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The acoustic transmission of a closely spaced pair of patterned and perforated rigid plates is

explored in air. The structure resembles an acoustic double fishnet design, with each plate modified

such that the gap between them acts as an array of Helmholtz resonators. This allows the center fre-

quency of the stop band to be reduced by a factor greater than 2 from the value obtained for the

conventional acoustic double fishnet design. Experimental results accord well with the predictions

of a finite element model. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4892859]
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I. INTRODUCTION

The discovery of extraordinary optical transmission

(EOT) by Ebbesen,1 often defined as a mechanism that facil-

itates a transmitted intensity greater than that predicted by

Bethe’s classical aperture theory,2 has generated increased

interest in the transmission properties of sub-wavelength per-

iodic hole or slit arrays. The similarity between the govern-

ing equations of electromagnetism and acoustics has

stimulated comparable work with sound waves. Unlike the

electromagnetic case for periodic holes in a metal plate,

holes in an acoustically rigid wall do not possess a cut-off

frequency for plane-wave propagation and so enhanced

transmission of sound through arrays of holes in a thick rigid

screen is typically associated with the excitation of

Fabry–P�erot-like resonances in the pipes.3 However, there is

a second mechanism that can also lead to enhanced transmis-

sion, which is somewhat more in keeping with the electro-

magnetic results of Ebbesen:1 extraordinary acoustic

transmission (EAT) is observed at wavelengths just longer

than the pitch of the hole array due to the diffractive excita-

tion of acoustic surface waves on both faces of the plate, that

are coupled via the holes.4 Another example of enhanced

transmission, of a non-resonant nature, is the broadband

transmission of sound at high angles of incidence due to geo-

metric impedance matching.5 In contrast to the EAT phe-

nomena, Estrada et al.6 found that there may be a band of

complete reflection at wavelengths close to the periodicity of

the hole array, in addition to the EAT phenomenon. Other

studies have considered the combination of two rigid perfo-

rated plates separated by a small gap, termed the acoustic

double fishnet (ADF), which possesses a family of acoustic

stop bands7,8 associated with the resonances of the gap.

Acoustic screening and absorption by locally resonant acous-

tic materials (LRAMs) has also generated interest. Studies

have considered the effect of LRAM inclusions within pan-

els9–11 to increase the transmission loss or porous materi-

als12,13 to increase absorption at frequencies around the

resonances of the LRAMs. Other studies have considered the

acoustic properties of arrays of cylinders with particular

attention on the band-gaps they possess.14–16 Many of these

structures are promoted as providing lightweight sound

screens tailored to desired frequency bands, the ADF is one

such structure that simultaneously allows the flow of air

through the screen. In our present work, we report on a

modified ADF structure (Fig. 1) in which the frequency of

the associated acoustic stop band in air is significantly low-

ered from that of the unstructured ADF.

II. HELMHOLTZ ACOUSTIC DOUBLE FISHNET

A conventional ADF is comprised of two identical rigid

plates each perforated with a non-diffracting, square array of

circular holes (with pitch K). The plates are aligned and sepa-

rated by a sub-wavelength gap (with height hg). As detailed in

previous papers,7,8,17 sound screening occurs around the fre-

quency associated with the resonance of the gap; being deter-

mined primarily by the pitch of the hole array; although the

gap height and hole alignment also influence the stop band

frequency. As the present authors report elsewhere,18 increas-

ing either the height of the gap or the misalignment of the

holes serves only to increase the frequency at which the stop

band occurs. In order to reduce the frequency of the stop

band, one can simply increase the pitch of the array.

However, this can lead to unwanted diffraction and reduce the

ratio of hole to solid. Instead, in the present study, we seek to

reduce the frequency of the stop band by patterning the inside

surfaces of the plates that define the geometry of the gap.

The samples are Perspex plates of thickness hp ¼ 5:6 mm,

into which a square array of circular holes (pitch, K ¼ 8 mm,

diameter, d ¼ 2.4 mm) are drilled. The original ADF sample9

uses these simple perforated plates. To form the modified

structure, referred to as the Helmholtz ADF (HADF), a set of

4 mm wide slots are milled into one side of each plate to a

depth of hm ¼ 3 mm. This leaves a square island around each

hole of side length l ¼ 4 mm. For both the ADF and the

HADF samples, the plates are clamped together with the holes

in each plate aligned and the plates separated by the gap hg.

The experimental setup consists of a small loudspeaker

(5 cm diameter), which is assumed to be an acoustic
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point-like source, located at the 1 m focus of a 2 m radius,

spherical, concave, aluminum mirrors. Sound waves are col-

limated by the mirror and directed onto the sample at normal

incidence. The transmitted signal is refocused onto a detec-

tor located at the 1 m focus of a second identical mirror,

which is nominally 3 m away from the primary mirror with

the sample located centrally between the mirrors. The

frequency-dependent transmittance is determined by taking

the ratio of the Fourier transform of the pulse detected after

passing through the sample, with the Fourier transform of

the unobstructed pulse. The pulse contains frequencies in the

range 5 to 30 kHz. Over this range, the Perspex is considered

to be a good approximation to a perfectly rigid body.

The experimentally determined transmittance of both the

ADF and HADF samples are compared to the predictions of fi-

nite element method (FEM) modeling (COMSOL) in Fig. 2. The

experimental data for the ADF structure (upper plot, dashed

line) shows a clear dip in transmittance at 19 kHz in agreement

with the model (solid line). The experimental data for the

HADF structure (lower plot, dashed line) shows a minimum in

transmittance close to 8 kHz also in agreement with the model

(solid line). The free-field wavelength at this minimum is

around four times the overall structure thickness and around

5.5 times the array pitch; However, it should be noted that by

changing the structure of the gap the exact values of these

ratios will be changed. Transmission peaks associated with the

pipe resonances of the structure are also observed, however,

while the observed frequencies are in the vicinity of the FEM

predicted frequencies, there is disagreement and the experi-

mental transmission does not reach unity. This discrepancy is

due to the effects of viscous losses that are present within the

narrow pipes, which is not accounted for in the FEM modeling

shown in Fig. 2.

A Helmholtz resonator consists of a cavity of volume V,

and a neck with length L and cross-sectional area A. The res-

onant frequency is given by19

fH ¼
c

2p

ffiffiffiffiffiffiffiffiffiffi
A

V � L

r
; (1)

where c is the speed of sound in the medium (in our case,

air). In the plane of the gap between the plates, each unit cell

(centered on a hole) consists of a narrower gap surrounded

by a wider gap, and hence this new structure functions much

like a set of Helmholtz resonators. The volume V is thus

ðK2 � ðlÞ2 ÞhH and, allowing for the variation of the cross-

section and length of the neck as it runs from the central hole

towards the cavity, one may estimate L ¼ ðl� dÞ=2 and

A ¼ pdhg. The effective length and cross-sectional area of

the neck are both difficult to specify because of the non-

trivial geometry of the described Helmholtz resonator.

Suitable choice of the structure’s dimensions gives a much

lower frequency gap mode than the ADF. Substituting nu-

merical values of V, L, and A for the experimental HADF

sample into Eq. (1) gives an estimated resonant frequency of

6.5 kHz for a gap height of hg ¼ 0:47 mm, compared with

the experimentally and numerically determined value of

8.0 kHz. The discrepancy is unsurprising given the non-

trivial geometry of the patterned gap.

Figure 3 shows the modeled transmittance of the HADF

as a function of frequency against gap height. At hg ¼ 0 mm,

the data shows the first mode of the structure at 13 kHz, cor-

responding to fitting a half wavelength between the front and

back faces of the HADF, and the second mode at 26 kHz,

corresponding to fitting a full wavelength between the front

and back faces. When the plates are separated (hg > 0 mm)

the second mode [passing through markers (a) and (d) in Fig.

3] is largely unaffected due to the pressure node at the posi-

tion of the gap. However, the first mode possesses a pressure

antinode at the position of the gap and hence couples to the

Helmholtz gap resonance—it splits into two distinct

branches with frequencies above [passing through markers

(b) and (e) in Fig. 3] and below [passing through markers (c)

and (f) in Fig. 3] the gap-resonance frequency. It is not im-

mediately apparent that both these modes originate from the

FIG. 2. Plot of experimental transmittance through the ADF (top) and

HADF (bottom) structures (dashed line), together with the respective mod-

eled (FEM) transmittance (solid lines). The gap height hg ¼ 0.47 mm.

FIG. 1. Schematic of the HADF structure with plate thickness hp and gap

height hg. The pitch of the hole array is K and the hole diameter is d.

Rectangular grooves of depth hm gives a total cavity height of hH ¼ 2 hm

þhg. Inset: (a) yz-plane view of the unit cell corresponding to the dashed

white line, (b) xy-plane view of the unit cell with island side-length 2 l.
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fundamental mode as will be discussed later. As the gap height

hg increases, the system tends towards two isolated plates (i.e.,

two sets of 6 mm long pipes) and the higher-frequency branch

of the first mode converges on the second mode.

Both branches of the first mode correspond to a phase

difference of p between the front and back faces; the second

mode corresponds to a phase difference of 2p. This can be

seen in Fig. 4 which shows the pressure profiles of these

modes for hg ¼ 0.2 mm [images (a) (second mode), (b)

(upper branch of first mode), and (c) (lower branch of first

mode) correspond with markers (a), (b), and (c) in Fig. 3] and

for hg ¼ 1.4 mm [images (d) (second mode), (e) (upper

branch of first mode), and (f) (lower branch of first mode)

correspond with markers (d), (e), and (f) in Fig. 3]. The sec-

ond order mode [Figs. 4(a) and 4(c)] achieves an overall

phase difference of 2p between the front and back faces of

the HADF without experiencing a significant frequency shift.

A slight decrease in frequency at larger gap sizes is simply

explained by the increased distance between the front and

back faces. The upper branch of the first mode [Figs. 4(b)

and 4(e)] corresponds to fitting a shorter wavelength into the

structure while maintaining an overall phase difference of p
between the front and back faces by coupling to the gap reso-

nance; the lower branch conversely corresponds to fitting a

significantly longer wavelength into the structure while main-

taining [Fig. 4(c) and 4(f)] an overall phase difference of p
between the front and back faces, again through coupling to

the gap resonance. In fact for the lower-frequency branch

there is negligible phase shift through the plate holes and so,

within each unit cell, the entire system behaves as a

Helmholtz resonator whose neck is formed by the plate holes

acting in parallel. This explains why the lower frequency

branch in Fig. 3 shows little variation with gap height hg over

most of the range—the resonance frequency [Eq. (1)]

depends only on the cavity volume V (see above), whose var-

iation with hg is small. Regarding the splitting of the first

mode into two branches, the lower branch, at a frequency

lower than that of the gap resonance, exhibits unusual behav-

ior (see Fig. 3) in that it originates at zero frequency. This is

a consequence of the gap-resonance frequency tending to

zero as hg ! 0, as can be seen both from Eq. (1) and from

the modeled behavior of the stop-band (the black region in

Fig. 3). The lower branch can only exist below the stop band

and hence appears to also originate from zero frequency.

III. EXPERIMENTAL RESULTS

Figure 5 shows experimental data (dashed lines) for

gap heights (a) hg ¼ 0.47 mm, (b) hg ¼ 0.94 mm, and

FIG. 3. Grayscale plot of modeled transmittance through the HADF struc-

ture as a function of the gap height hg. White indicates total transmission

and black indicates less than �46 dB transmission. Markers (a)–(f) corre-

spond to the plots in Fig. 4. The dashed lines (A), (B), and (C) correspond

with the experimental data in Fig. 5.

FIG. 4. Grayscale time-averaged pressure maps for the HADF structure [see

Fig. 1(a)] corresponding to markers (a)–(f) in Fig. 3. White indicates high

pressure amplitude and black indicates low pressure amplitude. Each map

has been overlaid with a line profile of the instantaneous pressure through

the center of the hole at the phase where the peak amplitude is at a

maximum.

FIG. 5. Plots (a)–(c) show experimental (dashed line) and modeled (solid

line) data for the HADF structure with gaps of hg ¼ 0.49, 0.98, and

1.47 mm, respectively [see also Fig. 3, lines (A), (B), and (C)]. Plot (d) com-

bines the modeled data from (a)–(c) for direct comparison.
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(c) hg ¼ 1.47 mm along with the respective modeling (solid

lines). The expected positions of the acoustic stop-band are

clearly seen as sharp troughs in the modeled data.

Transmission peaks associated with the excitation of pipe

modes are also observed in both the experimental and mod-

eled data. Unlike in Fig. 2, the modeled and experimental

data show much better agreement. The agreement is due to

the inclusion of the effects of viscous losses within the pipes

and the gap region, which were not included previously.

Discrepancies between the experimental and modeled data

are now attributed to variations in the dimensions of the

experimental structure. Most notably, the frequency of the

stop band in the experimental data is slightly higher than

that of the modeled data. This is attributed to the average

gap size across the structure being slightly larger than the

measured value used for the model. Further evidence of this

is provided by observing the separation in frequency of the

upper branch of the fundamental mode and the second

mode; these modes converge as the gap size is increased.

Figure 5(c) shows the experimentally obtained mode separa-

tion being considerably smaller than the mode separation in

the model, which suggests that the average gap size is larger

than the modeled value of hg ¼ 1.47 mm.

The stop band frequencies corresponding with each gap

height are in agreement with the square-root dependence

suggested by Eq. (1). It is apparent that as the gap height is

reduced, the width of the stop band decreases. This is clearly

seen in Fig. 5(d) where the three sets of modeled data are

plotted together. For convenience, we define the width of the

stop band from the points of �46 dB, corresponding to 0.5%

transmission. This width for a 0.47 mm gap is 0.7 kHz (12%

of the stop band frequency) while for a 0.94 mm gap and for

a 1.41 mm gap the widths are 2.3 kHz (30% of the stop band

frequency) and 4.3 kHz (46% of the stop band frequency),

respectively. The Q-factor of a Helmholtz resonator goes as

A�1:5 in the lossless regime11 [Eq. (2)] so it is unsurprising

that the width of the stop band decreases as the gap height is

reduced. The observed reduction is a closer fit to a A�1 de-

pendence which is likely due to the non-trivial geometry of

the structure and the reality of viscous losses within the nar-

row neck,

Q ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

L

A

� �3
s

: (2)

The described structure has not been optimized to produce a

very low frequency stop-band. From Eq. (1) there are three

parameters governing the frequency of the Helmholtz reso-

nance, which defines the stop-band.

(1) The volume V can be trivially increased by milling

deeper slots into the plates.

(2) For a fixed pitch the product of V and L can be maxi-

mized by appropriate choice of l. For a simple

Helmholtz resonator governed by Eq. (1) this is a trivial

task. Due to the more complicated geometry of the

HADF it is difficult to determine what the neck length L
is for a given l and hence where the optimum choice of l
lies.

(3) The neck cross-section A can be varied by changing the

gap hg between the plates as was discussed. A reduction

in hg lowers the frequency of the stop-band, and from

Eq. (2) it can be seen that the Q of the Helmholtz reso-

nance will simultaneously increase leading to a much

narrower stop band.

IV. SUMMARY

We have presented results from a simple modification of

the ADF geometry which significantly reduces the funda-

mental stop band frequency of the structure. The introduc-

tion of an orthogonal pair of grooves within the gap between

the plates causes the gap to respond like an array of

Helmholtz resonators which provides the lower frequency

response. The lower frequency stop band improves the via-

bility of the HADF for use as a thin and lightweight sound

screening device; however, there is a penalty in that the

lower stop band frequency also introduces a transmission

resonance at a frequency lower than the stop band itself.
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