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Abstract

A substantial segment of the error in numerical weather prediction and climate

projections comes from the intrinsic uncertainties of General Circulation Models of

the atmosphere. Stochastic physics schemes are one of the preferred methods to

represent the model uncertainty in Ensemble Prediction Systems, where different

realizations of the same forecast are created to quantify the probabilities of different

outcomes in the atmospheric flow.

Stochastic physics schemes have been successfully employed in medium-range

and seasonal forecasting systems, as they increase the skill of probabilistic forecasts.

Similarly it has been demonstrated than these schemes can improve certain aspects

of the model’s climate. However, it is still not clear whether they are a truthful

representation of the model uncertainties they aim to represent.

In this thesis, a collection of stochastic physics schemes are evaluated using a

seamless approach. It is found that they can improve the representation of the trop-

ical climate and extra-tropical cyclones, but they degrade the individual representa-

tion of these processes deteriorating the deterministic skill of the model. Some im-

portant features of the model can be degraded by the stochastic physics schemes, like

energy and moisture conservation on climate scales. Some closures to the schemes

are proposed and successfully tested to remove or reduce some of the problems found.

Alternative approaches in the development of stochastic parametrizations are also

investigated.

Stochastic physics schemes have some benefits but still require further develop-

ment to produce a realistic representation of model error. It is also recommended

that evaluation methodologies must be expanded to include process-based diagnos-

tics to display the realism of its perturbations.
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Chapter 1

Introduction

The diversity of different phenomena occurring in the atmosphere is astonishingly

complex and beautiful. The engine of the atmosphere, the latitudinal gradient of

solar radiation, gives birth to a great diversity of clouds, precipitation events or

scattering processes which produce the rich and colourful images we observe in the

sky.

In addition to this beauty, the prediction of the evolution of the atmosphere is

one of the most important and challenging scientific problems of our times. It is

important because the accurate prediction of devastating phenomena like hurricanes,

severe droughts or runaway effects in the climate system is paramount for our well-

being. And it is challenging because of the number of actors able to guide and

modify weather and climate patterns whose interactions encompass a wide range of

temporal and spatial scales:

� Microscales of a few micrometers (snowflakes and raindrops)

� Convective scales of about one kilometer and few hours (updraft, downdraft

and clouds)

� Mesoscales of a one week and a hundred kilometers (squall lines and rainfall

bands)

� synoptic scales of weeks and ∼ 1000 km. (equatorial waves, cyclones)

� planetary scales of months and 104 kilometers [the Hadley circulation, Walker

circulations or Madden Julian Oscillation (MJO)]
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� intradecadal variability [El Niño Southern Oscillation (ENSO), solar cycle,

changes in Green House Gas (GHG) concentrations]

In order to provide useful and as accurate as possible prediction of the future

state of the atmosphere, the physical laws of fluid dynamics are combined with

diabatic processes such as latent heat, radiative absortion/reflection, interactions

with boundary conditions such as mountains, land, sea-ice and oceans, and last

but not least the anthropogenic forces that have emerged in the last two centuries.

All these different processes are mingled to form a General Circulation Model of the

Atmosphere (GCMA or commonly abbreviated as GCM), an extremely complex tool

that has been developed since the invention of the digital computer in the middle

of the 20th century.

In the early days, weather forecasting and climate prediction were separate sci-

ences, the former was defined as Numerical Weather Prediction (NWP) and was

crucially dependent on defining an accurate initial state and running at the highest

possible resolution, whereas climate modeling and prediction sought to incorporate

more complexity to capture the feedbacks amongst different Earth subsystems, like

the ocean, sea-ice, atmospheric gaseous composition or the biosphere. The repre-

sentation of these subsystems allowed climate models to capture the evolution of

past, present and future climates. These climate models are often described now as

Earth System Models (ESMs).

The division between NWP and climate modeling remained until the resolution

of the latter was high enough to represent important process of day-to-day variability

and the former started to incorporate more complexity and modeling elements of

the Earth System such as atmospheric composition (Milton et al., 2008). Since

weather and climate are built over the same physical process in the atmosphere, the

idea of merging climate and weather models into a “seamless” model was developed

(Palmer et al., 2008; Senior et al., 2011).

Higher computational resources and a better understanding and representation

of atmospheric processes have produced a dramatic progress in NWP forecasting

and climate simulation over the last decades (Simmons and Hollingsworth, 2002;

Reichler and Kim, 2008). However, many of predictions are still deficient in many

aspects, models have problems to simulate important atmospheric phenomena such

as blocking (D’Andrea et al., 1998), the Madden Julian Oscillation (Zhang, 2005)
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or the diurnal cycle of convection (Yang and Slingo, 2001).

The set of equations that defines a GCM can not be solved analytically with

the exception of a few very idealized cases. The way to obtain the most accurate

solution of a GCM involves the transformation of the GCM’s continuous equations

into a discrete set of algebraic equations, which inevitably introduces errors in the

resolved spatial and temporal scales, so-called large-scale flow or resolved flow. The

discretization carries a substantial problem, all the atmospheric phenomena with

an impact on momentum, heat or moisture that occur in spatial scales below the

truncation limit and in timescales shorter than the timestep can no longer be solved,

they need to be represented with their average effect for a given large-scale forcing,

the representation of these averaged processes in the GCM is defined as parametriza-

tions.

Atmospheric parametrizations adopt the notions of statistical mechanics, where

the bulk effects of the molecular motions are represented by the thermodynamic

properties of the gas. However, the separation between macro and micro scales

in the atmosphere is an arbitrary choice based on the computational capacity to

solve the GCM. There is not a true separation of scales in the atmosphere, since

its energy spectrum is quasi-continuous on all observable length scales from the

planetary scales down to a few kilometers (Nastrom and Gage, 1985), and in many

cases the number of subgrid scale events per gridbox is not large enough to permit

the existence of a meaningful statistical equilibrium (Williams, 2005). These events

are phenomena such as gravity waves, perturbations with wavelengths of 1-10km

caused by orography or a rapid release of latent heat, convective clouds of a few

kilometers that can organize to form large scale clusters larger than 500km in the

tropics, and small-scale turbulence in the Boundary Layer caused by shear between

the atmosphere and the land. Many atmospheric centers are developing GCMs

with a high horizontal resolution of the order of one kilometer or less, which are

able to fully or partially resolve some of these processes, these models are defined

as “convection permitting models”, the comparison between these high resolution

GCMs with low resolution ones highlights the deficiencies of current parametrization

schemes (Holloway et al., 2013).

The uncertainty of a weather forecast not only comes from an incomplete descrip-

tion of the atmosphere in a GCM, even if we had a perfect model, the predictions



22 CHAPTER 1. INTRODUCTION

would be uncertain after week two. The atmosphere is a chaotic system, so it is

highly sensitive to initial conditions (Lorenz, 1963). Earth Observing systems, like

instruments on-board of Earth orbiting satellites, atmospheric radars, radiosondes

or weather stations, provide initial conditions for the GCM, but these instruments

have spatial and temporal sampling limitations as well as intrinsic uncertainties.

The small errors in the initial state would cascade up to larger scales increasing the

forecast error and decreasing the flow-dependent predictability (Lorenz, 1969).

The limitations of the predictability of a deterministic NWP forecast led the de-

velopment of the Ensemble Prediction System (EPS), where a number of forecasts

are produced with slightly different initial conditions determined by the observa-

tional uncertainty. Some of these systems have recently started to adopt method-

ologies to account for the model error as well. The combination of the different

outcomes of the ensemble of forecasts can be used to produce probabilistic predic-

tions to obtain the most likely weather evolution and the uncertainty of the forecast.

The added value of an EPS in comparison to a single forecast covers different fields,

the EPS can produce statistics of harmful extreme events (Hamill et al., 2012; Neal

et al., 2013), provide the potential economic value of an EPS user action (Buizza,

2008) or produce probabilities of flood events (Cloke and Pappenberger, 2008).

The skill of the EPS depends on the reliability of the ensemble. Figure 1.1 helps

to illustrate the concept of ensemble dispersion and reliability. The individual en-

semble members are represented by blue lines. They must diverge rapidly enough to

cover all possible outcomes that the real atmosphere could lead to, or in other words,

the blue lines must diverge and produce a blue dark envelope, the forecast uncer-

tainty. This envelope should be large enough to sample all the current climatology,

the light blue envelope. The forecast uncertainty is also defined as ensemble spread

or ensemble dispersion. A system that produces little dispersion for a high degree

of uncertainty (small dark blue envelope for a large light blue envelope) is defined

as underdispersive, whereas a system that systematically produces too much spread

in comparison to its error (dark blue envelope bigger than light blue) is defined as

overdispersive.

The techniques to obtain different initial conditions for the ensemble members

aim to perturb short-term numerical forecasts. The perturbations are based on

the the uncertainty of observations and push the model towards directions that
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Figure 1.1: Schematic description of an Ensemble Prediction System (EPS) using initial

condition and model uncertainties. Blue lines show different trajectories of the individual

forecasts of the ensemble, The dark blue envelope represents the range of solutions sampled

by the EPS, whereas the lighter blue envelope represent the range of possible states that

the real atmosphere could encompass. From Slingo and Palmer (2011)

produce stronger divergence amongst members. This technique of blending the

statistics from the observational uncertainty and short-range forecasts is known

as Data Assimilation (Kalnay, 2002). Even with these techniques to account for

observational uncertainty, the operational EPS are underdispersive and thus they

can not predict the full range of the forecast uncertainty (Buizza et al., 2005).

The inability of the EPS to produce enough dispersion in their predictions ac-

centuated the need to represent model errors as well as the uncertainty of the initial

state. An important source of model error, probably the most important, is the mis-

representation of the multiscale coupling between resolved and subgrid scale process,

or in other words, the absence of fluctuations around the most likely effect of subgrid

process on the resolved scales. There is enough evidence of the impact of unresolved

convective variability in the large-scale flow (Cohen and Craig, 2006; Shutts and

Palmer, 2007). On an EPS context, the subgrid effects on the large-scales should be

represented by a probable value rather than the mean value (Teixeira and Reynolds,

2008a). There have been three different approaches to represent model error in an

EPS:

� Multimodel or multiparametrization ensemble: Different members are run with
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different parametrization approaches, or even with different models. Although

this technique provides clear benefits (Charron et al., 2010; Berner et al., 2011),

it does not explicitly represent model error because the ensemble of different

parametrizations have not explicitly been developed to simulate the subgrid

variability of the processes they simulate. The technical maintenance of such

ensemble is a costly task that many atmospheric centres cannot afford.

� Perturbed Parameter ensemble: Key parameters in physical parametrizations,

whose value is uncertain, are different for each member of the ensemble, there-

fore the ensemble can represent the uncertainty of the parametrization (Mur-

phy et al., 2004). However, as the previous example of the multiparametriza-

tion, this approach although useful, can not fully represent the subgrid vari-

ability as it does not address the structural uncertainty of the parametrizations

nor the representation of the subgrid variability.

� Stochastic-dynamic parametrization schemes: The subgrid fluctuations around

the statistical mean of the parametrized process are represented by a stochas-

tic forcing (Palmer, 2001; Palmer et al., 2005). This approach has been very

competitive against the other two approaches in EPS from medium-range, pre-

diction up to two weeks (Charron et al., 2010; Berner et al., 2011) to seasonal

(Weisheimer et al., 2011) and annual (Doblas-Reyes et al., 2009). However

their formulation is often very simple and ad-hoc (Charron et al., 2010).

Stochastic-dynamic parametrization schemes aim to represent the uncertainty in

physics, that is why they are defined as “stochastic physics” schemes. They also

represent some of the underlying uncertainties of the dynamical core such as the

diffusion schemes, which are typically utilized to filter spatial and temporal small

scales to control the growth of numerical instabilities. There are two approaches in

the development and implementation of stochastic physics schemes:

� The stochastic forcing terms are included in the model itself rather than in

the parametrizations. These schemes have been develop mainly to increase the

ensemble spread. They represent the subgrid variability by adding a pseudo-

Gaussian stochastic forcing to the total physical tendencies (Buizza et al.,

1999), or the upscale kinetic energy from subgrid processes which is not prop-

erly represented by current parametrizations (Shutts, 2005). The impact of
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these schemes on EPS has been quite positive, increasing various properties

of the reliability of an EPS in addition to the ensemble spread (Berner et al.,

2008, 2009, 2011; Charron et al., 2010; Tennant et al., 2011). They have been

implemented in many operational EPS around the globe.

� Stochastic features are introduced in various elements of parametrizations:

Given a Probability Density Function (PDF) of a parametrized phenomenon,

the stochastic scheme draws a random value from the PDF, e.g. mass flux

at cloud base (Plant and Craig, 2008) or gravity wave packets (Eckermann,

2011). The stochasticity could be also added in a parameter of the closure such

as an extra term in the equation for the updraught mesh fraction (Bengtsson

et al., 2013). Although these schemes are more physically-based, they are still

under research and none of them have been made operational.

Another advantage of stochastic physics schemes is their ability to improve the

mean climate through the process of noise-induced drift, where physically consistent

stochastic perturbations drive the model away from its preferred chaotic attractors

and make it explore different regions of the phase space, hence increasing the ensem-

ble spread by creating a more realistic variability (Slingo and Palmer, 2011). The

stochastic noise-induced drift concept is well known in simple and idealized mod-

els (Wilks, 2008; Arnold et al., 2013). Theoretically it could also benefit a GCM,

but given its complexity and non-linearity is not yet clear how. There have been

several studies which have highlighted the impact of stochastic schemes on climate

processes:

� Stochastic fluctuations to air-sea fluxes can improve the century mean sea

surface temperature, atmospheric Hadley circulation and net upward water

fluxes (Williams, 2012).

� A Stochastic representation of the Kinetic Energy Backscatter (SKEB) was

able to simulate a better occurrence of weather regimes in the North Pacific

(Jung et al., 2005a), and improve tropical seasonal mean rainfall (Berner et

al., 2008).

� Several versions of the SKEB schemes can improve the frequency of blocking

events in the Northern hemisphere (Palmer et al., 2005; Tennant et al., 2011;

Berner et al., 2008, 2012).
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� A stochastic parametrization of gravity waves can produce a better strato-

spheric climate and representation of the Quasi Biennial Oscillation (QBO),

one of the most important manifestations of wave-mean flow interactions in

the atmosphere (Piani et al., 2004; Lott et al., 2012)

� For a given configuration of the Integrated Forecasting System (IFS) of the

European Centre for Medium-range Weather Forecasting (ECMWF), a SKEB

scheme is able to produce better improvements than increasing the horizontal

resolution, but slightly worse improvements than an upgraded physics package

(Berner et al., 2012).

The potential benefits of different stochastic schemes on the representation of the

atmosphere are encouraging. However, many of these schemes have been developed

following a very simple formulation, they pose large uncertainties in their formalism,

or given the operational demands of an EPS to produce a sizeable ensemble spread,

they follow ad-hoc approaches to maximize the spread but not necessarily for well-

established scientific reasons. Additionally, the scientific underpinning of some of

these schemes such as the SKEBs have been challenged, arguing that a deterministic

scheme might be more suitable to represent the missing process (Shutts, 2013).

The research field of stochastic parametrizations is very open and it has not been

sealed off against any particular development framework or evaluation methodology

yet. Stochastic physics schemes should increase the ensemble spread and improve

the representation of climate processes. If we consider the example of a tropical

cyclone, the different ensemble members would give different trajectories and the

average of the ensemble of tracks should be the best forecast of the final track. Over

longer timescales, a better representation of tropical cyclone tracks would indicate

dangerous areas where the seasonal or decadal likelihood of land-hitting hurricanes

is high, and also an improved tropical climate due to the improvements in the par-

ticular processes in tropical cyclones. Notwithstanding this example, there are very

few studies where stochastic physics are evaluated on one particular atmospheric

process. The stochastic schemes are generally evaluated under EPS skill scores,

complex mathematical formulae whose values are very difficult to translate to real

world weather or climate events.

There are many gaps on the understanding of how the stochastic perturbations

affects the representation of important processes of the atmosphere in the tropics
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and mid-latitudes. There are also many open questions whose answers have barely

started to be explored. A workshop on stochastic physics held at the headquarters

of the Spanish Meteorological Agency (AEMET) in Madrid, June 2013, selected

the following questions as the most relevant for the development and evaluation of

stochastic physics schemes:

1. Are current stochastic physics schemes perturbing the right spatial and tem-

poral scales?

2. Do stochastic physics schemes represent physical process correctly or there are

fundamental flaws?

3. Should there be stochasticity in the deterministic model outside the ensemble

forecasting context?

4. Should uncertainty representations be developed alongside the physical parametriza-

tions or added a posteriori by model error schemes?

5. How can we develop stochastic physical parametrizations in the presence of

compensating model errors/heavily tuned models?

6. Which priorities are the most relevant for the development of stochastic physics?

1.1 Objectives of the thesis:

The work of this thesis aims to dispense some answers to the several dialectics

where stochastic physics is often included, either as a great tool for the develop-

ment of future probabilistic GCMs (Palmer, 2012), or as a mere ad-hoc artifact to

bolt on EPS to account for the lack of dispersion. Some of most popular stochastic

physics schemes are studied across timescales, resolutions and different atmospheric

processes like blocking, convectively coupled equatorial waves or extra-tropical cy-

clones. In addition, some improvements for these schemes are developed and tested,

as well as the development of new a scheme that perturbs the parametrization’s

initial state, or the transformation of a present deterministic parametrization to a

stochastic physics scheme using different approaches. This thesis contains two intro-

ductory chapters, a description of the methodology employed, three chapters where

the results of the different investigations carried out are reported, and final chapter
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for the conclusions of the work. A brief description of each of these chapters is given

below.

Chapter 2 explains the motivation for stochastic physics and describes the schemes

employed in this thesis, the SKEBs schemes in sect. 2.2, the Stochastic Perturbation

of Physical Tendencies (SPPT) in 2.3 and the Random Parameter approach in 2.4.

A review of the main impacts of these schemes on atmospheric processes is given in

sect. 2.5. Other stochastic schemes that are not evaluated in the thesis are described

in 2.6, these are relevant because of their interesting formulation or results.

The main techniques to evaluate a GCM are explained in chapter 3. It con-

tains NWP traditional verification scores (sect. 3.1), techniques to evaluate the

probabilistic forecasts from EPS (sect. 3.2) and methodologies to evaluate relevant

atmospheric processes, such as Mid-Latitude cyclones (3.3), Blocking (3.4), Con-

vectively Coupled Equatorial Waves (CCEW, sect. 3.5) and the Madden-Julian

Oscillation (3.6).

The methodology employed in this thesis is described in chapter 4. It contains

a brief description of the GCM employed for the study, the United Kingdom Met-

Office Unified Model (MetUM), with its different systems and configurations (sect.

4.1). The chapter also includes a description of the products employed to evaluate

the experiments carried out in the thesis: Reanalysis datasets (sect. 4.2), the Global

Precipitation Climatology Project (GPCP, sect. 4.3) and the Cloud and the Earth’s

Radiant Energy System (CERES, sect. 4.4).

In the first chapter of results, chapter 5, the Stochastic Kinetic Energy Backscat-

ter version 2 (SKEB2) is evaluated across different timescales, 5 day NWP forecasts

(sect. 5.1) and 20 year climate simulations (sect. 5.2). In addition, the impacts

of SKEB2 are compared to deterministic improvements in the processes it aims to

represent (e.g. a less diffusive dynamical core) and across two different model con-

figurations (sect. 5.3). It is found that SKEB2 degrades deterministic forecasts but

on average it creates stronger cyclones and more organized convection events, which

lead to improvements in the representation of the mean tropical climate. These

improvements are consistent across different model cycles and resolutions. However,

there are some side effects as well, the scheme’s forcing do not scale well across

resolutions and it produces a spurious westward tropical wave. Some of the results

reported in this chapter have been published in Sanchez et al. (2014).
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On the chapter 6, some changes for SKEB2 are proposed and tested to min-

imize the errors described in chapter 5. The first one of them is to reduce the

scheme’s forcing on low wavenumbers (sect. 6.1), which helps the propagation of

atmospheric tropical waves. The second improvement proposed is the use of a dif-

ferent methodology to represent the energy dissipated by the dynamical core (sect.

6.2). This new method is found to scale better across different horizontal resolutions

and provides a better climatology. The last one is an ad-hoc modulation of the con-

vective dissipation rate, which in combination with the other two changes improves

the representation of mid-latitude cyclones and tropical climate. However, as the

deterministic model improves and the horizontal resolution increases, the physical

justification for SKEB2 becomes less clear.

Chapter 7 explores different approaches to represent the stochasticity for physical

parametrizations. A scheme that perturbs the initial state for parametrizations is

developed and evaluated in section 7.1, it produces a marginal impact. A SPPT

scheme is developed and compared to present schemes such as SKEB2 or Random

Parameters v2 (RP2, see 2.4) in section 7.2, its performance is very positive but on

long timescales it has a considerable impact on the moisture and energy budgets.

Different versions of the SPPT scheme are developed to remove clear sky radiation

and conserve water-vapour and moist static energy, they both reduce the negative

aspects of the scheme. The final section makes a deterministic mixed-phase scheme

stochastic by using different approaches (sect. 7.3), it is found that the tendency

perturbation approach is the most effective and the RP2 is equivalent to adding

white-noise.

The main results reported in this thesis are summarized in the conclusions chap-

ter, no. 8. Each of the questions described above as the most relevant for the

development and evaluation of stochastic physics is addressed in section 8.1, where

some answers or suggestions for future work are provided based on the evidence

gathered in the thesis.

The Appendix B is added to briefly describe the foundations of the atmospheric

prediction problem. It contains a brief history of atmospheric models (in section

B.1) and the main components of a GCM: the dynamical core (sect. B.2) and the

different parametrizations (sect. B.3), with an emphasis on their main uncertainties.
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Chapter 2

Stochastic Physics Schemes

A physical system is classified as stochastic when its state is determined by a proba-

bility function given by the statistics of the collective behaviour of random processes,

as described by Penland (2003) “macroscopic stochasticity is a manifestation of mi-

croscopic chaos”. The etymology of the word comes from the Greek “stokhastikos”

(στχαστικoς), which means aim at a target.

The level of randomness in the system is subjected to the effects of the micro-

scopic fluctuations in the macroscopic representation. Thermodynamics for instance

is a fully deterministic field. However, quantities such as “heat”, “temperature” or

“internal energy” describe the macroscopic state of a very large ensemble of unre-

solved random motions of particles. Given the large population of particles within a

small volume (N ∼ 1023), the Probability Density Function (PDF) of their macro-

scopic effects can be approximated by a deterministic delta functions with negligible

error.

The definition of stochastic processes resembles the representation of many pro-

cesses in an atmospheric model, like individual subgrid features such as eddies, grav-

ity waves or cumulus clouds. These individual processes are unpredictable, but on

large populations their statistical effects can be represented by some flow-dependent

variables, therefore they are good candidates to be represented as stochastic pro-

cesses. The introduction of stochastic elements in atmospheric models is described

in the next section.
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2.1 History of Stochastic physics

The idea of using stochastic physics to represent the uncertainty in atmospheric mod-

els goes back to the study of Epstein (1969), where a stochastic-dynamic forecasting

technique involving Monte-Carlo approximations did improve the short-range pre-

diction. It also provided specific information on the nature and extent of the un-

certainty of the forecast. The technique, although expensive, was used in the early

Ensemble Prediction Systems (EPS, Leith 1974). The concept of a stochastic climate

model was suggested by Hasselman (1976), where the time-scales of the model are

well separated in slow changing (climate scales) and fast changing (weather scales).

The latter is represented by a first-order Markov process.

Stochasticity was applied to represent turbulent processes. Mason and Thomson

(1992) developed the idea of “stochastic backscatter” to stochastically re-introduce

the kinetic energy flow from subgrid-scales in a Large-Eddy Simulator (LES), and

thus improve the representation of the energetic multiscale transfer (see sect. B.2.2).

The scheme was later employed by Frederiksen and Davies (1997) in a two-dimensional

barotropic vorticity equation of the sphere. It did outperform eddy viscosity parametriza-

tion in the representation of kinetic energy transfers across spatial scales.

Despite the continuous development of atmospheric models in terms of improve-

ments in resolution, complexity or the quality of observations, many model uncer-

tainties and errors were persisting. Palmer (2001) pointed to the formulation of

parametrizations, as they are unable to couple scales above and below the trunca-

tion limit, e.g. the effects of convection show substantial fluctuations around the

parametrized large-scale driven mean (Xu, 1992). Palmer (2001) and other studies

(Williams, 2005; Palmer et al., 2005) suggested the development and implementa-

tion of new “stochastic-dynamic” schemes to stochastically simulate parametrized

processes. These stochastic physics schemes would improve the large-scale repre-

sentation of subgrid processes and increase the capacity of the model to simulate

different internal modes of variability, thus increasing the spread of possible solu-

tions.

The concept of a “stochastic-dynamic” scheme took form in a simple parametriza-

tion to stochastically perturb the parametrized tendencies (Buizza et al. 1999, de-

scribed in detail in section 2.3). Despite its simplicity, the scheme was quite suc-
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cessful to alleviate the lack of ensemble spread of a medium range EPS. The adap-

tation of the stochastic backscatter scheme to a state-of-the-art EPS (Shutts 2005,

described in sec 2.2) showed similar improvements. Soon these schemes were de-

veloped in other centres and were made operational (Teixeira and Reynolds, 2008a;

Bowler et al., 2009; Charron et al., 2010; Reynolds et al., 2011; Berner et al., 2011).

These stochastic schemes are also competitive with other representations of model

error such as multimodel or perturbed-parameters on seasonal to annual ensemble

forecasts (Doblas-Reyes et al., 2009) and superior to those for monthly to seasonal

forecast ensembles (Weisheimer et al., 2011). They can also produce notable im-

provements in the representation of climate processes like the frequency of weather

regimes (Jung et al., 2005a), or tropical rainfall (Berner et al., 2008). These im-

provements are described in detail in section 2.5.

Despite the stochastic physics schemes developed for EPS having been quite

successful representing model error in probabilistic forecasts and in some cases the

representation of atmospheric processes, their physical basis is poor or rather uncer-

tain (Shutts, 2013; Hermanson et al., 2009). An alternative approach is to represent

a specific processes within the parametrization by a stochastic formulation. Some

examples include:

� Perturbations to the Convective Available Potential Energy (CAPE) were able

to generate part of the total convective variance in a quasi-equilibrium tropical

circulation model (Lin and Neelin, 2000). Longer correlation timescales lead

to a better matching of observed and simulated power spectra of equatorial

daily mean precipitation.

� Lin and Neelin (2003) explored two physical pathways to represent small-

scale variability in the convection scheme as stochastic processes: The effects

of random variations of cloud-base mass flux on CAPE, and the impacts of

random variations in the vertical structure of the resolved heating to represent

different levels of entrainment or differences in squall line organization due to

vertical shear. Both schemes help to increase the daily variability emerging

from small-scale processes and enhance the power of Kelvin waves (see sect.

3.5 for a description of Kelvin and other tropical waves).

� A different approach was taken by Lin and Neelin (2002). Instead of parametriz-
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ing the physics of unresolved processes using a stochastic framework, they

parametrize the statistics of one of the parametrization’s large-scale variables

using a stochastic framework (e.g. convective heating Q). In other words: The

value of Q is drawn from a constrained PDF driven by the large-scale values,

rather than using an unknown PDF determined by the stochastic representa-

tion of internal processes. The scheme was able to increase the intraseasonal

variability, but the impact on the climatology was modest. The distribution

of convective heating was more sensitive to the large-scale effects of model dy-

namics than the parameters affecting the PDF of Q. Therefore they concluded

that it is not very prudent to develop stochastic physics schemes outside an

atmospheric model framework.

A theoretical basis for a stochastic parametrization of cumulus convection was

provided by Craig and Cohen (2006), where the equilibrium fluctuations of a field

of cumulus clouds under homogeneous large-scale forcing were derived statistically.

The theory agrees with results from a Cloud Resolving Model (CRM) reported in

Cohen and Craig (2006). A new convection scheme was developed to adapt this

theory (Plant and Craig 2008, described in section 2.6.1), the scheme is based on

the Kain-Fritsch scheme (Kain and Fritsch, 1990), and computes the cloud base

mass fluxes from random sampling of cumulus clouds from a spectrum based on

the equilibrium exponential distribution of Craig and Cohen (2006). The scheme is

effective in producing equivalent distributions of convective variability to the theory

using a Single Column Model (SCM) as described in Plant and Craig (2008), and in

a three dimensional model of Radiative-Convective Equilibrium (Keane and Plant,

2012)

Using a similar approach, Eckermann (2011) developed a scheme where the large-

scale effects of non-orographic gravity waves are represented by a packet of random

waves from a prescribed spectrum. The scheme improves the representation of the

stratosphere climate and variability (Lott et al., 2012). It is briefly described in

section 2.6.4.

Another approach consist on the division of the grid into a lattice where the

phenomena could be stochastically simulated. Each site evolves following proba-

bilistic transition rules that determine the type of cloud, like the scheme described

in Khouider et al. (2010), section 2.6.5 of the thesis, or the region of convective
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activity (Bengtsson et al. 2011, 2013, and sect. 2.6.3).

The stochasticity has been extended to ocean processes and the coupling to the

atmosphere as well, Brankart (2013) uses random walks to represent unresolved tem-

perature and salinity fluctuations. The ocean stochastic parametrization improves

the large-scale circulation of the ocean, especially in the regions of intense mesoscale

activity. Williams (2012) shows that stochastic fluctuations to air-sea fluxes of heat

and moisture can improve the climate mean of surface sea temperature, atmospheric

Hadley circulation and net upward water flux.

The representation of unresolved processes does not need to be explicitly included

in the model, it can also be represented by “faulty” chips that generate imprecise

solutions to the equations. These chips allow a different tolerance to errors. Using

a spectral model, the processors with the highest concentration of faulty chip would

compute the small-scales on high wavenumbers, whereas the precise processors would

deal with representation of large-scales on the low wavenumbers. The system would

run efficiently a very high resolution GCM with realistic but imprecise low-scale

variability (Düben et al., 2013).

2.2 Stochastic Kinetic Energy Backscatter (SKEB)

Current GCMs have a deficient representation of the kinetic energy spectra. The

k−5/3 slope at the higher scales is absent, as discussed in section B.2.2. The main

hypothesis for this absence is the incapacity of physical parametrizations to provide

a realistic representation of the impact of kinetic energy fluctuations below the trun-

cation scale, and the excessive diffusion of dynamical cores. The impact of kinetic

energy subgrid fluctuations may have important consequences for the predictability

of the synoptic and large-scale flow and it is often described as one of the main

causes for the lack of spread in EPS (Palmer, 2012).

The Stochastic Kinetic Energy Backscatter schemes (SKEBs) are designed to

represent the upscale transfer of kinetic energy from unresolved or highly diffused

scales, a physical process defined as “energy backscatter”. The effects of the energy

backscattered were mostly unknown across different scales at the time these schemes

were developed, therefore their representation is stochastic.

In practical terms, the kinetic energy injection is introduced in the large scale
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flow through perturbations in the stream-function across chosen scales. In some

schemes these perturbations are modulated by a dissipation mask, an estimation of

the energy dissipated by different process like implicit or explicit numerical diffusion,

organized convection or sub-grid gravity wave breaking. Some SKEB schemes also

include a temperature forcing modulated by an estimated available potential energy

loss rate. The representation of SKEB normally follows eq. 2.1, where FΨ is the

streamfunction forcing, DTOT is the total dissipation mask, F is the forcing pattern

and bR is the backscatter ratio, which is the percentage of energy lost backscattered

upscale.

FΨ = bR
√
DTOT · F (2.1)

In this section, a theoretical description of energy backscatter is given in 2.2.1.

A brief description of the history of backscatter and the different schemes developed

can be found in 2.2.2. The different ways to compute a dissipation mask and their

impact on the schemes are discussed in 2.2.3, and the forcing pattern details in 2.2.4.

2.2.1 Energy Backscatter

One of the effects of increasing horizontal resolution is to enhance variability at large

scales. Seiffert and Von Storch (2008) compared the effects of increasing horizontal

resolution on the spectral ECHAM model (Roeckner et al., 2003) from T31 to T63.

They found that the standard deviation of the spectral coefficients at low wavenum-

bers were up to 1.3 times higher for the T63 version. This effect is higher for the

temperature field than vorticity or divergence, the other dynamical variables of the

model (see Figure 1.j,k,l of Seiffert and Von Storch 2008).

Using a simple model based on the barotropic vorticity equation, Thuburn et al.

(2013) computed spectral energy transfers for different horizontal resolutions. The

difference in the spectral energy tendency between the reference calculation and

truncated versions (at 170, 85 and 42 wavelengths) shows a transfer of energy to

low wavenumbers from 5 to 20, in addition to the removal of energy close to, but

smaller than the truncation wavenumber. None of the combinations between the

typical turbulent and diffusion schemes represented a realistic energy backscatter.

The study concludes that the current SKEB schemes possibly achieve their results by

repairing damage to the energy spectrum caused by truncation errors and excessive
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dissipation rather than modelling a realistic backscatter.

Other way to identify the kinetic energy backscatter is through the vorticity

equation. Shutts (2013) coarse-grained the vorticity equation of the IFS from T1279

to T159. The energy backscatter into low wavenumbers is evident in the vorticity

flux divergence associated with the rotational wind, this term is also responsible for

the energy sink close to the truncation limit. The contributions to the spectra from

SKEB were also included. Its input is very noisy at low wavenumbers and then

gradually decreases towards a constant input for n > 40.

Given that the backscatter of kinetic energy appear to be constrained to small

wavenumbers, as shown by Thuburn et al. (2013) and Shutts (2013), there is a

suggestion that a kinetic energy backscatter scheme should be deterministic at the

planetary scales, leaving the current SKEB schemes to counteract the spurious model

dissipation.

2.2.2 History and description of SKEB schemes

The SKEB scheme was first developed for Large Eddy Simulators (LES) by Mason

and Thomson (1992), in order to represent a flow of energy from subgrid-scales to

explicitly resolved scales poorly simulated by the Boundary Layer (BL) turbulence

scheme. Their SKEB formulation was successfully able to excite energy at scales

close to the model truncation limit. Frederiksen and Davies (1997) developed a

SKEB scheme for a two-dimensional barotropic vorticity equation on the sphere,

and found that it did provide a more realistic energy spectra than conventional

eddy viscosity parametrizations.

After the positive results shown for a LES and an idealized model such as the

barotropic vorticity equation, Shutts (2005) adopted the SKEB algorithm for a full

GCM to represent a source of model error in an EPS. It successfully improved the

representation of the kinetic energy power spectra and the ensemble dispersion of

the EPS. Numerous centres developed their own version of SKEB. Here follows a

brief description of each of them:

� CASBS: The Cellular Automaton Stochastic Backscatter Scheme (CASBS)

was the first SKEB to be implemented in the Integrated Forecasting System

(IFS, Jung et al. 2010a and references therein). The CASBS employed a
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Cellular Automata as a forcing pattern (see 2.2.4), and a global dissipation

rate built from estimates of dissipation from numerical diffusion, convection

and gravity wave drag. The scheme substantially increased the kinetic energy

at smaller scales, making the IFS able to simulate the mesoscale k−5/3 tail

in the Energy spectra. The scheme was also quite effective generating spread

associated with model error and a small but consistent positive impact on skill.

The CASBS scheme was also found to be quite positive for the seasonal fore-

casting system (Berner et al., 2008). It produced remarkable reductions in the

error of tropical seasonal mean rainfall, extratropical blocking frequency and

Sea Surface Temperature (SST) drift in the tropical Pacific. The skill of the

model was notably improved with the addition of the CASBS for ensemble-

mean accuracy of tropical pacific SST variability, and in terms of probabilistic

seasonal predictions of temperature, precipitation and mean-sea-level pressure.

� SSBS (a.k.a. SPBS): The internal characteristics of the CA, like the spectral

power law, were difficult to modify (Berner et al., 2009). The forcing pattern

was thus replaced by a spectral decomposition where each spherical harmonic

forcing evolves following a first order auto-regressive process, this gives full

control of the spectral characteristics of the perturbations. The scheme was

renamed as Spectral Stochastic Kinetic Energy Backscatter (SSBS) or Spec-

tral Stochastic Backscatter (SPBS) as defined in Palmer et al. (2009) and it

is operational in present IFS cycles. The distribution of spectral power in

the streamfunction forcing mimics the power-law found by Shutts and Palmer

(2007) and Shutts (2008a) using a coarse-graining methodology. The tem-

perature forcing was removed in this version. SSBS produces a more skilful

probabilistic forecast to a control run without any model error scheme, a bet-

ter match between the kinetic energy spectra and a better representation of

flow-dependent predictability. The positive effects are stronger in the tropics,

where the operational ensemble is more underdispersive.

� MSC SKEB : The Meteorological Service of Canada (MSC) has developed a

stochastic kinetic energy backscatter algorithm for its updated EPS (Charron

et al., 2010). Their implementation follows Shutts (2005) but the algorithm
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injects energy at smaller scales, from wavenumber 40 to 128. It also uses a

more elementary temperature forcing without assuming a specific balance and

a capped spherical harmonic decomposition for the forcing pattern (Li et al.,

2008). The scheme improves the dispersion and reliability of the ensemble, but

it also introduces a low-level temperature bias compared to the former EPS.

� NOGAPS SKEB : The Navy Operational Global Atmospheric Prediction Sys-

tem (NOGAPS; Peng et al. 2004) has also developed their own version of

SKEB following Berner et al. (2009). Their formulation does not employ any

dissipation mask, and the decorrelation time of the forcing pattern is slightly

less than the SSBS, 30 min (for further details see Reynolds et al. 2011). Their

version of SKEB increases the spread substantially and decreases the number

of extraneous outliers at all lead times. However, it does not produce any

significant impact on the tropical cyclones track errors. Reynolds et al. (2011)

also includes some preliminary results where a convective dissipation mask is

employed, having small improvements in the ensemble mean of the RMSE in

the mid-latitudes.

� MOGREPS SKEB1 : The scheme was implemented in the Met Office Global

and Regional EPS (MOGREPS, Bowler et al. 2008) and it is described in

Bowler et al. (2009). It employed a three dimensional random pattern gener-

ator with spatial and temporal correlation lengths determined by the coarse-

graining work of Shutts (2008a). It is described in the Appendix E of Evensen

(2003). The numerical dissipation mask was proportional to the local kinetic

energy of the flow and scaled to a global average value of 0.75Wm−2. The

scheme created the k−5/3 spectral slope as in Shutts (2005) and increased the

spread of the ensemble in terms of wind variables.

� MOGREPS SKEB2 : The MOGREPS SKEB scheme was upgraded to SKEB2

(Tennant et al., 2011), and it is employed in the operational version of MO-

GREPS. The SKEB2’s forcing pattern is based on an spherical harmonic de-

composition following Berner et al. (2009), but forcing wavenumbers between

5 and 60, the optimal choice for the greatest growth of ensemble spread and

minimal impact of forecast skill. The dissipation rate have also been updated,

SKEB2 includes a convective dissipation rate and the numerical dissipation
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rate is now based on energy loss estimated by the 2-D Smagorinsky-Lilly tur-

bulence closure (Smagorinsky 1963, explained in section 6.2.1). There is a

consistent improvement of nearly all aspects of the MOGREPS performance

with the introduction of SKEB2. An additional feature of SKEB2 is the forc-

ing of divergent modes through the velocity potential field, this feature in-

creases the growth rate of spread and a produces a marginal reduction of the

ensemble-mean error.

� WRF SKEB : There is a SKEB scheme developed for a Limited Area Model

(LAM), the Air Force Weather Agency (AFWA) Joint Mesoscale Ensemble

(JME, Hacker et al. 2011), a limited area ensemble system based on the

Weather Research and Forecasting (WRF) model. Its SKEB version has no

dissipation mask and a different forcing pattern based on 2-D Fourier modes

instead of spherical harmonics (Berner et al., 2011). Overall the scheme out-

performs the ensemble system that utilizes multiple combinations of different

physics schemes, especially for winds in the free atmosphere. However, for tem-

perature at surface, the multiphysics ensemble produces better probabilistic

forecasts.

As described in the previous list, the number and diversity of SKEB schemes is

large and this could lead to potential confusion amongst them. Table 2.1 shows the

main characteristics of each of the SKEB schemes developed until now, indicating

properties of the schemes such as the type of numerical dissipation, forcing pattern,

or whether it includes a temperature forcing. In terms of the results, all of the

schemes have a very positive impact on the ensemble spread and reliability of the

probabilistic forecasts, even those with no dissipation mask.
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2.2.3 Estimation of the dissipation rates

There are different sources of kinetic energy dissipation in GCMs. The SKEB

schemes include dissipative processes associated to systematic energy losses, such as

the diffusion schemes and upscale error growth though physical parametrizations.

The connection of the stochastic perturbation to an instantaneous dissipation rate

makes the SKEB scheme physically motivated, as it takes flow dependence into

account. However, there are considerable uncertainties in observational estimates

of atmospheric energy dissipation rates (Shutts, 2005), so their formulation across

different schemes varies. There are SKEBs schemes that do not include any repre-

sentation of the dissipation (SKEB schemes at NOGAPS or JMS), or the dissipative

processes are represented with a universal formula (SKEB at MSC). The different

sources of numerical and physical dissipation are:

� Numerical dissipation rate: A substantial part of the kinetic energy is lost

through explicit diffusion or implicitly by the Semi-Lagrangian interpolation

error, like the smoothing introduced by the interpolation to the departure point

(see section B.2.1). Part of this energy is not dissipated and a small faction of it

is backscattered towards the resolved scales. Shutts (2005) provides an exten-

sive summary of the different studies carried out to make estimations of total

energy dissipated by the explicit diffusion schemes and the Semi-Lagrangian

(SL) advection scheme. SSBS assumes that the implicit numerical dissipa-

tion of the SL scheme is equivalent to biharmonic diffusion (McCalpin, 1988),

whereas SKEB2 uses the Smagorinsky non-linear diffusion scheme (Smagorin-

sky, 1963), a two dimensional simplification of the more general Smagorinsky-

Lilly turbulent closure equation (Mason and Thomson, 1992). The differences

between these two approaches are investigated in chapter 6.

� Convective Energy dissipation: A small faction of the convective turbulence,

created around convective events, might be cascaded upwards towards the

larger scales, and thus become an important part of the observed k−5/3 spec-

trum (Lilly, 1983; Peng et al., 2014). Current parametrizations can not repro-

duce this release of turbulent kinetic energy (see sect. B.3.5 for a description

of the uncertainties of convective parametrizations).

� Mountain drag dissipation: Most of the 3D turbulence schemes dissipate as
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heat the turbulent effects from eddies on the vicinity of mountains, whereas

a small fraction could be available to backscatter into the near-grid scale of

GCMs. Subgrid scale Gravity Wave breaking also generates 3D turbulence

that might contribute to an upscale transfer of energy.

� Dissipation of Available Potential Energy (APE): Horizontal explicit and im-

plicit diffusion also affects the temperature field. Shutts (2005) adds the rate

of loss of APE, crudely estimated using a quasi-geostrophic definition, to the

numerical dissipation rate. Charron et al. (2010) explicitly adds a temperature

forcing proportional to the dissipation rate and the forcing pattern.

Convective dissipation rate is larger over areas of deep convection around the

Inter-Tropical Convergence Zone (ITCZ) or storm tracks in the mid latitudes (see

Fig. 2.1.b), the numerical dissipation rate is more focused on the mid-latitudes

where advection is larger (Fig. 2.1.c), and the Mountain dissipation rate sits over

high mountain ranges such as Himalayas, Rockies or Andes (Fig. 2.1.d). The

combination of these three sources includes many aspects of weather processes, its

geographical reach is ample so as it is vertically (Fig. 2.1.a), as numerical dissipation

tends to occur more in the low troposphere whereas deep convection dissipation is

more focus on mid to high troposphere.

The total dissipation field produced is generally quite noisy, it contains large

gradients which may be a threat for the stability of the model, therefore smoothing

is required. The total dissipation rate of the CASB and SPBS for the IFS is smoothed

retaining only the first 30 wavenumbers (Berner et al., 2009), SKEB2 in MOGREPS

uses a 1− 2− 1 spatial filter 5 times (Tennant et al., 2011). This operation ensures

that scheme also spreads the uncertainty to adjacent grid-points (e.g. a cyclone

being slightly misplaced in reality).

The simplified backscatter schemes with no dissipation mask are an improvement

over the models without SKEB, but their performance is not as good as the scheme

with the full dissipation rate. Berner et al. (2009) compared an operational ensem-

ble of IFS without SSBS, a similar system with SSBS with a constant dissipation

rate, SSBS with no convective dissipation and SSBS with the full dissipation rates.

The experiments with simplified dissipation mask outperforms the control, in the

extratropics the experiment with the most complex dissipation produces small im-

provements but significant at 95%, with the scheme without convective dissipation
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Figure 2.1: Vertically integrated annual-mean total dissipation rate per unit area (W/m2).

(a) Total dissipation which is the sum of (b) Deep convection, (c) numerical dissipation,

and (d) gravity/mountain wave drag. From Berner et al. (2008)

performing better than the one with a constant dissipation rate. In the tropics there

is a similar pattern for low level winds skill scores, but with little differences between

the constant dissipation SPBS and the one without convective dissipation (see Fig-

ure 14 of Berner et al. 2009). A similar conclusion can be drawn from Reynolds et

al. (2011), the addition of a provisional convective dissipation mask reduces the low

level winds mean Root Mean Error Square (RMSE) of the ensemble mean in the

mid-latitudes.

2.2.4 Forcing patterns

There have been two different methods to compute the stochastic field, so-called

forcing pattern, each has its own characteristics in terms of spatial, temporal and

scale interaction. The following methods have been used:

� Cellular Automata (CA): The use of CA to describe subgrid variability was

suggested by Palmer (2001), as it has spatial scales equivalent to mesoscale

cellular convection. The CA is based on the Conway’s Game of life (Gardner,
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1983). It divides the globe in cells smaller than the gridboxes, each cell could

be alive or dead depending on probabilistic rules which could depend on the

state of neighbour cells. The memory of the cells makes the scheme attractive

to represent convective clusters driven by model flow phenomena such as fronts

or Mesoscale Convective Systems (MCS). A comprehensive description of the

CA details is given in Shutts et al. (2008b), the CA scheme has also been used

inside a convection parametrization closure (see section 2.6.3).

� Spherical harmonic pattern with time evolution by autoregressive process: The

pattern is based on a truncated expansion in terms of spherical harmonics. The

spectral coefficients evolve following an autoregressive process (eq. 2.2), where

m and n are the zonal wavenumber and spherical harmonic degree respectively,

α is a damped autoregressive parameter with α ε[0, 1], and it is determined by

the model timestep and autocorrelation timescale τ (eq. 2.3), gn is the power

law function to provide the desired power spectrum and rtm,n is a random

number for a given time and spectral point. The power law have been deduced

by Shutts and Palmer (2007) and is proportional to n−1.27. The SPBS draws

the random number from a Gaussian white-noise process with mean zero and

variance σz (Berner et al., 2009) and the SKEB2 draws it from an uniform

distribution with range ε[−0.5, 0.5] (Tennant et al., 2011). The first term of

eq. 2.2 correspond to the memory of previous timesteps and the second is the

noise term regulated by power law, a full description and derivation of the

perturbations’ energy given by the spectral forcing pattern can be found in

Berner et al. (2009) and its appendix.

f t+1
m,n = [1− α(n)]f tm,n +

√
α(n)g(n)rtm,n (2.2)

α(n) = 1− exp (−∆t/τ(n)) (2.3)

2.3 Stochastic Perturbation of Parametrized Ten-

dencies

The errors associated to physical parametrizations (reported in sect. B.3) can be

represented by a simple scheme, the Stochastic Perturbation of Parametrized ten-
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dencies (SPPT, Buizza et al. 1999). The scheme perturbs the prognostic variables

horizontal wind u, meridional wind v, temperature T and humidity q; adding a

multiplicative noise to the total tendency due to parametrized physical processes.

The multiplicative noise factor, or forcing pattern, was on its original implementa-

tion a random number r sampled from a uniform distribution between 0.5 and 1.5

and uniformly distributed over horizontal boxes. For a given time a new random

number was drawn for each box. Buizza et al. (1999) evaluated the performance of

the scheme on the IFS, finding that the scheme improves the spread of the ensemble

and its performance, in particularly for the probabilistic prediction of precipitation.

It also explored the sensitivity of the results for different box sizes and temporal

autocorrelations of the random number.

The original forcing pattern for SPPT was somewhat unphysical, as there were

large discontinuities when r changed in space, from the edge of one box to the

neighbouring box, and in time. A new version of the scheme has been developed

(described in Palmer et al. 2009), its main upgrades are:

� A different forcing pattern, based on a spherical harmonic decomposition that

varies smoothly in space and time (see section 2.2.4) but the SPPT has a

quasi-Gaussian power law.

� The same r is applied to the different perturbed variables, making the scheme

univariate. Perturbations generate a more physically-based balance amongst

model variables.

� For reasons of numerical stability and physical realism, perturbations are ta-

pered to zero in the lowermost atmosphere, as tendencies in the Boundary

Layer are quite large and variable, from 300 to 1300 metres. A similar taper-

ing is used in the stratosphere.

� Supersaturation correction, which is used when changes to T and q result in

condensation.

The new SPPT scheme substantially outperforms the one evaluated by Buizza et

al. (1999). It generates larger ensemble spread and increases the skill scores, more

notably in the tropics. Palmer et al. (2009) also show that the best performing SPPT

configuration is based on a multiscale forcing pattern built from two independent
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patterns, the first one represent fast evolving synoptic scale errors and the second

slower evolving planetary scale errors. On present cycles of the IFS a 3rd pattern

has been added (Shutts G, 2010, personal communication). Table 2.2 shows the

properties of the different patterns.

Pattern
Standard

deviation of r

Temporal

autcorrelation

Spatial

Autocorrelation

Fast 0.52 6 hours 500 km

Medium 0.18 3 days 1000 km

Slow 0.06 30 days 2000 km

Table 2.2: Properties of patterns that form the multiscale pattern of SPPT

A different version of the SPPT has been built for the Canadian EPS (Charron

et al., 2010). It forces planetary and synoptic scales to maximize the impact. The

decorrelation time τ is 3 hours, but it is reported in Charron et al. (2010) that

the results are insensitive to a choice of τ between 3 and 12 hours. The standard

deviation of the forcing pattern is close to 0.23 and the value or r lies in the range

[0.5, 1.5]. When the SPPT scheme is removed from the EPS, the dispersion of high

level dynamical variables is degraded for most of the forecast lead times (see Figure

9 Charron et al. 2010). It also has a negative impact on the Continuous Ranked

Probability Score (CRPS, Jolliffe and Stephenson 2003), which is significantly de-

graded during the second week of the forecast. The scheme helps to improve many

of the EPS skill scores after the first week of the forecast, although the performance

of the system on these timescales is relatively low.

The concept of adding stochastic perturbations proportional to the tendencies

has been extended to a high resolution LAM, where many processes still need to be

parametrized (like shallow convection or turbulent eddies). Bouttier et al. (2012)

describe the impact of a SPPT algorithm in the Application of Research to Opera-

tions at Mesoscale (AROME, Seity et al. 2011) of 2.5km horizontal resolution. The

implementation follows Palmer et al. (2009), including the vertical tapering and the

univariate approach. The scheme enhances ensemble spread and the probabilistic

skills scores, although it slightly degrades the forecast skill of the ensemble members.

The perturbations are physically consistent, as observed in one case study, where

SPPT enlarges the area where fog spread is non-zero. The spread, although positive
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within the forecast time-range, is believed to become overdispersive if it was run for

ranges much longer than one day. The study of Bouttier et al. (2012) also includes

some SPPT tuning experiments where the following results are reported:

� If space or time correlations are reduced, the impact of SPPT is weaker, sug-

gesting that the AROME model error is not limited to small scales only.

� Doubling the time correlation produces a bigger impact on the ensemble skill

scores than doubling the space correlation.

� There is almost a linear relationship between the impact of SSPT in ensemble

spread and the SPPT standard deviation parameter.

2.4 Random Parameters

The Random Parameter scheme (RP, Bowler et al. 2008) aims to account for the un-

certainty associated to the empirical parameters in bulk-formula parametrizations,

and simulate the non-deterministic processes not explicitly accounted for by the dif-

ferent parametrizations. Each of the random parameters evolves in time following

an autoregressive process given by eq. 2.4, bounded to a given range, Pmax and

Pmin, estimated by the experts.

Pt = µ+ r(Pt−1 − µ) + ε (2.4)

Where Pt is the parameter value at time t, µ is the default value of the parameter

in the deterministic parametrization, r is the autocorrelation of P and ε is the

random term sampled for a uniform distribution from the range ±(Pmax−Pmin)�3

to ensure that parameters values are evenly distributed.

The parameters included in the scheme are:

� Entertainment rate, in convection parametrization. Scales the rate of mixing

between environmental air and the convective plume (further explained in sect.

B.3.5).

� Time-scale for destruction of CAPE, convection parametrization. The convec-

tive instability, represented by CAPE is removed by mass fluxes, the time-scale

of CAPE destruction determines how intense convective mass flux needs to be
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in order to eliminate the CAPE in a given time (also futher explained in sect.

B.3.5).

� Flux-profile parameter, boundary layer parametrization. The stability-dependence

of turbulent mixing coefficients are dependent on this parameter, so it can en-

hance or reduce mixing in the stable boundary layer.

� Asymptotic neutral mixing length, boundary layer. It sets the magnitude of

the mixing lengths and hence the turbulent mixing coefficients.

� Gravity wave constant, gravity wave drag parametrization. Defines the mag-

nitude of the wind’s parametrized tendencies from the scheme.

� Critical Froude Number, gravity wave drag. It controls the proportion of the

drag attributed to flow blocking and gravity wave drag respectively. The

larger the critical Froude number, the larger the proportion attributed to flow

blocking.

� Critical relative humidity, condensation parametrization. The threshold for

relative humidity for cloud formation, it has a vertical dependence, the per-

turbation scales to the model level without changing the vertical structure of

the parameter.

� Ice-fall speed, condensation parametrization. It modifies the fall speed of ice

nuclei.

The Random Parameter 2 scheme (RP2) also includes:

� Charnock Parameter, boundary layer. It influences the surface wind stress

over the oceans.

The scheme does not have a negative impact on the skill of deterministic fore-

casts, indicating that it provides a veridical source of spread based on model uncer-

tainties rather than stochastic noise (Bowler et al., 2008). It produces a significant

increase of the ensemble spread in the tropics, and a small increase elsewhere (see

Fig. 4. of Tennant et al. 2011).

As explained in the introduction (chapter 1), the perturbation of parameters

does not sample all the structural uncertainty nor the subgrid variability of the
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physical parametrizations. However, it has been used extensively to sample the

model uncertainty in climate change predictions in projects such as Quantifying

Uncertainty in Model Predictions (QUMP, Murphy et al. 2004). A comparison

between the random parameter and perturbed tendencies approaches is carried out

in chapter 7 of the thesis.

2.5 Evaluation of Stochastic Physics outside EPS

scores

The evaluation of SKEB, SPPT and RP2 schemes has been focused on the impacts

on the spread and error skills of EPS from short-range to seasonal scales. There

have been very few studies focused on the effects of the scheme on key processes

in the mid-latitude and tropical weather. Some of these studies have looked at the

effects of SKEB schemes on weather phenomena and mean systematic error of boreal

winters, nearly all of them use the schemes CASB or SPBS developed for the IFS

for the ECMWF model. The reported results for different processes are

� The CASBS scheme reduces the westerly wind bias over the boreal winter in

the North Pacific against ERA40, improving the geopotential height at 500mb,

described hereafter as Z500 (Fig. 1 of Jung et al. 2005a). They use the IFS cycle

CY26R3 (see Jung et al. 2005a, 2010b for a review of the model systematic

biases and differences between different cycles). On the newer model cycle

CY32R1 the SPBS produces smaller improvements for the whole Northern

hemisphere (Fig. 3.b of Berner et al. 2012), although on the newer cycle the

mean bias of Z500 has been notably reduced. The impact of different versions

of the SPPT on IFS cycle CY35R1 is small but significant, with the 2-scales

pattern being the most effective (Fig. 14 of Palmer et al. 2009).

� Improvements in the frequency distribution of weather regimes over the North

Pacific. Jung (2005b) evaluated the capacity of CASBS and SPPT schemes to

force the model towards a more realistic distribution of weather regimes in the

North Pacific wintertime. The IFS on cycle CY26R3 and TL ∼ 95 considerably

misrepresented the frequency of geopotential at 500mb clusters to those found

in ERA-40, CASBS was able to produce a more realistic frequency of regimes,
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in particular the underestimation of blocking events, driven by a reduction of

the westerly wind bias. The scheme was also found to be more effective than

SSPT. On a general sense, the CASBS projection of sub-synoptic vorticity onto

the large scale lead to a reduction on the overpopulation (under-population)

of the more (less) stable regimes.

� There is a consistent improvement in the representation of blocking events on

the NH wintertime over the North Pacific for CASBS at cycle CY26R3 (Fig.

17 Palmer et al. 2005) and cycle CY29R2 (see Figure 5 of Berner et al. 2008).

SPBS shows equivalent results for cycle CY32R1 (Fig. 4 Berner et al. 2012).

On the other hand, improvements on the underestimated blocking frequency

over Central Europe are small and not significant at the 95% level for all the

cases. Outside the IFS, Tennant et al. (2011) reported an improvement on

blocking frequency over the East Siberia and North Pacific.

� Seasonal mean tropical precipitation improvements in DJF. CASBS on the

IFS cycle CY29R2 produces a reduction of the wet bias over the ITCZ over

the oceanic regions, Maritime continent and Northern Australia (see Figure

4 of Berner et al. 2008), similar improvements are found for SPBS on cycle

CY32R1 (Figure 5 of Berner et al. 2012). SPBS in combination to SPPT,

produces a weaker impact in a newer model cycle CY35R1 (see Fig. 15 of

Palmer et al. 2009).

� SPBS on cycle CY32R1 is able to reduce the power of westward propagating

tropical waves, more in agreement with observations (Figure 6.f of Berner et

al. 2012)

� SPBS is able to produce a peak in the tropical divergence wind spectra around

60 days for the period 1990-2005, but it vanishes and gives way to a red

spectrum when averaged over more years (Figure 7e,f of Berner et al. 2012).

� SPBS on CY32R1 increases the Z500 systematic error over the Southern Hemi-

sphere, likely caused by a overactive tropical divergence and synoptic activity

over the Southern Ocean (Berner et al., 2012)

The SPBS improvements found by Berner et al. (2012) are generally higher than

those observed when the horizontal resolution increases from T96 to T511 (210km
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to 40km ), but lower than the upgrades produced by an upgrade in the physics from

cycle CY32R1 to cycle CY36R1.

The combination of SPBS and SPPT is able to excite the right growing modes

of Tropical cyclone error. Lang et al. (2012) investigated the impact of different

EPS perturbation methods on the ensemble spread of track and intensity of Tropical

cyclones (TC). The Ensemble of Data Assimilations (EDA) exhibits the larger spread

for TC tracks, with SPBS, SPPT and Singular Vectors having a similar impact. In

terms of central pressure, SPBS leads after day 3 but the differences to the other

experiments are barely significant. SPBS perturbations have a larger amplitude in

the outer region of the TC whereas SPPT perturbations are more focused on the

TC core and upper levels.

2.6 Other stochastic schemes

There are other important stochastic schemes, their formulation and results are

noteworthy and therefore they deserve a brief description, which is given below.

Unfortunately, these schemes are not employed in the investigations carried out for

the present thesis, their development is costly and may well take longer than the

time allocated for the research presented in the thesis.

2.6.1 Plant-Craig scheme

The deterministic deep convective parametrizations are driven by the large-scale

effects on the mean mass flux. In the Plant and Craig (2008) scheme, the ensemble

effects of a collection of independent clouds is derived from the statistical mechanics

theory of Craig and Cohen (2006) and CRM results from Cohen and Craig (2006).

In this theory each individual cloud has a mass flux given by the Probability Den-

sity Function (PDF) in eq. 2.5, angle brackets denote an ensemble average. The

stochastic sampling of the mass flux PDF produces a statistical distribution that

represents the convective fluctuations around the mean.

p(m)dm =
1

< m >
e−m/<m>dm (2.5)

Plant and Craig (2008) carried out Single-column tests to investigate the func-

tioning of the Plant-Craig (PC) scheme. They found that the mean profiles of
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temperature and humidity produced by the scheme at various grid-lengths were

comparable to those obtained from CRM simulations.

The scheme was tested further in a three dimensions Radiative-Convective Equi-

librium model by Keane and Plant (2012). The scheme was shown to produce the

correct scaling for the variability of rainfall for several gridlengths, outperforming

conventional deterministic deep convection schemes.

Groenemeijer and Craig (2011) implemented the scheme in the Consortium for

Small-scale Modelling model (COSMO, Schattler 2011). They found that the PC

scheme produces a substantial increase of the ensemble spread. In weather patterns

that are weakly (strongly) forced, the relative impact of the stochastic scheme is

high (low). However, they do not show any verification of the probabilistic forecasts

yielded by the scheme.

2.6.2 Stochastic Convection

A relatively straightforward stochastic convection parametrization was designed for

the NOGAPS-EPS. It is based on a stochastic perturbation proportional to the

convection tendencies (Teixeira and Reynolds, 2008a; Reynolds et al., 2008). The

stochastic convection scheme perturbs the tendencies of horizontal winds and tem-

perature, these perturbations are proportional to the tendencies produced by the

moist convection parametrization times a random number. Although it might look

similar to the SPPT (sect. 2.3), the stochastic convection has no spatial or temporal

auto-correlation and humidity is not directly perturbed. The scheme’s perturbations

alone produce a significant increase of the ensemble spread at 500-hPa geopoten-

tial height, 250- and 850-hPa winds, and 850hPa temperature. At the early stage

of the forecast, the ensemble perturbations are larger in the tropics. The spread

on the extra-tropics is less prominent than in the tropics and is mainly driven by

perturbations in the synoptic scales coming from the tropics.

Snyder et al. (2010) studied the effect of the stochastic scheme on the tropical

cyclone genesis and evolution of four different cases. The scheme increases the

ensemble spread of tropical cyclone tracks and the fraction of ensemble members

predicting genesis. On the other hand it also increases the rate of false alarms.

However, the increase in correct genesis predictions is greater than the increase in

false alarms
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2.6.3 Cellular Automata for convection

Deterministic convective parametrizations represent the relationship of the ensemble

average of subgrid convection and the instantaneous state of the atmosphere in a

vertical grid-box column. This approach leaves behind any parametrization for the

horizontal transport of heat, moisture or momentum. Huang (1990) showed that

mass transport due to gravity waves that propagate in the horizontal can trigger

new convective cells.

A Cellular Automata (CA, see 2.2.4 for a brief description) was embedded in the

Aire Limitée Adaptation/Application de la Recherche à l’Opérationnel (ALARO,

Benard et al. 2010 and references therein) model convective parametrization to rep-

resent horizontal communication and memory (Bengtsson et al., 2011, 2013). The

CA acts on a subgrid mesh to represent individual convective events. With the right

choice of CA rules, it can be expected to mimic the effect of gravity wave propa-

gation on convective organization, forming clusters of spatial scales larger than the

truncation scale of the model.

A probabilistic set of rules is explored by Bengtsson et al. (2013), where birth and

survival of cells are based on probabilities given by the number of neighbours with

an active state, it generates CA patterns less artificial that look more like clusters

of convection (see Figure 2 of Bengtsson et al. 2013). These probabilistic rules can

be adjusted to match observations.

The scheme was first tested in a simplified version for the Shallow-Water model

in Bengtsson et al. (2011). They made the mass source term Q proportional to the

CA fraction σ, which describes the fraction of active cells within the model gridbox.

The proposed CA scheme produces a kinetic energy backscatter from the smallest

to the largest atmospheric scales. It also slows the phase speed of Kelvin waves in

regions where convergence is large, in agreement with observations. Subgrid cells

can organize and propagate against the mean flow, a feature not seen in conventional

deep convection parametrizations.

On more recent research, the CA has been coupled to the ALARO convection

scheme (Bengtsson et al., 2013). It is coupled as an extra term for the equation for

the updraught mesh fraction σu (equation 4 of Bengtsson et al. 2013), the additional

term acts as an independent source of information on potential convective activity,
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in addition to the large-scale moisture convergence. They show an exceptionally well

defined squall line episode in France in August 2010 enhanced by the CA implemen-

tation, precipitation intensity and convective organization are in a better agreement

with radar observations. The impact on large-scale skill scores is small, but on situ-

ations with strong convective activity the CA provides a significant source of spread

where random errors are thought to occur. It also improves the ratio of hit rate and

false alarms, in particular with the CA version that uses probabilistic rules.

2.6.4 Explicit Stochastic Parametrization of Non-orographic

Gravity Wave Drag

Temperature and velocity perturbations of gravity waves come from a wide spectrum

of waves with very similar spectral shapes (Kim et al., 2003). Usually non-orographic

gravity wave parametrizations are based on a quasi-invariant global background

spectrum of many waves from indistinct tropospheric sources, although new schemes

are based on physical models of gravity wave generation from specific sources such

as deep convection (e.g. Charron and Manzini 2002).

A different approach has been taken by Eckermann (2011), where the parametriza-

tion randomly picks up wave-packets from the spectrum. The typical GCM timesteps

of 1-60 min and horizontal resolutions of 10-1000km do not appear to be either large

or long enough respectively for the full wave-ensemble to emerge within a gridbox.

At any given GCM timestep, subgrid-scale wave fluxes would vary as individual

grid boxes contain different subsets of sporadic sources and wave-field members of

the broader wave-ensemble. The scheme has no spatio-temporal correlation of wave

properties between adjacent grid boxes or model timesteps. The scheme reduces

the computational time by an order of magnitude to the deterministic parametriza-

tion, it exhibits explicit gravity wave intermitency, which is parametrized by a bulk

formula in the deterministic scheme. The stochastic scheme variability can real-

istically increase the ensemble spread and produce a better representation of the

stratospheric climate.

An additional improvement of the scheme is described in Lott et al. (2012). The

new scheme permits to launch a few monochromatic waves at each model timestep

and distributes their tendencies over several timesteps. Therefore at a given time,

there are different waves acting together. Such scheme improves the representation
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of large-scale equatorial waves and therefore of the Quasi-Biennial-Oscillation (QBO,

Baldwin 2001).

2.6.5 Stochastic Multicloud Model (SMCM)

Purely deterministic parametrizations of convection are found to be inadequate

for the representation of the highly intermittent and organized tropical convec-

tion (Palmer, 2001). Some of these deficiencies are associated to the progressive

deepening of tropical convection on multiple scales (see Xavier 2012 and 3.6). The

Stochastic Multi-Cloud Model (SMCM, Khouider et al. 2010) aims to improve the

representation of cloud transitions in the tropics.

The SMCM is based on a lattice model where each lattice site is occupied by a

cloud of a certain type (congestus, deep or stratiform) or clear sky. The evolution of

the cloud is driven by random transitions between the four states. These transitions

are governed by intuitive probability transition rates depending on the large-scale

variables: CAPE and a proxy for middle troposphere dryness. One example of these

transitions is given by Frenkel et al. (2012), if there is a large instability (CAPE >>

400 J/kg) and the column’s middle troposphere is moist, the transition rate from

clear-sky site to a congestus is high, similarly a deep convective site will turn into a

stratiform site with high probability.

Frenkel et al. (2012) coupled the SMCM scheme to a simple two-layer atmo-

spheric model capable of capturing the main characteristics of tropical convection

and associated wave features, and compared the scheme to a usual determinis-

tic convective parametrizations. SMCM yields highly intermittent solutions that

capture the progressive deepening of tropical convection on multiple scales. A

medium and coarse resolution model can produce more variability with the stochas-

tic parametrization than with the deterministic scheme over a medium resolution

grid. Peters et al. (2013) compares results from SMCM to tropical observations

and concludes that the scheme is able to reproduce the dependencies of convective

variability, but fractions of deep convective and stratiform clouds compare better to

observations when using the convection proxy related to convergence (i.e. vertical

velocity at 500 hPa) rather than those related to stability (CAPE).



Chapter 3

Evaluation of atmospheric models

Unlike other physical systems like ocean tides or the dynamics of the solar system,

it is extremely complicated to make accurate predictions of the evolution of the

atmosphere. It is a chaotic system (Lorenz, 1963) and the tool we employ to develop

these predictions, a General Circulation Model of the atmosphere (GCM), has many

and large uncertainties, as it is described in Appendix B. Despite these difficulties,

it is possible to predict certain aspects of the weather and climate, a condition that

is defined as “predictability”.

Over the last decades, numerical weather prediction (NWP) has focus on the

predictability of synoptic weather events such as the position of cyclones and fronts

in the mid-latitudes, and Mesoscale Convective Systems (MCS) in the tropics. The

quality of NWP forecasts is evaluated using numerical scores that compare modelled

fields with observations. These fields could be geopotential height at 500mb (Z500

hereafter), which gives a picture of how well simulated are the main geostrophic

structures in the mid-latitudes, or low (high) level winds that indicate converge

(divergence) driven by tropical convection. Problems with the sampling of observa-

tions and/or their spatial interpolation have lead to the development of “analysis”,

a model realization driven by assimilated observations. Analyses provide a better

spatial coverage and allow simple operational evaluation of the modelled field.

The mean state of climate simulations is evaluated using similar scores against

observational products and reanalyses (see examples of these in the methodology

chapter, no. 4). These techniques reveal the existence of model biases, e.g biases

on radiative fields denote problems with the representation of clouds, or biases in

Z500 indicate problems on the representation of mid-latitude synoptic variability

57
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(e.g. cyclones are too weak, lack of blocking events). These classical scores are

still widely used and are defined as “traditional verification techniques”. They are

described in section 3.1 of the thesis.

Equivalent techniques were developed to evaluate Ensemble Prediction Systems

(EPS). These verify the distribution of the ensemble as the sample from a probability

distribution and compare its shape to the probabilities of past events, so-called

“reliability of the ensemble”. Some of these techniques are described in section 3.2.

The emergence of the seamless model also brought additional evaluation tech-

niques. Despite the upscale transfer of error from small scales to the large-scales

(Lorenz, 1969; Tribbia and Baumhefner, 2004), the predictability of certain timescales

is associated to processes occurring on these timescales (Hoskins, 2013). Therefore

in combination with the traditional verification techniques, there is a new branch of

model evaluation focused on “process-based techniques”, where the main character-

istic of atmospheric processes are evaluated to indicate its degree of predictability.

Figure 3.1 illustrates the seamless prediction idea where different timescales are as-

sociated to particular processes such as cyclones, blocks, Madden-Julian Oscillation

(MJO), North Atlantic Oscillation (NAO), El Niño Southern Oscillation (ENSO),

Quasi-Biennial Oscillation (QBO), Pacific Decadal Oscillation (PDO) or Atlantic

Multi-decadal Oscillation (AMO).

The idea of the seamless prediction is also defined as “predictability chain”.

Rodwell et al. (2013) provides an illustrative example of the predictability chain.

They link poor forecasts for the onset of blocking events for spring over Europe to

a poor representation of shot-lived but intense MCS over the US plains. Hoskins

(2013) provides another example where large anomalies in the winter atmospheric

vortex gives some predictive power over the troposphere for the following month,

but such anomalies are forced by anomalous tropospheric wave flow, which is driven

by short scales.

For the evaluation of the stochastic physics schemes carried out in this thesis, we

make use of the Transpose Atmospheric Model Inter-comparison Project (Transpose-

AMIP, Williams et al. 2013) approach, where the impacts of these schemes on model

biases are investigated through an extensive set of diagnostics for 5 day forecasts and

centennial simulations. The set of diagnostics includes traditional verification and
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Figure 3.1: Schematic representation of the seamless weather-climate prediction problem.

Timescales are shown along the horizontal axis in the middle. The focus for prediction

in the recent decades is indicated by red lines on the axis. Some phenomena and their

time-scales are shown at the bottom (acronyms are given in the text). Components of the

Earth system that need to be represented in the GCM or ESM are included on the top of

the figure. From Hoskins (2013).

process based techniques. We focus on important processes for the short-to-mid

range predictability which are also major drivers of the climate variability. Such

processes are mid-latitude cyclones (sect. 3.3), blocking (3.4), Convective Coupled

Equatorial Waves (CCEW, sect. 3.5) and the MJO (3.6).

3.1 Traditional verification techniques

Verification indexes and scores are a valuable tool to provide a general picture of

the system. However, they might hide compensating errors or show good scores for

the wrong reasons. An improvement on the verification skill could be related to a

poorly simulated process, e.g. a good simulation of the Outgoing Longwave Radia-

tion (OLR) at the Top Of the Atmosphere (TOA) may be caused by an unrealistic

brightness of high level clouds. There are a wide variety of these indexes and few

sources to understand their advantages and disadvantages, Jolliffe and Stephenson

(2003) and Wilks (2006) are reference textbooks with an ample description of these

weather verification techniques. In order to evaluate the impact of the stochas-

tic physics schemes within the scope of this thesis, the indexes and techniques we

employed are:
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� Mean Bias: It is the raw difference between a modelled and observed field,

as described by eq. 3.1, where F is the forecast and O the observations for

N forecasts. It is a useful metric to show systematic errors of the model.

Although it is an illustrative quantity, when horizontally or vertically averaged

it could hide compensating errors.

Bias =
1

N

N∑
i=1

(Fi −Oi) (3.1)

� Root Mean Square Error (RMSE): It is one of the most widely used forecast

scores. It is the square root of the mean squared difference between observed

and forecasted field (eq. 3.2).

RMSE =

√√√√ 1

N

N∑
i=1

(Fi −Oi)
2 (3.2)

� Anomaly Correlation Coefficient (ACC): It is the correlation between fore-

casted and observed anomalies to the climatology (eq. 3.3). It measures how

well the forecast captures the magnitude of anomalies from climatology. As

a correlation, it ignores biases in the forecast anomalies. It has been found

empirically that ACC = 60% corresponds to the range up to which there

is synoptic skill for the largest scale weather patterns. ACC = 50% corre-

sponds to forecast for which the error is the same as for a forecast based on a

climatological average (Jolliffe and Stephenson, 2003).

ACC =

N∑
i=1

(Fi − Ci) (Oi − Ci)√
N∑
i=1

(Fi − Ci)2
N∑
i=1

(Oi − Ci)2

× 100 (3.3)

3.1.1 Weaknesses of traditional verification scores

Traditional verification scores are very useful to measure the skill of the model for

large-scale and synoptic scales over the Z500 field. However, they are not ideal

to verify other fields in high resolution forecasts as many of the features resolved

are very detailed and highly unpredictable. These techniques can not distinguish

between a “near miss” and much poorer forecast, as point-by-point comparison do

not account for the intrinsic spatial correlation between forecasts and observations.
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A common problem of these scores is the “double penalty”. When there is a slightly

offset on the position of a weather event between a forecasts and the observations,

the forecast is thus penalized because it fails to predict the event where it occurred

and also to predict where it did not occur. RMSE shows better skill for a field with

a wide but weaker feature that enclose the observed one than for a forecast that

simulates the right shape and intensity of the feature but slightly misplaced (for a

visual example of the double error penalty see Figure 6.3 of Jolliffe and Stephenson

2003).

In order to provide other methods for spatial verification, there have been a

development of a few novel techniques to reward the realism of the spatial structures

of high resolution forecast fields such as rainfall. Many of these techniques are

reviewed by Casati et al. (2008). One of these is the Method for Object-based

Diagnostic and Evaluation (MODE, Davis et al. 2006a,b), which identifies objects in

the precipitation field. Mittermaier and Bullock (2013) have extended this technique

to cloud fields.

3.2 Ensemble Prediction System verification tech-

niques

The additional members of the ensemble add an extra degree of complexity to the

verification of the EPS. Besides having a good skill, the ensemble members must

have the right spread (how well it represents the uncertainty of the forecast), see

Fig. 1.1.

The ensemble members can be characterized as finite random samples of a prob-

abilistic distribution. The collective behaviour and statistical properties of the en-

semble are compared against a long term record to estimate the ensemble’s “relia-

bility”, which quantifies the degree to which the forecast probabilities are consistent

with the relative frequency of the observed outcomes. In an unbiased ensemble, the

observations are statistically indistinguishable from ensemble members.

There are a few methodologies to measure the skill and the realism of the ensem-

ble’s Probability Density Function (PDF), with different weaknesses and strengths.

Generally speaking there is no clear superiority of one validation methodology over

the others, as some of them are very complex or can hide compensating errors. It
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is hard to link the EPS scores to real weather events. The evaluation of EPS is

still an open field or research where new techniques emerge such as the verifica-

tion of the ensemble of mid-latitude cyclone tracks (Froude et al. 2007a, see section

3.3.3). In this thesis the traditional EPS metrics employed to evaluate the capacity

of stochastic physics to represent the model uncertainty are:

� Deterministic verification of the ensemble mean: The Ensemble Mean (EM)

is the average of all ensemble members over a given point (eq. 3.4 where the

subindex j denotes the ensemble member of M realizations), EM is the “deter-

ministic” realization of the EPS. Although it ignores the statistical properties

of the ensemble, it is a good estimate to compare to deterministic models using

traditional deterministic scores such as RMSE or ACC. One disadvantage of

the EM is that it filters out small scales when averaging, so the EM holds no

information on important sub-synoptic processes.

EM =
M∑
j=1

Fj (3.4)

� Ensemble spread-error: This is the most familiar metric in the evaluation of

EPS, it associates the predicted uncertainty and the accuracy of the forecast.

The spread or dispersion of the ensemble is the standard deviation of the

members of the ensemble (eq. 3.5, where Fj are individual ensemble mem-

bers and F is the EM). A necessary condition for the ensemble variability is

that the RMSE of the EM should be identical the ensemble spread. If the

RMSE is higher, then the system is “under-dispersive”, differences amongst

ensemble members are not high enough and the truth is outside of the ensem-

ble’s PDF. If the RMSE is lower than the ensemble spread then the system

is “over-dispersive”, differences amongst different members are bigger than

the differences in the observations. The ensemble spread and error are nor-

mally presented on regional averages (Northern hemisphere from 20N-90N for

example).

Spread =

√√√√ 1

M

M∑
j=1

(
Fj − F

)2
(3.5)

� Reliability diagram: It is a plot of the observed frequency against forecast

probability of a particular event (e.g. a location warmer than X degrees), it
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measures the consistency between observed frequencies and predicted proba-

bilities. The range of forecast probabilities is divided into K bins, then prob-

abilities of the observed event are computed for each bin of the forecasts. The

perfect reliability is indicated by the 1:1 line. If the observed-forecast curve

lies below the 1:1 line, it indicates the system is over-forecasting the event, it

occurs more frequently in forecasts than in reality. If it is above the 1:1 line

the system is under-forecasting, the EPS underestimates the frequency of the

event.

3.3 Mid-Latitude cyclones

One of the main processes in the mid latitudes is the formation and development

of extra-tropical synoptic cyclones. These systems control winds, cloudiness and

precipitation. At longer time-scales they transport heat, momentum and water

vapour from the equator to the poles. It is hard to quantify the skill of the models

in the representation of mid-latitude cyclones using conventional methods such as

RMSE or ACC of Z500 (Froude et al., 2007a). A more useful tool to diagnose

cyclones is the TRACK algorithm (sect. 3.3.1), as it gives direct information about

the location and characteristics of individual cyclones, which in large numbers could

provide a useful body of statistics to diagnose model deficiencies.

3.3.1 TRACK algorithm

TRACK identifies features in the spatial scales of interest from temporally sliced

fields. Then it tracks these, linking the features together to form trajectories. Al-

though in this thesis TRACK is employed to diagnose extra-tropical cyclones, its

versatility enables it to track other atmospheric cyclones such as Tropical cyclones/

African easterly waves (Hodges et al., 2003; Bengtsson et al., 2004), clouds (Hodges

and Thorncroft, 1997; Hodges, 1998) and ocean eddies (Hodges, 1999b). A general

description of the the different sections of the algorithm is given below; for further

details the reader is referred to Hodges (1994, 1995, 1999a).

For extratropical cyclones a minimum frequency of 6 hourly data is required to

accurately compute the storm tracks. Cyclones can be identified from different vari-

ables like relative vorticity at the 850-hPa level (ξ850 ) or Mean Sea Level Pressure
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(MSLP). Fast moving MSLP features can be masked by a strong background flow,

so they are difficult to identify on the earlier stages of their development. On the

contrary ξ850 focuses on smaller scale features and it is less dependent on the back-

ground flow, therefore features can be identified at an earlier stage of development.

Figure 3.2 shows an illustration of the differences between MSLP and ξ850. There

are features (denoted by dots) from weak vorticity features that are not apparent in

the MSLP field.

Figure 3.2: European Centre for Medium-range Weather Forecast (ECMWF) analysis

MSLP field (contours) and T42 filtered vorticity field at 850hPa (coloured shading). For

12Z 7/2/2008, 0Z 8/2/2008, 12Z 8/2/2008 and 0Z 9/2/2008. Dots denote the vorticity

features identified using Hodges (1995, 1999a) methodology. Vorticity units are 105s−1

(relative to background field removal). From Froude (2010).

Another disadvantage of tracking over MSLP fields is that it is an extrapolated

field and may therefore be sensitive to how the extrapolation is performed (e.g. the

representation of the orography in the model). See Hoskins and Hodges (2002) for
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a discussion of the advantages and disadvantages of different fields for mid-latitude

cyclone tracking. In this thesis we employ ξ850 to track extra-tropical storms

The tracking algorithm identifies and tracks cyclones following four main stages:

data filtering, object identification, feature point identification and tracking:

� The filtering stage: In order to isolate the synoptic scales of the field, a spectral

filter is applied to the raw fields. The filter is first applied to remove wave

numbers less than or equal to 5 (as in Hoskins and Hodges 2002). For ξ850

fields the lower-wave filtering has very little impact and is not very sensitive to

the choice for the lowermost wavenumber (Anderson et al., 2003). The spatial

filter is also applied to truncated wavenumbers above 42 (T42) to remove

mesoscale noise. This is necessary for fields such as ξ850 to avoid identifying

very small scale structures. The Hoskins filter (Sardeshmukh and Hoskins,

1984) is also applied to reduce the Gibbs phenomena. It acts like a quadratic

hyperdiffusive ∇4 smoothing and its amplitude is reduced to 10% of its value

on the smallest retained scale.

� Object-identification: The algorithm identifies objects as regions encircling ex-

trema in the filtered field. Cyclonic objects are identified as positive (negative)

anomalies in the Northern Hemisphere (Southern Hemisphere). The object

points are first classified as objects if they are above a user defined threshold

T, usually set to 1.0 10−5s−1 for ξ850. The object points are then agglomerated

into distinct sets (see Hodges 1994 for details on the labelling algorithm). All

objects below some user-defined size are filtered. The segmentation process

reduces the object information to a small subset of the original data.

� Feature point identification: This section identifies the extrema within each

of the objects. The maxima and minima of each object would be adequate

for tracking in a high resolution grid, but for a reduced grid at T42, this

will significantly limit the potential smoothness of the tracks computed in

the final stage of the method. Interpolation algorithms described in Dierckx

(1981, 1984) are used to interpolate or smooth the data so that extrema can

be located within the grid boxes. The maximization algorithm of Goldfarb

(1969) is then used to identify the feature points. For further details of the

feature point identification see Hodges (1995).
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� Tracking stage: This stage determines the correspondence for the feature

points amongst different time-slides, linking them and creating the tracks.

The method has been adapted from the algorithm of Sethi and Jain (1987)

based on Salari and Sethi (1990), but it has been extended to work on a

spherical domain (Hodges, 1995). In the initial procedure the feature points

are linked to each other using a nearest neighbour distance between points in

subsequent time-frames. The displacement between feature points on tracks

is within a upper-bound displacement dmax, which regionally varies between

6 and 3 geodesic degrees. The cost function is minimized by a modified ver-

sion of the Greedy exchange algorithm of Sethi and Jain (1987) and Salari

and Sethi (1990). This is an iterative optimization method, which proceeds

forwards and backwards in time, swapping those pairs of points on tracks that

give the greatest increase in track smoothness (see Hodges 1999a, for details

of the algorithm).

Once the tracks have been computed, they are filtered so that only those tracks

that last at least 2 days, travel further than 1000 km and have a majority of their

lifecycle in 20N - 90N or 20S - 90S are retained for further analysis. This stage is

necessary so that only mobile, meteorologically significant, extratropical cyclones

are considered in the statistical analysis.

3.3.2 TRACK statistics

A wide variety of spatial statistics can be obtained from the ensemble of feature

tracks. They can be computed differently, from the basic counting and averaging

of each grid-point, which are subjected to biases (Taylor, 1986), to more some so-

phisticated weighting functions based on analytic functions (Murray and Simmonds,

1991). In this thesis the approach described in Hodges (1996) is used, where statis-

tics are computed directly on the sphere using spherical kernel estimators with local

kernel functions. These statistics are:

� Track density: Number of feature points, using one point for each track, closest

to the estimation point.

� Genesis density: Density of systems in their source areas. It is computed from

the starting points of the tracks and excluding any tracks starting at the first
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timestep

� Lysis density: Density of systems on their dying areas. It is computed from the

end point of the tracks excluding all the tracks ending in the last timeframe.

� Intensity: The maximum vorticity of the object on the filtered field. It does

not include regions where the feature track density is below a suppression

threshold equal to 1.0 106km2 per month. It is computed from the average of

attributes

� Velocity: Average distance between two adjacent points in the track divided

by the time-lapse of frames, 6 hours.

� Growth rate: Rate of intensity change of a cyclone per time-lapse of frames.

In order to provide intelligible numbers over a global domain, the raw density is

scaled to one month and 5°spherical cap (∼ 106 km2).

3.3.3 Storm matching technique

The TRACK algorithm has been developed into an object-oriented verification tech-

nique, in order to evaluate how individual forecasted cyclones deviate from their an-

alyzed counterparts with increasing lead time. It uses a matching technique, which

is a systematic method to determine which track of the forecast corresponds to

which track of the analysis. There is a detailed description of the development of

the matching algorithm for TRACK in Bengtsson et al. (2004) and Froude et al.

(2007a). In this thesis only storms are considered, although the algorithm could be

equally employed to anti-cyclones.

A simulated storm is said to match an analyzed storm if the two tracks satisfy

certain predefined spatial and temporal criteria. There is no restriction on the

difference in intensity, as this could make the conditions too severe and thus reduce

the population of the matched storms. The conditions to match an analyzed and

forecasted storms are:

1. At least a percentage, equal to T , of their points are overlapping in time, as

shown in eq. 3.6, where nA and nB denote the total number of points in the

analysis and forecast tracks respectively, and nM denotes the number of points

in the analysis track that overlap in time with the forecast track.
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100· | 2nM
nA + nB

| ≥ T (3.6)

2. The geodesic separation distance d between the first k points of the forecast

track and the corresponding points in the analysis track is less than S.

A sensitivity study for the values of k, T and S is present in Froude et al. (2007a),

where six different sets are explored. When k = 1 the algorithm produces more

forecast storms match, but many of these might be incorrect. As the number of k

points increases, then less storms match, making it difficult to produce a reasonable

body of statistics. When k = 4 it produces a good balance between right matching

and number of statistics. Although the number of forecast tracks that match the

analysis varies depending on the matching criteria, differences in the diagnostics

produced from these matched storms are marginal (see Figure 4 of Froude et al.

2007a). The default set of parameters for the matching technique is: k = 4, T = 60%

and S = 4°.

A schematic representation of the spatial matching when k = 4 is given in

Figure 3.3. The tracks from the model that match the analyzed storm are A, B and

C because their first four points are less than S from the analysis and share more

than 60% of their points with the analysis. Storm D does not match because at its

origin the separation is greater than S.

There is an additional constraint in the method. Only storms whose genesis

occurs in the first 3 days are considered. Results from Bengtsson et al. (2005) show

that there is little skill in the prediction of tracks beyond the third day.

The matching technique has been employed to study the short-range predictabil-

ity of storms for the EPS included in the The Observing System Research and Pre-

dictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE)

for NH (Froude, 2010), and SH (Froude, 2011). EPS with stochastic model er-

ror schemes (such as described in chapter 2) have more impact in increasing the

ensemble spread of cyclone intensity. Nevertheless all models have common prob-

lems, the cyclones are too slow and the ensemble spread of the storm intensity is

underdispersive.



3.4. BLOCKING 69

Figure 3.3: Schematic representation of the spatial matching with k = 4. Solid curve

represents the storm track from analysis and dashed from model. A,B,C tracks do match

but D does not. From Froude et al. (2007a).

3.4 Blocking

Blocking is one of the most important and complex weather process in the mid-

latitudes. It is associated to extreme weather, in particular to heat waves or extreme

cold spells in Europe (Hoskins and Sardeshmukh, 1987). A Blocking event is a quasi-

stationary area of high pressure that “blocks” the usual mobile weather systems of

the middle latitudes, thus the usual westerly winds are replaced by easterlies over

the region “blocked”. Their lifetime spans from few days to ∼ 10 days. Blocking is

an example of an emergent phenomenon implicitly driven by dynamical and physical

processes in the model. Previous studies have identified upscale feedbacks that help

to maintain the large scale blocking structures (Shutts, 1986; Lau, 1988b).

GCMs generally underestimate the frequency of blocking, specially those with

low horizontal resolutions and thus low Eddy Kinetic Energy (EKE), which trans-

lates in weaker storm tracks. Studies with very high horizontal resolution models

show a significant increase in blocking frequency (Matsueda 2009). It is therefore

a useful phenomena to test the ability of the model representing the atmosphere in

the mid-latitudes.

Blocking has been one of the first targets in the evaluation of stochastic physics

schemes, as these schemes attempt to simulate low-scale fluctuations and push the
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model away from their preferred attractors into other less explored regimes like

blocking. Numerous studies with different stochastic schemes and models show that

stochastic physics schemes increase the frequency of occurrence of otherwise too

weakly populated blocking regimes in the Pacific basin and have a marginal impact

on the Atlantic basin of the Northern hemisphere (Palmer et al., 2005; Tennant et

al., 2011; Berner et al., 2008, 2012).

3.4.1 Blocking indexes

A number of different indices have been proposed to diagnose atmospheric blocking.

Most of them are based on the detection of a meridional gradient of a blocking

sensitive variable such as geopotential at 500hPa (Z500) or potential temperature

(θ) on a potential vorticity (PV) surface.

One of the most employed indexes is the one described in Tibaldi and Molteni

(1990). It diagnoses blocking by the presence of a meridionally oriented dipole of

high Z500 on the north side and low Z500 of the south side of a variable latitude φ0

(a mathematical description is given in the appendix of Scaife et al., 2010).

Another index based in a similar idea is the one proposed by Pelly and Hoskins

(2003) but it uses θ over an isosurface of 2 PV (the definition of dynamical tropopause).

A large-scale blocking episode occurs at a particular longitude φ if the dipole based

quantity B (eq. 3.7) is positive for at least a longitude section of 15°, and 4 con-

secutive days. Figure 3.4 provides a schematic representation for the B blocking

index.

B =
2

∆φ

∫ φ0+∆φ/2

φ0

θdφ− 2

∆φ

∫ φ0

φ0−∆φ/2

θdφ (3.7)

Tibaldi and Molteni (1990) index produces fewer blocking events than Pelly

and Hoskins (2003), but the variable latitude allows the longitudinal profile of the

blocking frequency to resemble the PV computed profile (see Fig. 11 of Pelly and

Hoskins 2003). Therefore Tibaldi and Molteni (1990) index is adequate to represent

a qualitative comparison of the blocking frequency of a GCM.
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Figure 3.4: Schematic representation of the calculation of the PV-theta blocking index B

at a given longitude φ0 Thick line denotes theta on a PV = 2 contour From Pelly and

Hoskins (2003).

3.5 Convectively Coupled Equatorial Waves

A substantial fraction of the tropical large-scale variability in convection on timescales

less than 30 days is organized by waves that move eastward or westward along the

equator. These waves are know as Convectively Coupled Equatorial Waves (CCEW)

and they are fundamental components to understand the interaction of convection

and other physical processes with the dynamics. Kiladis et al. (2009) review the

different types of CCEW, their main characteristics, theoretical derivation and ob-

servational evidence.

The basic structure and dispersive characteristics of CCEWs are described by

the wave solutions of the shallow water equations. These govern the vertically inde-

pendent motions of a single thin layer of incompressible homogeneous density fluid

on a rotating sphere. The derivation of the phase relationship and wave solutions

of these set of equations was first made by Matsuno (1966). It is assumed that the

coriolis parameter f is linearly proportional to distance from the equator (f = βy).

Solutions to the wave equation that decay away from the equator must satisfy the

dispersion relationship given in equation 3.8, where ω is the frequency, k is the

wavenumber, g is acceleration due to gravitiy, he is the depth of the undisturbed

layer of fluid and n is a positive integer equal to 0, 1 or 2.
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√
ghe
β

(
ω2

ghe
− k2 − k

ω
β

)
= 2n+ 1 (3.8)

There are three wave solutions for ω in the cubic equation 3.8, Eastward Intertio

Gravity waves (EIG), Westward Inertio Gravity wave (WIG), and Equatorial Rossby

waves (ER). The solution for n = 0 is the Mixed Rossby-Gravity wave (MRG).

An additional solution is the latitudinally symmetric Kelvin waves, represented by

n = −1 in the dispersion equation (eq. 3.8). All these solutions are presented in

Figure 3.5 and their horizontal structures in Figure 3.6. The Inertio-Gravity and

Kelvin waves tend to be more divergent in character whereas the MRG and ER

waves are more rotational.

Figure 3.5: Dispersion curves for the propagating wave solutions to the shallow water

equation, represented by functions of nondimensional frequency ω∗ = ω/
(
β
√
ghe
)1/2

and

wavenumber k∗ = k
(√
ghe/β

)1/2
. Westward propagating waves are denoted by negative

wavenumber and eastward with positive wavenumber. From Kiladis et al. (2009)

Despite the crude approximations made by Matsuno (1966), considering a dry

atmosphere with no vertical structure, these waves are present in the atmosphere

coupled with convection. Wheeler and Kiladis (1999) calculated the global space-

time spectrum of tropical cloudiness and found prominent spectral peaks along the

dispersion curves shown in Figure 3.5 (see section 3.5.2 for details on the analysis

of CCEW). Similar results where obtained using a more direct measure of satellite-

derived rainfall (Cho et al., 2004).
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A description of the main characteristics of the Kelvin waves is given in the next

section, as it is one of the main CCEW and is poorly represented by models. It is

followed by some remarks about the simulation of CCEW in current models, and

the techniques most applied in such evaluations.

3.5.1 Kelvin waves

Many of the short-period synoptic scale active convective cells moving eastwards

in the MJO are actually Kelvin waves (see 3.6 for a description of the MJO). The

dynamical structure of the Kelvin waves is quite similar to the idealized solution

shown in Figure 3.6.f (see Figure 7 and 8 of Kiladis et al. 2009). Winds at 850hPa

are easterly to the east of the negative anomaly of Tb (brightness temperature, a

proxy for convection) and westerly to the west, causing low-level convergence and

convection.

Composites of Kelvin waves show that humidity increases in the lower tropo-

sphere since 2 days prior to the lowest Tb and then it propagates vertically through

the full tropospheric column. After the wave has passed by the observing point, the

lower troposphere rapidly dries and cools while the upper troposphere remains moist

and warm. This is also associated with the cycle of cloudiness: shallow convection

progresses to deep convection on day 0, and it ends with an upper tropospheric

stratiform cloud after the convective signal has passed (see Straub and Kiladis 2002

for a more detailed example).

There is strong evidence suggesting that Kelvin waves are initiated indirectly by

wave forcing from the extra-tropics (Yang et al., 2007; Straub and Kiladis, 2003).

The signal from the convective ascent east of the westerly seems to stretch from

the SH extra-tropics toward the equatorial region (see Figure 4 of Yang et al. 2007).

The extratropical forcing of the equatorial Kelvin waves has also a theoretical under-

pinning. Hoskins et al. (2000) using both Gill-type and primitive equation models

showed that a moving higher-latitude vorticity forcing in the winter hemisphere is

surprisingly effective in triggering the equatorial Kelvin wave.

3.5.2 Simulation of CCEW

The MJO attracts most of the attention in the study of the interactions between

convection and dynamics in the tropics. Nevertheless, there have been some studies
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Figure 3.6: Horizontal structures of a subset of wave solutions, each is shown for a non-

dimensional wavenumber k = ±1. All scales and fields are nondimensionalized. Hatching

is for divergence and shading for convergence, with a 0.6 unit interval between successive

levels. Unshaded contours are geopotential, with a contour interval of 0.5 units. Negative

contours are dashed. From Kiladis et al. (2009)
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investigating the characteristics of CCEW in GCMs. In a similar way to the MJO,

the convection-dynamics coupling is not good enough and many models have a

weak variance for all waves, except for the eastward intertio-gravity waves (Lin et

al., 2006).

The Equatorial wave activity of the Hadley centre Global Atmospheric Model

(HadGAM1, Martin et al. 2006), the predecessor of MetUM at climate scales (see

section 4.1), is reported by Yang et al. (2009). Their main conclusion is that the

model performs well for equatorial waves coupled with off-equatorial convection,

but it performs poorly for waves coupled with equatorial convection. HadGAM1

fails to simulate the near-surface anomalous equatorial zonal wind, together with

intensified equatorial convection in phase with westerly winds of Kelvin and Rossby

n = 1 waves.

3.5.3 Techniques to identify and analyse CCEW

One of the most popular diagnostics to evaluate the representation of CCEW in a

GCM is the background-removed power spectra of a given field. Such field must

have a strong dynamics-convection coupling such as winds at 850hPa or 250hPa,

Outgoing Longwave Radiation (OLR) or precipitation. The process to obtain this

diagnostic is described in Wheeler and Kiladis (1999). A brief explanation is given

in the following paragraph.

A double Fourier Transform (in space and time) is applied to the latitudinal

average of the tropical belt of the field chosen. As seen in Figure 3.6, equatorial

waves are either symmetric or antisymmetric about the equator. In order to have

this in mind, we decompose the spectra into a symmetric part where the latitude

averaging is given by F (φ) = [F (φ) + F (−φ)] /2 and an asymmetric part (where

F (φ) = [F (φ)− F (−φ)] /2). The wavenumber-frequency field is obscured by the

red noise present, so a background power spectra is built by averaging the power of

the symmetric and anti-symmetric component and smoothing it 10 times with a 1-2-

1 filter in frequency and wavenumber. Dividing the individual raw power-spectra by

the background power-spectra yields a plot where the wave signals are clear (Figure

3.7) and situated above the dispersion curves given by eq. 3.8.
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Figure 3.7: Power spectrum OLR divided by background power-spectrum (a) Anti-

symmetric (b) Symmetric. Dataset comes from 18 years twice-daily record of satellite

observed OLR over the 15N-15S domain. From Wheeler and Kiladis (1999).

3.6 Madden Julian Oscillation

In the equatorial Indian and Western Pacific ocean there is a propagation of a

wave-like phenomena defined as the Madden-Julian Oscillation (MJO). It features

a large-scale eastward moving center of strong deep convection and precipitation

(active phase), flanked by regions of weak deep convection and precipitation to the

east and west (inactive or suppressed phase). It travels with an average speed of

5m/s and has a local intra-seasonal period of 30− 90 days.

The MJO is the main component of the intra-seasonal variability in the tropical

atmosphere and encompass a wide range of interactions from mesoscale to large

scale in the spatial domain. Since it was first documented by Madden and Julian

(1971, 1972), the interest of the atmospheric community on the MJO has intensified

because of its extensive interactions with other components of the climate systems

like modulation of tropical cyclones (Liebmann et al., 1994), the onsets and breaks

of the Asian-Australian Monsoon (Yasunari, 1979) or modulation of the timing

and evolution of El Niňo (Lau and Chan, 1998a). The MJO’s influence extends via

teleconnection mechanisms to the extra tropics and its weather patterns (Weickmann

and Berry, 2011). The following subsections details the MJO characteristics (sect.

3.6.1), the GCM’s capacity to simulate them (sect. 3.6.2) and the set of diagnostics
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employed for its evaluation (sect. 3.6.3). For further information the reader is

referred to the Zhang (2005) literature review.

3.6.1 Main features of the MJO

The two phases of the MJO, active and suppressed, are connected by overturning

zonal circulations that extend vertically through the entire troposphere. In the lower

troposphere about the 850hPa level and near the surface, there is an anomalously

strong convergence of zonal winds (easterlies to the east and westerlies to the west).

Zonal winds reverse directions in the upper troposphere, typically at 200hPa level.

The behaviour of the MJO across its different stages is illustrated in Figure 3.8.

An MJO event starts with a negative pressure anomaly over East Africa and the

Indian Ocean at stage F, by stage G the pressure anomaly has spread eastwards along

with the eastern circulation cell, at stage H, the zonal circulation cells indicate that

the centre of large-scale convection has moved eastwards across Indonesia. By the

stage A, the two circulation cells are nearly symmetric. At B the western cell shrinks

and pressures rise over the Indian Ocean, signalling the weakening of the convection

and the emergence of an inactive phase in the Indian Ocean. Weak convection is

signalled at stage C, on stage D there is no convergence in the lower troposphere for

the active cell, located now in the Atlantic. The MJO finishes at stage E when the

inactive phase reaches Indonesia and there are two nearly symmetrical circulation

cells.

The eastward moving active phase is actually a myriad of high frequency small-

scale convective systems moving in all directions (Nakazawa, 1988). Generally new

convective systems develop eastwards of the previous ones, moving the large convec-

tive centre of the MJO to the east. The most noticeable high-frequency variability

within the large-scale ensemble of cloud clusters are eastwards propagating synoptic-

scale disturbances at the speed of coupled Kelvin waves.

3.6.2 Representation of the MJO in GCMs

A realistic simulation of the MJO in a GCM would benefit the medium and long

term prediction beyond the synoptic scale systems and help to gain confidence about

the impact of climate change in diverse processes. However, GCMs have serious
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Figure 3.8: Schematic diagram illustrating the different life stages of an MJO event along

the equator. Cloud symbols represent the convective “active” phase, arrows indicate the

zonal wind circulation and curves above and below the circulation represent perturbations

in the upper troposphere and sea level pressure. From Madden and Julian (1972).
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drawbacks representing the MJO characteristics. The eastward propagating signals

are too weak, their propagation speed too fast and their spatial distribution and

seasonal cycles are unrealistic. Some models can reproduce the dynamics of the MJO

adequately but fail to couple dynamics and convection well, generating precipitation

in the wrong places (Zhang, 2005).

The deficiencies of cumulus convection parametrizations are normally responsible

for the inability of models to simulate the MJO properly. The MJO is more realistic

when the GCM has a realistic convection-moisture relationship. The majority of

the models tend to moisten the troposphere uniformly at much lower precipitation

thresholds than observed (Xavier, 2012).

A good representation of the climatological mean state is important. Simulated

MJO signals tend to be stronger in models whose mean seasonal cycles are stronger

and whose mean precipitation is more realistically distributed with respect to Sea

Surface Temperature (Slingo, 1996).

3.6.3 MJO diagnostics: CLIVAR diagnostics

The CLIVAR MJO working group has developed a series of diagnostics to evaluate

the boreal winter and summer MJO (Waliser et al., 2011), it is composed in two

sets of diagnostics:

� Level 1: They are meant to provide an initial assessment of the model’s spa-

tial and temporal intraseasonal variability and the most basic features of the

MJO that can be easily calculated and understood by a non-MJO expert, like

maps of intraseasonal variance to reveal whether the model produces the right

intraseasonal variability and its correct seasonality.

� Level 2: These diagnostics provide a more comprehensive diagnostics of the

MJO through multivariate analysis, wavenumber frequency spectral decompo-

sition and composite analysis of MJO lifecycles.

The variables used for level 1 and 2 diagnosis are OLR, precipitation and zonal

wind at 850 and 200 hPa. Because in boreal summers systems travel NortEast

from West-Africa to the Indian Subcontinent, the MJO diagnostics are calculated

separately for boreal summer and winter.
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Level 1 and 2 set of diagnostics were applied to three coupled and five uncoupled

models in Kim et al. (2009), they found that generally, the MJO signal in the large-

scale circulation variables (like horizontal wind at 850hPa) is better represented than

in convection (precipitation), the intraseasonal variability of precipitation and low-

level horizontal wind (U850) is stronger than observed in the majority of GCMs, and

often the dominance time-scale of the MJO modes is outside the 30-80 day band,

showing that strong MJO events last shorter in models than observations.

The CLIVAR MJO diagnostics are quite useful to show shortcomings in the abil-

ity of models to simulate the MJO. However, they do not directly indicate which

physical processes are most important or responsible for the quality of the MJO.

There is a need to explore and developed more process-oriented diagnostics, like

vertical profiles of diabatic heating from different parametrizations to gain new in-

sight into the convective interactions necessary for MJO simulations, like the project

described by Petch et al. (2011).



Chapter 4

Methodology

The main concepts to understand stochastic physics schemes and the evaluation

diagnostics employed in this thesis have been described in the previous chapters. It

is also necessary to specify and describe the model we employ and its characteristics

as well as the observational products we utilize to evaluate the realism of the impacts

of stochastic parametrizations.

The statistical significance of the differences between the results obtained from

our experiments and the observational dataset is obtained from a student t-test.

Confidence intervals are given by 1.96σ/
√
N ; where σ is the standard deviation for

the chosen diagnostic of the phenomenon sampled (e.g. RMSE or the distance error

of mid-latitude cyclones), N is the number of observations and the 1.96 gives the

95% statistical significance.

In the present chapter, a description of the GCM we employ in this thesis is given

in section 4.1. It is the Met Office Unified Model (MetUM) and we make use of the

Global Atmosphere configuration 3 (GA3, described in sect. 4.1.2) and GA6 (sect.

4.1.3). The chapter also includes a description of the products employed to verify the

model; the reanalyses (sect 4.2), as well as specific products for precipitation, such

as the Global Precipitation Climatology Project (GPCP, sect. 4.3) and the radiative

effects of clouds, such as the Clouds and the Earth Radiant Energy System (CERES,

sect. 4.4).

81
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4.1 Met Office Unified Model

The United Kingdom Meteorological Office (abbreviated as “Met Office” or UKMO)

developed the first version of the Met Office Unified Model (MetUM) in the early

nineties, under the need to create a global GCM which could be used for climate

and NWP activities. The model was a merge of the dynamics of the previous NWP

model, as it incorporated an efficient integration scheme into a conservative finite-

volume dynamical formulation (Cullen and Davies, 1991), and most of the physical

parametrization package from the climate model. It took an additional two years

until the climate model was consider acceptable. The performance of this first

version of MetUM was documented in Cullen (1993).

Under this unified model approach, changes to the model were progressively de-

veloped and adapted to both configurations. A new Semi-Implicit Semi-Lagrangian

(SL, see sect. B.2.1) formulation was developed to enhance the non-hydrostatic

capability of the model (Davies et al., 2004). Major physics development in one sys-

tem were usually introduced to the others within a year or two, like the development

of a new orographic drag scheme or the Prognostic Cloud fraction and Prognostic

Condensation scheme (PC2, Wilson et al. 2008).

Different prediction systems were developed for different purposes, like seasonal

prediction, short-range probabilistic prediction or centennial Earth System studies.

The multiplicity of prediction systems revealed one of the main setbacks of the

seamless prediction paradigm, which is that one change could be difficult to integrate

in one particular system because of a degradation of performance in the other. One

example is the low resolution climate model used for paleo-climate and Earth System

studies. The Semi-Lagrangian formulation of the present MetUM version is too

diffusive for low resolutions (see sect. B.2.1), therefore the previous version of this

system, the Hadley Centre Climate Model v3 (HadCM3, Gordon et al. 2000), is

still employed in many of these studies and it is still an important component on

the “MetUM family” of prediction systems. Until recently the operational Decadal

Prediction System DePreSys (Smith et al., 2007) was built from HadCM rather than

the last MetUM version for similar reasons.

Since 2010 onwards, the Met Office has taken the seamless concept one step

further. It provides a yearly configuration with the same dynamics and physics



4.1. MET OFFICE UNIFIED MODEL 83

for all the model’s systems, the “Gobal Atmosphere” configuration (Walters et al.,

2011). Any potential change in the model configuration is tested across NWP and

climate scales. If the impacts are positive, this change is combined with others and

tested again until a final configuration is reached.

MetUM with a GA configuration provides a framework where different predic-

tion systems can be developed with different timescales, resolutions and prediction

purposes. Figure 4.1 shows a schematic description of some of these systems for

different timescales, atmospheric grid resolution and complexity.

Figure 4.1: Schematic description of MetUM systems across different timescales (x axis),

atmospheric grid resolution (y axis) and complexity (z axis). All the systems shown in

green use GA configurations. The two yellow circles indicate the two exceptions to the

seamless approach, HadCM3 and DePreSys (see text for details). From Brown et al.

(2012)

The GA definition also includes a configuration for the Land surface scheme,

which simulates the exchange of moisture, heat and momentum with the Boundary

Layer (see B.3.4 for a brief description on Land surface schemes). MetUM is coupled

to the surface Joint UK Land Environment Simulator (JULES, Best et al. 2011).

The main characteristics of JULES at GA3 are described in section 4 of Walters et

al. (2011) and it is active in all the MetUM systems.

Although many of the MetUM configurations of Limited Area Models (LAMs)

are also within the GA framework, in the course of the thesis we only employ global
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configurations. By convention their horizontal grid-mesh is defined on 2n longi-

tudinal points and 1.5n + 1 latitudinal points, this choice makes the grid-spacing

approximately isotropic in the mid-latitudes. The integer n defines the resolution

and represents the maximum number of zonal 2 grid-point waves that can be rep-

resented by the model. A model with n = 96, the typical resolution for decadal to

centennial experiments, is defined as N96 and has a grid-length of 145 km in the

mid-latitudes.

The seamless nature of the MetUM model enables a comprehensive study of

the impacts of stochastic physics schemes across different horizontal resolutions and

timescales, using probabilistic and deterministic forecasts to understand the nature

of their perturbations on the atmospheric flow. The systems we employ in this thesis

are described in the next subsection:

4.1.1 MetUM systems and their setup

� Short-range deterministic forecasts (defined as “NWP forecasts”): They are

employed to make predictions of the evolution of the atmosphere for less than

one week ahead. The system is useful to indicate the predictability of day-

to-day weather events like cyclones, squall lines or fronts. It is also useful

to diagnose the sources of model error, which normally spin up early on in

the forecasts. The system uses prescribed evolving SST, and dynamic soil

moisture and temperature given by JULES. It has 70 levels in the vertical

(50 in the troposphere and 20 in the stratosphere), and they can be easily

adapted to several different horizontal resolutions like N96 (∼ 145 km in the

mid-latitudes), N216 (∼ 65 km) or N320 (∼ 45 km).

In this thesis we run a set of 200 forecasts with this system. These forecasts are

started in the dates shown in Table 4.1. They consist on the original 20 forecast

dates employed for routine evaluation plus dates starting 3 days earlier, and

3,6 and 9 days later to obtain enough statistics for cyclone tracking. The years

included range from 2008 to 2012.

� The Met Office Global and Regional Ensemble Prediction System (MOGREPS):

A Short-range EPS, normally run for 3 days on research mode. It consist of

24 members, where 23 of them are perturbed by The Ensemble Transform
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5 JUN 8 JUN 11 JUN 14 JUN 17 JUN

19 JUN 22 JUN 25 JUN 28 JUN 1 JUL

6 JUL 9 JUL 12 JUL 15 JUL 18 JUL

20 JUL 23 JUL 26 JUL 29 JUL 1 AUG

3 AUG 6 AUG 9 AUG 12 AUG 15 AUG

5 DEC 8 DEC 11 DEC 14 DEC 17 DEC

19 DEC 22 DEC 25 DEC 28 DEC 31 DEC

2 JAN 5 JAN 8 JAN 11 JAN 14 JAN

16 JAN 19 JAN 22 JAN 25 JAN 28 JAN

31 JAN 2 FEB 5 FEB 8 FEB 11 FEB

Table 4.1: Start-dates for the deterministic NWP set of forecasts. Start time is 12Z.

Forecast are done from 2008 to 2012.

Kalman Filter (ETKF, Bowler et al. 2008) and stochastic physics schemes.

See Bowler et al. (2008, 2009) for a comprehensive description of the system.

It uses the same model framework as the deterministic NWP forecasts. This

system is the natural habitat for the stochastic schemes and where they have

been extensively evaluated. Therefore MOGREPS is used to diagnose the

probabilistic scores of new developed schemes or changes to the present ones

for the different investigations carried out in the thesis.

The MOGREPS probabilistic forecasts employed in this thesis have the fol-

lowing setup:

– 11 ensemble members without perturbations to the initial conditions,

the ETKF is switched off. All the ensemble spread is generated by the

stochastic physics schemes.

– The forecasts are run every 6hr between 18Z of 6 November 2012 to 12Z

of 13 December 2012.

– The horizontal resolution is N216, model configuration uses similar char-

acteristics as the deterministic NWP model. Forecast are initialized from

the Met-Office Analysis (MO-AN).

As described in the list above, the experimental design of the EPS does not

include the ETKF nor any other method to perturb the initial conditions. The
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nonlinear feedback between stochastic schemes and the ETKF could produce

a different ensemble spread and hence a difference in the perturbations to the

initial conditions (Tennant W, 2013, personal comms.). These interactions

would create differences on the ensemble characteristics that are hard to asso-

ciate to the stochastic physics scheme alone. Additionally, there are technical

constraints that made us exclude these initial condition perturbation schemes.

They normally need a higher number of ensemble members than 11, that

would increase the computational cost of the EPS experiments carried out for

the investigations of this thesis, and therefore make some of the experiments

nonviable.

The evaluation of these MOGREPS suites is done against the Met Office Anal-

ysis rather than ECMWF reanalysis or observations. The low number of en-

semble members and forecasts might produce noisy results with poor statistical

significant if compared to a reduce sample of observations, we are also inter-

ested in the global structure of the ensemble spread, therefore we employ an

analysis to evaluate our experiments. The choice of MO-AN comes from the

fact that it provides the model’s initial state and if another analysis was used,

it would add an extra source of uncertainty which would slightly contaminate

our spread-error relationships.

� MetUM Climate configuration: Also known as Hadley Centre Global Earth

Model v3 (HadGEM3) for continuity with previous models developed by the

the Hadley Centre, the climate “branch” of the Met Office. HadGEM3’s setup

follows the Atmospheric Model Inter-comparison Project experimental design

(AMIP, Gates et al. 1999). A general framework for climate model evalu-

ation which uses prescribed SST, sea-ice and atmospheric composition from

November 1981 to Decemeber 2001. Experiments are normally run for 20

years, which provide a useful comparison to see any noise-induced drift in the

climate mean provoked by the stochastic schemes. Climate experiments also

provide a large population of the atmospheric processes described in chap-

ter 3 (e.g. mid-latitude cyclones or Convectively Coupled Equatorial Waves).

Thus the experiments are also useful to understand the effects on stochastic

schemes on the representation of these processes, major drivers of the atmo-

spheric variability at synoptic scales. Unlike NWP systems, the climate system
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includes 15 more vertical levels in the stratosphere, in order to represent the

non-negligible effects of the middle atmosphere dynamics in the climate.

There are other systems that are unfortunately not included due to its com-

putational requirements. The seasonal system is an obvious example, The Global

Seasonal system (GloSea Arribas et al. 2011) at GA3 configuration uses a lagged

ensemble of 42 members at N216 (Machlanan2014 et al., 2014). Similarly a coupled

climate model could provide useful information on how stochastic noise-induced

drifts on the lower troposphere feed back on the ocean circulation.

4.1.2 Global Atmosphere 3.0/3.1 (GA3) configuration

The first GA cycle was GA3 which uses 3.0 for climate systems and 3.1 for NWP

for operational purposes. All our experiments use 3.0 configuration for a clean test

between the different timescales. The GA3 setup for MetUM is extensively described

in Walters et al. (2011). The main components are:

� Dynamical core: GA3 uses a Semi-Implicit Semi-Lagrangian (SI-SL) formu-

lation as described in Davies et al. (2004). The climate experiments use the

less diffusive Quasi-Cubic interpolation scheme for the interpolation of the de-

parture point whereas NWP uses Cubic (see sect. B.2.1 for an explanation of

different types of departure points).

� Radiation: The radiation scheme of Edwards and Slingo (1996) is used in

GA3 with a configuration based on Cusack et al. (1999). It employs 21 k-tems

for the the major gases in the Short-Wave (SW) bands (H2O, O3, CO2 and

O2) and 47 k-terms for the major gases in the Long-Wave (LW) bands. The

sub-grid cloud structure is represented using the Monte-Carlo Independent

Column Approximation (McICA) as described in Hill et al. (2011)

� Cloud microphysics: Uses the scheme based on Wilson and Ballard (1999)

that incorporates modifications to the particle-size distribution and minimum

cloud water content for autoconversion (Abel et al., 2010), fall velocities (Abel

and Shipway, 2007), and the inclusion of substeps for a more accurate repre-

sentation of drizzle processes.

� Large scale cloud: MetUM at GA3 uses the Prognostic Cloud fraction and

Prognostic condensate (PC2, Wilson et al. 2008) to determine the fraction
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of cloud cover and the amount and phase of condensed water. PC2 is em-

bedded in each parametrization that has an influence in clouds, e.g. it deals

with the production of condensate from radiative heat within the radiation

parametrization.

� Orographic gravity wave drag: The flow blocking and gravity wave effects due

to subgrid orography are represented by a scheme based on Webster et al.

(2003).

� Non-orographic gravity wave drag: MetUM at GA3 uses the scheme described

in Scaife et al. (2002), it provides a spectrum of gravity waves in 4 azimuthal

directions and represents the process of wave-generation, propagation and dis-

sipation.

� Atmospheric boundary layer: The MetUM parametrization of the turbulent

processes extends to the full depth of the troposphere. It is a first-order

turbulent closure mixing scheme as described in Brown et al. (2008).

� Convection: MetUM uses a mass flux convection scheme based on Gregory

and Rowntree (1990) with various modifications. Deep convection uses a dif-

ferent Convective Available Potential Energy (CAPE) closure than Gregory

and Rowntree (1990) and shallow convection uses a different closure. The

scheme also includes a convective momentum transport based on Gregory and

Allen (1991).

4.1.3 Global Atmosphere 6 (GA6) configuration

The GA6 configuration for MetUM has been operational in the Met Office since

May 2014. The main changes to GA3 include the new dynamical core Even Newer

Dynamics for General Atmospheric Modelling of the Environment (ENDGame, de-

scribed below), and several changes to the model physical parametrizations, such

as:

� Radiation:

– Improved CO2 and O3 LW absorption which improves heating/cooling

the in the stratosphere (Zhong and Haigh, 2000).
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– Radiation timestep reduced from three hours to one hour, improving the

accuracy of the radiation scheme.

� Cloud scheme (PC2):

– Improved cloud erosion method and numerical definition for mixed-phase

cloud.

� Microphysics:

– Implementation of improved drizzle size distribution following Abel and

Boutle (2012), which improves the representation of light rain.

� Convection:

– Increased Entrainment rate in deep convection, following results from

Klingaman and Woolnough (2013) which shows improvements in tropical

variability such as the Indian Monsoon, Tropical cyclones or MJO.

� Gravity Wave Drag (GWD):

– Introduction of a new version of the GWD scheme which includes a cut-off

mountain approach to diagnose mountain wave-drag.

ENDGame:

The new dynamical core ENDGame shares many aspects with its predecessor, the

New Dynamics scheme (Davies et al., 2004). They both employ a SI-SL finite

difference discretization and use same staggering for the grid variables. The details

of the ENDGame discretization are reported in Wood et al. (2013). The most

significant differences between ENDGame and New Dynamics are:

� ENDGame uses a nested iterative timestep structure, where the advection

and fast physics (convection and boundary layer) are iterated to get a better

estimate of the departure point. This also improves the numerical stability of

the model.

� The increased stability allows the the semi-implicit time-weights to be closer

to the time-centred value of 0.5. This reduces the damping of the explicit

solution and thus improves the accuracy of the model.
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� The horizontal grid is shifted half a grid length, so scalars are no longer held

at the poles, improving the scalability.

� The continuity equation uses a SI-SL discretization instead of the previous Eu-

lerian approach on the New Dynamics, this further improves the accuracy and

stability of the dynamical core, but at the cost of losing the mass conservation

properties. A mass-fixer scheme as described in Zerroukat (2012) is employed.

ENDGame improves the scalability, stability and accuracy of the dynamical core

in comparison to New Dynamics (Walters et al. 2015, in preparation). It enables

future upgrades in resolution that would have been computationally unaffordable.

It significantly reduces the failure rate in high resolution climate simulations that

sample a wide range of years and synoptic conditions. It improves the departure

point calculations, producing a more accurate simulation of the intensity of systems

like mid-latitude cyclones.

4.2 Reanalysis

Retrospective analysis or reanalysis is one of the most important means to validate

climate models and study climate processes. They are produced by constraining a

NWP system by long-term observations into an unvarying data assimilation system.

This produces a 4-dimension homogeneous output data. Thus it makes easier to

validate models than inhomogeneous raw observations from different sources. Re-

analysis are a powerful tool for atmospheric research but their products have also

uncertainties. In addition to the uncertainty of the observing systems, data assim-

ilation can fill the gaps by adding physically meaningful information from forecast

models, but the model dominates in regions with spare observations such as the

Southern Ocean.

The need for reanalysis was advocated by Trenberth et al. (1988), they found

significant discontinuities in operational analysis, that were related to changes in the

forecast model and analysis systems. Shortly after, the first generation of reanal-

ysis was developed, where the NCEP-NCAR reanalysis (Kalnay et al., 1996) and

European Re-Analysis project (ERA-15, Gibson et al. 1997) were the most popular.

The production of reanalyses is an ongoing program in several NWP centres with
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new production of reanalyses as model and data assimilation methods are improved.

The reanalyses used in this thesis to compare the effects of stochastic physics are:

� ERA-Interim (ERA-I, Dee et al. 2011) The primary goal for ERA-Interim

has been to address the problems found by its predecessor ERA-40 (Uppala

et al., 2005). These problems are mainly related to the representation of the

hydrological cycle, the quality of the stratospheric circulation, and the consis-

tency in time of reanalyzed geophysical fields. Compared to its predecessor

ERA40, ERAI has got a higher horizontal resolution, from T159 to T255 and a

wide variety of changes in the physics package described in section 3 of Dee et

al. (2011). A four-dimensional variational (4DVAR) data assimilation system

with 12-h (Thepaut et al., 1996) cycling is used with output every 6 hours.

The number of observations assimilated in ERA-I has increased from approxi-

mately 106 per day in the early 1989 to 107 per day in 2010. Figure 4.2 shows

the number of different observations incorporated into ERAI split into the ob-

served fields. ERAI covers the period from 1st January 1989 onwards with an

extension from 1979 to 1988 in preparation. The main limitation in the ability

of ERAI to describe the evolution of the atmosphere lies in the quality and

availability of observations of humidity, winds and the distribution of aerosols

in large parts of the atmosphere.

� The NASA Modern-Era Restrospective analysis for Research and Applications

(MERRA, Rienecker et al. 2011). MERRA, as ERA-I, was also developed

with the aim to improve the representation of the hydrological cycle, and also

to incorporate the observations from NASA’s Earth Observing System (EOS)

satellites. MERRA is generated from the Goddard Earth Observing System

version 5 (GEOS) model and its data assimilation system (Rienecker et al.,

2008). GEOS-5 uses finite-volume dynamics with a resolution of 1/2 degrees

of latitude and 2/3 degrees of longitude (∼55 km in the mid latitudes) with 70

levels. The data assimilation system is the Three Dimensional Variational data

assimilation (3DVAR) based on the Gridpoint Statistical Interpolation scheme

(GSI, Wu et al. 2002), with a 6 hourly update cycle. Differences to ERA-I and

other new generation reanalysis have been reduced from previous generations.

However, there are still substantial differences in poorly constrained quantities

such as precipitation and surface fluxes due to differences in assimilating mod-
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Figure 4.2: Number of daily observations assimilated into the atmospheric analysis of

ERAI, on a logarithmic scale. From Dee et al. (2011).

els and differences in the number and quality of observations assimilated, for

instance ERAI incorporates the Global Positioning System Radio Occulation

(GPS-RO) whereas MERRA does not assimilate these observations (Dee et

al., 2011). MERRA covers the time period from 1979 onwards.

4.3 Global Precipitation Climatology project (GPCP)

Precipitation is a key variable to examine in the evaluation in a GCM. It is very

sensitive to large-scale disturbances like tropical waves (section 3.5) or extra-tropical

cyclones (section 3.3), and feedbacks on these by the release of latent heat. In

addition, the impacts of precipitation on our society are quite evident (e.g. water

management, agricultural and electricity generation).

A large portion of precipitation occurs over the oceans, where there is a lack of

ground-based observations, and satellite observations have limited temporal sam-

pling (especially low-Earth orbiting ones). In order to overcome these setbacks and

produce a high quality precipitation database, the GPCP project was launched by

the Global Energy and Water cycle Experiment (GEWEX). It is a merged analysis
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that incorporates precipitation estimates from low-orbit satellite microwave data,

geosynchronous-orbit infrared data and surface rain-gauge observations. Details of

the merging algorithm are described by Huffman et al. (1997). GPCP data used in

this thesis is from version 2 (Adler et al., 2003). It has a spatial resolution of 2.5°x

2.5°latitude-longitude box and its temporal span covers from January 1979 to the

present.

As an example of is products, the total average of precipitation from 1979 to

2001 is shown in Figure 4.3. The main aspects of the global distribution of pre-

cipitation are clear: The maxima in the tropics along the Intertropical convergence

zone (ITCZ), the South Pacific convergence zone (SPCZ), dry areas in the eastern

parts of the subtropical oceans. In the mid latitudes the storm track signature of

precipitation is clear in the Atlantic and Pacific Oceans on the NH and the Southern

Ocean (SO) storm track in the SH.

Figure 4.3: The 23 year (1979-2001) annual mean precipitation (mm / day ). From Adler

et al. (2003)

Because of the desire to obtain the longest record, the GPCP is inhomogeneous

in terms of its inputs and datasets. This inhomogeneity is minimized by the cali-

bration of different datasets of different temporal periods. In this thesis there is no

study of global or regional climate trends of precipitation, therefore this apparent

setback does not invalidate the main conclusions. There are some other know prob-

lems with GPCP. Polar precipitation estimates over land are derived solely of cloud

information, GPCP underestimates precipitation over regions with orographic fea-

tures (Nijssen et al., 2001), which could be related to the relative lack of rain gauges
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in mountainous regions, or because satellite observations both passive microwave

and IR also have difficulty detecting shallow orographic precipitation. Pfeifroth et

al. (2013) compared GPCP v2 along MERRA, ERAI and other precipitation prod-

ucts against PACRAIN, a ground-based rainfall dataset in the West Pacific (Greene

et al., 2008). GPCP shows the highest correlation and lowest monthly deviations

with reference PACRAIN station data in comparison with other products.

4.4 Cloud and the Earth’s Radiant Energy Sys-

tem (CERES)

One of the major sources of uncertainty of GCMs lies in the impact of clouds upon

the radiative energy transfer (see sect. B.3.2). CERES is an instrument onboard of

the Earth Observing System satellites, whose measurements of radiative fluxes are

suitable for examining the role of clouds in the radiative heat balance of the climate.

The CERES instrument consist of a three-channel scanning broadband radiome-

ter, a detailed description of the instrument is given in Wielicki et al. (1996). The

first channel measures the thermal radiation emitted from the Earth’s surface in

the 8 − 12 µm “window”, to provide accurate measurements of clear-sky long-

wave measurements. The remaining two CERES spectral bands measure shortwave

(0.2−5 µm) and total (0.2−100 µm) broadband radiation. The three telescopes are

co-aligned such as they share a 98% common field of view with a spatial resolution

of 20 km at nadir.

Errors in measuring radiative fluxes come from three different sources: Instru-

ment calibration and stability, insufficient sampling of the angular variation of ra-

diation and the inability to adequately sample the large diurnal variation of solar-

reflected and earth-emitted radiation. The last two errors are reduced by the use of

three spacecraft: Tropical Rainfall Measuring Mission (TRMM) launched in 1997,

Terra (launched in 1999) and Aqua (launched in 2002). In October 2011, another

CERES instrument was launched aboard the Suomi National Polar-Orbiting Part-

nership (NPP) while the instrument aboard of TRMM ceased to operate in March

2000.

The filtered broadband radiances are split into shortwave and outgoing longwave,
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using the approach described in Loeb et al. (2001). The radiances are then converted

to a radiative flux using empirical angular directional models (ADMs, Loeb et al.

2007 and references therein), which are defined according to various surface, cloud,

and atmospheric properties. CERES’ final product is the observed Top of the Atmo-

sphere (TOA) broadband reflected SW, LW, and downward net fluxes at 3-hourly,

daily, and monthly temporal scales.
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Chapter 5

Evaluation of SKEB2

The evaluation of the operational stochastic physics schemes have been heavily fo-

cused on their capacity to produce ensemble spread, a very useful feature given that

nearly all of the state-of-the-art Ensemble Prediction System (EPS) do not produce

enough spread (Buizza et al., 2005). However, many questions regarding the impacts

on the representation of processes in well resolved scales, such as planetary scales

or synoptic scales on the short range, have not been investigated.

One of the most successful stochastic physics schemes, across different opera-

tional EPS, is the Stochastic Kinetic Energy Backscatter (SKEB). Previous studies

have reported that the family of SKEB schemes is able to increase the ensemble

spread, improve EPS skill scores and reproduce the k−5/3 slope on the kinetic en-

ergy power spectra (see section 2.2 for details in their formulation and results).

Despite its physically based implementation driven by the dissipation masks, the

scheme has many internal parameters whose values seems to be chosen to maximize

the EPS skill scores. One of these parameters is the backscatter ratio bR, which

is the fraction of energy unrepresented by the model that is backscattered to the

chosen scales (see eq. 2.1). bR is an amplitude factor to modulate the forcing of

the scheme, the higher bR the higher is the forcing to the streamfunction and the

impact of the scheme. The current value is set to 0.0275 which is the optimal value

to produce enough realistic spread and a realistic kinetic energy spectra, as reported

by Berner et al. (2009). However this value has been increased to 0.2 to enlarge the

ensemble spread of the seasonal system of the Integrated Forecast System (IFS).

This increase seems to cause a too strong activity over the Southern Ocean and too

much power on the kinetic energy spectra from wavenumber 30 (Fig. 2 of Berner et

97
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al. 2012).

Another choice when implementing SKEB schemes is the range of scales where

the forcing pattern is active. As described in sect. 2.2, the Spectral Stochastic

Backscater Scheme (SPBS) forces all wavenumbers. SKEB2 forces wavenumbers

5 < n < 60 and the Canadian SKEB forces smaller scales with 40 < n < 128.

Tennant et al. (2011) reported that the range of wavenumbers taken for SKEB2

was the optimal for the greatest growth of ensemble spread and minimal impact

of forecast skill. But there are strong doubts about the effects of perturbations on

the streamfunction at energy containing scales (n < 10), whose evolution is well

resolved by current deterministic models on the short-range until they are infected

from error upscaling from smaller scales (Tribbia and Baumhefner, 2004). Strong

perturbations at these large scales might be detrimental to the skill of deterministic

forecasts, constraining the use of these schemes to EPS only.

In the present chapter, we carry out a comprehensive evaluation of the Stochastic

Kinetic Energy Backscatter v2 (SKEB2, described in 2.2.2) using the MetUM seam-

less framework across different scales, using the evaluation tools described in chapter

3. The research is done using MetUM GA3 configuration for NWP 5-day determin-

istic forecasts and climate simulations (all systems are described in sect. 4.1). The

effects of the scheme over different model configurations (GA3 and GA6) are also

investigated, as well as a similar comparison to the one carried out by Berner et al.

(2012) to diagnose whether the improvements of stochastic schemes could compete

with model improvements and increased resolution. Different arbitrary values of

the backscatter ratio are used to show the effects of a too overactive scheme, these

include the default value of 0.0275, 0.1, 0.2 and 0.3 which translates as the 30% of

the energy lost is backscattered into the energy spectra. The main results of this

chapter have been published in Sanchez et al. (2014).

The first section of the chapter explores the impact of SKEB2 in short-range 5-

day deterministic NWP forecasts (5.1). The deterministic NWP system is described

in section 4.1.1. Forecasts are carried out using different horizontal resolutions, N96

(∼ 145 km in the mid-latitudes), N216 (65 km) and N320 (45 km) with and without

SKEB2. There are additional experiments done with the lower resolution with the

different values of the bR.

The evaluation methodology for these NWP forecasts covers the use of traditional



99

verification scores for deterministic simulations (sect. 3.1), and the representation of

mid-latitude cyclones using the TRACK algorithm (sect. 3.3.1), which adds useful

information on the impacts of the SKEB2 on one of the main drivers of weather in

the mid-latitudes.

In addition to the NWP forecasts, climate simulations with SKEB2 using the

range of different values for bR are used to investigate the effects of the scheme in

the mean climate and variability in sect. 5.2. Looking at processes such as block-

ing, mid-latitudes, CCEW or the organization of convection. Results of the model

are compared against ERAI, GPCP and CERES (see chapter 4 for a description of

these products). The results from this research help to indicate whether there is

any particular physical process where the effects of SKEB2 are detrimental, as well

as the processes which are improved by the stochastic forcing of the streamfunc-

tion. Another important question that is also investigated relates to the capacity of

SKEB2 to generate spread at climate timescales, and therefore be a useful tool for

future probabilistic climate models (Palmer, 2012).

Given the positive results found by Berner et al. (2012) where the impacts of the

SPBS were superior to those made by a higher resolution and slightly inferior than

those made by improved physics. A similar comparison is done amongst simulations

with the GA3.0 system at N96, N96 with SKEB2, N216 and an additional N96

experiment with the GA6.0 system (see sect. 4.1.2 and 4.1.3 for a description of

both model configurations); such comparison also provides a useful set of results

to see if the effects of the stochastic backscatter are comparable to a less diffusive

dynamical core and improvements in the representation of convection included in

GA6.0 system. A comparison of the effects of SKEB2 in GA3.0 and GA6.0 is also

carried out, showing the sensitivity of the schemes to the model used and whether

the scheme modulates itself if the model error decreases, e.g. using ENDGame, a

less diffusive dynamical core (detailed in sect. 4.1.3).

A set of final conclusions is drawn from these three sections (sect. 5.4). High-

lighting the main benefits of the SKEB2 scheme but also their detrimental impacts,

e.g. worsening the deterministic scores, impacting the wrong scales or producing a

poor simulation of physical processes. On the chapter 6 of the thesis, some different

approaches will be investigated to minimize the negative impacts found.
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5.1 Results from NWP forecasts

In order to determine the realism of the SKEB’s representation of the missing energy,

a set of 200 deterministic forecasts are run at different resolutions (see Table 4.1 for

the start-dates of forecasts). They provide evidence on how the scheme reduces

itself when moving to higher resolutions where more small scales are resolved. Also,

different values of the backscatter ratio bR are used to investigate how the effects

of the scheme scale up with a stronger amplitude. The effects of the scheme are

evaluated using traditional skill scores and the statistics of tracked mid-latitude

cyclones.

5.1.1 NWP skill scores

A general perspective of the SKEB2 performance can be gain using traditional ver-

ification scores such as the Root Mean Error Square (RMSE) or Anomaly Cor-

relation Coefficient (ACC, see section 3.1 for a description of both scores). The

skill simulating the large-scales in the mid-latitudes could be reveal by variables

such as geopotential at 500hPa (defined as Z500) and Pressure at Mean Sea Level

(PMSL). Dynamical variables like winds or temperature could indicate structural

model uncertainties in the representation of atmospheric processes, like feedbacks

from turbulence or radiative processes in the large-scale flow.

The set of 200 MetUM forecasts is compared to the ECMWF analysis, Since

SKEB2 forces the streamfunction, we start looking at the impacts on the horizontal

winds (modulus of the zonal wind u and meridional wind v). Figure 5.1 shows

the temporal evolution of the mean RMSE for different regions and two levels: low

(250hPa) and high (850hPa). These are the right levels to monitor the jet stream

and cyclones in the mid latitudes, and convergence (divergence) at low (high) levels

in the tropics. The mean RMSE has been averaged across all the forecasts. RMSE

increases almost linearly, and the values are higher at 250hPa, as winds are stronger

at this level. The RMSE of the forecasts with SKEB2 is always above the control

ones, with a more detrimental impact on the lower level, where forecasts with SKEB2

loose about 5 hours of predictive skill. Even the skill of the forecasts of the high

resolution model with SKEB2 is worse than the low resolution without the scheme

in the tropics at 850hPa (Fig. 5.1.e). Forecasts of the high resolution model for day

2 are nearly as bad with SKEB2 as those at day 3 without it.
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Another interesting result from Figure 5.1.e is the fact that the mean RMSE of

the forecasts with SKEB2 increases with resolution, in disagreement with the rest

of regions and levels. In the Tropics, low level winds are controlled by convergence

around convective cores. SKEB2’s kinetic energy release is proportional to the

vertical gradient of mass fluxes, therefore the stochastic scheme could modify these

convection episodes and the winds around them. This effect could stronger at high

resolution as the vertical gradient of mass fluxes is likely to increase.

(a) RMSE of winds at 250hPa for NH
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(b) RMSE of winds at 250hPa for Trop
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(c) RMSE of winds at 250hPa for SH
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(d) RMSE of winds at 850hPa for NH
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(f) RMSE of winds at 850hPa for SH
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Figure 5.1: Mean value of the Root Mean Square Error (RMSE) for wind (modulus of u and

v) forecasted over two different levels: 250hPa for (a), (b) and (c), 850hPa for (d), (e) and

(f) and three different regions: NH (20N-90N) for (a) and (d). Trop. (20S-20N) for (b) and

(e). SH (20S-90S) for (c) and (f). Blue shows N96 horizontal resolution, green N216 and

red N320. Continuous lines denote the control runs across different resolutions and dashed

line the runs with SKEB2. Confidence intervals are obtained using the methodology

explained in the introduction of chapter 4.

The degradation of RMSE of wind fields by stochastic schemes have been re-

ported in other studies. The original version of the Stochastic Parametrization of

Perturbed Tendencies (SPPT, described in sect. 2.3) in the IFS did degrade winds

in the NH and tropics at 850hPa as shown in Figure 11 of Buizza et al. (1999).

A version of SKEB2 in a previous model configuration had similar impacts on the
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global 250hPa winds with a degradation of a couple of hours in terms of predictive

skill (see Fig. 11 of Tennant et al. 2011), although it also shows that such degra-

dation is smaller than the one done by the perturbations to the initial condition.

The deterioration of the forecasts with lead time is clear in Fig. 5.1, but it is

hard to see whether SKEB2 negative impacts increase or decrease with forecast lead

time, levels, regions or resolutions. The ratio between the averaged RMSE of the

forecasts with SKEB2 and the averaged RMSE from control forecast is shown in

Figure 5.2. The ratio is always greater than 1.0 and errors at 850hPa are higher

than at 250hPa. When resolution increases errors become more than 5% higher

with SKEB2, an important degradation in terms of skill. The issue of the double

penalty of RMSE becomes apparent here, as higher resolution can have a sharper

representation of features such as fronts or tropical squall lines, therefore impacting

negatively on the RMSE score if these are better resolved but slightly misplaced.

The ratio between the errors increases until day 2 of the forecast and then it drops,

more notably in the high resolution simulations.

If we increase the amplitude of SKEB2 on the low resolution model, the average

RMSE of winds increases dramatically as shown in Figure 5.3; up to 35% for bR = 0.3

in the tropical winds at 850hPa. The same pattern as Fig. 5.2 is observed, the

increase of the RMSE ratio at level 850hPa is higher than at 250hPa and errors

peak at day 2. The higher the SKEB2 forcing the more severe is the damage to the

forecast skill in terms of point by point differences in the horizontal wind field.

Results for Z500, a variable that depicts the large scale features driven by the

geostrophic theory, are also quite negative. Table 5.1 shows the Z500 value of RMSE

averaged amongst all forecasts for day 5 for all the different experiments in the

Northern and Southern Hemisphere. As it does for winds, the increase in bR deepens

the degradation of Z500 RMSE.

The ACC of winds at 850hPa decreases when SKEB2 amplitude increases (Table

5.2), implying than it has also a negative effect in the temporal correlation of the

weather low-wind structures in addition to the spatial mismatch.

There is a clear deterioration of the deterministic model when the SKEB2 is

included. The Met Office Global NWP index, a combination of the RMSE of geopo-

tential height and winds at different levels and locations is degraded by an equivalent
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Ratio of RMSE between SKEB2 and control

Northerh hemis. Tropics Southern hemis.
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Figure 5.2: Ratio between the RMSE of SKEB2 and RMSE of control averaged across all

forecasts for several forecast times. Pluses denote winds at 250hPa and asterisks winds at

850hPa for NH, diamonds winds at 250hPa and triangles at 850hPa for Tropics, squares

winds at 250hPa and crosses winds at 850hPa for SH. Red is for N320 SKEB2/control

ratio, green for N216 and blue for N96. Only differences above the 95% of statistical

significance are shown.

of three years of model development work (Walters 2011, personal communication).

The stochastic forcing is more detrimental on the first 2 days of the forecast, the

short-range timescales where the model shows high predictability driven by the large-

scales. On those timescales, the effects of small-scale errors have not contaminated

the skill of the forecast fully (as shown in Figure 2 and 4 of Tribbia and Baumhefner

2004). SKEB2 aims to represent the small-scale energy dissipation, but on its cur-

rent formulation it seems to force small wavenumbers which could introduce errors

on the large scales.

5.1.2 NWP bias

Despite the detrimental effects of SKEB2 in individual forecasts, the averaged bias

across all the forecasts of winds at 850hPa for day five shows an improvements

(Figure 5.4). The winds are too weak in the mid latitudes (Fig. 5.4.a), probably

because of the internal diffusion of the model, where two processes are probably

the most responsible: the interpolation to the departure point and the excessive off-
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Ratio of RMSE between SKEB2 and control

Northerh hemis. Tropics Southern hemis.
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Figure 5.3: Same as Figure 5.2 but for different SKEB2 backscatter ratios bR at N96. The

ratio of SKEB2 with the default backscatter ratio (equal to 0.0275) is shown in blue ,

bR = 0.1 in green; bR = 0.2 in yellow and bR = 0.3 in red.

centering towards the implicit solution in the Semi-implicit scheme (Woods N, 2014,

personal comm.). When we increase the amplitude of SKEB2 the winds become

stronger, which removes the biases in the mid-latitudes. However, at high bR it also

creates too strong winds in the Tropical West Pacific and Maritime continent. For

the highest bR, the convective part seems to be producing too strong winds, and this

is probably an indication that the scheme is backscattering too much kinetic energy

around convective cores, whereas in the mid-latitudes SKEB2 has not compensated

all the energy dissipated by the implicit diffusion, there are still weak winds over

the Southern Ocean (as shown in Figure 5.4.e)

The mean field of winds at 850hPa shows lower RMSE when SKEB2 backscatter

increases until bR = 0.2. For the highest backscatter ratio, the negative effects of

over-active winds in the tropics compensates the benefits of stronger winds over the

mid-latittudes, producing similar values of RMSE.

Biases at higher resolutions also improve with SKEB2 although at a lesser magni-

tude because numerical diffusivity decreases when resolution increases (not shown).

Tennant et al. (2011) also showed in their Figure 11 that SKEB2 decreases the bias

of weak high level winds in a former configuration of MetUM.
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Figure 5.4: MetUM bias (model – ECMWF analysis) of the modulus of winds at 850hPa

(m/s) for (a) N96 control (b) N96 SKEB2 default bR (c) N96 SKEB2 bR = 0.1 (d) N96

SKEB2 bR = 0.2 (e) N96 SKEB2 bR = 0.3; subtitle shows RMSE of the model averaged

field versus the averaged analysis.
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NH SH

N96 control 49.7 58.4

N96 SKEB2 51.6 60.5

N96 SKEB2 bR = 0.1 57.8 65.1

N96 SKEB2 bR = 0.2 65.4 72.0

N96 SKEB2 bR = 0.3 72.9 79.1

N216 control 44.0 52.0

N216 SKEB2 47.2 54.5

N320 control 43.4 51.0

N320 SKEB2 46.0 53.7

Table 5.1: Geopotential at 500hPa RMSE (m) for day 5 (T+120 hours), NH and SH as

defined in Figure 5.1.

DJF JJA

Control 0.50 0.47

SKEB2 bR = 0.0275 0.47 0.45

SKEB2 bR = 0.1 0.42 0.38

SKEB2 bR = 0.2 0.36 0.33

SKEB2 bR = 0.3 0.31 0.27

Table 5.2: Global average Anomaly Correlation Coefficient (ACC) of winds at 850hPa and

T+120 for low resolution simulations with SKEB2 and increasing bR.

5.1.3 Location / intensity errors of extra-tropical cyclones

The SKEB2’s representation of mid-latitude low level winds is worse in terms of

traditional skill scores as shown in the previous subsection, but on the other hand

it improves the wind bias over the storm track. Features in the mid-latitudes could

be in general better represented by SKEB2 but individually diverted away from

their correct path. One of the main features in the mid-latitude are cyclones, com-

monly described as “storms”, whose position and intensity can be tracked using the

TRACK algorithm (see section 3.3 for a description of the algorithm). An additional

method can pair tracked storms from the model to those in the analysis making pos-

sible to obtain intensity and positional errors (sect. 3.3.3). We apply this tracking

algorithm and its matching technique to all our experiments. The number of storms
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matched for each forecast day is shown in Table 5.3. Only storms developed before

day 3 are taken into account, so after day 3 the number of storms drops as they

decay and are not replaced. There are quite small differences amongst the number

of storms matched for each experiment.

NH SH

T+24 2160 2210

T+48 2574 2603

T+72 2379 2366

T+96 1774 1698

T+120 1135 1087

Table 5.3: Number of storms matched for each hemisphere and forecast day. Numbers

shown are the average amongst the different 5-day NWP experiments.

The mean intensity and distance errors of the matched storms for the experi-

ments across different resolutions with and without SKEB are shown in Figure 5.5.

The error increases with lead-time, although at N96 the intensity error saturates

at day 2 after a severe drop in the forecast intensity in comparison to the other

resolutions. These errors improve with resolution, and they are slightly larger in

the SH in terms of position and intensity. Mid-latitude cyclones are transported

by the barotropic flow which is not difficult to resolve even at coarse resolutions.

In contrast, the intensity, which is strongly influenced by subgrid processes (e.g.

convection or microphysics), and the implicit diffusion of the advection scheme that

smooths sharp gradients of vorticity such as the storms produce. Therefore errors in

the storm intensity are more sensitive to horizontal resolution than errors in storm

location.

SKEB2 is beneficial increasing the mean intensity of storms, although it also

introduces a positional error in all resolutions, but this error is proportionally small

to the intensity improvement. The intensity increase done by SKEB2 is equivalent

for both hemispheres and resolutions. There is a clear problem with the way SKEB2

modulates its perturbation across resolutions. The SKEB2 dissipation rate should

be much higher and thus create a higher impact on the intensity at N96 than at

N320, since dissipation is higher at lower resolutions, but results shows that the

intensity increase made by SKEB2 is similar at both resolutions.
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(a) Distance errors NH

0 20 40 60 80 100 120
Forecast range (hrs)

0

2

4

6

8

D
is

ta
n
c
e
 t
o
 a

n
a
ly

s
is

 (
d
e
g
)

N96 control
N96 SKEB2

N216 control
N216 SKEB2
N320 control
N320 SKEB2

(b) Distance errors SH

0 20 40 60 80 100 120
Forecast range (hrs)

0

2

4

6

8

D
is

ta
n
c
e
 t
o
 a

n
a
ly

s
is

 (
d
e
g
)

(c) Intensity difference NH

0 20 40 60 80 100 120
Forecast range (hrs)

-0.6

-0.4

-0.2

0.0

0.2

In
te

n
s
it
y
 d

if
fe

re
n
c
e
 (

1
0

-5
s

-1
)

(d) Intensity difference SH

0 20 40 60 80 100 120
Forecast range (hrs)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

In
te

n
s
it
y
 d

if
fe

re
n
c
e
 (

1
0

-5
s

-1
)

Figure 5.5: Distance (a,b) and intensity (c,d) differences of simulated storms matched to

analyzed ones. Continuous lines denotes storms from control and dashed storms from the

forecasts with SKEB2. Blue is for N96, green N216 and red for N320. First column (a,c)

for the Northern Hemisphere and second (b,d) for the Southern hemisphere. Confidence

intervals are obtained using the methodology explained in the introduction of chapter 4.

A similar plot for the low resolution experiments with the different backscatter

ratios at N96 is shown in Figure 5.6. Distance errors are amplified and intensity

errors reduced when bR increases. For bR = 0.3 at the NH, the storms become

too active with an intensity higher than in the analysis (Fig. 5.6.c). The default

amplitude factor bR = 0.0275 is optimal to simulate storms at the adequate inten-

sity in the Northern hemisphere (Figure 5.4.c) at N320, the operational horizontal

resolution of current NWP models and EPS. Nevertheless, at lower resolutions this

factor is too low, Figure 5.6.d indicates that the factor could be increased and the

intensity in the Southern hemisphere would still be low (also shown in Figure 5.3.e

over the Southern Ocean).

The absolute intensity error shows that errors growth with lead time when bR

increases, and they are always above the control (not shown). Although the ratio

between the absolute intensity of the control and SKEB2 with bR = 0.3 is smaller

than the ratio of absolute errors in distance (Fig. 5.6).
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Figure 5.6: Same as Figure 5.5 but for different amplitudes of SKEB2 at N96. Dark blue

is for control, pale dashed line for SKEB2 default ( bR = 0.0275), green dotted line for

bR = 0.1, yellow dash-dotted for bR = 0.2 and red long-dashed dotted for bR = 0.3.

The extra kinetic energy backscattered by SKEB2 could strength the diver-

gence (convergence) at high (low) levels. This strengthening is beneficial to produce

stronger vertical motions which triggers convection and latent heat release. These

lead to an enhancement of the intensity of storms, as it is shown in Figure 5.5.c,d

and 5.6c,d and partially fixes the problem of weak winds in the mid-latitudes (Fig-

ure 5.4). However, an excessive divergence could slow down the displacement of

baroclinic systems such as storms, increasing the distance error of the storms as the

simulated ones lag behind the analyzed. Slow storms would also increase the RMSE

and ACC of the forecasts.

The average storm speed bias can be obtained from the difference between two

successive points on the storm track divided by the time interval (6 hours). Sim-

ulated mid-latitude cyclones are generally too slow in most of the current models

(Froude, 2010, 2011), SKEB2 speeds up the cyclones in the Northern hemisphere

substantially (Fig. 5.7.a), such increase in the speed of the storms for the SH is so

not clear (Fig. 5.7.b). The absolute error of speed shows again that errors increase

when bR increases. Mean speed rates for N216 and N320 are still low but slightly
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higher than those at N96 (not shown).
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Figure 5.7: Mean propagation speed bias of storms for the low resolution experiments

(km/h) (a) Northern hemisphere (b) Southern hemisphere. Same colour scale as Fig. 5.6.

Another interesting result from Froude et al. (2007a) and Froude (2010, 2011) is

the inability of EPS to predict the fast growth rates associated with intense storms.

The growth rate is the rate of intensity change of cyclones at each timestep. It does

not show much variation across the lead time as it is essentially related to changes

to model deficiencies in parametrizations (e.g. convection). The mean intensity

growth rate is calculated from the storms population with a positive growth in both

analyzed and simulated storms. Table 5.4 shows the temporal average of the mean

growth rate from the initial date of the forecast until day 3, as new born storms are

not tracked thereafter. The simulated storms do not grow at the same rate as the

storms in the analysis do. In the Southern hemisphere the problem is deeper. The

bias of mean growth rate is reduced when horizontal resolution increases, but SKEB2

is nearly as effective as resolution increases in generating growth for storms. At high

bR the growth rate bias has become positive, storms develop quicker and deeper than

in reality. Froude (2010) indicated that the lack of growth is an important setback

in producing quality advice of storm surges to weather services.

The results obtained from the mid-latitude cyclone tracking suggest that SKEB2

has a negative impact on individual cyclones, introducing errors on their intensity,

distance and speed. However on average, the extra vorticity added by the backscat-

ter kinetic energy alleviates the high diffusivity of the storm intensity. It also helps

to speed up storms and generate higher rates of intensity growth.

Our analysis has been focus on the mean characteristics of storms, but we could
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NH SH

N96 control -0.46 -0.67

N96 SKEB2 -0.36 -0.60

N96 SKEB2 bR = 0.1 -0.16 -0.40

N96 SKEB2 bR = 0.2 0.08 -0.20

N96 SKEB2 bR = 0.3 0.32 0.01

N216 control -0.28 -0.37

N216 SKEB2 -0.16 -0.28

N320 control -0.22 -0.29

N320 SKEB2 -0.11 -0.21

Table 5.4: Mean bias of growth rates of storm intensity (10−5 s−1 day−1) for the different

experiments and hemispheres. The rates are averaged between T + 0 and T + 72.

obtain more information looking at particular ranges of the storm intensities. For

weak storms (intensity lower than 3 10−5 s−1) there is an obvious bias in our tech-

nique: The weak modelled storms are stronger than the analyzed ones, because if

the model would weaken these storms below the analyzed intensity, they would not

be strong enough to be classified as a storm by the tracking algorithm.

The relation between modelled and analyzed intensities is shown in Figure 5.8,

the average of intensity of simulated storms whose analyzed intensity lies between

a certain range of intensities. The average of the modelled intensities for weak

analyzed storms is slightly higher than the average of analyzed storms as described

previously. Intense storms are weaker in the model than analysis, but these improve

when resolution increases. On the other hand SKEB2 with the highest backscatter

increases the storm intensity across the whole spectrum of intensities rather than at

high intensities where storms are more diffused. Again this may be a side-effect of

the numerical dissipation rate being unable to adequately scale up the dissipation

of sharp vorticity gradients. Similar results are seen for the growth rate and speed

(not shown). SKEB2 does not spin up the growth of storms at high growth rates,

where the simulated growth is weaker than in the analysis. Similarly, fast storms

are too slow in the model, but these are faster at high resolutions. SKEB2 is more

active accelerating storms on the lower side of the speed range.

The fact that averaged storms show better behaviour than individual ones indi-
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Figure 5.8: Reliability diagram for the intensity of storms. The mean intensity of simulated

storms versus the mean intensity of analyzed storms within a given intensity segment of

2· 10−5s−1. Confidence intervals are the standard deviation of the population divided by

the square root of the length of the sample. Blue line is N96 control, dashed blue line N96

with SKEB2 bR = 0.3 and red line is N320 control.

cates than the dissipation masks are doing their job, helping to increase the intensity

and growth rate of storms, which are too low at all resolutions tested. However, their

scaling across resolution and intensity ranges is quite bad. It does not seem to ad-

dress well all true sources of dissipation of sharp vorticity gradients. The numerical

dissipation may have a bigger contribution from the damping done by the excessive

off-centering than the interpolation to the departure point. The nature of the off-

centering damping could be constrained to divergent modes rather than rotational

modes. However the SKEB2 scheme has a divergent component too, although it may

have different spatial and temporal timescales than the effects of eddies damped by

the Semi-Implicit scheme.

Despite that the representation of the numerical dissipation is not perfect, the

model exhibits a large drop in the storm intensity (Fig. 5.5c,d) on the first two days

of the forecast and then it seems to saturate, so there is a true need to backscatter

some kinetic energy and, in principle, that should not degrade the simulation of

an individual storm. Hence the spotlight goes onto the scales chosen to inject the

forcing. In a perfect SKEB scheme the energy would be injected on the right scales,
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and later upscaled towards larger scales. Therefore the predictability of the cyclone

would not be affected so much as it does with SKEB2. An excessive backscatter

ratio, as those employed here, might be adding too much energy on scales that have

little dissipation, degrading the forecast and its representation of storms.

Another problem may come from the excessive smoothing of SKEB’s dissipa-

tion masks (see sect. 2.2). Its physical justification is aimed to account for the

spatial uncertainty of phenomena such as cyclones or fronts. Adding kinetic energy

stochastically on points adjacent to these system tells the model that maybe there

is a contribution of this system on this gridpoint. This representation is perhaps a

bit coarse and could help these systems to change their “deterministic” trajectories

towards a less realistic path.

5.2 Results of low resolution climate simulations

When we include stochastic variability into a physical model, there might be a noise-

induced drift towards a different mean state. The stochastic perturbations push the

system away from its own attractors, increasing the frequency of rare events poorly

modelled by state-of-the-art models, e.g. the effects of CABS on weather regime

frequency shown in Jung et al. (2005a) and described in sect. 2.5. Therefore the

stochastic schemes may help to produce a better representation of variability and

mean climate.

In addition to the noise-induced transitions, if the stochastic noise is strong

and targeted to the drivers of variability at the timescales of our simulation, the

stochastic physics schemes should also produce different outcomes for their climate

mean, or in other words, increase the ensemble spread on climate scales.

In order to estimate the capacity of SKEB2 to improve the mean climate and

variability of MetUM and generate spread at climate timescales. We have set up the

experiments shown in table 5.5 with an ensemble of SKEB2 and other simulations

with increasing bR to study how the scheme modifies the climate when the SKEB2’s

forcing increases.

The two ensembles of SKEB2 with different bR are compared with an ensemble

of climate simulations of the climate model’s predecessor, the Hadley Centre Global

Environment Model v2 (HadGEM2, Collins et al. 2011). HadGEM2 ensemble consist



114 CHAPTER 5. EVALUATION OF SKEB2

Name of the experiment. No. of ensemble members

Control 1

SKEB2 default 5

SKEB2 bR = 0.1 3

SKEB2 bR = 0.2 1

SKEB2 bR = 0.3 1

Table 5.5: Description of different 20 year climate simulations and ensembles with different

bR for SKEB2

of 7 members with initial perturbations to soil variables, in addition two members

swap their soil variables at the start of each month.

There is an important difference between the model we have used for this climate

studies and the one we used for NWP deterministic prediction. The climate system

employs a quasi-cubic interpolation scheme to the departure point for the advec-

tion scheme (see sect. B.2.1), whereas the short-range prediction runs had cubic

scheme. Quasi-cubic is less diffusive although less accurate with gradients (Woods

N, 2011, personal comm.), therefore the counter-diffusion properties of SKEB2 may

be masked by the decrease of the internal diffusivity done when changing the inter-

polation scheme from Cubic to Quasi-cubic.

5.2.1 SKEB2 capacity to generate climate spread

In order to quantify the capacity of the SKEB2 scheme to generate spread at climate

timescales, the ensemble of climate simulations with SKEB2 is compared to the

HadGEM2 ensemble. There are differences on the mean climate amongst the five

simulations of the SKEB2 ensemble. This ensemble is built of simulations whose

only differences are produced by SKEB2 with the default backscatter ratio value of

0.0275 for all members. An additional ensemble of 3 members with bR = 0.1 is also

used and exhibits different mean states.

The differences found amongst different climate simulations with SKEB2 are

significant for several variables, e.g: Z500, low level (850hPa) winds or temperature.

However, these differences are far from the model bias and could be produced by the

internal variability of the model rather than driven by SKEB2. In order to estimate
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the significance of these differences, a statistical f-test is used with the global and

hemispheric mean of the standard deviation of the SKEB2 ensemble against the

HadGEM2 ensemble. Results show low percentages of significance, quite below

the acceptable levels of 90% or 95%. Thus the spread of SKEB2 ensembles with

default bR or bR = 0.1 is not statistically different than the spread in the HadGEM2

ensemble, which has no stochastic physics scheme. Therefore the capacity of SKEB2

to create spread at climate scales is quite small, although the number of members

of the ensemble used is quite low. It would be desirable to repeat the experiment

with more members if computing resources were available.

The spread of the mean climate amongst the different members of SKEB2 with

default bR slightly increases in comparison to the spread generated by the HadGEM2

ensemble (Figure 5.9), it is larger in DJF than JJA. The differences are located in

the Storm track regions of the Southern Ocean, North Pacific and North Atlantic.

Both seasons and ensembles show the same areas of maximum spread. In addition

to the storm tracks, the West Indian ocean during boreal summer is also a region of

large low level wind variability due the passage of active cells of the Madden Julian

Oscillation (MJO, see sect. 3.6 for a description) and other tropical disturbances,

but the models used (MetUM and HadGEM2) are not able to generate differences

in the climate mean over this region.

Differences in spread at climate scales for Z500 are also quite reduced, Table 5.6

shows its standard deviation of wintertime on the extra-tropical hemispheres for

SKEB2 def. bR and HadGEM2 ensemble. The standard deviations of SKEB2 and

HadGEM2 are not are significantly different even at 90% level.

NH DJF SH JJA

SKEB2 bR def. 63.6 62.0

HadGEM2 63.9 60.

Table 5.6: Z500 standard deviation of the ensembles (m). See text for details

A deeper analysis of the low level wind differences amongst SKEB2 ensemble

members, control run and ERAI reanalysis is presented in Figure 5.10. It shows for

the different experiments the standard deviation, confidence interval and climate

mean averaged over the boxes shown in Figure 5.9. These boxes are situated over
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Figure 5.9: Winds (m/s) at 850hPa standard deviation of the mean climate amongst

SKEB2 ensemble of default bR (a) and (c), HadGEM2 ensemble (b) and (d). Boxes

denote the regions shown in Figure 5.10. Subtitles show the Global mean spread.

regions with large climate spread in the ensemble plus the West Indian Ocean region.

The main results drawn from Figure 5.10 are:

� The low level winds in regions of high storm activity in the Northern Hemi-

sphere, like those in the boxes of Figure 5.10.a and 5.10.b are well simulated

by MetUM. SKEB2 adds little value in these regions. The SKEB2’s spread

on climate scales is over-dispersive producing members that simulate average

winds outside the confidence interval of ERAI, like the first member of the

SKEB2 default bR ensemble for the North-Atlantic region in the boreal winter

(Fig. 5.10.a). When the scheme is amplified, the differences in the spread

across different SKEB2 simulations are not noticeable for these regions in the

NH.

� Low level winds over the Southern Ocean (SO) in the austral winter (JJA) are

too low in MetUM (Figure 5.10.c). This is an important bias of many GCMs.

The addition of SKEB2 slightly improves the simulated winds, as the value

of some of members is outside the confidence interval of the control run and

between reanalysis and control, like the 2nd and 4th members of the bR default

ensemble and 3rd member of the bR = 0.1 ensemble. But there is no additional
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benefit when there is an increase of the energy backscattered driven by bR.

� For the case of the West Indian Ocean, where the Asian monsoon occurs

in JJAS, there is a large standard deviation of low level winds. The mean

value simulated by MetUM is again too low. This is an important systematic

bias of many models, likely caused by a poor representation of convective

processes. SKEB2 ensemble spread on climate scales is very low, as seen on

Figure 5.9.c and thus the members of the SKEB2 bR default ensemble are

almost indistinguishable. Nevertheless, when the backscatter increases, there

is a climate shift and the averaged winds produced by the model within the

box increases and for bR > 0.1 the model goes beyond the reanalysis value.

5.2.2 SKEB2 improvements in the mean climate

Some positive results of the SKEB2 performance on climate scales have already

been shown in Figure 5.10. The scheme increases low level winds over the Southern

Ocean region and over the West Indian Ocean. Winds in the latter region seems to

be substantially affected by SKEB2. Its perturbation can flip the sign of the bias

when the backscatter ratio becomes too strong.

A different mean state produced by SKEB2 with increasing backscatter ratio

would be evident if their global skill scores such as the RMSE were different with and

without the scheme. The RMSE is a well suited metric for a preliminary assessment

of the global effects of the scheme in different model fields, despite its disadvantages

(as described in section 3.1). Table 5.7 shows the global RMSE of the control and

SKEB2 experiments for large-scale variables such as PMSL or Z500. Overall the

impact of the scheme is neutral to positive. At the largest amplitudes results are

positive for nearly all seasons and variables. There is not a preferred season where

the model’s simulation is better with SKEB2.

The RMSE of the climate mean of dynamic variables such as winds is shown in

Table 5.8, SKEB2 improves the RMSE for winds at 850 and 200 hPa levels for all

seasons. These improvements seem stronger in JJA than in other seasons for both

levels, there are no proportional improvements in RMSE when the backscatter ratio

is increased, maybe an excessive bR could flip the side of the bias whereas a smaller
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Figure 5.10: Average values (symbols), standard deviation (bars) and confidence intervals

(boxes) of monthly mean winds at 850hPa for all the different climate runs plus ERAI

reanalysis, period from Jan 1989 to Dec 2001 (a) North Atlantic section (65W-15W, 35N-

60N) for DJF (December, January and February) (b) North Pacific (150W-150E, 30N-45)

for DJF (c) Southern Ocean (whole longitudinal domain, 50S-70S) for JJA (June, July and

August) (d) West Indian Ocean (55E-75E, 0-20N) for JJA. Black with pluses is for ERAI,

dark-blue with asterisk for control, pale blue with diamonds for the ensemble of SKEB2

default amplitude, green with triangles for the ensemble of SKEB2 with bR = 0.1; yellow

with squares bR = 0.2 and red with crosses for bR = 0.3 scheme backscatter ratio. Dashed

lines denote the confidence interval of control and ERAI (see introduction of chapter 4).
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Control
SKEB2

bR = 0.0275

SKEB2

bR = 0.1

SKEB2

bR = 0.2

SKEB2

bR = 0.3

PMSL DJF 2.08 2.12 (-2%) 2.21 (-6%) 1.84 (+11%) 1.86 (+10%)

PMSL MAM 2.10 2.04 (+2%) 2.18 (-3%) 2.12 (0%) 2.04 (+2%)

PMSL JJA 2.66 2.63 (+1%) 2.52 (+5%) 2.58 (+2%) 2.65 (0%)

PMSL SON 1.98 1.92 (+3%) 1.82 (+7%) 1.81 (+8%) 1.80 (+9%)

Z500 DJF 2.96 2.91 (+2%) 3.13 (-4%) 2.69 (+9%) 2.76 (+7%)

Z500 JJA 2.71 2.77 (-2%) 2.62 (+3%) 2.58 (+4%) 2.54 (+6%)

Table 5.7: Global RMSE scores for different synoptic metrics like PMSL (hPa) and

Z500 (dam) against ERAI, in brackets there is the percentage of improvement to con-

trol: (RMSE(exp) - RMSE (control)) / RMSE (control), positive (negative) percentage

implies improvement (degradation).

value would reduce it, as shown in Fig. 5.10 for low level winds in the West Indian

Ocean.

The energy backscatter by SKEB2 produces fluctuations in the large-scale flow,

affecting the parametrization output. Table 5.9 shows the RMSE of fields related

to the convection, radiation and condensation parametrizations such as total pre-

cipitation and Outgoing Longwave Radiation (OLR) at the Top of the Atmosphere

(TOA). Again we see a clear improvement for JJA that scales up with increasing bR

even at large values. Other seasons show neutral to slightly positive results and do

not seem to be affected by the different amplitudes of SKEB2 perturbations.

As described in section 3.1, RMSE could hide double penalty errors and it is

hard to interpret what process are behind the improvements or degradations of the

score. A further analysis is needed to understand the course of the SKEB2 induced

changes seen in RMSE. On the following subsections we investigate low level wind

improvements in JJA and OLR improvements for the longer tropical season JJAS.

Mean low level wind improvements in JJA

The different members of SKEB2 ensembles have different climate averages for low

level winds, as shown in Figure 5.9. Therefore the RMSE shown in tables 5.7, 5.8

and 5.9 could be an extreme value of the ensemble rather than the most likely.

There could also be compensating errors amongst the different regions. A good
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Control
SKEB2

bR = 0.0275

SKEB2

bR = 0.1

SKEB2

bR = 0.2

SKEB2

bR = 0.3

W850 DJF 1.41 1.37 (+3%) 1.40 (0%) 1.32 (+6%) 1.32 (+6%)

W850 MAM 1.33 1.30 (+2%) 1.32 (0%) 1.30 (+3%) 1.29 (+3%)

W850 JJA 1.66 1.60 (+4%) 1.56 (+6%) 1.61 (+3%) 1.58 (+6%)

W850 SON 1.43 1.38 (+4%) 1.41 (+2%) 1.38 (+4%) 1.36 (+5%)

W200 DJF 3.05 2.84 (+6%) 3.07 (0%) 3.02 (+1%) 3.16 (-3%)

W200 MAM 2.65 4.45 (+7%) 2.22 (+16%) 2.24 (+10%) 2.50 (+5%)

W200 JJA 4.40 4.39 (0%) 3.81 (+13%) 3.97 (+9%) 3.91 (+11%)

W200 SON 2.76 2.76 (0%) 2.69 (+2%) 2.80 (-1%) 2.79 (0%)

Table 5.8: Global RMSE scores for winds at 250 and 850hPa against ERAI (m/s). Same

format as Table 5.7.

Control
SKEB2

bR = 0.0275

SKEB2

bR = 0.1

SKEB2

bR = 0.2

SKEB2

bR = 0.3

Precip DJF 1.39 1.35 (+2%) 1.39 (0%) 1.35 (+2%) 1.38 (0%)

Precip MAM 1.26 1.23 (+2%) 1.21 (+3%) 1.24 (+1%) 1.28 (-1%)

Precip JJA 1.87 1.80 (+3%) 1.63 (+12%) 1.60 (+14%) 1.60 (+14%)

Precip SON 1.34 1.34 (0%) 1.31 (+2%) 1.29 (+3%) 1.32 (+1%)

OLR DJF 10.2 9.99 (+2%) 10.5 (+1%) 9.96 (+3%) 9.95 (+3%)

OLR JJA 11.5 11.2 (+3%) 9.85 (+15%) 9.45 (+18%) 9.32 (+19%)

Table 5.9: Global RMSE scores for variables heavily influenced by physical parametriza-

tions like precipitation to GPCP (mm/day) or OLR at TOA to CERES (W/m2 ). Same

format as Table 5.7.
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performance in the tropics could be masked by a poor performance in the mid-

latitudes.

The ratio of RMSE between all the members of the SKEB2 ensembles and the

control run is shown in Figure 5.11. Different subplots show different seasons for

low and high level winds and each subplot shows different levels and regions. The

improvements at the low level winds are more localized in the Tropics and SH,

whereas NH shows a more neutral performance or even negative for the case of

MAM (Fig. 5.11.b). For high level winds, the errors and spread of the mean climate

of the different simulations are larger than for the low level winds. Winds at 250hPa

depict the position of the jet stream in each hemisphere. A slight displacement in its

representation could produce large increases of RMSE. There is not a clear relation

of an increase or decrease of the RMSE ratio when the amplitude of the SKEB2

increases (with the exception of the tropical high level winds in JJA).
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Figure 5.11: RMSE ratio between SKEB2 experiments and control for winds at two differ-

ent levels, colour scale follows same classification as Figure 5.10. SKEB2 default amplitude

is represented pale blue asterisks; SKEB2 with bR=0.1 with pale green diamonds; SKEB2

bR=0.2 and a yellow square and SKEB2 bR=0.3 with red crosses. Globe regions corre-

sponds to NH: 90-30N, Trop: 20N-20S, SH 30-90S and All is the full globe.

The spatial structure of the low level wind bias for JJA, the season with the
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SKEB2’s largest impact, is shown in Figure 5.12. The MetUM biases are larger

for the Southern Ocean where the storm track is displaced equatorwards, or more

precisely, the equatorward side of the storm tracks is too strong whereas the poleward

side is too weak. Northeast Asian monsoon winds are too weak over the West Indian

Ocean. South Atlantic Trade winds are slightly misplaced equatorwards over the

Guinea gulf. Biases over Antactica and Greenland could be related to a different

methodology to derive the pressure levels between model and observations and are

thus ignored.

When SKEB2 is included in the model, it increases (decreases) low level winds on

the equatorward (poleward) side of the Southern Ocean track, improving its repre-

sentation for all seasons (Fig. 5.12). It also increases winds over the Indian Monsoon

region in agreement with Figure 5.10. When the backscatter ratio increases, biases

in the West Indian Ocean are reduced and flips the sign of the bias as seen in Figure

5.10.d (Fig. 5.12.c,d,e,f). Winds also increase in the Maritime continent and central

Pacific, degrading the mean climate.

On the high levels, winds over the Indian Monsoon region during JJA move

westwards, but too slow in the model. SKEB2 accelerates winds over this region,

more strongly over the Maritime continent, reducing the bias but making winds in

the West Pacific too strong. It also decelerates winds of the SH jet stream over

South America for JJA, improving the model in the East Pacific (not shown).

The described improvements in low level winds are likely caused by changes in

the intraseasonal variability. Sections 5.2.3 and 5.2.4 describe the investigation of the

intraseasonal variability and details its realism for the areas under study: Southern

Ocean, West Indian Monsoon and Maritime continent.

OLR at TOA biases

MetUM produces too much upper level divergence in key tropical areas such as

the Pacific and Atlantic basins of Central America and equatorial Indian Ocean

(not shown). Divergence is associated with deep convection. OLR at TOA is a

good proxy for convection, as the convection triggers and maintains cumulonimbus.

These clouds trap the Long-Wave (LW) radiation from the Earth’s surface, thus LW

rad. is not transmitted to the space, therefore regions with low OLR measured from

satellites are convectively active in the low latitudes. The excessive divergence of
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Figure 5.12: Modulus of winds at 850hPa (m/s) in boreal summer (JJA). (a) ERAI

reanalysis averaged winds during the interval Jan 1989-Dec 2001. (b) Control biases to

ERAI. (c) One member of the SKEB2 with default bR = 0.0275 ensemble minus Control.

(d) One member of SKEB2 with bR = 0.1 ensemble minus Control. (e) SKEB2 with

bR = 0.2 minus Control. (f) SKEB2 with bR = 0.3 minus control. Dotted areas denote

significance above a 95% level using a t-student test. Contours show ERAI reanalysis

winds each 5 m/s. Subtitles show RMSE of the climate mean field versus ERAI.
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MetUM is associated with too much convection and thus thicker clouds with lower

OLR. Figure 5.13.a shows the OLR biases of the control run to CERES (described

in sect. 4.4). There is too much convection over the Inter-tropical Convergence Zone

(ITCZ) in both sides of Central America, over the West Pacific Ocean and too little

convection over the Indian subcontinent and Maritime Continent.

All simulations with SKEB2 reduce the OLR biases over these high-convective

areas. This reduction seems to be proportional to the bR backscatter ratio (Fig.

5.13), it also seems to erase the dipole on the Indian monsoon, where there is too

much convection on the West Indian Ocean and too little over the Indian subcon-

tinent and Maritime continent. This could be related to the improvements in low

levels winds shown in Figure 5.12. Although SKEB2 induced improvements look

very positive, the default value for the backscatter ratio produces barely significant

differences to control (Figure 5.13.b), thus it should be increased to see a more

beneficial impact in the tropics.

Similar improvements over the same regions are also observed for the standard

deviation of OLR at TOA (not shown). The model produces excessive variability

of OLR over the Tropical Indian Ocean and both sides of central America, and too

little over the North-East side of the Indian subcontinent (similar pattern as Fig

5.13.a). SKEB2 stochastic perturbations reduces the excessive variance over those

regions, having a variability pattern more in agreement with CERES.

The Precipitation field also shows a large improvement in the JJA season (Table

5.9). Precipitation mostly occurs in the tropics (see Figure 4.3), where it is driven by

convective processes, as water condensates on upgrdaught plumes and precipitates

heavily. Figure 5.14 shows the precipitation field and changes to GPGP of the

experiments done. The control experiment shows excessive precipitation over the

same regions where OLR biases are located (Figure 5.13). SKEB2 with increasing

bR reduces the precipitation over these regions. Additionally, precipitation over the

West Indian Ocean extends towards the west coast of India, reducing the dry bias

there. There is also a degradation in the precipitation field on the West Pacific

where it becomes too strong.

The notable improvements found the Indo-Pacific region for the boreal summer

could be related to many different causes, it is necessary to look at the intraseasonal

variability to discern some possible mechanisms which could lead to such improve-
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Figure 5.13: Outgoing Longwave Radiation (OLR) at the Top Of the Atmosphere (TOA)

for JJAS. (a) Control minus CERES (b) SKEB2 Ensemble mean with default bR=0.0275

minus control, (c) SKEB2 Ensemble mean with default bR=0.1 minus control, (d) SKEB2

with default bR=0.2 minus control, (e) SKEB2 with default bR=0.3 minus control. Dotted

areas denote statistical significance above a 95% level using a t-student test. Contours

show CERES values each 30 W/m2. Subtitles show RMSE of the climate mean to CERES.
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Figure 5.14: Precipitation fields (mm/day) for (a) control. (b) Differences control minus

GPCP. (c) SKEB2 def. bR minus GPCP. (d) SKEB2 def. bR =0.1 minus GPCP. (e)

SKEB2 bR =0.2 minus GPCP. (f) SKEB2 bR =0.3 minus GPCP. Subtitles show RMSE

to GPCP

ments. In section 5.2.4 there is an investigation of the tropical variability in terms

of CCEW’s power spectra, MJO diagnostics, and the spectral decomposition of

precipitation at particular locations.

5.2.3 Mid-latitude variability

The main drivers of the mid-latitude climate are synoptic and large-scale processes

such as cyclones or blocking events. The improvements seen on the averaged Z500

in both hemispheres (Table 5.7) or low level winds over the Southern Ocean (Fig-

ure 5.12) are probably linked to a better representation of some aspects of these

processes. In order to estimate the effects of SKEB2 perturbations on them, the

TRACK algorithm (section 3.3.1) is employed to track mid-latitude cyclones and

obtain statistics from the climatological sample, in combination with 2D blocking

frequency indexes (section 3.4).

The clustering of weather regimes was also explored. Following Jung et al.
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(2005a), a number of k clusters were computed for the North-Atlantic and North-

Pacific using the clustering algorithm described in Fereday et al. (2008). There is

little significance amongst the clusters for daily PMSL for different k numbers. Mem-

bers of one cluster’s population were not significantly different from other members

in other clusters. Therefore the frequency of occurrence is not reliable. Dawson et

al. (2012) have shown that a low resolution model produces clusters of low signifi-

cance, in contrast to the higher resolution model where the significance is clear and

cluster resembles those found in a combination of ERA40 and ERAI reanalysis.

Storm tracks

The average density of storms per season is computed as described in section 3.3.2.

The boreal winter (DJF) storm track density is shown in Figure 5.15. There are

two preferred regions for Storm tracks as depicted in Fig. 5.15.a. These are the

North-Atlantic, where storms generated in the eastward lee of the Rockies cluster

together across Labrador and Newfoundland on their way to Eurasia, dying right

before reaching the North Urals in Siberia. Storms emerge also from the northwards

lee of the Himalayas and East China and go across the North Pacific Ocean through

Japan, dying in the West Coast of North-America. The Mediterranean Sea is another

region with a noticeable number of storms.

The control simulation of MetUM simulates few storms in the majority of the

areas with high density, such as Newfoundland, North of Urals and East China.

It also generates too many storms in the Mediterranean (see Hoskins and Hodges

2002 and Froude 2010 for a general description of model biases in the representation

of storms). SKEB2 has a negative effect on the deviation of individual storms

from the analyzed path for NWP results (sect. 5.1.3). However, it does not affect

negatively the regional distribution of storms as the main biases of the model remains

unchanged with the inclusion of SKEB2. On the other hand the track density does

not benefit too much from the high backscatter improvements seen in other regions

such as the Tropics (Figure 5.10.a, 5.10.b).

SKEB2 could produce some positive changes in the Southern Ocean low level

winds (Figure 5.10.c and Figure 5.12). The scheme’s perturbations displace the SH

storm track polewards in some of the members of the ensemble. Figure 5.16 shows

the track density for JJA in the Southern Ocean for ERAI, control and simulations
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(f) SKEB2 br=0.3  - ERAI DJF
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Figure 5.15: Northerm Hemisphere DJF track density of storms within an area equal to

106 km2 per month. (a) ERAI (b) Control minus ERAI (c) SKEB2 default bR - ERAI

(d) SKEB2 bR = 0.1 - ERAI (e) SKEB2 bR = 0.2 - ERAI (f) SKEB2 bR = 0.3 - ERAI.

Contours show ERAI values for every 2 storms within 106 km2 per month.

with an increasing SKEB2 amplitude. There is an area of high density of storms by

the edge of the Antarctic coast over the Pacific side of the Southern Ocean. MetUM

simulates poorly the concentration of storms over this area, underpredicting storm

density by a factor of 1/4. Some simulations with SKEB2 could reduce this bias,

but on the other hand it also decreases the storms south of the African continent,

degrading the model.

In terms of intensity, SKEB2 with increasing bR shows that it can minimize the

bias of low storm intensities at NWP scales, improving the averaged low level winds

over the mid-latitudes (Figures 5.4 and 5.6). In a climate context, this improvement

should be lower as it uses a less diffusive interpolation scheme to the departure

point in the Semi-Lagrangian scheme (described in sect B.2.1). The intensity of the

storms in climate simulations against the ERAI storms is shown in Figure 5.17. The

control simulation shows that model weakens storms in areas of strong storms in NH

for DJF (Fig. 5.17.a) such as North of Iceland, central North Pacific, and Southern

Ocean for JJA (Fig. 5.17.f). SKEB2 gradually decreases the lack of storm intensity
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(f) SKEB2 br=0.3  - ERAI JJA
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Figure 5.16: Southern Hemisphere JJA track density of storms. Same as Figure 5.15.

over these regions and flips its sign when the backscatter increases, generating too

strong storms in the North Pacific on the East side of Japan for DJF in the NH, or

the Drake Passage in the SO for JJA.

Blocking

Many GCMs underpredict the frequency of blocking events, and some studies at-

tribute this problem to the lack of small-scale eddies that help to sustain this large-

scale phenomena (see section 3.4). The stochastic forcing of schemes such as SPBS

or SKEB2 has been demonstrated to lead to a higher frequency of blocking events

over the North Pacific (see sect. 2.5). However, these improvements were shown in

1D plots of latitudinal mean of blocking frequency. These plots can mask latitudi-

nal dipoles in the error and therefore provide erroneous results, see Scherrer et al.

(2005) for a discussion between 1D and 2D blocking maps. In this thesis 2D maps

are employed instead of 1D latitudinal mean plots.

Blocking frequency of control and SKEB2 simulations versus ERAI for DJF in

the NH are shown in Figure 5.18. Contours show that there are two preferred

regions for blocking: over the Bering Sea and the North Atlantic Ocean, which also

encircles Central Europe. MetUM control simulation underpredicts the frequency of
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Figure 5.17: Mean Intensity of climate simulations (10−5 s−1), the maximum of relative

vorticity within the feature storm and then filtered T42. For NH in DJF: (a) Control

minus ERAI (b) SKEB2 default bR minus ERAI (c) SKEB2 bR = 0.1 - ERAI (d) SKEB2

bR = 0.2 - ERAI (e) SKEB2 bR = 0.3 - ERAI. For SH in JJA: (f), (g), (h), (i) and (j),

same configuration as the row above. Contours are ERAI values each 10−5 s−1 from 2

10−5 s−1.
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blocking over these regions, and over-predicts it over East Siberia and the Labrador

Sea. The perturbations caused by SKEB2 helps to simulate more blocking over the

Kamchatka Peninsula and Sea of Okhotsk (Fig. 5.18,c,e,g,i), but the frequency in

this region is too high compared to ERAI (see effects of simulation with bR =0.3 over

this region on Fig. 5.18.h). Over other regions, the differences caused by SKEB2

are quite small and flips the sign depending on the amplitude or ensemble member.

The amplitude of the scheme does not affect the degradation of blocking for DJF.

In MAM all simulations with SKEB2 produce about 0.003 day−1 more blocking

frequency over the Scandinavian peninsula (not shown). If we would make use of a

1D plot, it would probably tell us that SKEB2 improves the blocking index over the

North Pacific on DJF in agreement with the other studies, but the 2D plots show

that this improvement is slightly southwards of the main area of blocking frequency

underestimation.

5.2.4 Tropical variability

The simulation of the tropical variability is one of the critical problems of state-

of-the-art GCMs. The majority of these models have serious setbacks to represent

adequately the intraseasonal tropical variability (Lin et al., 2008). This problem is

often associated to a poor representation of the spatial and temporal organization

of convection, a key process for the development and propagation of Convectively

Coupled Equatorial waves (CCEW, see 3.5). CCEWs are an important component

for the adequate representation of the main mode of variability in the tropics, the

Madden Julian Oscillation (section 3.6).

The kinetic energy backscatter by SKEB2 has a very positive effect on the mean

tropical climate of OLR at TOA and the precipitation fields during the summer

season in the Indo-Pacific region (JJAS) as shown in Figures 5.13 and 5.14. These

benefits become more positive with an increasing bR, so it is worth to investigate

whether there could be some processes of the intraseasonal variability better repre-

sented by the strong stochastic forcing made by SKEB2 with high backscatter ratios.

We are particularly interested in the impacts on CCEW, MJO and the organization

of convection.
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Figure 5.18: Blocking frequency for NH in DJF. Contours show ERAI from 0.1 day−1

for each 0.05 day−1. Coloured, differences to ERAI (a) Control minus ERAI (b) SKEB2

default bR− ERAI (c) SKEB2 default bR - Control (d) SKEB2 bR = 0.1−ERAI (e) SKEB2

bR = 0.1−Control (f) SKEB2 bR = 0.2− ERAI (g) SKEB2 bR = 0.2−Control (h) SKEB2

bR = 0.3− ERAI (i) SKEB2 bR = 0.3− Control.
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Convective Coupled Equatorial Waves

The background removed power spectra of tropical low level winds indicates where

the spectral and temporal variability is strong, and in combination with the dis-

persion curves of the idealized waves, it also indicates possible deficiencies on the

simulation of specific CCEWs. The procedure to obtain the background removed

power spectra is described in section 3.5.3.

The background removed power spectra of the tropical low level winds for the

control run shows that some of the CCEWs are poorly represented or absent in

comparison to ERAI (Figures 5.19.a,f and 5.20.a,f). The power spectra of westward

propagating Kelvin waves, key components for the MJO propagation, is too weak

against observations for long periods and too strong for periods shorter than 3

days. When we increase SKEB2’s bR, the power spectra of Kelvin waves slightly

decreases as shown in the symmetric spectra for zonal winds at 850hPa (Figure 5.19).

The Anti-symmetric part of the spectra shows that SKEB2 leads to the emergence

of a westward propagating tropical wave with frequency lower than 3 days and

wavenumber 5 (Figure 5.20). This node is not observed in the observations and

control (Fig. 5.20.a,f), other variables such as OLR shows this unrealistic power for

this spurious westward wave (not shown).

The emergence of the spurious westward wave (Fig. 5.20.c,d,e) could be related

to the divergent component of the SKEB2 scheme, which forces the velocity potential

besides the streamfunction, more related to rotational modes. As shown previously,

the improvements in the OLR comes from the reduction of excessive divergence at

upper levels (Fig. 5.13). The vertical tilt of the forcing pattern could be artificially

stopping divergence at high levels and therefore improving the OLR. It may also

degrade the power spectra of Kelvin waves, associated to divergence. We conduct

another climate simulation at N96 with the highest backscatter ratio for SKEB2,

but this time with no forcing to the velocity potential. Differences on the mean

OLR at TOA between the simulation with the velocity potential forcing and the

one without it are very small (Figure 5.21) and non-significant at the 95% level.

The anti-symmetrical background-removed power spectrum of horizontal winds at

850hPa of the simulation without the velocity potential also shows the spurious

westward wave (not shown).

Another possible cause of the spurious wave (Fig. 5.20,c,d,e) could be the conse-
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Figure 5.19: Background-removed symmetric power spectra for horizontal wind at 850hPa.

Positive (negative) zonal wavenumbers correspond to waves propagating Eastwards (West-

wards). Horizontal dashed lines indicate wave periods for 30,6 and 3 days. Idealized so-

lutions of the tropical waves are shown for equivalents depths of 12m, 25m and 50m, for

n = 1 Equatorial Rossby waves (ER), n = 1 Intetio-Gravity waves and Kelvin wave. (a)

Control (b) SKEB2 default bR = 0.0275 (c) SKEB2 bR = 0.1 (d) SKEB2 bR = 0.2 (e)

SKEB2 bR = 0.3 (f) ERA Interim.

quence of the unbalanced perturbations added by SKEB2, as it only perturbs winds

through the streamfunction and velocity potential, but it does not perturb the tem-

perature field. SKEB2 perturbations may radiate away as gravity waves mainly

westwards, as the prevailing tropical high level winds are easterlies. The period of

3 days and their anti-symmetric nature remain inexplicable to us.

Madden-Julian Oscillation

Many aspects of the representation of MJO in current GCMs are poorly simulated

(see section 3.6.2). These do not depend uniquely on the convective parametrization,

they also depend upon the complex interactions of convection with other physical

processes in the model.

The SKEB2’s impacts on the tropical atmosphere are ambiguous so far. The



5.2. RESULTS OF LOW RESOLUTION CLIMATE SIMULATIONS 135

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(a) control

3 days

6 days

30 days

MRG

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(b) SKEB2 def

3 days

6 days

30 days

MRG

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(c) SKEB2 br=0.1

3 days

6 days

30 days

MRG

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(d) SKEB2 br=0.2

3 days

6 days

30 days

MRG

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(e) SKEB2 br=0.3

3 days

6 days

30 days

MRG

-15 -12 -9 -6 -3 0 3 6 9 12 15
Zonal wavenumber

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

q
u

e
n

c
y
 (

d
a

y
s

-1
)

(f) ERAI

3 days

6 days

30 days

MRG

 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  

Figure 5.20: Background-removed anti-symmetric power spectra for horizontal wind at

850hPa, idealized solution for a Mixed Rossby-Gravity wave for n = 0 (MRG) is displayed

with equivalent depths of 12m,25 and 50m. Same order as Figure 5.19.

improvements in the mean climate are clear, but CCEW seem travel with the wrong

dispersion relationship. It is thus important to look at events that could provide

information about the propagation of systems in the Indo-Pacific ocean. The use of

lag-correlation plots is a good tool for these studies, as it shows the propagation of

any particular anomaly across time and space.

The lag-correlation technique as described in Lin et al. (2008) is employed for

the 30-60 day filtered precipitation to highlight the active phase of the MJO. We

first look at the North-South propagation in the West Tropical Indian Ocean. Hence

we average the filtered precipitation anomaly between longitudes 70-100E and corre-

lated it to the value at the point 12.5N 85E, the main area of Northwest propagation

of low level winds. The result of this operation is shown in Figure 5.22, where the

GPCP observations show a clear propagation of rain northwards, followed by a lack

of precipitation on the same latitude (Fig. 5.22.a). MetUM only shows significant

correlation with the precipitation event between day -5 and day 10 (Fig. 5.22.b).

The perturbations of SKEB2 seems to increase the correlation and in some cases

like SKEB2 with bR = 0.3 extends it back to day -10. A similar study is done for
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Figure 5.21: OLR at TOA (W/m2) climate average differences between (a) SKEB2 bR =

0.3 with velocity potential forcing (b) SKEB2 bR = 0.3 without velocity potential. Same

contours as Figure 5.13.

longitudinal propagation using the correlation between the 5-25N to itself at 15N

95E, SKEB2 impacts are negligible (not shown).

Temporal organization of convection

Despite the emergence of the erroneous kind of variability seen on the horizontal

wind spectrum, SKEB2 can produce improvements in the temporal distribution of

the tropical rain. The power spectra of daily rain for the tropical summer (JJAS)

averaged over 20 years and latitude bands between 5S and 5N shows that MetUM

produces too much power at low frequencies and too little variability at high fre-

quencies in comparison to GPCP (Figure 5.23). The peak of the MJO between 30

and 60 days is missing, SKEB2 produces a better representation of these frequency

nodes over the Indian Ocean (45-90E), although the power is too large over the

Maritime continent.

Another deficient aspect of tropical convection is the intermittency the convec-

tion scheme. The scheme is triggered sporadically and it shows an unrealistic on-

off behaviour, which kills the organization and propagation of convective systems

(Martin G, 2012, personal communication). In order to understand whether SKEB2

produces more long-lasting episodes of precipitation, we output the convective rain

during one season (JJAS for 1981, the start year of the climate AMIP run) for each

timestep from control and the SKEB2 simulation with the highest backscatter ratio.

The power spectra for periods of one day over the box 60-70E and 5S-2.5N, a region
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Figure 5.22: Lag correlation of the 30-60 day precipitation anomaly averaged between 70E

and 100E with respect to itself at 12.5N and 85 E for JJAS (a) GPCP (b) Control (c)

SKEB2 def. bR (d) SKEB2 bR = 0.1, SKEB2 bR = 0.2 and SKEB2 bR = 0.3. Dotted

regions denote lag correlation above 95% confidence level. Diagonal thick line correspond

to phase speed of 1.8 m/s.
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Figure 5.23: Latitudinally averaged (5S-5N) power spectra for precipitation at different

longitudes for (a) GPCP (b) Control (c) SKEB2 with bR = 0.3; Tropical summer (JJAS)

1 day averaged dataset. Dashed lines indicates frequencies equivalent to periods of 30 and

60 days.

where there is a large bias in OLR (Figure 5.13), is shown in Figure 5.24. For high

frequencies (low number of timesteps) SKEB2 produces less power than control,

indicating the convective precipitation is less intermittent and more organized.
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Figure 5.24: Convective rain power spectrum of one day intervals on a box over the West

Indian Ocean (60-70E and 5S-2.5N), dataset is all timesteps of JJAS for 1981. Blue line

is control and red one SKEB2 with the highest backscatter ratio. Confidence intervals are

obtained using the methodology explained in the introduction of chapter 4.

Intermediate bR values for SKEB2 indicate a gradual transition in the results

shown in Figures 5.23 and 5.24 from control to SKEB2 with the highest backscatter

ratio. The scheme increases high frequency and decreases red noise at low frequency

in the seasonal variability, as well as decreases the high frequency inter-diurnal

convective rain.
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The scheme diminishes the effects of the on-off behaviour of the deterministic

parametrization, making convection episodes to last longer and be more organized.

These effects leads to an improvement in the seasonal variability of convection,

propagation of precipitable systems and thus the seasonal mean of convection related

fields such as OLR or precipitation.

5.3 Comparison to GA6 configuration

The GA6 configuration for MetUM includes the less diffusive dynamical core ENDGame

and some changes to convection like an increase of the entrainment rate, which

enhances the tropical variability (see 4.1.3 for further details on GA6 configura-

tion). The differences between GA6 and GA3 are thus a good test-bed to show how

SKEB2 perturbations compare to model improvements in the processes the stochas-

tic scheme aims to represent. It is also interesting to investigate the behaviour of

SKEB2 on the new configuration, where it is supposed to scale down its forcing

given the GA6 improvements in the internal variability of the model.

Some of the results obtained from the NWP and climate experiments will be

compared to those obtained from the GA6 and GA6 plus SKEB2 NWP forecasts

and climate simulations, in particular to the mid-latitude processes such as extra-

tropical cyclones and the impacts on tropical variability.

5.3.1 Impacts on NWP and mid-latitude cyclones

A similar set of 200 forecasts (see Table 4.1 for details) is run with the GA6 config-

uration at the lowest resolution, which we define as “GA6 control”, another set of

forecasts with GA6 configuration also includes SKEB2 at the default bR and bR = 0.2

to highlight the effects of SKEB2 in the new configuration. Climate simulations are

run at GA6 with a control configuration and SKEB2 with bR = 0.2 (see sect. 4.1.1

for a description of these systems).

Increasing the horizontal resolution is more effective in the reduction of RMSE

of low level winds than improving the model, as shown in Table 5.10 for different

regions. Changes made by the inclusion of the SKEB2 in the system degrade indi-

vidual forecasts slightly more in GA6 than in GA3 for all regions. Similar results

are found for Z500 (not shown). An increased horizontal resolution can resolve small
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scale features than enables the predictability of mid-latitude systems, whereas im-

provements in the model dynamical core and physics can produce modest increases

that are not significant at the 95% level.

NH Trop SH

N96 GA3 4.46 ± 0.1 2.89 ± 0.03 5.06 ± 0.1

N96 GA3 SKEB2 4.56 ± 0.1 2.99 ± 0.03 5.17 ± 0.1

N216 GA3 control 4.22 ± 0.08 2.78 ± 0.02 4.78 ± 0.09

N96 GA6 control 4.40 ± 0.09 2.89 ± 0.02 5.02 ± 0.09

N96 GA6 SKEB2 4.52 ± 0.1 3.02 ± 0.03 5.16 ± 0.1

Table 5.10: Average of RMSE for the set of 200 forecasts, winds 850hPa. Confidence

intervals at 95% are also included.

The results from cyclone tracking show a similar pattern: The intensity of the

storms increases with SKEB2, a bit more with a less diffusive model implementation

and the higher resolution produces the highest increase (Figure 5.25). When all

these options are combined, the intensity bias becomes quite negligible, and even

the intensity of cyclones becomes a bit over-active in the NH (not shown). In terms

of cyclone position, improvements in high resolution produce better tracks than

model changes (Figure 5.26). SKEB2 slightly degrades the position for both model

configurations.
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Figure 5.25: Average Intensity bias of tracked storms for (a) NH (b) SH. Blue are N96

at GA3, green N96 at GA6 and red N216 at GA3. Continuous indicate control runs and

dashed forecasts with SKEB2.
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Figure 5.26: Mean distance error of mid-latitude cyclones to analysis. Same colour and

line type classification as Figure 5.25.

The growth rate of the intensity of storms is underrepresented in GA3 (see

Table 5.4), but a higher horizontal resolution and the inclusion of SKEB2 help

to produce stronger growth rates. The upgrades on the model dynamical core and

physics also improve the representation of the growth rate (Table 5.11). For the new

configuration the increase is nearly similar to the increase in resolution from N96

to N216 and higher than the increment produced by the default version of SKEB2.

Again SKEB2 seems to be quite insensitive to model changes as it produces similar

increments of growth across different model versions and hemispheres. In fact, when

the bR increases to 0.2, the increments seen in the eddy growth rate are stronger

at GA6 than GA3, which it is detrimental for the NH as the growth rate of storms

becomes too high.

NH SH

N96-GA3 -0.46 -0.67

N96-GA3 SKEB2 -0.36 -0.60

N96-GA3 SKEB2 bR = 0.2 -0.08 -0.20

N216-GA3 -0.28 -0.37

N96-GA6 -0.33 -0.50

N96-GA6 SKEB2 -0.22 -0.42

N96-GA6 SKEB2 bR = 0.2 0.29 0.05

Table 5.11: Mean Growth Rate of the storm intensity in the GA3.0 and GA6.0 forecasts.

Same format as table 5.4
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The reliability diagram for the intensity of storms shows that improvements in

the model increase the intensity of the “right storms”, those with high intensity

values which are more diffused by the model (Figure 5.27). The intensity of storms

from the higher range of intensities are simulated with equivalent skill at the low

resolution model with new configuration and high resolution model with the former

configuration. The extra KE added by SKEB at GA6 configuration does not target

the right intensity ranges as seen for the GA3 model (Fig. 5.8).
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Figure 5.27: As Fig.5.8, but for N96 GA3 (blue), N96 GA6 (green) and N216 GA3 (red),

continuous lines represent the control forecasts and dashed lines the forecasts with SKEB2.

The comparison across model configurations reveals that SKEB2 does not scale

down its forcing at GA6, despite it works alongside a less diffusive dynamical core.

SKEB2 produces a similar impact in terms of individual RMSE, cyclone intensity

and positional errors across the two different MetUM configurations GA6 and GA3.

In some cases, SKEB2’s impact is more negative for the newest version of the model

when the backscatter ratio is high.

5.3.2 Impacts on tropical climate

The tropical climate is very sensitive to changes in the convection parametrization.

Some of the GA6 implementation includes changes to some of these parameters, such

as the entrainment rate which leads to clear improvements in the representation of

the MJO (Klingaman and Woolnough, 2013).
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A high backscatter ratio bR is still able to produce a better climatological rep-

resentation of the Indian monsoon in the newest model configuration. The biases

in precipitation over the West Tropical Pacific, and both sides of central America

are reduced by SKEB2 for both model’s configurations in JJAS (Figure 5.28,a,b).

However, in GA6 there is already too much precipitation over the West Pacific and

the inclusion of SKEB2 makes the bias over this region worse (not shown). There-

fore the difference of the tropical precipitation RMSE is smaller between SKEB2

and control simulations for GA6 than GA3 (Table 5.12).
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Figure 5.28: Differences in precipitation biases for JJA, (a) GA6 SKEB2 with bR = 0.2 at

GA3 (b) same but for GA6 (c) Differences between GA6 and GA3.

Over the Maritime continent the changes in precipitation caused by the model

improvements from GA3 to GA6 are quite similar to those done by SKEB2, although

the latter has a deeper impact (see Fig. 5.28). The excessive precipitation East of

Phillipines occurs over a region where the standard deviation of low level winds,

precipitation and OLR is too high. The increase of variability in this area could

indicate that there are more sporadic events of local or large-scale precipitation, e.g.

earlier phases of the MJO may travel beyond the Maritime continent enhanced by

the modulated variability of SKEB2 and changes in the entrainment rate, but there



144 CHAPTER 5. EVALUATION OF SKEB2

is no such clear signal on the MJO composites of the different phases (not shown).

GA3 GA6

Control 2.54 2.62

SKEB2 bR=0.2 2.17 2.50

Table 5.12: RMSE of the tropical precipitation (30S-30N) to GPCP (mm/day) for different

model configurations.

The effects on high level winds, controlled by the divergence around convective

plumes is shown in Figure 5.29. The GA3 control shows two major biases (Fig

5.29.a), the easterlies over the Tropical Indian Ocean and Maritime continent are

too weak and the SH jet stream is too weak but its equatorward branch is too strong.

Upgrades included for GA6 degrade these biases (Fig. 5.29,e).

As described in the SKEB2 climate results (sect. 5.2), the stochastic scheme

produces more organized convection and reduces climate biases for OLR and pre-

cipitation (Figs 5.13 and 5.14). These effects invigorate the westwards winds over

the Indian Ocean and Maritime continent improving the model (Fig. 5.29.b,d).

However, SKEB2 also reduces the speed of the SH jet stream, which is positive to

resolve model biases in the Tropical East Pacific, but negative over the Atlantic

ocean and African continent. At GA6 the deceleration of the jet stream made by

SKEB2 is stronger.

Despite the degradation of high level winds and West Pacific rainfall climate

biases, the improvements seen in the GA6 control are clear for tropical variability

(see also Walters D, 2014, in preparation). The power spectra of Kelvin waves

increases for GA6 in comparison to GA3 (Fig. 5.30.a,b). The impact of SKEB2

with a high backscatter is quite similar across the different model versions (Fig.

5.30.c,d).

The representation of the backscattered Kinetic Energy by SKEB2 is quite ho-

mogeneous over the tropical belt. It improves the climatology of the Indo-Pacific

region but with adverse effects on the representation of CCEW and the SH jet

stream. The power introduced by SKEB2 might be too much on top of GA6 and

its enhanced tropical variability. This excess of energy may radiate extra-tropical

Rossby waves which impact the course of the SH Jet stream, some studies such as
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Figure 5.29: Differences (m/s) in 250hPa winds for JJA (a) GA3 against ERAI (b) GA3

SKEB2 bR = 0.2 - GA3 (c) GA6 - ERAI (d) GA6 SKEB2 bR = 0.2 - GA6 (e) GA6 - GA3.

Contours show ERAI 10 m/s isolines from 10 m/s.
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Figure 5.30: Symmetric Power spectra for (a) GA3 control, (b) GA6 control (c) GA3

SKEB2 bR=0.2 (d) GA6 bR=0.2 SKEB2. Same plot setup as in Figure 5.19

Lee et al. (2013) establish links between enhanced tropical convection and southern

subtropical anticyclones.

5.4 Conclusions

A comprehensive evaluation of the SKEB2 scheme has been carried out using a very

diverse set of methodologies. These have been applied to different timescales and

regional processes. The most interesting results from this evaluation are:

� SKEB2 degrades deterministic forecasts of Z500 and horizontal winds at low

and high levels. Skill scores such as RMSE or ACC are worse when the scheme

is included and the stronger the forcing, the higher the degradation in fore-

cast skill. The stochastic scheme changes the trajectory, intensity, speed and

growth rate of mid-latitude cyclones pushing them away from analyzed cy-

clones. This change is proportional to the amplitude of the scheme controlled

by the backscatter ratio bR.

� Despite that individual systems are diverted by SKEB2, the mean effects of

the scheme are positive. It helps to increase the intensity of mid-latitude
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cyclones and strengthens weak low level winds. The average speed and growth

of cyclones are also benefited from the Kinetic Energy released by the scheme.

� SKEB2 decreases the intermittency of tropical convection and increases the

power spectra of daily precipitation, more in agreement with observations.

� The effects of SKEB2 on the tropical climate are positive for the boreal sum-

mer. A more organized convection regulated by the KE released by the scheme

reduces climate biases in divergence which leads to improvements in OLR,

precipitation and cloud fields. The higher the forcing, the stronger the bias

reduction.

� The improvements in the tropical climate are not however driven by the right

kind of synoptic variability. For high bR, the scheme produces a spurious

westward anti-symmetric wave and decreases the power of Kelvin waves.

� There is an increase in the blocking frequency over the North Pacific, but

southwards of the model bias. Therefore the beneficial effects of SKEB2 in the

representation of atmospheric blocking reported in other studies (e.g. Berner

et al. 2012) may be a compensating error in the latitudinal distribution of

blocking events over the area.

� The capacity of the scheme to generate spread at climate scales is negligible,

therefore it may not be a useful tool to generate spread in predictions of

uncertainty in climate change experiments or decadal prediction.

On average, the impact of SKEB2 is beneficial counteracting the internal diffu-

sivity of the model and helping to organize convective events through the release of

KE around convective cells. But the scheme has three major setbacks of the scheme:

� SKEB2 does degrade the predictability of short-range forecasts, suggesting

that the scheme may be putting energy in scales that are well resolved and

thus displacing weather structures such as mid-latitude cyclones out of their

“natural path”

� SKEB2 perturbations do not seem to scale well across horizontal resolutions.

The increase in storm intensity is similar if not higher at the high resolution

N320 than at the low resolution N96. Moreover, the scheme increases the
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intensity of storms uniformly and it does not produce stronger intensities on

average to extreme storms that are highly diffused. The scheme’s numerical

and convective dissipation do not seem to compute adequately the high diffu-

sion of vorticity gradients such as the ones produced by strong storms or the

same storm across different resolutions.

� If a high backscatter ratio is employed, the perturbed streamfunction might

be unbalanced with other dynamical fields such as temperature, leading to

the emergence of spurious variability such as the westward node seen in the

tropical anti-symmetric spectra (Fig. 5.19).

The results gathered in the present chapter describe a different narrative to the

ones described in various studies that have employed the CASBS or SPBS in the

IFS (Jung et al., 2005a; Berner et al., 2008, 2012). The SKEB2 improvements are

not consistently better than those made by an increase in horizontal resolution, nor

they are always lower than improvements made by physics. For the GA3 config-

uration of MetUM, the representation of the intensity of mid-latitude cyclones is

greatly improved by increases in resolution and then modestly by changes in the

model configuration and the addition of the SKEB2 scheme. On the other hand,

improvements in the climatological tropical precipitation are better for SKEB2 than

for the model upgrades.

The changes produced by SKEB2 are similar when the model is upgraded, even if

the internal diffusivity of the model decreases because of upgrades like ENDGame,

a less diffusive dynamical core. However, the stochastic scheme should modulate

and scale down if its “raison d’être” becomes weaker. This is another reason to

suspect the poor scaling of the scheme given by its dissipation masks and maybe by

the forcing of large-scales. Different approaches to remedy these deficiencies will be

explored in the next chapter.



Chapter 6

SKEB2 Improvements

In chapter 5 several deficiencies of the Stochastic Kinetic Energy Backscatter v2

scheme (SKEB2, sect. 2.2) were reported. These are the emergence of a spurious

westward tropical wave when the amplitude of the scheme increases or poor the scal-

ing of the scheme when resolution increases. It was suggested that these deficiencies

could be caused by the implicit forcing of the large-scales through the forcing pattern

and a poor construction of the dissipation rates. The present chapter investigates

three different changes to SKEB2 to improve these deficiencies:

� We remove the large scales of the forcing pattern by increasing the lowermost

wavenumber of the spherical harmonic decomposition, defined as N1, from

5 to 20. Deterministic forecasts, probabilistic forecasts from MOGREPS and

climate simulations are employed to determine the scheme’s large-scale forcing

on the degradation of skill, ensemble spread and tropical variability (see sect.

4.1.1 for a description of the different MetUM systems employed).

� A Biharmonic numerical dissipation is developed and compared to the current

approach based on Smagorinsky (1963). The Biharmonic scheme is employed

by other schemes such as the Spectral Backscatter Scheme (SPBS, sect. 2.2.2),

and theoretically it produces a better matching to the internal dissipation of

the interpolation to the departure point (McCalpin 1988 and sect. B.2.1). The

contribution of different terms to the Biharmonic dissipation is investigated

along the effects of both schemes on different vertical ranges. MOGREPS

probabilistic forecasts are employed alongside climate simulations.

� A damping factor to control the convective dissipation for high horizontal

149
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resolutions is added. It controls the perturbations from the convective part of

the SKEB2 scheme, mainly acting in the tropics. The factor should amplify

the SKEB2’s effects at low resolution and reduce them at high resolutions.

As we want to minimize the emergence of other sources of model error from the

SL internal diffusivity that are not related to the interpolation to the departure

point, we employ GA6 MetUM configuration (described in sect. 4.1.3) to reduce the

error caused by the excessive off-centering of the Semi-Lagrangian scheme.

In the first section of the chapter, the lowermost wavenumber of the SKEB2’s

forcing pattern is increased from 5 to 20 (sect. 6.1). We first analyse the structure of

the forcing pattern and SKEB2 perturbations to assess it realism (subsection 6.1.1).

The impact on the ensemble spread is quantified and some extra diagnostics are

employed to determine the realism of the ensemble spread, some of these techniques

are the cyclone tracking or the spectral decomposition of error and spread (subsect.

6.1.3). Effects on deterministic skill scores and tropical variability are also evaluated

(subsect. 6.1.2 and 6.1.4 respectively).

The sensitivity of the model to the choice of numerical dissipation mask is de-

tailed in section 6.2. The concept of numerical dissipation and the different method-

ologies to estimate it are described in subsection 6.2.1, which also includes a com-

parison between these. Results from probabilistic forecasts made by MOGREPS

with the different dissipation masks are reported in subsect. 6.2.2, and climate

simulations in subsect. 6.2.3.

The last section of the chapter describes the damping factor to the convective

dissipation rate (sect. 6.3). Its impacts, in combination to an improved numerical

dissipation mask, are reported in subsection 6.3.1 for NWP forecasts and 6.3.2 for

the tropical climate.

6.1 Increasing N1 from 5 to 20

The stochastic forcing of large-scales is not a desirable effect of the SKEB2 scheme.

Stochasticity should be introduced at the truncation scales and then implicitly up-

scaled towards the large-scales by the model. However, the excessive diffusivity at

small scales and other problems in the spectral energy transfer makes it very difficult

for such a scheme to have any noticeable impact. Therefore the SKEBs schemes act
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on a wide range of scales to maximize the impact on the ensemble spread without

degrading the forecast skill too much.

Many of the SKEB schemes include low wavenumbers forcing, e.g: Spectral

Backscatter Scheme (SPBS) that forces all wavenumbers, including those n < 10

which are well resolved in short-range forecasts. SKEB2 forces wavenumbers in the

5-60 range to maximize the spread (Tennant et al., 2011). Higher wavenumbers

than 60 are not forced as they are not within the energy containing scales and thus

have infinitesimal effects. One exception is the SKEB scheme at the Meteorolog-

ical Service of Canada (Charron et al., 2010), which only forces small scales from

wavenumber 30 to 128, but they use a longer decorrelation timescale of 36 hours

instead of 6. Thus their perturbations on smaller scales last longer, and may be able

to effectively force the flow to a similar magnitude as it was forced by a large scale

pattern. For further details on the different SKEB schemes see section 2.2.

The stochastic contribution could produce too much noise on the backscattered

signal at low wavenumbers. Coarse-grained studies of the vorticity equation made by

Shutts (2013) have shown that the backscatter on low wavenumbers is constant, and

the SPBS backscatter is too noisy at those scales. Therefore the effects of increasing

the lowermost wavenumber in SKEB2 are investigated in the next subsection.

6.1.1 Structure of the forcing pattern

Increasing the lowermost wavenumber produces a less homogeneous and weaker

pattern. Figure 6.1 shows the forcing pattern FΨ for both configurations. When the

large-scales (wavenumber 5 to 20) are included, the pattern looks more homogeneous

and with a deeper amplitude, whereas without the large-scales it looks more spotty

and the amplitude halves. The size of the nodes in the N1 = 5 forcing pattern (Fig.

6.1.a) could encompass structures such as synoptic cyclones, therefore the SKEB2

could potentially shape its features (e.g position, intensity, growth) as shown in

section 5.1.

The power-spectra of the global streamfunction forcing F̂Ψ, averaged over all

levels, is shown in Figure 6.2. SKEB2 with N1 = 5 shows a quasi-constant forcing

between wavenumber 5 and 60, the range chosen to backscatter the KE, then it

drops to zero on the smaller scales. On the very low wavenumbers, the forcing made

by the scheme with N1 = 20 is about 25 times smaller than with N1 = 5.
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Figure 6.1: Forcing Pattern (FΨ, adimensional variable) for 12Z 02/09/1981 at the MetUM

level corresponding to 5030m elevation from terrain for. (a) N1=5 (b) N1 = 20.
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Figure 6.2: Power spectra of the vertically integrated Streamfunction forcing (F̂Ψ). Con-

tinuous line shows N1 = 5 and dashed line N1 = 20.

6.1.2 NWP impacts

The impact of a SKEB2 which does not force the large-scales is more beneficial

in terms of individual RMSE across different regions and forecast-lead times (see

Tables 6.1 and 6.2). The skill of the forecast with N1 = 20 nearly halves the mean

RMSE of the N1 = 5 to control. The error introduced by the SKEB2 scheme on

deterministic forecasts is still significantly high.

The reduction of the negative effects of the scheme on the skill of the forecast may

be produced by a less active scheme, rather than a more realistic one that samples

the uncertainty of the model in a better way. As shown in Figure 6.1, the amplitude

of the forcing pattern is smaller, so the SKEB2 perturbations are also smaller. A
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T+24 T+72 T+120

GA6 Control 2.20 3.37 4.40

SKEB2 N1 = 20 2.25 3.45 4.47*

SKEB2 N1 = 5 2.28 3.53 4.52*

Table 6.1: RMSE of winds at 850hPa for different forecast lead times and experiments over

the Northern Hemisphere (20N-90N). * denote values that are not statistically significant

at the 95% to the experiments to control.

T+24 T+72 T+120

GA6 Control 1.80 2.43 2.89

SKEB2 N1=20 1.84 2.49 2.95

SKEB2 N1=5 1.86 2.54 3.02

Table 6.2: Same as Table 6.1 but for Tropics (30N-30S)

less active scheme might have serious problems to generate ensemble spread in a

Ensemble Prediction System (EPS), the major task of SKEB2. Therefore the impact

on EPS performance of these two configurations of the scheme is investigated in the

next sub-section.

6.1.3 Impact on ensemble spread

Two different MOGREPS set of forecasts are run with N1 = 5 and N1 = 20, in

order to assess the impact on the ensemble spread and skill. The description of the

probabilistic forecast setup is in sect. 4.1.1.

The classic Ensemble Mean (EM) error vs ensemble spread plot for winds is

shown in Figure 6.3. The RMSE of the control run (with no SKEB2 perturbations) is

higher than the EM, as the latter have been smoothed by averaging the 11 members

of the ensemble. The spread is clearly lower than the error indicating that the

ensemble is underdispersive, something which we expect as the EPS does not include

any perturbation to the initial conditions. The spread produced by the N1 = 5

version is higher in all regions for low and high level horizontal winds, and its

Ensemble Mean (EM) error is slightly lower.

The error and spread curves show a distinct behaviour over the mid-latitudes and
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(c) Winds 850mb for SH

20 40 60
Forecast range (hrs)

0

1

2

3

4

E
rr

o
r 

a
n
d
 s

p
re

a
d
 (

m
/s

)

(d) Winds 250mb for NH
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(e) Winds 250mb for Trop
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(f) Winds 250mb for SH

20 40 60
Forecast range (hrs)

0

2

4

6

E
rr

o
r 

a
n
d
 s

p
re

a
d
 (

m
/s

)

Figure 6.3: RMSE vs spread plots for winds at 850hPa (top row) and 250 (bottom row).

Red line represents N1 = 5 and blue N1 = 20. Continuous black line shows the mean

RMSE of the control member, which is similar for the two experiments, dashed line shows

Ensemble Mean (EM) RMSE and dotted ensemble spread. (a) and (d) for NH (30-90N),

(b) and (e) Tropics (20S-20N), (c) and (f) SH (90-30S).

tropics. Over the mid-latitudes error and spread are quite linear (Fig. 6.3 .a,c,d,f),

with the former growing faster than the later, therefore the model is diverging from

the observation’s manifold and the perturbations from the scheme are not strong

enough to push the model towards the real state. Over the tropics (Fig. 6.3.b,e),

the error and spread show a parabolic behaviour, they grow faster on the first two

days of the forecast and their seem to saturate afterwards, from day 2 to 3 of the

forecast, the error does not seem to grow more than the spread as it does in the

extra-tropics. The shorter timescales of the processes governing tropical weather

such as inter-diurnal convection saturates the error in the first two days of the

forecast. The geopotential at 500hPa (Z500) in the mid-latitudes exhibits the same

behaviour although the improvements of the EM to the control are less evident (not

shown).
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Error growth across spatial scales:

As suggested previously, the SKEB2 with N1 = 5 could be forcing scales with low

error (well resolved), creating the spread seen in Fig. 6.3. Thus it is useful to

investigate the power spectra of the ensemble error and spread as done in Berner et

al. (2009). It was shown that the characteristics of error growth across spatial scales

were better captured by an ensemble with SPBS and reduced initial perturbations

in comparison to an ensemble with large initial perturbations and no SPBS.

The Z500 power spectra of the ensemble mean and spread across different forecast

lead times is shown in Figure 6.4. The ensemble error grows faster across forecast

time in the synoptic scales (wavenumbers 5-40) and there are marginal differences

between both SKEB2 experiments, the ensemble spread grows across all scales inde-

pendently of the lowermost scale of the forcing pattern defined by the N1 parameter.

At the third day the spread at large scales is closer to the error than synoptic or

meso-scales (Fig. 6.4.d), which is a worrying aspect of the scheme. The differences

in spread between both N1 experiments are nearly similar in all scales although at

the end of the forecast both converge on the mesoscale (n > 50).
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Figure 6.4: Power spectra of ensemble mean error (solid) and ensemble spread (dashed)

for different forecast times (a) T+12 (b) T+24 (c) T+48 and (d) T+72. N1 = 20 is show

in blue and N = 5 in red.

A forcing pattern that includes large-scales produces more spread and slightly
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less error on the ensemble for winds and Z500, but not necessarily on the right scales

where the error grows. In the mid-latitudes, mid-latitude cyclones are the main

drivers of variability on the synoptic scales, whose error growth is poorly simulated.

It is thus interesting to observe the growth of the spread and error produced in the

representation of storms.

Impact on mid-latitude cyclones

The ensemble spread is an indication of the capacity of the model to represent its

uncertainty, but it does not provide much information about the sources of error

and how well the spread matches those. There is one methodology available to

understand the dispersion of the ensemble in terms of the representation mid-latitude

cyclones, one of the main drivers of variability in the extra-tropics. Such technique

is the cyclone tracking and matching for EPS developed by Froude et al. (2007b)

and described in section 3.3.3 of the thesis.

The matching technique tracks all the ensemble members. The statistics from

the ensemble of tracks show how well an EPS can simulate the uncertainty of the

position and intensity of storms. If SKEB2 failed to produce a significant impact,

one particular storm would be very similar across different ensemble members and

its spread would be low. If the spread was too high, it would be over the error of

the control member. If the scheme was forced by the wrong mechanisms, the error

of the tracks from the perturbed members would be higher than the control.

The population of storms for the different N1 experiments is around 1400 for NH,

and 1100 for SH. The spread in the trajectory of the storm is small and does not

change much with a different N1 (Fig. 6.5.a,b). For storm intensity, the experiment

with the lowest N1 produces more spread (Fig. 6.5.c,d). The ensemble shows higher

diversity in terms of storm evolution, but still lower than the absolute error of the EM

and control. In absence of Data-Assimilation and initial condition perturbations,

storms are quite similar across both hemispheres, with NH having slightly more

error and spread, probably driven by the hemispheric differences in orography and

land-sea contrast.

Unlike it is shown in Figure 6.3, where the control from both experiments is

similar, Figure 6.5 shows different statistics for the control member for the two

experiments. The matching technique for EPS demands that at least one perturbed
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Figure 6.5: Properties of the mean storm representation in the EPS across forecast times,

(a) Distance error in the NH (b) Distance error in SH (c) Absolute intense in the NH

(d) Absolute intensity in the SH. Solid line represents control, dotted ensemble Mean and

dashed Ensemble spread. N1 = 20 is show in blue and N = 5 in red.

member of the ensemble must also match the analysis, therefore the number of

storms matched to the analysis can be slightly different across experiments. Despite

the “control” storm intensity and distance is different in both experiments, these

differences are statistically indistinguishable at the 95% level.

The EM of the storm intensity does not provide any predictability increase over

the control member, in disagreement with many EPS within the TIGGE ensemble

(see Figures 3 and 4 of Froude 2011). As shown in the previous chapter (see sect.

5.3), the inclusion of a less diffusive dynamical core in GA6 makes the diffusion of

storm intensity smaller, therefore at medium to high resolutions the representation

of the mean intensity is quite realistic and is not seriously affected by the numerical

dissipation. The MOGREPS members have a horizontal resolution of N216, which

could be able to simulate storms with the right intensity. The mean absolute in-

tensity of the storm population does not really show if the model produces storms

that are too weak or too strong. Therefore the mean intensity error of the EM
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and control is shown in Figure 6.6 for both hemispheres. The intensity is very well

simulated by the control in the NH but on the SH it drops as shown extensively

during the evaluation of NWP forecasts in the last chapter (sect. 5.1). The addition

of a strong forcing from SKEB2 might create storms that are too strong in the NH,

leading to a degradation of the EM skill.
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Figure 6.6: Mean Intensity of tracked storm for control (solid) and EM (dashed), red line

shows N1 = 5 and blue N1 = 20. (a) NH (b) SH.

Another interesting aspect of the ensemble evaluation is the reliability, the ca-

pacity of the ensemble to simulate large spread when the error is large and little

when there is a high degree of predictability. In the context of storm evaluation, it

is very valuable to provide the right probabilities for storms as these are routinely

used to set warnings for weather hazards (Neal et al., 2013).

The reliability of spread vs EM error for storm position is shown in Figure 6.7.

The population of EM storm positional error is distributed into bins of 1.5°, the

spread of the storms for each of these bins is averaged, then it is possible to quantify

if there model produces too much (low) spread for small (large) error. The reliability

of the ensemble is far from the 1 : 1 line, which indicates perfect reliability, the lack

of initial condition perturbations does not push the storms away from their preferred

trajectories early in the forecast, having little spread for large errors. The reliability

improves a bit with forecast time, as the reliability curve has a higher slope and it’s

closer to the 1 : 1 line. Differences between the two experiments are not significant

in the majority of the bins, and the behaviour in both hemispheres is quite similar.

For the reliability of storm intensity, the spread induced by SKEB2 should be
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Figure 6.7: Spread-RMSE EM error reliability diagram for the position of storms (a) T+48

NH (b) T+72 NH (c) T+48 SH (d) T+72 SH. Red line shows N1 = 5 and blue N1 = 20

dashed 1:1 line shows perfect reliability. Bins from EM error are taken every 1.5 deg.

higher to match the error of the control one. Figure 6.8 indicates that spread is

quite constant independently of how far the model is from the real state. The spread

increases with forecast time and slightly becomes a bit more sensitive to the EM

error. The flat line seen in the early stage of the forecast (Figure 6.8a,c) is something

expected as the error in such timescales mainly comes from a poor representation of

the initial state in the analysis, and the SKEB2 is not suited to represent this source

of error. However, at day 3 the model error is evident as detailed in the evaluation

of SKEB2 with NWP forecasts with SKEB2 (sect. 5.1), and the SKEB2 seem to

have little sensitivity to these large errors. With the forcing pattern acting on scales

5 < N1 < 20 the spread of intensity is slightly overdispersive for small errors (< 1

10−5 s−1). If forecasts were longer than 3 days, the spread of storm intensity for low

errors would grow well above the 1:1 line, producing unreliable probabilities of the

intensity of storms that are well predicted.

An EPS built with the solely contribution of SKEB2 fails to produce enough

dispersion and sample the error in the representation of extra-tropical cyclones.

The scheme’s perturbations do not grow enough when error becomes larger in terms

of position and intensity. The SKEB2 with N1 = 5 produces overactive storms in
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Figure 6.8: Spread-RMSE EM error reliability diagram for the intensity of storms, EM

error is sorted in bins of 0.6 10−5 s−1. (a) T+12 NH (b) T+48 NH (c) T+72 NH (d)

T+12 SH (e) T+48 SH (f) T+72 SH. Same colour and line properties as Figure 6.7.

the NH that may not produce a better mean-track than the control.

Maybe three day forecasts are not long enough to allow SKEB2 to produce a

sizeable impact closer to the forecast error. The lack of perturbations in the initial

conditions is partially responsible for the poor spread and ensemble skill described.

However, the model error emerging from deterministic forecasts is clear for the

intensity of storms, which are too weak from the first day of the forecast (Fig. 5.5).

The sources of the diffusivity of storm’s intensity could be attributed to different

systemic characteristics of the dynamical core, such as the excessive off-centering or

the error in the interpolation to the departure point (described in section B.2.1).

Unlike climate scales, where the effects of these sources of model error are well

known (Stratton, 2004; Sanchez et al., 2013), there is no clear understanding of what

fraction of error correspond to each source in the short-range weather forecasting,

and whether their attributes are different. Therefore, with the current knowledge

about the uncertainties arousing from numerical dissipation, it is hard to tell whether

SKEB2 is doing a good job on the representation of some of the sources of model

error it aims to simulate.
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6.1.4 Tropical variability

Climate simulations with different N1 are carried out, in order to understand how

the forcing on large scales changes the impacts seen on the mean climate (sect

5.2). These experiments use the AMIP setup described in section 4.1.1, with the

only difference of having a different value for N1. The simulation of the Convectively

Coupled Equatorial Waves (CCEW) improves with the removal of the large-scales of

the forcing pattern. It removes the spurious westward wave from the anti-symmetric

background removed power-spectra (Fig. 6.9). The power of Kelvin waves is quite

similar for both simulations (not shown).
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Figure 6.9: Background removed anti-symmetric spectra for zonal wind at 850hPa for (a)

GA6 control (b) SKEB2 with N1 = 5 at GA6.0 (c) SKEB2 with N1 = 20 at GA6.0 and (d)

ERAI. Same structure as Figure 5.20. SKEB2’s experiments uses a bR = 0.2 to highlight

their impacts.

The nodes of SKEB2’s forcing pattern with N1 = 5 have a large extent in the

tropics, with an oscillating behaviour with a wavenumber 5 (Fig. 6.1). The consis-

tent forcing around these areas with a decorrelation time of 6 hours could produce

the emergence of spurious patterns that propagate westwards following the flow in

the high level winds, it is not clear why westward high level winds drives these

anomalous patterns more than eastward low level winds, where the SKEB2 forcing

is stronger. When the large-scales are excluded from the forcing pattern compo-

sition, the small scale forcing might produce similar perturbations but these are

geographically smaller and maybe removed by the flow. However, these small scale

perturbations could enhance small scale waves, Fig. 6.9.c shows the emergence of a

wave of wavenumber 12 and period of 3 days, whose power is slightly higher than in
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the control and observations (Fig. 6.9). This small wave seems to be a much weaker

version of the spurious westward wave seen in Fig. 6.9.b, and it also has a shorter

wavelength.

The dissolution or severe weakening of the spurious westward node does not

diminish the SKEB2 improvements seen in the simulation of the tropical mean

climate. Figure 6.10 shows the Outgoing Longwave Radiation (OLR) biases to the

control simulation (Fig. 6.10.a) and the differences of the experiments done with

the two N1 values to control (Fig. 6.10.b,c). The impact of the SKEB2 with N = 20

is smaller, but the improvements are over the same geographical locations and the

RMSE of the tropical mean is still quite beneficial to the control.
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Figure 6.10: Outgoing Longwave Radiation (OLR) at The Top of the Atmosphere (TOA)

for (a) N96 GA6 control minus CERES, (b) SKEB2 N1 = 5 minus N96 GA6 control and (c)

SKEB2 N1 = 20 minus N96 GA6 control. Subtitle denotes tropical RMSE (30S-30N) and

contours show OLR values for each 30W/m2 from 210W/m2. Simulations with SKEB2

employ a bR = 0.2.
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6.2 Biharmonic numerical dissipation

In the last chapter it was found that SKEB2 enhances the intensity of storms, which

in principle is positive as it does offset the model’s dissipation of such important

weather systems. However, its increments are quite constant independently of the

horizontal resolution, the storm intensity range, or their error (see Fig. 5.5, 5.8 and

6.8). In the Semi-Lagrangian dynamics (SL, see sect. B.2.1 for details), the diffusion

introduced by the interpolation to the departure point diminishes when the horizon-

tal resolution increases (Stratton, 2004), similarly strong storms are enhanced by a

higher interpolation scheme (Sanchez et al., 2013). SKEB2’s numerical dissipation

rate should decrease when horizontal resolution increases, as there is less energy

diffused by the interpolation to the departure point.

SKEB2 numerical dissipation rate is based on the Smagorinsky subgrid non-

linear diffusion scheme (Smagorinsky, 1963). There are other methods to compute

the numerical dissipation such as the biharmonic dissipation, based on results from

McCalpin (1988), which is included in the Spectral Stochastic Backscatter (SPBS,

see sect. 2.2). A brief explanation of the methodologies to compute the numerical

dissipation is given in the next subsection.

6.2.1 Numerical dissipation schemes

Local energy dissipation from unresolved turbulent process is driven by the turbulent

transport and local dissipation. These two terms can be understood following an

example with the one-dimensional advection-diffusion equation of u(x, t) shown in

6.1, where the diffusion coefficient is defined as K(x).

∂u

∂t
+ u

∂u

∂x
=

∂

∂x

[
K
∂u

∂x

]
(6.1)

The energy equation is obtained by the product of eq. 6.1 and u, and is shown

in eq. 6.2.

∂ 1
2
u2

∂t
= −u

∂ 1
2
u2

∂x
+

∂

∂x

[
K
∂ 1

2
u2

∂x
+

]
−K

(
∂u

∂x

)2

(6.2)

The local change of kinetic energy, represented by eq. 6.2, is thus driven by the

advection, the flux divergence of turbulent kinetic energy, and a negative-definite
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dissipation term. Numerical dissipation schemes aim to estimate the effects of the

subgrid dissipation term using different formulae.

Smagorinsky dissipation rate

The Smagorinsky dissipation rate is built from the viscous force F due to lateral

stresses, equations 6.3 and 6.4 show the horizontal components of the force.

Fx = (kH∆)2

[
∂

∂x
(|D|DT ) +

∂

∂y
(|D|DS)

]
(6.3)

Fy = (kH∆)2

[
∂

∂x
(|D|DS)− ∂

∂y
(|D|DT )

]
(6.4)

Where ∆ is the grid-length, kH is a numerical factor, DS and DT are the shear-

ing and tension strains defined in equations 6.5 and 6.6 respectively, and D is the

modulus of both strains (eq. 6.7).

DS =
∂v

∂x
+
∂u

∂y
(6.5)

DT =
∂u

∂x
− ∂v

∂y
(6.6)

D =
√
D2
S +D2

T (6.7)

The rate of work of the viscous force is given by uFx + vFy, it is the equivalent

of eq. 6.2 and thus is equal to the sum of the advection term, a flux divergence term

and a pure dissipation term Dnum, given by eq. 6.8. the “Smagorinsky dissipation

rate” we employ for SKEB2 is given by Dnum, where the kH factor has been tuned

to produce a global-mean energy dissipation of 0.7 W m−2, the estimated energy

dissipated at N216 and N144 (90km in the mid latitudes) horizontal resolutions

(Tennant et al., 2011).

Dnum = (kH∆)2D3 (6.8)

The vertical stress is ignored on the computation of the Smagorinsky numerical

dissipation for SKEB2, but it is included in the more general Smagorinsky-Lilly

turbulence closure (see section 4 of Smagorinsky 1963 for a discussion and evaluation

of the different terms). The Smagorinsky turbulence scheme is widely used on
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convection permitting models, models with grid-lengths of few kilometers able to

partially resolve convective events and gravity waves. The seamless nature of the

MetUM model enabled a straightforward adaptation of the Smagorinsky scheme

from the high-resolution prediction system to compute the numerical dissipation for

SKEB2.

The fact that the Smagorinsky scheme is employed for such fine resolution mod-

els poses a question about its adequacy for SKEB2, as the scheme is employed

for systems such as MOGREPS or Glosea4 in MetUM, whose subgrid diffusion oc-

curs at larger spatial scales. Furthermore, these MetUM systems do not include

the Smagorinsky-Lilly turbulent scheme, so the estimation of the kinetic energy

dissipated is not based on the model’s formulation of subgrid turbulence, and its

equivalence to the dissipation produced by the interpolation scheme is unclear.

There is the need to develop another way to estimate the numerical dissipation,

which is more in agreement to the dissipation produced by the interpolation to

the departure point, and operates in scales typical of an intermediate resolution

GCM. The Biharmonic dissipation rate is a good candidate, its formulation is briefly

explained here.

Biharmonic dissipation rate

The study carried out by McCalpin (1988) compared the dissipation inherent to

the SL advection to more traditional forms of dissipation such as Laplacian or Bi-

harmonic eddy viscosity. The magnitudes of the amplification factor λ for various

interpolation schemes were used to compute a more traditional measures of viscos-

ity, finding that the linear interpolation to the departure point results in dissipation

which is effectively Laplacian, while quadratic and cubic result in Biharmonic dissi-

pation.

The SPBS uses the Biharmonic diffusion of rotational modes, given by eq. 6.9,

where ξ is the relative vorticity, K is the Biharmonic diffusion coefficient and αnum

is a factor to scale the dissipation rate, currently set to 3 (Palmer et al., 2009).

Dnum = αnumK |∇ξ|2 (6.9)

Prior to the implementation of the dissipation rate, we explore the dissipation

from the interpolation to the departure point of different sources:
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� Rotational flow: The large-scales are driven by ageostrophic motions that are

mostly rotational in the mid-latitudes, where the SKEB2 perturbations may

be quite beneficial to counteract the numerical dissipation of storms (as shown

in 5.1.3). The dissipation term is proportional to |∇ξ|2.

� Divergent flow: It is more associated to mesoscales. Some studies associate

the lack of the k−5/3 spectra to divergence motions (see sect. B.2.2). Their

dissipation by the SL scheme is proportional to |∇χ|2, where χ is the divergence

horizontal wind. It is obtained following two different formulae, the pure

divergence computation as in eq. 6.10, which may introduce second order

errors, or the more accurate computation of divergence through the continuity

equation as shown in eq. 6.11, where ρ represents the density.

χ =
∂u

∂x
+
∂v

∂y
(6.10)

χ = −1

ρ

∂

∂z
(ρw) (6.11)

� Vertical motions: Defined by the vertical velocity w, it is controlled by parametrized

processes such as convection so in principle it may have important effects.

Their formulation follows McCalpin (1988) and is given as the Finite Dif-

ference Equation 6.12, where k is the model level, i denotes the horizontal

dimension and α is the fractional Courant number, α = w ∂t/∂z.

DZ = α
(ui,k+1 + ui,k−1 − 2ui,k)

2

∆x4
i

(6.12)

The three terms are multiplied by the diffusion tensor Ki (as in eq. 3.4 of

McCalpin 1988). K = 3
128

∆x4i
∆t

The contribution from these terms in comparison to the Smagorinsky rate are

given in Figure 6.11, the zonal mean of the numerical dissipation temporally aver-

aged for 3 days on an arbitrary day like the 1st of September 1988. A N96 MetUM

simulation have been employed to compute the dissipation rates. The Smagorin-

sky numerical dissipation scheme (Fig. 6.11.a) produces large values on the high

latitudes and over the jet levels (∼ 10km). The rotational biharmonic dissipation



6.2. BIHARMONIC NUMERICAL DISSIPATION 167

estimates less dissipation throughout the troposphere with the exception of the sub-

tropics on the NH (Fig. 6.11,b). The addition of the dissipation from divergent

motions increases the dissipation rate everywhere with a strong impact in the trop-

ics (Fig. 6.11.c), where the Smagorinsky dissipation is too weak. Both methods

to estimate the divergent component produce similar results (Fig. 6.11.c,d). The

effects of the vertical interpolation on the total Biharmonic dissipation rate are very

weak and mainly concentrated right below the Tropical Tropopause (Fig. 6.11.e,f).
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Figure 6.11: Zonally averaged Numerical dissipation rate (10−3m2 s−3) for 3 day aver-

aged between 1/09/1988 and 4/09/1988, (a) Smagorinsky (b) Biharmonic rotational term,

(c) Biharmonic rotational plus divergent terms (d) Biharmonic rotational plus divergent

(based on eq. 6.11) terms (e) Biharmonic all terms (div base on 6.11) (d) Biharmonic

vertical dissipation contribution as differences between (e) and (d).

The results obtained from the comparison of different dissipation terms recom-

mend us to ignore the vertical dissipation for the computation of the total Bihar-

monic dissipation rate. Their effects are weak, moreover the interpolation scheme

employed is subjected to changes to enhance the performance of the model over the

Tropical Tropopause Layer (TTL), a very sensitive area that controls the Brewer-
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Dobson circulation, input of water vapour in the stratosphere and other important

drivers of the middle-atmosphere climate. The vertical interpolation of the departure

point has recently been changed from tri-cubic to a more accurate Hermite-cubic to

remove a temperature bias over TTL in the GA6 configuration (Walters D, 2013,

personal communication). The dissipation of the divergent flow produced by both

methods is very similar for the example given, but we prefer to use the most accurate

description (eq. 6.11). The combination of the rotational and divergent dissipation

rates forms the final biharmonic dissipation. It is compared to the Smagorinsky rate

in the next section.

Comparison of both dissipation rates

One of the most positive features of a numerical dissipation rate (Dnum hereafter)

would be its scalability across different horizontal resolutions. This could enhance

the storm intensity at low resolutions, and diminish it at high resolutions, improving

their representation. The resolution sensitivity could be measured by the global-

average of the vertically integrated Dnum, so we set 4 forecasts of winter and summer

with 6 hourly output (∼ 80 points) of vertically integrated Dnum. Figure 6.12 shows

the Dnum- resolution relationship. Biharmonic produces a stronger dissipation rate

for the low resolutions, especially for the NH (Fig. 6.12.c).
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Figure 6.12: Vertically Integrated global-average Numerical dissipation rate (W m−2) for

Biharmonic (blue) and Smagorinsky (red), (a) SH, (b) Trop, (c) NH, (d) Global. See text

for details.

The vertical distribution of Dnum is heterogeneous, as shown in Fig. 6.11, there-

fore high dissipation in the BL could be masking low dissipation over the jet levels.

Figure 6.13 shows the Dnum over two different level ranges, the Boundary layer (BL,

z < 1.5km) and the jet stream levels (6 − 9 km). For the Smagorinsky rate the
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contribution from the jet levels is higher at low resolution and drops faster with

increasing resolution, whereas for the Biharmonic dissipation the BL contributions

dominates over the jet levels. Dnum at both vertical ranges drop with similar slopes

when resolution increases.
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Figure 6.13: Global mean numerical dissipation rate averaged between two level ranges,

Jet (solid) and BL (dotted). (a) SH (b) Trop (c) NH.

The biharmonic dissipation scheme provides some benefits to the Smagorinsky;

better scalability across resolutions, and higher rates over the Boundary layer, where

it is ought to occur more Kinetic Energy dissipation due to a higher density small

scale eddies driven by the mixing in the Boundary Layer. Although it is not clear

how the interpolation to the departure point could dissipate these.

For model stability reasons, the SKEB2 scheme have a logarithm tapering for

low levels from 2km, so it could essentially reduce the impact of the scheme if the

Biharmonic dissipation is taken in. A series of MOGREPS experiments with the

different dissipation rates are carried out to find out if there is a significant impact

on the ensemble spread (see sect. 4.1.1 for a description of the system and its setup).

6.2.2 Impact on MOGREPS scores

The Smagorinsky and Biharmonic numerical dissipation rates could produce differ-

ences in the ensemble spread, as their maximum estimation of energy losses occurs

over different areas, Biharmonic “sees” more energy in the lower levels and Smagorin-

sky does it over the jet stream levels. In order to investigate their differences and

impact on the EPS performance, several MOGREPS experiments are run with a dif-

ferent vertical extent. SKEB2’s full vertical range (z < 12 km), forcing restricted to
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the Boundary Layer (BL, z < 1.5 km), or Jet levels (6 < z < 9 km). All the experi-

ments have N1 = 20 as it has been shown to be more positive for the representation

of the mean intensity of mid-latitude cyclones and produce a better tropical climate

with high bR (see sect. 6.1).

The above mentioned differences of the dissipation rates around BL or Jet levels

clearly produce and impact on the ensemble spread of low and high level winds,

as shown in Figure 6.14. Biharmonic produces more spread than Smagorinsky for

both levels in the tropics, as well as a higher spread in the boundary layer and lower

spread at jet levels.
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Figure 6.14: Ensemble spread for different SKEB2 experiments, blue includes Biharmonic

dissipation and red Smagorinsky, solid line indicates SKEB2 operating across its full ver-

tical range, dotted line shows experiments where SKEB2 is active only on the boundary

layer and dashed on Jet levels (see text for details). (a) NH low level (850hPa) winds

(b) Tropical 850hPa winds (c) SH low level winds (d) NH upper level (250hPa) winds (e)

Trop. upper level winds (f) SH upper level winds.

In the low level winds, the contribution from the Boundary Layer has a higher

impact over the spread on the first two days of the forecast (slightly longer for the

tropics), afterwards the spread from the Jet levels is higher (Fig. 6.14). In the high
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level winds, the difference between the spread produced in the BL and Jet levels is

substantial, although the additive effect of the extra-spread done by the Biharmonic

in the boundary layer compensates its lack of spread in the jet levels, with an overall

spread slightly smaller than Smagorinsky for the mid-latitudes.

Although the spread in high level winds could be similar between Biharmonic

and Smagorinsky dissipation rates, the spread at Z500 is lower from the former (Fig

6.15). The large-scale structures such as cyclones or blocks are more perturbed by

the Smagorinsky rate than Biharmonic, as these are mainly driven by perturbations

over levels where the jet stream flows.
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Figure 6.15: Ensemble spread for Z500 (a) NH and (b) SH. Same line distribution as Figure

6.14.

The biharmonic dissipation impact is smaller over mid-latitude large-scale struc-

tures as the spread decreases for Z500. However, the error of the ensemble does not

seem to degrade when perturbations are only applied to the BL (not shown). The

structure of the power spectra of the ensemble spread of Z500 is quite similar for

both rates, with higher amplitude for the Smagorinsky rate (not shown).

Another useful technique which we could include in future work is the “relax-

ation” (a.k.a. nudging). A particular prognostic field like winds is relaxed towards

the observations in a given area or level. By relaxing the model towards reality

in certain regions, such as the Indian Ocean, or on the Boundary Layer, it would

be easier to localize the sources of error and spread in the system, providing useful

information about which processes need to be perturbed to produce a reliable source

of model error. A nice example where the relaxation technique is used to investigate
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the origin of extended-range predictability of the Integrated Forecast System (IFS)

is given in Jung et al. (2010a), their study also provides a detailed description of the

technique.

6.2.3 Impact on climate scales

Despite the lack of spread in the Z500 field for SKEB2 with the biharmonic rate, the

RMSE of the mean climate shows slightly better scores except for SH JJA (Table

6.3), the only case where SKEB2 degrades the control. This improvement may be

caused by the stronger forcing of the Biharmonic dissipation at low resolution, in

comparison to Smagorinsky (Fig. 6.13.a,c). Results from cyclone tracking (see 3.3.1

for a description on the technique) do not show any major difference amongst the

three experiments (not shown).

NH DJF NH JJA SH DJF SH JJA

Control 32.6 26.3 23.8 38.1

SKEB2 Smagorinsky 31.6 (+3%) 25.3 (+4%) 22.3 (+6%) 39.3 (−3%)

SKEB2 Biharmonic 30.3 (+7%) 24.6 (+6%) 22.2 (+7%) 39.8 (−4%)

Table 6.3: Z500 RMSE of the climate mean for different experiments, seasons and hemi-

spheres. In brackets difference to control, pluses denote an improvement and minus a

degradation.

In terms of tropical climate, the capacity of the biharmonic dissipation to de-

tect energy dissipation in the tropics produces a larger forcing which benefits the

organization of convection, and the global-average fields of high level divergence,

OLR, clouds and precipitation following the same mechanisms as described in sect.

5.2. These effects of the biharmonic dissipation are detailed when the new numer-

ical dissipation rate is combined with the convective dissipation factor in the next

section.

6.3 Convective dissipation factor

The modulus of the numerical dissipation rate and the convective dissipation rate

forms the DTOT function, which SKEB2 uses as an estimate for the total energy
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dissipated or missing by the model (eq. 2.1). The inclusion of the Biharmonic

numerical dissipation makes the scheme more scalable across horizontal resolutions

(see section 6.2), but the impact of the scheme in the tropical high resolution is too

high (see Fig. 5.1), so additional sources to modulate the scheme over these regions

are desirable.

The simplest solution to modulate further the impact of SKEB2 in the tropics

is to add an amplitude factor FCONV for the convective dissipation rate. This

factor is proportional to the root square ratio of the horizontal resolution, denoted

by N, to the standard resolution of 216, as shown in eq. 6.13. this formulation

was preferred over the linear one as the dissipation is a two dimensional field, the

216 value is chosen because it is the operational resolution for MOGREPS and

thus the factor has no impact on the operational system. The definition of the

convective factor FCONV is ad-hoc. Future research should focus on building a proper

representation of unrepresented KE released by the convective parametrization. One

possible candidate is the coarse-graining of the divergence field (Shutts G, 2014,

personal comm.)

FCONV =

√
216

N
(6.13)

The inclusion of FCONV helps to modulate the convective dissipation rate, as

it decreases when horizontal resolution increases (see Fig. 6.16,a,b,c,d). The rate

without the factor produces a similar estimation independently of resolution. A

new “improved” version of the scheme includes the convective dissipation factor

and the Biharmonic dissipation, it produces Kinetic Energy (KE) perturbations

whose global values scale better across resolutions (Fig. 6.16,e,f,g,h), specially in

the tropics, where it is constant across resolutions for the “default” scheme. This is

probably related to the fact that the Smagorinsky rate is very small in the tropics,

whereas Biharmonic could add more resolution dependency to the energy estimation.

A configuration of SKEB2 with the Biharmonic dissipation and FCONV could

potentially help to offset the excessive dissipation of wind seen for the low resolution,

or reduce the impact of the scheme at high resolution where there are some symptoms

that SKEB2 could be backscattering too much energy, such as the too strong winds

over the Maritime continent (see sect. 5.1 for a description and discussion of these
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Figure 6.16: Global-average of the vertically integrated convective dissipation (a), (b), (c),

(d) and KE increment by SKEB2 (e),(f),(g),(h)

results).

In principle, a stochastic convective parametrization should produce stronger

forcing for higher resolutions as the equilibrium assumption is weaker. Smaller

gridboxes contain fewer convective clouds and thus their averaged effects are less

consistent and more prone to fluctuations (e.g. PDF of mass fluxes becomes wider

when resolution increases as shown in Fig. B.5). However, the KE backscattered

from the misrepresentation of missing eddies around convective elements should be

lower when resolution increases, as there is less energy unrepresented per gridbox.

The combination of biharmonic and convective dissipation, in addition to the

explored increase of the lowermost wavenumber of the forcing pattern from 5 to

20, is defined as “SKEB2 improved” and is explored in this section. We make use

deterministic forecasts and climate simulations at N96 resolution (these systems are

described in sect. 4.1.1). For comparison, the default version also includes the

increase of the lowermost wavenumber N1, although it conserves the Smagorinsky

dissipation rate and the convective dissipation rate is not modulated by the resolu-

tion dependent factor FCONV .
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6.3.1 Effects on NWP forecasts

The skill of the NWP forecasts is represented by the RMSE of the low level winds

(Fig. 6.17). For the tropics, the high resolution forecasts with SKEB2 are no longer

the worst performing case, the increase of N1 helps to decrease the SKEB2 forcing

on the tropics (Fig. 6.17.b). In general terms the improved version of SKEB2

generates more error for low resolution, as the scheme’s forcing is higher, but for

high resolutions the level of error is similar for both versions of the SKEB2 scheme,

since the KE increments are equivalent or slightly lower for the improved version

(see Fig. 6.17.e,g,h).
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Figure 6.17: RMSE of winds at 850hPa for (a) NH (b) Tropics (c) SH. Red line shows

N320 and blue N96. Solid line shows control, dotted SKEB2 with the default version and

dashed improved version.

The intensity of extra-tropical cyclones shows better sensitivity with the new

version of the SKEB2. The N1 increase reduces the intensities of all storms, there-

fore differences between different experiments are no longer significant due to the

high numbers of experiments required to obtain significant statistics from the storm

matching technique. The storms produced by the GA6 simulations are still too

weak for the low resolution, and the improved-SKEB2 increases their intensity more

than the default version, this effect is clearer in the NH (Fig. 6.18.a). The forecasts

done at high resolution no longer have problems in simulating the mean intensity of

cyclones for the NH, their storm intensities match the analysis very well. However,

SKEB2 increases the intensity making the storms slightly over-active, the improved

version of SKEB2 reduces their intensity (Fig. 6.18.a), but for SH where there is

still some dissipation and the difference between the two configurations is marginal.
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The improved version of SKEB2 shows better sensitivity to the dissipation of storms

intensities, in terms of resolution and in terms of their intensity range, where there

is a slightly increase of intensity for the stronger storms (not shown).
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Figure 6.18: Mean cyclone intensity difference to EC analysis (a) NH, (b) SH. Same line

distribution as Figure 6.17.

6.3.2 Effects on tropical climate

The scheme’s impact on the tropics has substantially increased for low resolutions,

as the total dissipation rate DTOT and thus the KE increments are larger (Fig.

6.16.b,f). In the last chapter, it was found that a higher impact leads to a better

representation of the divergent tropical flow, leading to an improved OLR and other

convective-coupled fields such as precipation or clouds. However, it also provoked

the emergence of a spurious westward antisymmetrical wave (see section 5.2 for

more details), the spurious wave is removed when a large-scales are removed from

the forcing pattern (see sect. 6.1). It is therefore useful to quantify the impact of the

scheme in terms of the representation of the climate mean OLR and antisymmetric

CCEW,

The representation of tropical anti-symmetric waves is slightly degraded (Fig

6.19), the signal of the spurious westward wave introduced by the unbalanced per-

turbations to the scheme is present with the improved version of the scheme, which

is more powerful than the default version (Fig. 6.19.b,c). In addition to an excessive

power of high wavenumber waves of 3 day period, the representation of eastward

Mixed Rossby-Gravity waves of high temporal frequency is weaker, degrading the

representation of a wave node which is already too weak for the control. The im-
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proved version of SKEB2 diminishes the power of Kelvin waves (not shown).
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Figure 6.19: Background removed anti-symmetric power spectra of low level winds, as

Figure 6.9, (a) GA6 control (b) SKEB2 default version for GA6 (c) improved version of

SKEB2 for GA6 (e) ERAI reanalysis,

The improved version of SKEB2 is able to reproduce the improvements in the

tropical climate seen over the last chapter (see sect. 5.2). Figure 6.20 shows the OLR

for the control, SKEB2 default and SKEB2 improved. The impacts of the improved

version are not very high in respect to the default version, but its effects over the

excessively dry Indian subcontinent and South-East Asia are clearer and statistically

significant, as well as the drying over the tropical West Atlantic, and area with

excessive convection. Improvements over similar regions occurs for precipitation

and high-level clouds (not shown). These are beneficial except east of Philippines

where the model is already too moist.
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Figure 6.20: mean OLR at TOA for (a) GA6 Control minus CERES (b) GA6 SKEB2-

default minus GA6 control (c) SKEB2-improved minus GA6 control. Dotted denotes

differences significant at 95% using a t-student test.

6.4 Conclusions

The evaluation of SKEB2 carried out in chapter 5 highlighted some of its deficiencies,

like the emergence of a spurious westward tropical wave when the forcing of the

scheme is too high, or the deterioration of the deterministic skill. In the present

chapter, we have investigated different solutions to mitigate and if possible remove

these problems, aiming to develop a newer version of the scheme that improves

the simulation of kinetic energy backscatter and thus produces a more realistic

representation of model error.

SKEB2’s perturbations on well resolved planetary scales on the short term is

one of our main concerns, therefore we explore the effects of the scheme’s large-scale

forcing by removing lower wavenumbers in the spherical harmonic decomposition

of the forcing pattern. We explore the differences of two sets of experiments with
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different N1, the lowermost wavenumber for the spherical harmonic forcing pattern.

The control experiment uses N1 equal to 5, its default value when large-scales are

included. For the second experiment, N1 is set to 20, following recommendations

from Shutts (2013). The main results are:

� The forcing pattern with N1 = 20 is spatially less homogeneous than with

N1 = 5, and its amplitude halves.

� The reduction of the scheme’s amplitude leads to a reduction of the determin-

istic RMSE for the N1 = 20 experiment.

� The ensemble spread is reduced when N1 is set to 20, slightly increasing the

ensemble mean error of winds. The spread grows in different scales than the

error, which grows faster on synoptic scales whereas the spread grows in the

large-scales.

� The representation of storms for the ensemble with N1 = 5 is poor. The

spread is too little in comparison to the positional and intensity errors, and

the intensity of well predicted storms is nearly overdispersive at the end of

the forecast. The experiment with N1 = 20 does not clearly improve these

aspects, although it reduces the ensemble mean intensity of storms in the NH,

which is too high.

� The anti-symmetric westward spurious tropical wave is removed in the N1 = 20

experiment, although it seems that it produces another spurious wave with

lower wavelength and weaker power. The background removed anti-symmetric

power spectra is more realistic with N1 = 20.

� The N1 = 20 decreases the positive impacts on the tropical mean climate,

although these are still very beneficial in comparison to the control.

The perturbations from SKEB2 scheme are not very sensitive to resolution, error

or the magnitude of the diffusivity. The scheme uses masks to estimate the location

of numerical diffusion and the unrepresented creation of convective kinetic energy,

but these masks do not seem to be giving the right magnitude for the local energy

backscattered. Therefore a new method to estimate the numerical energy dissipa-

tion is developed and compared to the current Smagorinsky formulation. The new
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method is made from contributions of Biharmonic dissipation of the rotational and

divergent flow, which according to McCalpin (1988) are equivalent to the dissipation

produced by the cubic interpolation to the departure point in the Semi-Lagrangian

scheme. A vertical dissipation component is also explored but their contribution is

negligible. The main results from the comparison between both dissipation rates

are:

� The vertically integrated global mean of the Biharmonic rate is more sensitive

to horizontal resolution, it produces higher values for low resolution and also

a stronger forcing in the tropics.

� Biharmonic produces a larger impact over the low levels, whereas Smagorinsky

has a deeper impact for levels where the Jet stream flows.

� On climate scales, the Z500 climate RMSE is slightly more positive for the

Biharmonic dissipation for nearly all seasons and hemispheres.

SKEB2 produces impacts that are too large on the tropical belt at high resolu-

tion, degrading the skill of deterministic forecasts. The KE upscaled from eddies

around convective cores should decrease when horizontal resolution increases, as less

energy is contained by the unresolved scales. A simple ad-hoc numerical dissipation

factor is included in the scheme. It is based on the ratio between the horizontal

resolution and a standard resolution. A version of the stochastic scheme that in-

corporates this factor, plus the Biharmonic dissipation, can produce the following

differences to a default version with the Smagorinsky rate.

� The new version increases the deterministic forecast error for low resolution,

as the impact of the scheme is higher. It slightly improves the intensity of mid-

latitude cyclones. For high resolution the impacts are neutral, but it slightly

decreases the intensity of storms, which they are a bit over-active.

� The representation of the tropical waves is slightly deteriorated with the new

scheme, as it weakens Kelvin and Mixed Rossby-Gravity waves, it also in-

creases the power of short waves of 3 day period excessively.

� The representation of the tropical climate is slightly improved, differences

between the new version and control are statistically significant over regions

where there are severe biases for the divergent flow, OLR or precipitation.
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The improvements proposed removes the major setbacks of the SKEB2. The

spurious westward tropical wave is removed when the large waves are not included

in the forcing pattern, and the resolution sensitivity of the scheme improves with

the Biharmonic numerical dissipation and the resolution dependent factor for the

convective rate. However, these solutions are also limited and do not improve many

other aspects of the flow:

� SKEB2 produces ensemble spread over the wrong scales, more in the large-

scale than on synoptic scales, where the ensemble mean error grows. The new

improved version is unable to fix this, even if the scheme with the biharmonic

rate is only active in BL levels.

� The scheme still has a detrimental impact on deterministic forecasts. Their

RMSE are still high, although it has been reduced for high resolutions from

the scheme’s version employed in chapter 5.

� There are small differences between the new and default version of SKEB2 for

the representation of mid-latitude cyclones, many deficiencies remains such as

positional errors.

� Although the spurious westward wave has been removed, the scheme still dis-

sipates the power of Kelvin waves, in contrast to the SPBS as shown by Berner

et al. (2012) and described in sect. 2.5 of the thesis.

It is hard to tell how good the SKEB2 representation of Kinetic Energy Backscat-

ter is. Despite of recent studies by Shutts (2013) and Thuburn et al. (2013), de-

scribed in section 2.2.1, there is little understanding of its internal mechanisms. The

scheme could be improved by using a more realistic convective dissipation rate, built

from coarse-graining studies. Another option to improve the scheme could be the

addition of a temperature forcing like CASB or the Canadian SKEB (described in

sect. 2.2.2).

The importance of the SKEB schemes seems to wane as the atmospheric commu-

nity are employing models with higher resolutions and better dynamics and physics.

The numerical dissipation does not seem to be an issue anymore for resolutions of

N216 onwards for GA6, as it simulates well the mean intensity of storms, making
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unnecesary the numerical contribution of SKEB2. It is therefore important to in-

clude other aspects of model error in our research, such as deficiencies in the physical

parametrizations of key processes.

In the next chapter, the uncertainty of physical parametrizations is explored

following different ideas, such as stochastically perturbing physical tendencies or

stochastically perturbing parametrization’s internal parameters.



Chapter 7

Stochasticity in physical processes

The major source of model error comes from crude assumptions made in the con-

struction of physical parametrizations, some of them described in Appendix B of the

thesis. Several stochastic schemes have been developed to represent the uncertainty

emerging from the internal deficiencies of parametrizations, the so-called “internal

uncertainty” schemes. These are the Random Parameters scheme v2 (RP2, see

sect. 2.4) or Cellular Automata (CA, see 2.6.3). Other stochastic schemes aim to

represent the structural uncertainty of the parametrization, aiming to break gen-

eral assumptions such as the quasi-equilibrium approximation, such schemes are

the Stochastic Perturbation of Physical Tendencies (SPPT, see sect. 2.3) or the

Stochastic Convection (SC, see 2.6.2). There is also the possibility to perturb what

the parametrization “sees”, the initial state.

In the present chapter we explore different options to represent model error and

compare their positive and negative impacts. We aim to estimate the realism of

the physical perturbation and their effects on the ensemble dispersion and climate

processes, following the methodology applied throughout the thesis (see chapter 3

for a description). The different options considered in the chapter are:

� Development and evaluation of a scheme that perturbs the initial state (sec-

tion 7.1). It represents uncertainty coming from previous timesteps. This

methodology leaves the structure of parametrization untouched and therefore

it conserves its internal framework. The scheme is defined as Stochastic Initial

State for Parametrizations (SISP).

� In section 7.2, the Stochastic Perturbed Tendencies (SPT) is developed follow-

ing the SPPT template (sect. 2.3) and compared to other stochastic schemes.

183
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We explore different options for the scheme, such as applying conservation

constrains (described in Appendix A), or leaving clear sky radiation unper-

turbed.

� The uncertainty of one scheme, the Mixed-Phase Cloud scheme (Field et al.,

2014), is explored using different approaches to randomly perturbed impor-

tant parameters that shape the Probability Density Function (PDF) of the

supersaturation distribution, or simply perturbing the cloud fraction and cloud

water content following the SPPT approach (sect. 7.3).

Some of these experiments and comparisons are new to the research field of

stochastic-physics. There is no comparison between the Random Parameter ap-

proach and Stochastic Tendency perturbation at a general level or to a single scheme.

This is an important comparison because these schemes are starting to be developed

for convective-resolution models (Bouttier et al., 2012), and therefore employed to

predict very detailed weather.

7.1 Perturbing the Initial State

Physical parametrizations have been built using some crude approximations and

poorly constrained assumptions. However, it has been a substantial amount of work

put on their development and thus they have the capacity to produce a realistic

first-order representation of physical processes. Schemes such as SPPT neglect most

of the complexity and the internal mechanisms of the parametrizations, in addi-

tion they do not represent the uncertainty in the triggering of local processes (e.g.

convection) as it just amplifies or diminishes the local tendency.

There is one possible stochastic scheme that would respect the structure and

assumptions of parametrizations and represent subgrid fluctuations. It is a scheme

where the initial state is perturbed. Parametrizations may see different initial states

where convection, non-orographic gravity wave or rainfall could be triggered in dif-

ferent ways and locations, which might lead to increments in the local tendencies

that could represent the uncertainty in the location of these events. A simple version

of such scheme has been developed during the work of this thesis and is defined as

Stochastic Initial State for Parametrizations (SISP).
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The SISP scheme inherits a spherical harmonic decomposition forcing pattern

from SKEB2 (see sect. 2.2.4 for its description). The power law is modified to be

Gaussian (given in eq. 7.1), where < F 2
Ψ > is the standard deviation of the forcing

pattern, σ is the random number variance, Σ(N) a normalization factor and β a

relation between the radius of the Earth and the decorrelation scale equal to 500

km.

g(n) =
< F 2

Ψ >

2σΓ(N)
exp[−βn(n+ 1)] (7.1)

Each prognostic variable of the initial state, horizontal winds u and v, specific

humidity q and potential temperature θ, is perturbed using a simple formulation as

shown in eq. 7.2, where X ′ is the perturbed initial state, X is the original state

and FP is the forcing pattern. Experiments are carried out where two different

forcing patterns are used for slow (gravity wave drag, microphysics and radiation)

and fast physics (convection and boundary layer). The second forcing pattern is

a mathematical 180°longitudinal translation of the original forcing pattern. The

perturbations are applied between level 7 ( 400 m) and level 42 ( 12040 m) to

prevent numerical instabilities close to the surface and stratosphere, as well as to

reduce the scheme’s computational cost.

X ′ = (1 + FP )X (7.2)

If the perturbed relative humidity q is above saturation, the super-saturation is

converted to specific liquid water ratio following the Classius-Claperyon equation,

and the cloud ratios are modified within the PC2 scheme (Wilson et al., 2008). In a

second version of the SISP scheme, different < F 2
Ψ > could be used for different vari-

ables, targeting more those that are more uncertain or have less physical constrains,

like winds in opposition to relative humidity.

In order to explore the impacts of this new scheme in a EPS context, we em-

ploy a previous version of MOGREPS at GA3 (more precisely GA3.1, see section

4 of Walters et al. 2011 for a description of GA3.0/GA3.1 differences). Horizontal

resolution is N216. Initial conditions are perturbed using the Ensemble Transform

Kalmar Filter (ETKF, Bowler et al. 2009). Probabilistic forecasts are run every 12

hours from 20 December 2010 to 9 January 2011. Several flavours of the SISP are
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tested. The power law g(n) (eq. 2.2) has been modified to include a fixed standard

deviation for the forcing pattern < F 2
Ψ > (eq 7.1) for all variables equal to 0.01, a

second experiment uses a “scaled” version where T and horizontal wind components

have got < F 2
Ψ > equal to 0.05 and q equal to 0.01 for stability reasons. A final

experiment with SISP uses the same scaled configuration but with a second forcing

pattern for fast physics as described above. For comparison a extra experiment with

no stochastic physics is included, as well as one experiment with the default version

of SKEB2 (as defined in chapter 5). Experiments are verified against a combina-

tion of observations made by ground stations, radio-sondes and instruments onboard

commercial airplanes.

7.1.1 SISP results

The SISP scheme has a very mild effect on the large-scale structures. The ensemble

spread for the Northern Hemisphere (NH) of the Mean Sea Level Pressure (MSLP)

shows little impact for the different SISP experiments in comparison to the run with

no stochastic physics (Figure 7.1). The increments are very weak in comparison to

those made by SKEB2. Amongst the different SISP setups, the scaling version is the

superior one, although differences amongst them are not clearly significant. In terms

of RMSE of the Ensemble Mean (EM), the scaled version is barely indistinguishable

from the experiment with no stochastic physics (not shown). SISP results from mid-

and high-level fields such as geopotential at 500hPa or winds at 250hPa also show

a very small impact on the ensemble spread (not shown).

In terms of surface variables, the SISP scheme is able to perturb the structure

of the Boundary Layer (BL) and therefore it has a positive impact on the ensemble

spread (Figure 7.2), with the version that forces the fast physics with a different

forcing pattern having the strongest impact. However, the SKEB2 spread does grow

quicker and at the third day of the forecast it nearly overtakes the best performing

version of the SISP experiments. The relative increase of spread from SISP is also

reduced for larger forecast time. At T+12 the best performing SISP configuration

is about 1/3 higher in spread than the experiment with no stochastic physics. At

the third day, the increment is about 20% higher. Similar impacts are observed for

surface winds (not shown). The oscillatory behaviour of Figure 7.2 is driven by the

different number and quality of observations being assimilated by the ETKF at 00Z
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Figure 7.1: Ensemble spread of NH (90N-30N) Mean Sea Level Pressure (PMSL) for

MOGREPS experiments. Red shows experiment with no stochastic physics, dark blue

SISP with < F 2
Ψ > =0.01, yellow with scaled SISP (see text for details), light blue scaled

SISP with a different forcing pattern for fast physics and purple shows experiment with

SKEB2.

and 12Z (same applies for Figure 7.3).

The SISP increases the dispersion of surface variables, but its effects in terms of

error are not beneficial as shown in Figure 7.3, where the ratio of RMSE EM between

the SISP and SKEB2 experiments to the experiment with no stochastic physics is

shown for the Southern Hemisphere (SH) 2 metre Temperature. The error in the

SISP experiments increases in comparison to the version with no stochastic physics,

unlike the SKEB2 in which it decreases and is negative (meaning an improvement

in the forecast). A similar result was found by Tompkins and Berner (2008), where

humidity perturbations to the initial state of the convective parametrization lead to

a degradation of the EM error and probabilistic scores. They suggest that zero-mean

perturbations to the input does not lead to zero-mean parametrization tendencies,

and hence their scheme introduces biases in the convection scheme.

Overall, perturbing the initial condition with a simple scheme does not seem

to produce notable improvements on the ensemble spread and error of an EPS,

like other schemes such as SPPT or SKEB have done. Differences in the initial

state, what the parametrization sees, does not seem to produce very different results

from the deterministic physical parametrization, and even less to perturb large-scale
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Figure 7.2: Ensemble spread of Southern Hemisphere (30S-90S) Temperature at 2 meters.

Same line distribution as Figure 7.1

structures as seen in Figure 7.1 where the PMSL field is quite indifferent to the

SISP perturbations. There is an exception in the Boundary layer, as temperature

and wind fields at the surface seem to be substantially different across the ensemble

with perturbed initial states. Nevertheless, such divergence does not grown with

forecast time, indicating that it saturates quickly. In addition, these perturbations

also increase the error of the EM, maybe because they lack any BL consistency in

terms of balance amongst different fluxes. The new scheme, although original, has

proven to have a limited capacity to improve the probabilistic forecasts.

7.2 Stochastic Perturbation of Tendencies (SPT)

One of the most successful approaches to represent uncertainty in physical parametriza-

tions is to perturb the physical tendencies, as done in schemes such as SPPT in the

IFS or the Canadian Model (see sect. 2.3 for more details on these schemes and

their results). In the present thesis, we implement a similar scheme in MetUM and

quantify its impacts across timescales. The scheme is compared to other stochas-

tic schemes such as Random Parameters 2 (RP2, sect. 2.4) and Stochastic Kinetic

Energy Backscatter v2 (SKEB2, described in 2.2 and evaluated in chapter 5).

The scheme created is named as Stochastic Perturbation of tendencies (SPT).

The main characteristics that define it are:
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Figure 7.3: Ratio of the RMSE of the Ensemble Mean between the different experiments

and the experiment with No Stochastic physics (red line in Figures 7.1 and 7.2). Variable

is 2m. Temperature for the SH. Same line distribution as Figure 7.1.

� A spherical harmonic forcing pattern similar to the SISP scheme (described in

sect. 7.1), whose vertical structure follows SKEB2 (as described in Tennant

et al. 2011).

� It follows an univariate approach where all tendencies are forced with a stan-

dard deviation σ = 0.5 with the exception of the Gravity wave drag, whose

perturbed tendencies use a σ = 0.42 for stability reasons. This is a similar

setup as the fast pattern of SPPT (see Table 2.2).

� Tendencies from Boundary Layer are not included for stability reasons. The

scheme employs a similar tapering as SPPT, with the SPT increments ramping

up linearly from level 9 (∼ 600m) to level 15 (∼ 1.6 km), and ramping down

from level 41 (∼ 11.5 km) to level 45 (∼ 14.8 km).

� Slow physics (radiation, microphysics and gravity wave drag) and fast physics

(convection) use different forcing patterns, the latter is a 180°longitudinal dis-

placement of the former one.

� An option has been included to remove clear sky radiation from the perturbed

tendencies. The MetUM large-scale cloud scheme, the Prognostic Cloud frac-

tion and Prognostic Condensate (PC2, sect. 4.1.2) can output the tendencies
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of T and q generated as a result of condensation due to radiative processes.

This option only perturbs the radiation tendencies where clouds are present,

leaving the well-resolved clear sky tendencies unperturbed.

� An option to conserve water and Moist Static Energy (MSE) has been devel-

oped for the scheme. It conserves the vertically integrated water vapour in

the column. In addition, the temperature tendencies depends on q perturba-

tions to conserve MSE. Appendix A describes these conservation constrains

and their implementation.

The numerical problems associated to BL perturbations mainly occur on regions

with high standard deviation of the orography, such as the Kashmir region or the

Peruvian section of the Andes. Over these regions, the tendencies from the Gravity

Wave drag (GWD) are quite large (∼ 5 m/s). When the SPT acts against those

tendencies (with a negative forcing pattern), the GWD tendencies become larger to

force the model towards the state it would be if its tendencies weren’t forced. This

creates a feed-back process that produces larger GWD tendencies which eventually

imbalance the boundary Layer, provoking a spurious warning of more than 10K,

triggering an instability that provokes a grid-point storm. In a recent version of the

scheme (not included in this thesis), the stability of the model with SPT has been

substantially improved if the forcing to GWD tendencies is switched off in areas

where the standard deviation of subgrid orography is higher than 500m and when

the forcing pattern greater than 0.5 (ad-hoc values to ensure the stability of the

model)

A set of different experiments is employed in different systems to investigate the

impacts on the different flavours of the SPT. These experiments are described in

table 7.1. The capacity of the SPT experiments to improve a probabilistic forecasts

in comparison to other stochastic schemes is reported in section 7.2.1, this section

also includes results from short-range NWP forecasts. Further assessment of the

impacts of the scheme in the long term are evaluated employing 20 year climate

simulations, reported in section 7.2.2. A description of these systems is described in

section 4.1.1.
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RP2 Includes RP2 scheme only

SKEB2 Includes SKEB2 with the improved configuration described in chapter 6.

SPT Includes the version of the SPT scheme with no additional constrains.

SPT no csky Includes a SPT version where Radiative tendencies from clear sky are not

perturbed.

SPT cons Includes the MSE and water vapour column conservation.

Table 7.1: Description of the MOGREPS and climate experiments carried out for this

section.

7.2.1 Impacts on Short-Range forecasts

The capacity of SPT to improve the ensemble is first evaluated on the Z500 field,

a proxy for the representation of mid-latitude Large-Scale (LS) structures such as

cyclones and blocking (described in chapter 3). Figure 7.4 shows the RMSE of the

Ensemble Mean (EM) and spread for Z500 for NH and SH. The EM RMSE is very

similar amongst the different experiments, with SPT and SPT no csky slightly worse

than control. In terms of spread, in both hemispheres the SPT cons produces similar

values to RP2, SPT no csky produces larger spread and SPT has the strongest

impact, even superior to SKEB2.

(a) Z500 for NH
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(b) Z500 for SH
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Figure 7.4: RMSE EM-spread of Z500 for: SKEB2 (dark blue line), RP2 (light blue), SPT

(green), SPT with no clear sky forcing (orange) and SPT with conservation for water and

MSE (red). Dark line shows control RMSE, dashed lines EM RMSE and dotted lines

spread. (a) NH (90N-30N) (b) SH (30S-90S).

Unlike SKEB2, SPT is not aimed at representing specific processes like energy
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dissipation by the dynamical core and convection. It coarsely represents the subgrid

variability of important small scale processes such as the evolution and effects of

clouds or the latent heat release of rain. Despite the simplicity of the SPT scheme,

it can produce a better calibrated ensemble than SKEB2 for LS fields like Z500, as

SPT produces more spread and an equivalent level of EM RMSE than SKEB2.

The large-scale structures in mid-latitudes and tropics are driven by tempera-

ture and winds, in addition to humidity. The dispersion of temperature at different

levels can provide some idea about the level of spread in the representation of highly

parametrized processes such as clouds or moist convection. Figure 7.5 shows the EM

error and spread for low (850hPa) and high (250hPa) level temperature. The great-

est differences are in the tropical region, where SPT cons clearly outperforms RP2

and SPT is clearly superior to SKEB2 generating spread (Fig. 7.5.b,e) and EM

RMSE in the low level. For the mid-latitudes, SPT cons produces more spread in

the temperature than RP2 with the exception of low level in NH (Fig. 7.5,a). Sim-

ilar results for the SKEB-SPT comparison are found for the Integrated Forecasting

System (IFS) and reported in section 2.3 of Palmer et al. (2009).

The spread and error of the ensemble for winds show very similar characteristics

than it does for temperature (Figure 7.6). The only notable difference is that SKEB2

does generate a similar level of spread to SPT at low level. The SKEB2 scheme

forces low level winds directly, whereas spread in temperature and high level winds

is generated by indirect effects. The SPT can have a higher direct impact on the

convection and the properties of clouds, affecting the vertical distribution of energy.

Thus these SPT changes have a greater effect in the ensemble spread of high level

fields and low level temperature than the indirect effects of SKEB2.

The improvements on the EM RMSE of the tropical low level winds are better

for SPT than for SKEB2 with equivalent levels of spread (Fig. 7.6,b). This is

also observed in low resolution deterministic forecasts. Figure 7.7 shows the ratio

of winds RMSE between the different experiments and the control (as done in sect.

5.1). The error produced by SKEB2 is higher than all the other experiments at both

levels and all regions, with the exception of high level winds in the tropics and in

the SH for day 3 onwards. The impact on the deterministic forecasts of RP2 and

SPT cons is not significant for all cases, nor it is for SPT no csky for many regions

and levels. Similar results are found for N216 forecasts (not shown).
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(b) Temp. 850mb for Trop
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(c) Temp. 850mb for SH
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(d) Temp. 250mb for NH
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(e) Temp. 250mb for Trop
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(f) Temp. 250mb for SH

20 40 60
Forecast range (hrs)

0.0

0.5

1.0

1.5

2.0

E
rr

o
r 

a
n

d
 s

p
re

a
d

 (
K

)

Figure 7.5: Error-spread plots for temperature, 850mb (a,b,c) and 250mb (d,e,f) winds.

NH (a,d), Tropics (20N-20S) (b,e) and SH (c,f). Same line distribution as Figure 7.4.

A coarse representation of the subgrid variability is more beneficial in generating

ensemble spread than stochastically sampling the internal uncertainty of key param-

eters within parametrizations (as done by RP2) for nearly all the cases. If additional

constrains in SPT are added to conserve water vapour in the column and MSE, the

impact of the scheme decreases, but it is still competitive with RP2 in terms of EM

RMSE and spread in the mid-latitudes and clearly superior in the tropics, with a

non-significant impact on the RMSE of deterministic forecasts. When the radiation

from clear sky is not perturbed, there is less spread amongst ensemble members and

it is inferior to the forecasts produced using SKEB2. This option also reduces the

error of deterministic forecasts.

7.2.2 Impact on climate scales

Impact on global budgets

One of the main concerns about the impacts of SPT on climate scales is the impact

it has on the delicate balance of energy and moisture budgets. The SPT randomly
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(c) Winds 850mb for SH
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(d) Winds 250mb for NH
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(e) Winds 250mb for Trop
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(f) Winds 250mb for SH
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Figure 7.6: RMSE-spread plot of winds, same levels, distribution and line colours as Figure

7.5.

modifies moisture, kinetic energy and internal energy. Although many of the atmo-

spheric parametrizations have little constrains to avoid unbalances in these budgets,

SPT can potentially amplify large tendencies which could worse the problem of en-

ergy and water conservation. In order to check the unbalance in energy and water

provoked by SPT perturbations, we make use of the diagnostics provided by the En-

ergy Conservation scheme (EC, see Appendix A) and other global quantities such

as total Precipitation minus Evaporation (defined as E − P ), the total mean water

vapour and the net energy flux at the Top of the Atmosphere (TOA).

The different versions of SPT have different effects on the conservation of energy,

water and balance of E − P . Table 7.2 shows the global figures averaged over time,

including the control run (with no stochastic physics). SPT increases substantially

the energy correction term added to the model, as a positive (negative) EC term

indicates energy supplied (extracted) by the EC scheme to the model. SPT also

creates more water vapour and produces more precipitation than evaporation. The

effect on P −E is quite negative and would indicate a major problem if the scheme

was introduced in an Earth System Model (ESM) with a full representation of the
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Figure 7.7: Averaged Ratio of RMSE from experiment and control at N96. Same colour

scale as Figure 7.4 and distribution as Figure 5.2.

water cycle. The SPT no csky produces slightly closer numbers to equilibrium,

although they are still too high. SPT cons values are similar to control and slightly

better than RP2.

Control RP2 SPT SPT no csky SPT cons

EC (W/m2) -0.79 -0.75 5.74 5.44 -0.75

Total qv (g/kg) 23.25 23.17 24.03 23.98 23.26

Total P-E (mm/day) -0.0002 -0.0003 0.1728 0.1711 -0.0001

Net energy flux at TOA (W/m2) -0.0043 -0.0018 -0.0084 -0.0077 0.0001

Table 7.2: Global values (averaged over time) of conservation properties such as Energy

Conservation increments (EC), total mean water vapour (qv), or total Precipitation minus

evaporation and net energy flux at TOA.

The last row of table 7.2 shows the net energy flux at TOA. Ideally this should

be zero in order to maintain the Earth in a thermodynamic equilibrium. Negative

values imply that the Earth releases more energy than it receives. SPT doubles

the imbalance of energy at TOA, radiating away more energy and thus cooling the

atmosphere, which triggers the addition of energy through the EC term. When

clear sky temperature tendencies are not perturbed in SPT no csky, the net energy

flux is still too high.
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The spurious creation of water vapour may produce different feedbacks that

lead to a cooling of the atmosphere. Table 7.3 shows global quantities averaged

over time to provide a narrative for the mechanism for the cooling. One plausible

hypothesis is that the excessive water changes the reflective properties of clouds,

enhancing reflectivity of clouds in the upper levels of the troposphere. However, the

downward short-wave flux at the surface SW surf
down is only 1W/m2 smaller than the

control for the SPT. The imbalance is much higher for RP2 and this experiment

does not produce such a large cooling. Another possible mechanism is a global

increment of precipitation given the extra water vapour available for condensation

and precipitation, this would thicken the low level clouds, blocking downward long-

wave flux at the surface LW surf
down. Also the excessive saturation would reduce the

Latent Heat from the surface. Values in table 7.3 agree with this hypothesis.

Control RP2 SPT SPT no csky SPT cons

Precipitation (mm/day) 3.03 3.02 3.10 3.10 3.01

Latent Heat (W/m2) 87.65 87.50 84.88 84.82 87.25

LW surf
down (W/m2 336.78 338.71 338.81 338.73 336.84

Table 7.3: Global values averaged over time for precipitation, Latent Heat (LH, see sect.

B.3.4), short-wave (SW) downwards flux over surface (SW surf
down) and long-wave downwards

flux over surface (LW surf
down).

The EC scheme adds an uniform temperature increment to correct the energy

budget (see eq. A.7 in Appendix A). MetUM has a cold bias in the tropospheric

zonal temperature for JJA and DJF (Fig. 7.8,a,d). This bias is partially removed

by the EC action when SPT is included. This impact is clearest for JJA (Fig.

7.8,e). However, the SPT causes an important warming of the Tropical Tropopause

Layer (TTL) when combined with the associated warming caused by the EC (Fig.

7.8,b,e). The warming caused by both factors is greater in the stratosphere and

specifically in the TTL region (Fig. 7.8,c,f). The SPT is not active above the upper

troposphere so the warming could be a feedback from the vertical moist transport

from below, and the impacts of the radiation from the uniform EC warming. Similar

biases are found for the specific and relative humidity over the TTL (not shown).

The excessive amount of warming needed by the SPT experiment to correct the

energy balance is another setback for the inclusion of SPT in an ESM. The coupling
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between the chemistry and atmosphere is very sensitive to the TTL. Biases over the

TTL could affect the distribution of water vapour in the stratosphere and trigger

important radiative feedbacks (Solomon et al., 2010; Dessler et al., 2013).
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Figure 7.8: Zonal Temperature biases (K) in colours and ERAI zonal temperature in

contours for DJF (a,b,c) and JJA (d,e,f). (a,d) Control - ERAI (b,e) SPT - ERAI (c,f)

SPT minus control.

Although the spurious increment of temperature could blur the general impacts

of the SPT scheme, it is worth looking at how SPT changes climate variability

processes in comparison to the other stochastic schemes.

Impact on tropical climate processes

The global increment in tropical precipitation for summer (JJAS) is shown in Figure

7.9. As discussed in chapters 5 and 6, in GA6 control there are tropical areas like

the equatorial Atlantic Ocean or Indian Ocean with excessive divergence, which

leads to negative biases in Outgoing Longwave Radiation (OLR) and too much

precipitation. The SKEB2 reduces these biases, although the impact of the default

version is minimal (Fig. 7.9,e). The impact of SPT cons is even smaller (Fig. 7.9,d).

RP2 reduces the biases, but also increases precipitation over the West Pacific, in

a bigger proportion than SKEB2 (Fig. 7.9,b). The impact of SPT is the most

beneficial. It is also noteworthy that the precipitation is reduced over West Africa

on the SPT experiment (Fig. 7.9,c), another prominent bias where other schemes
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have little effect.

The improvements in tropical precipitation over Africa may come locally from a

better coupling to the surface fluxes which triggers local convection. However there

is also a large-scale effect from the SH Jet structure over Africa and the Indian

Ocean. Figure 7.10,a shows the ERAI wind field at 250hPa on the Tropics and SH

for summer. The westerly jet structure is clear over the subtropical SH plus the

easterly winds in the tropical Indian Ocean. MetUM at GA6 has weak easterlies

over the tropics, its SH jet extends equatorwards over Africa and slows down in

the centre of the jet over the same longitudes (Fig. 7.10,b). These biases may be

linked to a poor representation of some aspects of convection, like the diurnal cycle

(Bechtold et al., 2004). RP2 worsens the high level wind biases over Africa and

this significantly worsens the dry bias there (Fig. 7.10), whereas SPT reduces these

biases notably. There are local processes such as African Easterly waves (AEW,

Kiladis et al. 2006) whose representation improves by SPT (not shown). These

waves are important drivers of Alantic Tropical Cyclones (Thorncroft and Hodges,

2001).

Overall there are similarities between the SPT and SKEB2 in the way they

couple dynamics and physics. They both improve the representation of the tropical

dynamics, decreasing divergence and improving the SH Jet stream over summer

(Fig. 5.29 and Fig. 7.10). This leads to improvements in the representation of

clouds and precipitation (Fig. 5.28 and 7.9), and intermittency of convection (Fig.

5.24). There are also some common setbacks. Both schemes reduce the power of

high frequency Kelvin waves (not shown).

Impact on mid-latitude variability

A better distribution of the jet also improves the SH mid-latitude variability. Figure

7.11,a shows the ERAI storm track density for austral winter (JJA), where the

storms spiral from the South Atlantic towards the East Pacific side of the Antarctica

(Hoskins and Hodges, 2005). There are fewer storms on the Atlantic side of the

Southern Ocean (SO) and at the end of the storm tracks in the control (Fig. 7.11,b).

SPT decreases the bias as it has got more storms in the Atlantic Ocean and at

the end of the storm track in the west coast of South America. However, it also

decreases the density of storms around the Antarctic continent (Fig. 7.11,c,d). The
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Figure 7.9: Total precipitation biases (mm/day) for JJAS (a) Control minus GPCP, con-

tours show GPCP (b) RP2 minus Control (c) SPT minus Control (d) SPT-cons minus

Control (e) SKEB2-imp minus control. Dots denote statistically significant differences

above 95% level of confidence using a student t-test.
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Figure 7.10: Winds at 250hPa for JJA, (a) ERAI field, arrows show direction of the wind,

(b) Control minus ERAI, (c) RP2 minus ERAI and (c) SPT minus ERAI.

simulation of the summer SH storm track is less realistic for SKEB2, as there are

more subtropical storms coming from South America, fewer over the Pacific side

of the SO and more South of Australia. The impact of the other experiments is

negligible.

The magnitude of the impact of the SPT looks far superior to the one pro-

duced by RP2. The former produces more ensemble spread and stronger impacts

on the climate system, some of them undesired as the high imbalances in conserva-

tion quantities. However, this study has limitations as a comparison between the

stochastic perturbed tendency approach and stochastic perturbed parameters. The

forcing pattern is different, RP2 one has no spatial or vertical structure. In addi-

tion, they don’t exactly perturb the same processes as SPT does not perturb BL

and RP2 does not include all parameters that may play a role in each parametrized

tendency. A comparison of the different approaches for stochastic physics within

the same framework could provide a clearer comparison. The next section provides

such comparison.

7.3 Stochastic Mixed Phase Parametrization

In the last section of this chapter, we explore the impacts of different methodolo-

gies to transform a deterministic bulk-formula parametrization into a stochastic
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Figure 7.11: Storm track density for JJA over SH. (a) ERAI tracks, (b) GA6, (c,d) SPT

(e,f) SKEB2. (b,c,e) Colours shows biases to ERAI and contours are ERAI tracks. (d,f)

Biases to GA6.
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parametrization. The parametrization we choose is the Mixed Phase Cloud (MPC)

parametrization of Field et al. (2014), which is based on highly stochastic subgrid

turbulent motions within icy clouds.

A MPC is a type of cloud that contains ice and supercooled liquid water in an icy

environment within the cloud. When an air parcel rises through the freezing level

droplets do not instantly freeze, in fact supercooled water droplets may continue

to exist even at −40C. MPC can form in the updraft of convection, large-scale

ascent or turbulence in icy clouds which locally give enough ascent to form liquid

water. These clouds emerge more frequently in the polar regions, where they cover

large areas throughout the year (Morrison et al., 2012). MPC can also exist in mid-

latitudes and tropics (Riihimaki et al., 2012). Their impact on the radiative fluxes

and energy balance is significant in many regions (Shupe and Intrieri, 2004).

The MPC parametrization we employ is based on Large-Eddy Simulations (LES)

detailed in Hill et al. (2013). The parametrization computes a distribution of su-

persaturation S from the turbulent environment and the ice-cloud properties. The

parametrization’s tendencies, condensed water amount q and cloud fraction C, are

the integral of the S distribution over a given threshold (e.g. supersaturation with

respect to ice for water saturation). See section 2 of Field et al. (2014) for details

on the scheme.

The S distribution is the solution of a stochastic differential equation, where

the turbulent motions are represented as random up- and down-draughts (eq. 5 in

Field et al. 2014). The stochastic equation has some parameters whose values are

uncertain. The parametrization experts have suggested to perturb three of these

parameters within a given range to sample the uncertainty of the scheme. These

parameters represent the variance of the turbulent vertical velocity fluctuations, the

vertical extent of the turbulent zone and the first moment of ice distribution.

Four different approaches to represent the uncertainty of the MPC scheme are in-

vestigated in order to estimate which one produces the best calibrated ensemble and

the better improvements in climate fields (by noise-induced drifts). The first three

methods explore the perturbed parameter approach, perturbing the 3 parameters

above mentioned in the following way:

� Parameters at each grid-point in each level are perturbed using white noise.

This experiment is defined as WN
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� Parameters are perturbed using the RP2 approach, where they temporally vary

following a first order auto-regressive process. Thus the forcing is homogeneous

in the horizontal and vertical. This experiment is defined as 1AR

� Parameters are perturbed by a Spherical Harmonic Forcing Pattern (SH-FP)

similar to SPT (see 7.2 and 2.2.4 for a more general description of SH-FP).

The experiment is defined as SH − FP

The spatio-temporal PDF for the forcing pattern of these 3 methodologies is

shown in Figure 7.12, where one day runs with one hourly output have been em-

ployed. The SH−FP shows the expected Gaussian behaviour and it is perhaps too

narrow to fully sample the range of likely values of [0, 1]. The WN has a constant

probability for all possible ranges, and the 1AR produces limited discrete values,

given its uniformity in space.
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Figure 7.12: Distribution of the 3 different Forcing Patterns (FP) to perturb the chosen

parameters within the MPC scheme. Green line shows the white noise method, yellow

crosses 1AR values and blue line SH-FP method. See text for details.

A fourth extra scheme is developed following the SPPT approach. C and q

tendencies from the MPC parametrization are perturbed using the SPT forcing

pattern, with a standard deviation for the forcing pattern equal to 0.5 and without

vertical tapering and moisture or energy conservation constrains. This experiment

is defined as lSPT .
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MOGREPS experiments are carried out with the four different approaches to

represent the MPC stochastically. Their setup follows the description given in the

Methodology (chapter 4). The uncertainties of the MPC are tiny in comparison to

the total model error, therefore the impact on spread will be negligible for large-scale

fields. However, the impact on temperature should be more clear as the supercooled

water modifies the radiative fluxes in the atmosphere.

The EM RMSE and spread for temperature of the stochastic MPC schemes is

shown in Figure 7.13 for different regions and low (850mb) and high (250mb) levels.

The lSPT is clearly the version that produces the largest spread in all regions and

levels. In terms of EM RMSE it is also the best performing with a clear improvement

for the tropics. In the low level SH, lSPT experiment shows better EM RMSE than

control whereas the EM RMSE of the other experiments is worse than control.
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(c) Temp. 850mb for SH
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(d) Temp. 250mb for NH
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(e) Temp. 250mb for Trop
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(f) Temp. 250mb for SH
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Figure 7.13: Ensemble Mean RMSE-spread for Temperature, same layout and format as

Figure 7.4 but with the colours described in Fig. 7.12 and red as the SPT-like approach.

The three different methodologies to perturb the uncertain parameters produce

a smaller impact in the dispersion of temperature within the ensemble (Fig. 7.13).

Nevertheless, there are interesting differences amongst them. The SH − FP exper-
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iment produces higher spread than the other two for all regions and levels. Giving

spatial and vertical structure to a forcing pattern is clearly beneficial for increasing

the dispersion in an EPS. The spread generated by 1AR, a similar approach than

RP2, is quite poor in comparison to the one generated by a fully 3-D SH-FP in exp.

SH −FP . 1AR is almost indistinguishable from WN for all levels and regions and

the RMSE EM is worse in low level tropical winds.

In order to look for climate noise induced-drifts that may improve the repre-

sentation of climate processes, five AMIP climate simulations are performed. The

four stochastic flavours of the MPC plus a control with the original version of the

scheme. Differences in the mean climate amongst these experiments are marginal for

radiative fields such as Outgoing Shortwave Radiation (OSW) or OLR (not shown).

The capacity of the different stochastic schemes to produce different tendencies for

the cloud evolution does not change the radiative representation of clouds in climate

scales.

The effects of the stochastic perturbations for the MPC scheme could be notice-

able on the level-by-level radiative distribution of clouds. There is an ideal process-

based diagnostic to assess this aspect of the climate, the satellite-simulator. It is

an algorithm that transforms the modelled radiative field into a radiative beam at

different wavelengths that a satellite would observe. Such simulators are described

in Bodas-Salcedo et al. (2011) and Pincus et al. (2012) and will be employed in

future work to estimate the effects of stochasticity on MPC clouds.

Different approaches to stochastically sample the uncertainty of a MPC schemes

can generate different levels of spread and EM RMSE in a short-range EPS, with

the tendency perturbation approach having the largest impact. However, these

approaches can not produce significant differences on radiative fields of climate sim-

ulations. The impact of a single scheme is very limited and detailed process-based

diagnostics must be employed.

7.4 Conclusions

Different methods to introduce stochasticity in physical parametrizations have been

explored in this chapter. These cover from novel approaches like perturbing the

initial state, to more consolidated ones like perturbing physical tendencies. A final
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section explores different ways to stochastically represent the internal uncertainty

of a Mixed-Phase Cloud (MPC) parametrization.

A scheme that perturbs the initial state of physical parametrizations, The Stochas-

tic Initial State for Parametrizations (SISP), is developed in the course of this thesis.

This scheme respects the internal structure and constrains of parametrizations while

allowing fluctuations in subgrid processes (e.g. change the conditions for the emer-

gence of deep convection, change water content or temperature within a cloud). The

SISP produces a marginal dispersion in the ensemble within the free atmosphere.

In the boundary layer, the spread is higher but it grows at the same rate as an ex-

periment with no stochastic physics and thus it is quickly overtaken by SKEB2. In

addition SISP degrades the RMSE of the EM, probably caused by implicit changes

on the mean BL and convective tendencies. An additional problem for SISP lies in

the difficulty in estimating individually the uncertainty in the initial state. In the

present form of SISP, a Spherical Harmonic Forcing Pattern (SH-FP) perturbs the

prognostic variables θ, q, u and v using an arbitrary amplitude. Coarse-graining

studies of the prognostic variables at the beginning of the timestep are required to

obtain adequate ranges for the amplitude and scales of the SH-FP.

Stochastically perturbing physical tendencies is a popular approach, with suc-

cessful schemes such as the Stochastic Perturbation of Parametrized Tendencies

(SPPT, see 2.3 section for details). However, their current formulation poses a

few issues, such as the perturbation of well resolved clear-sky radiative tendencies

or imbalances on the moisture and energy budgets. In this thesis, the Stochastic

Perturbation of Tendencies (SPT) is developed following the SPPT approach. It in-

cludes an option to remove radiation from clear sky, and another to conserve water

vapour in the column and Moist Static Energy (MSE). A comparison of the SPT

with these options and other stochastic schemes such as SKEB2 or RP2 shows:

� The SPT is quite at effective generating ensemble spread. It is superior to

SKEB2 in many fields such as high level temperature. However, it also pro-

duces a slight deterioration of the EM RSME for Z500 in both hemispheres.

� Even though than SPT produces higher or equivalent levels of spread for winds

to SKEB2, it produces smaller RMSE than SKEB2 for individual forecasts.

� When the SPT is included in a climate model, the energy correction needed
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to balance the energy budget is too high, of the order of 5W/m2. The scheme

also produces spurious water vapour and more precipitation than evaporation.

These imbalances translate into a cooling of the atmosphere, compensated

by an homogeneous warming by the Energy Conservation scheme. The tem-

perature increment makes the temperature in the Tropical Tropopause Layer

(TTL) unacceptable for ESM studies.

� Despite conservation issues, there is a huge improvement in the climate pro-

duced by an AMIP run with SPT. It notably reduces the biases on the repre-

sentation of the SH Jet stream in JJA, leading to a better precipitation field

in the tropics and storm track over the Southern Ocean. These improvements

outperform those made by SKEB2.

� A version in which the clear-sky tendencies are not perturbed produces less

spread, but better RMSE for deterministic forecasts, even non-significant from

control in the mid-latitudes. The beneficial impacts on the tropical climate

are slightly reduced. This version also has an undesirable impact on the con-

servation of moisture and energy.

� A version that conserves MSE and water vapour in the column produces ac-

ceptable drifts in MSE and moisture budgets, with minor improvements in the

climate. For EPS, this version is equivalent to RP2 for Z500 and superior for

winds and temperature, with the exception of NH in low levels.

� All SPT versions and SKEB2 have positive or neutral impact on the tropical

climate, whereas RP2 shows a slight degradation of tropical precipitation and

representation of SH jet stream.

Using a MPC scheme as a template, we explore different approaches to represent

stochastically the internal uncertainty of the scheme. Perturbing the tendencies

produces more dispersion in temperature than perturbing key internal parameters,

and produces a clearly improvement for the EM RMSE in the tropics and low

level SH. If key parameters are perturbed, the best method to produce ensemble

spread is to employ a SH-FP. Using a similar approach as RP2 is equivalent to

employ white noise to perturb the parameters. The climate means of radiative

fields are indistinguishable amongst the different approaches and the control run.

Future research using cloud-simulators and other cloud-based diagnostics is needed
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to observe improvements in the representation of atmospheric processes made by

the stochastic MPC schemes.

Overall we observe that perturbing parametrizations internally (e.g. perturbing

the initial state or key parameters in the MPC) is not as effective as perturbing

tendencies to produce a better calibrated ensemble. However, for long timescales,

the tendency perturbation approach needs a closure to avoid an spurious generation

or drain of moisture and energy.

Perturbing parameters with a spatially and vertically homogeneous forcing pat-

tern, as done in RP2, is not a successful approach in comparison to others. It

generates little spread and the impacts on climate scales are not as positive as the

SPT with conservation constrains or SKEB2. When it is included in an MPC, it is

clearly inferior to a perturbed tendency approach. As suggested by the experiments

with the MPC scheme, it could improve its performance if it would use a SH-FP,

although the spatial characteristics of the pattern will need to be investigated using

coarse-graining techinques.

The number of results presented in the present and previous chapters is enough

to try to provide some conclusive answers about the role and future of stochastic

physics schemes. In chapter 8, the last one of the thesis, the results are summarised

and recommendations are made for the development and evaluation of stochastic

physics.



Chapter 8

Conclusions

Weather forecasts and climate projections are often imprecise as they come from

an imperfect tool, a General Circulation Model of the atmosphere (GCM). The im-

perfections arise from highly uncertain assumptions included in the model, such as

the bulk representation of important processes occurring on scales smaller than the

truncation scale. Stochastic physics is one method to represent some of these un-

derlying uncertainties in a probabilistic forecast, where the importance lies on the

reliability of the different forecasts of the ensemble rather than on the accuracy of

a single member of the ensemble. Therefore stochastic schemes have been devel-

oped mainly to produce divergent outcomes in the ensemble, the so-called ensemble

spread. These schemes can divert the flow away from the model’s preferred state,

improving the climate and atmospheric processes in certain cases. However, it is

not perfectly clear if they are a simple tool to increase the ensemble spread or if

they are a physical representation of the model uncertainties, and thus are able to

improve the representation of intrinsic atmospheric processes.

One of the most popular stochastic schemes is the Stochastic Kinetic Energy

Backscatter (SKEB). It puts back into the model the Kinetic Energy drained by

diffusion and missing from in convective processes. The research undertaken with

SKEB2, the MetUM version of a SKEB scheme, over different prediction systems,

atmospheric processes and model resolutions is reported in chapter 5 of the thesis.

SKEB2 degrades deterministic forecasts, diverting away the trajectory, intensity

and speed of mid-latitude cyclones. Nevertheless, the averaged effects of the scheme

are positive. It increases the intensity, speed and growth rate of cyclones, and

strengthens the weak winds over the mid-latitudes at low resolutions. The scheme

209
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helps to maintain convective episodes over time, which causes a positive effect on

the divergent flow. This improves the mean representation of radiation, clouds and

precipitation over the Tropical belt (with the exception of the West Pacific where

the scheme makes the model moister). On the other hand, the scheme produces the

emergence of a spurious westward tropical wave. These results are enhanced if we

increase the amplitude of the backscatter, controlled by the backscatter ratio bR.

When the model is upgraded by improving processes such as the internal diffusiv-

ity or subgrid variability of convection (processes that SKEB2 represents), there are

several improvements in atmospheric phenomena that are on the same direction as

those made by SKEB2. For example, an increase of mid-latitude cyclone intensity.

However, the impacts of the scheme remains constant where they should decrease

as its “raison d’être” becomes weaker. This is observed for mid-latitude cyclones,

SKEB2 is unable to spin-up more those storms that are more diffused, generating

a quasi-constant forcing for the intensity of storms across resolutions and intensity

ranges.

Despite the usefulness of SKEB2 in producing spread at NWP and seasonal

timescales, the scheme is unable to produce spread at climate scales. An ensemble

of climate experiments with SKEB2 produces minor differences in the mean climate

amongst the members, and these differences are not statistically significant from

other ensembles with no stochastic physics.

The SKEB2 scheme needs to be improved to eliminate the problems found in

chapter 5 (mainly the westward spurious tropical wave and lack of sensitivity to

model error). In chapter 6, some ideas are developed to offset these deficiencies.

These are: (i) Removing the large-scales from the forcing pattern, (ii) using an

alternative method to estimate the numerical dissipation by the dynamical core

and (iii) the combination of this alternative method with a factor to modulate the

convective dissipation rate.

(i) The removal of the large-scales in the forcing pattern of the scheme is done

by increasing the lowermost truncation wavenumber of the spherical harmonic ex-

pansion from 5 to 20. This generates weaker perturbations that reduce the RMSE

of deterministic forecasts, the ensemble spread and the improvements of tropical cli-

mate biases, although there is still a beneficial impact in comparison to the control

with no stochastic physics. This change reduces the power of the spurious westward
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equatorial wave and its zonal extent. The ensemble spread generated by SKEB2

does have some undesired properties that this change does not help to fix. The

power spectra of the ensemble spread grows faster at large-scales than the error and

the spread of storms shows little sensitivity to their error.

(ii) A different method is employed to compute the estimation of energy loss in

the interpolation to the departure point (described in sect. B.2.1), the contribution

of different terms is explored and compared to the original version. The new method

is more sensitive to horizontal resolution and produces larger impacts over the low

levels rather than mid to high levels. The higher activity at low resolution improves

the Z500 climate and tropical convection-coupled fields like precipitation or Outgoing

Longwave Radiation (OLR).

(iii) The convective dissipation mask also has a weak resolution dependency. In

order to alleviate this problem, a resolution dependent amplitude factor FC is added

to the convective mask. The combination of the new convective and numerical dissi-

pation masks is compared to the default scheme. The new version makes the scheme

more active at low resolutions, degrading deterministic forecasts but improving the

intensity of mid-latitude cyclones, as well as important tropical fields in a climate

simulation. However, it also degrades the representation of CCEW by weakening

the power of Kelvin waves.

At high resolutions, the impact of SKEB2 is minimal as the numerical diffusivity

is negligible in comparison to the error coming from physical processes. In chapter

7, different approaches to represent uncertainty from physical parametrizations are

explored.

A scheme that perturbs the initial state of parametrizations is developed. It

respects their internal structure and theoretically would help to produce spread in

the diagnostics of physical processes (e.g. triggering deep convection). Such scheme

produces marginal spread in the free atmosphere and increases the ensemble mean

RMSE in the Boundary Layer. This result indicates that current parametrizations

are insensitive to changes in the initial state, as they tend to provide similar ten-

dencies for physical processes.

A perturbed tendency approach, named as Stochastic Perturbation of Tenden-

cies (SPT), is developed and compared to other schemes. It is found that SPT is
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the best performing in terms of spread generation, and its error in the determinis-

tic forecasts is lower than SKEB2. On climate scales, the improvements are very

positive for the SH and Tropical fields. However, the scheme has a serious impact

on the conservation of energy and moisture. This makes the scheme unsuitable for

Earth System Models, where these budgets are fundamental.

An option to leave clear sky radiation tendencies unperturbed is developed for

the SPT. It reduces the spread and produces better deterministic forecasts. Nev-

ertheless, the impact in the climate budget is still unacceptable. Another option

enables the scheme to conserve water vapour in the column and Moist Static En-

ergy (MSE). This option minimizes the problems with conservation to acceptable

levels and reduces the impact of the scheme, although it is still competitive to a

random parameter approach in its present formulation.

Different approaches for the stochastic representation of physical uncertainties

are explored under the same framework in the final section of chapter 7. Using a

perturbed-tendency approach generates more spread and less ensemble error than

perturbing parameters. For the latter, having a spatial and vertically correlated

forcing pattern is clearly beneficial in comparison to adding white noise, or perturb-

ing parameters just on the temporal scale. No improvements on the long term mean

of radiative fields are found for any of these experiments.

The improved configuration of SKEB2 and the SPT with MSE and water conser-

vation have been combined and put forward as the new stochastic physics setup for

future GA releases (Sanchez C, 2015, in preparation). Presently this configuration

has been included in the GA7 prototype for EPS and climate systems, the latter

will be employed in the Coupled Model Intercomparison Project Phase 6 (CMIP6),

a comparison of climate models for climate-change assessments (Meehl et al., 2014).

8.1 Remaining Questions and Future Research

There are several questions issued on the introduction (chapter 1) as the most rel-

evant for the development and evaluation of stochastic physics. The results of this

thesis provide some some evidence to answer some of these questions, or suggest

guidelines for future work to obtain a more precise response.
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Are current stochastic physics schemes perturbing the right spatial and

temporal scales?

No. Current schemes like SPT or SKEB2 degrade the skill of deterministic fore-

casts. Although they provide a good first-order approximation to represent model

uncertainty (e.g. SKEB2 counter diffuses mid-latitude cyclones), they are too simple

(SPT) or their formulation uncertain (SKEB2’s dissipation masks). SPT produces

a less harmful impact than SKEB2, despite having a similar or superior impact on

the ensemble, indicating that maybe forcing physics coarsely is less harmful than

forcing dynamics.

There are large uncertainties within stochastic physics schemes. Spatial and

temporal correlation scales are normally “tuned up” for performance in an EPS.

It requires laborious work to study their realism in terms of each of the processes

they aim to represent. One example is the range of spatial scales where the SKEB2

forcing is active. Shutts (2013) found that the SKEB2’s backscatter on the large-

scales was not realistic. Investigations in sect. 6.1 have shown that that spurious

artefacts may appear if these scales are forced (e.g. spurious westward equatorial

wave for a highly tuned up version of the scheme).

Do stochastic physics schemes represent physical process correctly or

there are fundamental flaws?

We have found examples where stochastic physics can introduce flaws in the repre-

sentation of atmospheric processes.

� SKEB2 produces a spurious westward equatorial when the amplitude of the

scheme is high and the forcing pattern includes large scales (sect. 5.2).

� SKEB2 and SPT degrades the power of already weak Kelvin waves (sect. 5.3

and 7.2).

� SPT has a serious impact on the energy and moisture budgets on climate

simulations (sect. 7.2).

Internal closures need to be developed within Stochastic physics schemes to pre-

vent the emergence of systemic flaws in the representation of atmospheric processes

(e.g. a closure in SPT to conserve vapour and MSE). When the emergence of these
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problems is unclear, there is a need to develop process-based diagnostics to under-

stand the mechanisms that lead to the poor representation of these processes (e.g.

Kelvin waves composites).

Should there be stochasticity in the deterministic model outside the en-

semble forecasting context?

Stochasticity in a deterministic model is clearly an oxymoron! By deterministic

model we mean a deterministic forecast where single events must have the highest

predictability. With current model error schemes like SPT or SKEB2 there should

not be. It has been shown that SKEB2 deviates individual storms in terms of

position, intensity, speed and growth (sect. 5.1). Therefore it provides a poor

deterministic forecast. SPT has also a detrimental impact on the deterministic skill,

although much smaller.

For climate scales, stochasticity could be useful, as climate is an ensemble of

weather states with no need for accurate predictability on the synoptic scales. The

improvements found on the climate simulations (sect. 5.2), like the reduction of

tropical biases, could improve the model on these long timescales.

The different ideas explored to improve the realism of the stochastic parametriza-

tions have lead to a decrease of the ensemble spread, e.g the use of a more physically

justified numerical dissipation mask for SKEB2 (sect. 6.2), or the inclusion of the

conservation constraints in SPT (sect. 7.2). The development of stochastic physics

schemes for a seamless model should employ different diagnostics, as done in the

present thesis, to improve the representation of atmospheric processes.

Should uncertainty representations be developed alongside the physical

parametrizations or added a posterior by model error schemes?

In an ideal world, stochastic parametrizations should be designed to represent atmo-

spheric process implicitly, e.g. horizontal transport of convection represented by the

Cellular Automata (sect. 2.6.3), or the stochastic fluctuation of mass-fluxes by the

Plant-Craig scheme (sect. 2.6.1). These schemes provide a more physically-based

representation of the error they aim to represent. However, in practical terms, EPS

need urgent solutions to increase the ensemble spread. The research done with the

mixed-phase scheme shows that the representation of internal processes, such as the
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uncertainty of internal parameters, produces a lower impact in the ensemble than

perturbing the tendencies (sect. 7.3). The advantage of stochastically perturbing

physical tendencies over the perturbing internal parameters is also evident in sect.

7.2, where SPT clearly outperforms the present version of the random parameter

scheme, although the comparison is not clear as they have very different forcing

patterns.

In order to achieve an equivalent level of spread to model error stochastic schemes,

several implicit stochastic physics schemes for different processes should be devel-

oped and combined. Hopefully new schemes such as the Stochastic Multi- Cloud

Model (SMCM, sect. 2.6.5), or the Stochastic non-orographic gravity wave drag

scheme (sect. 2.6.4) are developed further to replace current bulk-formula deter-

ministic parametrizations.

How can we develop stochastic physical parametrizations in the presence

of compensating model errors/ heavily tuned models?

A careful approach must be taken. One clear example is the study carried out in sect

5.3, where the impact of the SKEB2 across different configurations was evaluated.

The scheme helps to offset the diffusivity of the interpolation to the departure point

(see sect. B.2.1). This improves the intensity of storms and even fully removes the

bias if the scheme is tuned up. Improvements in the Semi-Implicit scheme produce

similar or larger impact on the same diagnostics.

The community of atmospheric scientist needs to estimate and understand the

contributions from the different sources of error across timescales, in order to avoid

stochastic schemes introducing compensating errors. Understanding the sources of

error is not an easy task in a GCM, but with the help of process-based diagnostics,

model biases could be traced down to particular processes.

Which priorities are the most relevant for the development of stochastic

physics?

The results gathered in this thesis show that stochastic model error schemes (SKEB2

and SPT) can provide substantial benefits for probabilistic NWP and climate sim-

ulations. However, they also degrade short-range deterministic forecasts, indicating

that their representation of model error is limited. These schemes have also large
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uncertainties or are to simple. We believe that the development of implicit stochas-

tic parametrizations (e.g. Plant-Craig, Stochastic Multi-Cloud Model) should be

the way forward to represent the subgrid effects stochastically, as these schemes can

provide a more physically based representation of the process the aim to represent.

Such schemes could potentially improve deterministic forecasts as well.

The development of implicit stochastic schemes is an idealistic idea that could

be challenged by the operational need to produce a sizeable ensemble spread. If this

is the case, closures for current model error schemes should be developed. In this

thesis, we have explored ideas like a more adequate numerical dissipation mask for

SKEB2 or the conservation of water vapour and energy in the SPT. Future ideas

could include a more physically-based convective dissipation mask and/or coarse-

graining studies of physical tendencies to calibrate SPT (e.g. Shutts and Palmer

2007). The schemes with these closures can produce a more realistic representation

of model error and reduce the negative impacts on deterministic forecasts, even

though their benefits in the ensemble spread may be reduced.

The results found in this thesis are hard to extrapolate to other models, some of

them contradict results found in previous studies made with the IFS (see sect. 5.4).

The formulation of GCM and parametrizations may substantially differ (including

stochastic physics schemes like SKEB). Although there are similar systematic bi-

ases in different models (e.g. tropical precipitation biases), their magnitude and

structure may be quite different. It could be useful to carry out a comparative

study of common stochastic schemes like SKEB2 or SPPT, such comparison can

reveal how these schemes interact with parametrizations and their coupling with

the atmospheric flow.

There is also a need to develop and incorporate new process-based diagnostic

to understand the sources of model error, and its representation by the stochastic

physics schemes. The use of cyclone tracking has been very useful to diagnose the

effects made by the SKEB2’s forcing. It would be interesting to employ similar

tracking algorithms for mesoscale convective systems, cloud simulators to under-

stand the impact on clouds, or the use of composites of MJO events, Kelvin waves,

or Rossby waves to understand the nature of the tropical improvements and their

connections to the extra-tropics.

The development of stochastic physics in a seamless framework should be under-
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pinned by its physical realism, making them a key component of future prediction

systems of the atmospheric challenges yet to come in a changing climate. The Seam-

less evaluation employed in this thesis aspires to ensure this crucial task.
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Appendix A

Conservation issues of SPT

One of the main concerns about the Stochastic Parametrization of Tendencies (SPT,

described in sect. 2.3 and evaluated in sect. 7.2) is the fact that its perturbations

may substantially affect the energy and moisture balance, as these schemes randomly

add temperature, moisture and wind increments with no physical constrains. In

order to reduce the impact of the scheme on the global energy and water balance,

an option for the SPT is developed to enforce water conservation and Moist Static

Energy (MSE). In order to diagnose the impact of these new features of the SPT,

diagnostics from the global energy correction scheme are included and are explained

in the last section of the present appendix.

Water conservation

The vertically integrated water vapour is computed for all the model columns follow-

ing eq. A.1, where ztop and zbot are the upper and lower limit of the SPT tapering.

A similar operation is performed after the SPT forcing is added (eq. A.2), where

∆q is the humidity increment introduced by SPT.

Q =

∫ ztop

zbot

ρqdz (A.1)

QSPT =

∫ ztop

zbot

ρ(q + ∆q)dz (A.2)

Humidity perturbations that conserve the total Q are defined as ∆q̂, and the ratio

of vertically integrated water vapour after and before adding the SPT increments is

defined as α, so Q(i, j) = α(i, j) ·QSPT (i, j). Equalizing both definitions of Q gives

equation A.3.

219
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∫ ztop

zbot

ρ(q + ∆q̂)dz = α

∫ ztop

zbot

ρ(q + ∆q)dZ (A.3)

To satisfy the relationship of eq. A.3, the water content must be equal in all

levels such that q + ∆q̂ = α(q + ∆q). Therefore the perturbations to the humidity

that conserve total water are given by eq. A.4.

∆q̂(i, j, k) = α(i, j)∆q(i, j, k) + q(i, j, k)(α(i, j)− 1) (A.4)

Conservation of MSE

In order to conserve the MSE, the temperature perturbations must related to the

definition MSE = cpT + gz + Lq, where cp is the heating content at a constant

pressure and L the latent heat of vaporization. The potential term g z vanishes

when T perturbations are linked to local q perturbations on the same gridpoint and

level. Therefore, MSE conserving temperature perturbations are defined by equation

A.5.

∆T (i, j, k) = − L

Cp
∆q(i, j, k) (A.5)

Energy conservation diagnostics

Climate configurations in MetUM make use of an Energy Correction (EC) scheme

to avoid spurious drifts in the atmosphere’s total energy. The EC scheme computes

the energy error and places it back in form of an uniform temperature increase or

decrease. The computation of the energy error ε for a given time equal to ∆t follows

eq. A.6, where ∆E is the change in total atmospheric energy in ∆t and F is the

energy flux into the atmosphere during ∆t.

ε = ∆E − F (A.6)

The total energy E is given in eq. A.7. It is the integral of energy over a

spherical volume between the Earth surface and the Top of the Atmosphere (TOA),

φ is the latitude, λ the longitude and r the radius of the Earth. The Energy is a

sum where the first term represents the internal energy of an atmospheric parcel in

virtue of its temperature, the second term is the potential energy represented by

its influence to the Earth’s gravitational field, the third is the kinetic energy given
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by the momentum within the parcel and the fourth is moist energy and represents

energy released or absorbed by water phase changes.

E =

∫ TOA

surf

∫ π

−π

∫ 2π

0

ρ [cpT + gz +
1

2
(u2 + v2 + w2)−

(Lcmcl + (Lc + Lf )mcf )] r
2cosφdλdφdr

(A.7)

The energy flux into the atmosphere is given by the sources and sinks of energy

fluxes as shown in eq. A.8. The main source is the incoming radiation from the sun

SW TOA
in . Other components that increase the energy content in the atmosphere are

the sensible heat shsurfin and latent heat represented by the rainfall rsurf and snowfall

ssurf at the surface. Sinks of energy include outgoing radiation terms such as SW TOA
out

and LW TOA
out plus radiation absorbed by the surface SW surf

netdown and LW surf
netdown. a is

the radius of the Earth.

F =

∫
∆t

∫ π

−π

∫ 2π

0

[SW TOA
in − SW TOA

out − LW TOA
out − SW

surf
netdown−

LW surf
netdown + shsurfin + Lcrsurf+

(Lc + Lf )ssurf ] a
2cosφdλdφdt.

(A.8)

If there is too much dissipation of energy, as in the case of models with Semi-

Lagrangian Semi-Implicit dynamical cores (sect. B.2.1), the kinetic energy term will

decrease and thus ∆E would be lower and the energy correction slightly negative,

therefore the model will add a positive increment and thus the ε diagnosed will be

positive.
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Appendix B

Description of a Global

Circulation Model

Atmospheric prediction is an initial-value problem, run (integrated) over time for

days in the case of short-range Numerical Weather Prediction (NWP), months for

seasonal prediction, or centuries for the case of long climate experiments. The ability

to make a skilful NWP forecast requires a realistic representation of the atmosphere

in the equations (good model) and an accurate initial conditions (good observations).

The latter is less relevant in climate models as they tend to simulate the average

effects of the flow rather than provide a prediction for a given time and location as

done for NWP. The present Appendix provides a description of the principles and

components of a NWP and climate model.

The weather prediction model was envisioned by Bjerknes (1904). He listed seven

unknowns that govern the evolution of the atmosphere: Pressure P , temperature T ,

density ρ, humidity q and the three components of velocity vector v = ui + vj +wk.

The model’s equations is a set of 7 independent equations: The hydrodynamic

equations of motion or equation of momentum for the three coordinates (eq. B.1),

continuity equation or conservation of mass (B.2), the equation of state for ideal

gases (B.3), the first law of thermodynamics or conservation of energy (B.4) and a

conservation equation for water mass (B.5)

dv

dt
= −1

ρ
∇(P )−∇(φe) + F − 2Ω× v (B.1)

∂ρ

∂t
= −∇(ρv) (B.2)
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P = ρRT (B.3)

Q

T
= Cp

dlnT

dt
−RdlnP

dt
= Cp

dlnθ

dt
=
dS

dt
(B.4)

dq

dt
= E − C (B.5)

In addition to the prognostic variables described above, the model incorporates

other diagnostic variables and parameters. The equation of momentum (B.1) con-

tains ∇(φe) = gk, the Newtonian gravitational potential force, the frictional force

F and the angular velocity of the rotation of the Earth Ω. The equation of state of

an ideal gas (B.3) includes the parameter R, the gas constant for air or a corrected

version to account for the effects of humidity. The thermodynamic equation is de-

fined by the diabatic heat Q or the rate of change of Entropy S where Cp represents

the coefficient of specific heat at constant pressure, there is a more elegant way to

show the equation of energy conservation as the change of potential temperature

θ (given by eq. B.6, where P0 is a reference pressure), and shows that potential

temperature is conserved in absence of diabatic heating. The conservation of water

vapour mixing is governed by the difference between the sources of Evaporation (E)

and the sinks of Condensation (C).

θ = T (P0/P )R/Cp (B.6)

These equations lack a general analytical solution. In some idealized cases wave-

solutions can be found, such as Rossby waves, gravity waves or tropical waves. Other

approximations filter the low-order magnitude terms (quasi-geostrophic model),

takes the vertical motion of the flow as small perturbations about a mean height

(shallow water approximation), or neglects sources of vertical acceleration other

than pressure differences (hydrostatic approximation). For a general derivation of

the model’s equations and their wave solutions under these cases, the reader is ref-

ereed to general atmospheric dynamics text-books such as Holton (1972) or Kalnay

(2002).

In order to find a numerical solution, equations need to be discretized over a given

grid-size (of the order of 1 − 200 km) and timesteps (of a few minutes to hours),
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additional terms need to be included to represent the sources and sinks of processes

below truncation. The nature of these terms is explained with the following example:

Consider the conservation equation for water vapour written in flux form, expanding

the total derivate and doing the operation q× eq. (B.2) +ρ× eq. (B.5).

∂(ρq)

∂t
= −∇(ρvq) + ρ(E − C) (B.7)

In the real atmosphere, the variables contain scales that are resolved by the

model’s grid and smaller subgridscales. We represent the spatial average over a

grid by an over-bar and the primes as the sub-grid perturbation. The prognostic

variables are then (the effect of subgrid fluctuations in ρ is neglected):

u = ū+ u′ q = q̄ + q′ (B.8)

The “Reynolds” averaging procedure is applied in the equation (B.7), by defi-

nition the grid-box average of subgrid quantities is zero, e.g. u′q̄ = ū′q̄ = 0. Also

grid-average remains unchanged with the Reynolds averaging, e.g: ūq̄ = ūq̄. The

grid-average equation of (B.7) is thus:

∂(ρq̄)

∂t
= −∇(ρvq)−∇(ρv′q′) + ρ(Ē − C̄) (B.9)

The first term on the right hand side of eq. (B.9) is the grid-scale or resolved

advection term of moisture. The second term is the divergence of the eddy fluxes

of moisture or turbulent moisture transport. The last term is the molecular-scale

phase transitions of water.

The resolved terms are defined as “dynamics” or “large-scale flow” and can be

computed explicitly. The second and third terms on the r.h.s. of eq. B.9 are the

sinks and source terms of water vapour in the gridbox, they are defined as “sub-

grid” or “parametrized” terms and they are quite important, without them the

model integrations are not realistic after the first or second day (Kalnay, 2002).

The large-scale terms are resolved using discretization methods, this process is

defined as “dynamical core”. Their implementation and sources or errors is described

in section B.2. The subgrid-scale terms are provided by physical parametrizations or

simply “physics”, like the diabatic radiative effects (Q), water phase-transitions (E

and C), convective adjustment of vertical motions, turbulence of heat, momentum
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and water vapour caused by the interaction between the atmosphere and the lower

boundary condition and the effects of orography on the flow. A brief explanation

of the different parametrization schemes can be found in section B.3. In the next

section a brief history of the weather and climate modeling is given, which details

in the development of NWP, climate models and lately the “seamless” model

B.1 History of atmospheric prediction and climate

modelling

A weather forecast using Bjerknes model (eq. 1-5) was undertaken by Richardson

(1922). He applied a finite difference method to solve the system, but the results

after 6 hours were completely unrealistic due to an imbalance in the initial data

used (Lynch, 2006). Additionally a large timestep was employed, which was later

discover to be too large for the spatial domain, as it breached the Courant Friedrichs

and Lewy (CFL) stability criteria (Courant et al. 1928), see section B.2 for details).

The existence of these destabilizing high waves made impractical to integrate the

full set of Berjknes equations, a.k.a. “primitive model” equations.

The primitive equations were simplified using the technique of scale analysis to

filter high frequency components (Charney, 1951). The resulting equations are know

as the “quasi-geostrophic system”and can produce reasonable 24 hour forecasts of

large-scale structures. Nevertheless, these forecasts weren’t accurate enough and

research using the primitive equations continued. The first application of the prim-

itive equations was a success, producing a good simulation of the development and

occlusion of a frontal structure (Hinkelmann, 1951).

As primitive equation models became global, they were run for the whole sphere

(e.g. Kasahara et al. 1967). Although essentially they were the same models, they

were named differently as General Circulation Models (GCMs).

The effects of unresolved vertical motions were included by Manabe et al. (1967),

with the development of a dry and a moist convective parametrizations, the latter

was quite important as it also represented the radiative effects of clouds. Turbulent

motions were represented by a parametrization based on the similarity theory of

Monin and Obukhov (1954), and the effects of small gravity waves through the

vertical flow by Palmer et al. (1986).
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The discovery of the weather as a chaotic system by Lorenz (1963) lead to the

development of Ensemble Prediction Systems (EPS, Leith 1974), a combination of

different realizations of the same model. It went alongside the development of Data-

Assimilation techniques to represent error in initial conditions (see Kalnay 2002 for

an overview). More recently, EPS have also incorporated stochastic physics schemes

to represent model uncertainties (Palmer, 2001).

On a separate area of the atmospheric sciences, climate models were built from

low resolution GCMs adding other components of the Earth system such as Ocean or

Sea-Ice. Described as “Coupled Models”, many of them needed a flux adjustment

of heat and moisture on the exchange layer to produce good simulations (Lynch,

2007). The climate models gained more and more complexity, adding some extra

processes such as the effects of aerosols or land-use changes (e.g. Collins et al. 2011).

These models are now defined as Earth System Models (ESM).

The complexity and resolution of NWP and climate models have been continu-

ously growing. Nowadays climate models are able to simulate the day-to-day weather

phenomena, a very valuable capability to produce studies of extremes under climate

change (May, 2008). On the other hand NWP benefits from the representation

of Earth-System processes such as the radiative effects of biomass-burning, an im-

portant process driving short-range cloudiness and precipitation in tropical areas

(Milton et al., 2008). All these benefits lead to the conclusion that a unique model

could be employed for all timescales, such model is defined as seamless model, with

the additional schemes are bolted on particular systems if required, i.e DA for EPS

or sea-ice representation for long-timescales simulations.

B.2 Dynamical core

Before the dynamical core gets into action to solve the primitive equations, a few

choices must be made about the “resolution” of the model: the length of the hor-

izontal grid-size, number of vertical levels and the timestep. The sensitivity of the

results to these choices is usually very high, with the horizontal resolution being the

most important, as higher resolution enables more processes to be resolved. Pope

and Stratton (2002) found that some features of the climate of a GCM converge

when horizontal resolution increases (e.g. mid-latitude variability), while a number
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of significant features do not, such as rain or moisture processes. However, Demory

et al. (2013) has showed that the global hydrological cycle can converge at higher

resolutions (below 60km).

The choice of resolution is generally given by the computational availability

rather than a well-defined scale separation, which is absent in the atmosphere. This

lead to important errors below the truncation limit, which can cascade upward

to large scales contaminating the skill of the forecast (Tribbia and Baumhefner,

2004). The non-linear feedbacks across different scales is one of the main motiva-

tions for stochastic physics schemes. Therefore the present section contains a short

description of the dynamical core and the structural uncertainties, which may affect

feedbacks between resolved and parametrized scales.

The numerical solutions for the primitive equations can be obtained by finite

difference methods, where values from the previous or next timesteps and adjacent

points are taken to compute the derivates, or spectral methods, where the variables

are expanded in terms of a finite series of orthogonal functions (generally spherical

harmonics). The former provides a better representation of local discontinuous

behaviour (Cullen and Davies, 1991), whereas spectral models are faster to compute

at medium resolutions and do not have the problem of the singularity at the poles.

When a finite difference method is applied to a Partial Differential Equation

(PDE) it becomes a Finite Difference Equation (FDE). The solutions of the FDE

may not converge to the PDE if the wrong choices are taken. There are different

methods to substitute the derivates, like using the difference between the previous

and future timestep (centered approach), the difference between the present and

previous timestep (explicit) or between the future and present timestep (implicit).

The centered approach is generally the most accurate as its truncation error is of

second order, but a combination of the centered and implicit, known as “Semi-

Implicit”, is the most reliable (Simmons et al., 1978). In addition to the truncation

errors, some choices for the model setup could introduce computational wave-like

phenomena and unstable solutions. One example is the CFL criteria. We consider

the example of a one-dimensional advection equation (B.10), and produce the FDE

applying the “upstream scheme” method (B.11).

∂u

∂t
= −c∂u

∂x
(B.10)
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(
∂u

∂t

)
n

∼ un+1 − un−1

2∆t
(B.11)

The solution of (B.11) is given in equation (B.12), where µ = c∆t/∆X is know

as the Courant number. If the condition 0 <= µ <= 1 is not satisfied, the solution

is not bounded and after a few timesteps solutions will blow up, this is the CFL

condition (see sec. 3.2.3 of Kalnay 2002 for details).

un+1
j = (1− µ)unj + µunj+1 (B.12)

The constrain of the CFL became an important burden as higher resolutions

demanded shorter timesteps. The need for a GCM which could employ longer

timescales lead the development of the Semi-Lagrangian technique (SL, see review of

Staniforth and Cote 1991), which does no longer need to comply with the CFL stabil-

ity criterion and also posses a more accurate treatment of advection (Bermejo, 1990).

Most of the state-of-the-art GCMs employ the Semi-Implicit Semi-Lagrangian (SI-

SL) scheme as their dynamical core (Ritchie et al., 1995; Davies et al., 2004). How-

ever, the SL method has two main disadvantages: (i) Absence of formal conservation

properties, (ii) a higher internal diffusivity than previous schemes. The dissipation

created by the SL scheme is part of the physical motivation for one of the most

employed stochastic physics schemes, the Stochastic Kinetic Energy Backscatter

(SKEB, see sec. 2.2), which is widely tested in this thesis. Therefore a brief expla-

nation of the SI-SL scheme and its diffusive properties is given in section B.2.1. On

section B.2.2 one of the main consequences of the implicit dissipation of energy is

explained, the dissipation of the spectra of Kinetic energy on the mesoscale.

B.2.1 Semi-Lagrangian scheme

Semi-Lagrangian advection is based on the interpolation of fields from a “departure

point” most often using a backward Lagrangian trajectory. Considering the first-

order prognostic equation of a scalar field F with a source term Ψ:

dF

dt
= Ψ (B.13)

This equation may be integrated between times tn = n∆t and tn+1 = tn + ∆t

following the parcel of air that arrives at gridpoint xa at time tn+1, the gridpoint xa

is called the “arrival point”. The location of the parcel at time tn is represented by
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xd and defined as “departure point”of the parcel, which is generally not a gridpoint.

The change in F between time tn and tn+1 is simply the integral of Ψ along its

trajectory over the relevant time interval, where F n+1 = F (xa, t
n+1) and F n

d =

F (xd, t
n).

F n+1 − F n
d =

∫
Ψdt = Ψ̄∆t (B.14)

Errors are inevitably introduced via the estimation of the departure point xd,

estimation of departure point value F n
d and estimation of the trajectory time-average

Ψ̄. These estimations require interpolation. To obtain accurate results from a SL

integration scheme it is necessary to choose the order of interpolation carefully.

Interpolation using high degree polynomials is more accurate and gives much less

damping, but on the other hand it has an additional computational cost.

Linear interpolation is adequate for the terms used in the evaluation of the

trajectory, but more accurate interpolation is essential for the terms evaluated at

the departure point (Staniforth and Cote, 1991). There are several interpolation

schemes to the departure point, a list from the more diffusive to the more accurate

follows:

� Linear interpolation, it is not suitable as the damping is too large for all the

scales.

� Quadratic Lagrange, it is more viable and thus it was used in the early studies

of the scheme.

� Cubic interpolation gives very little damping and it is mostly at small scales.

� Quasi-cubic interpolation is a blend between linear and cubic interpolations

(see Figure 2 of Ritchie et al. 1995 for a schematic illustration the interpolation

method). It is faster but it can sharp gradients erroneously producing spurious

extrema (Wood N, unpublished results).

� Quintic interpolation: It is one of the highest order (5th) schemes. It has

a positive impact on the accuracy but additional cost. Sanchez et al. (2013)

found it was about 8% more expensive than the Quasi-cubic for a low resolution

climate run.
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The choice of interpolation scheme can have a large influence on the energetics of

low resolution models below grid-sizes of 200km (Chen et al., 1997; Stratton, 2004).

They lead to a weak mid-latitude variability (Greeves et al., 2006; Sanchez et al.,

2013). McCalpin (1988) computed the amplification factors |λ|2 of the SL scheme,

a |λ|2 > 1 would lead to computational instabilities, whereas a |λ|2 < 1 damps the

solution. He found that linear interpolation has the same spectral characteristics

as Laplacian viscosity (∇) and Quadratic and Quintic are equivalent to biharmonic

viscosity (∇2).

B.2.2 Diffusion of the Kinetic Energy Spectra

The Kinetic Energy (KE) of the atmospheric motions is dissipated by state-of-the-

art GCMs, either explicitly to prevent numerical instabilities or implicitly by the

dynamical core. This excessive energy dissipation may result in insufficient variabil-

ity and underdispersive ensembles (Thuburn et al., 2013).

An important impact on the KE dispersion is believed to affect the energy trans-

fer at smaller scales. An observational study of Nastrom and Gage (1985) showed

that KE spectra follows a k−3 dependence on a large scale, where k is the wavenum-

ber. The k−3 regime is dominated by rotational modes. Around wavelengths of 400

km there is a transition to a shallower k−5/3 dependence dominated by divergence

modes. Their study shows a similar curve for horizontal wind, vertical wind and

potential temperature (Fig. B.1). The KE spectra was computed from observations

made by instruments on-board commercial airlines.

The k−3 dependence on the large-scale is well explained by 2-D turbulence, but

the cause of the k−5/3 is still under discussion. Tung and Orlando (2003) argue that

the -5/3 slope is produced primarily from a forward energy cascade (downscale,

from larger to smaller scales), whereas Lilly (1989) argues that a small amount of

energy injected at small scales (from convection or other sources) cascades upscale,

producing the shallow spectra.

GCMs with low resolutions have problems in simulating the k−5/3 slope in the ki-

netic energy spectra. Terasaki et al. (2009) showed the spectra of different horizontal

resolutions for the Nonhydrostatic Icosahedral Atmospheric Model (NICAN, Satoh

et al. 2008). They conclude that a grid size less of 10 km is needed to reproduce the

k−5/3 power spectrum for NICAN. Similar results have been reported running the
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Figure B.1: Variance power spectra of wind and potential temperature based on aircraft

observations. Lines with slopes −3 and −5/3 are included for each variable, for compari-

son. From Nastrom and Gage (1985)

Met Office Unified Model (MetUM, sect. 4.1) across different horizontal resolutions

(Roberts M, 2013, personal communication). The inability of atmospheric models

to simulate the k−5/3 slope has important repercussions in their predictability, as

error in mesoscales could propagate upscale towards the large scales within one or

two days (Tribbia and Baumhefner, 2004).

B.3 Parametrizations

The problem of representing the bulk effects of features smaller than the gridbox on

the resolved scales is not a trivial one. These features are quite complex and too

diverse to be easily generalized, like clouds, or the effect of orographic mountains over

the flow. In addition, these features are fundamental drivers of atmospheric flow,

e.g. the radiative heating or cooling caused by molecular absorption and scattering,

heating effects of the cumulus clouds over the tropics. Despite its importance,

the formulation of parametrizations is restricted to represent the essential aspects

of the physical processes, as they should ensure mathematical, computational and

conceptual tractability (McFarlane, 2011).
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Parametrized processes include gravity waves caused by orography or a rapid

release of latent heat in deep convective updraughts (described in sect. B.3.6),

radiative effects of solar and terrestrial radiation on the Earth’s surface and atmo-

sphere (sect. B.3.1), the formation and evolution of clouds and precipitation (B.3.2

and B.3.3), different kinds of turbulence (B.3.4) and the most uncertain of these pro-

cesses, the moist convection events where water ascends to compensate an energy

imbalance (B.3.5).

There are important links amongst parametrizations. They strongly influence

each other through their changes in the large-scale variables. When clouds are devel-

oped they alter the heating profile of the column, leading to changes in convection

and the internal composition of the cloud, which might lead to various forms of pre-

cipitation. Many of the physical processes naturally re-arrange energy in the vertical

column. Therefore Parametrizations generally focus on the effects of subgrid phys-

ical processes within the vertical column. However, there are important subgrid

phenomena that emerge from the horizontal transport of heat, moisture or momen-

tum (Huang, 1990). These interactions are neglected by the current formulation of

physical parametrizations.

As cited above, the development of realistic parametrizations is paramount for

an adequate representation of the atmosphere, therefore they are subjected to a very

intense research that covers many different areas of the parametrized processes. The

present section gives a simple explanation of the different parametrizations with an

emphasis on its uncertainties. For a more detailed description the reader is referred

to textbooks about parametrizations like Stensrud (2007) or Trenberth (1992).

B.3.1 Radiation

The electromagnetic radiation interacts with several atmospheric components through

absorption, emission and scattering at molecular and micro scales. These interac-

tions are usually the major influence on local and global temperature. Given that

the source of radiation is quite different from solar and terrestrial sources, their

radiative effects in the atmosphere are consider separately.

� Short-Wave (SW) radiation (λ ≤ 3.7µm). It comes from the Sun, and is

absorbed by Ozone in the stratosphere and scattered by clouds and aerosols

in the troposphere.
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� Long-Wave (LW) radiation (λ ≥ 3.7µm). It is emitted by the Earth surface

and atmosphere, dominated by absorption of water vapour and clouds in the

troposphere and Carbon dioxide in the stratosphere.

The parametrization of radiation provides a fast and accurate method to deter-

mine the heat released or absorbed by radiative processes, represented by the Qrad

term, the major component of the Q term in the energy equation (eq. B.4). It is

the sum of the net SW and LW in a given point of the atmosphere (eq B.15), where

dF net is the divergence between the upward and downward radiative fluxes, and it

is computed by the radiative transfer equation.

Qrad =
g

cp

(
dF net

SW

dp
+
dF net

LW

dp

)
(B.15)

Net fluxes are computed by the radiative equation, an integral of the absorp-

tion over the frequency spectra determined by the amount of the absorber and the

absorption coefficients kν(p, T ). The most used method to integrate the radiative

equation is the correlated-k method (Fu and Liou, 1992), where wavelengths with

similar kν(p, T ) are binned together into “quadrature points” defined as k. This

approximation introduces a marginal error in comparison to more complete “line

by line models” where the absorption is computed for each spectral line ν. The

integration of the radiative equation is one of the most expensive bits of a GCM

given that the radiative equation must be integrated for all the quadrature points in

each gridpoint on the 3-D field. The radiation code is thus called every 2-3 hours, a

timescale longer than GCM timesteps.

The approximations made to obtain the radiative fluxes are quite accurate for

clear skies, where radiation only interacts with gases and aerosol particles. However,

when clouds appear they change the radiative fluxes of SW and LW substantially.

Normally the radiation parametrization follows the simple approach given in eq.

B.16, where Fclr is the clear sky radiation, Fo is the overcast sky and C is the

fractional cloud amount.

F = Fclr (1− C) + FoC (B.16)

Radiative fluxes from clouds (Fo) are computed following the assumption that

clouds are randomly overlapped in a column, which is very simplistic to real cloud-

radiation interactions. These assumption lead to important biases on the heating
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rates (Barker et al., 1999). There are also large uncertainties about the radiative

properties of the cloud composition, e.g. ice water has complicated scattering rela-

tionships due to its high density of shapes (Fu, 2007).

A different approach to represent the radiative effects of cloud inhomogeneity

was taken by Pincus et al. (2003). They developed the Monte Carlo Independent

Column Approximation (McICA), a scheme that employs stochastic approaches to

calculate the radiative fluxes in vertical subcolumns. Some of the details of the

scheme are explained in the next subsection.

Monte Carlo Independent Column Approximation (McICA)

The McICA scheme aims to minimize the cost of the Independent Column Approx-

imation scheme (ICA), described in Cahalan et al. (2004); Barker et al. (1999). The

ICA scheme splits the GCM column into a number N of subcolumns with the col-

umn’s water content distributed to different “overcast” subcolumns. The radiative

transfer calculation is performed for each subcolumn independently.

The ICA method provides accurate domain-average fluxes. However, their com-

putational expense is far too high for operational GCMs, given that it needs to

perform N times more radiative-transfer calculations. The McICA scheme ran-

domly chooses a set of subcolumns for each quadrature point, minimizing its cost

but introducing conditional random errors. The subgrid structure of the cloud is

simulated by the algorithm of Räisänen et al. (2004), which provides vertical overlap

cloud fraction and cloud condensate.

The effects of the McICA noise have been extensively studied for GCMs across

timescales. Barker et al. (2008) reported that the noise has statistically insignificant

effects on 6 GCMs. Hill et al. (2011) tested McICA in MetUM. The original version

of McICA gave worse short-range forecasts of near-surface temperature than the

previous parametrization of radiation which had cloud random overlap assumptions.

Including two methods to reduce the McICA noise (restricting the random sampling

of subcolumns to the cloudy ones and assigning the most important k-terms to each

subcolumn), the surface temperature forecasts were improved.

Despite of its stochastic nature, the McICA scheme is different from current

stochastic physics schemes such as those described in chapter 2. Its distinction

reflects the fact that radiation is a well understood process and there is very little



236 APPENDIX B. DESCRIPTION OF A GLOBAL CIRCULATION MODEL

room to represent the uncertainty in this aspect. McICA is designed to reduce

model error by providing approximate solutions to the full problem rather than

exact solutions to some approximate problem.

B.3.2 Large-Scale Cloud scheme

Clouds are the manifestation of phase changes in the atmosphere within a complex

turbulent flow and chemical interactions with aerosols (Bodenschatz et al., 2010).

Clouds are a fundamental component of the atmosphere, as they strongly inter-

act with solar and terrestrial radiation changing the local temperature and thus

influencing the general circulation. They are also one of the main drivers of the

hydrological cycle, through condensation and precipitation. Clouds have therefore

a very important role on weather forecasts and climate predictions.

The representation of the effects of clouds is artificially divided in a GCM. The

moist convective parametrization simulates cumulus clouds caused by strong vertical

ascent (see sect. B.3.5), whereas the more usual stratiform clouds are simulated by

the Large-scale cloud schemes. The internal composition of the clouds and precipita-

tion processes are also treated separately in microphysics schemes (a.k.a. large-scale

rain schemes, see sect. B.3.3).

The main purpose of a Large-scale cloud scheme is to calculate the amount of

condensate qcl and fractional coverage of cloud within a gridbox Cl. Quantities that

are handed to the microphysics scheme to estimate the composition and properties

of water and ice, and later to the radiation parametrization to compute the radiative

effects of these particles.

In cloud schemes, the local variations of moisture and temperature from the

gridbox mean, defined as s, can be described by a Probability Density Function

(PDF) defined as G(s) (Sommeria et al., 1977). The gridbox values are weighted by

G(s) as shown in eq. B.17 for Cl, and B.18 for qcl, where Qc represents the mean

condition of the gridbox.

Cl =

∫ ∞
s=−Qc

G(s)ds (B.17)

qcl =

∫ ∞
s=−Qc

(Qc + s)G(s)ds (B.18)
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The cloud parametrization problem is essentially one of how to parametrize the

form of G(s). Some schemes use a parametrized PDF such as Smith (1990), others

diagnose the PDF from the cloud’s prognostic variables (Tiedke, 1993), e.g. cloud

erosion by entrainment reduces the width of the PDF. Wilson et al. (2008) provides

a discussion of the different strategies to determine G(s).

B.3.3 Microphysics

The composition of clouds determines their radiative properties (e.g. brightness), the

internal turbulence that drives circulation around clouds, and precipitation events

of different kinds (drizzle, graupel, snow). Therefore the parametrization of mi-

crophysical processes is fundamental for a GCM. Nevertheless, large uncertainties

remain. Clouds are one of the primary sources of uncertainties for the climate pre-

dictions (Heintzenberg and Charlson, 2009). Different NWP models can produce a

large range of simulated ice water paths (Waliser et al., 2009).

The difficulties in building a realistic microphysics scheme lie in the large number

of interactions amongst cloud particles. Figure B.2 shows a flow diagram of these

interactions in the state-of-the-art microphysics scheme of Seifert and Beheng (2006),

a two dimension scheme that computes the particle mixing ratio and concentration.

In addition to the interactions, there is also a wide variety of the properties of one

particle, e.g. there are 80 different types of ice habits or shapes (Pruppacher and

Klett, 2010). A wrong choice of habit can lead to errors in the radiative properties,

formation of precipitation and the evolution of the cloud as a whole (Khvorostyanov

and Curry, 2005).

Modeled precipitation is also unrealistic in many aspects (Stephens et al., 2010).

One of the most common errors is the excessive drizzle produced by strato-cumulus

clouds (Bodas-Salcedo et al., 2011). The precipitation is controlled by the raindrop

size distribution (larger drops fall faster) and follows Marshall and Palmer (1948)

simple gamma function, given in eq. B.19, where N(D) is the density of droplets as a

function of diameter D, N0 is the intercept parameter and λ the slope parameter. In

many microphysics schemes N0 is assumed to be a constant, although observations

show that it may vary over 3 orders of magnitude for ice (Field et al., 2005). A more

complex relationship for N0 could improve the representation of drizzle (Abel and

Boutle, 2012).
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Figure B.2: Flow diagram of microphysical processes as implemented in the Seifert and

Beheng (2006) two-moment microphysics scheme. From Karlsruhe Institute of Technology

website

N(D) = N0e
−λD (B.19)

The effects of aerosols in clouds and precipitation are also important and not

well simulated by present models. They influence radiative aspects such as bright-

ness of clouds and water aggregation. Many of the Earth Model Systems include

interactive aerosols schemes where the evolution of certain species is dependent of

photo-chemical processes and atmospheric thermodynamics. The impacts of aerosols

in NWP timescales are also important (Milton et al., 2008). For a detailed descrip-

tion of an aerosol scheme, its impacts and their degree of complexity, the reader is

referred to Mulcahy et al. (2014).

B.3.4 Planetary Boundary Layer (PBL)

The atmosphere is in a radiative imbalance. Outgoing radiation from the Earth’s

surface and Ocean does not compensate for the absorption of SW, the energy balance

is compensated by an additional transfer of energy from the surface to the atmo-

sphere know as “sensible heat”, and evaporation of moisture from the surface cover



B.3. PARAMETRIZATIONS 239

to the atmosphere known as “latent heat”. In addition, there is also a surface flux

of momentum caused by wind shear. The lower section of the atmosphere, where

the interactions amongst these fluxes and the atmospheric flow take place, is know

as the Planetary Boundary Layer (PBL or BL). It can be as shallow as 100m during

night to few thousand meters when the atmosphere is heated from the surface.

The mechanism of the atmosphere to redistribute the surface fluxes throughout

the PBL is turbulence. It has timescales from seconds to few hours and spatial

scales of centimeters to few hundred meters (Stensrud, 2007). Therefore they are

small scale and should be parametrized. The PBL parametrization determines to-

gether with the surface parametrization the surface fluxes and their mixing over the

boundary layer.

The PBL and land-surface parametrizations are crucial for climate, as they de-

termine the radiation reflected (albedo) by the surface and ocean, besides the hy-

drological cycle through evaporation. They also interact with radiation through

stratocumulus clouds and fog, and control the triggering of convection through in-

stabilities from the PBL. For weather forecasts, the realism of processes occurring

in the PBL is also important as many forecast products are needed near the surface

(e.g. fog forecast for airports, surface temperature for icy-roads).

Turbulent terms are characterized by the correlations of subgrid variables, such

as the turbulent moisture term v′q′ of equation B.9. The traditional approach has

been to represent these terms as turbulent diffusion (eq. B.20), which is know as

“first-order approximation”(Louis, 1979).

v′q′ = K
∂q

∂z
(B.20)

In the MetUM boundary layer scheme, the nature of the K coefficients is given

by the different types of boundary layer (Lock et al., 2000). There are 6 different

types which are classified according to its stability and presence of clouds. Figure

B.3 provides a schematic representation of the six types of boundary layer with the

profiles of virtual potential temperature θv and K(z). For stable types, the first-

order approximation works well. However, more complex derivations for K, or even

higher order closures are required for unstable conditions. For a detailed description

of the PBL and its parametrization, reader is referred to Stull (1988) textbook.
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Figure B.3: Schematic representation of the six boundary layer types, with profiles for

surface turbulence Ksurf and Stratocumulus turbulence KSc. From Lock et al. (2000).

In spite of some advances, the boundary layer is not represented realistically in

models (Teixeira et al., 2008b). There are some important issues that need to be

addressed such as the representation of subgrid vertical fluxes, cloud fraction and

water for the development of more general parametrization that represents all types

of boundary layers.

In terms of land-surface parametrizations, the representation of surface rough-

ness, vegetation or soil types is controlled by many uncertain or unphysical param-

eters. The reader is refereed to Overgaard et al. (2006) for a review on land-surface

schemes and their uncertainties.

B.3.5 Convection

Surface fluxes of energy and moisture have the potential to perturb the atmospheric

vertical profile of temperature and thus give rise to buoyancy forces that provoke

a vertical ascent of air masses. When these air masses reach their level of con-

densation, they release latent heat and feed back on the column instability. This

phenomena is know as moist convection and is one of the most challenging process to

parametrize given its uncertainties and importance. Moist convection is associated
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to the emergence of cumulus clouds, therefore the convection parametrization is also

known as cumulus parametrization.

The strength of the convective instability determines its vertical extend. Weak

episodes are defined as shallow convection. They are constrained to the boundary

layer and give birth to low-level stratocumulus, the most prominent type of cloud

in the subtropical oceans. Strong convection is defined as deep convection, where

vertical displacements may reach the tropopause. Deep convection is a crucial aspect

of the tropical climate and an important driver of the large-scale circulation in the

mid-latitudes. Convection is also associated to a downdraft (or subsidence) around

the cloud to conserve mass, mixing of environmental air in the cloud, known as

entrainment, and cloudy air with the environment, known as detrainment.

Moist convection is an amalgam of updrafts and downdrafts across different

scales. Figure B.4 shows a schematic description of the intrinsic cumulus processes

whose formulation poses large challenges. In addition to the intrinsic uncertainties

in the representation of one particular convective cloud episode, the representation

of the large scale effects of an ensemble of these clouds is even more challenging.

Figure B.4: Cumulus cloud associated processes where major uncertainties in formulation

exits. From Arakawa (2004).

The strength of convection is normally represented by the Convective Available

Potential Energy (CAPE), the maximum energy available to an ascending parcel

(Emanuel, 1994). CAPE is related to the terms that represent convection in the

large-scale equations, the apparent heat source Q1, the apparent moisture sink Q2



242 APPENDIX B. DESCRIPTION OF A GLOBAL CIRCULATION MODEL

and the apparent momentum sink Q3. Following Yanai et al. (1973), the budget of

the apparent source for moist static energy h = CpT + gz+Lvq is given in eq. B.21.

Q1 −QR −Q2 = −∂ω
′h′

∂p
(B.21)

There are different approaches to the cumulus problem. A few review stud-

ies explain their main advantages and disadvantages (Arakawa, 2004; Plant, 2010).

Probably the most used one is the mass-flux approach of Arakawa and Schubert

(1974) and Tiedtke (1989), where convection is characterized by an ensemble of

plumes (cumulus) over an area of tolerably uniform forcing. These plumes are char-

acterized by the convective mass flux (eq. B.22), where σ is the fractional area

covered by cumulus, ωc is the bulk vertical velocity of the convective plumes on

pressure coordinates and g is the gravity constant.

M = −σω
c

g
(B.22)

The vertical eddy fluxes that define Q1, Q2 and Q3 are proportional to the

difference between the convective plume and environment times the mass flux (eq.

B.23), where χ is a given field which could be moisture q, static energy s = CpT +gz

or velocity v.

ωχ = −gM c(χc − χ) (B.23)

The mass flux approach assumes that there is an exchange of mass between

cloud and environment by entrainment ε and detrainment δ. This is one of the

main setbacks of the mass flux formulation, as there is not a universal formulation

of entrainment rates applicable to all convective situations. They normally follow a

vertical profile, although there is extensive research to produce adaptive formulations

for entrainment and detrainment (Derbyshire et al., 2011; Stirling and Stratton,

2012). Some of these approaches have produced substantial improvements in the

representation of tropical variability (Bechtold et al., 2008).

The apparent heat source of convection is given in equation B.24, where s is the

static energy. Its physical interpretation is that convection affects the large-scale

environment by heating through compensating subsidence, detrainment of cloud air

into the environment and evaporation of cloud and precipitation.
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Q1 = QR − gM c ∂s

∂p
+ δ(sc − s)− LE (B.24)

There are several pitfalls in the representation of convective events in present

GCMs. As horizontal resolution of models increases, the number of convective

plumes within a gridbox decreases and fluctuations on their bulk effects become

larger (Craig and Cohen, 2006; Shutts and Palmer, 2007). Figure B.5 shows the

mean mass flux from very a high resolution atmospheric simulation able to resolve

convection (more details in Plant and Craig 2008 and Cohen and Craig 2006). For

typical horizontal resolutions of climate models (∼ 100 km ), the Probability Density

Function (PDF) of the mean mass fluxes can be approximated to a delta function,

but for higher resolution there are many other likely outcomes for the “resolved”

mass flux. Another problem of the convection schemes is their lack of communi-

cation between model columns. Convection can organize in large-scale phenomena

such as Mesoscale Convective System (MCS), that spans spatial scales up to 500km.

Present schemes have severe difficulties to represent MCS adequately. The emer-

gence of these uncertainties have made convective parametrization the ideal Trojan

horse to introduce stochasticity in atmosphere models, this issue is broadly discussed

in chapter 2.

B.3.6 Gravity Wave Drag

GCMs in the early 1980 had excessively strong mid-latitude westerly (easterly)

stratospheric winds in the winter (summer), making obvious that a sink of momen-

tum to balance the meridional transport was missing (Palmer et al., 1986). There

are atmospheric waves, known as Gravity Waves (GW), that can deposit momentum

and exert a drag on the flow. Although drag implies a deceleration, forces produced

by GW dissipation can either accelerate or decelerate atmospheric winds.

GW are generated by lower atmospheric sources like flow over irregular orogra-

phy such as mountains and valleys, and uneven distribution of diabating heating

associated with convective sources, fronts or jet imbalances. The spatial scales of

these waves are on the range of 5-500 km horizontally and therefore their effects on

the main flow need to be parametrized in GCMs. Current GW parametrizations

are divided between orographic GW and non-orographic GW and are extensively

described and evaluated in review papers like Kim et al. (2003) and Alexander et
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Figure B.5: Frequency plot of total convective mass flux per unit area (at a height of 2

km) obtained from CRM simulations of Cohen and Craig (2006). From Plant and Craig

(2008)
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al. (2010).

GW parametrizations are fundamental for the representation of the middle-

atmosphere and thus they are widely used in state-of-the-art GCMs. They provide

a function for the vertical flux of pseudo momentum flux and three dimension wave-

propagation properties. However, they include a number of important simplified

assumptions about the basic gravity-wave dynamics such as:

� Simulated gravity waves propagate only in the vertical up to a height where

they break and deposit momentum.

� All GW parametrizations employ tunable parameters which act to scale the

wave drag and/or change the breaking heights, these parameters remain diffi-

cult to quantify with observations (Alexander et al., 2010).

� The representation of sources of non-orographic waves is largely ad-hoc, as

they don’t fully interact with the sources of gravity waves (McFarlane, 2011).
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Bouttier F, Vié B, Nuissier O, Raynaud L (2012): Impact of Stochastic Physics in

a Convection-Permitting Ensemble. Mon. Wea. Rev., 140, 3706–3721.

Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE (2008): The MOGREPS

short-range ensemble prediction system. Q. J. R. Meteorol. Soc., 134, 703–722.

Bowler NE, Arribas A, Beare SE, Mylne KR and Shutts GJ (2009): The local ETKF

and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system.

Q. J. R. Meteorol. Soc., 135, 767–776.

Brown AR, Beare RJ, Edwards JM, Lock AP, Keogh SJ, Milton SF and Walters

DN (2008): Upgrades to the boundary-layer scheme in the Met Office numerical

weather prediction model. Boundary-Layer Meteorol., 128, 117–132.

Brown A, Milton S, Cullen M, Golding B, Mitchell J, Shelly A (2012): Unified

Modeling and Prediction of Weather and Climate: A 25-Year Journey. Bull. Amer.

Meteor. Soc., 93, 1865–1877.

Brankart JM (2013): Impact of uncertainties in the horizontal density gradient upon

low resolution global ocean modeling, Ocean Model., 66, 64–76.

Buizza R, Miller M and Palmer TN (1999): Stochastic representation of model

uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol.

Soc., 125, 2887–2908.

Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei M, and Yuejian Z (2005): A

comparison of the ECMWF, MSC and NCEP global ensemble prediction systems,

Mon. Wea. Rev., 133, 1076-1097

Buizza R (2008): The value of probabilistic prediction. Atmosph. Sci. Lett., 9,36–42.

Cahalan RF, Ridgway W, Wiscombe WJ, Gollmer S and Harshvardhan (1994): In-

dependent Pixel and Monte Carlo Estimates of Stratocumulus Albedo. J. Atmos.

Sci., 51, 3776–3790.

Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath U,

Ebert EE, Brown BG and Mason S (2008): Forecast verification: current status

and future directions. Met. Apps, 15, 3–18.



BIBLIOGRAPHY 251

Catto JL, Shaffrey LC and Hodges KI (2010): Can Climate Models Capture the

Structure of Extratropical Cyclones?. J. Climate, 23, 1621–1635.

Charney JG (1951): Dynamic forecasting by numerical process, Compendium of

Meteorology, American Meteorological Society, Boston, pp. 470–482

Charron M and Manzini E (2002): Gravity waves from fronts: Parameterization

and middle atmosphere response in a general circulation model. J. Atmos. Sci.,

59, 923–941.

Charron M, Pellerin G, Spacek L, Houtekamer P, Gagnon N, Mitchell H and Michelin

L (2010): Toward random sampling of model error in the Canadian ensemble

prediction system. Mon. Wea. Rev., 138, 1877–1901.

Chen M, Rood RB and Takacs LL (1997): Impact of a semi-Lagrangian and an

Eulerian dynamical core on climate simulations. J. Climate, 10, 2374–2389.

Cho HK, Bowman KP and North GR (2004): Equatorial waves including the

Madden-Julian Oscillation in TRMM rainfall and OLR data, J. Clim., 17,

4387–4406.

Collins WJ and Coauthors (2011): Development and evaluation of an Earth-system

model–HadGEM2, Geosci. Model Dev. Discuss., 4, 997–1062,

Cloke HL and Pappenberger F. (2008): Evaluating forecasts of extreme events for

hydrological applications: an approach for screening unfamiliar performance mea-

sures. Meteorological Applications, 15, 181–197.

Cohen BG, Craig GC (2006): Fluctuations in an Equilibrium Convective Ensemble.

Part II: Numerical Experiments. J. Atmos. Sci., 63, 2005–2015.

Courant R, Friedrichs KO and Lewy H (1928): Uber die partiellien Differenzengle-

ichungen der mathematischen Physik, Math. Annalen, 100, 32–74.

Craig GC and Cohen BG (2006): Fluctuations in an equilibrium convective ensem-

ble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 1996–2004.

Cullen MJP and Davies T (1991): A conservative split-explicit integration scheme

with fourth-order horizontal advection. Q.J.R. Meteorol. Soc., 117,993–1002.



252 BIBLIOGRAPHY

Cullen MJP (1993): The unified forecast/climate model. Meteor. Mag., 122, 81–94.

Cusack S, Edwards JM and Crowther JM (1999): Investigating k distribution meth-

ods for parameterizing gaseous absorption in the Hadley Centre Climate Model,

J. Geophys. Res., 104(D2), 2051–2057.

D’Andrea F, Tibaldi S, Blackburn M, Boer G, Deque M, Dix MR, Dugas B, Ferranti

L, Iwasaki T, Iwasaki T, Kitoh A, Pope V, Randall D, Roeckner E, Straus D, Stern

W, van den Dool H and Williamson D. (1998): Northern Hemisphere atmospheric

blocking as simulated by 15 atmospheric general circulation models in the period

1979–1988. Climate Dynamics, 14, 385–407.

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA and

Wood N (2005): A new dynamical core for the Met Office’s global and regional

modelling of the atmosphere. Q.J.R. Meteorol. Soc., 131,1759–1782.

Davis C, Brown B and Bullock R (2006): Object-based verification of precipitation

forecasts. Part I: methodology and application to Mesoscale Rain Areas. Mon.

Wea. Rev., 134, 1772–1784.

Davis C, Brown B and Bullock R. (2006): Object-based verification of precipitation

forecasts. Part II: application to convective rain systems. Mon. Wea. Rev., 134,

1785–1795.

Dawson A, Palmer TN and Corti S (2012): Simulating regime structures in weather

and climate prediction models, Geophys. Res. Lett., 39, L21805.

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U,

Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L,

Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L,
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