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The Red Queen hypothesis predicts that parasite-mediated selection will maintain sexual 

individuals in the face of competition from asexual lineages. The prediction is that sexual 

individuals will be difficult targets for coevolving parasites if they give rise to more 

genetically diverse offspring than asexual lineages. However, increasing host genetic 

diversity is known to suppress parasite spread, which could provide a short-term advantage to 

clonal lineages and lead to the extinction of sex. We test these ideas using a stochastic 

individual-based model. We find that if parasites are readily transmissible, then sex is most 

likely to be maintained when host diversity is high, in agreement with the Red Queen 

hypothesis. If transmission rates are lower, however, we find that sexual populations are most 

likely to persist for intermediate levels of diversity. Our findings thus highlight the 

importance of genetic diversity and its impact on epidemiological dynamics for the 

maintenance of sex by parasites.  



Ashby, B. and King, K. C. (2015) Diversity and the maintenance of sex by parasites. J Evol. Biol. 
!

3 

Introduction 

Understanding why organisms reproduce sexually is one of the most fundamental challenges 

in evolutionary biology. Given that asexual lineages do not produce males and thus have 

higher per capita rates of reproduction than sexual populations, asexuals should rapidly 

replace sexuals, if all else is equal (Hamilton, 1980; Bell, 1982). The predominance of sex 

among eukaryotes indicates that there must be ecological or genetic factors that offset the 

reproductive advantage of asexuals (Williams, 1975; Maynard Smith, 1978).  

A prominent theory for the maintenance of sexual reproduction is the Red Queen hypothesis 

(RQH) (Hamilton, 1980; Bell, 1982). The RQH predicts that sex is advantageous in the 

presence of coevolving antagonists, as recombination and segregation generate offspring with 

novel gene combinations that on average have a higher fitness than clonal lineages (although 

this advantage may be periodic, see Vergara et al. 2014). Conditions are most likely to favour 

sex when parasites induce negative frequency-dependent selection, as sex facilitates the 

production of rare genotypes that tend to be more resistant to contemporaneous parasites 

(Hamilton, 1980; Hamilton et al., 1990). Yet, coevolving parasites favour the maintenance of 

host genetic diversity, not sex per se (King et al., 2011). This leads to the expectation that any 

advantage sex gains from genetically variable progeny may be reduced upon the invasion of 

multiple clonal lineages (Lively & Howard, 1994; Lively, 2010a). However, the extent to 

which contrasting levels of genetic diversity in sexual and asexual populations affects the 

maintenance of sex is not yet clear.  

A key assumption of most theoretical models of the RQH is that the size of the host and 

parasite populations remain constant, so that dynamics are dependent on the frequency, but 

not the density, of each genotype (table 2; although see e.g. May and Anderson 1983; Lively 

2010b; Ashby and Gupta 2014). Thus, changes in host diversity do not negatively affect 

parasites. However, more realistic models that incorporate density-dependent processes (i.e. 

ecological feedbacks) predict that host genetic diversity reduces the overall prevalence of 
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disease, as parasites are less likely to come into contact with compatible hosts (Lively, 2010c; 

King & Lively, 2012). Conversely, reducing host genetic diversity should increase disease 

prevalence, as parasites are less likely to encounter resistant hosts. The underlying idea, 

known as the monoculture effect, is well-documented in agricultural studies and is supported 

by direct empirical tests of the phenomenon showing that lower host diversity facilitates 

disease spread (Altermatt & Ebert, 2008; Ganz & Ebert, 2010). In the context of the RQH, 

high levels of diversity in sexual populations may reduce parasite prevalence and tip the 

balance in favour of asexual reproduction in the short-term. This temporary advantage may be 

sufficient for sex to be driven extinct before parasites adapt to the dominant clone. Hence, we 

predict that intermediate levels of diversity may be optimal for the maintenance of sex. 

Here, we use a stochastic individual-based model to explore the relationship between genetic 

diversity and the maintenance of sex. We find that sexual populations perform poorly 

compared to invading asexual lineages when diversity is low and are much more likely to 

persist when diversity is greater, provided parasites are readily transmissible. However, a 

turning point occurs when transmission is poor, such that parasite prevalence is substantially 

reduced at higher levels of genetic diversity. As a consequence, the net benefit of asexual 

reproduction is temporarily restored and sex is often lost from the population. 

Models 

Qualitative prediction 

Lively (2010c) showed that the probability of an epidemic varies inversely with the genetic 

diversity of the host population. We briefly reformulate this result in terms of the standard 

susceptible-infectious (SI) epidemiological model consisting of ! host genotypes, each with a 

unique (matching) pathogen:  

!!!
!" = ! !! + !! − !!!!!! − !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1 !



Ashby, B. and King, K. C. (2015) Diversity and the maintenance of sex by parasites. J Evol. Biol. 
!

5 

!!!
!" = !!!!!! − ! + ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

where !! and !! are the proportions of the population that are susceptible or infectious and 

belong to genotype !, ! and ! are the disease-associated and natural mortality rates, !! is the 

transmission rate for genotype ! and ! is the per capita birth rate. The average number of 

secondary infections in a completely susceptible population of genotype ! is given by: 

!!! =
!!

! + ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3 !

To explore the effects of host genetic diversity on disease spread, we set !! = 0 for all ! > 1, 

so that only one host genotype experiences infection. We also keep the population size 

constant !! + !! = 1 using ! = ! !! + !!and set the initial abundance of susceptible hosts 

to !! = 1/! for all genotypes. For an epidemic to occur equation (2) must be positive, which 

requires !! > 1/!!!. Hence, the disease does not spread when ! > !!! and no epidemic 

occurs. Moreover, increasing the number of host genotypes up to this threshold reduces the 

size of the epidemic (figure 1). This simple model demonstrates that greater host genetic 

diversity reduces the prevalence of disease and can drive infectious agents extinct, which has 

important implications for the maintenance of sex.  

The RQH posits that sexual populations can offset the cost of males by producing genetically 

diverse offspring that are better than asexual individuals at avoiding contemporaneous 

parasites. However, this simple model shows that increasing genetic diversity suppresses 

parasite prevalence, which will inevitably reduce the advantages of sex. In other words, 

asexual lineages benefit from an overall reduction in parasite prevalence caused by high 

diversity in the sexual population, but do not have to pay the cost of producing males. Very 

high parasite prevalence should also select against sex, as the probability of avoiding 

infection is low. For example, if resistance is only beneficial for a short time (e.g. due to low 

diversity or rapid adaptation by parasites), then sex is likely to remain costly. We therefore 

predict that sex should peak when parasite prevalence is at intermediate levels (figure 2). 
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Further, high diversity should select against sex if there is a sufficient reduction in parasite 

prevalence. We test these predictions using a stochastic individual-based model (IBM). 

Simulation design 

We simulate the invasion of asexual hosts into sexual populations in the presence of 

coevolving parasites (see table 1 for a summary of the model variables and parameters). All 

hosts are diploid with haplotypes that each consist of ! biallelic loci. Parasites are haploid 

with ! biallelic loci and can only infect hosts that possess a matching haplotype (i.e. matching 

alleles specificity, see e.g. Ashby and Gupta 2014). Hosts are classed as either susceptible 

(!!"! ) or infectious (!!",!! ), where ! and ! correspond to host haplotypes, ! to host type 

(asexual: ! = !; sexual: ! = !) and m to the parasite haplotype with which hosts are infected. 

The total population size is ! = !! + !!, where !! = (!!"! + !!",!!! )!"  is the number of 

hosts of type !. Offspring with haplotypes ! and ! are produced at a rate of !!"! . For simplicity, 

we assume that the sexual birth rate is limited by the number of females, such that: 

!!"! = !!!!! !!!! +!!!! 1 − ℎ!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4) 

where !! and !! are the proportion of male and female gametes in the population that belong 

to haplotype ! (similarly for haplotype !), !! is the total number of sexual females in the 

population (!!"! = 0 if no males are present), ℎ! modifies the strength of density-dependence 

and the parameters !! and ! control the maximum birth rate for sexuals. The parameter !! 

corresponds to additional costs (e.g. inability to find a mate, !! < 1) or benefits (e.g. shared 

parental care, !! > 1) of sex with respect to fecundity. On average, there is a twofold cost of 

sex when !! = 1 (due to the presence of males). Recombination occurs independently 

between each pair of adjacent loci at a rate of !! = 1 − (1 − !)(!/!), where ! is the overall 

rate of recombination. This keeps the underlying rate of recombination constant for all values 

of !.  
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The birth rate for asexuals is given by: 

!!"! = !!!" 1 − ℎ!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5) 

where !!" = !!"! + !!",!! + !!",!!  is the number of asexuals with haplotypes ! and !. The per 

capita birth rate of sexuals compared to asexuals is therefore: 

!!"!!" !!
!!"!!" !!

= !!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 6  

which recovers the twofold cost of sex when !! = 1 and the male-female sex ratio is equal. 

Each asexual genotype immigrates at a rate of ! ⁄ !, where ! is the overall immigration rate 

and g is the number of potential host genotypes (i.e. each asexual genotype enters the 

population with a fixed probability per unit time).   

Hosts experience a force of infection of !! + !!, where  

!! =
1
2 ! 1 − ! !!",!!

!,!
+ !"! !!"!!",!!

!,!,!
+ ! !!!!!!!!!!!!!!!!!!!(7) 

is the force of infection from parasite haplotype ! (similarly for !!). The terms correspond to 

transmission arising from: (i) hosts infected by matched parasites; (ii) mutation by parasites 

that differ at a single locus (!!" = 1 if haplotypes ! and ! differ at exactly one locus; 

otherwise !!" = 0); and (iii) the immigration of parasites (each parasite genotype enters the 

population with a fixed probability per unit time). The parameters !, ! and ! are 

transmission, mutation and immigration rates, respectively. We assume that there are no 

effects of dominance, so that on average heterozygotes and homozygotes have equal fitness. 

Dominance shifts the overall benefits of sex by altering the fitness of heterozygotes relative to 

homozygotes, which is most likely to be important when sexual and asexual populations are 

equally diverse (Agrawal & Otto, 2006; Agrawal, 2009a).  
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Sexual individuals experience a per capita natural mortality rate of !! = !(1 + ℎ!!), where 

µ modifies the overall natural mortality rate and ℎ! dictates the strength of density-dependent 

mortality. The per capita natural mortality rate for asexuals is !! = !!!!, where !! 

corresponds to additional costs (e.g. risk of contracting sexually transmitted parasites, !! < 1) 

or benefits (e.g. mutation accumulation, !! > 1) of sex with respect to survival. Infection 

leads to an additional mortality at a rate of ! per unit time.  

The underlying dynamics of our model can be represented by the following set of ordinary 

differential equations:  

!"!"!
!" = !!"! − !! + !! + !! !!"! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(8)!

!"!",!!
!" = !! !!" + !!" !!"! − !! + ! !!",!! !!!!!!!!!!!!!!!!!!!(9) 

where !!" = 1 if ! = ! and is otherwise zero. We use the event-driven algorithm proposed by 

Gillespie (1977) to convert this deterministic mean-field model into a stochastic individual-

based model (IBM; source code available online as a supplementary file). This allows us to 

model finite rather than infinite populations so that extinctions of host and parasite genotypes 

can occur. Each simulation is initiated with a sexual population composed of random 

genotypes, with 1% infected by randomly chosen parasites and no asexuals present. We allow 

a burn-in period of 2,000 time units, where only parasites are allowed to immigrate 

(stochastically, at a rate of !). Following the burn-in period, asexuals may also immigrate 

(stochastically, at a rate of !). All immigration events are independent, which allows the 

number of clonal lineages or parasite types that are present to fluctuate over time. Thus, 

clonal diversity is able to increase if previous lineages have not been driven extinct by the 

time a new lineage attempts to invade. When new sexual offspring are born, one male and one 

female are randomly chosen from the sexual population to be parents. Following 

recombination, one gamete is inherited from each parent and the sex of the offspring is 

chosen randomly with equal probability. We run each simulation for 5,000 time units 
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following the burn-in period (preliminary analysis of the model indicated that this was more 

than sufficient to detect strong effects of diversity on the maintenance of sex). For each 

simulation, we record if the sexual population persists, if it is driven extinct by asexuals or if 

no hosts survive. We also record the mean number of unique haplotypes during the second 

half of the burn-in period as a measure of the diversity of the sexual population prior to 

invasion. We conduct 250 repeats for each parameter combination and data is excluded from 

further analysis if the sexual population dies out during the burn-in period. 

Simulation results 

We focus on how sexual diversity (controlled by the number of loci per haplotype, !), the 

transmission rate (!) and the cost of sex (modified through the birth rate multiplier, !!) 

influence the ability of sexual populations to persist when invaded by asexual lineages. For 

the sake of brevity, we fix the remaining parameters as follows: !! = 1, ℎ! = 1/500, ℎ! = 0, 

! = 1/2, ! = 1, ! = 0, ! = 1/200, ! = 1/500, ! = 1/20, ! = 1/20. However, the 

supplementary figures show that our results are robust to the following changes: the inclusion 

of density-dependent mortality (figure S1); lower costs of sex due to effects on the relative 

mortality rates (figure S2); lower (figure S3) and higher (figure S4) recombination rates; the 

inclusion of parasite mutations (figure S5); higher parasite immigration rates (figure S6); 

larger population sizes (figure S7); an alternative formulation of the density-dependent birth 

rate (figure S8; equations S1-S2); and frequency-dependent transmission of parasites (figure 

S9; equation S3). 

The diversity of the sexual population (measured as the mean number of haplotypes prior to 

invasion) increased with the number of loci involved in specificity, n, (figure 3a) and host 

extinction was common during the burn-in period when diversity was low (63% of 

simulations for ! ≤ 4, but no extinctions occurred for ! > 4; figure 3b). Crucially, there was 

a marked difference in the success of sexual and asexual populations as the number of loci 

(and hence sexual diversity) varied. For low diversity (! ≤ 4), the sexual population either 
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died out during the burn-in period or was almost always invaded and replaced by clonal 

lineages, even when the cost of sex was less than twofold (figures 4-5). For greater diversity 

(! > 4), however, the outcome was heavily dependent on both the transmission rate and the 

cost of sex. When the transmission rate was high (! = 1/10), the sexual population persisted 

in nearly every simulation, and lower costs of sex (i.e. greater !!) increased the maintenance 

of sex for intermediate levels of diversity (figure 5). The picture was much more complex for 

lower transmission rates (! = 1/20). The sexual population tended to perform poorly as 

diversity increased and was most likely to persist for moderate levels of diversity. This 

relationship shifted towards the qualitative pattern described for high transmission rates when 

costs of sex were lower (figure 5). 

These findings can be understood by examining the relationship between disease prevalence 

and the maintenance of sex (figure 6). Sex was most likely to be maintained when disease 

was neither too rare nor too common, in agreement with our prediction (figure 2). The 

prevalence of infection was primarily determined by two parameters: the number of loci per 

haplotype (!) and the transmission rate (!). For small numbers of loci (low diversity), the 

prevalence of infection was relatively high and sexual individuals were either driven extinct 

due to disease or were unable to avoid infection sufficiently more often than asexuals to offset 

the cost of sex (figure 2: region B). For large numbers of loci (high diversity) and small 

transmission rates, the average level of infection in the sexual population was sufficiently low 

that asexuals were unlikely to be infected soon after invading (figure 2: region A). Although 

asexuals would have eventually experienced an epidemic, extinction would have been less 

likely due to the low transmission rate of the parasite. This increased the chances that the 

number of asexual lineages would accumulate through time, further eroding any advantages 

of sexual reproduction. Hence, the peak in the maintenance of sex (figure 5) occurred for 

intermediate numbers of loci when transmission rates were small: the sexual population was 

sufficiently diverse as to avoid infection more often than asexuals, but not too diverse as to 

suppress parasite prevalence to very low levels (figure 2: region C). This trade-off did not 
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occur for higher transmission rates, as asexuals were more likely to be infected soon after 

their initial emergence and would have experienced more severe epidemics. Both factors 

increased the likelihood of being driven extinct before the immigration of another asexual 

linage, thereby allowing sex to be maintained when diversity was high (figure 5). 

Discussion 

We have demonstrated that more diverse, sexual populations can avoid being outcompeted by 

faster growing, but less diverse clonal populations in the presence of parasites (figure 5). If, 

however, disease prevalence is sufficiently diminished due to high host diversity (figure 1) 

then the advantages of sex may be lost in the short-term, allowing clonal lineages to invade 

and replace sexuals. Sex may therefore peak for intermediate levels of diversity (figure 5), as 

disease is neither too rare nor too common (figures 2, 6). In general, we should expect sexual 

populations to be more diverse than asexual ones, due to the processes of recombination and 

segregation that facilitate the production of diverse offspring. Yet, our findings suggest that 

while producing diverse offspring in the presence of parasites can be beneficial, greater 

diversity per se is not necessarily advantageous for sexual populations.  

At first glance, our findings appear to contrast with those of Lively (2010b), who found that 

ecological feedbacks could prevent a single asexual lineage from replacing an established 

sexual population. Lively (2010b) argued that low disease prevalence could initially allow a 

clonal lineage to spread, leading to a reduction in sex and thus host diversity. The 

establishment of a single dominant genotype should then allow parasites to cause an 

epidemic, restoring the benefits of sex. Such behaviour was in fact common in our 

simulations, as shown by fluctuations in the frequency of sex due to temporary dominance of 

asexuals (figure 4). The key difference in the present study, however, is that sexual 

populations are much less likely to recover once they have been driven to low levels, even if 

parasites begin to infect a large number of asexuals. This is because our simulations featured 

the effects of drift, which were absent in Lively’s deterministic model. Further, our model 
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allows the number of asexual genotypes to accumulate over time due to successive invasions, 

but Lively (2010b) focused on a single immigration event. Sex would have eventually been 

replaced in Lively’s deterministic model if multiple immigration events were permitted.  

Our model differs from most other theoretical explorations of the RQH (table 2) in a number 

of important ways. For example, we incorporate ecological feedbacks (variable host and 

parasite population sizes, see e.g. Lively 2010b) and stochasticity (extinction of rare 

genotypes), and we model diploid rather than haploid hosts with overlapping rather than 

discrete generations. These factors are known to have a considerable impact on ecological and 

coevolutionary dynamics (Kouyos et al., 2007; Agrawal, 2009a; Ashby et al., 2014a), and 

hence the maintenance of sex (Ashby and Gupta 2014). Two additional aspects of the present 

study are particularly important for understanding our results in the context of existing theory. 

First, we have specifically focused on differences in the diversity of sexual and asexual hosts, 

but most studies assume that all genotypes are present for both populations (table 2). A small 

number of studies have considered contrasting levels of diversity, but this approach remains 

the exception rather than the rule (table 2). Studies with contrasting levels of diversity have 

usually held relative diversity constant (e.g. invasion of a single clone; table 2); here, we have 

varied the dimensionality of genetic space and have shown that the relative diversity of sexual 

and asexual populations is crucial for the maintenance of sex.  

Contrasting levels of diversity are more relevant to understanding the maintenance of sex, as 

it is unlikely that a large number of clonal lineages will simultaneously invade a sexual 

population, especially if parthenogenesis arises due to mutation and if immigration rates are 

not excessive (Lively & Howard, 1994). This would be a more realistic scenario for the many 

species in which clonal lineages ‘spin-off’ from a sexual progenitor (Vrijenhoek, 1998; 

Simon et al., 2003) and thus only capture a fraction of the sexual genotypic space (Jokela et 

al., 1997). (Note: we did not allow asexuals to arise via mutations from sexuals, as this 

allowed us to keep the influx of asexuals constant as we varied the dimensionality of the 

system). We should therefore expect the diversity of invading asexual populations to be much 
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lower than that of resident sexual populations. If all genotypes are present for both 

populations, then the advantages of sex only arise if rare (fitter) genotypes are produced at a 

much faster rate than by asexuals. Studies with equally diverse populations tend to report 

conditions for the maintenance of sex (diploids) or recombination (haploids) that are quite 

limited, usually relying on strong selection and rapid coevolutionary cycling (Hamilton, 1980; 

May & Anderson, 1983; Peters & Lively, 1999; Otto & Nuismer, 2004; Agrawal & Otto, 

2006; Gandon & Otto, 2007; Kouyos et al., 2007, 2009; Ashby & Gupta, 2014). These factors 

ensure that rare genotypes are optimal for only a short period of time and that hosts that lack 

recombination mechanisms are unable to respond to selection quickly enough, despite all 

genotypes being present in the population. However, this approach neglects a major 

advantage of recombination and segregation: rare genotypes may be lost due to extinction, but 

can readily reappear through these processes (Hamilton, 1980). Even if recombination is 

infrequent in sexual populations, higher standing diversity may be sufficient to prevent 

exclusion by a small number of asexual lineages (Lively & Howard, 1994; Doebeli, 1996; 

Lively, 2010a). Our results highlight the importance of standing genetic diversity for the 

maintenance of sex. 

The second major difference between the present study and most existing theory is that we 

vary the number of loci involved in host-parasite specificity and hence the relative diversity 

of the sexual and asexual populations. The vast majority of studies have modelled specificity 

based on interactions at a fixed number of loci and it is unclear how greater diversity would 

affect many results (table 2). As an exception, Otto and Nuismer (2004) found that increasing 

the number of loci reduced selection for recombination, in stark contrast to our observations. 

It is difficult to fully reconcile the two sets of results, as we have taken a fundamentally 

different modelling approach. Specifically, Otto and Nuismer (2004) used a modifier allele 

approach to determine selection for recombination in haploid hosts, rather than competing 

diploid sexual and asexual populations, and did not include ecological feedbacks, 

stochasticity or contrasting levels of diversity in sexual and asexual populations. If all host 



Ashby, B. and King, K. C. (2015) Diversity and the maintenance of sex by parasites. J Evol. Biol. 
!

14 

and parasite genotypes are always present and selection leads to changes in frequency (but not 

density), then greater diversity decreases the strength of selection at each locus, making 

recombination less advantageous. In our model, the sexual population becomes more diverse 

(in an absolute sense and relative to asexuals) as the number of loci increases, widening the 

gap between the two populations. In addition, the presence of ecological feedbacks means 

that genotypes fluctuate in both frequency and density, so the risk of extinction per genotype 

increases with the number of loci. Although our model differs in a number of key areas, some 

common themes still exist with Otto and Nuismer (2004). Their study, along with previous 

theory (Hamilton, 1980; Peters & Lively, 2007), demonstrates that population-level or long-

term advantages to recombination do not necessarily lead to its persistence. These findings 

resonate with our own in that high diversity is good for reducing the overall prevalence of 

infection in the sexual population, but can provide asexual lineages with a short-term 

advantage that leads to the extinction of sex.  

Theoreticians often work with limited diversity in their models as this reduces the complexity 

of the system, but our results show that the number of loci involved in specificity is crucial 

for the maintenance of sex. The genetic underpinnings of host-parasite interactions are 

increasingly being uncovered in natural systems, many of which appear to be governed by 

multiple loci (Jones & Dangl, 2006; Scanlan et al., 2011; Penman et al., 2013; Barribeau et 

al., 2014). When discussing multiple loci and the evolution of sex, it is important to 

distinguish between loci that are under selection due to interspecific interactions (RQH) and 

loci that may negatively affect fitness due to the presence of deleterious mutations. We did 

not incorporate deleterious mutations in our model, but this will provide an additional 

advantage for sex as it purges unfit genotypes from the population (Maynard Smith, 1978; 

Howard & Lively, 1994, 1998; West et al., 1999). While we have shown that increasing the 

number of loci that govern specificity can select against sex, more loci (that are unrelated to 

specificity) tend to favour sex in the context of deleterious mutations (Iles et al., 2003).  
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Real host-parasite systems are inevitably far more complex than our model, but we expect the 

general pattern of our results to hold under a wide range of conditions. For example, we did 

not explore the effects of parasitic castration on the maintenance of sex, but this will tend to 

impose an extra cost on the sexual population due to a reduction in the availability of fertile 

mates (Ashby & Gupta, 2014). Ashby and Gupta (2014) showed that parasitic castration can 

also be crucial for the persistence of coevolutionary cycling, but focused on a deterministic 

system with all host and parasite genotypes present. Here, coevolutionary cycling persisted 

due to stochasticity, which meant that currently unfit host and parasite genotypes could be 

driven extinct before being reintroduced through recombination, mutation or immigration. As 

cycling was maintained in our model without castration, its inclusion would not alter the 

coevolutionary dynamics of our model to the extent observed by Ashby and Gupta (2014), 

but it would effectively increase the cost of sex by lowering the average birth rate. We also 

assumed that the populations mixed homogeneously, but spatial structure in natural 

populations should tend to increase the advantages of sex as parents and offspring are likely 

to be challenged by similar parasites (Keeling & Rand, 1995; Agrawal, 2006, 2009b). Still, a 

greater advantage for sex should not be taken for granted, as the effects of spatial structure on 

coevolutionary dynamics are often complex (e.g. Gomez et al., 2015) and can strongly 

influence epidemiological feedbacks (Best et al., 2011; Ashby et al., 2014b). Another 

complexity of real systems relates to the precise nature of host-parasite specificity, including 

dominance. It has recently been argued that dominance tends to select against sex (Agrawal & 

Otto, 2006; Agrawal, 2009a). However, this is only likely to be true when sexual and asexual 

populations are equally diverse, as the benefits of sex depend solely on the overproduction of 

heterozygotes (Agrawal & Otto, 2006; Agrawal, 2009a). Dominance effects are likely to be 

much less important when the two populations have contrasting levels of diversity, as the 

benefits of sex arise through the production of a greater number of genotypes rather than 

through differential production of the same genotypes. We also assumed that interactions 

between host and parasite genotypes were highly specific, which is consistent for many 
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systems where host-parasite coevolution has been evaluated (e.g. Lively 1989; Luijckx et al. 

2013).  

Although many models of the Red Queen assume that asexual competitors are saturated for 

the genotypic space available to sexuals (table 2), here we argue that a difference in genetic 

diversity is not only realistic, but also important to the maintenance of sex by parasites (see 

also Lively 2010a). Theory predicts that parasite-mediated selection against common host 

genotypes should maintain diversity (Haldane, 1949) and thus sex in host populations 

(Hamilton, 1980; Bell, 1982). However, a high level of genetic diversity should drastically 

reduce parasite transmission and prevalence (Lively, 2010c; King & Lively, 2012), giving an 

advantage to asexuals paying a lower reproductive cost. Our model supports these hypotheses 

as ends of a spectrum and finds that an intermediate level of genetic diversity maintains sex.  
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Tables 

Table 1 

Model variables and parameters for stochastic simulations 

Sub/superscript ! Host type: sexual (! = !) or asexual (! = !) 

Subscript ! or ! Host haplotype ! or ! 

Subscripts !" Host genotype composed of haplotypes ! and ! 

Subscript ! Host infected by parasite haplotype ! 

!!"!  Birth rate 

!!  Birth rate multiplier for sexuals 

!! Death rate multiplier for asexuals 

!,! Number of host genotypes, loci per haplotype  

ℎ! , ℎ! Coefficient for density-dependent birth, death rates 

!! ,!! Proportion of gametes following recombination that are of haplotype ! 

(males, females) 

!,!!,!!,!!, !!"! , !!",!!  Number of hosts (all, sexual, asexual, female, susceptible, infected) 

! Maximum per capita birth rate 

! Disease-associated mortality rate 

! Transmission rate 

!, ! Parasite mutation, immigration rates 

! Asexual immigration rate  

!! Force of infection 

! Coefficient for natural mortality rate 

!! Per capita natural mortality rate 

!, !! Rate of recombination (overall, per locus) 
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Table 2 

Summary of modeling assumptions in theoretical studies 

Reference 

 

Ecological 

feedbacks 

Drift Host ploidy Generations Loci Asexual 

diversity* 

Present study Yes Yes Diploid Overlapping Variable Variable 

Agrawal (2006) No No Diploid Discrete Variable Equal 

Agrawal and Otto (2006) No No Diploid Discrete Fixed Equal 

Agrawal (2009) No No Diploid Discrete Fixed Equal 

Ashby and Gupta (2014) Yes No Diploid Overlapping Fixed Equal 

Engelstädter and Bonhoeffer (2009) No No Haploid Discrete Fixed Equal 

Doebeli (1996) Yes No Haploid Discrete Quantitative Variable 

Gandon and Otto (2007) No No Haploid Discrete Fixed Equal 

Green and Mason (2013) No Yes Diploid Discrete Variable Single 
clone 

Hamilton (1980) No No Diploid, haploid Discrete Variable Equal 

Hamilton et al. (1990) No Yes Haploid Discrete Variable Equal 

Hodgson and Otto (2012) No No Haploid Discrete Fixed Equal 

Howard and Lively (1994) No Yes Haploid Discrete Fixed Single 
clone 

Howard and Lively (1998) No Yes Haploid Discrete Fixed Single 
clone 

Keeling and Rand (1995) Yes Yes Haploid Both Fixed Single 
clone 

Kouyos et al. (2007) No Yes Haploid Both Fixed Equal 

Kouyos et al. (2009) No No Haploid Both Fixed Equal 

Ladle et al. (1993) No Yes Haploid Discrete Fixed Equal 

Lively (2009) No No Diploid, haploid Discrete Fixed Single 
clone 

Lively (2010b) Yes No Haploid Discrete Fixed Single 
clone 

Lively and Howard (1994) No Yes Haploid Discrete Variable Variable 

May and Anderson (1983) Yes No Diploid, haploid Overlapping Fixed Equal 

Mostowy et al. (2010) No No Haploid Discrete Fixed Equal 

Mostowy and Engelstädter (2012) No No Diploid, haploid Discrete Fixed Equal 

Otto and Nuismer (2004) No No Haploid Discrete Variable Equal 
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Parker (1994) No No Haploid Discrete Fixed Equal 

Peters and Lively (1999) No No Haploid Discrete Fixed Equal 

Peters and Lively (2007) No No Haploid Discrete Fixed Equal 

Salathé et al. (2008) No No Haploid Discrete Fixed Equal 

Salathé et al. (2009) No No Haploid Discrete Fixed Equal 

Sasaki et al. (2002) No No Haploid Discrete Variable Variable 

*Relative to the sexual population  
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Diversity and the maintenance of sex by parasites:

supplementary material

Ben Ashby⇤1 and Kayla King2

1Biosciences, College of Life and Environmental Sciences, University of Exeter,
Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK.

2Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS,
UK.

In the main text, we focus on how sexual diversity (controlled by the number of loci per
haplotype, n), the transmission rate (�) and the cost of sex (modified through the birth rate
multiplier, cb) influence the ability of sexual populations to persist when invaded by asexual
lineages. For the sake of brevity, the following parameters are held constant: cµ = 1, hb = 1/500,
hµ = 0, r = 1/2, ↵ = 1, ✏ = 0, ⇣ = 1/200,  = 1/500, µ = 1/20, ⇢ = 1/20. Here, we show that
our results are robust to the following changes: the inclusion of density-dependent mortality
(figure S1); lower costs of sex due to e↵ects on the relative mortality rates (figure S2); lower
(figure S3) and higher (figure S4) recombination rates; the inclusion of parasite mutations
(figure S5); higher parasite immigration rates (figure S6); larger population sizes (figure S7); an
alternative formulation of the density-dependent birth rate (figure S8); and frequency-dependent
transmission of parasites (figure S9). In figure S8, the sexual birth rate is given by:

bsij =
cbrF0 (MiFj +MjFi)

1 + hbN
(S1)

and the asexual birth rate is given by:

baij =
rAij

1 + hbN
(S2)

For figure S9, the force of infection from parasite haplotype i is equal to:

�i =
1

2

0

@ �

N
(1� ✏)

X

k,p

Ikip,i +
�✏

nN

X

k,p,q

⌘ipI
k
pq,p + 

1

A (S3)

⇤
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Figure S1: E↵ects of density-dependent mortality (hµ = 1/500, hb = 0 and µ = 1/40). Pro-
portion of simulations where hosts persisted and sexual (resident) hosts were still present after
7,000 time units for low (� = 1/20; black) and high � = 1/10; white) transmission rates. The
panels correspond to di↵erent values for the birth rate multiplier, cb, which reduces the cost of
being sexual (e.g. lower infant mortality rate due to shared parental care or a lower deleterious
mutation load): (a) cb = 1 (no change), (b) cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars
correspond to 1 standard deviation. Remaining parameters as specified in figure 3 in the main
text.
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Figure S2: E↵ects of the mortality rate multiplier. Proportion of simulations where hosts
persisted and sexual (resident) hosts were still present after 7,000 time units for low (� = 1/20;
black) and high � = 1/10; white) transmission rates. The panels correspond to di↵erent values
for the mortality rate multiplier, cµ, which reduces the cost of being sexual (e.g. lower infant
mortality rate due to shared parental care or a lower deleterious mutation load): (a) cµ = 1 (no
change), (b) cµ = 1.1, (c) cµ = 1.2, (d) cµ = 1.5. Error bars correspond to 1 standard deviation.
Remaining parameters as specified in figure 3 in the main text, with cb = 1.
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Figure S3: E↵ects of a lower recombination rate (⇢ = 1/50). Proportion of simulations where
hosts persisted and sexual (resident) hosts were still present after 7,000 time units for low
(� = 1/20; black) and high � = 1/10; white) transmission rates. The panels correspond to
di↵erent values for the birth rate multiplier, cb, which reduces the cost of being sexual (e.g.
lower infant mortality rate due to shared parental care or a lower deleterious mutation load):
(a) cb = 1 (no change), (b) cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1
standard deviation. Remaining parameters as specified in figure 3 in the main text.
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Figure S4: E↵ects of a higher recombination rate (⇢ = 1/10). Proportion of simulations where
hosts persisted and sexual (resident) hosts were still present after 7,000 time units for low
(� = 1/20; black) and high � = 1/10; white) transmission rates. The panels correspond to
di↵erent values for the birth rate multiplier, cb, which reduces the cost of being sexual (e.g.
lower infant mortality rate due to shared parental care or a lower deleterious mutation load):
(a) cb = 1 (no change), (b) cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1
standard deviation. Remaining parameters as specified in figure 3 in the main text.
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Figure S5: E↵ects of parasite mutations (✏ = 1/20). Proportion of simulations where hosts
persisted and sexual (resident) hosts were still present after 7,000 time units for low (� = 1/20;
black) and high � = 1/10; white) transmission rates. The panels correspond to di↵erent values
for the birth rate multiplier, cb, which reduces the cost of being sexual (e.g. lower infant
mortality rate due to shared parental care or a lower deleterious mutation load): (a) cb = 1 (no
change), (b) cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1 standard deviation.
Remaining parameters as specified in figure 3 in the main text.
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Figure S6: E↵ects of a higher parasite immigration rate ( = 1/100). Proportion of simulations
where hosts persisted and sexual (resident) hosts were still present after 7,000 time units for
low (� = 1/20; black) and high � = 1/10; white) transmission rates. The panels correspond
to di↵erent values for the birth rate multiplier, cb, which reduces the cost of being sexual (e.g.
lower infant mortality rate due to shared parental care or a lower deleterious mutation load):
(a) cb = 1 (no change), (b) cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1
standard deviation. Remaining parameters as specified in figure 3 in the main text.
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Figure S7: E↵ects of greater population sizes due to a higher carrying capacity (hb = 1/5000;
transmission rates adjusted accordingly). Proportion of simulations where hosts persisted and
sexual (resident) hosts were still present after 7,000 time units for low (� = 1/200; black) and
high � = 1/100; white) transmission rates. The panels correspond to di↵erent values for the
birth rate multiplier, cb, which reduces the cost of being sexual (e.g. lower infant mortality rate
due to shared parental care or a lower deleterious mutation load): (a) cb = 1 (no change), (b)
cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1 standard deviation. Remaining
parameters as specified in figure 3 in the main text.
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Figure S8: E↵ects of using an alternative formulation for the density-dependent birth rate
(equations S1 and S2; hb = 1/100). Proportion of simulations where hosts persisted and sexual
(resident) hosts were still present after 7,000 time units for low (� = 1/20; black) and high
� = 1/10; white) transmission rates. The panels correspond to di↵erent values for the birth
rate multiplier, cb, which reduces the cost of being sexual (e.g. lower infant mortality rate
due to shared parental care or a lower deleterious mutation load): (a) cb = 1 (no change), (b)
cb = 1.1, (c) cb = 1.2, (d) cb = 1.5. Error bars correspond to 1 standard deviation. Remaining
parameters as specified in figure 3 in the main text.
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Figure S9: E↵ects of frequency-dependent transmission (equation S3; transmission rates ad-
justed accordingly). Proportion of simulations where hosts persisted and sexual (resident)
hosts were still present after 7,000 time units for low (� = 25; black) and high � = 50; white)
transmission rates. The panels correspond to di↵erent values for the birth rate multiplier, cb,
which reduces the cost of being sexual (e.g. lower infant mortality rate due to shared parental
care or a lower deleterious mutation load): (a) cb = 1 (no change), (b) cb = 1.1, (c) cb = 1.2, (d)
cb = 1.5. Error bars correspond to 1 standard deviation. Remaining parameters as specified in
figure 3 in the main text.
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