
 1 

 
 

 
 
 

The Quiet Eye in a Throwing and Catching Task: 
Visuomotor Skill of children with and without 

Developmental Coordination Disorder 
 
 
 

Charlotte A L Miles 
 
 

Submitted by Charlotte Alice Louise Miles to the University of Exeter as a 

thesis for the degree of Doctor of Philosophy in Sport and Health Sciences in 

September 2014 

 

 

 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without 

proper acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved 

for the award of a degree by this or any other University. 

 

 

Signed………………………………………

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43094122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract 

Knowing where and when to look is critical for effective performance of visually 

guided tasks.  A gaze strategy termed the quiet eye (QE; the final gaze before 

the onset of a critical movement) is strongly associated with motor skill 

proficiency, with earlier and longer QE periods leading to improved visuomotor 

control.  Children with poor motor proficiency, such as those with 

Developmental Coordination Disorder (DCD), have impairments in the pick-up 

and processing of visual information, translating into poorly coordinated 

movements.  The purpose of this project therefore was to perform the first 

examination of the QE strategy in children of different motor coordination 

abilities and furthermore to investigate the efficacy of task-specific QE training 

(QET) to improve the skills of children with and without DCD beyond the effects 

of a standard coaching technique.  Study 1 determined that children with low 

motor coordination had later, shorter QE durations in comparison to coordinated 

children and as a result, performed worse in a specified motor task (throwing 

and catching).  Study 2 therefore performed two experiments aimed at 

developing an appropriate but brief QET protocol for children to improve their 

throwing and catching ability.  These experiments found that typically 

developing children were able to increase their QE durations with QET and this 

was reflected in a durable improvement in their motor skill execution.  The final 

study examined this QET intervention in children with DCD.  This was the first 

application of QET in a clinical population, and found that children with DCD 

were able to improve their QE durations, and make robust changes to their 

visuomotor control.  These studies associate a longer QE with motor skill 

proficiency in children, and provide an important adjunct to current therapeutic 

intervention for children with poorly developed motor skills.  
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Abbreviations and Definitions 

The following abbreviations are commonly used throughout this thesis.  All are 

defined at first mention, after which the abbreviation will be used. 

Methodological Abbreviations 

QE  Quiet Eye – the gaze strategy denoting the final fixation on a target 

location or object before the onset of a critical movement. 

QET  Quiet Eye Training – a training protocol teaching individuals to 

employ the QE strategy using video or verbal instructions. 

TT  Traditional Training – established training or coaching techniques 

that have been used to improve motor performance. 

BL The baseline measure – A measure of a variable taken prior to 

training. 

R1 The first retention – A measure of a variable taken immediately after 

training has occurred. 

R2 The second retention – A measure of a variable taken after a delay 

of 6-8weeks of no training or dedicated practice. 

MABC-2  Movement Assessment Battery for Children (2nd edition) – this is a 

validated assessment of motor coordination ability (Henderson, 

Sugden & Barnett, 2007). 

 

Population and Grouping Abbreviations 

LMC Low motor coordination – Children classified as having below 

average motor coordination ability (although not necessarily a 

diagnosable developmental disorder). 

MMC Median motor coordination – Children classified as having average 

motor coordination ability. 
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HMC High motor coordination – Children classified as having above 

average motor coordination ability. 

DCD  Developmental Coordination Disorder – A condition that affects 

  the development and learning of motor skills. 

TD Typically Developing – Children who have no neurological, learning 

or developmental disorder that affects their motor performance. 

 

Measure Abbreviations 

FT Flight time – The time (ms) a ball travels in the air.  FT1 refers to the 

throw time (ball release to wall contact) and FT2 refers to the catch 

time (wall contact to trial end). 

QE1  The targeting QE period that takes place prior to the throw in a 

throwing and catching task (pre-throw phase).  In chapter 3 and 

chapter 4 Experiment 1, QE1 is defined as ‘the final fixation within 3° 

of visual angle for 100ms or more on a target location, before to the 

onset of the throw’.  This definition was refined in Chapter 4 

Experiment 2 to ‘the final fixation within 3° of visual angle for 100ms 

or more on a target location, before to the onset of the throw 

foreswing’. 

QE2 The tracking QE period that takes place prior to the catch in a 

throwing and catching task (pre-catch phase).  Throughout this 

thesis, QE2 is defined as ‘the final tracking gaze within 3° of visual 

angle for 100ms or more on the ball, before the onset of the catch’. 

EA Elbow angle – The angle (°) of the elbow joint measured at the point 

of the ball contacting the hands of the participant.
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1.1 Introduction 

 In sport, highly skilled performers can execute accurate and well-timed 

movements that lead to greater task success.  However historically the 

cognitive contribution to the execution of a skilled movement has been 

overlooked (Moran, 2009).  Sensory input is essential for guiding a movement 

outcome in visually guided tasks, so how sensory information is obtained, 

processed and acted upon is highly relevant to successful performance.  

Furthermore, research examining how we can optimise the uptake and 

processing of sensory information has identified a specific gaze strategy termed 

the quiet eye (QE; Vickers, 1996, 2007).  The QE is a specific gaze or fixation 

on a visual cue immediately prior to movement, and in adult performers has 

been show to distinguish between performers of different proficiencies and 

performance outcome.  

The study of motor skills in children has also demonstrated that some 

children can execute movements more fluently and accurately than similarly 

aged counterparts with no discernable motor dysfunction (Lubans, Morgan, 

Cliff, Barnett, & Okely, 2010).  However, there is limited research investigating 

the differences in sensory and perceptual skills of these high and low skilled 

children, and whether training the detection and processing of visual information 

may help children to improve their movement execution.  There is a greater 

body of literature that has focused on determining the visuomotor impairments 

relating to one specific movement disorder termed developmental coordination 

disorder (DCD). The existence of a visuomotor deficit in children with DCD 

appears to be in little doubt (Wilson & McKenzie, 1998), however as yet, it is 

unclear what effect this condition has on children’s gaze strategies during 
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sports skills.  Furthermore no empirical research has investigated the QE in 

children, with or without DCD. 

Therefore the purpose of this thesis was to investigate the QE in 8-10 

year old children of different motor coordination abilities and determine whether 

training the timing and location of the QE to mimic highly skilled children would 

increase the performance of typically developing children and children with 

DCD.  The hypotheses of this thesis were (1) highly skilled children would have 

earlier, longer QE durations in comparison to median and low skilled children 

and (2) by training children with low to median motor skill to lengthen their QE 

durations, their motor skill performance would also increase over and above the 

effect of a standard coaching or training technique.  The final stage of this 

thesis was (3) to examine the efficacy of a QET intervention for children with 

DCD.  This is the first study to investigate the QE in a clinical population, and 

will examine the possibility of QET as an adjunct to therapy for children with 

DCD. 

 

1.2 Scope of this thesis 

The second chapter of this thesis reviews the relevant literature relating 

to three areas.  First, the existing research of visuomotor skill and the QE of 

expert and novice performers will be considered, particularly from a sport and 

physical activity viewpoint.  The second part will consider DCD in children and 

particularly the literature relating to the visuomotor skills of these children.  The 

third section of chapter 2 discusses catching skill in children, a relevant motor 

skill that will be examined throughout this thesis.    
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 Chapters 3-5 are made up of the experimental studies of this project.  

Chapter 3 addresses the first hypothesis of the thesis, examining the QE in 

children of different motor coordination abilities.  Chapter 4 addresses the 

second hypothesis, using the elite gaze strategies identified in chapter 3, to 

formulate and develop a QET protocol (across two experiments) to improve the 

catching skill of typically developing children.  Finally chapter 5 addresses the 

third hypothesis by applying the QET intervention to children with DCD.  The 

final chapter 6 brings these studies together to discuss their findings, consider 

theoretical and practical implications and identify future progressions in this field 

of research. 

 

1.3 List of Publications and Conference Abstracts 

 

1.3.1 Publications 

Chapter 3 published as: Wilson, M.R., Miles, C.A.L., Vine, S.J., & Vickers, J.N. 

(2013). Quiet eye distinguishes between children of high and low motor 

coordination abilities, Medicine and Science in Sport and Exercise, 45(6), 1144-

51. 

Chapter 4, experiment 1 published as: Miles, C.A.L., Vine, S.J., Wood, G., 

Vickers, J.N., & Wilson, M.R. (2014). Quiet eye training improves throw and 

catch performance in children. Psychology of Sport and Exercise, 15, 511-515. 

Chapter 4, experiment 2 submitted as: Miles, C.A.L., Wood, G., Vine, S.J., 

Vickers, J.N. & Wilson, M.R. (under review). Exploring the efficacy of QET for 
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long-term learning in the catching performance of children, European Journal of 

Sport Science (SI). 

Chapter 5 submitted as: Miles, C.A.L., Wood, G., Vine, S.J., Vickers, J.N. & 

Wilson, M.R. (under review). Quiet eye training facilitates catching performance 

in children with Developmental Coordination Disorder, Research in 

Developmental Disabilities. 

 

1.3.2 Conference Abstracts  

Miles, C.A.L., Vine, S.J., Vickers, J.N., & Wilson, M.R. (2012, July). Quiet eye 

distinguishes between children of high and low motor coordination abilities. 

Paper presented at ICSEMIS conference that also hosted British Association of 

Sport and Exercise Science annual conference, Glasgow, Scotland. 

Miles, C.A.L., Vine, S.J., Wood, G. Vickers, J.N., & Wilson, M.R. (2013, April). 

Improving catching in children using quiet eye training.  Paper presented at the 

British Psychological Society, Expertise and Skill Acquisition Network Annual 

Meeting, Bisham Abby, England. 

Miles, C.A.L. (2014, April). Online prediction of children with and without DCD.  

Paper presented at the British Psychological Society, Expertise and Skill 

Acquisition Network Annual Meeting, Sheffield Institute of Sport, Sheffield. 

Miles, C.A.L., Wood, G., Vine, S.J., Vickers, J.N. & Wilson, M.R. (May, 2014).  

Quiet Eye training intervention for children with DCD.  Paper accepted for 

presentation at UK DCD Conference, Liverpool, England.  Conference was 

cancelled prior to presentation date. 
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Miles, C.A.L., Wood, G., Vine, S.J., Vickers, J.N. & Wilson, M.R. (May, 2014).  

Quiet Eye training intervention for children with DCD.  Paper accepted for 

presentation at UK DCD Conference, Liverpool, England.  Conference was 

cancelled prior to presentation date. 

1.3.3 Conference Poster Presentations 

Miles, C.A.L., Vine, S.J., Wilson, M.R., Vickers, J.N. (2012, April).  Visuomotor 

control differences in children with high and low movement ability.  Poster 

presented at the British Psychological Society, Expertise and Skill Acquisition 

Network Annual Meeting, Liverpool, England. 

Miles, C.A.L., Vine, S.J., Vickers, J.N., Wilson, M.R. (2012, December). Quiet 

eye training of children in catching: A pilot study.  Poster presented at Sport and 

Health Science Postgraduate Conference, University of Exeter, England. 

Miles, C.A.L., Wood, G., Vine, S.J., Vickers, J.N. & Wilson, M.R. (May, 2014).  

The Effect of a Quiet Eye Training Intervention on Children’s Self-Perceptions of 

Adequacy, Enjoyment and Predilection of Physical Activity.  Poster accepted for 

presentation at UK DCD Conference, Liverpool, England.  Conference was 

cancelled prior to presentation date. 



 19 

 

 

 

 

 

Chapter 2: Review of the Literature 

 

  



 20 

2.1. Visuomotor Control and the Quiet Eye 

 

2.1.1. Gaze Behaviour, Visual Search and Eye Tracking 

Information gathered from the perceptual systems is used to generate 

goal-directed movements (Vickers, 2007).  Indeed, in their model Van der 

Molen, Bashore, Halliday, and Callaway (1991) identified three stages of 

information processing: Stage 1 is the Perceptual Stage where the identification 

and processing of stimuli takes place.  In stage 2, the Central Stage, a 

response is selected and in stage 3, the Motor Stage, the motor response is 

programmed and adjustments are made.  The visual system in particular is 

important for detecting information required for the effective performance of 

many motor skills (Land, 2009) and particularly in sports skills such as ball 

catching.  When performing such a skill, an individual may be exposed to a vast 

display of visual information from which they must search to identify and attend 

to relevant visual cues for the effective performance of the task (Mann, 

Williams, Ward, & Janelle, 2007).   

Head and eye movements are therefore required to scan the display to 

detect and direct relevant visual cues such as a ball onto the fovea of the eye (a 

sensitive region of the retina) to gather and process more detailed information 

about its position and movement within the environment (Henderson, 2003).  

The visual scanning of a display involves two forms of eye movements: rapid 

movements between objects that allow for practically no conscious processing 

of visual information (saccades), and the stable fixations that are maintained on 

an object, target or location for 100ms or longer to allow for information 

processing.  An individual can also use pursuit tracking to pick-up visual 



 21 

information.  This is an eye movement where a moving object or target is 

tracked or followed with the eyes for minimum of 100ms (Vickers, 2007). 

Advances in eye tracking technology and gaze registration systems have 

allowed researchers to examine the gaze behaviour and visual search of 

individuals when performing motor skills (see Vickers, 2007 for a review).  

These studies make the assumption that locus of gaze represents the locus of 

visual attention, however it must be noted that it is also possible to direct covert 

attention elsewhere, leaving a question as to whether eye tracking is a reliable 

measure of attention (Posner, 1980; Posner & Raichle, 1994).  Despite these 

concerns, there appears to be a close link between gaze and attention as in 

most tasks a shift in gaze is invariably preceded by a shift in attention 

(Henderson, 2003; Vickers, 2007), especially in visually guided tasks.  This 

evidence is compounded by studies of brain imaging that have found that the 

shifting of visual attention and gaze are involved with common neural structures 

in the frontal and parietal lobes (Corbetta, 1998). 

 

2.1.2. Visuomotor Control  

Accurate control of gaze to relevant visual information will direct and 

update motor action (Land, 2009), which is defined as visuomotor control.  From 

a theoretical standpoint, Land (2009) describes three executive systems that 

are responsible for visuomotor control.  These are the gaze, vision and action 

systems, which are then overseen by a fourth system named the schema 

system (Figure 2.1 demonstrates how these systems interact). When grasping 

an object for example, the gaze system is initially responsible for identifying the 

location of the object, and directing it onto the fovea, which may require head or 

trunk movements.  An eye movement (saccade) allows the gaze system to 
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fixate the object after which, the hand movement (controlled by the motor 

system) will begin (after around 0.5 second delay).  The visual system supports 

the motor system by providing updated information to guide and finely tune the 

movements in order to accurately (and if necessary correctly time) the grasp.  

The schema system oversees these three systems in relation to task goals, to 

ensure action is appropriately ordered and coherent (Land, 2009).   

Visuomotor control in an interceptive task for example, requires both the 

gaze and visual attentional systems to detect and read the object flight in order 

to execute the interception.  In the context of Land’s (2009) theory, the object 

must be picked out and recognised by the gaze system (which may also 

recognise early postural cues from the object projector) and tracked through the 

air using smooth pursuit tracking to maintain the object on the fovea.  The visual 

system interprets the information being gathered and therefore informs the 

perceptual processes to guide and adjust the motor response.  The schema 

supervises these systems as they guide and update the hand or foot 

movements regarding the object direction and speed, as well as adjustments in 

the flight caused by external factors such as weather or spin in order to 

effectively intercept or control the object.  This example demonstrates ‘top-

down’ attentional control which first leads the eyes and then ultimately the motor 

action.
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Figure 2.1: The relationship between the schema, gaze, motor and visual 

systems, during the performance of a visually guided movement (extracted from 

Land, 2009). 

 

2.1.3. Visual and Perceptual Expertise 

As individuals learn a new skill, they not only become better able to 

control and coordinate their body movements, but they also improve their visual 

control, helping them ignore the irrelevant information in a visual display and 

concentrate on attending to task-relevant cues at the optimal time (Vickers, 

2007).  Sailer, Flanagan, and Johansson (2005) investigated eye movements 

during the learning of an abstract motor task.  They found that eye movements 

in the early stage of learning involved closely guiding and following the cursor 

they were manipulating.  According to Fitts and Posner’s model of skill 

acquisition (Fitts & Posner, 1967), this early stage of learning requires the 

explicit step-by-step encoding of information, producing slow, erratic and 

consciously controlled movements.  This places high demands on cognitive 

processing resources of the participant.    
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However once the skill has been mastered, the components of the skill 

are chunked together and eventually become autonomous (Vine, Moore, 

Cooke, Ring, & Wilson, 2013b).  Here the processing demands are much lower 

and skill execution is fast, consistent and effective.  Sailer et al. (2005) 

observed that once the participants had mastered the skill, their eye movements 

were directed ahead of the cursor to targets.  In a real-world task (simulated 

surgery), Wilson et al. (2011a) also found that novices made significantly more 

fixations on their tools, guiding them towards the target, whereas expert 

surgeons made more timely fixations on the targets they were directing their 

tools toward.  There is strong support therefore for altering the way we teach 

visuomotor skills to novice performers by directing visual attention to external 

target-related stimuli rather than the control of limbs or tools (Vine et al., 2013b). 

Knowing where and when to look can help an individual to search the 

visual spatial workspace more efficiently and pick out important task-relevant 

information.  In terms of visual search, using fewer saccades (where 

theoretically no information is being picked up and processed) and fewer, 

longer gazes (either static fixations or smooth pursuit) on relevant cues is 

associated with sporting expertise (Mann et al., 2007; Williams, Davids, Burwitz, 

& Williams, 1994). It is argued that expert athletes have been exposed to many 

similar task-specific situations so their perceptual skills are attuned to identifying 

relevant information (Van der Kamp, Rivas, Van Doorn, & Savelsbergh, 2008).  

Research has demonstrated that an efficient visual search strategy results in a 

number of benefits such as better pattern recall and recognition (Williams & 

Davids, 1995), quicker detection and recognition of objects such as an 

approaching ball (Allard & Starkes, 1980; Starkes, 1987), and an ability to pick 
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up early or advanced visual cues from an opponent’s posture for example 

(Piras, Lobietti, & Squatrito, 2014a).  

Expert-novice differences in the number and duration of visual fixations 

have been demonstrated in many sports such as football (Helsen & Starkes, 

1999), volleyball (Piras et al., 2014a), basketball (Vickers, 1996) and martial 

arts (Perez, Mendez, Manzano, & Collado, 2013; Piras, Pierantozzi, & 

Squatrito, 2014b) with experts using fewer and longer fixations.  However, this 

pattern of efficient visual search has not always been fully supported in the 

literature (Moran, Byrne, & McGlade, 2002).  Williams et al. (1994) found that 

experts used more fixations of shorter duration in comparison to novices in a 

football task, and Helsen and Pauwels (1993) also demonstrated shorter mean 

fixation durations for elite footballers, leading Moran et al. (2002) to the 

conclusion that visual search may be context-specific.  Martell and Vickers 

(2004) shed some light on this contrast in findings in their study of a tactical 

defensive scenario in ice hockey.  They found that expert fixation/tracking 

durations were shorter at the beginning of a play but as the play progressed 

their durations extended to a final long fixation on a stable target at the end.   

Mann et al. (2007) attempted to quantify the perceptual-cognitive 

differences between expert and novice sports performers in their meta-analysis 

and review.  They were able to conclude that expert performers have a clear 

perceptual advantage over novice counterparts that in turn reduced their 

reaction times and increased response accuracy.  This in part may be explained 

by expert performers using the efficient visual search strategy when scanning a 

visuospatial workspace, but experts were also able to exhibit better visual 

attention by accurately and optimally timing their fixations to the most 

information-rich cues to extract the most task-relevant information, reducing the 
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risk of making oversights and incorrect decisions.  Many examples are provided 

in the sports literature of experts and novices attending to different visual cues 

at various points during the preparation and execution of a response such as in 

tennis (Reina, Moreno, & Sanz, 2007; Williams, Ward, Knowles, & Smeeton, 

2002b), baseball (Takeuchi & Inomata, 2009) and football goalkeeping 

(Savelsbergh, Williams, Van der Kamp, & Ward, 2002), however the timing of 

visual attention on a relevant cue is also important.  For example, late target 

information in a dynamic aiming task can be just as beneficial to performance 

as full information (de Oliveira, Oudejans, & Beek, 2006; Oudejans, van de 

Langenberg, & Hutter, 2002).  The timing and location of a particular gaze 

strategy termed the quiet eye (QE; Vickers, 1996) has been identified as key 

feature of proficient and successful performance (Mann et al., 2007; Vickers, 

2007).  The QE relates to the final fixation (or tracking gaze) on an object or 

target, however this gaze strategy considers the initiation of the motor response 

to be particularly significant; proposing that the important visual information for 

the execution of a task is gathered in the final fixation before the onset of a 

critical movement. 

 

2.1.4. The Quiet Eye (QE) 

 The definition of the QE is the final fixation or tracking gaze on a single 

location or object within the visuo-motor workspace to within 3° of visual angle 

for a minimum of 100ms (Vickers, 2007).  The onset of the QE occurs before 

the critical movement in the motor task is initiated, and the offset occurs when 

the fixation or tracking gaze deviates from the object or location by more than 3° 

of visual angle, for more than 100ms.   



 27 

The QE was identified in the meta-analysis of Mann et al. (2007) as a 

distinguishing factor in perceptual motor expertise; expert performers initiate an 

earlier and longer QE duration.  There are now many examples of this in the 

literature demonstrating the robustness of the QE in both skill proficiency (e.g. 

Causer, Bennett, Holmes, Janelle, & Williams, 2010; Janelle et al., 2000; 

Panchuk & Vickers, 2011; Vickers, 1996; Vickers & Adolphe, 1997) and 

performance outcome (e.g. Causer et al., 2010; Panchuk & Vickers, 2006; 

Williams, Singer, & Frehlich, 2002a; Wilson & Pearcy, 2009).  Furthermore an 

earlier, longer QE duration is associated with more successful performance 

even when a performer is fatigued (Vickers & Williams, 2007) or anxious (Vine 

et al., 2013b; Vine & Wilson, 2011).   

The QE has been extensively studied in static, self-paced aiming tasks 

(see Vine, Moore, and Wilson (2014) for a recent review), however fewer 

studies have investigated the smooth pursuit tracking QE used in externally 

paced interceptive tasks.  These tasks are distinctive as they impose a temporal 

constraint on the participant, which will dictate the available time that an 

individual can track the object and so initiate a QE before they execute a motor 

response.  This challenge is demonstrated in the study by Vickers and Adolphe 

(1997) who compared the gaze control of elite and near-elite volleyball players 

during a serve reception. Their results revealed that despite similarities in the 

speed and timing of the motor response, the elite players retained a perceptual 

advantage over the near-elite players which was displayed in their ability to 

transition from steady fixations on the server prior to ball projection, into the 

smooth pursuit tracking of the ball (the tracking QE).  The elite players were 

able to locate and track the ball sooner than the near-elite players, leading to a 

tracking QE on the ball of over 432ms.  Critically, however the near-elite players 
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were not able to initiate any tracking of the ball before the movement onset, so 

had no QE duration (defined in this study as the final tracking fixation on the ball 

prior to the first step towards the ball).  This would suggest that either the near-

elite players are moving towards the ball nearly half a second earlier than the 

elite players, or as Vickers (2007) postulates, they were late to fixate and track 

the ball after the serve.  In either case, early visual information gathered about 

the flight of an object is critical to direct that response (e.g. Hayhoe, Mennie, 

Sullivan, & Gorgos, 2005; Land & McLeod, 2000), even if the individual is 

capable of making online updates to this movement. 

Rodrigues, Vickers, and Williams (2002) also found that low skilled table 

tennis players were delayed in their onset of the QE, which the authors 

suggested led to their poorer success in their service response task.  The high 

skilled players however initiated the QE significantly earlier than the low skilled 

players, so were able to acquire initial visual information earlier in order to better 

prepare their response.  Interestingly, as the movement response velocity and 

timing was invariant between the groups, this perceptual advantage of high 

skilled players may be the critical factor underpinning their performance 

advantage.  Causer et al’s (2010) use of shotgun tasks enabled them to 

examine a particular subset of interception skills; those where the target travels 

away from the participant and is intercepted by an external object (shotgun 

pellets) launched by the performer.  Therefore although this task does represent 

an externally-paced interceptive action, it could also be classified as a far 

aiming skill.  Despite these task differences, Causer et al. (2010) found that a 

relative tracking QE was also significantly longer for elite compared to sub-elite 

performers, and the QE was also longer for successful performance outcomes.   
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Vine et al. (2014) proposed three explanations for the positive effect of 

an earlier, longer QE.  The first of these was related to attentional control.  As 

previously discussed, it is important to focus visual attention on the correct 

location at the right time to extract optimal, task-relevant visual information 

(Land, 2009).  In terms of attentional control, Vine et al. (2014) placed the QE 

within the context of the attentional model of Corbetta and colleagues; who 

discuss the balance between top-down (goal-directed) and bottom-up (stimulus-

driven) attentional systems.  The top-down system is involved in linking relevant 

stimuli (such as visual cues) to a response selection.  The bottom-up system 

however detects salient (often task-irrelevant) information that interrupts the 

top-down system (Corbetta, Patel, & Schilman, 2008).  The QE is proposed to 

serve the purpose of maintaining goal-directed attention, thereby reducing the 

impact of external or internal distractions from the stimulus driven system (Vine 

et al., 2014).  By maintaining this attentional focus on relevant visual stimuli 

during the critical QE period, an individual will be able to pick-up information 

about the environmental and task parameters that will allow them to programme 

effective and accurate movements.  By becoming distracted however, an 

individual may ‘miss’ or overlook important visual cues. 

The second explanation is that longer QE durations represent a critical 

pre-programming period, where the response is planned and organised, 

resulting in more efficient and accurate movements.  In their study of billiards 

potting, Williams et al. (2002a) observed a longer QE duration for more complex 

shots indicating that more extensive planning of the movement was required.  

This is supported by more complex tasks having longer reaction times (e.g. 

Klapp, 1980), as these tasks require greater processing of the task parameters 

and interfering environmental factors.  Furthermore, evidence suggests the 
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generation of an internal model is used to predict movement consequences and 

parameterise a movement (Wolpert, Ghahramani, & Jordan, 1995).  A longer 

QE duration would provide an individual with more time to develop and update 

this model, which in turn will better guide a movement response (Flanagan & 

Wing, 1997). 

The final explanation proposed by Vine et al. (2014) is that the QE 

provides an external focus of attention (adverse to an internal focus), which has 

been extensively associated with superior motor learning and task execution 

(review by Wulf, 2013).  An external focus is described as the attentional focus 

on the effects of one’s movements rather than the movements themselves 

(Zachry, Wulf, Mercer, & Bezodis, 2005). This has been shown to produce a 

psychomotor quieting of neurophysiological factors such as heart rate and 

muscle activity that benefits performance (Moore, Vine, Cooke, Ring, & Wilson, 

2012; Radlo, Steinberg, Singer, Barba, & Melnikov, 2002).  The constrained 

action hypothesis has also been used to explain the positive effect of an 

external focus, suggesting that instructions relating to an internal focus of 

attention cause an individual to attempt to consciously control their movements, 

inadvertently interrupting autonomous processes (McNevin, Shea, & Wulf, 

2003).  An external focus however makes no such constraints on the 

performances.  Skilled performance is a combination of movement 

effectiveness (such as consistency, accuracy, and reliability) and movement 

efficiency (fluent, economic and autonomous movements).  By adopting an 

external attentional focus, Wulf (2013) suggests that both these aspects of 

skilled performance are performed better and the skill acquired sooner. In 

addition, this theory has recently been successfully transferred to the skill 
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performance (throwing accuracy) of children with Attention Deficit/Hyperactivity 

Disorder (Saemi, Porter, Wulf, Ghotbi-Varzaneh, & Bakhtiari, 2013).   

Although these three mechanisms are perhaps most relevant to static, 

self-paced tasks, it is likely that the perceptual benefits underpinning the QE 

period are a reflection of many aspects.  Vine et al. (2014) recommend 

therefore that further research of these processes be continued.  A recent 

direction of research activity has sought to understand the extent to which the 

QE might simply reflect a by-product of expertise, or whether it has a functional 

role in supporting performance. One of the strongest means of supporting a 

causal role for QE is via a training paradigm; where the impact of being taught a 

longer QE early in training could be assessed.  Performance improvements 

associated with training the QE would indicate that the QE is indeed the driver 

of proficiency related differences. 

 

2.1.5. Quiet Eye Training (QET) 

The purpose of QET is to direct an individual’s visual attention to an 

optimal target-orientated location prior to the onset of a critical movement.  The 

timing and duration of this gaze is important to optimise the pick-up of relevant 

visual information, so QET encourages an individual to locate the target rapidly 

and fixate or track it for an extended period prior to the onset of the movement. 

QET studies have so far taken a relatively consistent approach to 

intervention strategies.  These studies use a task-orientated approach, which 

firstly involves identifying the ‘elite gaze strategies’ used by expert performers in 

the task.  QET then usually involves a combination of verbal instructions and 

video feedback to overtly guide a performer’s decisions regarding where and 

when to direct their gaze whilst performing the skill (Vine et al., 2014).  There 
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are two forms of QET that have been explored in sports literature: the training of 

novices to improve their skill acquisition, and the fine-tuning of the skills of elite 

performers.  The latter of these two training types has received the most 

extensive investigation, starting with Harle and Vickers (2001) who were the first 

researchers to explore QET.  These authors and others have found that QET 

benefits the performance of elite athletes, and these benefits are also 

transferred to competitive environments (Causer, Holmes, & Williams, 2011; 

Vine, Moore, & Wilson, 2011).  

Several studies of QET have also focused on skill acquisition of novice 

sports performers.  Vine and Wilson (2010) investigated QET in golf putting in 

novice golfers in comparison to standard training and coaching techniques.  

Results indicated that novices could be taught to replicate the longer QE 

durations of expert golfers and that this could expedite their learning (albeit non-

significantly) compared to participants trained using traditional putting 

instructions. However, advantages for QET were visible in a transfer pressure 

test; control participants’ QE durations reduced below a threshold and 

performance faltered, whereas these decrements did not occur for the QET 

participants. In a follow-up study using a basketball free-throw task (Vine and 

Wilson, 2011), significant performance advantages for QET were found at both 

the retention tests and in the pressure condition.  Moore et al. (2012) have 

recently shed light on why QET may be effective; revealing that QET 

participants demonstrated more efficient psychophysiology (increased 

cardiovascular and EMG deceleration in the seconds preceding putter-ball 

contact) and smoother putter path profiles than their traditional trained 

counterparts. 
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Despite research demonstrating the benefits of QET in other domains; 

e.g., laparoscopic surgery (Vine, Chaytor, McGrath, Masters, & Wilson, 2013a; 

Wilson et al., 2011b) and military shooting (Moore et al., 2014) prior to this 

thesis project, no studies have investigated the QE or QET in children.  

Abercrombie (1964) proposed that children could learn to perceive task 

demands more quickly if they can accurately direct their eyes to a target, and 

maintain a gaze for longer, as this will limit the proportion of time the irrelevant 

images will occupy the retina.  This suggestion supports the conclusions from 

the previously discussed research of the QE in adults, and so opens a new 

avenue for research to investigate whether the QE can also distinguish between 

motor skill proficiency and performance outcomes in children.  Furthermore a 

perceptual training intervention such as QET may prove to be an effective 

intervention for children with poor motor skills such as those suffering from the 

condition Developmental Coordination Disorder (DCD).  This condition is 

discussed in the second part of this literature review.  
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2.2. Developmental Coordination Disorder (DCD) 

 

2.2.1. Defining DCD 

Developmental Coordination Disorder (DCD) is a condition characterised 

by a marked impairment in the development of motor coordination (in relation to 

an individual’s chronological age) that significantly interferes with activities of 

everyday life and/or academic achievement (DSM-IV-TR, American Psychiatric 

Association, 2000).  Furthermore these impairments are not a result of any 

other medical or neurological disorder.  Whilst uncertainty still surrounds the 

precise aetiology of DCD (Wilson, Ruddock, Smits-Engelsman, Polatajko, & 

Blank, 2013), empirical studies of the condition have shown it to negatively 

influence academic achievement (Chen, Tsai, Hsu, Ma, & Lai, 2013; Liberman, 

Ratzon, & Bart, 2013), social development (Chen, Tseng, Hu, & Cermak, 2009; 

Tseng, Howe, Chuang, & Hsieh, 2007) and long-term physical health (Cairney 

& Veldhuizen, 2013).   

 DCD is a heterogeneous disorder as the motor coordination deficits 

experienced by individuals with the condition are varied (Polatajko & Cantin, 

2006); ranging from impairments in gross motor skills such as balance and 

locomotion to fine motor skills such as manual dexterity (or a combination of the 

two).  There is also a high level of co-occurrence with DCD and other disorders 

such as Attention Deficit/Hyperactivity Disorder (ADHD; Martin, Piek, & Hay, 

2006), Autism Spectrum Disorders (ASDs; Kirby, Sugden, & Purcell, 2014) and 

specific language/reading impairments such as dyslexia (Crawford & Dewey, 

2008).  Furthermore, DCD is also not confined to children but can continue into 

adolescence and adulthood (Cantell, Smyth, & Ahonen, 2003).   
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2.2.2. Measurement, Diagnosis and Prevalence of DCD 

There is currently no ‘gold standard’ assessment for motor coordination 

or DCD. However the two most widely used measures are the Movement 

Assessment Battery for Children (M-ABC, Henderson & Sugden, 1992; revised 

version: MABC-2, Henderson, Sugden, & Barnett, 2007) and the Bruininks 

Oseretsky Test of Motor Proficiency (BOTMP, Bruininks, 1978; revised version: 

BOTMP-2, Bruininks & Bruininks, 2005).  These are standardised, validated 

measures of motor coordination ability used in both research and clinical 

practice.  Both of these measures assess performance on tasks involving fine 

motor skill, balance and ball skills and provide norm-referencing to quantify an 

individual’s motor coordination ability.  The M-ABC/MABC-2 has been more 

extensively used and validated in recent research (Blank, Smits-Engelsman, 

Polatajko, & Wilson, 2012; Schoemaker, Niemeijer, Flapper, & Smits-

Engelsman, 2012), with Blank et al. (2012) stating that the M-ABC (and MABC-

2) is a more sensitive measure compared to the BOTMP and has stronger intra 

and inter-rater reliability.  Furthermore, the MABC-2 has been extensively 

validated in populations of children in Asia (Hua, Gu, Meng, & Wu, 2013; 

Wuang, Su, & Su, 2012), South America (Ramalho, Valentini, Muraro, Gadens, 

& Nobre, 2013; Valentini, Ramalho, & Oliveira, 2014), and Europe (Ellinoudis et 

al., 2011; Schoemaker et al., 2012; Schulz, Henderson, Sugden, & Barnett, 

2011; Smits-Engelsman, Niemeijer, & van Waelvelde, 2011; Wagner, Kastner, 

Petermann, & Bos, 2011).  Holm, Tveter, Aulie, and Stuge (2013) concluded 

from their study that the MABC-2 (age band 2: 7-11year olds) would make an 

effective diagnostic tool for movement coordination disorders such as DCD. 

Authors of the MABC-2 and other assessments of motor coordination 

such as BOTMP-2 recommend that scores at or below the 5th percentile in 
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reference to national norms indicate an individual is highly likely to experience a 

“severe movement disorder”.  This 5th percentile cut-off was also proposed in 

the Leeds Consensus Statement (Sugden, Chambers, & Utley, 2006) as a 

diagnosis of DCD, however Blank et al. (2012) suggest in their 

recommendations for the European Academy for Childhood Disability that such 

a severe level may lead to children with milder forms of DCD being missed and 

therefore fail to receive the necessary support for their condition.  Blank et al. 

(2012) suggest that scores below the 15th percentile could therefore be used for 

the diagnosis of DCD, which has led to a divide in the research with some 

authors preferring the 15th percentile cut-off (e.g. Beutum, Cordier, & Bundy, 

2013; Silman, Cairney, Hay, Klentrou, & Faught, 2011), whilst others use the 

more stringent 5th percentile, which may be more reliable in ensuring a DCD 

diagnosis for the purposes of research.  

Venetsanou et al. (2011) proposed that currently the MABC-2 cannot be 

used alone as a gold-standard diagnostic tool for DCD largely due to the 

heterogeneous nature of the condition, so many studies of DCD use a battery of 

measures alongside the MABC-2 such as a clinical diagnosis by a health 

professional, parent/teacher opinion or a further measure of motor control such 

as a handwriting test to ensure better reliability of the diagnostic criteria.  Due to 

this lack of a standardised diagnostic tool and the variability in cut-off 

recommendations used in measures such as the MABC-2 and BOTMP-2, the 

reported prevalence of DCD is varied (Asonitou, Koutsouki, Kourtessis, & 

Charitou, 2012; Hendrix, Prins, & Dekkers, 2014).  The DSM-IV-TR (American 

Psychiatric Association, 2000) proposes the prevalence of DCD is around 6% of 

primary-aged children, however studies using more or less stringent diagnostic 

criteria have suggested this figure may be as low as 1.7% (Lingam, Hunt, 
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Golding, Jongmans, & Emond, 2009) or as high as 22% (Cermak & Larkin, 

2002, p.14).  

 

2.2.3. Visuomotor Control of children with DCD 

Measures of motor control such as the MABC-2 provide a researcher or 

clinician with information regarding the outcome of a movement (e.g. number of 

steps taken, balls caught), however these tests provide little insight regarding 

how the motor skills are performed or why a child with DCD has performed 

poorly on the test (Van Waelvelde, De Weerdt, De Cock, Smits-Engelsman, & 

Peersman, 2004).  There appear to be two schools of thought on the aetiology 

of the motor deficits observed in DCD, with some researchers suggesting these 

children have problems with the physical execution of a movement (e.g. 

Deconinck et al., 2006) whilst many others propose that children with DCD 

experience information processing (or more specifically, visual perceptual) 

problems that result in imprecise movements (e.g. Cheng et al., 2014; Estil, 

Ingvaldsen, & Whiting, 2002; Tsai & Wu, 2008; Wilson & McKenzie, 1998) or 

compensatory motor strategies (e.g. Van Waelvelde et al., 2004).  

From an information processing perspective, visual perception and action 

are inextricably linked as the accurate pick-up and processing of visual 

information will guide the selection and execution of a motor skill (Land, 2009).  

Therefore the precise mapping between perception and action is critical for 

motor coordination (Tsai & Wu, 2008).  Although some inconsistencies do exist 

in the literature regarding visual perceptual impairments in DCD (such as 

Bonifacci, 2004), the majority of research in this area supports the proposition 

that children with DCD are less able to pick-up and process visual information 

compared to typically developing peers, even in tasks where a motor response 
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is not required (Sigmundsson, Hansen, & Talcott, 2003; Tsai, Wilson, & Wu, 

2008; Wilson & McKenzie, 1998).   

In their meta-analysis of information processing deficits in children with 

DCD, Wilson and McKenzie (1998) concluded that a visual spatial processing 

impairment was the most consistent finding.  Visual spatial processing relates to 

the early stage in the production of a motor response to a stimulus, where the 

organisation and processing of visual information takes place.  In an aiming 

task, the visual spatial processing of advanced information (or pre-cues) allows 

an individual to select and pre-programme a response prior to the initiation of a 

movement.  This relates directly to the QE literature where it is proposed that a 

longer QE gaze will afford an individual more time to process sensory 

information and parameterise a movement (Vine et al., 2014; chapter 2.1.4).   

Wilmut and Wann (2008) however found that when a clear visual pre-cue 

indicated the exact location of a target (to be grasped), children with DCD were 

unable to improve their hand response to a level similar to that of typically 

developing children.  Furthermore, when the pre-cue about the target became 

more ambiguous, the performance of children with DCD was not statistically 

different from no-cue conditions.  Wilmut and Wann (2008) postulated that 

typically developing children were able to partially plan a movement based on 

incomplete visual information (prediction) and then update this movement 

online as more visual information becomes available.  They suggested that the 

DCD children are unable to formulate early predictions based on partial 

information or execute online modifications, and instead rely on waiting for 

complete visual information and making end-point corrections to their 

movements.   
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Wilmut and Wann’s (2008) research would suggest that under time 

constraints, children with DCD were unable to process the available advanced 

visual information to select and parameterise an accurate, speeded response 

(see also Braddick & Atkinson, 2013).  Debrabant, Gheysen, Caeyenberghs, 

Van Waelvelde, and Vingerhoets (2013) also found that children with DCD 

made fewer anticipatory responses and reacted more slowly to the appearance 

of visual targets in a task that involved a very simple response (press a button) 

compared to typically developing counterparts.  This effect even occurred when 

the targets were presented in a predictable temporal pattern.  There have been 

some conflicting findings however: Pettit et al. (2008) found that children with 

DCD were able to reduce their response times based on partial visual 

information on simple tasks if speed was emphasised in the task instructions.  

The response time did however have a negative linear relationship with the 

quality of visual information, and the children with DCD were still unable to 

match the response time of typically developing controls.  

These studies highlight the visual perceptual impairments of children with 

DCD that influences their response selection and time.  Debrabant et al. (2013) 

note that these impairments seen in complex tasks such as catching, don’t 

diminish with practice, perhaps because children with DCD are not learning 

from prior perceptual feedback, resulting in the task remaining novel, and so the 

perceptual demands of performing the motor skill remaining high.  Debrabant 

and colleagues support this suggestion with evidence of more brain activity 

during the un-predictive condition for the typically developing children in areas 

of the prefrontal cortex (involved with executive function) and inferior frontal 

gyrus (involved with decision making) in comparison to the predictive condition 

where more autonomous processes took place. In comparison the DCD 
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children maintained a lower level of activity in both these regions of the brain 

across both conditions.   

One explanation for little increase in neural activation in either condition 

for the DCD children is the internal modelling deficit hypothesis, which proposes 

that these children are unable to mentally simulate a movement without 

performing the overt action (Williams et al., 2011).  Tsai, Chang, Hung, Tseng, 

and Chen (2012) however postulated that the visual processing deficit in DCD 

was a result of children allocating fewer resources to the evaluation and 

response to a stimulus, so it is possible that children with DCD do not take the 

time, or assign the processing resources required for developing an internal 

model.  Therefore, by developing an earlier and longer QE duration on relevant 

information these children learn to develop better internal models to help them 

pre-programme a movement.  Effective internal forward modelling provides 

stability to a motor system by predicting the outcome of a movement before the 

slow sensorimotor feedback becomes available (Williams et al., 2011; Williams, 

Omizzolo, Galea, & Vance, 2013).  Wilson, Thomas, and Maruff (2002) have 

demonstrated that motor skills of children with DCD can be improved with motor 

imagery training, which may support more effective forward modelling.  These 

findings would also indicate that a QET intervention that increases processing 

time and allocates visual attention to task-relevant cues for longer could 

improve the visuomotor skill of children with DCD. 

Additionally, once a motor response has been initiated in children with 

DCD, Wilmut and Wann (2008) also identified further impairments in making 

online adjustments to the movement.  Mon-Williams et al’s (2005) prehension 

study demonstrated similar findings to that of Wimut and Wann (2008), however 

these authors proposed that (in line with Pettit et al., 2008) the ‘cost’ of making 
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online adjustments based on partial information was too great for children with 

DCD due to the resulting increase in spatial errors.  Perturbation studies have 

also been used to investigate online modifications to movements.  This method 

involves a targeting task where occasionally the target is moved or perturbed 

once an aiming movement has commenced, forcing the participant to make an 

online adjustment.  Typically developing adults are able to make rapid smooth 

adjustments to their movements when a target is perturbed (Turrell, Bard, 

Fleury, Teasdale, & Martin, 1998), however Hyde and Wilson (2011a) and Hyde 

and Wilson (2011b) found that in comparison to typically developing peers, 

children with DCD were slow and inaccurate when making online corrections to 

a perturbed target.   

It is possible that the impairments in making online modifications to 

movements are also related to poor detection and processing of visual 

information.  Studies have found that gaze behaviour (such as pursuit tracking) 

can distinguish between children with and without DCD (e.g. Langaas, Mon-

Williams, Wann, Pascal, & Thompson, 1998; Robert et al., 2014) and these 

impairments to gaze behaviour may also contribute to deficits in motor 

coordination (Robert et al., 2014).  A longer tracking QE on the ball during 

catching will provide children with more detailed and updated visual information 

about the trajectory and speed of the ball as it approaches the interception 

point. 

To summarise, children with DCD have deficits in visuomotor control that 

result in imprecise or compensatory movement strategies.  The literature would 

indicate these children are unable to pick-up and process visual information 

even in the absence of a motor response (Hyde & Wilson, 2011a; Hyde & 

Wilson, 2011b).  As a result the ability of children with DCD to pre-plan and 
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organise a movement (prediction), as well adjust their movements to changing 

task constraints (online visual processing) are impaired in comparison to 

typically developing peers.  QET may be a suitable intervention therefore for 

overcoming some of these impairments by allocating visual attention to relevant 

cues and increasing the processing time to help initiate a more accurate 

response. 

 

2.2.4. Health and Fitness of Children with DCD 

 Children with DCD are more likely to be overweight or obese than those 

without the disorder (Cairney, Hay, Faught, & Hawes, 2005a; Hendrix et al., 

2014; Zhu et al., 2014).  Cairney et al. (2010) found the BMI of children with 

DCD was on average 15% higher than typically developing peers, and Silman 

et al. (2011) found a group of children with DCD had a 40% greater body fat 

percentage than controls.  In their systematic review of obesity in children with 

DCD, Hendrix et al. (2014) found a conclusive positive association between fat 

mass and DCD.   

There is little doubt that the physical health deficits identified in children 

with DCD are associated with lower levels of physical activity (Cairney et al., 

2010; Cairney & Veldhuizen, 2013; Green et al., 2011; Poulsen, Ziviani, & 

Cuskelly, 2008).  Some debate remains regarding the causality of this 

association, however Cairney and Veldhuizen (2013) proposed that impaired 

motor function (such as DCD) causes physical inactivity, which in turn increases 

the risk of obesity and poor cardiorespiratory fitness.  Support for this theory 

comes from Tsai et al. (2014), who found that an intense cardiorespiratory 

fitness intervention significantly improved motor skill in children with DCD 

(measured by MABC-2).  Cairney and Veldhuizen (2013) do however 
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acknowledge the possibility of a reverse causality and there is evidence that 

DCD may cause physiological (Chia, Reid, Licari, & Guelfi, 2013; Ferguson, 

Aertssen, Rameckers, Jelsma, & Smits-Engelsman, 2014) and mechanical 

(Hands & Larkin, 2002) inefficiencies during exercise that would result in earlier 

fatigue compared to typically developing children (Faught et al., 2013).  

Regardless of the cause, there is a vast body of literature supporting the 

association between DCD and lower cardiorespiratory fitness (see review by 

Rivilis et al., 2011) along with other aspects of poor physical fitness (e.g. 

Santos, Ribeiro, Pellegrini, Rocha, & Hiraga, 2012). 

Another factor in the association between DCD and poor physical health 

is the emotional response of the children towards physical activity.  Several 

studies have suggested that children with DCD are self-conscious about their 

impaired motor skills and as a result choose to withdraw from structured 

physical activities (e.g. Green et al., 2011; Kwan, Cairney, Hay, & Faught, 

2013).  Bart, Jarus, Erez, and Rosenberg (2011) found that very young children 

with DCD (4-6 years old) reported significantly lower enjoyment after physical 

activity even when compared to those with mild developmental difficulties.  

Lower self-perceptions and poor self-adequacy of children with DCD have been 

linked with lower engagement in physical activity (Hay & Missiuna, 1998) and 

ultimately a review by Zwicker, Harris, and Klassen (2013) found that children 

with DCD experience more feelings of anxiety, depression, low self-efficacy and 

more social problems than typically developing peers reflecting an overall 

poorer quality of life.  All these factors are likely to contribute to the destructive 

downward spiral of children with DCD having negative feelings towards physical 

activities, leading to withdrawal and more inactivity, which is linked with poorer 

physical and emotional health that further compounds their negative attitude to 
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physical activity.  These factors highlight the importance of studying DCD for 

greater understanding of the condition and crucially the development of 

effective intervention strategies to encourage children with the condition to take 

part in more physical and social activities.  

2.2.5. Current Intervention Strategies 

There are several approaches to therapeutic intervention that have been 

used to treat children with DCD both in research and clinical settings such as 

physiotherapy, cognitive motor training, perceptual or sensory training and 

chemical or dietary supplementation (see review by Smits-Engelsman et al., 

2013).  This array of strategies perhaps reflects back to the unclear aetiology of 

the condition and the heterogenetic nature of DCD. However Green, Chambers, 

and Sugden (2008) found no evidence of DCD subtype affecting a child’s 

response to intervention (beyond the more extreme challenges faced by 

children with more profound movement problems) and Smits-Engelsman et al. 

(2013) state that all children with DCD do appear to benefit from some form of 

intervention. 

The intervention strategies for DCD can be categorised into two groups 

based on their theory and methodology.  The first of these groups is the 

process-orientated approach, which is based on the assumption that not all 

tasks and activities can be individually taught, so ‘teaching for transfer’ is 

required (Sugden, 2007).  This approach targets the specific components 

required to perform a movement or skill such as the sensory, (visual) perceptual 

and kinaesthetic skills.  Snapp-Childs, Mon-Williams, and Bingham (2013) were 

successfully able to use a sensory-motor intervention (simulated computerised 

tasks that activate cerebellar and parietal networks) to teach complex motor 

skills to children with DCD, and Hillier’s (2007) review specifically identified the 
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sensory approach (the most commonly researched intervention method within 

this approach – involves teaching children to use their senses more effectively 

to pick-up information) to be highly effective in treating children with DCD.  

However a lot of the literature identified by Hillier dates back to the early 1990’s.  

More recently researchers have been a lot more sceptical of the benefits of 

process-orientated interventions (Niemeijer, Smits-Engelsman, & Schoemaker, 

2007; Pless & Carlsson, 2000; Smits-Engelsman et al., 2013; Sugden, 2007) as 

many of the studies have incorporated this approach with other intervention 

methods or implemented them in a task-specific manner.  There is also no clear 

evidence of the transferability of these skills to other motor skills.  Pless and 

Carlsson (2000) postulated that approaches that utilise a fundamental, skill-

specific intervention are most effective in improving the motor skills of children 

with DCD. 

The task-orientated approach has received more research focus of late 

and these studies have revealed very promising results, with children 

significantly improving skills measured by the MABC-2 including fine motor 

control, throwing and catching, and static and dynamic balance (e.g. Ferguson, 

Jelsma, Jelsma, & Smits-Engelsman, 2013; Jongmans, Smits-Engelsman, & 

Schoemaker, 2003; Niemeijer et al., 2007; Sugden, 2007; Sugden & Chambers, 

2003; Tsai, 2009) as well as more genertic skills such as isometic and 

functional strength and aerobic fitness (Ferguson et al., 2013).  This approach 

directly attends to motor performance and often involves training skills and 

aspects of motor skills children with DCD perform poorly.  Smits-Engelsman et 

al. (2013) identify two examples of this approach that have proven effective in 

studies of task-orientated intervention.  The first of these is neuromotor task 

training (NTT) that was conceptualised as a result of the limited efficacy of the 
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previously popular process-orientated approaches (Niemeijer et al., 2007).  NTT 

involves a personalised child-centred approach, where a therapist implements 

functional exercises which gradually become more challenging to develop the 

motor control processes involved in the successful execution of a task. The 

second example of task-orientated intervention is the cognitive orientation to 

daily occupational performance (CO-OP).  CO-OP has many similarities to NTT, 

but implies the use of specific cognitive strategies to solve movement problems 

when executing a motor task to facilitate the skill acquisition (Sugden, 2007).  

One aspect of this intervention approach is to learn how to generate internal 

models of a movement (so attempting to overcome the internal modelling deficit 

hypothesis), which a child uses to guide, check and reflect on movement 

execution.  Smits-Engelsman et al. (2013) recommended the use of task-

orientated approaches such as NTT and CO-OP to improve motor performance 

in children with DCD as they found much larger effect sizes in comparison with 

process-orientated approaches. 

 The previously discussed QET intervention is a task-orientated 

intervention strategy that attempts to improve the perceptual skills of performers 

to help the pick-up the most pertinent information in a visuospatial display to 

improve visuomotor control and provide more opportunity for processing of an 

internal model.  Previous tasks used for QET of novices are golf putting, 

basketball free-throw shooting, and surgical skills training.  It could be argued 

however that none of these tasks are particularly relevant to improving the 

quality of life for child, so a more appropriate task is considered in the next part 

of this literature review.  Object control and specifically ball catching is a 

fundamental movement skill (Lubans et al., 2010) that has been associated with 

higher levels of participation in physical activity.  Furthermore, the visuomotor 
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aspects of catching have been studied in some depth although the QE is yet to 

be examined in this skill.   
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2.3. Interception and Catching Skill 

 

2.3.1. Importance of Catching 

 Fundamental movement skill proficiency is important for the development 

of sports specific skills (Barnett, van Beurden, Morgan, Brooks, & Beard, 2008a) 

and the resultant participation in physical activity (Okely & Booth, 2004).  

Lubans et al. (2010) identified fundamental movement skills such as locomotor 

skills (running, jumping, hopping), object control (throwing, catching, kicking, 

striking) and stability (balancing, twisting).  Lubans et al. (2010) concluded from 

their analysis that the development of these skills during childhood is important 

for the social, physical and psychological health of both children and 

adolescents.   

 Specifically, Barnett, Van Beurden, Morgan, Brooks, and Beard (2009) 

identified childhood object control proficiency as the most important factor that 

predicted the amount of time spent in organised moderate-vigorous physical 

activity and subsequently, this also increased the probability of any participation 

in adolescent vigorous physical activity.  Barnett and colleagues also 

determined that this greater object control proficiency during childhood is 

positively linked with higher adolescent cardiorespiratory fitness (Barnett et al., 

2008).  These studies emphasise the significance of the mastery of ball control 

skills as a child, as these skills make up an important part of many moderate 

and vigorous physical activities, playground games and sports played by 

children and adults.  Furthermore object control skills also promote perceived 

sports competence in children, which is a positive factor in physical activity 

participation (Barnett et al., 2008). 
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 One specific aspect of this skill that has been most extensively 

researched in typically developing children and children with DCD is catching.  

This skill is included in many assessments of motor proficiency (e.g. M-ABC, 

MABC-2, Test of Gross Motor Development-2 (TGMD-2; Ulrich, 2000), BOTMP, 

BOTMP-2) as it is a complex motor skill that measures the perceptual and 

motor aspects of movement execution.  In the MABC-2, the catching task 

involves throwing a tennis ball at a wall 2m away from the participant and 

catching it cleanly on the return.  This task is utilised in this thesis so it is 

pertinent to discuss the skill of catching for typically developing children and 

those with DCD. 

 

2.3.2. Catching Skill in Typically Developing Children and Adults 

Interceptive skill appears to produce an invariant motor response in 

adults irrespective of the ability of a performer (Vickers, 2007).  Studies of table 

tennis have revealed that motor response times (such as movement onset, 

offset, duration and velocity) do not significantly differ depending on participant 

ability (Bootsma, 1991; Bootsma & Van Wieringen, 1988; Rodrigues et al., 

2002).  This leads one in the direction therefore of assessing the visual and 

perceptual abilities of performers in order to distinguish between the abilities of 

experts and novices. 

Van der Kamp et al. (2008) identified two visual perceptual systems that 

contribute to catching performance in adults.  The ventral system gains 

knowledge about the task environment by recognising the location, size and 

trajectory of an object and the thrower, therefore identifying action possibilities.  

The dorsal system takes over later in the skill, providing rapid, implicit 

information to regulate the on-going movement.  The coupling of these aspects 
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of a skill are likely important to the execution of an interceptive action (Dicks, 

Button, & Davids, 2010; Savelsbergh, Van der Kamp, Williams, & Ward, 2005; 

Shim, Carlton, Chow, & Chae, 2005) as Panchuk, Davids, Sakadjian, 

MacMahon, and Parrington (2013) found that early information gathered from 

visual search prior to projection results in earlier and longer tracking of the ball 

and therefore faster and more accurate responses. 

When catching fly balls, Oudejans, Michaels, Bakker, and Davids (1999) 

observed that catchers use head and eye movements to quickly locate and 

track the ball through the air. When thrown from the hand, catchers with ball 

skill experience could locate the ball within 100ms and track it for 95% of its 

trajectory.  This ‘eye-in-head system’, identified by (Sharp & Whiting, 1974, 

1975) is the preferred technique when a performer can track the ball for more 

than 365ms. However when the ball was projected from a machine, the 

participants in Oudejans et al’s study (1999) would take up to 400ms to locate 

the ball, suggesting that postural cues from the thrower’s body regarding the 

release of the ball are important cues to aid prediction and shifting of gaze.   

Hayhoe et al. (2005) noted that in ball catching when a bounce occurs, it 

is important to relocate the ball on the retina as quickly as possible after the 

bounce and continue smooth pursuit tracking.  This often requires the use of a 

predictive or anticipatory saccade to a location just beyond the bounce point, 

which is a demanding skill to perform accurately (Hayhoe et al., 2005; Hayhoe, 

McKinney, Chajka, & Pelz, 2012; Land & McLeod, 2000) and has been 

observed as a skill performed more effectively by elite athletes in comparison to 

near-elite athletes (Vickers & Adolphe, 1997).  These saccades are also 

required if the pursuit tracking system slips or loses the image of the ball on the 

retina or if an unpredicted deviation or bounce occurs and the pursuit system is 



 51 

required to catch the ball up.  This technique for a bounce catch is relevant to 

the catching task of the MABC-2 later examined in this thesis. 

 Although the motor responses of novice and elite adults may not differ 

much in an interceptive task (Vickers & Adolphe, 1997), this is not necessarily 

the case for children, as the skill development needs to be taken into 

consideration. Williams (1992) identified 3 visuomotor strategies of catching that 

he was able to associate with age.  Williams ranked these in order of maturity 

with the lowest being retrospective-cradling which involved little visual attention 

on the ball, and cradling the ball with the body to perform the catch.  82% of 

children at 4 years old used this strategy during 2-hand catching.  The second 

developmental phase of catching is concurrent-clamping where the child 

attempts to visually track the ball with some degree of success and they ‘clamp’ 

the ball between their hands.  This strategy is used by 65% of children aged 6 

years.  The most mature development of catching technique identified by 

Williams is the predictive-grasping strategy, where the child utilises early visual 

information during the ball’s flight to make accurate predictions resulting in them 

grasping the ball away from the body.  This strategy was used by 88% of 

children aged 8 years and 100% of children aged 10 years, and Williams notes 

this skilled catching technique is characterised by rapid and accurate visual 

appraisal of the ball flight characteristics gathered in the early stages of the 

flight which ultimately guides the accurate movements of the hands and timing 

of the grasping action.  Furthermore, it would appear good or mature catchers 

are able to make online adaptations (late adjustments) to their movements 

during the catch right up until the final 100ms before contact (Astill & Utley, 

2008).  
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2.3.3. Catching impairments in children with DCD 

Authors such as Przysucha and Maraj (2010) hypothesised that studying 

the catching of children with DCD may afford significant insights into the 

movement organisation of children with the condition.  Indeed, children with 

DCD consistently demonstrate poorer catching performance in comparison to 

typically developing counterparts (e.g. Asmussen, Przysucha, & Dounskaia, 

2014; Astill, 2007; Astill & Utley, 2006; Estil et al., 2002; Przysucha & Maraj, 

2010, 2013; Sekaran, Reid, Chin, Ndiaye, & Licari, 2012; Utley, Steenbergen, & 

Astill, 2007; Van Waelvelde et al., 2004).  There are currently no studies of the 

influence of the QE or any other gaze behaviour in catching performance in 

children with or without DCD, however a study by Van Waelvelde et al. (2004) 

provides an insight into these deficits in catching by comparing children with 

DCD (aged 7.5-9.5 years) to a group of younger typically developing children 

(aged as young as 5 years) who were matched with the DCD children by their 

baseline catching score.  The authors found that with practice, the younger 

typically developing children used fundamentally different catching strategies to 

the children with DCD. The differences observed between these groups centred 

on grasping errors, with both groups initially making many more grasping errors 

in comparison to aged-matched (7.5-9.5 years) typically developing children.  

The children with DCD however persisted with their original catching technique 

despite numerous errors being made and balls being dropped.  This technique 

involved arms extended in front of them and attempts to clamp or grasp the ball 

in their hands.  In comparison, the younger typically developing children 

adapted their strategy and used their bodies to cradle or trap the ball to 

complete the catch as Williams (1992) suggest children of this age would.  

There has been some suggestion that the movements of children with DCD 
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when catching are similar to younger children (e.g. Strohmeyer, Williams, & 

Schaubgeorge, 1991), however the findings of the Van Waelvelde et al. (2004) 

study support the notion that the movements of children with DCD are not 

simply delayed, but were indeed different from typically developing peers. Other 

work has also shown that children with DCD do not simply grow out of their 

movement impairments (Losse et al., 1991) supporting the view that the 

development of these children is ‘deviant’, not delayed (Utley et al., 2007). 

 

2.3.4. Differences in catching technique of children with and without DCD 

Researchers have attempted to quantify the differences observed in the 

catching technique of children with and without DCD by studying the kinematics 

of their limb movements whilst catching.  Astill (2007), Przysucha and Maraj 

(2010) and Estil et al. (2002) all observed that children with movement problems 

or DCD exhibit a large number of grasping (or temporal) errors when catching.  

In their study, Estil et al. (2002) proposed that children with movement problems 

(scored < 5th percentile on MABC-2) had adapted their technique by waiting to 

see more of the flight, so reaching for the ball later, and initiating the grasping 

movement earlier to compensate for poor temporal judgement.  

The later initiation of a reaching movement has already been discussed 

in reference to the findings of Mon-Williams et al. (2005) and Wilmut & Wann 

(2008) where it was proposed that later reaching movements were made due to 

an inability of children with DCD to make accurate spatial predictions and online 

adjustments to movements based on incomplete visual information, or that the 

cost of making these predictions was too high in comparison to the benefit of an 

increased response time.  It is also possible that the earlier initiation of a 

grasping movement when catching would limit the child’s ability to make online 
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adaptations to their movement, which may contribute to poorer performance 

and more grasping errors observed in these studies (Astill & Utley, 2008).  As 

Mon-Williams et al. proposed in their 2005 study, Estil et al. (2002) also 

suggested that these different movement times created a safety margin in the 

temporally constrained task so were a compensatory strategy employed to 

better cope with the children’s impairments in visual perception and therefore 

prediction of the ball direction and speed. However it is important to note, the 

task used by Estil et al. (2002) represented an important limitation of this study 

as it involved dividing the two components of a catch (reaching and grasping) 

into two separate tasks.  The movements of the participant in each task were 

therefore largely constrained and so did not represent a complete catching 

movement.   

A study by Deconinck et al. (2006) did find conflicting results, suggesting 

that children with DCD had similar grasp initiation times to typically developing 

children when catching.  The simplest explanation for these different findings is 

the ball speeds used in the studies, with Deconinck et al. (2006) projecting the 

ball at a faster pace, forcing both groups of children to initiate grasping sooner, 

and limiting the capacity for typically developing children to utilise online control.  

Astill and Utley (2008) however produced similar findings to Estil et al. (2002) 

when using a more realistic (although still laboratory adapted) catching task and 

this study also used more stringent diagnostic assessment of participants with 

DCD compared to the Deconinck et al. study (<5th vs <15th percentile on M-

ABC).   

Astill and colleagues provide further support for kinematic differences of 

children with and without DCD and the compensatory strategy theory in a series 

of ball catching studies.  Utley, Steenbergen and Astill (2007) considered the 
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kinematics of arm movements during two handed catching and found that the 

technique of children with DCD employed less elbow flexion at the point of the 

catch in comparison to typically developing children who quickly learned to flex 

their elbows just prior to ball contact to absorb the speed of the ball.  Utley et al. 

(2007) suggested that the lack of flexion used by the children with DCD was 

because they need to simplify a complex skill such as catching.  By reducing 

the movement around a joint such as the elbow, this results in fewer ‘degrees of 

freedom’ that the children have to control.  This decrease in elbow flexion was 

also observed in other studies such as Astill and Utley (2006), Astill (2007) and 

Przysucha and Maraj (2013) alongside another strategy that involved the linking 

or coupling of the arms throughout the catch in children with DCD.  Coupling of 

the arms so they moved symmetrically would also support the notion of limiting 

the degrees of freedom the children with DCD had to control, whereas the 

typically developing children were able to manipulate the arms separately. 

A more detailed kinematical analysis of these movements during 

catching found that the children with DCD did initiate later reaching and earlier 

grasping movements, as was found in the study by Estil and colleagues (Astill & 

Utley, 2008), and these authors certainly don’t rule out the suggestion that this 

is a compensatory strategy for impairments in the visual perception, prediction 

or parameterizing of movements.  Indeed, Utley and Astill (2007) demonstrate 

that children with DCD may attempt to plan the reaching phase of the catch in 

advance of temporal constraints by holding their extended arms out in a 

position they anticipate intercepting the ball.  This is a time-efficient technique 

that limits the amount of movement required under the severe temporal 

constraints of a catch affording the child more time to process the visual 

information as it becomes available.  Lefebvre and Reid (1998) used a virtual 
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visual occlusion paradigm to demonstrate the necessity of increased processing 

time for children with DCD during a catching task.  This study found that 

typically developing children were significantly more accurate than those with 

DCD at predicting the direction of a thrown ball (projected on a screen in front of 

them) when it was occluded at 100ms and 200ms after projection.  At 300ms 

after projection, the children with DCD were able to increase the accuracy of 

their predictions.  These findings suggest that children with DCD do require 

more visual information or processing time to accurately predict ball flight.  

Other studies such as Wilmut and Wann (2008) have also found that an 

increased processing time available between the appearance of a visual cue 

and the requirement to respond also improves the speed and accuracy of the 

movements of children with DCD.  However since the study by Lefebvre and 

Reid (1998) there have been no further studies of visual perception of children 

with DCD during a catching task. 

This evidence would suggest that a QET intervention – guiding where 

and when to look to find the most useful target related information to plan and 

control the subsequent catch attempt – may be an effective strategy for 

improving the catching skill of children with DCD, and this is the overarching 

aim of this thesis.  However, the QE has never before been studied in typically 

developing children, so the first aim of this thesis is to investigate the QE during 

a catching task of children with a range of movement skills.  By including 

children with high motor ability in this initial phase, we will learn more about the 

‘expert’ gaze strategies and QE durations of children in comparison with median 

and low skilled children. It is these expert gaze strategies that will then be used 

to construct the QE training protocols. 
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The second phase of this project is to investigate whether QET is 

transferable to children.  This form of training was conceptualised in adults and 

athletes, so it is likely some methodological adaptations will need to be made to 

make this intervention appropriate for typically developing children.  The final 

phase of this project will be to apply a QET intervention to children diagnosed 

with DCD to determine the potential effectiveness of this form of intervention for 

improving catching skill.  This literature review presents evidence that an 

improvement in visuomotor performance through QET can enhance an ability 

such as catching skill, which has the potential for physical, social and 

psychological benefits in children suffering from DCD. 
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Chapter 3 

 

Study 1: The Quiet Eye distinguishes between children 

of high and low motor coordination abilities 

 

 

 

 

 

 

 

 

 

 

The study in this chapter was published as Wilson, M.R., Miles, C.A.L., Vine, 

S.J., & Vickers, J.N. (2013). Quiet eye distinguishes between children of high 

and low motor coordination abilities, Medicine and Science in Sport and 

Exercise, 45(6), 1144-51.  
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3.1. Introduction 

Effective motor coordination is critical for the performance of functional 

movements underpinning physical activity and cardio-respiratory fitness in 

children and adolescents (Barnett, Van Beurden, Morgan, Brooks, & Beard, 

2008b; Hands, 2008; Lubans et al., 2010). It is well known that children with low 

motor coordination (LMC) score lower in cardiovascular endurance, balance, 

body composition and movement time than their typically developing 

peers (Hands, 2008; Lubans et al., 2010). Children with LMC also suffer from 

deficits in motor programming and attentional control (Tsai, 2009; Tsai, Pan, 

Chang, Wang, & Tseng, 2010) but much less is known about how deficits in 

how they mentally interact with the world underlay their physical deficits. 

Although studies have documented perceptual differences between LMC and 

typically developing children (Langaas et al., 1998; Mon-Williams et al., 2005; 

Wilmut & Wann, 2008) these have been carried out using laboratory tasks 

where there has been no attempt to couple the child's visual perception of the 

task environment with their movements as a real world task is performed.   

Gaze registration techniques provide an insight into how external visual 

information is used to guide and control goal-directed motor actions (Land, 

2009). Research has shown that children with impaired motor coordination use 

less effective gaze strategies in controlled laboratory reaction time (Emes, 

Vickers, & Livingston, 1994), visual tracking (Langaas et al., 1998; Robert et al., 

2014), and cued reach-to-grasp (Wilmut & Wann, 2008) tasks. While laboratory 

tasks provide strong internal control, they therefore provide limited 

transferability to the sort of dynamic, interceptive tasks relevant to sport and 

physical activity. For this reason, there has been a call from researchers to 
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extend the gaze analysis paradigm to more ecologically valid, ‘real-life’ tasks 

(Langaas et al., 1998; Wilmut & Wann, 2008).  

The extensive body of literature in the sporting domain that has revealed 

a perceptual-cognitive advantage for expert performers (Mann et al., 2007) 

provides a useful departure point for research examining motor coordination in 

children in more ecologically valid settings. Expert performers direct high acuity 

foveal vision to the right place at the right time to provide accurate and timely 

information to the neural systems controlling goal-directed movements (Land, 

2009; Vickers, 2007). This strategy, termed the Quiet Eye (QE), has been 

proposed to reflect a critical period of cognitive processing during which the 

parameters of a motor skill, such as force, direction and velocity are fine-tuned 

and programmed (Mann et al., 2007; Vickers, 1996). A growing body of 

research has revealed the consistent expert-novice differences with respect to 

the timing and duration of QE in both self-paced far-aiming tasks and 

interceptive tasks (see Mann et al., 2007; Vickers, 2007; Vine et al., 2014 for 

reviews).  

The current study seeks to be the first to translate the knowledge about 

proficiency-related differences in QE in adults, to children of varying levels of 

motor coordination ability. Children with poor motor skills struggle particularly 

with the high degree of accurate coordination required to effectively perform 

dynamic interceptive tasks (Astill & Utley, 2006; Astill & Utley, 2008). We have 

therefore chosen to examine a throwing and catching task, as not only should it 

successfully differentiate motor ability, but also, this skill is a critical component 

of many sports and playground games. We hypothesise that more coordinated 

children will have a superior visuomotor strategy on both the targeting and 

tracking phases of a throw-and-catch task than children with low coordination. 
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Specifically, children with high motor coordination ability will reveal earlier and 

longer targeting QE periods (QE1) during the pre-throw phase, and earlier and 

longer tracking QE periods (QE2) on the ball prior to the catch attempt, than 

children with low motor coordination ability. As this strategy will provide 

advanced target information by which to accurately plan the catching action, 

coordinated children should also make more successful catches. 

 

3.2. Methods 

 

3.2.1. Participants 

Fifty-seven children (29 female, 28 male) were recruited from Year 5 

classes in two primary schools in the South West of England (mean age = 10.4 

years, SD = 0.47). Prior to commencing the study, ethical approval was gained 

from a local ethics committee, and informed written parental and participant 

consent was provided. Participants attended individually and were tested in a 

school classroom provided for the duration of the research. 

 

3.2.2. Tasks / Assessment 

The MABC-2 was used to determine a motor coordination score for each 

participant (Henderson et al., 2007).  The test was designed to identify and 

describe impairments in the motor function of children and as was discussed in 

chapter 2.2.2, the MABC-2 is one of the most highly validated and widely used 

measures in both clinical and research settings (Schulz et al., 2011). The 

MABC-2 consists of eight tasks designed for three age bands (3-6, 7-10, and 

11-16 years old), incorporating manual dexterity, aiming and catching, and 
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balance elements. The child’s performance on each of these tasks (either a 

score for accuracy or completion time) are age-adjusted and converted to 

standardised scores. An overall score is then computed which can be converted 

to a population percentile to aid diagnosis (Henderson et al., 2007).   

 

3.2.3. Apparatus 

Each participant was fitted with an Applied Science Laboratories Mobile 

Eye gaze registration system (ASL; Bedford, MA), which measures momentary 

point of gaze at 30Hz. The system incorporates a pair of lightweight (78g) 

glasses fitted with eye and scene cameras, and a portable recording device – a 

modified digital video cassette recorder (VCR).  Gaze data was collected 

wirelessly to digital videotape and an experimenter held the VCR behind the 

participant to ensure that relevant objects were within the field of view. All 

testing equipment was provided with the MABC-2 assessment pack and 

standard testing procedures were followed.   

 

3.2.4. Experimental Protocol  

Participants completed all eight tasks from the MABC-2 in line with the 

instructions in the manual (Henderson et al., 2007). The eye tracker was 

calibrated at the outset of the testing period and at the start of each new task, 

as the scene camera sometimes had to be adjusted to ensure that the field of 

view included the objects of interest. While gaze data was collected for all tasks, 

we were most interested in the throwing and catching task (task 4) for the 

reasons discussed in chapter 2.3.1.  In this task, the participant stood behind a 

line marked on the floor 2 meters from a blank wall.  The participant was then 

instructed to throw a tennis ball against the wall and attempt to catch it cleanly 
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in their hands. They were instructed to only use their hands to catch the ball 

(not to gather it against their chests) and to not allow it to bounce on the floor 

before it reached them. They were allowed to step forwards to catch the ball 

once they had thrown it. The task was first explained to the participant by a 

researcher and then demonstrated once. Participants were then given 5 

practice trials to reduce practice effects, before completing 10 experimental 

trials with the outcome of each being recorded (catch / no catch) (Henderson et 

al., 2007).   

 

3.2.5. Catching Performance  

Catching performance was indexed by both an absolute score out of ten, 

expressed as a percentage (number caught cleanly x 100 / 10), and a 

standardised score - accounting for age differences - taken from tables in the 

MABC-2 manual (range 5–15; Henderson et al., 2007). The standardised score 

was calculated for each task using tabulated to age norms that were published 

as part of the MABC-2 (Henderson et al., 2007). 

 

3.2.6. Ball Flight Times 

Ball flight time (ms) was recorded as a proxy measure of how the throw 

and catch were performed. Two specific phases were identified: Flight Time 1 

(FT1; throw: hand – wall) was defined as the time from ball release to wall 

contact and reflects the speed and trajectory of the throw (Time ‘E’ in Figure 

3.1). Flight Time 2 (FT2: rebound: wall – hand) was defined as the time from 

wall contact until the ball was either caught, struck the participant’s body or 

another surface, or passed the initial throw line (Time ‘F’ in Figure 3.1). FT2 is 

dependent on both the initial throw parameters, and the catching technique 
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employed; e.g., how early the participant attempts to intercept the ball. Total 

flight time (TFT: hand – hand) was calculated by summing the two sub-

components. Ball flight times (ms) were recorded from the gaze registration 

system’s scene camera and analysed in a frame-by-frame manner for each 

attempt.   

 

3.2.7. QE Measures 

The gaze data was downloaded from digital tapes to a computer (Lenovo 

Thinkpad R500) using Eyevision software (ASL). The location and duration of 

gaze was then analysed in a frame-by-frame manner for each throw, using 

Quiet Eye Solutions vision-in-action software (www.QuietEyeSolutions.com). 

The QE is “a final fixation or tracking gaze that is located on a specific location 

or object in the visuomotor workspace within 3° of visual angle (or less) for a 

minimum of 100ms” (Vickers, 2007, p11). This generic definition is 

operationalized for each task in relation to three consistent components: its 

onset, offset, and duration (time from onset to offset).  Chapter 2.1.4 describes 

how earlier and longer QE periods are indicative of more expert-like 

performance, whether they are fixations to a stationary target, or a tracking 

gaze on a moving object (Vickers, 2007). Figure 3.1 provides a schematic 

representation of how the QE variables were operationally defined with respect 

to the key actions and outcomes of the throw and catch task. All trials where a 

QE onset and offset could be determined were included to help calculate a 

mean value for each participant, to be used in subsequent analyses (see 

Results). 
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Figure 3.1: A schematic representation of how the gaze variables were defined 

relative to the key action points (preparation, ball release, ball bounce on wall, 

and catch [attempt]). 

 

QE1. The onset of the (Targeting) QE1 was defined as the start of the 

final fixation (within a 3° area on the wall) prior to the critical targeting action 

(Vickers, 2007; Vine, Moore & Wilson, 2014) - the release of the ball. As with 

other QE research for throwing tasks (Vickers, 1996; Wilson, Vine, & Wood, 

2009), the onset is reported relative to a standardised preparation phase - set at 

Preparation Ball Release Ball Bounce Catch (attempt) 

0ms 2000ms 0ms 

A 

B 

C 

E 

D 

F 

QE1 onset 
QE1 offset 

QE2 offset QE2 onset 

A = QE1 onset time (ms): Calculated from a standard ‘origin’ (Ball Release - 2000ms)  

B = QE1 duration (ms): Offset time – onset time (N.B. offset might be before or after ball release) 

C = QE2 onset (ms): Calculated from a standard ‘origin’ (0 - ball bounce on wall) 

D = QE2 duration (ms): Offset time - onset time 

E = Flight time 1 (ms): From ball release to ball bounce 

F = Flight time 2 (ms): From ball bounce to catch attempt/ trial end 

G = Correction fixation location (mm): Fixation that takes place during the ball bounce 

G 
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2000ms before the ball release (Time ‘A’ in Figure 3.1). Offset occurred when 

the gaze deviated off the fixated location (by 3° or more) for more than three 

frames (100ms). QE1 duration was therefore defined as the duration between 

QE1 onset and offset (ms: Time ‘B’ in Figure 3.1).  

 QE2. In interceptive tasks such as catching, pursuit tracking on the 

object occurs prior to the hands contacting the ball (Adolphe, Vickers, & 

Laplante, 1997; Panchuk & Vickers, 2009; Rodrigues et al., 2002). (Tracking) 

QE2 onset (ms) was the first gaze on the ball as it travelled towards the 

participant (Time ‘C’ in Figure 3.1). Offset occurred when the gaze deviated off 

the ball by more than 3° for three frames (100ms) as it travelled towards the 

participant, or when the trial ended (end of ball FT2). QE2 duration was defined 

as the duration between QE2 onset and offset (ms; Time ‘D’ in Figure 3.1). To 

control for differences in throwing and catching strategies, we also calculated 

QE2 onset and duration relative to ball FT2 (Time ’F’ in Figure 3.1) (Causer et 

al., 2010; Causer et al., 2011). The relative QE measures were therefore 

calculated as: (QE2 x 100) / FT2.  

Correction fixation (location). Previous research of interceptive tasks 

that include a bounce or deviation (e.g., Land & McLeod, 2000) has suggested 

that elite performers are better at predicting the point of bounce on a surface in 

interceptive tasks. This fixation represents a link from the targeting QE1 fixation 

into the QE2 gaze.  A more accurate fixation to the location of the bounce would 

be advantageous, as it is much more efficient to direct a quick saccade to a 

future location and maintain gaze steady there, than attempt to follow the fast-

moving object (Land & McLeod, 2000). Children with better coordination should 

be better able to predict the bounce point during ball flight, making corrections 

from their initial fixation point (QE1), to a location nearer to where the ball hits 
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the wall. By maintaining a steady gaze at this point, information about the ball 

trajectory can be processed more effectively (e.g., Vickers & Lewinski, 2012). 

The correction fixation (>100ms; Time ‘G’ in Figure 3.1) therefore occurs at the 

moment that the ball contacts the wall.  Its location (mm) was measured in 

relation to the location that the ball contacted the wall (mm).  To calculate the 

correction fixation location, an object of known length was placed in view of the 

scene camera for each trial.  The distance from the participant’s final fixation 

location on the wall, and the ball bounce location was measured on screen and 

scaled relative to the fixed object.   

 

3.2.8. Data Analysis 

The MABC-2 performance data was recorded using a standardized 

answer booklet and scored in accordance with the test protocol; including age 

corrections and standardisation procedures (Henderson et al., 2007). A tertiary 

split was then performed on the MABC-2 percentile scores for the sample; 

creating a high motor coordination group (HMC), a median motor coordination 

group (MMC), and a low motor coordination group (LMC).  One-way analysis of 

variance analyses (SPSS Version 19) were computed to compare differences in 

MABC-2 score, catching performance, ball flight, gaze and QE measures, 

between these three groups. Effect sizes were calculated using partial eta 

squared (ηp²) for omnibus comparisons and Bonferroni corrected post hoc tests 

were used to interrogate significant main effects.  The corrected alpha level was 

p = .002.  To determine the extent of a link between QE1 and QE2, regression 

analyses were conducted.  This would indicate if a longer QE1 predicted a more 

accurate correction fixation, and furthermore, if a more accurate correction 

fixation could predict an earlier QE2 onset.   
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As significant group differences in the visuomotor variables of interest 

may be due in part to functional differences between ‘catch’ and ‘no-catch’ 

attempts (LMC will have fewer successful catches than HMC participants), we 

also ran the ANOVAs on caught trials only. Mediation analyses were finally 

computed to determine whether any gaze measures mediated between-group 

differences in catching performance, using the MEDIATE SPSS custom dialog 

(Hayes & Preacher, 2012). This process determines the total, direct and indirect 

effect of group on catching performance, through a series of proposed 

mediators, allowing inferences to be made about the indirect effects using 

percentile bootstrap confidence intervals.  The gaze variables were individually 

entered into this analysis as a potential mediator to determine to what extent 

each measure facilitated the group differences that are observed in catching 

score.  

3.3. Results 

The gaze data of some participants was of poor quality and could not be 

accurately coded. In order for a participant to be included in the analyses a 

minimum criterion of 3 code-able trials out of 10 was set for each QE variable 

(see degrees of freedom for each analysis). A second analyst blindly scored 

10% of the code-able trials (1 from each participant) and inter-rater reliability 

was assessed using the inter-observer agreement method (Thomas, Nelson, & 

Silverman, 2011). This analysis revealed a satisfactory level of agreement at 

92.5% (Moore et al., 2012). 

 

3.3.1. Movement Assessment Battery for Children-2  

Motor coordination ability varied across the sample of 57 children (mean 

MABC-2 percentile rank = 51.05; SD = 26.38; range = 97.90). Four participants 
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were classified as ‘highly likely’ to have a clinical movement disorder 

(Developmental Coordination Disorder; DCD); scoring below the 5th percentile 

of a population norm (Henderson et al., 2007). A further four children were 

found to be ‘at risk’ of having DCD as they scored below the 16th percentile.  At 

the high end of the range, two children scored at or above the 95th percentile, 

demonstrating excellent movement coordination, and a further ten children 

scored at or above the 84th percentile. 

A tertiary split of the sample population was performed based on MABC-

2 percentile rankings. The LMC group contained 16 participants (6 female, 10 

male) with a mean MABC-2 score of 64.06 (SD = 13.12), and mean percentile 

rank of 18.76 (SD = 8.58). The MMC group contained 25 participants (10 male, 

15 female) with a mean MABC-2 score of 79.24 (SD = 3.96) and percentile rank 

of 50.52 (SD = 10.92). The HMC group was made up of 16 participants (8 

female and 8 male) with an average MABC-2 score of 91.13 (SD = 3.61) and 

mean percentile rank of 84.19 (SD = 7.02). The ANOVA yielded a significant 

effect of group on MABC-2 score, F(2,54) = 50.49, p < .001, ηp² = .65, and 

percentile rank, F(2,54) = 196.41, p < .001, ηp² = .88. The Bonferroni corrected 

comparisons revealed significant differences in movement coordination score 

and percentile rank between all three groups (p’s < .001). Age was not 

significantly correlated with percentile rank, r = -.16, p = .242, or MABC-2 score, 

r = -.18, p = .182, and independent t-tests showed there was no significant 

difference between genders in percentile rank; t(55) = 0.93, p = .358, or MABC-2 

score; t(55) = 1.30, p = .200. The MABC-2 data are presented in Table 3.1. 

3.3.2. Catching Performance 

ANOVA yielded a significant group difference in percentage number of 

balls caught, F(2,54) = 18.78, p < .001, ηp² = .41, and the standardised catching 
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score, F(2,54) = 16.46, p < .001, ηp²= .38. Bonferroni corrected comparisons 

revealed that the HMC group performed significantly better than either the MMC 

(mean differences: balls caught = 29% score = 2, p’s < .001) or the LMC groups 

(mean differences: balls caught = 57% score = 5, p’s < .001), however the MMC 

group did not perform significantly better than the LMC group (mean difference 

= 30%, p = .002 for balls caught and mean difference = 3, p = .048 for score). 

Age was not significantly correlated with catching performance, r = -.15, p = 

.274, although boys were better at catching than girls, t(55) = -2.33, p = .024. The 

catching performance data are presented in Table 3.1.   

 

Table 3.1: Mean (S.E.M) movement ability and catching performance data for 

LMC, MMC, and HMC groups. 

 

 LMC MMC HMC F(2,54) 
 

MABC-2 Score1 
64.06 

(13.12) 
79.24 
(3.96)a 

91.13 
(3.61)a,b 

 

50.49*** 
 

MABC-2 % Rank 
18.76  
(8.58) 

50.52 
(10.92)a 

84.19 
(7.02)a,b 

 

196.41*** 
 

Catching 
Performance (% 

caught) 
 

35.00 
(32.86) 

 

62.00 
(27.84)a 

 

91.88 
(12.76)a,b 

 

18.78*** 
 

Catching 
Performance 

(Standardised Score) 

7.50  
(2.66) 

 

9.12  
(2.52)a 

 

12.44 
(2.28)a,b 

 

16.46*** 
 

1 MABC-2 score range = 73. 
 
Note: Letters (a and b) indicate significant differences from LMC and MMC 
group values respectively. * p < .05; ** p < .01; *** p < .001. 
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3.3.3. Ball Flight 

ANOVA revealed no significant group differences in either FT1 (throw), 

F(2,45) = 2.06, p = .140; FT2 (rebound), F(2,45) = 0.44, p = .645; or TFT, F(2,45) = 

1.58, p = .217. The ball flight data are presented in Table 3.2. 

 

Table 3.2: Mean (S.E.M) ball flight times (ms) for LMC, MMC, and HMC 

groups. 

 LMC MMC HMC F(2,45)
1 

 

Flight time1 
(throw) 

363.54 
(60.73) 

 

351.86 
(94.31) 

305.39 
(74.76) 

 

2.06 
 

Flight time 2 
(rebound) 
 

506.42 
(46.33) 

 

515.86 
(72.81) 

496.49 
(33.63) 

 

0.44 
 

Total flight time 
(throw + 
rebound) 
 

869.96 
(96.43) 

 

867.14 
(121.66) 

 

806.46 
(77.54) 

 

1.58 
 

1 Degrees of freedom for ball flight and 2Total flight time were (2,44). 

 
Note: No significant group differences found. 
 

3.3.4. (Targeting) QE1 

Onset. ANOVA revealed a significant difference in the time to QE1 onset 

between the groups, F(2,44) = 8.30, p = .001, ηp² = 27. Bonferroni corrected 

comparisons demonstrated that the LMC group had significantly later onsets 

than the HMC (mean difference = 173ms, p < .001) but not the MMC group 

(mean difference = 99ms, p = .012). While the MMC group also had a later 

onset than the HMC group, this difference was not significant (mean difference 

= 74ms, p = .076). QE1 onset data are presented in Table 3.3. 
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Offset. There were no significant differences in the offset time, F(2,44) = 

2.19, p = .124, with all groups ending their fixation on the wall at around the 

point of ball release (see Table 3.3). 

Duration. There were significant differences in the duration of QE1 

period between groups, F(2,44) = 10.12, p < .001, ηp² = 32. Bonferroni corrected 

comparisons revealed that the LMC group approached significance in their 

shorter QE1 periods in comparison to the MMC (mean difference = 151ms, p = 

.003) and significantly shorter HMC (mean difference = 237ms, p < .001) 

groups. While the MMC group also had a shorter QE1 period than the HMC 

group, this difference not significant (mean difference = 87ms, p = .098). QE1 

duration data are presented in Table 3.3. 

 

Table 3.3: Mean (S.E.M) QE1 variables (ms) for LMC, MMC, and HMC groups. 

 LMC MMC HMC F(2,44) 
 

QE1 
onset  

1705.98 
(84.72) 

 

1607.06 
(112.57)a 

 

1533.32 
(135.10)a 

 

8.30** 
 

QE1 
offset  
 

1964.97 
(60.43) 

 

2016.80 
(105.88) 

 

2029.70 
(84.45) 

 

2.19 
 

QE1 
duration  
 

258.99 
(88.19) 

 

409.74 
(151.99)a 

 

496.38 
(170.69)a 

 

10.12*** 
 

Note: Letters (a and b) indicate significant differences from LMC and MMC 
group values respectively. * p < .05; ** p < .01; *** p < .001. 
 
 
 

3.3.5. Tracking QE2  

Onset. ANOVA yielded an almost significant group difference in the time 

to QE2 onset, F(2,40) = 3.10, p = .056, ηp² = .13. As this finding approached 

significance, post hoc analyses were carried out. These revealed that the effect 

was largely driven by the LMC group having later onsets than the HMC group 
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(mean difference = 121ms, p = .018). The effect of standardising this time with 

respect to FT2 (Relative QE2 onset) was negligible, F(2,40) = 3.14, p = .054, ηp² 

= .14. QE2 onset data are presented in Table 3.4. 

Offset. The ANOVA on both the absolute QE2 Offset data, F(2,40) = 2.85, 

p = .069, ηp² = .13 and the Relative QE2 Offset data, F(2,40) = 2.68, p = .081, ηp² 

= .12, also only approached significance. Again, this effect was driven by the 

significant differences in offset between LMC and HMC groups (mean 

differences = 51ms and 10%, p’s = .022 and .027 respectively). QE2 offset data 

are presented in Table 3.4. 

Duration. ANOVA revealed a significant difference for the duration of the 

QE2, F(2,40) = 13.66, p < .001, ηp² = .41. Bonferroni corrected comparisons 

showed that the LMC group had a near significantly shorter QE2 duration than 

the MMC group (mean difference = 54ms, p = .005) and a significantly shorter 

QE1 duration in comparison to the HMC group (mean difference = 110ms, p < 

.001). The MMC group also had a near significantly shorter QE2 duration than 

the HMC group (mean difference = 55ms, p = .007). When the QE2 duration 

was standardised to account for FT2, the between groups ANOVA remained 

significant, F(2,40) = 12.29, p < .001, ηp² = .38. Bonferroni corrected differences 

remained significant. QE2 duration data are presented in Table 3.4.  

3.3.6. Correction Fixation 

Correction Fixation.  ANOVA yielded a significant difference between 

groups in the location of the correction fixation, F(2,44) = 3.34, p = .045, ηp² = .13.  

Bonferroni corrected comparisons revealed that although not quite significant 

this was driven primarily by a difference in fixation duration between the LMC 

and HMC groups (p = .013).  ANOVA also found a significant difference 

between groups in the location of the correction fixation, F(2,44) = 8.85, p = .001, 
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ηp² = .37.  The LMC group was less accurate than the MMC group (p = .004) 

and was significantly less accurate than the HMC group (p < .001). The 

regression analysis revealed that a longer QE1 duration significantly predicted a 

more accurate correction fixation location (R2 = .17, p = .003, b = -.67).  

Furthermore, the location of the correction fixation also significantly predicted 

the variance in QE2 onset (R2 = .36, p < .001, b = .82), indicating that a more 

accurate correction fixation resulted in an earlier QE2 onset.  This analysis 

provides evidence of a link between the QE1 and QE2 periods.  The correction 

fixation data are presented in Table 3.4. 
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Table 3.4: Mean (S.E.M) QE2 variables and the correction fixation location for 

LMC, MMC and HMC groups. 

 LMC MMC HMC F(2,40) 
 

QE2 
onset (ms) 
 

207.06 
(55.51) 

 

172.88 
(66.96) 

 

148.00 
(44.64)a 

3.101 
 

Relative  
QE2 onset 
(%) 
 

40.58 
(10.49) 

35.57 
(13.15) 

29.00  
(8.12)a 

3.142 
 

QE2 
offset (ms) 
 

353.08 
(21.87) 

 

373.38 
(67.55) 

 

403.78 
(44.84)a 

2.853 
 

Relative  
QE2 offset 
(%) 
 

70.61 
(8.59) 

74.47 
(13.02) 

80.54  
(7.01)a 

2.684 
 

QE2 
duration (ms) 
 

146.02 
(53.20) 

 

200.50 
(49.00)a 

 

255.78 
(53.07)a,b 

 

13.66*** 
 

Relative  
QE2 duration 
(%) 
 

29.94 
(11.91) 

41.31 
(9.11)a 

50.92 
(10.61)a,b 

12.29*** 
 

Correction 
fixation location 
(mm) 
 

237.09  
(45.80) 

117.10  
(19.42) 

55.55 
(19.11) 

8.85*** 

1 p = .056; 2 p = .054; 3 p = .069; 4 p = .081 
 
Note: Letters (a and b) indicate significant differences from LMC and MMC 
group values respectively. * p < .05; ** p < .01; *** p < .001. 
 

3.3.7. Caught Trials Only 

 When only the trials that resulted in a catch were subjected to the same 

ANOVA as described previously for all codeable trials, the significant main 

effects for QE1 onset and duration, QE2 duration (absolute and relative) and 

correction fixation location all remained, but were reduced. Table 3.5 provides a 

detailed summary of the ball flight and QE data for caught trials only. 
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Table 3.5: Mean (S.E.M) Ball flight and gaze variables for caught trials only, for 

LMC, MMC and HMC groups. 

 LMC MMC HMC F Degrees 
of 

Freedom 
 

Ball flight 1 
(ms) 
 

314.54 
(31.81) 

316.46 
(41.05) 

308.95 
(76.20) 

0.08 (2,36) 
 

Ball flight 2 
(ms) 
 

490.47 
(43.33) 

480.50 
(55.92) 

502.89 
(33.63) 

0.73 
 

(2,31) 

Total ball flight 
(ms) 
 

799.79 
(64.70) 

794.28 
(65.93) 

814.97 
(78.01) 

0.29 (2,31) 
 

QE1 onset 
(ms) 
 

1735.36 
(69.82) 

1556.54 
(142.31)a 

1535.65 
(136.05)a 

7.54** (2,36) 

QE1 offset 
(ms) 
 

2000.01 
(30.25) 

2010.95 
(90.94) 

2029.03 
(84.54) 

0.37 (2,36) 
 

QE1 duration 
(ms) 
 

264.65 
(89.40) 

454.41 
(145.08)a 

493.38 
(170.80)a 

7.34** (2,36) 
 

QE2 onset 
(ms) 
 

196.36 
(53.26) 

184.56 
(64.36) 

149.55 
(43.74) 

1.86 (2,31) 
 

Relative QE2 
onset (%) 
 

39.45  
(9.82) 

38.87 
(13.00) 

29.09 
(8.05)a,b 

3.051 (2, 31) 
 

QE2 offset 
(ms) 
 

389.79 
(70.11) 

388.16 
(60.15) 

408.80 
(53.18) 

0.42 (2,31) 
 

Relative QE2 
offset (%) 
 

79.36 
(11.50) 

80.86  
(9.28) 

81.18 (7.62) 0.09 (2,31) 
 

QE2 duration 
(ms) 
 

193.43 
(29.74) 

203.60 
(47.23) 

259.25 
(61.43)a,b 

5.31** (2,31) 
 

Relative QE2 
duration (%) 
 

39.54  
(4.58) 

43.36  
(9.46) 

51.17 
(11.04)a,b 

3.87* (2,31) 
 

Correction 
fixation location 
(mm) 
 

178.34 
(26.39) 

83.43 
(17.23) 

32.41 

(14.84)
 a,b

 

6.32** (2,31) 

1 p = .062 
 
Note: Letters (a and b) indicate significant differences from LMC and MMC 
group values respectively. * p < .05; ** p < .01; *** p < .001. 
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3.3.8. Mediation 

To check whether catching performance had been significantly facilitated by 

any of the gaze variables, group (coded: 1 = HMC; 2 = MMC; 3 = LMC) was 

entered as the independent variable, catching performance score as the 

dependent variable, and the significant gaze measures from the ANOVA 

individually entered as mediators.  Results from bootstrapping (based on 

10,000 sampling rate) indicated that there were significant indirect effects for 

correction fixation location (95% CL = 2.71 to 8.48) and QE2 duration (95% CI = 

2.80 to 24.00). This means that the variance in these measures between the 

three groups indirectly facilitated the catching performance of each of the 

groups. When caught trials only were considered, no gaze variables mediated 

the significant group performance differences. 

 

3.4. Discussion and Conclusions 

This was the first published study to measure the QE in children, 

providing a novel examination of processes underpinning differences in 

children’s motor coordination ability. A strength of the study was that it used an 

ecologically valid interception task (throwing and catching), that not only has 

relevance to sport and playground games, but has been shown to have 

predictive validity in many studies (Schulz et al., 2011). We hypothesised that 

children with high motor coordination ability would reveal a perceptual-cognitive 

advantage over less coordinated children. Specifically, we predicted that they 

would demonstrate earlier and longer targeting QE fixations (QE1; pre-throw), 

and earlier and longer tracking QE gaze (QE2; pre-catch). We also performed 

additional mediation analyses in order to better understand which (if any) of 

these gaze differences mediates catching ability. Until recently, this final step is 
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seldom performed in the QE or motor expertise literature (Moore et al., 2012), 

and is necessary to avoid over-inflating the importance of ‘matching’ group 

effects across variables of interest.    

 There was a wide performance range across the eight MABC-2 tasks, 

and it was possible to classify three distinct groups of movement ability (Table 

3.1). There were significant differences in catching ability between the three 

groups (Table 3.1) and significant differences between the low and high motor 

coordination ability children in nearly all the QE measures (Tables 3.3 and 3.4). 

Interestingly, there were no significant differences in any of the ball flight 

measures, suggesting that the HMC group’s performance advantage was not 

(solely) due to differences in the way the task was performed (e.g., speed and 

trajectory of throw and position of catch; Table 3.2). Rather, this advantage was 

underpinned by differences in visuomotor control during both the pre-throw and 

pre-catch phase of the task. 

In the pre-throw phase of the task, HMC and MMC participants revealed 

earlier and longer QE1 durations. Indeed the HMC group’s QE1 duration was 

nearly twice as long as that of the LMC group (500ms vs 260ms; Table 3.3). 

This finding mirrors that in research examining far aiming performance in adults, 

where the longer preparatory fixation is postulated to provide a quiet period to 

plan the ensuing motor response (Vine et al., 2014). As there was no specific 

target to throw to (unlike with most far aiming, targeting skills) it is interesting 

that ability-related differences in the QE1 duration were still evident, despite the 

lack of precision required. The correction fixation location indicates that the 

HMC participants used this processing time to help to predict in advance where 

the ball would bounce and thus provide more time to track the ball’s final flight 
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to their hands (Land & McLeod, 2000).  This provided an important link between 

the QE1 and QE2 for effective task performance.  

In the pre-catch phase of the task, there were differences between the 

HMC and LMC participants in all QE2 measures examined (Table 3.4). The fact 

that the pre-catch gaze behaviours were more discriminatory is not surprising, 

given the increased precision required in this interceptive catching element, 

compared to the throwing element of the overall task. Most notably, near 

significant differences in both the onset and offset of the tracking gaze led to 

significant differences in the duration of QE2 between all three groups; 30%, 

41%, and 51% of rebound time (FT2) for the LMC, MMC and HMC groups 

respectively. Not only was this the only process measure to reveal similar 

significant effects as the catching performance data between all three groups 

(Table 3.1), but the formal tests of mediation also revealed that differences in 

QE2 duration to be a significant predictor of group variances in catching 

performance.  

Encouragingly, the significant group differences in both QE1 and QE2 

durations remained even when unsuccessful catching attempts were removed 

prior to running the ANOVA (Table 3.5). Not surprisingly this re-analysis had the 

largest effect on the values of the LMC group, who caught the fewest attempts. 

They improved on nearly all the gaze measures when catches only were 

considered, most notably increasing the accuracy of their correction fixations 

(improving by 58mm), which assisted an earlier QE2 onset, and therefore led to 

a significant improvement in their relative QE2 duration by 10% (from 29% to 

39%).  This finding was unsurprising, as studies with adult participants have 

also found significant intra-individual effects in QE, in addition to inter-individual 

effects: with successful attempts categorised by longer QEs than unsuccessful 
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attempts (Mann et al., 2007; Vickers, 2007; Vine et al., 2014). While the 

significant effects in the ANOVA remained, the mediation analysis was no 

longer significant, therefore it could no longer be concluded that QE2 duration 

significantly facilitated the group differences in catching performance.  

The question remains – why do the shorter QE periods of LMC children 

affect their performance in this way? The QE is postulated to provide the 

external spatial information needed by the brain (in conjunction with prior 

knowledge) to decide what it is going to do and how it is going to do it (Vickers, 

2007). In effect the QE aids a prediction function in visuomotor control – helping 

performers to process novel transformations relating actions to their sensory 

consequences (Flanagan, Bowman, & Johansson, 2006; Flanagan, Vetter, 

Johansson, & Wolpert, 2003). The catching component of the task is simplified 

if a consistent relationship between the throw and the rebound can be 

established. We postulate that the HMC group’s superior prediction is assisted 

by the extended information processing time facilitated by the longer QE 

durations during both targeting and tracking. This postulation is supported by 

QE research in other interceptive tasks with adults, such as returning serve in 

volleyball (Adolphe et al., 1997) and table tennis (Rodrigues et al., 2002), as 

well as shotgun shooting (Causer et al., 2010) and hockey goal tending 

(Panchuk & Vickers, 2009).  

Further support for this expectation is provided by research 

demonstrating that this ability to predict and calibrate movements based on 

sensory feedback may be impaired in children with movement coordination 

difficulties (Astill & Utley, 2006, 2008; Hyde & Wilson, 2011a; Mon-Williams et 

al., 2005). Indeed, Wilmut and Wann (2008) have demonstrated in a relatively 

abstract desktop task, that children with DCD are slower in parameterising a 
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movement on the basis of predictive motion than typically developing children. 

In relation to the current study, LMC children may have greater difficulty in 

determining the consequences of using a particular level of force when 

throwing.  We suggest that this may not be due to limitations in physiology 

and/or biomechanical characteristics, but to deficits in identifying relevant 

targets in space; allocating sufficient visual attention to that location to be 

successful; and predicting the consequences of the ensuing action. These 

children therefore base their catching movement on inaccurate cues, formulate 

inaccurate motor plans and gain inappropriate feedback due to inhibited 

perception and sensory feedback – driven in the main by their shorter QE 

periods.  

There are some caveats to the findings presented, which are reflective of 

limitations in the study design. While using a standardised task with existing 

normative comparisons was a strength of the study, the MABC-2 protocol also 

added some constraints. First, the low number of trials meant that it was difficult 

to examine intra-individual differences in visuomotor control in participants who 

were at either end of the ability spectrum: thirteen participants caught all ten 

attempts, whereas seven caught none. The power of the analyses was reduced 

when participants had to be omitted for having insufficient successful trials to 

analyse (Table 3.5). Second, the scoring system is rather imprecise and fails to 

distinguish between better and poorer attempts, where the end result was still a 

failed catch. The imprecision of the dependent variable in the mediation 

analyses may therefore partially explain why more potential mediators were not 

found. Future studies could seek to apply more precise qualitative judgments of 

catching performance, which may be more sensitive to differences in 

visuomotor strategy (Przysucha & Maraj, 2010). A third limitation of the study, 
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reflected in the findings of the mediation analysis for the caught trials, was that 

other unconsidered variables are clearly important for the successful completion 

of the task. While we found no differences in our proxy measure of how the task 

was performed (ball flight times) this is a rather crude measure. Future research 

could look to perform more detailed movement kinematic analyses of the 

participants during the task to further our understanding of the processes 

underpinning successful interception skill in children (Astill & Utley, 2006, 2008; 

Mazyn, Savelsbergh, Montagne, & Lenoir, 2007).  

 While the results of this first study investigating the QE in children needs 

to be replicated for other tasks, they suggest that children with high movement 

coordination are better able to predict ball flight during the interceptive task of 

throwing and catching a ball. This interpretation is supported by previous QE 

research in interceptive tasks with adults (Adolphe et al., 1997; Causer et al., 

2010; Panchuk & Vickers, 2009; Rodrigues et al., 2002), and by research 

examining more abstract tasks in adults (Flanagan et al., 2006; Flanagan et al., 

2003), and in children with DCD (Astill & Utley, 2006, 2008; Hyde & Wilson, 

2011a; Wilmut & Wann, 2008). The findings also suggest that task-orientated 

interventions designed to improve such prediction may be useful to support 

children with conditions like DCD.  There may therefore be utility in designing 

QE training interventions for basic interceptive tasks like catching that are 

important building blocks to increased physical activity. Previous research has 

supported the efficacy of such training interventions in other interceptive tasks 

with skilled adults (Adolphe et al., 1997; Causer et al., 2011), and for targeting 

tasks with novice performers (Moore et al., 2012; Vine & Wilson, 2010, 2011). 

While such interventions will need to be specifically tailored to the needs of 

children with motor coordination difficulties, there is evidence to suggest that 
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QE training may have additional benefits for psychological constructs related to 

control and beliefs about success (Wood & Wilson, 2012). It is recognised that 

children with DCD have lower beliefs about their ability to be successful in 

performing movement skills (Cairney et al., 2005b) and may therefore especially 

benefit from QE training.  

 To conclude, the current study was the first to examine the QE 

phenomenon in children and answers the call from researchers to examine the 

processes underpinning movement coordination difficulties in ‘real-life’ tasks 

(Langaas et al., 1998, Wilmut & Wann, 2008). Children with low motor 

coordination ability demonstrated impaired visuomotor control and performance 

in a throwing and catching task that were related to an inability to accurately 

locate and track the ball as it rebounded off the wall. These results need to be 

replicated with other tasks, but there appears to be utility in exploring the 

application of QE training to populations outside of adult sport performers. Such 

interventions may help children with low motor coordination to break the 

negative cycle linking low motor skill competence with low levels of physical 

activity and cardio-respiratory fitness. 

 

3.5. Future Directions 

By establishing the visuomotor (QE1 and QE2) differences that 

contribute to the varying motor coordination abilities of children, we have 

addressed the first aim of this thesis.  This finding also allows us to draw 

similarities to the adult QE literature, where studies have demonstrated that 

novice adults have shorter and later QE durations in comparison to elite 

counterparts (Mann et al., 2007; Vickers, 2007).  It would therefore be 

interesting to explore if children with low motor coordination can be trained to 
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adopt ‘expert-like’ gaze behaviour (cf. novice adults; Moore et al., 2012; Vine & 

Wilson, 2010, 2011).  These studies demonstrate that a performer can improve 

and become more robust in their execution of a motor skill with QE training 

(QET).  The second aim of this thesis was to determine the effectiveness of 

QET in children at improving their throwing and catching ability.  Therefore the 

second study of this thesis (chapter 4), makes the first attempt to adapt the QET 

interventions originally developed for adults, to teach the gaze behaviours of the 

highly coordinated children observed in the present study to children of a 

moderate to low motor coordination ability.
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Chapter 4 

 

Study 2: Developing Quiet Eye Training for Typically 

Developing Children 

 

 

 

 

 

 

 

Experiment 1 of this chapter was published as Miles, C.A.L., Vine, S.J., Wood, 

G., Vickers, J.N. & Wilson, M.R. (2014). Quiet eye training improves throw and 

catch performance in children, Psychology of Sport and Exercise, 15, 511-515. 

Experiment 2 was funded by the Waterloo Foundation. 

 

 

Experiment 2 of this chapter has been submitted as Miles, C.A.L., Wood, G., 

Vine, S.J., Vickers, J.N. & Wilson, M.R. (under review). Exploring the efficacy of 

QET for long-term learning in the catching performance of children. European 

Journal of Sport Science (SI).  
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4.1. Introduction 

It has been well documented that children’s motor skill competence is an 

important factor for a healthy and active lifestyle (chapter 2.2.4; Haga, 2008). 

Indeed, significant inverse correlations have been reported between children’s 

motor coordination abilities and their body mass index (D'Hondt et al., 2013). 

Effective interventions that help children improve their performance in the 

fundamental motor skills underpinning physical activity, playground games, and 

sport may therefore have clinical health benefits. The current study seeks to 

apply a novel, brief intervention approach - quiet eye training - to the learning of 

a particular fundamental motor skill; throwing and catching. 

Children have generally learned the skill of ball catching by age ten, 

however, some children still find this task difficult (e.g. Przysucha & Maraj, 

2010). Chapter 3 examined the gaze behaviour of children of varying motor 

coordination abilities in a throw and catch task in order to better understand the 

causes of these difficulties using Vickers’ (1996) QE concept, which has reliably 

been shown to differentiate skilled performance in both targeting and 

interception tasks (see Vickers, 2007). The QE has been proposed to reflect a 

critical period of cognitive processing during which the control parameters of a 

motor skill are programmed (see chapter 2.1.4 for further detail).  

Chapter 3 found significant group differences in both the duration of the 

targeting QE (preceding the throw) and the tracking QE (preceding the catch 

attempt).  It was proposed that more coordinated children have significantly 

longer targeting (QE1) durations that assisted with better predictions (e.g. more 

accurate correction fixations) to the critical ball-wall bounce point. With their 

gaze focused on this location these children were closer to, and therefore better 

able to shift onto an earlier and longer tracking (QE2) duration resulting in better 
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catching performance than the less coordinated children. It was therefore 

suggested that the targeting and tracking QE durations represented the time 

needed to organise the neural networks underlying the throw and catch actions 

respectively. By extending QE1 duration, more coordinated children made more 

accurate throws, which in turn meant that they were able to initiate an earlier 

(and hence longer) QE2 duration to support the catch attempt.  

The aim of the current study is to develop and assess the efficacy of a 

quiet eye training (QET) intervention for throwing and catching in children, 

based on the findings of the cross-sectional study in chapter 3. Experiment 1 of 

this study piloted a QET intervention, whilst experiment 2 expanded and 

adapted this methodology to improve the validity of the intervention and develop 

any weaknesses determined from experiment 1.  This second experiment also 

examined the durability of QET over a 6-week period. 

While QET has not previously been used with children, previous 

research has demonstrated that it can expedite the skill learning process of 

novice adult performers (see Vine et al., 2014 for a recent review). For example, 

Vine and Wilson (2011) demonstrated that novice basketball players who were 

taught to use a long QE fixation on the hoop prior to free-throw shooting had a 

greater increase in free-throw accuracy (pre- to post-test) than those trained 

using biomechanical cues. In line with these findings, we hypothesise that the 

QET children in the current study will reveal longer QE durations following 

training than their TT counterparts.  Additionally, we hypothesise that although 

both groups of children are likely to improve their catching performance 

following training; this effect will be greater for the QET group.  
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4.2. Experiment 1: Methods 

 

4.2.1. Participants 

38 children (mean age, 10.32 years, SD = 0.57) were recruited from two 

year-five (4th grade) classes in two primary schools and were randomly 

assigned to a QET or TT intervention group.  The study received ethical 

approval from a local ethics committee prior to testing and the children and their 

parents provided informed written consent.  

 

4.2.2. Task  

The same catching task from study 1 was used from the MABC-2 to 

assess throwing and catching ability (see chapter 3.2.4 for details of this task).   

As in study 1 and prescribed by the test (Henderson et al., 2007), performance 

was assessed over 10 trials.  

 

4.2.3. QET and TT Training Interventions 

The training phase of this study involved the QET and TT groups being 

shown a series of 3 instructional videos created for each intervention.  Each of 

these videos was followed by a set of related practices guided by a researcher.  

The sets of QET and TT videos were created to be as similar as possible, using 

a split-screen, vision-in-action approach (Vickers, 2007), presenting a 

synchronised view of an individual performing the task (right half of the screen) 

and concurrent footage from the eye-tracker revealing momentary point of gaze 

(left half of the screen).  For the TT videos, the movement video was highlighted 

with a red border and the gaze footage dimmed (to make it less noticeable). For 
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the QET videos the gaze data was highlighted and the motor data dimmed. 

Both views remained available to the participants to provide them with a more 

complete view of the task, particularly as the QET group were receiving 

instructions relating to both the movement and their gaze behaviour. 

Table 4.1 provides a summary of the content of the QET and TT 

instructional videos for the three phases of training. The QET videos were 

based on training the key QE behaviours uncovered in study 1 (chapter 3.3.4 

and 3.3.5) for this task, first placing an emphasis on focusing gaze on a location 

on the wall to which they wanted to throw the ball prior to the throw (QE1), then 

quickly locating and continuously tracking the ball as it came towards them prior 

to the catch (QE2). The TT instructional videos were based on ‘best practice’ for 

learning throwing and catching and emphasised a smooth arm swing through to 

the release of the ball when throwing, followed by assuming a readiness 

position and holding the hands in front to cushion the ball during the catch 

(Bunker, Hardy, Smith, & Almond, 1994).  These include the instruction ‘watch 

the ball’ which is similar to the QET directive however, because this instruction 

to watch the ball is so widely used to coach this skill, it is necessary to keep this 

in the TT instructions to retain a fair comparison between traditional and QE 

instructions.  
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Table 4.1. A summary of the instructions provided in the training videos for the 

quiet eye training (QET) and traditional training (TT) interventions for 

experiment 1. 

 QET video TT video 

1. Throw [General introduction] “See how 
the girl takes her time to aim at a 
spot on the wall before she 
throws?  For a good throw, you’ll 
need to pick a spot or target to 
aim at.  To aim, focus your eyes 
on this target and count to two 
before you start to throw.  
Remember; aim at your target, 
count to two and throw.”  

[General introduction] “The girl 
pauses before she starts a 
smooth even swing of her arm 
as she releases the ball.  For a 
good throw, pause for the count 
to two in order to prepare.  Then 
your arm needs to swing 
smoothly right through your 
release.  Remember; pause and 
count to two, then use an even 
swing with a smooth release.”  

2. Catch “Can you see how the girl keeps 
her eye focused on the ball 
tracking it all the way as it flies 
back into her outstretched 
hands?   It’s really important that 
you focus very hard on watching 
or tracking the ball as it comes 
back to you.  When catching, 
track the ball right back into your 
hands.   Remember; track the 
ball from as soon as you see it, 
until it’s into your hands.”  

“Can you see how the girl 
watches the ball right into her 
outstretched hands?  It’s really 
important that you watch the ball 
into your hands.  Focus on the 
ball as it comes into your 
outstretched hands.  
Remember; watch the ball all 
the way into your hands.”  

3. Link [Reemphasise the first two 
training points] “The girl keeps 
her eye on the ball throughout its 
bounce off the wall.  This is an 
important part in linking the throw 
and the catch.  To link the skills 
you need to look right at the ball 
as it hits the wall as if trying to 
read the writing on it.  This is very 
important to improve your 
catching.  Remember; look right 
at where the ball is hitting the 
wall.  Concentrate on watching it 
bounce.”  [Final summary of all 
three points]  

[Reemphasise the first two 
training points] “After throwing 
the girl puts her hands together 
and reaches out in front of her 
as the ball approaches.  This is 
called the ready position.  To 
link the skills, you need to have 
your palms stuck together so 
there are no gaps for the ball to 
creep through.  Then hold your 
hands out in front of you to 
cushion the ball safely back in.  
Remember; get your hands out 
in front of you with your palms 
stuck together in the ready 
position.” [Final summary of all 
three points]  

Total runtime of QET video = 179seconds; TT video = 167seconds.   
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4.2.4. Procedure 

Testing and training sessions took place during the school day in a 

classroom that was dedicated to the study.  Participants were tested individually 

and on arrival were fitted with an Applied Science Laboratories (ASL; Bedford, 

MA) Mobile Eye XG gaze registration system (a similar system to that described 

in chapter 3.2.3, although not identical).  Once calibration was complete, the 

gaze data were recorded wirelessly at 30Hz onto a laptop (Lenovo R500 

Thinkpad) using Eye Vision Software (ASL). The throw and catch task was first 

explained and demonstrated by the experimenter, and then participants were 

allowed five practice attempts (as per MABC-2 instructions; Henderson et al., 

2007).  Participants then completed ten pre-test trials before being randomly 

assigned to their training group. 

The process was the same for both groups across the three phases of 

training. After watching each training video, the participants were asked to 

summarise the key points in order to check their understanding, before 

completing a prescribed number of practice trials. The first phase of the 

intervention was termed the throwing phase.  The participants watched the first 

instructional video, and then completed 30 practice trials, throwing the ball 

against the wall. The second phase was the catch phase and again, after 

watching the second video, the experimenter delivered 30 throws to the 

participant from a distance of 2m.  These throws consisted of 10 central throws, 

10 to the right and 10 to the left of the participant, delivered in a randomised 

order.  If a throw was deemed by the researcher to be out of the participant’s 

reach, the throw was repeated.  For the final phase the videos focused on the 

transition between the throw and catch elements of the task, so for the TT group 

this meant presenting their hands in the ‘ready position’, whilst the QET 
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instructions related to locating and tracking the ball earlier and for longer.  Then 

for a final time, the participant completed 20 trials of the full MABC-2 throw and 

catch task.  

During each set of the practices, after every fifth attempt the researcher 

reviewed the QET or TT instructions that related to that phase to the participant. 

Following a brief rest, participants completed 10 post-test trials of the MABC-2 

task with no instructions (as pre-test). Total time for the testing and training was 

approximately 40-50 minutes and participants were allowed to rest between 

phases if required.   

 

4.2.5. Measures 

Many of the measures used in this study are identical to those used in 

study 1.  Therefore they are not described here in detail as reference can be 

made to chapter 3.2. 

Catching performance. Each participant’s catching score out of ten 

during baseline and retention conditions was converted to a percentage 

success score as was done in study 1.  

 Ball flight times.  The ball flight times were calculated using frame-by-

frame analysis (30 Hz) of the Mobile Eye scene camera.  Two of the measures 

of flight time are taken from study 1: FT1 (from release to wall contact) and FT2 

(from wall contact to trial end).   

Quiet eye. QE definitions also remain the same as study 1, described in 

chapter 3.2.7 and illustrated in Figure 3.1, however to reiterate, QE1 (pre-

throw), was the final targeting fixation on the wall prior to the ball release. QE2 

(pre-catch) was the final tracking gaze on the ball before the catch attempt (i.e., 

when the non-throwing hand joined the throwing hand).  QE2 onset was the 
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time from the ball contacting the wall to the initiation of QE2. The correction 

fixation measure demonstrated a strong link between these two QE measures 

in chapter 3, where longer QE1 durations increased the participant’s accuracy 

in their prediction of the throw direction and timing as it contacted the wall, 

leading to an earlier QE2 onset. To reduce the number of variables in the 

following studies this measure was not taken as it can be assumed the 

association measured by the correction fixation between a longer QE1 and 

earlier QE2 onset remains consistent in this MABC-2 throwing and catching 

task.  

 

4.2.6. Data Analysis 

While all children who volunteered for the study completed training and testing, 

not all were included in subsequent analyses. The purpose of this work was to 

determine if QET could improve the catching performance of typically 

developing children, therefore those who exhibited expertise in this skill at pre-

test had to be excluded.  There is also a ceiling effect in this task, which meant 

that children who scored highly at pre-test were unable to improve their scores.  

This meant fourteen participants were excluded due to expert baseline 

performances, as they caught 90% (n = 4) or 100% (n = 10) of attempts at pre-

test. A further two participants were excluded (one from each group) as outliers, 

due to their z-score for delta catching performance being more than two 

standard deviations away from the mean. Finally, six participants could not be 

included, as incomplete gaze data meant that a manipulation check of QE 

durations post training could not be performed. This resulted in 16 participants 

being included in the analysis (QET group: n = 5 females, 3 males; TT group: n 

= 7 females, 1 male). Although this smaller sample size lowers the power of the 
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findings, Vine and Wilson’s (2011) study with novice basketball players also 

only had 8 participants in each group, but revealed a significant interaction 

effect for free throw success percentage (p = .007, ηp² =  .419, power = .840). In 

that study, the QET group had a significantly greater training effect (from 29% at 

pre-test to 66% at post-test) compared to the TT group (from 34% at pre-test to 

54% at post-test). 

All code-able throw and catch attempts for each participant were 

analysed and a mean value for each variable in each condition computed for 

use in subsequent analyses.   Similarly to study 1, a second analyst blindly 

scored 10% of the code-able trials and inter-rater reliability was assessed using 

the inter-observer agreement method (Vine & Wilson, 2011). This analysis 

revealed a satisfactory level of agreement at 86.1%.  Mixed design factorial 

ANOVAs (intervention group: QET/TT x condition: pre-test/post-test) were 

performed on the performance, ball flight and QE dependent variables.  Effect 

sizes were calculated using partial eta squared (ηp²) for omnibus comparisons. 

Bonferroni corrected post hoc tests were used to interrogate significant 

interaction effects.  

Mediation analyses were computed to determine whether QE1 or QE2 

mediated between-group differences in catching performance, using the 

MEDIATE SPSS custom dialog (Hayes, 2013). This process determines the 

total, direct and indirect effect of the group on catching performance, through a 

series of proposed mediators, allowing inferences to be made about the indirect 

effects using percentile bootstrap confidence intervals. All data was analysed 

using SPSS (version 19).   
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4.3. Experiment 1: Results 

 

4.3.1. Descriptive Statistics 

The 16 participants identified for inclusion in the analysis were randomly 

allocated to the QET and TT groups.  The skewness and kurtosis statistics for 

baseline performance were between the ranges for normal distribution 

(skewness -1/+1, kurtosis -1/+2).  Each group had 8 participants (TT = 5 males, 

3 females; QET = 7 males, 1 female). There was also no significant difference 

between the baseline catching performance of the QET and TT groups t(14) = 

.99, p = .339.   

 

4.3.2. Catching Performance 

 The ANOVA revealed no significant main effect for intervention group, 

F(1,14) = 0.03, p = .874, ηp² < .01, or test, F(1,14) = 3.56, p = .080, ηp² = .20.  There 

was however a significant interaction, F(1,14) = 6.97, p = .019, ηp² = .33. Follow 

up tests revealed that while there was a significant improvement in the catching 

performance of the QET group from pre- to post-test (p = .004), there was no 

significant improvement for the TT group (p = .670). There were no significant 

group differences in catching accuracy at pre- (p = .339) or post- (p = .294) 

test1,2 (Figure 4.1, Table 4.2).   

                                                        
1
 Note that converting the catching success percentage scores to standardised scores, 

accounting for age differences (Henderson et al., 2007) made no difference to these findings. 
2
 We did also adopt a 10 point measure to describe each catch attempt (based on Pryzsucha & 

Maraj, 2010): 0 = no reaction; 3 = delayed reaction, no ball contact; 5 = ball contacts hands; 7 = 
fumble; 9 = fumble but re-grasped; 10 = clean catch / hands only).  This more fine-grained 
measure of catching revealed a similar pattern to the objective MABC-2 score, however, the 
interaction effect marginally failed to reach significance, F(1,14) = 4.13, p = .062, ηp² =.23, power = 
.47.  The QET group’s score increased from 6.4 (SEM = 0.54) to 7.3 (SEM = 0.60), while the TT 
group’s score did not change: 6.8 (SEM = 0.39) at pre-test and 6.8 (SEM = 0.48) at post-test.  
This data was filmed from an external camera capturing at 25Hz (Canon MD101). 
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Figure 4.1: Experiment 1 – catching performance of QET and TT groups from 

pre- to post-training. (Error bars are S.E.M). 
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4.3.3. Ball Flight Times 

On 6 trials of the 320 analysed, a FT measure could not be calculated 

because we could not detect the ball release or ball bounce from the Mobile 

Eye scene camera. 

FT1. There was no significant main effect for intervention group, F(1,14) = 

0.25, p = .625, ηp² = .02, but there was a significant main effect for test, F(1,14) = 

12.47, p = .003, ηp² = .47. No significant interaction effect was found, F(1,14) = 

0.75, p = .747, ηp² = 01.  Both groups displayed longer ball flight times from 

hand to wall at post- compared to pre-test (Figure 4.3 (a), Table 4.2). 

FT2. The ANOVA revealed no significant main effect for intervention 

group, F(1,14) = 1.47, p = .245, ηp² = .10, or test, F(1,14) = 0.79, p = .390, ηp² = .05, 

or interaction effect, F(1,14) = .01, p = .918, ηp² < .01 (Figure 4.3 (b), Table 4.2). 

 

 

  Figure 4.2 (a)    Figure 4.2 (b) 

 

Figure 4.2: Experiment 1 – Flight time 1 (a) and Flight time 2 (b) for QET and 

TT groups from pre- to post-training.  (Error bars are S.E.M). 
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4.3.4. QE Durations  

There were 43 occasions when QE1 could not be computed (QET = 33, 

TT = 10) and 72 occasions when QE2 could not be computed (QET = 44, TT = 

28) across the 320 trials analysed. However for each participant in each 

condition (pre- and post-test) we were able to determine both a QE1 and QE2 

on more than 5 trials, allowing meaningful mean values to be computed. 

QE1 (pre-throw). The ANOVA revealed no significant main effect for 

intervention group, F(1,14) = 3.13, p = .099, ηp² = .18.  There was however a 

significant main effect for test, F(1,14) = 16.93, p = .001, ηp² =.55; and a 

significant interaction effect, F(1,14) = 39.71, p < .001, ηp² = .74.  Follow up 

comparisons revealed that the QET group significantly lengthened their QE1 

duration following training (p = .001), whereas the TT group’s QE1 duration was 

shorter (p = .050). Follow up tests revealed no significant differences in QE1 

duration between the groups at pre-test (p = .294), but there was a significant 

difference between the groups at post-test (p = .008).  (Figure 4.4. (a)). 

 QE2 (pre-catch). The ANOVA yielded no main effect for the intervention 

group, F(1,14) = 0.01, p = .912, ηp² < .01, however test approached 

significance, F(1,14) = 3.99, p = .065, ηp² = .11.  There was a significant 

interaction effect found, F(1,14) = 7.39, p = .017, ηp² = .35.  Follow up 

comparisons revealed that the QET group significantly lengthened their QE2 

duration following training (p = .004), whereas there was no change for the TT 

group (p = .675).  These tests also revealed marginally significant group 

differences at pre- (p = .072) and post- (p = .092) tests.3 (Figure 4.4.b) 

                                                        
3
 Computing a relative (%) QE2 duration ((QE2 x 100) / FT2); Causer et al., 2010) made no 

difference to these findings. The interaction effect still remained significant, F(1,14) = 6.69, p = 
.022, ηp² = .32, with the QET group increasing QE2 from 32.9% to 46.2% of FT2 after the 
intervention, while the TT group’s QE2 was 39.2% at pre-test and 34.3% of FT2 at post-test. 
Relative QE2 did not mediate catching success. 
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  Figure 4.3 (a)    Figure 4.3 (b) 

 

Figure 4.3: Experiment 1 – QE1 (a) and QE2 (b) of QET and TT groups at pre- 

and post-training.  (Error bars are S.E.M). 
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behaviour, intervention group was entered as the independent variable, post-

test catching performance as the dependent variable, and QE1 and QE2 

individually entered as mediators. Results from bootstrapping (based on 10,000 

sampling rate) indicated that there was only a significant indirect effect for QE1 

duration (95% CI = -5.33 to -0.41). QE2 did not mediate the group-based 

differences in catching performance (95% CI = -3.44 to 1.60). 
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Table 4.2. Mean (S.D) catching, flight time and quiet eye data for quiet eye 

trained (QET) and traditionally trained (TT) participants across pre-test and 

post-test conditions for experiment 1. 

 Pre-Test Post-test 

 QET TT QET TT 

Catching Success (%) 
47.50 

(8.61) 

51.25 

(8.10) 

70.00 

(10.35) 

55.00 

(9.06) 

FT1 (hand-wall; ms) 
254.28 

(19.02) 

271.88 

(19.98) 

298.97 

(24.54) 

308.95 

(20.76) 

FT2 (wall-hand; ms) 
465.31 

(38.27) 

500.45 

(22.52) 

480.08 

(15.77) 

519.19 

(19.20) 

QE1 (pre-throw; ms) 
242.41 

(54.23) 

356.00 

(40.12) 

620.35 

(95.98) 

256.65 

(23.29) 

QE2 (pre-catch; ms) 
142.66 

(16.06) 

190.28 

(16.45) 

222.07 

(18.88) 

178.15 

(15.18) 

 

 

4.4. Experiment 1: Discussion 

 

4.4.1 Discussion of Key Findings and Implications 

This is the first study to explore the efficacy of QET for motor skill 

learning in typically developing children, although the paradigm has been 

applied successfully in adults (see Vine et al., 2014).  Study 1 (Chapter 3) 

revealed that highly coordinated children reveal significantly longer targeting 

and tracking QE durations (QE1 and QE2) in this throw and catch task than less 

coordinated children.  We therefore predicted that QET’s focus on optimising 
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gaze behaviour might produce a larger training effect in the catching 

performance of a group of children’s of moderate catching ability, compared to a 

TT intervention (as Vine & Wilson, 2011).  

The performance results supported our primary hypothesis, with QET 

children catching 23% more balls after training, compared to a 4% improvement 

for TT children. Significant interaction effects were also evident for the duration 

of both the QE1 (targeting fixation on the wall) and QE2 (tracking gaze on the 

ball). In both cases, the QET group significantly increased their QE durations 

following training, whereas the TT group revealed no change in QE2 and a 

reduction in QE1. Both groups significantly increased FT1 after training, but 

there were no differences in FT2 times across conditions or between groups. 

Taken together, the ball flight time data would suggest that all participants 

learned to throw the ball slower and then step in to intercept the ball earlier 

following training. The training advantage for the QET group over the TT group 

therefore cannot simply be explained by this strategic change in the way the 

task was performed. Rather, the additional mediation analyses suggest that 

improvements in anticipation and focus during the pre-throw phase of the task 

(QE1) underpinned this performance advantage.  

As first highlighted in chapter 3, it appears that the catching component 

of the task is simplified if a consistent relationship between the throw and the 

rebound can be established. The QET group’s ability to predict the 

consequences of the ensuing action – the likely path of the ball after it leaves 

the hand – is assisted by the extended information processing time facilitated 

by the longer QE durations during both the pre-throw and pre-catch phases of 

the task. While chapter 3 found that QE2 mediated catching performance 

differences between groups of children of varying coordination abilities, the 
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current experiment found that QE1 was more important in mediating between 

group post-test performance. The lack of a mediating effect for QE2 is likely to 

be due to the TT group also being given instructions related to tracking the ball 

as it came towards them (Table 4.1). While we felt it would be inappropriate to 

omit a ‘watch the ball’ instruction from the gold standard coaching instructions, it 

is likely that this reduced the additional impact of the QET instructions relating 

to tracking the ball (QE2). Future work could perhaps reduce the emphasis on 

this instruction to help determine the effect of changes in QE2 duration. It 

should also be noted that in this experiment (with a small sample size) the ball 

flight time measures taken during this experiment indicate that the children in 

both QET and TT groups threw the ball faster than those in chapter 3, resulting 

in a greater time constraint in this experiment on shifting their gaze firstly to the 

predicted ball-wall bounce location and then onto the tracking QE2 gaze.  The 

QE1 duration would however have remained unaffected by this change. 

 

4.4.2 Limitations and Development of Methodology for Exp. 2 

Being the first attempt at transferring a QET intervention into children, 

there were understandably a number of methodological limitations that were 

discovered in this first experiment, both by the researchers conducting the study 

and also from the review process of the resultant published article.  Experiment 

2 of this study is an extension of experiment 1 that attempts to develop and 

improve the protocol to become a more reliable and effective measure of the 

effect of QET in children.  These limitations of experiment 1 are discussed 

below: 

First, reviewer feedback proposed that the definitions for QE1 and QE2 

would benefit from a more rigorous approach to determining the critical 
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movement involved. For example, previous research examining throwing tasks 

(e.g., basketball free-throw shooting) has defined the QE with respect to the 

forward extension of the arm, rather than ball release (Vickers, 1996; Vine & 

Wilson, 2011).  From a cognitive perspective, the final fixation on the wall is 

where visual information is gathered to inform the individual of the task 

parameters.  This fixation therefore needs to take place before the targeting 

movement is initiated to allow for accurate pre-programming.  Once the 

movement (e.g. the forward extension of the arm) is initiated, the motor 

programme is being executed and so visual information gathered after this point 

may not be relevant to the task execution.  QE research of targeting tasks 

indicates that the true critical movement occurs prior to the onset of the forward 

movement in projection, but after a preparation phase when visual information 

is gathered. In throwing Klostermann, Koedijker and Hossner (2013a) and 

Klostermann, Kredel and Hossner (2013b), used the foreswing of the arm as 

the critical movement in their study of the QE. 

As the external camera (for the purpose of recording the qualitative 

performance) used during experiment 1 had a different capture rate to the gaze 

registration system, such a ‘vision-in-action’ analysis was not possible, and 

hence the definitions adopted in chapter 3.2.7 were used.  However for 

experiment 2 it was possible to utilise a 30Hz external motor camera, placed to 

capture a side-on (sagittal) view of the participant.  From this view, the 

researchers can classify the movement phases of the throwing and catching 

task, and synchronise this with the gaze registration data allowing them to refine 

the QE definitions.  These are described in chapter 4.5.5.  This external camera 

also would allow the researcher (and a blinded second researcher for inter-rater 

reliability) to qualitatively analyse each catch from slow-motion video data, and 
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for the FT data to be analysed without risk of the ball or hands becoming 

occluded, which occurred on 6 trials of experiment 1.   

Second, the review process also highlighted an issue with our 

intervention instructions.  One factor that may have contributed to the 

performance differences between the intervention groups was the locus of 

attentional focus.  The TT intervention was based on current best practice so as 

well as a directive to watch the ball, these involved instructions relating to the 

internal focus of monitoring and controlling limb movement.  The QET 

instructions however direct an individual to use a more external focus of control 

(Table 4.1), which Wulf and colleagues found to be beneficial to motor learning 

and performance (see Wulf, 2013) for a review).  Indeed previous research has 

found that a QET group performed better in post-test compared to both a TT 

and discovery-learning group (Wilson et al., 2011b), suggesting that there are 

benefits of QET, not just problems associated with TT. Experiment 2 could seek 

to control for this explanation by also giving the QET group the traditional 

instructions.   

By providing TT instructions to both groups however, this raised another 

issue of providing the children (especially in the QET group) with too much 

information, which would hinder their learning, and make the intervention 

ultimately less transferable to children with DCD who already suffer from deficits 

in motor learning.  Therefore the decision was made to reduce the training 

points from three used in experiment 1 to just two in the second experiment and 

introduce a review of these points in the third phase of training.  The practice 

tasks that were completed between the videos therefore also needed to be 

refined to become more simplistic and specific to the MABC-2 task.  Chapter 

4.5.3 describes these changes in more detail.   
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The third limitation relates to the sample size.  Although 38 participants 

were recruited and took part in experiment 1, just 16 of these children were 

included in the analysis, and thus the pre-training baseline scores for various 

measures had greater variability.  It was therefore important in experiment 2 to 

screen for and exclude children who had high-level motor coordination to 

ensure a larger sample size prior to training.  To do this all participants in 

experiment 2 completed the full MABC-2 (as was used in chapter 3) prior to 

competing the baseline test.  This also helped screen for and exclude children 

with movement disorders such as DCD.   

The final limitation of experiment 1 was the lack of consideration for the 

learning effect.  Only a short break separated the final training phase and the 

post-test, so the long-term impact of the training on the participant’s catching 

ability was not measured.  Therefore one further addition made in experiment 2 

was the inclusion of a delayed retention test to investigate the longevity of the 

learning effect over a 6-week period.  

 

4.4.3. Conclusions 

To conclude, the primary aim of this experiment was to pilot test a QET 

intervention for a throw and catch task in typically developing children. While 

there were some limitations to the findings discussed, QET appears to proffer a 

learning advantage over traditional training instructions when learning 

fundamental interception skills that are key building blocks for sport and 

playground games. What is potentially exciting about this finding is that a 

meaningful increase in catching performance (from 50% success to 70% 

success) was achieved following a brief (~45 minute) but unique (gaze-focused) 

intervention. Therefore providing children with an insight into optimal gaze 
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control strategies (via QET) is effective in expediting skill acquisition in throwing 

and catching and is also a technique that children seemed to be able to adopt 

relatively quickly. Experiment 2 will build on experiment 1, to address some of 

the methodological limitations and to examine the extent to which these 

improvements are durable over time. 

 

4.5. Experiment 2: Methods 

 

4.5.1. Participants 

35 children aged 8-10yrs (none of who took part in experiment 1) were 

recruited from primary schools in the South West of England. Ethical approval 

was obtained from a local ethics committee and full participant and parental 

consent was obtained prior to commencing the study.  All participants 

individually attended 3 sessions held at the University of Exeter.  These 

sessions were termed the assessment phase, the training phase and the 

retention phase.  

 

4.5.2. Assessment Phase 

In the first session each child completed the MABC-2 to quantify their 

coordination ability.  The 8 standardised tasks of this assessment were carried 

out as described in chapter 3.2, however no eye tracking was collected at this 

stage.  Children who scored more than 80% on the throwing and catching task 

were excluded from the study.  This resulted in 5 participants being removed 

from the training protocol.  The assessment phase took on average 45 minutes.  
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4.5.3. Training Phase 

As in experiment 1, prior to the training phase the children were 

randomly allocated to one of two intervention groups: a traditional training group 

(TT) and a quiet eye training group (QET).  There were 15 participants in each 

group. The training phase started the week after assessment.  

Apparatus. The training phase involved first fitting the participant with an 

Applied Science Laboratories’ Mobile Eye gaze registration system (ASL, 

Bedford, MA), which measures point of gaze at 30Hz. This was the same 

system used described in chapter 3.2.3 which is very similar to that used in 

experiment 1.  A Digital SLR camera (Finepix S6500fd) was placed on a tripod 

3m to the right of the throw line, capturing a side on view (sagittal plane) of the 

participant’s movements at 30Hz. 

Task.  The throwing and catching task and procedure remained the 

same (task 4 of the MABC-2) as was used in experiment 1 and chapter 3, with 

data collected for the 10 baseline trials.  Following these trials the eye tracker 

was removed. 

Training protocol. The training protocol had many similarities to 

experiment 1 however it also incorporated a number of changes to overcome 

various limitations (chapter 4.4.2) so is described here in some detail:  The task 

was broken down into its two elements which each consisted of a QE period: 

the throw (QE1) and the catch (QE2).  For each element, the participant was 

shown a video of an expert model performing the specific training point, overlaid 

with key visual prompts.  The child was then asked to summarise this video to 

demonstrate their understanding.  Following this, the participant performed 30 

practice attempts of the whole MABC-2 task, with the researcher providing a 

verbal prompt of the specific training point after every 5 trials.  Participants were 
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allowed to take a break when needed. Once the participant completed the 

training for the two elements of the task (60 total practice trials), they were then 

shown a short summary video of the task and completed a final 25 practice 

attempts of the complete task. 

During the training phase, both TT and QET groups viewed the same 

footage of a highly skilled model performing the throw and catch task and 

displaying QE1 and QE2 durations representative of past studies. Figure 4.4 

demonstrates the use of the synchronised split-screen vision-in-action approach 

(Vickers, 2007), with the point of gaze on the left of the screen, and the sagittal 

view of the model’s throwing action on the right. The QET video incorporated 

the TT traditional instructions and additionally included point of gaze for the 

targeting and tracking QE periods.  See Table 4.3 for scripted instructions of the 

training videos.   

 

 

Figure 4.4: A screenshot of a QET training video for the catch attempt; showing 

the gaze video (with circular cursor following the ball) on the left, and the actor’s 

body position on the right, which is dimmed to direct attention to the gaze view. 
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After the training phase ended, participants were refitted with the gaze 

registration system and completed ten post-training (immediate retention) trials 

but without any verbal prompts or guidance (as baseline).    
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Table 4.3: A summary of the instructions for the adapted QET and TT videos 

used for experiment 2. 

 QET Video 1  TT Video 1  

Phase 
1: The 
Throw 

[General Introduction] Look at the 
scene view [highlighted].  See how 
the girl takes her time to aim at a 
spot on the wall before she throws? 
 

[General Introduction] Look at the scene 
view [highlighted].  See how the girl 
takes her time before she throws? 
 

 Now look at the side on view 
[highlighted].  Notice how the girl 
throws the ball with a smooth arm 
action.   
 

Now look at the side on view 
[highlighted].  Notice how the girl 
throws the ball with a smooth arm 
action.   
 

 [Scene view highlighted] To make a 
good throw, focus your eyes on the 
target and count to two before you 
start a smooth throwing action 

[Side-on view highlighted] To make a 
good throw, take your time, then throw 
at a target using a smooth throwing 
action. 
 

 Remember, aim at your target, count 
to two, and then a smooth throw 
 

Remember, take your time, and 
concentrate on a smooth swing of your 
throwing arm. 

Now its time for you to practice this. Now its time for you to practice this. 

 

Phase 
2: The 
Catch 

Look at the scene view [highlighted]. 
Can you see how the girl watches the 
ball as soon as it hits the wall and 
keeps her eye on it all the way back 
to her outstretched hands? 
 

Look at the scene view [highlighted].  
Can you see how the girl concentrates on 
the ball as it flies back to her 
outstretched hands? 
 

 Look at the scene view [highlighted]. 
Can you see how the girl watches the 
ball as soon as it hits the wall and 
keeps her eye on it all the way back 
to her outstretched hands? 
 

Look at the scene view [highlighted].  
Can you see how the girl concentrates on 
the ball as it flies back to her 
outstretched hands? 
 

 Now look at the side on view 
[highlighted].  Can you see how the 
girl cups her hands together to catch 
the ball? 
 

Now look at the side on view 
[highlighted].  Can you see how the girl 
cups her hands together to catch the 
ball? 
 

 [Scene view highlighted] To make a 
good catch, it’s really important that 
you keep your eye on the ball from 
as soon as it hits the wall, until it 
comes back into your cupped hands. 
 

[Side on view highlighted] To make a 
good catch, it’s really important that you 
concentrate on the ball and cup your 
hands together. 
 

 Remember, focus on the target when 
throwing, but this time try really 
hard to watch the ball bounce, and 
then watch the ball right back into 
your hands. 

Remember to throw with a smooth arm 
action, but this time you need to 
concentrate really hard on the ball and 
cup your hands together to make the 
catch 
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Phase 3: 
The Review 

OK, so far you have learned two 
training points. 

OK, so far you have learned two 
training points. 

 [Scene view highlighted] To throw, 
you need to take your time to aim at 
the target, count to two in your head, 
before smoothly throwing the ball. 
 

[Side on view highlighted] To throw, 
you need to take your time before 
you smoothly throw the ball at the 
target.    

 [Scene view highlighted] To catch, 
you need to keep your eye on the 
ball from its bounce on the wall right 
until it comes back into your cupped 
hands. 

[Side on view highlighted] To catch, 
you need to concentrate on the ball, 
and cup your hands together to 
catch it when it comes back to you.  

 Now lets try and put this all together 
in the final practice session. 

Now lets try and put this all 
together in the final practice 
session. 

 Remember the two training points: 
Firstly focus on the target for two 
seconds and throw smoothly 

Remember the two training points: 
Firstly, take you time to throw with 
a smooth arm action. 
 

 And secondly keep your eye on the 
ball and cup your hands ready for 
the catch. 

And secondly concentrate on the 
ball and cup your hands ready for 
the catch. 

  
Now its time for your last set of 
practices. 
 

 
Now its time for your last set of 
practices. 
 

 

 

4.5.4. Retention Phase 

Participants attended a final session between six and eight weeks after 

their training session.  On arrival at this session participants were again fitted 

with the gaze registration system and completed 10 final retention trials of the 

throwing and catching task. Each participant was awarded a £10 shopping 

voucher (funded by the Waterloo Foundation) for completing the study and 

along with their parents, were debriefed as to the purpose of the study. 
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4.5.5. Measures 

Flight Time. The same measures of FT2 and FT2 used in experiment 1 

were also used in this experiment; therefore refer to chapter 4.2.5 for definitions 

of these.   

Gaze behaviour. Gaze data were analysed as a manipulation check to 

ensure the QET intervention actually did increase the QE durations of the 

participants.  The gaze data was digitised from digital tapes using Eye Vision 

Software (ASL) and the sagittal motor videos were downloaded and edited 

using CyberLink PowerDirector (Version 8, Dolby).  The gaze and motor videos 

were synced using Quiet Eye Solutions vision-in-action software 

(www.QuietEyeSolutions.com) to enable QE durations to be calculated via 

frame-by-frame analysis.  

QE1 (pre-throw).   In chapter 3 and experiment 1, QE1 was defined as 

the final fixation prior to the ball release.  The ball release was chosen as a 

critical movement as it was the final movement in the throwing task.  For this 

experiment, the QE1 definition is refined to reflect the cognitive pre-

programming theory and emerging research that proposes the critical 

movement of a targeting QE duration such as throwing takes place before the 

initiation of the ball projection action (Klostermann et al., 2013a; 2013b) as the 

fixation that occurs immediately prior to this action provides the most salient 

information to programme the movement execution.  QE1 onset in this 

experiment therefore is defined as the final fixation (within 3° area on a “virtual” 

location on the wall) for 100ms or more before the onset of the foreswing of the 

throwing arm. The offset of this fixation occurred when gaze deviated from this 

location by more than 3° for longer than 100ms.  The duration of QE1 was the 

time between the QE1 onset and offset (ms). QE1 is defined in a similar manner 

http://www.quieteyesolutions.com/
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to other throwing tasks (Vickers, 2007), and has been adapted from the 

definition operationalised in chapter 3 and experiment 1. In far aiming tasks 

(e.g., basketball free-throw, darts, golf putting) a longer QE1 duration has been 

associated with superior performance. 

QE2 (pre-catch). The time to QE2 onset was calculated (ms) as the time 

between the ball contacting the wall to the onset of QE2. QE2 onset is defined 

as the final tracking gaze on the tennis ball for more than 100ms before the 

catch was attempted or the trial ended.  The offset of QE2 occurred when gaze 

deviated off the ball for more than 100ms or when the trial ended. QE2 duration 

was defined as the time between QE2 onset and offset (ms).  Thus QE2 

duration may be sensitive to changes in ball flight time (FT) – a longer ball flight 

offers more time to track the ball, so we continued to measure FT1 (release to 

wall contact) and FT2 (wall contact to end of trial4). In interceptive tasks (e.g., 

goalkeeping, shotgun shooting, service return) an earlier and longer QE 

duration has been associated with superior performance (Vickers, 2007).   

Performance. We assessed performance outcome and a measure of 

performance quality.  

Catching performance. Performance outcome was expressed as the 

percentage of the 10 trials that were successfully caught at baseline, retention 1 

(immediate retention) and retention 2 (delayed retention).  The measure of 

catching quality was adapted from experiment 1 (see footnote 3) to provide 

more detail and was analysed from the video footage to provide a more 

sensitive measure of performance (Table 4.3). This measure was based on the 

qualitative performance scale developed by Przysucha and Maraj (2010), with 

modifications made to reflect the specific nature of the catching task used in this 

                                                        
4
 Trial end occurred when the ball contacted the participant’s hands, body or another surface or 

when the ball crossed the throw line.  The trial also ended if the ball bounced before reaching 
the participant. 
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study (e.g., one handed catching was not rewarded). The first author blindly 

scored the catch attempt according to this adapted 11-point scale, and a 

second blinded researcher also scored 10% of the trials to check for inter-rater 

reliability using the inter-observer agreement method (see chapter 3.3).  This 

analysis revealed a satisfactory amount of agreement of 95%. 
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Table 4.4: The qualitative catching performance scale used in experiment 2. 

 

Outcome Code Description 

No Reaction 0 
Makes no move towards the ball as it comes 

back 

Reaction, no contact  1 
Makes some move towards ball, no contact, 

no attempt at a catch (delayed) 

Inaccurate/Delayed 

reaction, no contact 
2 

Reacts to ball direction and makes effort to 

catch the ball. No contact 

Delayed Reaction, no 

contact before bounce 
3 

Reacts to ball direction and makes effort to 

catch the ball. Ball bounces/contacts some 

part of the body 

Delayed reaction, limited 

contact 
4 

Reacts to the ball, poor throw results in it 

bouncing/contacting another surface before 

catch can be made 

Ball contacts hands 5 
The ball contacts one or both hands but there 

is no control 

Trap ball, no hands 6 
Ball hits body and trapped with arms but not 

hands 

Fumble 7 Ball is fumbled and drops to the ground 

Trap 8 
The ball is grasped by both hands, with the aid 

of the trunk or other body part. 

Fumble but re-grasped 9 
Clean catch completed after a fumble without 

ball hitting another surface 

Clean, controlled catch, 10 
The catch is made exclusively with the palms 

and fingers. 



 116 

4.5.6. Analysis 

The performance data (success vs failure) was recorded and scored during the 

testing sessions, and verified later using the external motor video.  The external 

video was also used for coding the qualitative catching performance of each 

trial.  Mixed design analyses of variance (ANOVA; Statistical Package for Social 

Sciences, version 20; SPSS Inc., Chicago, IL) with Intervention group (TT vs 

QET) as the between group variable, and Test (Baseline [BL] vs Retention 1 

[R1] vs Retention 2 [R2]) as the repeated measures factor, were computed for 

each of the dependent variables. If the assumption of sphericity was violated, a 

Greenhouse-Geisser correction was used.  Uncorrected degrees of freedom are 

reported, along with the corrected probability values and epsilon value.  

Estimated effect sizes (p
2) were calculated using partial eta squared and LSD 

post hoc tests were used to interrogate significant main and interaction effects.  

Linear regression analyses were also performed to determine which variables 

could significantly predict the variance of catching performance at both R1 and 

R2.  Gaze and kinematic variables were individually entered into the regression 

analysis.   

As in experiment 1, mediation analyses were used to determine whether 

QE1 or QE2 mediated between-group differences in catching performance, 

using the MEDIATE SPSS custom dialog (Hayes, 2013).  The mediation 

analysis requires a good level of statistical power to determine a significant 

effect of a variable on each of the groups.  Therefore, if no significant mediators 

were found to explain the gaze variables on group effects, a linear regression 

analysis was conducted to determine whether an individual gaze variable could 

significantly predict the variance in performance.  This regression analysis does 

not distinguish between the group effects like a mediation analysis, therefore 
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although it still provides an indication of how much a gaze variable affects 

performance, the regression cannot provide as strong evidence for QET 

variable directly affecting performance over the affect of TT.  All data was 

analysed using SPSS (version 20).   

 

4.6. Experiment 2: Results 

 

4.6.1. MABC-2 

The participants of this experiment had an average MABC-2 percentile 

rank score of 42.07, which would place their motor coordination ability as just 

below average.  Any score above the 15th percentile denotes that no movement 

difficulty is detected (Henderson et al., 2007).  The QET group (6 males, 9 

females) had a mean percentile rank of 47.27 (SD = 21.28) and the TT group (8 

males, 7 females) had a mean percentile rank of 36.87 (SD = 19.60).  An 

independent t-test revealed no significant difference in the MABC-2 percentile 

rank of the two groups, t(28) = 1.39, p = .175.  There were also no significant 

differences between the age of the two groups, t(28) = 1.95, p = .061 and both 

groups had an identical baseline catching percentage (QET = 51.33, TT = 

51.33).  The skewness and kurtosis values were checked, revealing normal 

levels of distribution within the groups (skewness values between -1/+1; and 

kurtosis values between -1/+2).   

There was a significant positive correlation between the MABC-2 

percentile score and Baseline catching performance (r = .37, p = .044), however 

there was no significant correlation between MABC-2 percentile score and the 

participant’s age (r = .09, p = .640).   
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Flight times (ms). For FT1 ANOVA revealed there was no significant 

main effect for test, F(2,56) = 0.96, p = .391, p
2 = .03, or for intervention, F(1,28) = 

0.44, p = .511, p
2 = .02.  There was also no significant interaction between the 

variables, F(2,56) = 0.62, p = .544, p
2 = .02.  See Figure 4.4 (a). 

For FT2 however there was a significant main effect for test, F(2,56) = 

12.09, p < .001, p
2 = .30 as both groups reduced FT2 from BL to R1 (Mean 

difference = -34ms, p = .011) and R1 to R2 (Mean difference = -32ms, p = .012) 

and a significant main effect for intervention, F(1,28) = 8.43, p = .007, p
2 = .23, 

with the QET group having a shorter catch time (Mean Difference = 26ms, p = 

.007) however there was no significant interaction effect, F(2,56) = 0.08, p = .928, 

p
2 < .01.  See Figure 4.2 (b). 

  

  Figure 4.2(a)     Figure 4.2(b) 

 

Figure 4.5: Experiment 2 – The FT1 (a) and FT2 (b) for the QET and TT groups 

throughout the tests. (Error bars represent S.E.M). 
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4.6.2. Gaze Behaviour (Training Manipulation Check)5 

QE1 duration (ms). ANOVA revealed there was a significant main effect 

for test, F(2,56) = 16.11, p < .001, ε = .77, p
2 = .37, and for intervention, F(1, 28) = 

2.92, p = .100, p
2 =  .11.  There was a significant interaction between these 

variables, F(2,56) = 8.73, p = .002, ε = .77, p
2 =  .24.  Post hoc analyses of the 

between group effects revealed there was no significant difference in QE1 

duration at BL (Mean Difference = 42ms, p = .552), however the QET group 

had a significantly longer QE1 durations at R1 (Mean Difference = 550ms, p < 

.001), and at R2 (Mean Difference = 234ms, p = .003) in comparison to the TT 

group.  Within group post hoc analyses revealed no significant improvements in 

QE1 duration for the TT group throughout the tests (p’s > .225), however the 

QET group significantly increased their QE1 duration from BL to R1 (Mean 

Difference = 604ms, p < .001).  Despite this they were unable to maintain this 

increase as there was a significant decrease in QE1 duration between R1 and 

R2 (Mean Difference = -363ms, p = .002).  Their QE1 duration at R2 however 

remained significantly longer than their BL score (Mean Difference = 241ms, p = 

.001).  Figure 4.6 (a) shows the QE1 duration of the groups. 

QE2 onset (ms). ANOVA revealed there was a near significant main 

effect for test, F(2,56) = 2.68, p = .077, p
2 = .09, however there was a main effect 

for intervention, F(1,28) = 23.80, p = .001, p
2 = .31 with the QET having a 

significantly earlier QE2 onset.  There was a significant interaction between the 

variables, F(2,56) = 4.73, p = .013, p
2 = .14.  Post hoc analyses revealed no 

significant differences between the intervention groups at BL (Mean Difference 

                                                        
5
 Due to technical problems with gaze tracking 364 trials out of 900 could not be analysed and 

were therefore excluded.  For QE1, a total of 160 trials were excluded (TT = 60; QET = 100) 
and for QE2, a total of 204 trials were excluded (TT = 97; QET = 107).  Excluded trials were due 
to calibration errors or un-codable data, errors in data collection, and data lost due to data 
storage problems. 
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= 1ms, p = .977) but at R1 the QET group had a significantly earlier QE2 onset 

than the TT group (Mean Difference = 59ms, p = .001) and they were able to 

maintain this earlier QE2 onset at R2 (Mean Difference = 63ms, p = 001).  The 

within group analysis revealed that the QE2 onset of the TT group did not 

significantly change throughout the tests (p’s > .631).  The QET group however 

significantly reduced the time to QE2 onset from BL to R1 (Mean Difference = -

53ms, p = .001) and there was no significant difference between R1 and R2 

suggesting they maintained this difference (Mean Difference = -3ms, p = .857).  

This is shown in Figure 4.6 (b). 

QE2 duration (ms). ANOVA revealed no significant main effect for test, 

F(2,56) = 2.35, p = .104, ε = .80, p
2 = .08, however there was a significant main 

effect for intervention, F(1,28) = 13.11, p = .001, p
2 = .32 with the QET group 

having a significantly longer QE2 duration.  There was also a significant 

interaction between the variables, F(2,56) = 3.76, p = .040, ε = .80, p
2 = .12.  

Post hoc analysis revealed no significant difference between the groups at BL 

(Mean Difference = 12ms, p = .717).  However the QET group had significantly 

longer QE2 duration at R1 (Mean Difference = 81ms, p = .002) and this 

difference was maintained at R2 (Mean Difference = 96ms, p < .001).  The 

within group analysis revealed the TT group only had a significant decrease in 

QE2 duration from R1 to R2 (Mean Difference = -38ms, p = .031).  The QET 

group however significantly increased QE2 duration from BL to R1 (Mean 

Difference = 66ms, p = .020), and there was no significant difference between 

R1 and R2 so they were able to maintain this increase (Mean Difference = -

22ms, p = .186).  The QE2 duration is shown in Figure 4.6 (c) along with the 

relative QE2 duration (Figure 4.6 (d)), which is calculated to compensate for 

differences in FT2. 



 121 

Relative QE2 Duration: (QE * 100)/FT2. Both groups reduced the catch 

time (FT2) and the QET had an overall lower FT2.  The effect of this on relative 

QE2 ANOVA was the generation of a main effect for test, F(2,56) = 3.84, p = 

.027, p
2 = .12 the main effect for intervention remained similar to absolute QE2 

duration, F(1,28) = 17.44, p < .001, p
2 = .38 but the interaction between the 

variables became stronger, F(2,56) = 4.46, p = .016, p
2 = .14.  Post hoc analysis 

revealed similar between group differences to absolute QE2 duration however 

in the within groups analysis, there were no significant differences for the TT 

group (p’s > .241) and there was a greater margin between BL and R1 for the 

QET group (Mean difference = 16%. p = .005) who also maintained a similar 

relative QE2 between R1 and R2 (Mean difference = 0%, p = .919).  Table 4.5 

shows the QE mean values for the two groups at each test.  
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  Figure 4.6(a)     Figure 4.6(b) 

 

  Figure 4.6(c)     Figure 4.6(d) 

 

Figure 4.6: Experiment 2 – The QE1 duration (a), QE2 onset (b), QE2 duration 

(c) and Relative QE2 (d) for the QET and TT groups over the tests.  Relative 

QE2 was a calculation of (QE2*100)/FT2 that determined the effect of ball 

speed during the catch phase on QE2 duration – see footnote 7. (Error bars 

represent S.E.M). 
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4.6.3. Performance 

 MABC-2 catching performance (%). ANOVA revealed a significant 

main effect for test, F(2,56) = 10.79, p < .001, p
2 = .28 but no significant main 

effect for intervention, F(1,28) = 3.34, p = .078, p
2 = .11.  There was however a 

significant interaction between these variables, F(2,56) = 3.64, p = .033, p
2 = .12.   

Table 4.5 shows the mean scores for catching performance between the 

groups.  Post hoc analysis revealed no significant difference between the 

groups at BL (Mean Difference = 0%, p = 1.00), and the difference between the 

groups at R1 was not quite significant either (Mean Difference = 16%, p = .089).  

The QET group did however score significantly higher than the TT group at R2 

(Mean Difference = 23%, p = .005).  The within group analysis revealed no 

significant change in performance for the TT children throughout the tests (p’s > 

.181).  The QET group however significantly increased performance from BL to 

R1 (Mean Difference = 25%, p = .001), and there was no significant difference 

between R1 and R2 so they were able to maintain this increase (Mean 

Difference = 5%, p = .394).  This is shown in Figure 4.7 (a). 

Qualitative catching score. ANOVA revealed a significant main effect 

for test, F(2,56) = 4.74, p = .012, p
2 = .15 and for intervention, F(1,28) = 5.90, p = 

.022, p
2 = .17 and a significant interaction between these variables, F(2,56) = 

4.66, p = .013, p
2 = .14 (see Table 4.5 for mean scores).  Post hoc analyses 

revealed that there were no significant differences between the groups at BL 

(Mean Difference = 0.35, p = .633) but the QET group scored higher at R1 

(Mean Difference = 1.40, p = .037 and at R2 (Mean Difference = 2.20, p = 

.001).  There were no significant differences in the qualitative performance of 

the TT group throughout the tests (p’s > .542), however the QET group did 

significantly improve their performance from BL to R1 (Mean Difference = 1.25, 
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p = .004) and there was no significant difference between R1 and R2 

suggesting they were able to maintain this improvement (Mean Difference = 

.56, p = .162), shown in Figure 4.7 (b). 

 

  Figure 4.7 (a)     Figure 4.7 (b) 

 

Figure 4.7: The performance % (a) and qualitative performance (b) for the QET 

and TT groups. (Error bars represent S.E.M). 

 

4.6.4. Mediation Analysis 

The mediation analysis revealed none of the gaze variables significantly 

mediated the effect of intervention on either performance % or qualitative 

performance at R1 or R2, so this analysis could not establish a direct or indirect 

effect of the gaze variables on the difference in catching performance between 

the groups.  Therefore a linear regression analysis was conducted to determine 

the extent to which the QE variables could predict performance. 
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4.6.5. Regression Analysis 

The regression analysis revealed that at R1, none of the gaze variables 

significantly predicted the variance in performance % (p’s > .130).  These 

findings were not significantly altered when qualitative scores were entered as a 

dependant variable.  For R2, the gaze variables were still unable to individually 

predict performance % however of these variables relative QE2 was the 

strongest predictor of performance (p = .093), and a significant predictor for 

qualitative performance (R2 = .15, p = .037, b = .48).   
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Table 4.5: Mean (S.E.M) QE1 duration, QE2 onset, Absolute QE2 duration, 

Relative QE2 duration, Performance (%) and Qualitative Performance data for 

QET and TT groups at baseline, retention 1 and retention 2 for experiment 2.  

 Baseline Retention 1 Retention 2 

 QET TT QET TT QET TT 

QE1 Duration 

(ms) 

342.99  
(50.33) 

300.91 
(48.56) 

946.73 
(116.78) 

396.44 
(50.81) 

584.23 
(65.13) 

365.52 
(50.74) 

QE2 Onset 

(ms) 

158.93 
(11.95) 

158.62 
(15.31) 

116.34 
(11.72) 

175.62 
(9.57) 

113.31 
(11.89) 

176.33 
(13.31) 

Absolute QE2 

Duration (ms) 

252.55 
(23.9) 

240.28 
(23.47) 

318.05  
(9.07) 

237.22 
(21.17) 

295.71 
(12.85) 

199.70 
(12.34) 

Relative QE2 

Duration (%) 

47.45 
(5.00) 

43.21  
(4.42) 

63.20  
(2.38) 

44.80 
(4.08) 

62.81 
(2.45) 

40.19 
(2.81) 

Performance 

(%) 

51.33 
(6.61) 

51.33 
(6.54) 

76.00 
(4.00) 

60.00 
(8.17) 

80.67 
(4.52) 

58.00 
(5.87) 

Qualitative 

Performance 

(0 – 10) 

7.20 
(0.35) 

6.85 
(0.62) 

8.45 
(0.26) 

7.05 
(0.59) 

9.01 
(0.26) 

6.81 
(0.51) 
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4.7. Experiment 2: Discussion 

 The second experiment of this study made a number of methodological 

adaptations to the QET protocol of experiment 1 with the purpose designed to 

improve the validity and effectiveness of the training interventions for children.  

Some of the key changes made were to include the TT instructions into the 

QET intervention, to help reduce the impact of directing attentional focus 

internally, and reducing the number of training phases from 3 to just 2 with a 

revision phase.  A delayed retention assessment was also used to determine 

the effects of QET six weeks after training.  Changes were also made to the 

measures for this experiment.  The QE definitions were more specific regarding 

the onset of critical movements and the qualitative scoring system was made 

more task-specific.  Finally the sample size used in experiment 2 was almost 

double that included in the analysis in experiment 1 due to pre-screening using 

the MABC-2.   

 The findings of this experiment further establish that QET for children is 

an effective strategy for adopting more ‘expert-like’ gaze strategies.  This is 

demonstrated by evidence of the QET children employing a longer QE1 

duration (pre-throw) in comparison to both their own baseline levels and the 

control group of children who were taught using traditional catching instructions.  

The QET children were also able to initiate an earlier and longer tracking QE 

gaze (QE2) on the ball (pre-catch) and this was reflected in the performance 

findings which indicated that the QET group improved and retained a higher 

performance level than the TT group and their own baseline scores at both 

immediate (R1) and delayed retention (R2).  

There were however, a few surprising findings in this experiment that 

need to be considered.  Firstly, despite an initial increase in QE1 that was 
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greater than the QE1 duration of the TT group immediately after training, the 

QE1 duration of the QET group then significantly decreased from R1 to R2.  

Chapter 2.2.4 discusses how a longer QE fixation during aiming is a critical time 

for children to pre-plan and parameterise the movement of the throw and catch, 

whilst directing attention to critical aspects of the task, however due to little prior 

research of the QE in throwing and catching, the optimal duration of this QE1 is 

unknown.  Research in adults would suggest that the QE has an optimal 

duration in aiming tasks of 2 seconds (Vickers, 2007) and indeed this was the 

basis for recognising this duration as an appropriate QE1 duration, however this 

duration may be unsuitable for children.  In relation to the findings of chapter 

3.3.4, the average QE1 duration of the highly coordinated children (who had not 

received any QET) was 496ms.  Therefore it may be pertinent in future studies 

of QET to target a smaller QE1 improvement to identify with these findings, 

which children will find easier to retain. 

The mediation analysis failed to determine whether any of the measures 

used in this experiment significantly mediated performance, however the QE2 

significantly predicted 15% of qualitative catching performance.  This supports 

the findings of chapter 3, which indicated that QE2 was likely the most important 

factor in affecting catching performance in children.  It was discussed in this 

chapter (3.4) that the QE2 afforded children more time to gather accurate 

information about the flight of the ball that would assist them in predicting the 

optimal interception location and timing.  
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4.8. General Discussion 

 The purpose of this study was to pilot test and develop a QET 

intervention that would be suitable and effective at improving the catching 

performance of typically developing children.  The first experiment performed a 

basic intervention assessing catching performance and two QE measures pre- 

and post-intervention.  Experiment 2 developed measures such as the process 

analysis using a qualitative analysis of performance and a number of other 

methodological adaptations to improve the intervention.   

 Both experiments found that QET could manipulate the gaze behaviour 

of children to adopt a more ‘expert-like’ strategy with longer QE durations both 

in the aiming phase (QE1) and interceptive phase (QE2) of the task.  

Experiment 2 also determined that this training induced an earlier QE2 onset.  

Both experiments also reported similar improvements in catching percentage, 

particularly for the QET group (exp. 1 = +22%, exp. 2 = +23%), but also the TT 

group (exp. 1 = +4%, exp. 2 = +9%). 

There were however some discrepancies between the findings of the two 

experiments that are of note.  The random allocation of groups meant that the 

baseline measures for most of the variables, particularly between the TT groups 

were very similar, however between the QET groups, the baseline measures for 

QE1 and QE2 duration did differ by more than 100ms between the two 

experiments.  The small sample size of experiment 1 will almost certainly have 

had a substantial impact on these differences at baseline, but one must also 

consider that no pre-screening took place in experiment 1 to determine the 

motor coordination ability of the participants beyond catching percentage score.  

Indeed, when compared to the findings of chapter 3, the baseline scores of the 

gaze variables of the QET participants in experiment 1, resemble very closely 
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those in the low motor coordination group (mean differences of 17ms, and 3ms 

for QE1 and QE2 duration respectively).  However the gaze variables of QET 

participants in experiment 2, more closely resemble the median group of the 

study in chapter 3 (84ms and 52ms) and with an average MABC-2 percentile 

rank just under 50, it would appear that these children are indeed of a higher 

motor coordination ability than those recruited for experiment 1.   

Better skilled children would perhaps have benefitted more from practice 

effects, as Debrabant et al. (2013) proposed that tasks such as catching remain 

novel to children with poor motor skills as they fail to effectively use previous 

experience and memories to inform their movements.  This could explain why 

children in both groups in experiment 2 generally made more improvements in 

their gaze behaviour.  Based on this assumption, it may therefore be 

unsurprising that this sample of participants in the QET group were able to 

increase their QE1 durations by 226ms more than the QET group in experiment 

1.  Studies of children with poor motor coordination abilities (such as DCD) have 

demonstrated that these children do have difficulties with motor skill learning 

(Wilson, Maruff, & Lum, 2003) and memory (Chen et al., 2013).  However, 

critically the methodological adaptations brought into experiment 2 would also 

have had an impact of the findings of these two studies.   

The most significant change made in regards to QE1 is the definition of 

the critical movement from which the QE1 onset was measured.  The 

movement defined in experiment 2 (foreswing of arm) occurs slightly earlier in 

the movement phases of the throw, so the QE1 fixation for some participants 

would be different depending on which definition was used.  This change in 

definition could affect the accuracy of the correction fixation, as some 

participants make online adaptations to their gaze behaviour during the 
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foreswing of the arm to reflect updated kinaesthetic information from this 

movement.  However these differences were likely to be minimal due to the 

rapid duration of the foreswing and the findings of experiment 2 indicate that the 

QE1 period remained important in linking the two phases of the throw and catch 

task.   

Furthermore, the QET instructions incorporated the TT instructions in 

study 2, thus with more information to process regarding two sets of instructions 

(use a smooth throw and aim at a virtual target) it may be that the QET children 

in experiment 2 were simply taking longer to internalise the instructions to 

develop an internal model to guide the movements (Wilson, Maruff, Ives, & 

Currie, 2001).  The two sets of instructions also require a switch of attentional 

focus from internal (movements of the arm) to external (aim at target) prior to 

executing a movement.  This effect would also relate to the loss of QE1 duration 

as a significant predictor or mediator of performance.  If the children are 

processing more information and switching attentional focus during this QE1 

fixation (especially if some of this information isn’t crucial to the successful 

performance of the task), the QE1 duration will be extended but to no profit in 

terms of performance.  Furthermore, the extended QE1 is targeted at improving 

the quality of the throw (as was discussed in chapter 3.4) however the children 

(possibly of higher motor skill) recruited in experiment 2 generally threw the ball 

slower, affording themselves more time to initiate the tracking QE2 earlier (a 

variable not reported in experiment 1).  Therefore the mediation effect of QE1 in 

experiment 1 may have been a result of less skilled throwers gaining more 

benefit from one clear instruction to aim at a virtual target.   

The findings of chapter 3 support the notion that the pre-catch phase of 

this task is more sensitive to the pick-up of accurate visual information, making 
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the earlier, and longer QE2 duration critical to task success.  Indeed, the 

regression analyses of experiment 2 support this finding, particularly at retention 

2, after a longer period of ‘de-training’ has taken place.  However, despite 

finding QE durations were good predictors of performance in both experiments, 

there might be other reasons why the QET intervention was more successful – 

beyond the improved action planning and sensorimotor mapping explanation 

discussed in chapter 3.4.  For example the QET participants may have simply 

been more motivated by the novelty of the training instructions, which are likely 

to be different to those they have received previously.  Furthermore, the 

adaptations of the second experiment also did not fully address the question of 

whether the lack of external attentional focus used in the TT instructions may be 

attributable to poorer learning of the training instructions.  An inclusion of a 

discovery-learning group such as that used by (Vine et al., 2013a) and Wilson 

et al. (2011b) would help determine that the QET effect is more beneficial than 

the TT effect is detrimental to performance in children. 

In summary, this study presents a major step forward in the development 

of QET and specifically in the successful adaption of this form of intervention for 

children in a throwing and catching task.  The combined effect of these two 

experiments indicate that children can indeed learn to replicate the gaze 

behaviours of highly coordinated peers, and this appears to have a substantial 

influence on their ability to execute a catch successfully.  Furthermore this study 

supports the longevity of QET, indicating that the performance improvement is 

robust to a period of ‘de-training’.   

 



 133 

4.9. Future Directions 

 This study has strongly supported the QET effect and advocated its use 

in typically developing children, however the question remains to be answered 

regarding the effect of QET and TT on more homogeneous groups of different 

ability children; is QET more suitable for typically developing children (of 

average ability), or children with motor coordination difficulties?  The next step 

of this thesis is to apply the QET intervention to a sample of children diagnosed 

with DCD.  If successful, such interventions may help these children break the 

negative cycle linking low motor skill competence with low levels of physical 

activity and cardio-respiratory fitness. 
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Study 3: Quiet Eye Training facilitates catching 

performance in children with Developmental 

Coordination Disorder 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

An adaptation of this study has been submitted as Miles, C.A.L., Wood, G., 

Vine, S. J., Vickers, J. N. and Wilson, M. R. (submitted). Quiet eye training 

facilitates catching performance in children with Developmental Coordination 

Disorder, Research in Developmental Disabilities.
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5.1 Introduction 

Developmental Coordination Disorder (DCD) affects between 1.7-6% of 

children (depending on the stringency of diagnostic criteria; Hendrix et al., 

2014).  The condition is characterised by a marked impairment in the 

performance of motor skills that have a significant, negative impact on daily 

activities (Sugden et al., 2006).  Not only does DCD impact all areas of motor 

performance (Cantin, Ryan, & Polatajko, 2014), but it can influence academic 

achievement (Chen et al., 2013; Liberman et al., 2013), social development 

(Chen et al., 2009; Tseng et al., 2007) and long term physical health (Cairney & 

Veldhuizen, 2013).   Furthermore, DCD is not confined to young children, but 

can continue into adolescence and adulthood (e.g. Cantell et al., 2003).  A 

longitudinal study by Tal-Saban, Ornoy, and Parush (2014) found young adults 

with DCD score significantly lower than their typically developing (TD) peers in 

participation in everyday activities, life satisfaction and quality of life, making 

early identification and effective intervention a priority for children with DCD. 

Whilst uncertainty remains regarding the precise aetiology of DCD 

(Caravale, Baldi, Gasparini, & Wilson, 2014; Vaivre-Douret, 2014), there is 

strong evidence to suggest that children with DCD have significant impairments 

in the processing of visual information relevant to the performance of motor 

tasks, compared to their typically developing (TD) peers (e.g. Piek & Dyck, 

2004; Sigmundsson et al., 2003; Tsai et al., 2008; Wilson & McKenzie, 1998). 

One view of this visuomotor impairment postulates that children with DCD have 

fewer resources for the processing of visual information (Smyth, Anderson, & 

Churchill, 2001).  Debrabant et al. (2013) suggested children with DCD are 

unable to utilise predictive information to assist with mapping of the required 

movement patterns, resulting in constantly high processing demands and 
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therefore a task remaining novel to the child despite repeated practice.  For 

example, it has been demonstrated that children with DCD, unlike their TD 

counterparts, cannot make use of advanced (partial) visual cues to support the 

efficient planning of subsequent movements (Mon-Williams et al., 2005; Wilmut 

& Wann, 2008). Additionally, children with DCD (and co-occurring learning 

difficulties) are unable to shift towards a predictive or feed-forward mode of 

control on more complex movement tasks, and instead rely on a less efficient 

strategy, using updated visual information as it becomes available (Smits-

Engelsman, Wilson, Westenberg, & Duysens, 2003).   

Smits-Engelsman et al. (2003) proposed that feed-forward control may 

be under-developed or impaired in children with DCD, limiting their ability to 

utilise sensory information to make pre-emptive or anticipatory responses.  

These authors found that children with DCD required more target-related 

feedback during movement execution than TD children.  It is well established 

that predictive eye movements support the planning and control of goal-directed 

movements in natural environments (see Land, 2009 for a review), and such 

eye movement analyses can differentiate between children with and without 

DCD (Langaas et al., 1998; Robert et al., 2014).  

The resulting paradox is that, despite having impaired eye movements 

(e.g. Robert et al., 2014), children with DCD rely more on visually guided online 

control when responding to stimuli (Debrabant et al., 2013).  Visual target 

perturbation studies have demonstrated the significant difficulties children with 

DCD experience when making predictive online movement adaptations to 

movement trajectories (Hyde & Wilson, 2011a; Hyde & Wilson, 2011b).  

Importantly, the deficits experienced by children with DCD are most pronounced 

in complex, interceptive tasks (Bairstow & Laszlo, 1989; Mak, 2010; Wilmut & 
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Wann, 2008), and as such there is a need for research to further examine 

visuomotor control and motor performance in these less constrained settings 

and using ‘real-world’ tasks. 

Ball catching is a complex dynamic task that requires modifications to 

planned movement responses based on visual information about the flight of 

the ball (Olivier, Ripoll, & Audiffren, 1997; Williams, 1992). Children with DCD 

find this task difficult (e.g. Przysucha & Maraj, 2013; Utley et al., 2007; Van 

Waelvelde et al., 2004) and use a different technique to TD children; extending 

their arms out in front of them and ‘freezing’ their elbow angles in this position 

throughout the catch in an attempt to reduce the degrees of freedom they have 

to coordinate in the movement (Astill, 2007; Utley et al., 2007).  While this 

freezing strategy is likely driven by deficits in perception of ball flight 

characteristics - making online corrections of movement difficult - current 

methods and analysis procedures are unable to test this objectively. 

The departure point for the current study is the examination of the 

visuomotor processes underpinning throwing and catching in children 

performed in the first two studies of this thesis (chapters 3 and 4).  Chapter 3 

found a specific gaze behaviour termed the QE could distinguish between the 

motor coordination skill and throwing and catching performance of children.  

The QE has been found to be a key predictor of perceptual-cognitive skill in a 

wide range of movement tasks (see review by Vine et al., 2014).  QE durations 

of experts in a wide range of motor tasks are typically longer suggesting 

additional time is needed to organise the neural networks underlying the 

planning and control of motor skills.  

The study in chapter 3 was the first to examine the QE in children, and 

found that those with low motor coordination ability (< 20th percentile of MABC-
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2) had significantly shorter QE durations during both the throwing (QE1) and 

catching (QE2) phase of the task compared to highly coordinated children (> 

70th percentile of MABC-2).  It was suggested that the longer QE fixation prior to 

the throw (held on a virtual target on the wall; QE1) of the more skilled children 

helped to guide a more accurate throw which in turn helped them to locate the 

ball more quickly as it bounced off the wall. This subsequently helped them to 

initiate an earlier onset of a QE prior to the catch (the tracking gaze on the ball; 

QE2), providing earlier information about the ball flight, which could be used to 

plan and control the catch attempt.  

As well as being a key marker of proficient performance, the QE has 

been shown to be trainable (chapter 2.1.5; chapter 4; Vine et al., 2014). The 

objective of QET is to guide a performer’s judgement as to where and when to 

fixate their gaze when executing a motor skill in order to process the most 

relevant information guiding the planning and control of the action (Vine et al., 

2014).  Initial studies of QET in the sporting domain have been successful in 

accelerating the skill acquisition of novice performers when compared to 

traditional training instructions (e.g. Vine & Wilson, 2010, 2011).  Chapter 4 

described the first QET study in children, assessing the effectiveness of a QET 

intervention in improving performance in a throwing and catching task.  This 

study found that the video-based QET intervention significantly increased the 

duration of QE1 and QE2, and improved catching performance by over 20% in 

comparison to traditional training instructions, which produced no significant 

training effects.  These findings represent a step forward in determining the 

transferability of QET to children suffering from DCD in complex, real-world 

movement skills that underpin many sport and playground games.   
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 The aim of the current study was to extend the work of chapter 4 to 

assess the effectiveness of a QET intervention for a throw and catch task in 

children with DCD.  We propose that such a study has both a strong scientific 

and practical rationale. First, based on Land’s (2007) model of predictive eye 

movements and Vickers’ (1996) conceptualisation of the QE, it is important to 

understand how training children with DCD to adopt the gaze and attention of 

experts can improve their ability to make accurate online predictions to guide 

and adapt movement patterns, in real-world tasks. Second, not only do children 

with DCD struggle with this task, but impairments in catching can also lead to 

significant health implications. Indeed, Magalhaes, Cardoso, and Missiuna 

(2011) identified poor ball skills as an important limiting factor in activity 

participation for children with DCD, and longitudinal work by Barnett and 

colleagues (Barnett et al., 2008b, 2009) linked childhood object control 

proficiency with adolescent physical activity levels and fitness.  

It is hypothesised that QET, compared to a traditional training (TT) 

method will: (1) lengthen QE1 duration on a “virtual” target on the wall prior to 

the throw and QE2 on the ball prior to catch, (2) improve prediction capability 

that will reveal itself in a more expert-like movement patterns, and finally (3) 

improve catching technique and performance.   

 

5.2 Methods 

 This study was conducted alongside experiment 2 of chapter 4; therefore 

this study shares very similar methodology with that experiment.  To reduce 

repetition in this chapter, there are several references to the methods of chapter 

4.5. 
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5.2.1 Participants 

30 children aged 8-10yrs who were diagnosed with DCD by an 

occupational therapist (DCD; 19 male, 11 female; 9.07yrs ±0.87) were recruited 

for this study.  This diagnosis was confirmed by an MABC-2 score at or below 

the 5th percentile.  The children were recruited from primary schools in the 

South West of England, through Vranch House Clinic in Exeter and the UK 

Dyspraxia Foundation (www.dyspraxiafoundation.org.uk).  

Ethical approval was obtained from a local ethics committee and full 

participant and parental consent was obtained prior to commencing the study.  

All participants individually attended 3 sessions held at the University of Exeter.  

These sessions were termed the assessment phase, the training phase and the 

retention phase.  

 

5.2.2. Experiment Protocol 

 The protocol for this study followed the same process through the 

assessment, training and retention phases as chapters 4.5.2 – 5.5.4 and also 

used the same MABC-2 throwing and catching task.  In the first phase of this 

procedure the children completed the MABC-2 and were excluded from the 

study if they scored above the 5th percentile.  In addition, whilst the children 

were completing this assessment, their parents also filled out the Attention 

Deficit/Hyperactivity Disorder (ADHD) Rating Scale-VI (Parent Version) which 

asks parents to assess their child’s behaviour over the previous 6 months.  This 

scale takes around five minutes to complete and has been verified as a suitable 

tool for screening for ADHD in relation to the DSM-IV conceptualisation of this 

disorder.  As such the ADHD Rating Scale-IV has been extensively used in 

academic research exploring DCD and ADHD in children (DuPaul et al., 1998).  
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In the present study, this scale identified 8 of the 30 participants as likely to 

have co-occurring ADHD.  The children were randomly assigned into the QET 

and TT groups and the training phase took place approximately 1 week 

following assessment.   

The training protocol was identical to that described in chapter 4.5.3.  

The baseline (BL) measure of the MABC-2 catching task was conducted using 

the same gaze registration equipment, and marker placement.  Then the groups 

were shown the QET or TT instructional videos described in chapter 4.5.3 

before they completed the stated set of practices.  The children were then re-

fitted with the gaze registration system and performed the 10 immediate 

retention trials (R1).   

The delayed retention (R2) took place 6-8 weeks after the completion of 

training, and again followed the same protocol of chapter 4.5.4.  The children in 

this study were also given a £10 shopping voucher on completion of the testing 

(funded by the Waterloo Foundation) and debriefed along with their parents. 

 

5.2.3. Measures 

 The measures used in this study are again very similar to those 

described in chapter 4.5.5, however in this study the reporting of ball flight times 

have been omitted as this factor is incorporated in the relative QE2 measure.  

An additional measure of elbow angle was also included.  The measures used 

in this study are briefly described below: 

QE1 duration (pre-throw), is defined as the final fixation of more than 

100ms within 3° of visual angle on the wall before the onset of the foreswing of 

the throw.   
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QE2 onset (pre-throw) is defined as the time from the ball contacting the 

wall, to the onset of the QE2 tracking gaze.   

Absolute QE2 duration (pre-catch), is defined as the final tracking gaze 

of more than 100ms within 3° of visual angle on the ball before the catch or trial 

ended. 

Relative QE2 duration (pre-throw) is computed as such (QE2 duration x 

100) / FT2.  FT2 relates to the time from the ball contacting the wall to the end 

of the trial (defined as when the ball contacts a surface or participant or crosses 

the throw line). 

EA, (at catch attempt) is a process measure defined as the elbow angle 

at the point the ball contacts the hands (regardless of the result of the trial).  

Markers were placed on the acromion process of the shoulder, lateral 

epicondyle of the elbow and styloid process of the ulna of the participant’s 

dominant hand.  EA data was collected from an external camera (Finepix 

S6500fd) recording at 30Hz.  The camera was placed on a tripod at the 

participants shoulder height, 3m from the throw line on the side of their 

dominant hand to record the participant’s movements in the sagittal plane.  This 

data was analysed using Dartfish (version 5.5) video analysis software to 

calculate the EA on a single frame extracted from the video at the point the ball 

contacted the participant’s hands. 

Catching performance (quantitative) is scored by the guidelines of the 

MABC-2 that requires the ball to be cleanly caught in the hands without the 

assistance of any other part of the body.  The performance is scored (catch = 1, 

no-catch = 0) out of the 10 trials and converted to a percentage (x10). 

Catching performance (qualitative) is scored using the performance scale 

shown in Table 4.4.  This measure rewards participants for making better 
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attempts at catching the ball, even if that attempt is deemed unsuccessful in the 

quantitative scoring measure. 

 

5.2.4. Analysis 

 For the method of analysing the results, see chapter 4.5.6.  In this study 

the reporting of the mediation analysis was removed, as this again yielded no 

significant findings due to the lack of statistical power of the findings. The linear 

regression analysis therefore was used to determine which QE variables most 

significantly predicted performance.  Furthermore, if more than one variable was 

found to be a significant predictor of performance, a multiple hierarchical 

regression analysis was use to determine which of these variables were most 

critical in the prediction of performance variables. 

 

5.3. Results 

 After random allocation, the 8 children diagnosed as likely having co-

occurring ADHD via the ADHD Rating Scale-IV had been divided equally into 

the two groups (QET = 4; TT = 4).  Adding ADHD status as a co-variant in 

subsequent analyses did not significantly influence results. 

 

5.3.1. MABC-2 

The MABC-2 percentile rank scores were used to confirm the diagnosis 

of DCD.  Skewness and kurtosis values were checked, revealing normal levels 

of distribution (skewness values between -1/+1; and kurtosis values between -

1/+2).  The DCD group all scored at or below the 5th percentile, which is 

described by Henderson et al. (2007) as “denotes a significant movement 
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difficulty”. There was no significant difference between the MABC-2 percentile 

scores of the TT (Mean Difference = 1.95, SD 0.51) and QET (Mean Difference 

= 2.21, SD 0.46) intervention groups, t(28) = 0.37, p = .713. There was a 

significant positive correlation between the MABC-2 percentile score and 

Baseline catching performance (r = .43, p = .019), however there was no 

significant correlation between MABC-2 percentile score and the participant’s 

age (r = .17, p = .383).   

5.3.2. Gaze Behaviour (Training Manipulation Check)6 

QE1 duration (ms). ANOVA revealed there was a significant main effect 

for test, F(2,48) = 5.46, p = .007, p
2 = .19, but not for intervention, F(1, 24) = 2.92, 

p = .100, p
2 =  .11.  There was a significant interaction between these 

variables, F(2,48) = 5.37, p = .008, p
2 =  .18.  Post hoc analyses of the between 

group effects revealed there was no significant difference in QE1 duration at BL 

(Mean Difference = 86ms, p = .134), or at R1 (Mean Difference = 121ms, p = 

.237), however the QET group had significantly longer QE1 durations at R2 

(Mean Difference = 234ms, p = .003) in comparison to the TT group.  Within 

group post hoc analyses revealed no significant improvements in QE1 duration 

for the TT group throughout the tests (p’s > .059), however the QET group 

significantly increased their QE1 duration from BL to R1 (Mean Difference = 

267ms, p = .001) and they were able to maintain this increase as there was no 

significant difference between R1 and R2 (Mean Difference = -20ms, p = .765).  

These findings are shown in Figure 5.1 (a) (see also Table 5.1). 

                                                        
6 Due to technical problems with gaze tracking 392 trials out of 900 could not be 

analysed and were therefore excluded.  For QE1, a total of 215 trials were excluded 
(TT = 96; QET = 119) and for QE2, a total of 177 trials were excluded (TT = 71; QET = 
106).  Excluded trials were due to calibration errors or un-codable data, errors in data 
collection, and data lost due to data storage problems. 
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QE2 onset (ms). ANOVA revealed there was no significant main effect 

for test, F(2,46) = 0.35, p = .707, p
2 = .02, but there was a main effect for 

intervention, F(1,23) = 23.39, p < .001, p
2 = .50 with the QET having a 

significantly earlier QE2 onset.  There was a significant interaction between the 

variables, F(2,46) = 6.79, p = .003, p
2 = .23.  Post hoc analyses revealed no 

significant differences between the intervention groups at BL (Mean Difference 

= 11ms, p = .629) however at R1 the QET group had a significantly earlier QE2 

onset than the TT group (Mean Difference = 94ms, p < .001) and they were 

able to maintain this earlier QE2 onset at R2 (Mean Difference = 86ms, p = 

001).  The within group analysis revealed the TT group initiated a significantly 

later QE2 onset from BL to R1 (Mean Difference = 36ms, p = .016), and there 

was no significant difference between R1 and R2 suggesting they maintained 

this difference (Mean Difference = 6ms, p = .734).  The QET group however 

significantly reduced the time to QE2 onset from BL to R1 (Mean Difference = -

47ms, p = 002) and there was no significant difference between R1 and R2 

suggesting they maintained this difference (Mean Difference = 15ms, p = .411).  

This is shown in Figure 5.1 (b) (see also Table 5.1). 

Absolute QE2 Duration (ms).  ANOVA revealed no significant main 

effect for test, F(2,46) = 1.71, p = .192 p
2 = .07, but there was a significant main 

effect for intervention, F(1,23) = 6.38, p = .019, p
2 = .22, with the QET group 

having a significantly longer QE2 duration compared to the TT group.  There 

was a significant interaction between these variables, F(2,46) = 3.39, p = .042, p
2 

= .13. Post hoc analyses revealed no significant difference between the 

intervention groups at BL (Mean Difference = 13ms, p = .674) however the QET 

group had significantly longer QE2 durations at R1 (Mean Difference = 62ms, p 

= .003) and this difference was maintained at R2 (Mean Difference = 63ms, p = 



 146 

.009).  The within group analysis revealed no significant increases in QE2 

duration for the TT children throughout the tests (p’s > .649).  The QET group 

however significantly increased QE2 duration from BL to R1 (Mean Difference = 

66ms, p = .013), and there was no significant difference between R1 and R2 so 

they were able to maintain this increase (Mean Difference = -3ms, p = .851).  

These findings are shown in Figure 5.1 (c) (see also Table 5.1). 

Relative QE2 Duration (%) (QE * 100) / FT2. ANOVA revealed no 

significant main effect for test, F(2,46) = 2.20, p = .122, p
2 = .09 however there 

was a significant main effect for intervention, F(1,23) = 4.41, p = .047, p
2 = .16 

with the QET group having a significantly longer relative QE2 duration.  There 

was also a significant interaction between the variables, F(2,46) = 4.34, p = .019, 

p
2 = .16.  Post hoc analysis revealed no significant difference between the 

groups at BL (Mean Difference = 5%, p = .444), however the QET group had 

significantly longer relative QE2 at R1 (Mean Difference = 14%, p = .027) and 

this difference was maintained at R2 (Mean Difference = 16%, p = .008).  The 

within group analysis revealed no significant increases in relative QE2 duration 

for the TT children throughout the tests (p’s > .574).  The QET group however 

significantly increased relative QE2 duration from BL to R1 (Mean Difference = 

17%, p = .006), and there was no significant difference between R1 and R2 so 

they were able to maintain this increase (Mean Difference = 0%, p = .943).  

Relative QE2 duration for both groups is shown in Figure 5.1 (d) (see also Table 

5.1).  
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  Figure 5.1 (a)     Figure 5.1 (b) 

 

  Figure 5.1 (c)     Figure 5.1 (d) 

 

Figure 5.1: The QE1 duration (a), QE2 onset (b), QE2 Absolute duration (c), 

QE2 Relative duration (d) of the QET and TT groups throughout the tests.  

(Error bars represent S.E.M). 
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5.3.3. Performance 

Elbow angle at catch (EA). As EA was measured at the point that the 

ball contacted the hands, trials that ended with the ball not contacting the 

participant’s hands were excluded from the analysis (e.g. trials when the ball 

was missed, hit the participant’s body, or bounced off a surface prior to hand 

contact).  This resulted in 430 trials being included (TT = 212, QET = 218).  Of 

these, 133 were from BL (TT = 66, QET = 67), 162 from R1 (TT = 79, QET = 

83) and 135 from R2 (TT = 67, QET = 68).  Of the total 30 participants, four had 

all trials excluded because the ball did not contact their hands. 

ANOVA revealed significant main effects for test, F(2,54) = 28.38, p < .001, 

p
2 = .51, and intervention, F(1,27) = 9.36, p = .005, p

2 = .26. There was also a 

significant interaction between test and intervention, F(2,54) = 14.42, p < .001, p
2 

= .35.  Post hoc analyses revealed no significant differences between the 

groups at BL (Mean Difference = 5°, p = .465) however the QET group had 

significantly smaller elbow angles at R1 (Mean Difference = 26°, p = .001) and 

at R2 (Mean Difference = 24°, p = .001).  The within group analysis revealed 

the TT group significantly reduced their elbow angle (increased elbow flexion) 

from BL to R1 (Mean Difference = -9°, p = .030) but there was a near significant 

difference between R1 and R2 suggesting they were only marginally able to 

maintain this increase in flexion (Mean Difference = 9°, p = .067).  The QET 

group however had a larger decrease in their elbow angle from BL to R1 (Mean 

Difference = -40°, p < .001) and although elbow angle difference significantly 

increased between R1 and R2 (Mean difference = 11°, p = .021), the amount of 

elbow flexion for the QET group at R2 was still greater than the TT group in all 

the tests.  These findings are represented in Figure 5.2 (a). 



 149 

 MABC-2 catching performance (%). ANOVA revealed a significant 

main effect for test, F(2,56) = 4.65, p = .023, ε = .748, p
2 = .14 with significant 

improvements in performance between BL and R1 (Mean Difference = 14%, p < 

.001) but not between the other tests (p’s > .122).  There was no significant 

main effect for intervention, F(1,28) = 1.28, p = .268, p
2 = .04 and no significant 

interaction between these variables, F(2,56) = 0.21, p = .746, ε = .748, p
2 = .01.  

These findings are shown in Figure 5.2 (b). 

Qualitative catching score. ANOVA revealed a significant main effect 

for test, F(2, 56) = 3.21, p = .048, p
2 = .10, but no significant main effect for 

intervention, F(1,28) = 1.17, p = .289, p
2 < .04.  There was a significant 

interaction between test and intervention, F(2,56) = 3.35, p = .042, p
2 = .11.  

Post hoc analyses revealed that there were no significant differences between 

the groups at BL (Mean Difference = 0.13, p = .884) or at R1 (Mean Difference 

= 0.99, p = .347) but there was a near significant difference at R2 with the QET 

group scoring higher (Mean Difference = 1.69, p = .068).  There were no 

significant differences in the qualitative performance of the TT group throughout 

the tests (p’s > .090), however the QET group did significantly improve their 

performance from BL to R1 (Mean Difference = 1.19, p = .001) and there was 

no significant difference between R1 and R2 suggesting they were able to 

maintain this improvement (Mean Difference = -.13, p = .790).  These findings 

are shown in Figure 5.2 (c). 
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  Figure 5.2 (a)    Figure 5.2 (b)  

Figure 5.2 (c)  

 

Figure 5.2: The EA (a), quantitative performance (b), and qualitative 

performance (c) scores for each group over the three tests.  (Error bars 

represent S.E.M). 
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Table 5.1: Mean (S.E.M) QE1 duration, QE2 onset, Absolute QE2 duration, 

Relative QE2 duration, Elbow Angle, Performance (%) and Qualitative 

Performance data for QET and TT groups at baseline, retention 1 and retention 

2.  

 Baseline Retention 1 Retention 2 

 QET TT QET TT QET TT 

QE1 Duration 

(ms) 

258.60  
(43.98) 

313.17 
(47.64) 

494.70 
(75.15) 

373.51 
(68.00) 

472.69 
(54.84) 

239.47 
(40.45) 

QE2 Onset 

(ms) 

164.79 
(17.73) 

168.43 
(15.34) 

104.24 
(9.87) 

196.11 
(9.00) 

121.14 
(5.53) 

204.54 
(21.45) 

Absolute QE2 

Duration (ms) 

150.76 
(21.07) 

163.72 
(21.93) 

216.48 
(13.12) 

154.65 
(13.65) 

213.37 
(15.21) 

150.63 
(15.84) 

Relative QE2 

Duration (%) 

28.92 
(3.33) 

35.93 
(5.23) 

48.28 
(5.11) 

32.98 
(3.03) 

47.59 
(3.69) 

32.38 
(3.57) 

Elbow Angle 

(°) 

128.49 
(4.34) 

123.74 
(4.74) 

89.02 
(4.35) 

115.13 
(4.50) 

99.98 
(4.55) 

123.92 
(3.55) 

Performance 

(%) 

29.33 
(8.37) 

20.67 
(6.58) 

45.33 
(10.46) 

32.00 
(7.38) 

38.67 
(9.46) 

24.67 
(7.23) 

Qualitative 

Performance 

(0 – 10) 

4.74 
(0.67) 

4.61 
(0.55) 

5.93 
(0.76) 

4.94 
(0.69) 

5.80 
(0.61) 

4.11 
(0.65) 

 

5.3.4. Regression Analysis 

As intervention had a greater effect on qualitative catching performance, 

over that of the percentage catching performance, qualitative catching was 

entered into the regression analysis as the dependant variable. 

Linear regression analysis revealed that at R1, QE2 duration was the 

only variable to significantly predict performance (R2 = .17, p = .035, b = .22).  
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Multiple hierarchical regression analysis revealed that QE2 duration was nearly 

a significant predictor of performance over and above the effects of QE1 and 

QE2 onset (ΔR2 = .14, p = .066, b = .23).  EA did not significantly predict 

qualitative performance at R1 (p = .156).  At R2, QE2 onset significantly 

predicted qualitative performance (R2 = .35, p = .002, b = -.23) and QE2 

duration was also a significant predictor (R2 = .18, p = .030, b = .18).  A multiple 

hierarchical regression revealed that QE2 duration was a significant predictor of 

qualitative performance over and above the effect of QE1 (ΔR2 = .19, p = .021, 

b = .19), and furthermore, QE2 onset significantly predicted performance over 

and above the effects of both QE1 and QE2 durations (ΔR2 = .18, p = .019, b = 

-.19).  EA however was not a significant predictor of qualitative performance (p 

= .147) 

 

5.4. Discussion 

The purpose of this study was to determine the effectiveness of QET and 

TT for improving the throwing and catching skill of children diagnosed with 

DCD.  Results revealed that children who received QET were able to respond to 

the training instructions. They significantly increased QE1 (pre-throw) and QE2 

(pre-catch) durations. Importantly, not only were the QET group able to make 

immediate changes to their gaze behaviour and arm mechanics after one hour 

of training (retention 1), but this effect was durable after a 6 week de-training 

period (retention 2). These findings therefore add further support for the efficacy 

of video-based, gaze behaviour interventions in general (Vine et al., 2014), and 

also suggest that QET is effective for children with DCD. To our knowledge this 

is one of the first training studies of this nature to show significant improvements 

in cognitive function and motor behaviour of DCD children.  Experiencing 
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deficits related to visual processing and motor planning appears to be no barrier 

to being able to model the optimal gaze behaviours of high performing 

individuals for many of the children in this study. Indeed children with DCD were 

able to adopt focused QE durations that were of a similar magnitude (within 

45ms in QE2) to those used by highly coordinated children in chapter 3 and 

experience similar improvements in focus as TD children (e.g., within 6ms in 

QE2) shown in chapter 4, experiment 1.  

Having identified that QET successfully brings about the changes in gaze 

behaviour that were hypothesised, it is important to determine whether such 

modifications drive subsequent changes in task performance. We predicted that 

the elbow angle at catch attempt (EA) would be a relevant process measure 

that would reflect a change in technique to a more efficient visuomotor strategy 

(e.g., Astill, 2007; Utley et al., 2007). In order to have greater elbow flexion at 

the catch attempt, the catcher needs to have anticipated the speed and flight of 

the ball to be closer to this interception point at that moment. The QET group 

learned to increase the amount of elbow flexion at the point of ball-hand contact 

immediately after training and this was maintained after 6 weeks.  The TT group 

did have some initial increases in flexion at EA however this was much smaller 

than that of the QET group and this improvement was not durable after training. 

It is evident that QET contributes to changes in the way in which the body self-

organises to reach a movement goal.  This result is all the more intriguing, as 

the QET group received no additional explicit instructions to change the elbow 

angle.  Previous research has also revealed that QET individuals reveal greater 

improvements in mechanics reflective of expert performance (e.g. a longer 

preparation phase in the basketball free throw, (Harle & Vickers, 2001) and 

basketball shooting, (Oudejans et al., 2005); improved putter kinematics in golf 
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putting, (Moore et al., 2012); reduced tool path length in simulated laparoscopic 

surgery, (Wilson et al., 2011b) than those following a TT intervention.  These 

results not only suggest that children with DCD have the capacity to 

comprehend the significance of QE related gaze data, but also the ability to 

translate this into positive changes in their arm mechanics. 

These findings are in line with those of chapters 3 and 4, the studies of 

which are based on the premise first outlined by Vickers (1996) that the QE 

reflects the time required to pre-programme movement control. In this task, the 

QE1 duration gave the children a longer time to parameterise the motor action 

of the throw in order to project the ball in a more optimal direction and speed to 

assist the catch.  A consequence of this is likely to be a more accurate throw to 

the QE1 fixation location and therefore smaller shifts of visual gaze are required 

to fixate the ball during its bounce (an accurate correction fixation) and a 

quicker QE2 onset.  The regression analyses would indicate that longer QE2 

durations afford children more time to gather and process relevant visual 

information regarding the ball flight, which guides the timing and location of the 

movements required to complete a catch.   

It is well established that children with DCD are poor at making online 

adaptations to movements based on dynamic visual stimuli (e.g. Mon-Williams 

et al., 2005; Wilmut & Wann, 2008).  One could argue that in its simplest form, 

QET ‘chunks’ together the visual, perceptual and kinematic information required 

for these online adjustments, by directing an individual’s attention to one or two 

critical visual cues (Vine et al., 2013b).  For example in this current study, QET 

had the effect of implicitly increasing elbow flexion, which was not overtly taught 

in the intervention.  By implicitly chunking together these aspects of a motor 

skill, we may also circumvent the impact of potential deficiencies identified in 
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children with DCD, such as everyday memory (Chen et al., 2013) and selective 

attention (Tsai, Pan, Cherng, Hsu, & Chiu, 2009), which interfere with the 

learning and execution of motor skills (Smits-Engelsman et al., 2003).     

Interestingly, the regression analysis found the timing of the QE2 

became more important to catching technique after the 6-week de-training 

phase.  One explanation of this would be that the children experienced a 

learning effect during training that provided task-relevant information they could 

use to predict and pre-programme a movement response.  However after a 

substantial period of no practice, memory of the task parameters had 

diminished, leading to a renewed reliance on the rapid pick-up of information 

that could only be gathered from an earlier QE2 onset.  The TT group did also 

develop this skill after training, but the QET group were able to initiate a QE2 

tracking gaze 83ms earlier than the TT group at this stage, providing additional 

critical information to guide their response. 

 Despite the significant gaze and technique alterations, this study found 

no significant performance advantage (% catches) for QET over TT children, as 

measured by MABC-2 catching performance.  Both experiments in chapter 4 

demonstrated that QET was superior to TT in improving catching performance 

in TD children of the same age, performing the same task as used in this 

current study. It is possible that two factors; random selection procedures, and 

the length of training contributed to this result.  The random selection 

procedures we used inadvertently ended in the QET being 10% better in 

catching at baseline than the TT.  In future research, we recommend a 

screening test be given first and two groups formed with high, medium and low 

scoring children being equally represented in each group.  Second, it is also 

likely that the QET intervention period was too short for significant 
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improvements in overall performance to be observed.  The time frame for this 

training intervention (approximately one hour) was based on previous QET 

literature (see Vine et al., 2014 for a review) performed almost exclusively with 

typically developing (or expert) adult participants.  Intervention studies involving 

children with DCD typically run for significantly longer periods and are more 

intensive in their nature (review by Smits-Engelsman et al., 2013). While it is 

noted that durable improvements in catching technique appear possible for 

DCD children after such a short period of training, future research should aim to 

test the efficacy of repeated QET run over a number of sessions and weeks. A 

final consideration for QET in a population of children with DCD is the 

heterogeneous nature of this condition.  It was possible to observe during this 

study that some children experienced greater benefits from this type of 

visuomotor training compared to others, and this could be an important factor 

for future work.   

In conclusion, the QET intervention proved to be an effective strategy for 

teaching children with DCD to change their gaze behaviour, adopting extended 

QE1 and QE2 periods, which in turn led to more optimal technique when 

catching a ball that they had thrown against a wall. It is recommended that QET 

instruction be added to traditional instructions, for teachers, therapists and 

parents teaching visuomotor skills to children with DCD.   
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6.1. Summary of Key Findings 

The purpose of this thesis was to conduct the first examination of the role 

of the QE in supporting visuomotor performance in children and the potential 

benefits of QE training for improving the motor skills of those both with and 

without Developmental Coordination Disorder.  The QE has never before been 

studied in children or in a clinical population, so its application to children with 

DCD provides a significant contribution to our understanding of the mechanisms 

of this gaze strategy, and also to our understanding of the visuomotor 

impairments of children diagnosed with this condition. 

The literature (synthesised in chapter 2.1.3 and 2.1.4) reveals the QE to 

be a characteristic of proficiency and outcome related differences in adult 

visuomotor control (Mann et al., 2007).  However prior to this series of 

experiments, there was little indication as to whether these comparisons would 

transfer to children.  Children develop perceptual skills (such as reading and 

internal imagery) at different rates (Johnson, 2003; Johnson & Mareschal, 2001) 

with factors such as age and experience playing a significant role in when a 

child will reach the equivalent skill level of an adult (Deutsch & Newell, 2005).   

For this reason, it was pertinent to study the QE in a task that would 

challenge the perceptual and motor skills of children of a narrow age bracket (8-

10 years).  A combined skill of throwing and catching is used in a number of 

standardised motor skill assessments for children of this age (chapter 2.2.2) 

and is an important task underpinning many sports and playground games.  In 

the experimental studies of this thesis, the typically developing groups of 

children averaged around the 50th percentile in this skill in comparison to the 

MABC-2 norms, indicating that this was an appropriate task for 8-10 year old 

children from Exeter-based primary schools.   
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Although visuomotor aspects of adult catching skill have been studied in 

some detail, the QE strategy has never before been examined in this skill.  

Some comparisons can be made to the distinct aspects of this task (e.g. the QE 

has been investigated in aiming skills; basketball and darts throwing, and in 

interceptive skills; volleyball, table tennis and ice hockey), however to date no 

research has attempted to examine the QE strategies for two distinct skills 

performed in sequence such as the throwing and catching task studied in this 

thesis.   

Chapter 3 addressed the first hypothesis of this thesis, which predicted 

that the QE could predict the throwing and catching performance of children.  

The experiment in chapter 3 was the first published work studying the QE in 

children, and found that, as in adults, the QE could differentiate the throw and 

catch performance of children of different motor abilities (Low, Median and 

High). The higher skilled children caught on average 92% of their throws and 

had an earlier and longer QE fixation on a virtual target during the pre-throw 

phase of the task (QE1) and an earlier and longer QE tracking gaze on the ball 

during the pre-catch phase (QE2).  In comparison, the children with the lowest 

motor skills caught only 35% of the throws and had much later and shorter QE 

durations on the virtual target and on the ball.  More detailed mediation analysis 

revealed that the QE2 duration had a significant influence on the catching 

performance of the children.  Specifically the QE2 duration mediated the 

catching success of the different groups of children, indicating that longer QE2 

durations underpinned more expert catching performance. 

 The second hypothesis of this thesis (chapter 4) postulated that QET 

instructions would be more effective for improving the throwing and catching 

skill of children in comparison to traditional training instructions (TT).  Both 
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experiments in this chapter found that QET was indeed able to teach typically 

developing children with a low-to-moderate motor coordination ability to use 

earlier and longer QE durations. Additionally, not only did this group of children 

also achieve a higher skill performance level after training compared to the TT 

group (experiment 1 & 2), but this difference was maintained after a 6 week de-

training period (experiment 2).  Interestingly there were conflicting findings 

regarding the respective influence of QE1 and QE2 durations on performance, 

which may have been influenced by the differing motor abilities of the children, 

or the changes made to the instructions to limit any effects caused by an 

external attentional focus (chapter 4.8).   

The final hypothesis of this study was to determine the ‘clinical utility’ of 

this specific QET intervention; by applying it to children diagnosed with DCD 

(chapter 5). While the positive effects of QET were not as strong as those 

observed in chapter 4, this study also demonstrated that children with DCD who 

were given QET were able to change the timing of their QE periods to emulate 

the earlier and longer QE of the highly skilled children in chapter 3, and that this 

appeared to contribute to improvements in their throwing and catching 

technique. 

 

6.2. Theoretical implications 

 

6.2.1. QE Mechanisms 

6.2.1.1. Attentional control. The findings of these studies make significant 

contributions to our knowledge of the theory surrounding the QE and the 

visuomotor abilities of children, particularly those diagnosed with DCD.  In 
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chapter 2 (section 2.1) I describe and discuss three mechanisms that have 

been proposed to explain why the QE is related to proficient and successful 

performance in adults (Vine et al., 2014).   

The first of these mechanisms postulates that the QE directs attentional 

resources to task-relevant stimuli and limits unwanted interruption from the 

stimulus-driven attentional system. Chapter 3 found that LMC children were 

significantly later in initiating both their QE1 fixation and their QE2 tracking gaze 

than the other groups.  In the language of Corbetta and Shulman (2002), top 

down attentional control is impaired in these children, as they are not directing 

visual attention to the critical stimuli that support performance.  The transfer 

from the throw into the catch phase of the task appears to be particularly 

relevant in terms of attentional control, as it requires a switch in the location of 

visual attention from a static target (on the wall) onto a different dynamic target 

(the ball).  Children with MMC and HMC are quicker at completing this 

attentional switch, perhaps due to more accurate throws and therefore a 

reduced reliance on correction fixations, however those with LMC maintain their 

attention on the now irrelevant target on the wall for longer.  It would appear 

that this latency in shifting visual attention to task relevant stimuli is a function of 

poor skill level (Williams & Davids, 1998) and slower shifting of selective 

attention has also been associated with DCD (Tallet, Albaret, & Barral, 2013; 

Tsai et al., 2009).   

The LMC children also disengage from the tracking gaze earlier than the 

MMC and HMC children (an effect also shown in children with DCD).  In relation 

to Corbetta and Shulman’s (2002) theory, it would appear that the bottom-up 

attentional system is diverting the visual attention of these children away from 

the ball earlier than the other groups of typically developing children.  
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Distractors such as worry about performance or the conscious control of 

movements may be significant concerns for children with DCD, whom studies 

have shown are aware and often concerned about their movement difficulties 

(Cairney et al., 2007; Cairney et al., 2005b; Cairney, Rigoli, & Piek, 2013).  The 

Attentional Control Theory (ACT; Eysenck, Derakshan, Santos, & Calvo, 2007) 

postulates that anxiety (caused by internal worry or physical threat) is one 

example of a factor that will increase the prominence of the bottom-up driven 

system, causing an individual to attend to more task-irrelevant stimuli such as 

how to respond to the source of anxiety or circumstance it creates. This finding 

along with that of Nieuwenhuys and Oudejans (2012) who apply the ACT in the 

perceptual motor domain would indicate that LMC children have impairments in 

their ocular inhibitory control that would otherwise ‘buffer’ them from attentional 

shifts demonstrated through involuntary saccades towards distracting stimuli 

(Miyake et al., 2000).   

Critically, QET has consistently been shown to protect an individual from 

the negative effects of anxiety on performance (e.g. Vine et al., 2013b; Vine et 

al., 2011; Vine & Wilson, 2010, 2011).  This would indicate that the 

maintenance of longer QE durations in the throwing and catching task is likely 

increasing the attentional control of children, by retaining the allocation of their 

attentional resources on task-relevant cues.  As such it was shown in chapter 4 

that QET improves the attentional control of these children, directing overt 

attention to the target earlier and for longer prior to the throw, more rapid 

shifting of their attention between the stimuli during the transition into the throw, 

and promoting the inhibitory control by maintaining the QE2 on the ball for 

longer.  Future work needs to further understand the mechanisms of attentional 

control in children by incorporating a pressurised condition into this task.  This 
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would manipulate their attentional focus and additionally determine whether 

QET can protect children from the effects of performance anxiety as Vine and 

Wilson have shown in adult participants (Vine & Wilson, 2010, 2011). 

6.2.1.2 Pre-programming movement. The second mechanism proposed 

by Vine et al. (2014) is the proposition that the QE affords an individual with a 

critical period of motor programming prior to (and during) the execution of a 

response.  In order to produce accurate goal-directed movements, the motor 

system requires accurate and timely visual information about targets critical to 

task completion. Research has demonstrated that gaze is tightly coupled, 

temporally and spatially, to the motor actions of the task (see Ballard & Hayhoe, 

2009 and Land, 2009 for reviews). Specifically, gaze tends to move to the target 

in advance of movement initiation and remains stable (‘gaze anchoring’; 

Neggers & Bekkering, 2001) as the movement unfolds. Longer and earlier QE 

durations may therefore provide a period to efficiently pass visually acquired 

goal position information to the motor control systems, which should therefore 

result in movement kinematics and patterns of muscle activation that are more 

effective for successful skill performance. This is supported by the fact that 

differences in QE have been linked to differences in movement kinematics, (e.g. 

Moore et al., 2012; Vickers, 2011). QET studies have revealed that the training 

induces changes in movement mechanics, even when limb movements are not 

mentioned in the instructions (e.g., Chapter 4).  Furthermore, the significantly 

earlier QE periods of elite performers and the highly coordinated children in 

chapter 3 would indicate that important processes are taking place prior to the 

onset of the movement, indicating that the QE represents a critical period of 

pre-programming, rather than simply the allocation of visual attention on 

relevant stimuli to guide and update movements. 
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Indeed, Williams et al. (2002a) suggested that the QE reflects a period of 

cognitive processing during which predictions are made regarding the 

parameters of the required movement that are then programmed.  This 

explanation was supported by the fact that more complicated shots in billiards 

required longer QE durations (Williams et al., 2002a).  The findings of this thesis 

would indicate that by extending the QE durations, the children’s predictions 

about the catch location and resultant movements became more accurate and 

so reduced their reliance on making large shifts in gaze for accurate correction 

fixations.  During QE1 task-relevant visual information is gathered for the pre-

planning of the entire skill, and therefore the formulation of an internal model to 

guide the movements (Wolpert et al., 1995).  A more complete and accurate 

internal model will result in a faster, more precise movement response, which 

would explain why a longer QE1 and QE2 would lead to more efficient 

movements and improvements in performance accuracy.  However the 

predictive element in the formulation of an internal model appears to be 

impaired or under developed in children with LMC and DCD (Smits-Engelsman 

et al., 2003) forcing them to rely on slower sensorimotor feedback (Williams et 

al., 2011).   

By extending processing time in QE1, the child has longer to 

parameterise the required movement pattern, leading to a more accurate throw 

(and therefore a more accurate correction fixation) to the selected target.  

Studies of the QE in aiming tasks have indeed determined in adults that longer 

QE durations lead to more accurate throws in tasks such as basketball (Harle & 

Vickers, 2001; Vickers, 1996; Vine & Wilson, 2011; Wilson et al., 2009) and 

darts (Horn, Okumura, Alexander, Gardin, & Sylvester, 2012; Rienhoff, Baker, 

Fischer, Strauss, & Schorer, 2012).  A more accurate throw will mean better 
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predictions about the location of the bounce point on the wall resulting in fewer 

and more accurate gaze shifts, so the child should be able to transfer into an 

early tracking gaze on the ball – providing more time to predict where it should 

be intercepted in space and time.  The additional elbow angle measure in 

chapter 5 provides more evidence of QET improving temporal and spatial 

prediction in DCD.  This measure shows that after QET, children with DCD 

utilise a technique to move their hands into a more optimal position to catch that 

was similar to the typically developing children, rather than simply extended 

their limbs towards the ball (Utley et al. 2007).  This is reinforced by a significant 

improvement in the measure of qualitative catching performance, indicating that 

QET promotes a more expert-like technique, with a greater range of controlled 

movement around the elbow. 

6.2.1.3. External focus of attention. The final mechanism to explain QE 

benefits, provided by Vine et al. (2014) was that it affords an external focus of 

attention.  As we took no physiological measures during this work we cannot 

determine the influence of psychomotor quieting on performance.  However, 

Wulf’s constrained action hypothesis, proposes that an external focus of 

attention (as provided in a QE period) crucially avoids an internal attentional 

focus that can lead to conscious processing of a movement that interferes with 

automatic processes (Wulf, 2013; chapter 2.1.4).  This theory was largely 

addressed in chapter 4, where the second experiment of QET incorporated 

internally focused instructions as well as the external QE instructions to 

determine whether the positive effects of QET could be attributed to an external 

locus of attention.  This study found that QET remained equally, if not more 

effective in improving catching performance even when internally focused 
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instructions were provided, therefore supporting the proposition that the QE 

provides a child with more than simply avoidance of an internal focus.   

This study however did not demonstrate the effect of externally focused 

instructions over the effect of QET.  In other words, chapter 4 demonstrates that 

a combination of internal and external QE instructions were not detrimental to 

performance, however future work could consider investigating the difference 

between QET and TT when purely externally focused instructions are provided 

for both groups.  There have been few examples of this in the QE literature as 

traditional coaching instructions generally take on an internal attentional focus 

at some point throughout performance of the skill (such as those used by Vine 

& Wilson, 2011 for learning the basketball free-throw). Klostermann, Kredel, and 

Hossner (2014) postulate that the efficacy of the QE is varied in its 

manifestation under movement focused instructions. 

Masters and colleagues’ theory of reinvestment also outlines the dangers 

of focusing on movement mechanics during the learning of a motor skill 

(Masters & Maxwell, 2008).  However, they have tended to limit the accrual of 

rules related to the performance of a motor skill via implicit motor learning 

techniques (e.g., errorless learning, analogy learning), rather than attentional 

focus instructions.  While QET instructions are explicitly provided they do not 

refer to step-by-step movement control and may therefore provide a way to 

chunk information about movement.  Vine et al. (2013b) found that QET 

participants were able to report fewer rules than an explicitly trained group and 

similar numbers of rules as an analogy learning group.  The benefits of QET in 

terms of limiting an internal focus on movement mechanics may therefore be 

explained by both attentional focus and implicit motor learning explanations.  
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6.2.2. Task-specific Targeting and Tracking QE  

The throwing and catching task used throughout the experimental 

chapters of this thesis is fairly distinct from the rest of the QE literature, as it 

requires the sequential amalgamation of two quite different skills for effective 

performance. The first of these is the throw, where a static QE1 fixation is used 

to guide accurate projection of the ball.  The second skill is the catch, for which 

a tracking QE2 gaze on the ball is employed prior to the interception attempt.   

Although both of these QE periods were shown to be beneficial to the 

children’s catching performance throughout the studies, there appeared to be a 

disparity in their relative contribution to the overall performance of the task; with 

three of the four experiments indicating a greater importance for a longer 

tracking QE (QE2) on the ball during the catch phase of the task.  Building on 

the QE mechanisms previously discussed, QE2 is largely responsible for 

completing the internal predictive model in order to guide the online movements 

and ultimately improve the anticipated location and timing of the catch. As an 

earlier, longer QE2 will provide more visual information to improve this 

prediction, it may not be surprising that the results indicate this is the most 

important element for successful performance in children with and without DCD. 

However, as the task rewards catch success (rather than throw accuracy) it is 

expected that the element preceding the catch will explain most of the variance 

in task performance. Furthermore, the experiment that provided the exception to 

this finding (chapter 4, experiment 1) had the least statistical power that was 

greatly affected by the small sample size. 

The importance of different gaze strategies in a ‘combination’ task such 

as this have not been previously studied, so few comparisons can be made to 

the literature. However work by Panchuk and Vickers (2009) has investigated 
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the use of a predictive gaze strategy in elite ice hockey goaltenders.  They used 

an occlusion paradigm to study the goaltender’s reliance on a predictive (static 

fixations) or prospective (tracking gaze) strategy.  Although these authors 

acknowledge that the prospective strategy of tracking the puck provides 

important late information used for updating and adjusting movements, the 

goaltenders were more successful (and had shorter reaction times) when they 

could gather early predictive information about the shooter’s posture through a 

long static QE fixation prior to (and throughout) projection. The authors 

postulated that the QE fixation in this study anchored the gaze on a pertinent 

cue in the visual workspace (the stick-puck contact point), while other 

information regarding the shooter’s posture and movements was picked up from 

the periphery.  This would indicate that the QE was allowing the performer to 

process this information to pre-plan (feed-forward) their response, allowing 

them to respond quickly after the puck had been struck, so they were likely 

relying on accurate predictions formulated from a forward internal model of the 

movement. In relation to the throw and catch task, this finding of Panchuk and 

Vickers would indicate that although QE2 duration appeared to be most critical 

to task success, a longer QE1 duration may also be critical in setting up the 

earlier and therefore longer QE2 period. 

 While Panchuk and Vickers’ results might suggest that QE1 alone might 

be enough for accurate prediction, there are important differences between the 

studies described in this thesis and that of Panchuk and Vickers, which make 

comparisons of gaze strategies difficult.  Not only did Panchuk and Vickers test 

elite goaltenders with well-developed perceptual skill and experience, but also 

the available flight times were much less in the ice hockey task (250ms) in 

comparison to this catching task (500ms). The goalkeepers may not have used 
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a tracking gaze, simply because it exceeded the capabilities of the smooth 

pursuit system.  In our catching task, smooth pursuit tracking of the target was 

possible and this late information provides the most recent, up-to-date 

information that can be used to fine-tune the movement (Oudejans et al., 2002). 

The findings of this series of studies would suggest that, as predicted by 

Oudejans, late visual information during the shooting movement is important, for 

informing the timing and accuracy of a movement being produced.   

Mazyn et al. (2007) used a protocol where during a catching task the 

room lights were extinguished on the onset of a movement.  The effect of this 

constraint was that participants were able to compromise their movement 

response in order to visually track the ball for longer, as perhaps significantly, 

they required visual information later into the ball flight in order to successfully 

catch the ball.  The QE typically suggests that the information gathered prior to 

the onset of a movement is critical for performance success.  However, De 

Oliveira, Oudejans and colleagues proposed that late visual information 

gathered after the movement onset maybe just as, if not more important.  This 

was demonstrated with a basketball shooting task, where the performer’s vision 

was occluded at various time points (de Oliveira et al., 2006; Oudejans et al., 

2002) or their movement timing was constrained (de Oliveira, Huys, Oudejans, 

van de Langenberg, & Beek, 2007).  They found that shooters preferred to pick-

up visual information as late as possible and although these findings don’t rule 

out the significance of pre-programming, they would indicate that online control 

and adjustments are perhaps most important for movement accuracy.  These 

studies used an aiming task, however Regan (1997) discusses the visual 

strategies of batting in cricket.  Specifically Regan postulates that a bowler will 

attempt to force a batsman to make decisions about their response early (in the 



 170 

ball’s flight), which will reduce their response timing and accuracy.  Therefore 

batters who can visually track the ball for longer and adapt their movements 

accordingly will be at an advantage.  This theory would perhaps suggest that 

QE2 is not a QE period in the traditional sense (a gaze initiated prior to the 

onset of a critical movement), as the participants continue to track as they move 

towards the ball, continually updating their movement strategy. 

Overall, it would appear that in samples of typically developing children, 

an extended QE period is beneficial for directing their visual attention to task 

relevant stimuli to formulate internal models, and buffering them from the 

stimulus-driven system.  Indeed, children with DCD also benefited from this 

attentional control mechanism, as studies have proposed that they have 

attentional deficits, which may be overcome by extended processing of task 

relevant information.  The studies described in this thesis would therefore most 

strongly support the suggestion that the extended QE periods are providing 

children more, better quality visual information from increased attentional 

control from which they can formulate more complete and accurate predictions 

about the parameters of the task and required movement patterns.   

 

6.2.3 Theoretical Implications for DCD 

These studies also explore the nature of the visuomotor impairment 

experienced by children with DCD, adding to the view that children with DCD 

are unable to efficiently pick-up and process visual information.  The study of 

typically developing children in the second experiment of chapter 4 and the 

study of DCD children in chapter 5 used the same methodology as they were 

conducted simultaneously.  This allows us to draw direct comparisons between 

these two groups of children to help develop our understanding of the 
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visuomotor impairments of children with DCD and how QET affects this in 

comparison to a typically developing group. 

First, both the DCD and typically developing children used a targeting QE 

fixation (QE1) to enable them to pre-plan and organise their movements.  

Gabbard (2009) found that typically developing children are able to create a 

mental image of a movement by ages 5-6 years and can produce the resulting 

movement with some degree of accuracy by age 7. However studies of the 

internal modelling deficit hypothesis indicate that this is not the case for children 

with DCD as old as 12 years (Hyde & Wilson, 2011a; Hyde & Wilson, 2011b; 

Williams et al., 2011).  The children with DCD had shorter QE durations at 

baseline compared to the typically developing group, despite suggestions that 

this group require a longer visual information processing time (Wilmut & Wann, 

2008) indicating that perhaps they are not forming a complete internal model 

prior to movement.  When QET increased the QE durations of the typically 

developing group, these children also significantly improved their catching 

performance, suggesting the increased processing time allowed for better 

formulation of internal models, aiding the prediction of the location and timing of 

the interception point and the movement parameters required to complete a 

catch.  The DCD group however did not experience such significant 

improvements in performance outcome from QET, supporting the conclusion of 

an internal modelling deficit that was improved but not entirely overcome by 

increasing the processing time.   

To investigate this pre-programming difference between typically 

developing and those with DCD further, we completed an unpublished 

experiment examining the link between the QE1 and QE2 phase of this 

throwing and catching task.  This experiment used a reaction ball (Figure 6.1) 
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for the throwing and catching task.  This is a ‘misshapen’ ball with the same 

diameter of a tennis ball, but will bounce in an unpredictable direction and 

speed off the wall.  With the reaction ball condition, the location and timing of 

the interception point will be unpredictable prior to the throw, therefore the 

internal model of the catch formed at this stage will be incomplete (i.e. it cannot 

be predicted from the early information of ball flight towards the bounce point).  

Only once the bounce on the wall has taken place and QE2 is initiated, can the 

participant update the model with visual information and the resultant online 

adjustments to their movements. The critical phase of this task therefore, 

becomes the rapid pick-up and recognition of the ball flight direction and speed 

after the bounce, or in other words, the time to QE2 onset.   

 

Figure 6.1: A reaction ball that bounces off a surface in a relatively random 

direction and speed.  It is constructed of rubber and is the same diameter as a 

tennis ball (6.7cm). 

 

Preliminary findings (n = 14) suggest that the QE2 onset is indeed a 

critical factor for performance in typically developing children.  It would appear 

that with a round tennis ball these children are able to formulate internal 

(forward) models to accurately guide their movements, and as a result are able 
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to locate and initiate an earlier QE2 fixation (within 156ms – similar to the 

median and BL of typically developing groups in chapters 3 and 4 – Table 6.1) 

and they are able to catch 51% of the throws (also see Table 6.1 for 

comparisons).  However, when the internal model is incomplete (i.e. when using 

the reaction ball), it would appear that these children are reduced to a 

performance level that was not much better than the baseline tennis ball scores 

of children with DCD prior to any training (Table 6.1).  The incomplete model 

was compounded by comparatively slow QE2 onset times, with the TD children 

taking 54ms longer to locate the ball than the DCD participants in chapter 5 

and, unsurprisingly, this reduced their QE2 durations.  Therefore in the reaction 

ball condition, not only do the typically developing children have an incomplete 

pre-programmed response, but the longer lag before QE2 is initiated will delay 

their ability to make online corrections to their predicted movement.   

The children with DCD do not have such a decrease in their QE2 

duration when using the reaction ball (Table 6.1).  This is possibly due to their 

impairments in feed-forward prediction (Smits-Engelsman et al., 2003) that 

cause incomplete or ineffective internal modelling with both types of ball.  

Instead these children appear to rely on a somewhat random search for the ball 

as it comes back towards them, providing them with little time to prepare the 

catch attempt. While the DCD group also performed worse in this task than in 

the tennis ball task, the percentage impairment (14%) is less than that for the 

typically developing children (18%).  

In addition to the findings from the earlier QET studies, these preliminary 

findings support the postulation that the QE provides an extended period for the 

pre-programming of task parameters and formulation of a forward internal 

model (QE1) that is updated to make online adjustments (QE2).  Children with 
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DCD however have shorter QE1 and QE2 durations with both the tennis ball 

and reaction ball, indicating they are perhaps not taking the time to effectively 

plan their movements.  It is reasonable to conclude from this experiment that 

the extended QE1 duration learnt from QET affords children more time to 

formulate or improve the predictive accuracy of an internal model.  Furthermore, 

an earlier and longer QE2 duration helps them to get earlier and more complete 

visual information necessary for adjusting their movements online. 
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Studies of smooth pursuit tracking in children with DCD have proposed 

that these children also have deficits in their eye movements that may impair 

their ability to pick-up visual information (Langaas et al., 1998; Roberts et al., 

2014).  Indeed, our studies would indicate impairment in the pursuit tracking of 

children with DCD as these children had much shorter QE2 durations (-89ms) at 

baseline in comparison to typically developing children.  However, although still 

slower in initiating a QE2 gaze in comparison to typically developing children, 

the DCD children did not demonstrate as much of a timing lag prior to pursuit 

tracking (-10ms) as was seen in the LMC children of the first study (-34ms).  It 

must be noted that the children with DCD had more experience of the task by 

the point of data collection as they completed it during the assessment phase 

prior to baseline measures being taken, exposing them to a further 15 trials 

(including practices).  This finding would perhaps indicate a more significant 

impairment in their ability to retain the ball on the fovea for as long as typically 

developing children.   

In section 6.2.1.1 of this chapter, I discussed the possibility that this 

impairment in QE2 duration could be related to poor visual attentional control, 

where the locus of attention for children with DCD is taken from the task-driven 

stimulus (ball) and relocated on a behavioural or environmental stimulus that is 

irrelevant to the execution of the catch or interferes with autonomous 

processes.  For example, if a child with DCD is concerned about their 

movement coordination skills, they may redirect their attentional focus internally, 

trying to consciously control movements that are more autonomous in typically 

developing children.   

The implications of an internal focus on a movement such as catching 

have already been discussed, but essentially this increases the risk of an 
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individual attempting to consciously control their movements and as a result, 

constraining automatic processes.  Furthermore, the conscious control of 

movements will also increase the processing demands of a movement.  

Children with DCD have been shown to perceive tasks to be more difficult than 

typically developing controls (Chen & Wu, 2013) and Mon-Williams et al. (2005) 

postulated that children with DCD choose to adapt their movements to 

compensate for motor impairments.  Przysucha and Maraj (2013) and Utley et 

al. (2007) found that one compensatory solution used by children with DCD 

when catching was to couple the movements of limbs and freeze the degrees of 

freedom around the elbow joint.  Based on these findings, it is likely when 

performing complex tasks such as catching, children with DCD do indeed have 

an internal attentional focus on their movements, and it is possible they are 

consciously trying to constrain these movements to improve their perceptions of 

control.   

QET however redirects an individual’s focus of attention to a relevant 

external target. Rather than consciously constraining limb movements, they are 

free to self-organise unconsciously while attention is taken up with providing the 

relevant visual information to support this process. Indeed, after receiving QET 

the children demonstrated significantly more elbow flexion, without receiving 

instructions relating to the explicit control and coordination of these limb 

movements.  

Additionally, by gathering more (and later) visual information about the 

ball during flight, more accurate predictions for guiding the location and timing 

of the grasping action take place, which are indicated in these studies by better 

qualitative performance scores.  Visual information gained from longer pursuit 

tracking has previously been associated with performance advantages in 
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various interceptive tasks such as baseball batting, cricket batting and catching 

(Fogt & Zimmerman, 2014; Land & McLeod, 2000; Millslagle, Hines, & Smith, 

2013; Panchuk et al., 2013).  

In order to increase the QE2 and indeed QE1 durations, our QET 

intervention used a set of fairly explicit training instructions for both the QET and 

TT groups.  However, theories such as the constrained action hypothesis would 

suggest that a more implicit set of instructions would help an individual to 

maintain attentional focus on the performance effect and reduce the interruption 

to autonomous movements caused by explicit movement rules.  Indeed, Wilson 

et al. (2003) found that children with DCD could learn to sequence together 

aspects of a movement at a similar rate to typically developing children in an 

implicit learning task.  Therefore, although our findings indicate that the children 

with DCD were able to increase their QE durations with explicit instruction, it is 

possible that implicit learning of QET may improve the retention and particularly 

the execution of these instructions.   

Therefore I have completed a follow-up study of the throwing and 

catching task using a ball that lights up when it contacts the wall and flashes 

throughout the flight back towards the participant.  It is hypothesised that the 

flashing ball will provide an implicit cue to draw the visual attention of the child 

onto the ball earlier and encourage them to track the ball for longer through its 

flight.  Early findings indicate that the performance of children with DCD (n = 10) 

is significantly better (p = .032) when catching with the light-up ball (mean 45%, 

SD = 30.31), compared to normal ball (mean 25%, SD = 24.61). However this 

effect cannot yet be attributed to an earlier and longer QE2 gaze as this 

analysis has yet to be conducted and is outside the scope of this thesis. 
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Overall, we can conclude that a longer processing time of visual 

information during pursuit tracking (QE2) that included late visual information 

prior to the grasping motion was critical to the catching performance of these 

children. The longer QE2 enabled them to make better judgements about the 

trajectory of the ball that would inform online adjustment to their movements 

and to adapt to better predictions about the catch location and timing.  Many 

studies of children with DCD suggest children with DCD are unable or unwilling 

to adapt their movements once initiated (e.g. Hyde & Wilson, 2011a; Hyde & 

Wilson, 2011b; Mon-Williams et al., 2005; Wilmut & Wann, 2008), therefore 

QET appears to produce an interesting development in the technique of these 

children that affords them the resources to make these adjustments.  

Furthermore, an extended QE2 gaze could also have afforded these children 

with an external attentional focus on the movement effect rather than the 

execution, and this appeared to alter their technique to become more similar to 

that used by typically developing children and adults.   

 

6.3. Practical Implications for Children with DCD 

 QET is a task-specific intervention so more research is required to 

determine the effect of this training for children with and without DCD on other 

tasks, and to investigate the transferability of these findings to other motor skills.  

However as chapter 2.3.1 identifies, improvements in catching skill may alone 

have a significant impact on children’s mental, physical and social wellbeing by 

encouraging them to take part in more physical and group activities such as 

sport and playground games.  The longitudinal work by Barnett and colleagues 

(Barnett et al., 2008b, 2009) indicates that better object control skill during 

childhood years is likely to have a significant effect on children’s 



 180 

cardiorespiratory fitness and physical activity participation levels as 

adolescents. It is therefore imperative that effective motor skill interventions are 

explored to interrupt this vicious cycle.  

Current approaches to intervention for children with DCD are generally 

intensive and span over a period of 8 or more weeks (review by Smits-

Engelsman et al., 2013; chapter 2.2.6). However the QET intervention used in 

chapter 5 produced ‘long term’ (durable over 6 weeks) changes to performance 

technique in just a brief 1 hour training session.  Vine et al. (2011) also found a 

positive effect of a short QET protocol for elite golf putting.  They found that 

after a short training session consisting of just 20 putts, a group that had 

received QE-related feedback via video increased their QE durations and holed 

more putts than the control group who received no instructional feedback with 

the videos.  This improvement immediately after training was not statistically 

significant, however when transferred into a pressured test, the QET group 

were able to maintain their QE durations and performance levels, whereas the 

control group decreased in both these measures.  Interestingly this study also 

assessed the performance of the golfers in an ecologically valid competitive 

environment that took place over several months following training.  They found 

the QET group significantly reduced the number of putts they took per round, 

indicating an increase in performance over a longer period of time. 

Developing quick, effective strategies for improving children’s long-term 

performance of motor skills such a catching could have significant implications 

for children with movement difficulties that cause them to withdraw from 

physical and social activities. The findings of this thesis indicate that a short 

QET intervention that can be performed at home or in school could help these 

children improve their performance of a skill to a level that may change their 
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attitude towards participating in a sport or activity.  Furthermore, although the 

competitive performance of the children was not measured during these 

studies, based on the similarities of this training interventions with other studies 

of QET and pressure (e.g. Vickers & Williams, 2007; Vine et al., 2011; Vine & 

Wilson, 2010, 2011), one could postulate that the QET may also ‘buffer’ these 

children from the negative effects of competitive anxiety that come with 

performing the skill in front of significant others, or in the competitive 

environment of sports and playground games.  Future studies of QET in 

children could include a competitive test to determine if these buffering effects 

are indeed transferable to this population.  

Despite the overall positive outlook of the findings for QET, the 

diminished effect of QET on performance percentage of the DCD children in 

comparison to the typically developing children cannot be ignored (Table 6.2).  

The QET groups showed larger improvements than the TT groups in both the 

R1 tests, and these differences between the groups were extended in the 

typically developing children and maintained for the DCD children after 6 weeks.  

However as Table 6.2 shows, the DCD children in chapter 5 have smaller 

increases in their catching performance and are poorer in maintaining this over 

6 weeks, despite identical methodology to experiment 2 of chapter 4 using 

typically developing children.  The DCD literature does indicate that children 

with this condition have difficulties with motor learning (e.g. Debrabant et al., 

2013; Gheysen, Van Waelvelde, & Fias, 2011), which would explain smaller 

improvements compared to typically developing children.   Within the DCD 

group, those with the lowest overall MABC-2 scores (< 1st percentile rank, QET 

= 3, TT = 6) scored below average at baseline in the catching task (10%) and 

experienced smaller improvements in their catching performance at R1 (QET 



 182 

=+10%, TT = +6%), whereas the 8 children (QET = 4, TT = 4) scoring the 

highest in the DCD group (5th percentile) scored on average 55% at baseline 

and the QET children were able to make much larger improvements over the TT 

group (QET = +20%, TT = +5%).  This would indicate that the children with the 

lowest overall coordination levels were perhaps less able to retain the gaze 

strategies taught during such a short training session.   

 

Table 6.2: The improvement in performance % of the QET and TT groups in 

experiment 2 in chapter 4 and the DCD children in chapter 5.  These studies 

used almost identical methodology for both training groups. 

 

Another possible explanation is in the sampling of children with a DCD 

diagnosis used in this study.  Although co-occurring ADHD was identified and 

co-variant analysis checked, there was no control over other co-occurring 

disorders and no consideration was made for DCD subtype.  The 

heterogeneous nature of DCD is well established and research has suggested 

that distinct groups of children with DCD can be formulated based on aspects of 

their coordination skill such as fine motor impairments overriding gross or 

complex motor skills or vice versa (Piek, Baynam, & Barrett, 2006) or by 

neurological function (e.g. Bo & Lee, 2013; Zwicker, Missiuna, Harris, & Boyd, 

2011) or by perceptual abilities (e.g. Wilson et al., 2004; Wilson et al., 2002).  

 Chapter 4 (TD) Chapter 5 (DCD) 
  

QET 
 

TT 
 

QET 
 

TT 

BL to R1 
performance 
improvement (%) 
 

+25 +9 +16 +11 

R1 to R2 
performance 
improvement (%) 

+5 -2 -6 -7 
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Visser (2003) argues that DCD subtype will have differing causes, treatment 

requirements and outcomes, and Bo and Lee (2013) speculate that effective 

intervention strategies should reflect DCD subtype.  However despite many 

studies attempting to define these subtypes, no distinct categories have yet 

been established, beyond the severity of motor impairment (Green et al., 2008).  

The children recruited for chapter 5 may have varying symptoms of DCD 

such as sequential or sensorimotor motor learning abilities that would affect 

their ability to learn and perform the catching skill.  The MABC-2 quantifies three 

aspects of motor skill performance: manual dexterity skills, aiming and catching 

skills and dynamic and static balance.  The children who scored below the 1st 

percentile on just the aiming and catching skills (QET = 2, TT = 6) had an 

average baseline score of 6% and made very small improvements at R1 (QET 

= 0%, TT = +7%) and at R2 (QET = +5%, TT = -5%).  These observations 

support the suggestion that children with very low aiming and catching ability 

may have affected the overall group effect for improving catching performance.   

It cannot be determined from the present studies why children with low 

overall motor coordination ability and low baseline catching performance were 

particularly poor at improving their catching ability in either intervention.  It is 

possible that these children experience other symptoms of DCD more severely, 

such as sequential motor learning (Bo & Lee, 2013); the ability to formulate 

internal models (Deconinck, Spitaels, Fias, & Lenoir, 2009; Hyde & Wilson, 

2011a; Hyde & Wilson, 2011b; Williams et al., 2013); or the ability to retain 

everyday information (Chen et al., 2013) that would reduce their ability to apply 

and practice the instructions.  In terms of the practical implications, this would 

indicate that an intervention such as QET may not be appropriate for children 

with more severe forms of DCD. 
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6.4. Limitations and Directions for Future Research 

 The process of recruiting participants for this work was singularly the 

biggest challenge of this project, particularly in recruiting adequate numbers of 

children diagnosed with DCD.  The initial aim for the study described in chapter 

5 was to recruit 60 children diagnosed with DCD, which would have enabled us 

to separate children with ‘pure’ DCD and those with co-occurring disorders into 

two separate groups.  These children were all to be recruited through Vranch 

House Clinic in Exeter, however this clinic was only able to provide 15 

participants with DCD over an 18month period.  Therefore the inclusion criteria 

for this study had to be relaxed, and children from further afield were recruited 

through schools, social media and the UK Dyspraxia Foundation.  In total the 

recruitment and testing procedure of the 30 DCD participants for chapter 5 took 

18 months, leaving no option to expand this sample size any further or include 

additional experimental groups such as a discovery learning group.   

The relaxed inclusion criteria meant we had less knowledge of, and 

consistency in the DCD diagnosis of the children recruited from other sources.  

Therefore it is possible that our sample was more varied in their motor skill 

impairment.  We had little control over other interventions children had or were 

currently participating in during the testing period.  Furthermore we were unable 

to control for co-occurring disorders outside of ADHD such as autism spectrum 

disorders (ASD) and learning disabilities.  Although this group therefore 

represented a more ecologically valid representation of children with DCD in the 

UK population, these factors may have led to more variability in the motor 

function and processing resources of children in our sample, as children with 

ASD for example have a high occurrence of uneven cognitive development 

(Joseph, Tager-Flusberg, & Lord, 2002). 
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The recruitment and testing of the typically developing children also 

represented a challenge, as much of the data collection (studies 1 and 2) took 

place in schools during the school day (over a 6-8 week period) so the 

availability of empty classrooms, school lessons and events and holidays had to 

be structured into the timetabling of the data collection.  These factors 

significantly slowed the process, again limiting the sample sizes and number of 

training groups used for the studies.  

The QE definitions for the throwing and catching task had to be 

developed based on previous studies of other aiming and interceptive skills.  

These definitions (particularly QE1) did therefore evolve throughout the studies 

based on our learning about the skill and the critical movements and gaze 

strategies involved in its performance.  This meant study 1 (chapter 3) and the 

first experiment of chapter 4 used a different definition of the QE relating to the 

onset of a critical movement.  For QE1, the critical movement from which the 

onset of the QE was initiated was redefined from the release of the ball to the 

start of the foreswing of the arm.  The critical movement for QE2 was somewhat 

more challenging to define due to the sequential nature of the whole task 

meaning the movements of the throw follow-through flow directly into the 

movements of the catch.  Throughout this project, several movements were 

considered as potential critical movements of the catch by which QE2 could be 

defined, such as the first foot movement (as used by Vickers & Adolphe, 1997); 

and the first observable movement of the non-throwing and throwing arm in the 

direction of the ball, however these movements were not consistently performed 

within or between the participants.  Furthermore, as the QE2 was most likely 

responsible for predicting the location and timing of the final interception point of 

the ball, the critical movement of this phase of the task was deemed to be the 
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onset of the grasping action that signifies the attempt at a catch.  This 

movement of the fingers flexing around the ball indicates the participant’s final 

prediction of the timing and location of the interception point based on the QE2, 

and therefore is the critical movement that will distinguish between failed and 

successful attempts.  This definition of the critical movement for QE2 was 

ultimately used consistently throughout the studies of this thesis. 

The three experimental chapters of this thesis all used the MABC-2 

throwing and catching task and therefore adhered to the specific instructions of 

the task as prescribed by Henderson et al. (2007).  This decision meant the task 

remained consistent and therefore comparable across the studies and samples 

of children used throughout the thesis, however a significant drawback of this 

task was the small number of trials that the testing conditions were restricted to. 

The MABC-2 dictates that a participant should complete 5 practices followed by 

10 assessed trials.  It is important to conduct a suitable number of trials to 

obtain stable data that is representative of the sample’s population, particularly 

for children with DCD, as their movements are likely to be variable due to the 

nature of the condition.  Future work may consider including more trials in a task 

such as this, although a balance needs to be struck between a representative 

number of trials and time for which a child can remain concentrated and 

motivated on the task.  Children and particularly those with poor motor skills 

tend to have a lower attentional threshold, which drove the decision for this 

thesis to retain the recommended number of trials prescribed in the MABC-2. 

 The training protocol used in this study, whilst typical for QET studies, 

was undoubtedly brief compared to previous intervention studies for children 

with DCD.  Whilst this carries the advantage for teachers, parents and 

therapists to use a QET method to quickly improve movement technique of 
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children with DCD, future work should perhaps consider how a longer, more 

focused QET intervention might induce better and longer performance 

improvements.  This could better prepare QET as a more suitable therapeutic 

intervention that could be used to improve the motor skill performance of 

children with more severe movement difficulties, as the studies in this thesis 

would indicate that this intervention is perhaps more suited to children of a 

higher overall movement coordination level (as indexed by the MABC-2).   

 The nature of the QET instructions may have evoked an external 

attentional focus, which Wulf (2013) has linked with better motor learning and 

performance.  However, the training video instructions were explicit, instructing 

and demonstrating the skill adjustment that was required.  Explicit instructions 

such as these provide a participant with conscious ‘rules’ about the skill and the 

effect of a movement upon the outcome that they will attempt to control.  This 

may lead to what is known as reinvestment (Poolton, Maxwell, & Masters, 2004) 

where autonomous movements are interrupted buy conscious processes.  

Table 6.2 indicates that the DCD children in both training interventions were 

poorer at retaining their performance improvements in comparison to typically 

developing children, and Wilson et al. (2003) found that when children with 

DCD learnt a simple task implicitly they were able to improve their motor 

response accuracy and timing to a similar degree to typically developing 

children.  Future development of QET could therefore investigate the effects of 

implicit learning of the QE techniques for these children, which will reduce the 

child’s dependence on cognitive processes for learning.     

Capio, Poolton, Sit, Holmstrom, and Masters (2013) found that children 

made better improvements in a fundamental movement skill (throwing) using an 

implicit errorless learning technique.  The theory of errorless learning suggests 
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that feedback obtained from outcome errors causes a performer to attempt to 

consciously correct a movement, so reducing these errors will limit the 

conscious processes involved with performing the task (Capio et al., 2013).  

This method is based around practice rather than instruction, where the task is 

constrained to limit the number of outcome errors, such as catching a larger ball 

or throwing from a shorter distance before progressing to the full MABC-2 skill, 

similar to the methods of NTT (chapter 2.2.5). 

  The light ball study described earlier in this chapter is also an attempt to 

develop more implicit learning and implicit gaze training for the children with 

DCD, by subconsciously directing their attention to the ball at the bounce, and 

therefore attempting to prolong QE2.  The gaze data has not been analysed for 

this work, however it would appear from preliminary results that children with 

DCD were more successful catching with this ball in comparison to a tennis ball.  

These implicit learning protocols are likely to make significant improvements to 

how we teach children with DCD motor skills, therefore future work is needed to 

develop this technique to encourage longer, earlier QE durations during this 

catching task. 

 One final consideration is how QET might affect other psychological 

factors critical for performance.  In chapter 6.2.1.1, the perceived difficulty of a 

task is discussed in relation to a child’s attentional control.  The findings of 

Wood, Vine, and Wilson (2013) and Chen and Wu (2013) would indicate that 

the QE is affected by perceived task difficulty, so one might postulate that QET 

may reduce this effect in children with DCD.  The Children’s Self-Perceptions of 

Adequacy in and Predilection for Physical Activity (CSAPPA) questionnaire has 

been proposed as a suitable screening tool for children with DCD (Hay, Hawes, 

& Faught, 2004).  This tool has three sub-scales: perceived adequacy, 
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enjoyment and predilection towards physical activity, so it would appear children 

with DCD consistently score lower in all of these factors.  Interestingly, Cairney 

et al. (2007) found that children with DCD perceive themselves to have a 

particularly low adequacy in physical activity.  Future research therefore should 

look to determine how QET might affect psychological factors such as 

perceived task difficulty and physical activity adequacy in children with DCD. 

 

6.5. Final Conclusions 

Children’s fundamental movement skills, and particularly ball control 

skills such as catching are highly associated with better mental, physical and 

social wellbeing.  Children with DCD are particularly prone to health problems 

such as obesity due to low participation in physical activity, and the associated 

side effects such as social isolation and low self-efficacy.  The QE is a gaze 

behaviour that has been extensively researched in adults.  Successful 

performance outcomes are characterised by earlier and longer QE durations, a 

finding which has led to QET being developed.  Again, studies of adults have 

demonstrated that this training technique is effective in fine-tuning expert skill 

performance, but crucially it has also been shown that increasing the QE 

durations of adult performers expedites skill learning, leading to faster and more 

robust skill acquisition. 

The QE has not yet been studied in children, therefore the work in this 

thesis was the first to determine that highly skilled children also exhibit earlier 

and longer QE fixations when performing a throwing and catching task in 

comparison to median and low skilled children.  Specifically, chapter 3 identified 

two QE periods in this task; the first taking place during the aiming phase of the 

throw (QE1), and the second took place as the child visually tracked the ball 
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prior to the catch.  The second phase of this project described in chapter 4 

determined that children could be trained to increase their QE durations in this 

task and this was shown to improve their catching performance over and above 

the effect of standard training methods (experiment 1).  This first attempt at 

QET in children was based on previous QET in adults, so there were numerous 

adaptations that were identified to develop this intervention, which were studied 

in experiment 2 of this chapter.  This experiment performed a more substantial 

investigation of QET in children and also determined that training was relatively 

robust; increasing both the QE durations and catching performance of children 

over a six-week period. 

With evidence that QET significantly improves the performance of 

typically developing children to a greater degree than standardised coaching 

techniques, the third phase of this project applied this intervention to a sample 

of children diagnosed with DCD (chapter 5).  This study followed the same 

methodology of the second experiment of typically developing children, and 

although the QET intervention again significantly increased the children’s QE1 

and QE2 durations, the higher performance outcome of the QET group did not 

reach significant levels over that of the traditionally trained group. Despite this, a 

qualitative measure of performance found that the children with DCD who 

received QET were indeed using a more expert-like technique, and a kinematic 

measure demonstrated they were using more flexion in their elbow joint at the 

point of the catch, in comparison to their baseline performance and the group 

receiving traditional training instructions. 

Therefore, we can conclude from this work that increasing the QE 

durations of children will improve their performance in a throwing and catching 

task, although this effect is not as strong for children with DCD, instead 
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improving their technique rather than quantitative performance.  It may be that 

these children were unable to cognitively internalise the training instructions as 

well as typically developing children, or that they were unable to retain the 

information they had learned.  Therefore future research should investigate the 

optimal QE duration for this task and determine whether a longer, more focused 

QET intervention is an appropriate solution for children with DCD.  Alternatively 

the use of implicit training techniques to reduce the cognitive processes 

involved with the skill learning could help develop QET as a suitable therapeutic 

intervention for children with DCD. 
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