
Dynamics of filaments of scroll waves

Vadim N. Biktashev and Irina V. Biktasheva

Submitted 2014/01/15 as a chapter for
“Engineering of Chemical Complexity II”

Contents

1 A brief history and motivation 1

2 Wave-particle duality of spiral waves 3

3 Perturbative dynamics of scrolls, and tension of filaments 7

4 Scroll wave turbulence 10

5 Rigidity of scroll filaments: pinning and buckling 13

6 Filament statics, geodesic principle and Snell’s law 14

1 A brief history and motivation

One of notable events in the history of creation of the new science of “cybernet-
ics” was Norbert Wiener’s visit to Arturo Rosenblueth in Mexico, which resulted
in their joint paper [Wiener and Rosenblueth, 1946], describing the first math-
ematical model of propagation of excitation pulses through a two-dimensional
(2D) continuum, such as heart muscle. An important assertion of that theory
was the possibility of the pulses to circulate around inexcitable obstacles, with
important implications for understanding certain cardiac arrhythmias. Bal-
akhovskii [1965] realized that that circulation of waves does not in fact require
an obstacle, and the excitation wave may circulate “around itself”, i.e. turn-
ing around its own refractory tail. Subsequently, such regimes of propagation
became known as “reverberators”, “rotors”, “autowave vortices” and, mostly,
“spiral waves” (see Figure 1(a)). With the state of cardiac electrophysiology
at the time, this concept remained a purely theoretical abstraction until the
periodical chemical reaction discovered by Belousov [1959] came to light and
was further developed and investigated by Zhabotinsky [1964a,b] (Belousov-
Zhabotinsky reaction, or just BZ) to fruition. The reaction was spontaneously
oscillating, however in a non-stirred reactor, the fronts of the reaction oxidation
stage were propagating similarly to electric pulses in cardiac muscle, and the
spiral waves made by such propagation were observed [Zhabotinsky and Zaikin,
1971]. The analogy with cardiac excitability was made even more succinct
by Winfree [1972] who modified BZ recipe to make the reaction dynamics ex-
citable rather than oscillatory, and who was the first to present the BZ reaction
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(a) (b)

Figure 1: (a) Snapshot of spiral wave in the Barkley model (8) (u: red colour
component, v: blue colour component), drifting in a stepwise inhomogeneity of
paramer c (green colour component), at base parameter values. The thin white
line is the trace of the tip of the spiral, defined by u(x, y, t) = u∗, v(x, y, t) = v∗,
in the course of a few preceding rotations. Yellow circles are positions of the
centres calculated as period-averaged positions of the tip [Biktasheva et al.,
2010]. (b) Snapshot of scroll wave with buckled filament with negative tension
in a thin layer of medium described by Barkley model (8) [Dierckx et al., 2012].
Shown is the surface u(x, y, z, t) = u∗, coloured depending on v; the green line
is the instant filament defined as the locus of u(x, y, z, t) = u∗, v(x, y, z, t) = v∗.
The grayscale line on the top face is the trace of the upper end of the filament.
Parameter values: in (a), a = 0.7, b = 0.01, c = 0.025, δc = 0.001,Du = 1,
Dv = 0, u∗ = 0.5, v∗ = 0.34, box size 24×24; in (b), a = 1.1, b = 0.19, c = 0.02,
Du = 1, Dv = 0.1, u∗ = 0.5, v∗ = 0.36, box size 20× 20× 6.9.

and spiral waves to the Western audience. Being a physical model of cardiac
tissue was arguably the most important use for the BZ reaction, motivating its
study for all these years.

Since then, spiral waves have been observed in a wide variety of biological,
chemical and physical systems, both artificial and in nature. We mention here
just one example, the waves of cAMP signalling during the aggregation stage of
social amoebae Dictyostelium discoideum [Alcantara and Monk, 1974, Tyson
and Murray, 1989]. There the spiral waves serve as organising centers, as they
provide signals to the individual amoebae where to crawl, to gather and merge
into a multi-cellular organism and thus continue their peculiar lifecycle.

Unlike the Wiener and Rosenblueth’s 2D theoretical abstraction, real ex-
citable and oscillatory media, including BZ reaction and heart muscle, are
three-dimensional (3D). Explicit experimental data on 3D extensions of spi-
ral waves were first presented by Winfree [1973] in his variant of BZ reaction.
He also coined the term “scroll waves” (see Figure 1(b)). While spiral waves ro-
tate around their “cores”, which can be considered point-like geometric objects,
scroll waves rotate around “filaments”, line-like geometric objects. Winfree also
called them “organizing centres” [Winfree and Strogatz, 1983], but in a sense
different from what it means for the social amoebae, as there are no living bod-
ies to receive the signals in the BZ reaction. Rather, the filaments organize the
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waves in the sense that the wavefield in the whole volume follows what happens
around the filament, and the rest of the wavefield can be more or less predicted
using Huygens principle, as shown by Wiener and Rosenblueth.

As spiral and scroll waves do not require any obstacles to rotate about, they
can be located anywhere within the reactive medium. An inevitable, even if not
immediately evident, consequence of that is that their position can change in
time, i.e. they can drift, as illustrated by Figure 1. Experimental and numerical
studies of the drift have revealed that in many cases it is convenient to consider
spiral waves as “particles”, interacting with each other or reacting to external
perturbations as localized, point-wise objects, the location being at the core
around which the spiral rotates. The scroll waves in 3D have more degrees of
freedom: their filaments can not only move in space, but also change shape. The
phase of rotation may vary along the filament, the feature known as “twist”
of the scroll wave. Twist of a scroll wave and curvature of its filament are
specifically three-dimensional factors of its dynamics.

It also turned out that not only it is convenient to describe motion of spirals
and scrolls in terms of their cores and filaments, but it is possible to predict their
motion in terms of cores and filaments coordinates only (particularly considering
the phase as one of the coordinates). In this review, we aim to briefly discuss why
this approach works and what sort of results it can produce. The literature on
scroll dynamics is vast and the available space enforce us to restrict to selected
examples in the narrow topic defined by the title of this chapter. We shall
neglect plenty of other interesting results, including most of twist-related effects
and everything related to competition and meander.

2 Wave-particle duality of spiral waves

The possibility to replace consideration of spiral waves by “particles”, inter-
acting with each other or reacting to external perturbations, is in a seeming
contradiction with the wave-nature of these objects. The spiral waves “look”
like non-localized objects, filling up all available space, but “behave” like lo-
calized objects. The mathematical nature of this paradox was brought to the
forefront by Biktasheva and Biktashev [2003] in terms of perturbative dynamics
of spiral waves, i.e. drift of spirals in response to symmetry-breaking perturba-
tions, such as spatial gradient of medium parameters or their resonant periodic
modulation in time. Following [Biktashev and Holden, 1995], consider a reaction
diffusion system

∂tu = f(u) + D∇2u + εh, (1)

where u = u(~r, t), f ,h ∈ R`, D ∈ R`×`, ` ≥ 2, ~r ∈ R2, with perturbation
εh = εh(~r, t,u,∇u, . . . ), ||εh|| � 1, and assume existence, at ε = 0, of stationary
rotating spiral solutions

u(~r, t) = U(ρ(~r − ~R), θ(~r − ~R) + ωt− Φ) (2)

where ρ(), θ() are polar coordinates centered at ~R, constant ω is the angular
velocity of spiral wave rotation, which up to the sign is uniquely defined by
medium properties (f() and D)1, and arbitrary constants ~R = (X,Y ) and Φ
are the location of the core of the spiral and its fiducial (initial) phase at t = 0.

1See, however, end of Section 4 below.
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Figure 2: Density plots of the components of the spiral wave solution and its
response functions in the Oregonator model (5) for ε = 0.06, f = 1.75, q = 0.002,
Du = 1, Dv = 0.6, the radius of the disk is 15 dimensionless units. In each plot,
white corresponds to a value A and black corresponds to −A where A is chosen
individually for each plot, e.g. for the activator component of U, A = 1.2. The
grey periphery of the plots in columns 2–4 corresponds to 0. The central areas
are also shown magnified in the small corner panels.

Then the first order perturbation theory in ε gives solutions close to (2) with
R = X + iY and Φ slowly varying according to motion equations

Ṙ = εH1(~R,Φ, t), Φ̇ = εH0(~R,Φ, t). (3)

The velocities of spatial drift, H1, and temporal/phase drift, H0, are linear
functionals of the perturbation,

Hn =

∮ t+π/ω

t−π/ω

ω dt′

2π

∫∫
R2

d2~r ein(Φ−ωt′) 〈Wn(ρ, θ + ωt′ − Φ)),h〉 , (4)

where h is evaluated at the unperturbed solution (2).
The kernels W0,1 of these functionals, which we call response functions

(RFs), are critical eigenfunctions of the adjoint linearized problem. These eigen-
functions are dual to the eigenfunctions of the linearized problem produced by
the generators of the Euclidean symmetry group, sometimes called Goldstone
Modes (GMs). The “wave-particle’ duality then reduces to the difference be-
tween these eigenfunctions. The GMs, constructed from spatial derivatives of
the spiral wave solution, are non-localized. The RFs, however, are essentially
localized, i.e. exponentially decay far from the core of the spiral. This is of
course only possible because the linearized problem is not self-adjoint.

The spiral waves have localized response functions in both excitable and
oscillatory media. Figure 2 shows response functions in the two-component
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Figure 3: Density plots of the components of the spiral wave solution and its
response functions in the complex Ginzburg-Landau equation (6), at various
parameter values. In the legend: p = 2

(
αβ − 1 + k2

(
3 + 2β2 − αβ

))
/(1 + β2),

q = −4k
(
(α+ β)(1− k2)

)
(1 +β2), D = (p/3)3 + (q/2)2, and k = k(α, β) is the

asymptotic wavenumber of the spiral [Biktasheva and Biktashev, 2001].
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Oregonator [Tyson and Fife, 1980] model of the BZ reaction,

∂tu =
1

ε

(
u(1− u)− fvu− q

u+ q

)
+Du∇2u,

∂tv = u− v +Dv∇2b, (5)

for a choice of parameters ε, f, q that gives excitable dynamics. Figure 3 shows
response functions in the complex Ginzburg-Landau equation (CGLE) [Ku-
ramoto and Tsuzuki, 1975],

∂tw = w − (1− iα)w|w|2 + (1 + iβ)∇2w, w = u+ iv ∈ C, (6)

which is the “archetypical” oscillatory reaction-diffusion model, in the sense
that it is a normal form of a reaction-diffusion system near a supercritical Hopf
bifurcation in its reaction part. In CGLE, the response functions are local-
ized for all sets of parameters where stable spiral wave solutions exist, with
qualitative changes across critical lines in the parameter space [Biktasheva and
Biktashev, 2001]. Notice the non-monotonous behaviour (“halo”) in RFs close
to the Eckhaus instability line (Figure 3, bottom right inset). This can have
phenomenological implication for the dynamics of spirals and scrolls, discussed
later.

Apparently, the defining condition for the RFs’ localization is the direction
of the group velocity: a spiral wave will have localized RFs and behave as a
localized object if and only if it is a source of waves, so that far from the core,
the group velocity is directed outwards [Biktashev et al., 1994, Sandstede and
Scheel, 2004].

Figure 4 reproduces two selected results illustrating how well the pertur-
bation theory works, for two classical simplified excitable media models, the
FitzHugh-Nagumo model [Winfree, 1991a]

∂tu =
1

α

(
u− u3

3
− v
)

+Du∇2u,

∂tv = α (u− βv + γ) +Dv∇2v, (7)

and Barkley model [Barkley, 1991]

∂tu =
1

c
u(1− u)

(
u− v − b

a

)
+Du∇2u,

∂tv = u− v +Dv∇2v. (8)

The trajectories in Figure 4(b) correspond to the case of the response function
W1 with non-monotonic behaviour (the “halos” in Figure 3, bottom right, are
an extreme case of such non-monotonic RFs). Here, small inhomogeneity at-
tracts a spiral wave at larger distances and repels it at smaller distances. This
alternating attraction/repulsion causes the spiral wave to “orbit” around at a
certain stable distance, where the radial component of the “interaction force”
vanishes.

There are important examples of spirals dynamics due to factors that are
not small perturbations in the sense of (1), even though their action on the
spirals is small. These include interaction of spiral waves with boundaries, and
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Figure 4: Drift of spiral waves: asymptotic theory vs direct numerical simula-
tions. (a) The velocity of the drift caused by the gradient of parameter a in
the Barkley model (8), symbols for DNS and lines for the asymptotics, for base
values of parameters a = 0.7, b = 0.01, c = 0.025, Du = 1, Dv = 0. (b) The
trajectories of the drift caused by a disk-shaped inhomogeneity in parameter γ
in the FitzHugh-Nagumo model (7), at base values α = 0.3, β = 0.68, γ = 0.5,
Du = 1, Dv = 0. The small arrows indicate drift velocities as predicted by
the asymptotic theory, and the filled and open circles show the instantaneous
centers of rotation of the spiral wave, measured with the interval of one period
of rotation. See [Biktashev et al., 2010, Biktasheva et al., 2010] for detail.

their interaction with each other (which may be considered as interaction of
each spiral with the boundary between their “domains of influence”). These
interactions are weak when the distance from the spiral core to the boundary
or between the spiral cores is large. The mathematical aspects of particle-like
behaviour in such cases are less clear. In the few examples where analytical
answers are known, this seems to be associated with the exponential growth of
solutions of the non-homogeneous linearized problem with the free term given
by the spatial gradient of the spiral wave solution, see e.g. [Biktashev, 1989].
This is also stipulated by the outward direction of the group velocity. Therefore
both localization properties seem to be equivalent. That is, if a spiral wave
does not feel a weak inhomogeneity when far from it, it will not feel a non-flux
boundary at the same distance. Although this equivalence is quite plausible
physically, mathematically it is still an open question.

3 Perturbative dynamics of scrolls, and tension
of filaments

The perturbative dynamics of spiral waves can be extended to scroll waves. In
3D, there are interesting phenomena even in absence of any symmetry breaking
perturbations. Following Keener [1988], consider a generic reaction-diffusion
system (1) in ~r ∈ R3 at h ≡ 0, and assume, as before, existence of stationarily
rotating spiral solutions (2) in R2. A simple extension of spiral wave solution
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to the third spatial dimension is called a straight scroll wave. More generically,
a scroll wave solution in R3 may be viewed as a solution of the form

u(~R+ ~Nρ cos θ + ~Bρ sin θ, t) = U(ρ, θ + ωt− Φ) +O(ε), (9)

where ε is now a formal small parameter measuring deformation of a scroll
wave compared to the straight scroll, ~R = ~R(σ, t) is the parametric equation
of filament position at time t, Φ = Φ(σ, t) is the rotational phase distribution,
~N = ~N(σ, t) and ~B = ~B(σ, t) are the unit principal normal and binormal vectors

to the filament at point ~R(σ, t). Vectors ~N and ~B together with tangent vector
~T make a Frenet-Serret triple. In terms of the arclength differentiation operator
Dsu(σ) = |∂σ ~R|−1∂σu(σ), the tangent vector is ~T = Ds ~R, the curvature κ and

the normal unit vector ~N are defined by κ ~N = Ds ~T , and the binormal vector
~B = ~T × ~N completes the triad. The resulting filament’s equation of motion,
at small filament curvature, κ = O(ε), and small twist, DsΦ = O(ε), can be
written as [Biktashev et al., 1994]

∂t ~R = γ1D2
s
~R+ γ2

[
Ds ~R×D2

s
~R
]

+O(ε2), (10)

and it is decoupled from the evolution equation for the phase Φ(σ, t). Equation
(10) is written in the assumption that parameter σ of the filament is chosen
in such a way that a point with a fixed σ moves orthogonally to the filament
(hence no component along ~T ).

The Frenet-Serret description is easy to understand but it has a significant
disadvantage: it becomes degenerate at zero filament curvature, κ = 0. An alter-
native description, free from this disadvantage, is in terms of Fermi-Walker co-
ordinates, corresponding to a Levi-Civita (torsion-free metric) connection along
the filament (hereafter called Fermi coordinates for brevity). This changes the
scroll’s phase definition but does not affect (10) as it is decoupled.

The coefficients γ1, γ2 in (10) are calculated using the response functions
W1 of the corresponding 2D spiral waves as

γ1 + iγ2 = −1

2

∞∫
0

∮
[W1(ρ, θ)]

+
De−iθ

(
∂ρ −

i

ρ
∂θ

)
U(ρ, θ) dθ ρdρ. (11)

Now let us consider the total length of the filament, defined at each t:

S(t) =

∫
ds =

∫ ∣∣∣∂σ ~R∣∣∣ dσ. (12)

Differentiation of (12), with account of (10) and using integration by parts, re-
veals that, neglecting boundary effects (absent for closed filaments and vanishing
for smooth impermeable boundaries), the rate of change of the total length is

dS

dt
= −γ1

∫
κ2 ds+O(ε2). (13)

This implies that, within the applicability of the perturbation theory, unless
the filament is straight, the total length of the filament decreases if γ1 > 0
and increases if γ1 < 0. Hence the coefficient γ1 was called “filament tension”
in [Biktashev et al., 1994].
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Figure 5: Dynamics of a quarter of a scroll ring in FitzHugh-Nagumo model (7),
at α = 0.30, β = 0.71, γ = 0.5, Du = 1, Dv = 0 (positive filament tension)
in a box 33 × 33 × 40 with periodic boundary conditions in the z direction.
The right panel shows evolution of the square of the radius of the instant scroll
filament, defined as the locus u = 0. Equation (10) predicts that the square
of the period-average of the radius depends linearly on t, with the slope −2γ1.
The parameters for this example are taken from [Foulkes et al., 2010].

Filament tension can be found via the asymptotic rate of shrinkage or ex-
pansion of large scroll rings with exact axial symmetry (see Figure 5). This is
only formally valid for scroll rings of sufficiently large radii in the unbounded
space. Depending on the model, shrinkage of a scroll ring with positive filament
tension may lead to its collapse, or may stop at some finite radius, while the ring
continues to drift along its symmetry axis [Brazhnik et al., 1987, Skaggs et al.,
1988], see Figure 5. Possible theoretical explanations of this may involve higher-
order corrections to (10) and/or interaction of different pieces of the scroll ring
with each other, in the same way as 2D spirals interact; which if either of these
is the dominant reason in any particular case is, as far as we are aware, currently
an open question. Apart from simple scroll rings, there are more complicated
structures with twisted, linked and/or knotted filaments that can be persistent
in some models, see [Winfree, 2001, pp.483–490] for the long story.

Filament tension depends on parameters of the medium, typically becoming
negative in media with lower exitability, where spiral waves have larger cores
[Panfilov and Rudenko, 1987]. This can be substantiated by the “kinematic”
theory of excitation waves [Brazhnik et al., 1987]. However, there are exceptions
to the rule: e.g. Alonso and Panfilov [2008] found an example where negative
filament tension is observed at high excitability.

A simple but fundamental result is that when diffusivities of all the reagents
are equal, (D)ij = Dδij , then γ2 = 0 and γ1 = D > 0 [Panfilov et al., 1986].
A less trivial result is about filament tension in the CGLE (6), where it has
been shown that γ2 = 0, γ1 = 1 + β2 > 0, see e.g. [Aranson and Kramer,
2002] for discussion and references. So in both these cases the filament tension
is guaranteed to be positive. We do not know of any generic results about
negative filament tension.

A higher-order asymptotic equation for filament motion was obtained by
Dierckx and Verschelde [2013]. Unlike the leading order (10), it is coupled to
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t = 75 t = 150 t = 300

Figure 6: Negative filament tension instability causes scroll wave turbulence.
Barkley model (8) with parameters a = 1.1, b = 0.19, c = 0.02, Du = 1,
Dv = 0, box size 40× 40× 50, instant filaments (green) defined as u = v = 0.5.
Wavefronts are cut out by clipping planes halfway through the volume, to reveal
the filaments [Dierckx et al., 2012].

the evolution of the phase:

∂tφ = a0w
2 + b0κ

2 + d0Dsw + h.o.t.,

∂t ~R = (γ1 + a1w
2 + b1κ

2 + d1Dsw)D2
s
~R

+(γ2 + a2w
2 + b2κ

2 + d2Dsw)D ~Rs ×D2
s
~R

+c1wD3
s
~R+ c2wDs ~R×D3

s
~R

−e1D4
s
~R− e2Ds ~R×D4

s
~R+ h.o.t., (14)

where φ is the scroll phase measured in the Fermi frame, and w is the correspond-
ing twist, w = Dsφ = DsΦ−τ , where τ is the filament torsion, τ = ~B ·Ds ~N . The
vector-function ~R(s, t) in (14) is the “virtual filament” which has to be defined
more precisely than (9), and the coefficients are defined as integrals involv-
ing spiral wave response functions, similar to but more complicated than (11);
see [Dierckx and Verschelde, 2013] for detail.

4 Scroll wave turbulence

A negative filament tension implies that the straight scroll of a sufficient lentgh
should be unstable. It was recognized rather early, that unless restabilized
by some mechanism beyond (10), such instability can lead to complex spatio-
temporal behaviour, possibly chaotic [Brazhnik et al., 1987, Biktashev et al.,
1994]. A particular interest for this complicated behaviour was due to its pos-
sible relation to cardiac fibrillation, with which it would have a number of
phenomenological features in common [Biktashev et al., 1994, Winfree, 1994,
Biktashev, 1998]. The predicted “scroll wave turbulence” was confirmed by nu-
merical simulations, first in the FitzHugh-Nagumo model (7) [Biktashev, 1998],
and then in Barkley model (8) [Alonso et al., 2004], Oregonator model of the
BZ reaction (5) [Alonso et al., 2006], and Luo-Rudy model of heart ventricular
tissue [Alonso and Panfilov, 2007] to name a few; see [Alonso et al., 2013] for a
recent review.
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Based on the generic results mentioned above, chances to observe scroll wave
turbulence mediated by negative filament tension in a BZ reaction should be
higher when some of the reagents are immobilized, since scalar diffusivity matrix
implies positive filament tension; in the excitable rather than oscillatory regime,
since tension in the CGLE is always positive; and preferably in the “lower
excitability” case. The latter prediction concurs with Oregonator simulations
by Alonso et al. [2006].

Figure 7: Part of the parameter space in
the FitzHugh-Nagumo model (7), giv-
ing alternative spiral wave solutions, at
fixed γ = 0.5. The dashed line corre-
sponds to zero tension. From Foulkes
et al. [2010].

We mentioned earlier that the an-
gular velocity ω of the spiral rota-
tion is uniquely determined by the
properties of the medium. This is
not strictly true. Typically, there
is a discrete set of possible ω val-
ues, and in some cases there may
be more then one of them. Winfree
[1991b] identified a set of parameters
in the FitzHugh-Nagumo model (7),
which could, depending on initial con-
ditions, support two alternative spiral
wave solutions with different ω. Fig-
ure 7 shows a region in the param-
eter space with this property. Each
of the alternative spiral waves is sta-
ble against small perturbations, but
larger perturbations can convert one
sort of spiral to the other. Foulkes et al. [2010] investigated such conversions
and some implications for the dynamics of scroll waves in 3D. One nontrivial
effect observed there is shown in Figure 8.

In various models, the straight scrolls may become unstable through mecha-
nisms different from the negative tension in (10). Henry and Hakim [2002] found
that some parameter changes in Barkley model (8) can cause finite-wavelength
instability of a scroll, while the filament tension remains positive. A different
type of finite-wavelength instability at positive filament tension was found in
CGLE by Aranson and Bishop [1997]. They interpreted it in terms of “self-
acceleration” of spiral waves, at parameter values where the dynamics of spiral
waves in 2D is not well described by the perturbative dynamics (3) and further
corrections are required. Interestingly, these two finite-wavelength instabili-
ties have different outcomes: in CGLE, this leads to turbulent-like behaviour
[Aranson and Bishop, 1997, Reid et al., 2011] visually similar to that shown
in Figure 6, whereas in Barkley model, it leads to re-stabilized “wrinkled” or
“zig-zag” shape of filaments, as shown in Figure 9 [Henry and Hakim, 2002,
Dierckx et al., 2012]. Clearly, a mere linearized theory can not describe the
outcome of any such instability and more detailed study would be required to
make any predictions there.

Finally, complex turbulent-like behaviour of scroll waves may be related to
spatial heterogeneity. Among these, we mention the cases described by Fenton
and Karma in models with spatially varying anisotropy, aimed at representing
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Figure 8: Evolution of a slow helical scroll with negative filament tension at
α = 0.3, β = 0.71, γ = 0.5, Du = 1, Dv = 0, box size 50 × 50 × 50. (a-f)
(Top) isosurfaces of the u-field; (middle) filament (u = v = 0) only. (g) ac-
tion potentials with blue crosses marking the times at which the snapshots were
taken. The helix initially expands and turbulizes correspondingly to its nega-
tive tension, but then converts to its positive-tension alloform and contracts.
From Foulkes et al. [2010].

t = 150 t = 300 t = 600

Figure 9: Short-wave filament instability causes restabilized “wrinkled” fila-
ment. Barkley model with parameters a = 0.66, b = 0.01, c = 0.025, Du = 1,
Dv = 0, box size 40× 40× 50, instant filaments (green) defined as u = v = 0.5.
Wavefronts are cut out by clipping planes [Dierckx et al., 2012].
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characteristic features of cardiac ventricular muscles,

∂tu = f(u) +

3∑
i,j=1

∂i
(
Di,j(~r)∂j

)
Pu, (15)

where P ∈ R`×` is a constant matrix representing relative diffusivities of the
components [Fenton and Karma, 1998a,b]. Another often considered possibil-
ity is scroll turbulence due to purely 2D mechanisms which make spiral waves
unstable, e.g. [Panfilov and Holden, 1990] and which of course reveal themselves
in 3D as well [Clayton and Holden, 2003, Clayton et al., 2006, Clayton, 2008,
Reid et al., 2011].

5 Rigidity of scroll filaments: pinning and buck-
ling

The scroll wave turbulence mediated by negative filament tension is an essen-
tially 3D phenomenon: it happens when spiral waves in a 2D medium with
the same parameters are perfectly stable. So such turbulence is not observed
in quasi-two-dimensional domains, say in thin layers of reactive medium. A
gradual increase of the reactive layer thickness reveals that between the stable
quasi-two-dimensional behaviour and the three dimensional turbulence, there
are intermediate regimes, one of which is the “buckled filament” illustrated
in Figure 1(b) for the Barkley model. Similar regimes were observed in simula-
tions of Luo-Rudy cardiac model by Alonso and Panfilov [2007]. A qualitative
and quantitative explanation of such filament buckling proposed by Dierckx
et al. [2012] was based on a simplified version of the higher-order motion equa-
tions (14). In particular, it gives the expression for the critical layer thickness,
above which the buckling bifurcation happens, in the form L∗ = π|e1/γ1|1/2,
where e1 is the coefficient at the fourth arclength derivative in (14), and in this
sense it is analogous to the rigidity of an elastic beam. So, within this me-
chanical analogy, the stability threshold for a straight scroll is determined by
the interplay between filament tension γ1 (negative of the “mechanical stress”)
and the filament “rigidity” e1, which is similar to the Euler’s buckling instabil-
ity of a beam under a stress, hence the term “buckling” used to describe this
deformation of the scrolls.

Experimental evidence of scroll filament rigidity was demonstrated in BZ
reaction, with filaments pinned to inexcitable inclusions [Jiménez and Steinbock,
2012, Nakouzi et al., 2014], see Figure 10. In these experiments, the steady
shapes of the filaments were determined, as well as their relaxation dynamics.
The authors were able to describe the steady shapes using a variant of (14), with
added phenomenological description of the interaction of filaments with each
other. Fitting the theoretical curves to the experimentally found filament shapes
allowed quantitative experimental measurement of the filament rigidity [Nakouzi
et al., 2014].
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t = 1.5 t = 3 t = 20

Figure 10: Schematic of the experiments done by Jiménez and Steinbock [2012].
The upper half of a spherical wave is cut when it is passing through the beads
thus forming two almost semi-circular filaments. The filaments become pinned
to the beads and evolve to a stable configuration which depends on their tension,
rigidity and interaction force between them. Oregonator model (5) with param-
eters q = 0.002, f = 1.75, ε = 0.06, Du = Dv = 0.5, u∗ = 0.24, v∗ = 0.075, box
size 50× 50× 50. Wavefronts are cut out by clipping planes.

6 Filament statics, geodesic principle and Snell’s
law

For cardiac applications, anisotropy and inhomogeneity are very important. We
have already mentioned above the instability and scroll turbulence related to
inhomogeneous anistoropy. The “opposite” of scroll turbulence is the situation
when scroll dynamics converges to a stable equilibrium position. For positive
filament tension, in a spatially uniform, isotropic medium and when interaction
with boundaries or other filaments can be neglected, the answer is straightfor-
ward: a straight filament, stretching in any direction. Motivated by numerical
simulations of scroll waves in models with anisotropic diffusion such as (15), and
by experiments with re-entrant excitation waves in cardiac tissue, Wellner et al.
[2002] came up with a “geodesic hypothesis”: that for given positions of the
filament end points (say if the filament is anchored to inexcitable inclusions),
the steady scroll filament shape will be a geodesic in a metric related to the
diffusivity tensor, gij = (D−1)ij . For instance, in a cardiac muscle, the pre-
ferrable orientation of a scroll filament would be along the fibers, i.e. direction
of the maximal diffusivity of the transmembrane potential. As ten Tusscher
and Panfilov [2004] noted, the metric defining the steady-state geometries of
filaments, can be conveniently formulated in terms of excitation wave propa-
gation time: given its end points, the filament will follow the quickest path
connecting the end points. This hypothesis was confirmed by Verschelde et al.
[2007] who generalized the equation (10) for the anisotropic media, under the
assumption of det(Dij) = const. An empirical generalization of this geodesic
principle for non-uniform det(Dij), based on simulations using Barkley model,
was suggested by Wellner et al. [2010], in the form gij = det(Dij)(D−1)ij . An
interesting study has been performed by Zemlin et al. [2014], who investigated
in numerical simulations the analogue of “Snell’s law”for a filament crossing a
boundary between media with different diffusivities, following from the geodesic
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principle, and the limits of its applicability.
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