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Analysis of anchor-size effects on pinned scroll waves and measurement of filament rigidity
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Inert, spherical heterogeneities can pin three-dimensional scroll waves in the excitable Belousov-Zhabotinsky
reaction. Three pinning sites cause initially circular rotation backbones to approach equilateral triangles. The
resulting stationary shapes show convex deviations that increase with decreasing anchor radii. This dependence
is interpreted as a transition between filament termination at large surfaces and true, local pinning of a continuous
curve. The shapes of the filament segments are described by a hyperbolic cosine function which is predicted
by kinematic theory that considers filament tension and rigidity. The latter value is measured as (1.0 ± 0.7) ×
10−6 cm4/s.
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I. INTRODUCTION

In systems that are far from equilibrium, macroscopic
patterns can emerge from processes at the molecular level.
These self-organized structures show fundamental univer-
salities across a wide range of disciplines and applications
such as type II superconductors [1], neural networks [2],
geochemical systems [3], and reaction-diffusion (RD) media
[4]. Frequently studied examples are two-dimensional spiral
waves in excitable and oscillatory RD systems. These wave
patterns rotate around a zero-dimensional phase singularity
[5]. Their tip describes system-specific trajectories [6] which,
in the simplest case, are circles with radii much smaller than
the wavelength of the spiral. These rotors exist in chemical
and biological systems such as catalytic surface reactions [7]
and giant honeybees defending their nests against hornets
[8]. Furthermore, spiral waves have been linked to medical
phenomena such as contractions of the uterus during childbirth
[9] and life-threatening cardiac arrhythmias [10]. Many of
these biological processes occur in sufficiently thick tissue to
require a spatially three-dimensional (3D) description. Under
such conditions, spirals extend to more complex rotors called
scroll waves [11].

A scroll wave can be viewed as a continuum of stacked spi-
rals rotating around a one-dimensional phase singularity [12].
This curve is called the filament and organizes the surrounding
wave field. The motion of the filament is controlled by its own
curvature, associated phase gradients (“twist”) of the vortex,
as well as other factors. Examples include self-shrinking,
translating, and chaotic motion. In simple cases the motion
of the filament can be described by the kinematic equation

ds
dt

= (αN̂ + βB̂)κ, (1)

where s is a position vector (pointing at the filament) with the
corresponding normal (N̂) and binormal (B̂) unit vectors, t is
time, and κ is the local filament curvature. The constants α and
β are system-specific parameters [13,14]. Several studies have
modeled specific cases using this equation, e.g., Refs. [15,16].

For a filament tension of α > 0, the filament contracts and
vanishes in finite time. This case is prevalent among most
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experimental systems [17,18]. Negative values of α cause
filament expansion and lead to scroll wave turbulence [19–21].
The translational drift coefficient β controls the motion in
the out-of-plane direction and equals zero in systems where
the activator and inhibitor species have the same diffusion
coefficient [13,22].

The pinning of vortex waves to unexcitable heterogeneities
[23–25] is of importance not only for fundamental reasons
but also due to its potential relevance to cardiac arrythmia.
For instance, tachycardia is caused by rotating waves of elec-
trical activity. Recent experimental results suggest that these
reentrant waves can become pinned to heterogeneities such as
remodeled myocardium [26]. Furthermore, tachycardia might
develop into a turbulent state (ventricular fibrillation), which is
a leading cause of sudden cardiac death [27]. The influence of
pinning sites on vortices in this turbulent state is unknown and
also our understanding of scroll wave pinning in nonturbulent
cases is poorly developed.

Recently developed experimental procedures allow the
deliberate pinning of 3D vortices in chemical RD media
and have opened up a wide range of opportunities for
controlled studies. Examples include investigations of scroll
waves pinned to inert obstacles such as tori, double tori,
spheres, and cylinders [25,28–30]. These experiments have
revealed that pinning qualitatively alters the evolution of the
filament and often results in lifetime enhancement or complete
stabilization of vortices that, in the absence of pinning sites,
would rapidly shrink and annihilate. For instance, Jiménez
and Steinbock [29] reported that filament loops pinned to
three and four spherical heterogeneities converge to nearly
polygonal filaments while two pinning sites either fail to
stabilize the vortex or create lens-shaped filaments that are
stabilized by short-range filament repulsion. In addition, it was
shown that filaments have the tendency to self-wrap around
thin heterogeneities [25], suggesting that stable, pinned scroll
waves should be a common feature in heterogeneous systems.

Filament pinning is governed by two basic rules. First, the
total topological charge over any (external or internal) closed
surface must equal zero [24,31]. This condition assigns an
individual topological charge to the end point of each filament.
For an n-armed vortex this charge has an absolute value of n

and a sign that reflects the sense of rotation. A simple example
is the circular filament of a one-armed scroll ring pinned to
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FIG. 1. (Color online) Schematics of a filament (dashed, red line)
pinned to two inert spheres (a). The smaller panels show the limiting
cases of a locally pinned, smooth filament (b) and a filament cut into
two independent segments (c).

spherical heterogeneities [see Fig. 1(a)]. The filament loop
touches each sphere twice and the corresponding charges are
+1 and −1 because (as viewed from the sphere’s interior)
the rotation sense of the local spirals is different. A similar
example is a straight filament spanning from one external wall
of a boxlike system to another. Second, a filament ending on a
no-flux boundary must be oriented in normal direction to the
surface [32]. This condition might be violated only in singular
events such as a collision of a filament with a wall but will
reestablish itself very quickly.

In this article, we utilize the Belousov-Zhabotinsky (BZ)
reaction as a convenient experimental model system for the
study of scroll wave pinning. Traveling waves in this system
are driven by the autocatalytic production and diffusion of
bromous acid. Our experiments reveal a seemingly small
effect that exposes an unexpected difference between filament
pinning to small objects and filament termination at large
objects. These two limiting cases are illustrated in Figs. 1(b)
and 1(c), respectively, and address the question in how far
the surrounding wave fields enforce a smooth, “kink-free”
transition of the filament line through the inert and imperme-
able heterogeneity. In addition, we show that the observed
effects cannot be explained in the framework of Eq. (1)
but require a higher-order term that we interpret as filament
rigidity [33]. Lastly we report a measurement of this interesting
quantity through the techniques described in this article.

II. EXPERIMENTAL METHODS

The BZ system consists of a bottom gel layer and a
top aqueous layer, each of thickness 0.48 cm. The reactant
concentrations are identical in the two layers: [NaBrO3] =
0.04 mol/L, [malonic acid] = 0.04 mol/L, [H2SO4] =
0.16 mol/L, and [Fe(phen)3SO4] = 0.5 mmol/L. At the
present gel composition (0.80% agar w/v), also all diffusion
coefficients are expected to be identical throughout the system.
For these reaction conditions, the filament tension is found to
be α = (1.4 ± 0.2) × 10−5 cm2/s [34], which implies that free
scroll rings collapse. Additionally, free filament motion in the
binormal direction is not observed and we can hence assume
that β ≈ 0.

(a) (b)

FIG. 2. (Color online) Top view of scroll rings in 1 cm thick
layers of BZ reagent. The superposed filaments (bright, cyan) are
pinned to three beads (white) of radius (a) 0.75 mm and (b) 1.5 mm.
The filaments are stationary and slightly more curved in (a) than in
(b). The center-to-center bead distance and image area are 7 mm and
(16.5 × 14) mm2, respectively. The images are obtained 120 min after
the start of the reaction and show some CO2 bubbles (dark spots).

After preparation of the BZ solutions, the pre-gel compo-
nent is poured into a Petri dish, and three spherical beads are
embedded halfway through the forming gel surface. These
spheres serve as the inert and impermeable heterogeneities
capable of anchoring the filaments of the scroll waves. The
aqueous layer is then poured on top and the tip of a silver
wire is transiently positioned at the center of the three-bead
triangle, thus instigating an expanding spherical wave. This
excitation wave is nucleated by the local formation of AgBr
which decreases the concentration of the inhibitory bromide
ion and prompts an oxidation wave. The system is then
manually swirled to homogenize the top liquid layer while
the half-spherical wave expands in the gel below. As the wave
approaches the bead heterogeneities, the swirling action is
stopped and the fluid is allowed to come to rest. A flat glass
plate is placed on top of the liquid plate to prevent the inflow
of atmospheric oxygen, the release of gaseous bromine, and
evaporation. Thereafter, the upper rim of the half sphere curls
inward and nucleates a scroll ring. Due to the nature of this
procedure, its filament is coplanar, in very close vicinity to the
gel-liquid interface, and pinned to the three beads.

The experimental system is monitored from above
using a CCD camera equipped with a blue dichroic filter.
Concentration waves can be observed for more than
6 h after which the depletion of reactants extinguishes the
patterns. The formation and growth of reaction-generated
CO2 bubbles does not affect our experiments for at least the
first 4 h of reaction. All experiments take place at a constant
temperature of 21.5 ◦C. Subsequent analyses are performed
using in-house MATLAB scripts.

III. RESULTS

Figure 2 shows still images from two experiments that
differ only in the radius of the employed beads and the
resulting wave patterns. Image contrast stems from the varying
ratio between the chemically reduced and oxidized form the
catalyst (ferroin/ferriin). Accordingly, bright and dark regions
can be interpreted as excited and excitable areas, respectively.
However, this situation is complicated by (unresolved) vertical
variations along the depth of the three-dimensional reaction
medium. Despite this limitation, the filament loop can be
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FIG. 3. (Color online) Relaxation dynamics of the pinned fila-
ment into the stationary state. The distance d is measured from one
bead center to the midpoint of the filament fragment opposite to it.
This distance is shown schematically in the inset (dashed line). The
experimental data sets are obtained for a bead distance of 6 mm
(open, red circles) and 7 mm (solid, blue circles). The bead radius
in both cases is 1 mm. Solid curves represent best-fit compressed
exponentials.

readily detected from image sequences because, due to the
wave rotation around the filament, it sequentially emits waves
in the outward and inward direction. As such, we can extract
the filament coordinates by locating the set of pixels which
undergo minimal contrast change for the period of one full
rotation. This method for filament detection was pioneered by
Vinson et al. [17].

Figure 2 shows the result of this analysis as superposed
bright (cyan) curves. At the given reaction time of 120 min
(which corresponds to approximately 15 rotation periods) the
initially circular filament loops have reached a stationary,
polygonlike shape. We reemphasize that, in the absence of
pinning sites, the filament would remain a circle, self-shrink,
and vanish. This collapse clearly does not occur. In the
following, we characterize the relaxation dynamics into the
stabilized, pinned state in terms of the distance d between
the center of a given bead and the opposite filament segment.
The distance is measured along the height of the equilateral
triangle defined by the three pinning sites (see the inset
in Fig. 3). Two representative examples for the temporal
evolution of d are shown in Fig. 3. The data are well described
by compressed exponentials of the form

d(t) = dss + (d0 − dss)e
(−t/τ )b . (2)

The values d0 and dss denote the initial loop diameter and
the asymptotic distance, respectively. Analysis of various data
sets yields an average b value of 2.35, which is 68% larger
than the earlier reported value (b = 1.4) for filaments pinned
to two beads [34]. The time constant τ varies between 45 and
85 min. The high values within this range are typically found
for larger filament loops. Note that the observed dynamics
are qualitatively different from the contraction of free circular
filaments for which the diameter is well approximated by the
simple square root law d(t)2 = d2

0 − 8αt .
As suggested by the examples in Fig. 2, the shape of

the stationary filament as well as the corresponding bead-to-

FIG. 4. (Color online) Distance dss of the stationary filament
from the opposite bead as a function of the radius R of the pinning
beads. The distance is measured along the central symmetry line of
the equilateral bead triangle. The two dashed lines are the geometric
limits of a circular (top) and triangular (bottom) filament. With respect
to the three bead centers, they equal the diameter of the circumcircle
and the height of the bead triangle, respectively. The continuous curve
is the best fit of Eq. (7) to the experimental data. The bead distance
is kept constant at 7 mm.

filament distance dss depend on the bead radius R. The results
of systematic measurements are shown in Fig. 4 for a constant
interbead distance of � = 7 mm. The steady-state value dss

decreases with increasing values of R. Furthermore, the data
fall within two simple geometric limits. First, considering
filament repulsion and the system’s tendency to establish
smooth wave patterns, it is unlikely that the tangential vectors
of the terminating filament pair can form an angle above
180◦. Accordingly, the circle defined by the three bead centers
constitutes the upper limit of dss � 2�/

√
3. Second, only

filament attraction could establish a filament angle below 60◦
but would also cause the detachment of the filament from the
pinning bead. Hence, the equilateral triangle with corner points
in the bead centers creates the lower limit of dss �

√
3�/2. In

Fig. 4 both dss limits are plotted as dashed lines. We find
that our data are closer to the triangular than the circular
limit but nonetheless span about 40% of the possible range.
Unfortunately, we are not able to pin vortex loops for bead radii
below 0.75 mm, possibly because of limitations created by
the size of the vortices’ natural rotation core. The continuous
lines in Figs. 4 and 5 relate to a theoretical description that is
discussed later.

The experimental data shown in Fig. 4 provide valuable
information regarding our initial question whether filament
termination at large surfaces is qualitatively different from
filament pinning to small heterogeneities. The former case
corresponds to experiments with large beads and, because
filament interaction is absent, to the limiting case of triangular
filaments. The latter case corresponds to very small beads
and the circular limit. Given the negative slope of the data in
Fig. 4, we find that our data strongly support the hypothesis
of qualitative differences between filament termination and
pinning. One can speculate that the transition from filament
pinning to termination occurs if the circumference of the
heterogeneity is comparable to the wavelength of the vortex
structure. For our BZ system, the wavelength is λ = 4.85 mm,
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FIG. 5. (Color online) Distance dss of the stationary filament
from the opposite bead as a function of the bead distance � (a).
In (b) the same data are shown in terms of the ratio dss/�. As in
Fig. 4, the dashed lines correspond to the geometric limits of a circular
(top) and triangular (bottom) filament. The continuous curves are the
best fit of Eq. (7) to the experimental data. The bead radius is kept
constant at 1.0 mm.

which suggests a transition at R ∼ 1 mm. Our data are
consistent with this value.

The size and shape of the stationary, pinned filament depend
not only on the bead radius but also on the interbead distance
�. We therefore performed experiments with vortices pinned
to beads arranged at the corners of equilateral triangles with
side lengths between 5 and 12 mm. The bead radius is kept
constant at R = 1.0 mm. Figure 5(a) shows the resulting
data which reveal that dss increases with increasing values
of �. The dashed lines again represent the limiting cases of
perfect circles and triangles. To obtain a better understanding
of these results, we remove the trivial linear scaling of dss(�)
and find for increasing values of the bead distance a smooth
transition from the triangular limit toward the circular limit
[Fig. 5(b)]. Experiments with even larger values of � have not
yielded reliable data yet because, among other complications,
rogue waves and bulk oscillations tend to interfere with the
preparation of these large scroll rings.

Additional information on the stationary vortex states can
be obtained by analyzing the shape of the filament segments
that extend from one bead to another. In most experiments, the
deviations between the three individual segments are small,
and the results shown in the following are the average shape
of the stationary filament segment as measured from different
experiments and different sides but for identical experimental
conditions. Figure 6 shows filament shapes for two different
values of R. The s axis extends along the line connecting the
two bead centers and is zero halfway between those centers.
The ordinate is a generalized form of the earlier d variable
and measures the distance of the filament from the line that is
parallel to the s axis and passes through the third bead center.
We find that the filament shape d(s) is in excellent agreement
with the hyperbolic cosine function

d(t) = dss − k cosh qs, (3)
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FIG. 6. (Color online) Averaged shape of the stationary filament
for R = 0.75 mm (open, red circles) and 1.5 mm (solid, blue circles).
The dashed and solid curves represent the corresponding hyperbolic
cosine fits [Eq. (3)] which allow the measurement of the filament
rigidity ε (see Table I). For both experiments the bead distance is
� = 7 mm.

as demonstrated by the solid and dashed curves in Fig. 6. No-
tice that the values of dss discussed above (e.g., in the context
of Figs. 4 and 5) are obtained from direct measurements of the
filament position and not from fits to Eq. (3).

To gain a better understanding of these experimental results,
we performed a semiphenomenological analysis of the system.
We suggest that the filament shape is determined by the delicate
interplay between the filament tension (α) and the filament
rigidity (ε). Accordingly, the equation

∂t�s = α∂2
σ �s − ε

(
∂4
σ �s)⊥ = 0 (4)

describes the equilibrium of the planar filament �s(σ ) with
σ denoting its arclength. This equation is a special case
of the asymptotic theory presented in Ref. [33] for which
several terms (not shown) vanish because (i) the diffusion
coefficients of the chemical species in our reaction differ only
slightly and (ii) the filament curvature is not too high. A
more detailed description and analysis of this kinematic model
is presented in the Appendix. This analysis also considers
the short-range, repulsive interaction between the filament
segments in the vicinity of the beads, which we describe by
a simple exponential decay with a decay constant p. This
assumption is in accord with experimental and numerical
studies of spiral and scroll wave interaction [34–36].

If we assume that the arclength σ of the filament segment
differs only slightly from the linear space coordinate s, Eq. (4)
readily yields the experimentally observed hyperbolic cosine
function [Eq. (3)] for the shape of the stationary filament.
Furthermore, it identifies the fitting parameter q as the square
root of the ratio between the filament tension and the filament
rigidity,

d(s) = dss − k

q2
cosh qs, (5)

q =
√

α/ε, (6)
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TABLE I. Filament rigidity ε and angle φ0 at the bead measured
for different values of the bead radius R and the bead distance �.

R � ε φ0

(mm) (mm) (×10−6 cm4/s) (deg)

0.75 7 0.37 33
1 7 0.36 32
1.5 7 0.36 33
2 7 1.29 23
1 5 1.92 18
1 6 0.21 34
1 8 1.14 28
1 10 1.14 55
1 12 2.24 45

where k is an integration constant. Since the filament tension
for this BZ system is known [α = (1.4 ± 0.2) × 10−5 cm2/s
[34]], Eqs. (5) and (6) allow us to measure the system-specific
filament rigidity ε from the shape of the stationary filament.
The results are summarized in Table I. The average value
of ε is (1.0 ± 0.7) × 10−6 cm4/s. We are not aware of
prior measurements of filament rigidity in any excitable or
oscillatory system.

Notice that the hyperbolic cosine function can be difficult
to distinguish from a quadratic polynomial. Resolving fourth-
order terms, however, is necessary for the desired measurement
of q and ε because Eq. (5) implies that the second-order term
has no q dependence [d(s) = const − k

2 s2 + O(s4)]. Although
both functions involve three fitting parameters, the lowest root-
mean-square deviations are generally obtained for fits with the
hyperbolic cosine function. For example, the upper data set in
Fig. 6 (solid, blue circles) yields root-mean-square errors of
9.3 and 10.9 μm for the cosh and quadratic fits, respectively.
For the lower data set (open, red circles), these numbers are 4.6
and 5.2 μm, respectively. Our model predicts that significantly
larger values of � (twice and more) cause a transition from
a rigidity-dominated to a tension-controlled filament, with the
latter showing more pronounced deviations from a parabola.
However, the execution of such experiments is, as mentioned
above, fraught with technical difficulties.

Our theoretical analysis also describes the experimentally
observed dependencies of stationary filament distance. As
detailed in the Appendix, we obtain

dss(�,R) =
√

3

2
� +

(
1

pC
− π

6qS

)
(RqS + C − 1), (7)

where S = sinh q(�/2 − R) and C = cosh q(�/2 − R).
Equation (7) can be readily compared to the measurement
results in Figs. 4 and 5. For this purpose, we use the average
q value of 3.74 cm−1, which corresponds to the measured
filament tension and rigidity [Eq. (6)] and the appropriate
constant bead distance (for Fig. 4) and constant bead radius
(for Fig. 5). Least square fitting then yields the continuous
lines in the latter figures, which are in very good agreement
with the experimental data. The fits in Figs. 4 and 5 are carried
out separately for each data set and yield p values of 3.41 and
3.03 cm−1, respectively.

FIG. 7. (Color online) Still frames illustrating the evolution of a
filament pinned to three beads located on an isosceles triangle. The
snapshots are taken at t = 27 min (a), 67 min (b), 123 min (c), and
140 min (d). The filament unpins at the tight angle and collapses.

We also investigated the angle φ0 between the tangent to
the filament at the bead and the s axis. While the data are not
fully conclusive (Table I), we can tentatively identify some
trends. First, our measurements show that there is only a
mild dependence of φ0 on the bead radius R. Second, the
experimental data suggest that φ0 increases with increasing
values of the distance � to saturate at approximately 50◦. This
saturation behavior seems reasonable if one considers that
the central portion of long filaments (large �) is increasingly
flat. A theoretical description of the angle φ0 is presented in
the Appendix and is in agreement with the experimentally
observed trends.

All of the above experiments and analyses are carried out
for scroll filaments pinned to spherical objects located at the
corners of equilateral triangles. Figure 7 shows an example
of a pinning experiment in which the beads form an isosceles
triangle in which the unique angle measures 40◦. The still
frames are taken at four different times and the corresponding
filament coordinates are superposed in bright cyan color. The
filament loop in Figs. 7(a) and 7(b) is pinned to all three beads
and its curve-shrinking dynamics are similar to the behavior
shown in Fig. 2. However, instead of establishing a stationary
state, the filament unpins from the lower bead to create a
strongly curved segment that quickly withdraws toward the
upper bead pair [Fig. 7(c)]. The resulting filament loop is not
stable and annihilates as shown in Fig. 7(d). The unpinning
from the bottom bead is a direct consequence of the small
angle between the two lower filament segments. This process
shares similarities with electric-field-induced unpinning events
that were recently reported by Jiménez and Steinbock [37]. In
addition, it is reminiscent of filament loops detaching from
planar no-flux boundaries and hence also related to filament
reconnections [38]. Last, we note that a recent study of scroll
rings pinned to two spherical heterogeneities suggests that
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detached filament loops, such as the one shown in Fig. 7(c),
could generate stable, lens-shaped structures if the interbead
distance � is sufficiently large. More experiments are needed
to test this prediction.

IV. CONCLUSIONS

Our experiments provide strong evidence that filaments
ending at no-flux boundaries show different behavior de-
pending on the size of the impermeable heterogeneity. In
the simplest case, a filament terminates at a planar, external
wall or other large structure. In this situation, wave rotation
around the obstacle is irrelevant. However, if the circumference
of the heterogeneity is comparable to or smaller than the
pattern wavelength, rotation must be considered and the overall
filament will feature shape variations that aim to reduce
gradients of the surrounding wave field. The latter force can
be also interpreted in terms of a repulsive interaction between
the filament segments that end on the same surface.

The global filament shapes resulting from this local pinning
process cannot be explained solely by the contractive motion
of the underlying curvature flow [Eq. (1)] but rather reveal a
higher-order phenomenon that we refer to as filament rigidity.
For the specific situation of three pinning sites located at
the corners of an equilateral triangle, the individual filament
segments are described by hyperbolic cosine functions that
deviate only slightly from simple parabolas. We note that this
outcome is reminiscent not only of the shape but also of the
history of the catenary (“chain”) curve which Galileo described
as an approximate parabola [39].

We propose that filament rigidity is also crucial for
explaining stationary and/or long-lived states of filaments
pinned to thin, cylindrical heterogeneities. Such cases were
recently reported for three-dimensional BZ systems [25] in
which filament loops were attached to long glass rods. From
the end points of these rods, the rotation backbone of the
vortex extended as a free, C-shaped filament segment that,
despite its curvature, remained essentially stationary. Similar
to our present findings, that equilibrium state was likely the
result of the antagonistic interplay between filament tension
and rigidity.

We believe that future studies should aim to characterize
the exact boundary conditions for pinned filaments as the
current lack of this information severely hampers more detailed
analyses of the experimental observed dependencies. Other
challenges include the study of scroll wave pinning to noninert
heterogeneities such as regions with decreased excitability
and/or diffusion coefficients. Filaments pinned to such “soft”
anchors can be expected to unpin more readily than filaments
attached to inert and impermeable pinning sites. We emphasize
that both types of anchor regions are relevant to excitable and
oscillatory RD systems in biology where heterogeneities result
from numerous sources, including variations in cell density,
cell type, and gap junctions as well as anatomical features
such as blood vessels.
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APPENDIX: DETAILED DERIVATION OF THE
STATIONARY FILAMENT SHAPE

In the main text, we have derived Eq. (5) describing
the shape of the stationary filament without any detailed
assumptions regarding the boundary conditions at the pinning
bead and the nature of the repulsive filament interaction. In the
following, we present a more detailed analysis that, despite
the simplifications made, aims to describe additional details
including the dependencies of the central distance dss between
the filament and the opposing bead center on the bead radius
R and the bead distance �. We reemphasize that the following
analysis of our experiments is semiphenomenological.

We suggest that the filament shape is determined by
the delicate interplay between the filament tension, filament
rigidity, and filament repulsion close to the beads,

∂t�s = α∂2
σ �s − ε

(
∂4
σ �s)⊥ + b1

∣∣∂2
σ �s∣∣2

∂2
σ �s + [�v(�s)

]
⊥ = 0,

which is an equation of equilibrium of the filament, where the
first three terms are as in the asymptotic theory presented
in Ref. [33], with γ2 = e2 = b2 = 0 because the diffusion
coefficients of all the reagents are close to each other, γ1 = α

and e1 = ε to agree with the notations with the main text,
and the last term is added to describe phenomenologically the
repulsion of filaments from each other in the vicinity of the
bead.

We assume that the repulsion distance is much smaller
than the distance between the beads and the shape of a
filament is symmetric so we consider one half of it, from
one bead to its middle point between two beads. To define the
repulsion “force”, we assume that all the filaments lie in one
plane, that two filaments touching the same bead are mirror
reflections of each other, introduce Cartesian coordinates in
the plane with the origin at the center of the bead, the
x axis along the mirror symmetry axis, and focus on the
filament with y > 0. In these terms, we assume, following
numerical and experimental results in Refs. [34,36], that the
repulsion velocity decreases exponentially with the distance to
the mirror, |�v| = a exp(−py), where a > 0, p > 0 are some
constants to be determined empirically, and take the normal
component of the velocity to be further proportional to the
cosine of the angle φ of the filament with respect to the mirror
line, so, e.g., a filament perpendicular to the mirror line is not
affected by its reflection. Let σ be the arclength coordinate
along the filament, starting from the point it touches the bead,
and let φ(σ ) be the angle of the tangent vector ∂σ �s with respect
to the x axis, so the local filament curvature is κ(σ ) = ∂σφ.
Then, rewriting the above equation, we obtain

κ ′′ = �κ + Bκ3 + Ae−py cos(φ), (A1)

φ′ = κ, (A2)

y ′ = sin(φ), (A3)

where � = α/ε, B = 1 + b1/ε, and A = a/ε. The dash
designates differentiation with respect to σ and the last two
equations are definitions of φ and y added to complete the
system.

The first simplification we make is to assume that the
curvature is not too high throughout the length of the filament,
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so we can neglect the Bκ3 term. Further, we assume that the
filament does not change its orientation significantly within
the range of the repulsive velocity. Then the filament curvature
profile is described by the equation

κ ′′ ≈ �κ + Ae−p sin φ0(R+σ ) cos(φ0), (A4)

the general solution of which is

κ = C1e
qσ + C2e

−qσ + L

p2 sin2 φ0 − q2
e−p sin(φ0)σ ,

where q = �1/2, L = A cos(φ0)e−p sin(φ0)R , and we assume
that q 	= p sin(φ0) (an equality here would be a rare event
in any case). The constants C1 and C2 depend on the
boundary conditions. Ideally, further boundary conditions for
this equation should be obtained from the same asymptotics
that were used to derive the filament equations of motions;
these are not available at present. In our simplified approach,
we suppose that both κ(0) and κ ′(0) are zero or negligibly
small, then

C1 = L

2q(q + p sin φ0)
,

(A5)

C2 = L

2q(q − p sin φ0)
.

The scale of the inner region is p−1 as beyond a few of those
lengths the interaction term is negligible. The consistency con-
dition of our approximation is that the change of φ throughout
the inner region, which, assuming sin φ0 ∝ 1, cos φ0 ∝ 1, is
�φ ∝ A/p3, is small. For σ beyond the inner region, we
can neglect the term proportional to exp(−p sin φ0σ ), so the
solution is simply

κ ≈ C1e
qσ + C2e

−qσ = −κm cosh[q(σ − σm)],

where κm > 0 is the minimal curvature of the filament,
achieved at the middle point between the beads, and σm is
the arclength coordinate of the middle point. With account of
(A5), this gives

sin(φ0) = q

p
tanh(qσm). (A6)

In particular, this predicts a plateau for φ0 at large values of
σm, satisfying

sin(φ̄0) = q

p
. (A7)

Notice that the latter relation is in good agreement with the
experimental data presented in Table I because the measured
angles φ0 are essentially constant. Even the small decrease
of φ0 for the largest bead radius (R ∼ 2 mm) could be
due to the R-dependent decrease of σm, consistent with the
more accurate formula (A6). For φ0 ≈ 50◦, q = (α/ε)1/2,
α = 1.4 × 10−5 cm2/s, and ε = 10−6 cm4/s, the character-
istic length scale of filament repulsion is then estimated as
p−1 ≈ 0.3 cm. This value appears plausible if we consider the
vortex wavelength of about 0.5 cm (see, e.g., Fig. 2).

The spatial shape of the filament in the outer region is
described parametrically as

X(s) =
∫ s

0
cos[κm sinh(qs)/q]ds,

Y (s) = −
∫ s

0
sin[κm sinh(qs)/q]ds,

where (X,Y ) are Cartesian coordinates centered at the mid-
point with the X along the tangent to the filament at that
point, and s = σ − σm is the arclength coordinate measured
from the midpoint. These integrals cannot be evaluated in
elementary functions, but using the assumption of smallness
of curvature already made, in terms of the filament angle θ in
the (X,Y ) coordinate system, we can approximate sin(θ ) ≈ θ ,
cos(θ ) ≈ 1, leading simply to

Y (X) = κm

q2
[1 − cosh(qX)].

In the same approximation we have

φ = π/6 + θ ≈ π

6
− κm sinh(qX)/q,

where the π/6 is due to the difference of orientation between
the (x,y) and (X,Y ) frames (see Fig. 8). Combining these
results with the previously obtained (A6), we obtain, after
elementary transformations, the following expression for the
midpoint curvature:

κm = q2

p cosh(qσm)
− πq

6 sinh(qσm)
.

We estimate the distance dss from the center of a bead to
the middle of the contraposed filament as dss = � cos(π/6) +
R sin(θ0) + |Y (−σm)| (see Fig. 8), and the estimate for σm,
in the same limit of small θ as already used above, is σm =
�/2 − R. This results in the following:

dss(�,R) =
√

3

2
� +

(
1

p C
− π

6q S

)(
RqS + C − 1

)
,

where S = sinh[q(�/2 − R)] and C = cosh[q(�/2 − R)],
which is Eq. (7) of the main text.

Δ

R

x

y

φ
θ

X

Y

FIG. 8. (Color online) Sizes, coordinates, and angles.
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