the frequency becomes more com-
parable to the onset of propagating diffraction, the strength

of the evanescent diffraction is such that the resulting reso-
nance perturbs the response so strongly that the step change
is completely reversed as shown by the 35 GHz data of Fig.
6�b�.

In conclusion, using a modal matching method, a com-
plete analytical solution for the reflectance and transmission
from a thin metal-dielectric film has been derived, showing
enhanced reflectance from low metal occupancy structures
and enhanced transmission from high metal occupancy struc-
tures. The method allows for fast calculations and its flex-
ibility means that successively higher evanescent diffracted
and waveguide orders can be included separately, confirming
the origin of observed features. As predicted by Babinet’s

FIG. 6. �Color online� �a� Schematic of the modified structure B
and its complementary system B� and �b� transmission through
structure B� at normal incidence as a function of metal filling frac-
tion for 13 and 35 GHz.
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principle, the response of each structure and its inverse has a
complementary relationship. Exploration of the analytical
expressions obtained for the transmission through each struc-
ture explains the origin of the observed resonances and dem-
onstrates their complementary nature. The importance of the
role of the evanescent diffraction has been illustrated, show-
ing that it can perturb the response to such an extent that the
expected step change in transmission at electrical connectiv-
ity can be completely reversed. The method can be extended

to model more complex two- and three-dimensional systems
including, but not limited to, arrays incorporating multiaper-
ture unit cells or patches, rotated geometry, and multilayer
systems.
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