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ABSTRACT 

In this paper we bring together two Operations Research techniques, Cutting and Packing Optimisation 

(CPO) and Simulation, and present a multi-methodology approach for analysing the trade-offs between 

loading efficiency and various important practical considerations in relation to the cargo - such as its 

stability, fragility, or possible cross-contamination between different types of items over time. The 

feasibility of this approach is demonstrated by considering a situation where the items to be loaded have 

differing degrees of perishability and where badly deteriorated items can affect those in their immediate 

vicinity (e.g. through the spread of mould). Our approach uses the output of the CPO algorithms to create 

agents that simulate the spread of mould through proximity-based interactions between the agents. The 

results show the trade-offs involved in container utilisation and the propagation of mould, without 

evidence of any correlation between them. The contribution of this research is the methodology and the 

feasibility study. 
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1 INTRODUCTION 

The efficient loading of cargo into freight containers - and, more generally, the proficient packing of 

smaller items into larger objects - has been a subject of intensive research for at least thirty years. George 

and Robinson (1980) were among the first to propose an algorithm for constructing a container loading 

plan. Their approach was heuristic in nature and based on the idea of building a series of 'walls' of items 

across the width and height of the container. Since then numerous different approaches have been 

developed for both the knapsack version of the problem - where the space available is fixed and loading 

all the cargo may not be possible - and, to a lesser extent, its bin-packing form - where all of the cargo 

involved must be stowed and a cost-effective way of using a set of containers is sought. In this paper the 

term Container Loading Algorithms (CLAs) is used to describe any approach which is designed to 

produce container loading plans.  

CLAs are commonly used for a wide variety of container loading problems, for example, loading of cargo 

that consists of either identical items (completely homogenous cargo) or cargo consisting of a large 

number of different types of items relative to the total number of items (strongly heterogeneous cargo) or 

cargo comprising of a relatively few different types of items relative to the total number of items (weakly 
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heterogeneous cargo), loading a consignment of goods into either a single container or multiple 

containers, etc. (Bischoff and Ratcliff, 1995). There are several studies that have proposed algorithm-

based approaches aimed at homogeneous cargo (Han et al, 1989; George, 1992), strongly heterogeneous 

cargo (Gehring et al, 1990) and weakly heterogeneous cargo (George and Robinson, 1980; Morabito and 

Arenales, 1994; Ngoi et al, 1994).The majority of these studies have focused on a particular category of 

combinatorial optimisation problem - the knapsack problem – wherein the only parameters that are 

known/used are the dimensions of the cargo and the container and some measure of value associated with 

each item in the cargo (e.g., weight); given these inputs, the objective is to use CLAs to generate 

container loading plans that would allow the best possible utilisation of the container space (Bischoff and 

Ratcliff, 1995).  

Much of the more recent work has moved away from pure knapsack or bin-packing formulations of the 

container loading problem and has paid increasing attention to various additional factors which may affect 

the task in practice. Orientation constraints on individual types of cargo and container weight capacity 

limits represent simple examples of such factors (Gehring and Bortfeldt, 2002). The literature has also 

used problem definitions which include the weight distribution within a container as a critical factor 

(Gehring and Bortfeldt, 1997; Davies and Bischoff, 1999; Eley, 2002) and aspects of cargo stability have 

been explicitly considered in several approaches as  attributes of solution quality (Bortfeldt and Gehring, 

1998; Terno et al, 2000; Bortfeldt and Gehring, 2001; Bortfeldt et al, 2003; Moura and Oliveira, 2005). 

Moreover, issues related to cargo fragility, in terms of constraints on the load bearing ability of items, 

have been taken into account by some authors (e.g. Bischoff, 2006).  

Despite the considerable progress that has been made towards meeting the needs of practitioners, 

however, much work remains to be done before it can be claimed that the approaches suggested in the 

literature address adequately and fully the different problem scenarios which arise in practice. Combining 

load plan construction heuristics with simulation approaches is put forward here as a possible contribution 

towards this quest. More specifically, we focus on the CLAs (which are a particular category of Cutting 

and Packing Optimisation algorithms) and a specific simulation technique, namely, Agent-Based 

Simulation (ABS), and propose a multi-methodology approach for analysing  trade-offs in relation to the 

loading of cargo into containers. Thus, while the CLAs determine the spatial co-ordinates of cargo 

placement inside a container, we intend to use the container loading plans as the input and simulate 

various cargo-related considerations. Two such considerations that are discussed in this paper are, (a) the 

stability of individual items of cargo as they are being transported (to simulate transportation of the 

container), and (b) cross-contamination between different items of cargo over time. Executing numerous 

experiments based on the proposed CLA-ABS approach, with each experiment using a different container 

loading plan, enables us to analyse the trade-offs between the aforementioned cargo-related 

considerations and loading efficiency. 

The remainder of the paper is structured as follows. Section 2 presents an introduction to the agent-based 

modelling technique. This section also includes a discussion on related work (review of literature on the 

use of ABS for container management and container loading). Our multi-methodology approach 

combining CLA and ABS is discussed in  Section 3. Sections 4 is devoted to the ABS model that we 

developed as part of our feasibility study; Section 5 discusses the experiments and presents some results. 

Section 6 is the concluding section of this paper. It highlights the contribution of the paper, discusses 

future work and draws the paper to a close. 

2 AGENT-BASED SIMULATION 

ABS is a simulation technique that models the overall behavior of a system through use of autonomous 

system components (also referred to as agents) which  communicate with each other through use of 

messages. The behavior incorporated into an agent determines its role in the environment, its interaction 

with other agents, its response to message from other agents, and indeed whether its own behavior is 

adaptable. The agents usually have some properties and, unlike agent behavior, which may or may not be 
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programmed to adapt itself, the properties usually change as a result of certain trigger points in the 

simulation - for example, time triggered changes,  changes triggered by an agent’s internal state change, 

changes triggered due to messages being received from other agent, etc. Since there are usually a number 

of self-governing agents in an environment, each with the aforementioned characteristics, the overall 

system state is determined by their dynamic interactions through time. In ABS, the simulation time 

increments in discrete time steps. 

Figure 1 illustrates some fundamental concepts related to the execution of agents in an ABS environment 

(we recognise that the specific details will vary between different ABS implementations). An ABS can be 

thought of as a multi-threaded program (the threads are indicated by the six curved lines) that spawns 

from one main thread (indicated by the straight line). The ABS program being executed will generally 

have some global variables (indicated by the star that is associated with the main thread) and some 

variables that are specific to each thread (indicated by the six stars, each associated with one thread). 

Although the threads have read/write access to their local variables, they can only modify the global 

variables if they have acquired a “lock” on it (this lock is also referred to as the semaphore). The lock 

prevents multiple concurrent access to the shared global variable. We can intuitively think of every agent 

instance (agent entity) as a separate thread of execution; the local variables as agent properties; the global 

variables as shared data. Drawing parallels with the Object-Oriented Programming (OOP) terminology, 

each agent can be considered as a Class and each agent instance that is spawned from the main thread  

can be considered as an Object of the Class. We purposely draw reference to OOP since we consider that 

it is easier to program ABS if we think of agents as objects. Indeed, a modeler trying to implement a 

complex ABS without objects may find, at the end of the modeling exercise, that she/he has 

unintentionally re-invented some of the OOPs concepts (Shaliz, 2006). Figure 1 also depicts the trigger 

points (shown by the two light-colored circles) and the resultant inter-agent communication (depicted by 

the six dark circles). An ABS simulation advances time in discrete time steps, and therefore the 

underlying ABS software generally has an in-build time synchronisation/thread synchronisation logic that  

ensures concurrency of execution (indicted as “Time Sync” in the diagram), without causality errors. 

 
Figure 1: Execution of Agents in an ABS Environment 

The description of agents and ABS presented above is based on our experience of working with this 

simulation technique. Macal and North have also discussed the characteristics of agents and ABS at 

length, and in the remainder of this paragraph we make reference to a couple of their papers. Macal and 

North (2006) consider agents to have six specific characteristics, namely, attributes, behavioral rules, 

memory, resources, decision making sophistication and rules to modify behavioral rules. The agent 

behavior, which is defined by simple rules, may be influenced by their interaction with other agents; and 

this “agent-by-agent and interaction-by-interaction” approach to modeling usually gives rise to emergent 

“patterns, structures and behaviors” that are not explicitly modeled in the system (Macal and North 2010).  

 

Page 3 of 30 International Transactions in Operational Research



 

 

ABS has several application areas. In healthcare, ABS has been used for modeling the spread of 

pathogens that are transmitted by direct contact (Hotchkiss et al, 2005); Stainsby et al (2009) have used 

agents to model hospital emergency departments;  Sibbel and Urban (2001) have integrated agent-based 

approaches to classical simulation systems to enable better hospital management. In financial trading, 

ABS has been used to model New Electricity Trading Arrangements (NETA) in the UK (Bunn and  

Oliveira, 2001); application of this technique has been demonstrated in the financial market for price 

formation using realistic trade mechanism (Raberto et al, 2001).  Agent-Based Social Simulation (ABSS) 

is the application of ABS in the social sciences context. Its use has been reported in the study of social 

dilemmas (e.g, Prisoner's Dilemma) by Gotts et al (2003); Downing et al (2001) report on the use of a 

prototype agent-based Integrated Assessment Model for understanding climate policy; ABSS has also 

been used for modeling of social interactions and influence (Marsella et al, 2004). Luo et al (2008) and 

Moulin et al (2003) have used ABS for crowd management. Applications of this technique have also been 

reported in supply chain management (Kaihara, 2003), in freight transportation (Davidsson et al, 2004), in 

the military (Cioppa et al, 2004), for emergency evacuations (Pan et al, 2007), in the management of the 

environment (Hare and Deadman, 2004), and in cell biology (Pogson et al, 2006), to cite just some further 

examples.  

There have also been studies which use ABS in the context of container management.  Henesey (2006), 

for instance, investigated the use of agent-based technologies to improve performance of container 

terminals. The use of an ABS architecture to solve the automatic container allocation problem in a port 

container terminal is described in Rebollo et al (2000). The use of agents to simulate and optimise cargo 

handling storage space in a maritime port is reported in Kefi et al (2009). ABS has been used to model the 

management of stakeholder relations in container terminals through use of agents that simulate different 

stakeholder behavior (Henesey et al, 2003). Henesey et al  (2006) report on the use of the SimPort ABS 

tool to evaluate eight transshipment policies. Bin et al (2009) have used ABS, together with knowledge 

discovery, to model a container terminal logistics system through use of 14 kinds of agents. The project 

Container World has modeled both the business and the operational aspects of the container business in 

the UK though use of multi-agent methodology (Sinha-Ray et al, 2003).  

Whilst the literature contains a number of ABS studies in the general area of port management, container 

terminal management and container business management, to the best of the authors’ knowledge, there is 

no previous work on the use of ABS in the specific area of container loading. Thus, the authors are 

arguably among the first to report on the use of a multi-methodology approach that combines container 

load plan heuristics with ABS. 

3 COMBINING CLA AND ABS: A MULTI-METHODOLOGY APPROACH  

The purpose of the combined CLA and ABS approach to container loading is to identify the trade-off 

between loading efficiency and other practical considerations in relation to the cargo. In the research 

presented in this paper, we limit ourselves to the knapsack version of the problem, wherein the space 

available is fixed and loading all the cargo may not be possible. Also, the cargo consists of weakly 

heterogeneous items of rectangular shape – which will be referred to as ‘boxes’ for the sake of simplicity. 

With the objective of better describing the application context pertaining to our proposed approach, we 

consider two problem scenarios– (a) the stability of the individual items of cargo as they are being 

transported (cargo stability scenario), and  (b) the possible cross-contamination between these items over 

time (cargo cross-contamination scenario). With respect to the latter scenario, the example considers a 

situation where the items to be loaded have differing degrees of perishability and where badly 

deteriorated items can affect those in their immediate vicinity through the spread of mould. We consider 

this example as a valid test case since, in the case of perishable goods, a supplier usually cares more about 

the decay of perishable goods than the average loading ratio and is willing to use more vehicles to prevent 

deterioration (Chen et al., 2009). For both scenarios we suggest that the individual items of cargo can be 

modeled as agents because they display three important characteristics consistent with most agents – (1) 
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they have properties, (2) they exhibit autonomous behavior, and (3) they interact with other agents which 

leads to more complex behavior (interaction is usually brought about by the spatiotemporal changes 

during transportation). Our argument for using ABS to model the aforementioned scenarios is 

summarised in Table 1. The table lists the three agent characteristics (column one)  in relation to cargo 

stability (column two) and cargo cross-contamination (column three). 

Table 1: Agent Characteristics for the Cargo Stability and the Cross-Contamination Scenarios 

Agent Characteristics Cargo Stability Scenario Cargo Cross-Contamination Scenario 

(e.g., perishable items) 

(1) Agents have properties Dimension of the individual items of cargo 

(length, width, height). 

Freshness index (i.e., the length of time after 

which the individual items of perishable goods 

will start developing mould).  

Dimension of the individual items of cargo 

(length, width, height). 

(2)  Agents exhibit 

autonomous behavior 

The stability of an item is usually 

dependent on the dimensions of the item 

and other factors (e.g., weight). 

The freshness index will usually decrease over 

time. 

(3) Interaction between 

agents may result in more 

complex behavior 

The stability of an individual item may also 

depend on the stability of the items that 

surround/support the item in question. 

Perishable items may develop mould when they 

come into contact with other mould-affected 

items. 

 

Having presented the rationale for using ABS to model the container cargo in our example scenarios, we 

now discuss our combined CLA-ABS approach. The methodology is applied in two phases and there are 

several iterations (refer to Figure 2 - left). In the first phase, CLAs are applied to generate a container 

loading plan and a corresponding container utilisation percentage. The load plan (refer to Figure 2 - right) 

should ideally be a text file that consists of the x, x’ (x + length of box), y, y’ (y + width of box), z and z’ 

(z + height of box) co-ordinates of each item selected in the cargo (note that in our knapsack version of 

the problem not all items may be packed) and a corresponding freshness index. The container utilisation 

percentage is a function of the items selected by the CLAs. Thus, for the same mix of cargo to be loaded 

into a freight container, it is possible to have different container utilisation percentages based on the 

individual items selected by the different runs of the CLAs. The utilisation percentage will be an 

important input in the later stages of our methodology. The proposed methodology has no underlying 

dependency on any particular set of CLAs. The only requirement is that the CLAs being used in phase 

one provide output relating to the physical arrangement of the different items of cargo in the x, y and z 

axes (the container loading plan) and a corresponding container utilisation percentage. Optionally, the 

CLAs may also provide values that are related to other specific cargo-related considerations, for e.g., 

freshness index in our cargo cross-contamination scenario. 
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Iteration 3: Simulation Results 

(based on specific considerations 

related to cargo, e.g., cargo stability, 

cargo cross-contamination)

Iteration 1: 

Container Utilization 
% and Loading Plan

Iteration 2: 

Container Utilization 
% and Loading Plan

Iteration 3: 
Container Utilization 

% and Loading Plan

Stop
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Figure 2: Flowchart of the Multi-Methodology Approach for Container Loading (left); Load plan generated 

by the CLAs (right) 

In the second phase, the container loading plan generated in stage one can be used as an input to an ABS 

model (refer to Figure 2 - left). Our approach stipulates that the ABS model to be developed should have 

the following functionality: The ABS model needs to enable, (1) agents to be created for each item listed 
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in the loading plan; (2) agents to be bestowed the mandatory dimension properties -  length, width, and  

height (these can be calculated from the x, y, z axes values present in the container loading plan)– and one 

or more optional properties that may be present in the loading plan (such as the freshness index); (3) an 

agent’s proximity-interactions with other agents to be determined based on the agents’ x, y and z co-

ordinates. Thus,  the logic incorporated in the ABS model should be able to determine if, for example, 

two agents representing two items of cargo [box1, box2] are in contact with each other through a 

comparison on the x-axis (e.g., box1.x’==box2.x or box1.x==box2.x’),  y axis and z axis. The mandatory 

dimension properties may also be used for 3D representation of the items of cargo (see section 4 for our 

implementation). Our multi-methodology approach has no underlying dependency on any specific ABS 

software.  

The agent-based model can be executed to simulate the transport of cargo through time. The results to be 

collected will depend on the scenario being investigated. With regard to the two example problem 

scenarios being investigated in this study, result collection for cargo stability may involve the number of 

boxes that have fallen off the stack during transportation (i.e., upon completion of the simulation run); 

result collection for cargo cross-contamination scenario may involve the number of mould affected boxes. 

Collection of results completes phase two of our multi-methodology approach, and at this point we have a 

container utilisation percentage (output of CLAs) and a related set of results from the ABS. Again 

referring back to our example scenarios, a container utilisation of 89% may have resulted in 20 boxes 

having fallen off the stack during transportation and 45 boxes being affected by mould. The next 

paragraph describes the concept of phase one-phase two iterations in our methodology. 

The purpose of our combined approach is to find the trade-off between container loading efficiency and 

other practical considerations in relation to the cargo. The considerations may be, (1) for the cargo 

stability scenario, to have an increased cargo steadiness (this is important for items containing fragile 

material),  and (2) for the cargo cross-contamination scenario, to have the least number of mould affected 

boxes (this is important for perishable items). Since every execution of the CLAs in phase one will 

usually result in a different loading plan (and a corresponding utilisation percentage), and the resultant 

loading plan from phase one can be used for ABS of the container cargo in phase two, it follows that by 

conducting several of these phase one-phase two iterations we may have sufficient data to make a 

meaningful comparison and investigate the possible trade-offs. Using our cargo stability example, if a 

container utilisation of 67%, 78% and 90% in stage one results in 30, 18 and 25 boxes having fallen off 

their  stack (the results of the ABS simulation),  it may be worthwhile to use the 78% container utilisation 

loading plan rather than the one providing a 90% utilization. Similarly, if the application of our multi-

methodology approach for the cross-contamination scenario presents us with ABS results of 14, 20 and 

15 boxes being mould affected as a result of loading plans with 85%, 60% and 92% utilisation 

percentages, then the stakeholders are in a position to make an informed decision as to whether the 

container is to be loaded with the 85% or the 92% container utilisation loading plan. Finally, as with most 

simulations,  the larger the number of phase one-phase two iterations  (we do not use the term 

experiments in this connection since each iteration may involve several ABS experiments/trials when the 

model is stochastic), the greater the amount of data which is  available to make an informed decision 

regarding the seletion of an appropriate loading plan.  

4 THE SIMULATION MODEL 

This section of the paper describes the ABS models that were used to experiment with phase two of our 

approach. The CLAs used in phase one are not presented here owing to page restrictions. However, these 

algorithms have been previously published and the reader is referred to Bischoff (2006). The scenarios 

modeled are the aforementioned ones - cargo stability and cargo cross-contamination. The cargo stability 

scenario presents an elementary proof-of-concept that uses an open-source physics engine to model the 

individual items of cargo (section 4.1). For the cross-contamination scenario, a 3-D ABS model has been 
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developed using AnyLogic software (XJ Technologies, 2011) that simulates the propagation of mould in 

a freight container (section 4.2).  

4.1 Example of cargo stability using a physics engine  

In order to effectively simulate the stability of cargo during transportation, it may be necessary that the 

individual items be modeled such that they adhere to Newton’s three laws of motion. The laws of motion 

deal with force and mass, and they provide the basis for understanding the effect that forces have (e.g., 

gravitational force, normal force, frictionless force) in determining the motion of an object (Cutnell and 

Johnson, 2001). In such a model the Newtonian motion that will be exhibited by the individual items of 

cargo will depend on its properties, e.g., length, width, height, mass/weight, contact friction, etc. The 

Newtonian motion can be modeled through use of a physics engine like Jinngine (Silcowitz-Hansen, 

2010). Yet another requirement for modeling cargo stability is contact modeling for the detection of 

collision between objects. Some physics engines like Jinngine also provide collision detection support.  

We argue that the collision detection among items of cargo which exhibit independent Newtonian motion 

will permit the simulation of cargo stability only if the individual items are modeled as agents in an ABS.  

This is because the agents can be simulated through time. Thus, a stack of boxes arranged inside a 

container (Figure 3 – left) can be simulated through time if, (a) every box is transformed into an agent – 

this may require the use of ABS software, (b) every box is bestowed the independent Newtonian motion 

(its motion will, in turn, will depend upon the agents’ properties, e.g., dimensions, weight, etc.) – this may 

require the use of a physics engine, and (c) the proximity-based interactions among the boxes is captured 

using collision detection techniques – this can be accomplished through use of software that supports 

collision detection. The resultant simulation could potentially determine the cargo stability based on the 

number of boxes that may have fallen off the stack during transportation (when visually represented in 

3D, this may look like Figure 3 –right).  

     

Figure 3: The stack of boxes while at rest (left) and subsequent to external stimulus being applied (right) – 

visualisations generated by extending Jinngine example programs (Silcowitz-Hansen, 2010) 

It is to be noted here that the proof-of-concept program used to generate the screenshots above employs 

Jinngine for (b) and (c) – this program extends example programs that are available for download from 

the Jinngine website (Silcowitz-Hansen, 2010); it does not include any ABS agent functionality. As such 

we are unable to simulate the model through time. The screenshot presented in Figure 3 (right) is the 

result of an external stimulus (pull) being applied to the base of the container in an instant in time. Thus, 

the example is more akin to a 3D game that incorporates objects and collision detection. It is not a true 

ABS simulation.  

Finally, although the boxes in our example program are not modeled as ABS agents, they do display the 

important characteristics that are found in most agents, namely, (a) they have properties (the boxes are of 

different dimensions and colors), (b) they display autonomous behavior (the boxes display independent 

Newtonian motion, which are, in turn, dependent on the properties mentioned in (a)), and (c) inter-agent 
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interaction results in a more complex behavior (the collision among boxes will result in some boxes 

toppling over, which may, in turn, affect the other boxes inside the container).  Future work could 

involve the integration of a piece of ABS software with Jinngine in order to perform rigid body 

simulation of items of cargo through time. 

4.2 Modeling cargo cross-contamination using AnyLogic 

The AnyLogic model developed by the authors is informed by the functionality proposed by the multi-

methodology approach for phase-two ABS (refer to section 3).  Namely, (1) the model reads the phase-

one loading plan generated by the CLAs and creates a unique agent for each item of cargo listed in the 

loading plan; (2) each agent is provided with four properties – length, width, height and freshness index 

(the items of cargo/agents and the surrounding  container is represented visually in 3-D space); (3) for 

every agent which is initialised, the ABS model identifies all the other agents surrounding the agent in 

question and establishes a relationship between them (this inter-agent relationship is used during 

simulation for inter-agent message passing). The model is run for 30 days in simulation time. 

With regard to (3), in a conventional ABS model the agent interactions are usually defined by the modeler 

using package-specific functionalities. For example, AnyLogic, defines four pre-defined agent layouts in 

continuous space (random, ring, arranged and spring mass layouts) and two layouts in discrete space 

(random and arranged layouts) – these layouts are depicted in Figure 4 below (XJ Technologies, 2011). 

The agents are represented as dots or squares of different colors (red, black, blue) and the agent 

relationships are indicated by either lines (in case of agents in continuous space) or the physical 

placement of the agents (in case of agents in discrete space). 

 
Figure 4: AnyLogic-defined arrangement of agents (from left to right): Random layout, Ring layout, 

Arranged layout, Spring Mass layout, Random layout (discrete space), Arranged layout (discrete space) (XJ 

Technologies, 2011). 

However, this pre-defined agent arrangement and the pre-defined inter-agent relationship is inappropriate 

for our ABS model, since our agent arrangement will be defined by the container loading plan. Inter-agent 

relationships will then be created based on the physical proximity with the other agents. An example will 

make this obvious (refer to APPENDIX 1 for pseudo code). Figure 5 (left) shows a randomly-selected 

agent in question (red box), and at least eight other agents surrounding this agent; these proximity 

relationships are identified by the model based on the x, x’, y, y’, z and z’ coordinates of the different 

items of cargo, and these inter-agent relationships are subsequently stored in the model.  

Every agent has an initial freshness index generated in phase one. This freshness index is a randomly 

generated integer value between 5 and 60 and it is assigned to different Box Types. For example, if 10 

boxes of a particular Box Type (with a freshness index of 14) have been selected by the CLAs, each of 

these will have a freshness index of 14. The index is used to denote the number of simulated days for 

which the contents of the box will remain mould free. This is not necessarily related with the units’ 

expiration date. Thus, as the simulation progresses in time, at the end of every simulated day, the 

freshness value associated with every agent is decreased by one (as long as it is positive). When the 

freshness level  of a particular box reaches zero, it is said to be mould affected. We have used the notion 

of a freshness index in our simulation based on evidence in the literature of contamination and/or decay of 

perishable products subsequent to the expiration of well-defined time units; also, the time units may differ 

from one product to the other. For example, the mould infection (fungal spoilage) for fruits in transit for 

up to 14 days can be as high as 100% with the average mould rate depending on the fruit being transferred 
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(Tournas and Katsoudas, 2005). Decay fungi are easily spread throughout the shipping container (Ashby, 

1995) and at different rates,  for example, berries in a shipping container have an average mould rate of 

80% in 14 days of transit, citrus fruits have an average of 45%, etc. (Tournas and Katsoudas, 2005). In the 

3-D visualisation the color of the box is changed to green so as to enable easier identification (Figure 5 – 

right). The transition of the agents is modelled by a state chart (refer to Appendix 2). 

              

Figure 5: Detection of proximity among agents (left); Mould affected boxes during simulation (right) 

 

When a box becomes mould affected it starts to cross-contaminate other boxes that physically surround it. 

This cross-contamination is reflected in the model by the proximity-based interactions sent by the agent 

(representing the mould affected box) to all the surrounding agents. Thus, in Figure 5 (left), if the red 

box/agent were to become mould affected, it will immediately send messages to all the eight boxes/agents 

surrounding it. The message is a signal to the other agents (each of whom have their own copy of a 

freshness index that decreases over time) that they have now been contaminated. Upon receiving this 

message, each agent immediately decreases the existing value of its freshness index by 1 (if freshness 

index > 0). This is in addition to the drop of 1 unit of freshness that is applicable at the end of each 

simulated day. The logic of the model, as described above, is repeated till the end of the simulated period. 

After the successful execution of the ABS several pieces of data are collected, including, the number of 

mould affected boxes, the maximum freshness value associated with an item of cargo, the average cargo 

freshness, a histogram associated with freshness data. This completes one ABS phase-two iteration. As 

has been described earlier, our multi-methodology approach involves several such iterations being 

performed, each with a different container loading plan, so as to enable the stakeholder to decide on a 

trade-off between container efficiency and considerations such as cargo stability, etc. Experiments and 

results are described next. 

5 EXPERIMENTS AND RESULTS 

This section describes the application of the proposed two-stage multi-methodology agent-based approach 

to the cargo cross-contamination scenario. Phase one of our methodology  uses the CLAs that were 

originally proposed by Bischoff (2006) for the 3/B/O/R category of cutting and packing problems 

(Dyckhoff, 1990). These CLAs are henceforth referred to as the benchmark scenario generation 

algorithms. The 3/B/O/R category describes the problem space in which a weakly heterogeneous mix of 

goods is to be loaded into a single container, wherein both the goods and the container are rectangular in 

shape and have known dimensions (Bischoff, 2006). The heterogeneous cargo is modelled as individual 

“boxes” that belong to different “box types”. In (Bischoff, 2006) the factors that distinguish the various 

box types are the boxes’ physical dimensions, i.e., length, width, and height, their weight and their load 

bearing strength. For the purpose of the cargo cross-contamination scenario presented in this paper, 

weight and load bearing strength are ignored and a new property – freshness index– is introduced. Given a 

weakly heterogeneous mix of box types as the input, the benchmark 3/B/O/R scenario generation 
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algorithms produces hundreds of alternative container loading plans, each having a corresponding 

container utilisation rate. Given a specific mix of box types (subsequently referred to as “Box Type Mix”, 

or BTM for short), using the benchmark algorithms we are able to determine the most efficient loading 

pattern by comparing the container utilisation rates associated with the various loading patterns that are 

output by the algorithm.  

For our cross-contamination scenario experiments we have used a total of four BTMs, namely, BTM20, 

BTM40, BTM70 and BTM100, each of which represents a specific Box Type Mix with 20, 40, 70 and 100 

box types respectively. Using the benchmark 3/B/O/R scenario generation algorithms we generated 100 

container loading plans for each of our four BTMs. We then ranked the container utilisation rates for the 

aforementioned loading plans, and selected three specific loading plans for every BTM. These are as 

follows (where, x=20,40,70,100): (a) loading plan with the lowest container utilisation (BTMxmin); (b) 

loading plan with utilisation percentile rank of 50 (BTMxmid); and (c) loading plan with the highest 

container utilisation (BTMxmax). Each BTM is a unique experiment group; each group comprises of 

three separate iterations, wherein each phase-two iteration uses a unique container loading plan ( 

BTMxmin, BTMxmid or BTMxmax). The iterations will henceforth be identified by the BTM number 

and a corresponding loading plan. For example, BTM40max will refer to the iteration using the container 

loading plan with the highest container utilisation (max) and which is associated with the experiment 

group BTM40.  

      

Figure 6: % mould affected boxes, grouped by BTM (left); Histogram showing freshness % of boxes not 

affected by mould, grouped by BTM (right) 

Figure 6 (left) illustrates, for each of the three iterations pertaining to the four BTM experiments, the 

number and the corresponding percentage of boxes affected with mould. Since the agents represent boxes 

that are in physical contact with each other (and therefore susceptible to cross-contamination), it is 

therefore the case that, following the logic of the program, the majority of the boxes will be contaminated 

before the expiry of their freshness index.  Irrespective of the box layout pattern used, 60-80% of the 

boxes will become mould affected by the end of the 30-day simulated run. It is important to note that 

although the results for all the BTMs are presented in the same figure (Figure 6 – left and right), 

comparison cannot be made across BTMs since the freshness index of the items of cargo (generated using 

random numbers which are assigned to box types) changes from one experiment type to the next.  

Our experiments show clearly the existence of  trade-offs between container loading efficiency and the 

proportion of boxes affected with mould. For example in Figure 6 (left), in relation to the BTM70 

experiments, the three phase-one loading plans selected had utilisation efficiencies of 72.10% [Total 
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boxes selected = 96] (BTM70min), 81.68% [101 selected] (BTM70mid) and 86.70% [110 selected] 

(BTM70max), respectively; the corresponding percentages of mould affected boxes produced by the 

phase-two simulation were 55.21%, 61.39% and 54.55% (refer to the secondary vertical axis shown in 

Figure 6 – left). Intuitively, it might seem that a layout pattern with a greater space utilisation (e.g., 

BTM70max) would result in  a higher number of mould-affected boxes (when, for example, compared to 

BTM70min), simply because the boxes are more cramped together. However, there are several other 

factors which determine the percentage of boxes affected. One such factor is the number of boxes used in 

the layout pattern. To take an extreme example, we can have a case where only 5 very large boxes have 

been selected by the CLA to achieve 95% space utilization; in contrast, in another layout, the CLA 

identifies 500 small boxes and achieves 87% space utilization. Since every box, when its freshness index 

reaches zero, will begin to contaminate the surrounding boxes, the spread of mould in the latter layout 

(with the lower space utilization) will arguably be more amplified due to the fact that in this arrangement 

there are many boxes which are in contact with each other. Another factor can be the initial freshness 

index associated with boxes that are selected by the CLA algorithm. As has been mentioned, the freshness 

index is a randomly generated value between 5 and 60 and  all boxes of the same type have the same 

freshness index. Thus, the propagation of mould also depends directly on the freshness attribute of the 

specific boxes being selected by the CLA algorithm – and this may change from one layout plan to the 

other.  

Our multi-methodology approach has the potential to help the stakeholder to take an informed decision on 

the loading plan to use, as it provides both the container utilisation percentage (from stage one)  and the 

corresponding simulation data (from stage two) from multiple iterations. Let us consider as a first 

example the BTM70 experiments. The stakeholder, having seen the results of three iterations, is likely to 

choose the loading plan that offers 86.70% utilisation efficiency (BTM70max) in preference to the other 

two – which provide lower space utilisation in conjunction with a higher proportion of spoilt boxes. It 

should be noted that the results of the experiments show no evidence of either positive or negative 

correlation between container utilisation percentage and the percentage of boxes affected with mould. For 

example, in the case of BTM40, the percentage of mould affected boxes would be roughly the same for 

the BTM40min (68.42%), BTM40mid (68.07%) and BTM40max (69.23%) loading plans.  

Figure 6 (right) presents a histogram of freshness values for each of the three iterations pertaining to the 

four BTM experiments. It shows that for all the three loading plans that were simulated for BTM20, the 

items that had not already developed mould, would remain mould free for at least 6 days (note the 

freshness/bin range for BTM20min starts at bin range 12.01-15.00; BTM20mid and BTM20max start at 

bin range 6.01-9.00). It further shows that if the BTM20min loading plan is selected, then approximately 

95.65% of items will remain relatively fresh (bin/freshness range: 15.00 to 30.00) by the end of the 30-

day simulation (logical time) – and this value is at least 18% higher when compared to the corresponding 

freshness values of the alternate loading plans (BTM20mid=77.78%; BTM20max=70.83%). Here, 

therefore, the decision on which loading plan to choose involves a trade-off between loading efficiency 

and the risk of cargo deterioration and the  stakeholder is likely to make it on the basis of practical 

business considerations.  

6 CONCLUSION 

In this paper we bring together two Operations Research techniques - Cutting and Packing Optimisation 

(CPO) and Simulation - and apply them in the context of container loading. More specifically, we focus 

on a particular category of CPO algorithms - Container Loading Algorithms (CLAs) - and a specific 

simulation technique -  Agent-Based Simulation (ABS) - and propose a multi-methodology approach in 

relation to the loading of cargo into containers. The application of our approach will enable the 

stakeholders to analyse the trade-offs between loading efficiency and other cargo-related considerations. 

A feasibility study is conducted in order to test the approach. It investigates the trade-off between 

container utilisation and the cross-contamination among boxes containing perishable goods. We consider 
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this example as a valid test case since, in the case of perishable goods, a supplier usually cares more about 

the decay of perishable goods than the average loading ratio and is willing to use more vehicles to prevent 

deterioration (Chen et al., 2009). 

The multi-methodology approach is realised through the use of the benchmark 3/B/O/R scenario 

generation algorithms (Bischoff, 2006) and the development of an ABS model in AnyLogic (XJ 

Technologies, 2011). The results of the experiments demonstrate the trade-offs involved between 

container utilisation and the number of mould affected boxes. The results also show that there is no 

correlation between the aforementioned variables. The primary contribution of this research is the 

statement of the multi-methodology agent-based approach to container loading (section 3) and the 

feasibility study on cargo efficiency and cross-contamination (sections 4.2 and 6). This work has also 

given pointers for future research into simulation of container stability and has presented an elementary 

proof-of-concept that uses an open-source physics engine to model cargo stability of individual items of 

cargo (section 4.1). 
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APPENDIX 1:  

Pseudo Code for establishing inter-agent relationship between agents (note the code has been simplified) 

 
//Read input file (Figure 4) generated by the CLA 
 
//Create container space using length, breath and height dimensions 
Read line 1 from input file 
 
//Read the number of agents to be created  
totAgents = [value indicated in line 2 of the input file]; 
numAgent = 0; 
 
//Initialise boxes based on CLA-generated values (line 3 onwards); boxes are added to agent collection 
//Note: In the code below “Boxes” is a physical manifestation of the agent – It has all the agent 
characteristics and also dimensions. The dimensions are required for determining proximity between agents 
and also for 3-D visualisation. 
Do 
{ 
  numAgent++; 
  Boxes box = me.add_boxObj(xPos, yPos, zPos, length, breadth, height, 
  random.nextInt(256), random.nextInt(256), random.nextInt(256), getFreshness, 
  isItemPerishable); 
} 
 
While (totAgents> numAgent) 
 
//Establish inter-agent relationship by looping through the agent collection 
 
//loop through each agent 
for(Agent agent : me.environment.getAgentCollection()) 
{ 
 //picking up one agent for comparing with all the other agents in the collection 
 Boxes tempAgent = (Boxes)agent; 
 
//loop through all agents in the collection 
for(Agent agentTest : me.environment.getAgentCollection()) 

   { 
     //picking up one agent from the collection for comparison with tempAgent 
     Boxes tempAgentTest = (Boxes)agentTest; 
     
     //if tempAgent is not the same as tempAgentTest 
     if(tempAgent != tempAgentTest) 
     {    
        //check if tempAgentTest & tempAgent co-ordinates match at any point in x axis  

if((tempAgent.xPos+tempAgent.length==tempAgentTest.xPos) ||     
 (tempAgent.xPos==tempAgentTest.xPos+tempAgentTest.length)) 
 {  
   //check if co-ordinates match at any point in y axis  

if(((tempAgent.yPos >= tempAgentTest.yPos) &&  
(tempAgent.yPos <= tempAgentTest.yPos+tempAgentTest.breadth)) ||  
((tempAgent.yPos+tempAgent.breadth>= tempAgentTest.yPos) && (tempAgent.yPos+tempAgent.breadth 
<= tempAgentTest.yPos+tempAgentTest.breadth)) || ((tempAgentTest.yPos>= tempAgent.yPos) &&  
(tempAgentTest.yPos <= tempAgent.yPos+tempAgent.breadth))) 

    { 
       //check if co-ordinates match at any point in z axis    
              if(((tempAgent.zPos >= tempAgentTest.zPos) &&  
              (tempAgent.zPos <= tempAgentTest.zPos+tempAgentTest.height)) ||  
              ((tempAgent.zPos+tempAgent.height>= tempAgentTest.zPos) &&  
              (tempAgent.zPos+tempAgent.height <= tempAgentTest.zPos+tempAgentTest.height)) || 
              ((tempAgentTest.zPos>= tempAgent.zPos) &&  
              (tempAgentTest.zPos <= tempAgent.zPos+tempAgent.height))) 
       {   
   //THE TWO AGENTS ARE PHYSICALLY PROXIMATE (INTER-AGENT RELATIONSHIP HAS BEEN   
                 ESTABLISHED      
          tempAgent.connectTo(tempAgentTest); 
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          //do not execute the remaining statements in the loop 
          continue; 
          
       } //end if statement - z axis       
      } //end if statement – y axis 
        } //end if statement – x axis 
 
 
        //similarly, check if co-ordinates match at any point in z axis  
        If () 
        { 
          //check if co-ordinates match at any point in x axis  
          If () 
          { 
             //check if co-ordinates match at any point in y axis  
             If () 
             { 
                //THE TWO AGENTS ARE PHYSICALLY PROXIMATE (INTER-AGENT RELATIONSHIP HAS BEEN   
                ESTABLISHED       
    tempAgent.connectTo(tempAgentTest); 
 
    //do not continue with the rest of the statements 
    continue;  
         
        } //end if statement - y axis       
     } //end if statement – x axis 
        } //end if statement – z axis 
 
 
        //similarly, check if co-ordinates match at any point in y axis  
        If () 
        { 
           //check if co-ordinates match at any point in x axis  
           If () 
           {            
               //check if co-ordinates match at any point in z axis  
               If () 
               { 
                  //THE TWO AGENTS ARE PHYSICALLY PROXIMATE (INTER-AGENT RELATIONSHIP HAS BEEN   
                  ESTABLISHED   
        tempAgent.connectTo(tempAgentTest); 
 
        //do not continue with the rest of the statements 
        continue; 
           
        } //end if statement - z axis       
       } //end if statement – x axis 
         } //end if statement – y axis 
     } // end if statement – comparing tempAgent with tempAgentTest 
  } // end of inner for loop 
} // end of outer for loop 

Page 17 of 30 International Transactions in Operational Research



 

 

APPENDIX 2: 

Agent State Chart and Pseudo Code for inter-agent message transfer  

 

State Chart 

The transition of the agents is modelled by the state chart below (Figure 7). At the start of the simulation 

the state of every agent is “StateFresh”. Following the modelling assumption stated in the paper (in the 

model we have assumed that when the freshness level of a particular box reaches zero, it is mould 

affected), when the freshness value of an agent becomes zero, the agent state changes from “StateFresh” 

to “StateMould” and it sends messages (function: sendMessagetoAgents) to the agents with which it is in 

physical contact to indicate its change of state. The message is a signal to the other agents (each of whom 

has its own copy of freshness index that decreases over time) that they have now been contaminated. 

Upon receiving this message, each agent immediately decreases its existing value of freshness index by 1 

(if freshness index > 0). This is in addition to the drop of 1 unit of freshness that is applied to every agent 

at the end of each simulated day. 

 
Figure 7: State chart 

 

Pseudo Code 

 
//Note: In the code below “Boxes” is a physical manifestation of the agent – It has all the agent 
characteristics and also dimensions. The dimensions are required for determining proximity between agents 
and also for 3-D visualisation. 
//Note: At the start of the simulation all the agents are in StateFresh but they have different 
FreshnessIndex. 

 
Do while (current_simulation_time < simulation_end_time) 
{ 
 //loop through each agent 
 for(Agent agent : me.environment.getAgentCollection()) 
 { 
  //picking up one agent 
  Boxes tempAgent = (Boxes)agent; 

 
 //check the agent state 
 //If agent is presently in StateFresh then decrease freshness by one; If agent is in   
      StateMould then do take any action and select another agent. 
   if (tempAgent.state == StateFresh) 
   { 
    //reduce the value of the variable freshness by one (this is achieve by the function  
  freshnessChange() – refer to the State Chart above). 
        tempAgent.freshnessChange(); 
 
  //check to see if the agent is now in StateMould  (since freshness has now reduced by 1) 
        if(tempAgent.freshness = 0) 
  { 
   //The agent is mould affected.  
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            //Change the current state of the agent to StateMould 
   tempAgent.state = StateMould; 
 
   //Change the color of the mould-affected box to green (this is achieved by calling the  
   function changeToMouldColor() – refer to the State Chart above). 
   tempAgent.changeToMouldColor(); 
 
            //Send message to all the agents that are connected to this particular agent and inform  
   them of the change in agent state (this is achieved by calling the function  
   sendMessageToAgents() – refer to the State Chart above). 
            tempAgent.sendMessageToAgents(); 
   
         } // end of if              
   }   
   else 
   { 

   //Agent is in StateMould – no action required. Select the next agent in the Agent collection. 
      continue; 

   } 
  } // end of loop related to agent collection 
 
//increment the current simulation time by 1 
current_simulation_time= current_simulation_time+1; 

 
} // end of Do While 
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Figure 1: Execution of Agents in an ABS Environment  
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Figure 2: Flowchart of the Multi-Methodology Approach for Container Loading (left)  
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Figure 2: Load plan generated by the CLAs (right)  
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Figure 3: The stack of boxes while at rest (left)  
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Figure 3: subsequent to external stimulus being applied (right) – visualisations generated by extending 

Jinngine example programs (Silcowitz-Hansen, 2010)  
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Figure 4: AnyLogic-defined arrangement of agents (from left to right): Random layout, Ring layout, 
Arranged layout, Spring Mass layout, Random layout (discrete space), Arranged layout (discrete space) (XJ 

Technologies, 2011).  
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Figure 5: Detection of proximity among agents (left)  
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Figure 5; Mould affected boxes during simulation (right)  
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Figure 6: % mould affected boxes, grouped by BTM (left);  
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Figure 6: Histogram showing freshness % of boxes not affected by mould, grouped by BTM (right)  
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Figure 7: State chart  

 

 

Page 30 of 30International Transactions in Operational Research


