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Abstract 

 

This thesis examines how Eastern grey squirrels, Sciurus carolinensis, modify 

their foraging and hoarding behaviour in relation to different risks, particularly 

those which involve a trade-off between securing food resources and avoiding a 

negative outcome with a competitor. While foraging for food to eat and hoard, 

squirrels must compete with conspecifics and heterospecifics for access to 

resources, and they must ensure the safety of their food hoards from onlookers 

or opportunistic pilferers. While engaging in these behaviours in the most 

efficient way, they must also avoid being predated upon. Five studies were 

conducted to further understanding of grey squirrel foraging, hoarding and 

pilferage behaviours, and how they are affected by different risk factors. The 

data in this thesis provide experimental evidence that grey squirrels respond 

directly to conspecific presence as a cue of pilferage risk and adjust their 

behaviour in ways that may help to reduce cache theft. The data also support 

the view that conspecific and heterospecific competitors pose risks to foraging 

and caching, with squirrels modifying their behaviour in ways that serve to avoid 

negative competitive interactions. Predation risk was found to be particularly 

disruptive to foraging behaviour, and it also had a seasonal effect upon 

pilferage rates of experimenter-made caches. A variety of strategies that 

squirrels might use to pilfer caches were investigated, however, the data did not 

provide a clear indication of pilferage strategy used by squirrels; they did not 

seem to use observational spatial memory, and they did not simply pilfer in 

profitable foraging locations. This thesis raises questions about the mechanisms 

grey squirrels use to assess pilferage risk and how they engage in pilferage in 

comparison to other caching species; the studies conducted illustrate different 

methods that future research could use to investigate food hoarding and 

pilfering behaviour in wild and captive squirrels.  
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Chapter 1: Introduction 

 

General introduction 

 

Foraging for Eastern grey squirrels, Sciurus carolinensis, frequently occurs 

within an environment of conspecifics and heterospecifics. While social foraging 

provides benefits, such as informing about the optimal time and place to forage, 

it also involves fitness costs to the forager through increased competition and 

theft of buried food (reviewed in Galef & Giraldeau 2001). Squirrels have been 

reported to engage in behaviour to help offset these risks, such as adjusting 

where they forage (Spritzer & Brazeau 2003) or where they cache (Steele, 

Contreras, Hadj-Chikh, Agosta, Smallwood & Tomlinson 2014), however, such 

behaviour can be costly to personal safety from predators (e.g., because it 

involves foraging or hoarding food in more exposed locations). This thesis 

examines how Eastern grey squirrels modify their behaviour in response to 

different cues of risk while foraging, hoarding and engaging in pilferage.  

 

The inspiration for this thesis derives from field studies that report that Eastern 

grey squirrels will adjust their caching behaviour when in the presence of 

conspecifics or after experiencing food theft, in ways thought to reduce the risk 

that future hoards will be stolen (Hopewell & Leaver 2008; Hopewell, Leaver & 

Lea 2008; Leaver, Hopewell, Caldwell & Mallarky 2007; Steele, Halkin, 

Smallwood, McKenna, Mitsopoulos & Beam 2008). Such ‘cache protection 

behaviour’ is typically associated with species who are regarded as more 

cognitively sophisticated, particularly among the Corvidae, with these 

behaviours possibly indicating that some form of mental attribution is used by 

cachers and pilferers (reviewed by Clayton, Dally & Emery 2007 and Grodzinski 

& Clayton 2010). Given that field studies report similar cache protection 

strategies among some rodents and parids to those observed in corvids, this 

indicates that these behaviours may not be exclusive to cognitively complex 

species but common to other caching species. However, far fewer studies have 

investigated how the social environment affects food hoarding decisions among 

mammalian scatter hoarders than among corvids. 
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In addition, recent research indicates that there might be a trade-off between 

decisions about social risks to foraging and caching, such as cache loss or 

competing with a more dominant conspecific, with risks of predation (e.g., 

Steele et al. 2014). While behavioural responses to predation risk have been 

investigated separately among different species, it is unclear what effect 

predation risk has in relation to foraging, hoarding and pilfering decisions when 

social risks are also present. Therefore, research is necessary to establish 

whether squirrels share similar behavioural strategies with regards to food 

hoarding as those reported in corvids, as well as how foraging and caching 

decisions are traded off against pilferage and predation risks. Investigating 

different combinations of these factors for their effects upon behaviour, as 

opposed to studying them in isolation, will help to reveal more about how scatter 

hoarders make their foraging decisions. 

 

Throughout the following literature review comparisons are made between the 

food storing behaviour of corvids, parids and rodents in order to address 

questions about the behaviour of the grey squirrel. The theme of these 

questions relate to specific problems that caching animals encounter while 

foraging and storing food, including: reducing risk of theft of stored food, how 

food theft is achieved, competing for resources with conspecifics and 

heterospecifics, while minimising behaviours that put the individual at increased 

risks of predation. The optimal conditions of the latter are often in direct conflict 

with the increased demands of securing food resources, so trade-offs are to be 

expected. This thesis aims to address some of these questions to determine 

how squirrels respond to different combinations of cues of risk while foraging 

and hoarding food. This has been investigated through controlled laboratory 

studies and field studies presented in Chapters 2 through 6. Comparing grey 

squirrels with other taxa of food storers will help to understand whether similar 

adaptive pressures have led to the evolution of similar strategies among 

different hoarding species for coping with competition, pilferage and predation 

risks. 
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Literature review 

 

The foraging ecology of food hoarding animals 

 

Optimal foraging theories concern how the individual could maximise energy 

intake from foraging, while minimising expenditure (Stephens & Krebs 1986) 

which can affect where, when, what and how long to forage (Gerber, Reichman 

& Roughgarden 2004). For species that have evolved a hoarding solution to an 

environment of “temporal food scarcity”, individuals must compete for seasonal 

food resources (Roberts 1979), foraging for items such as nuts and seeds when 

supplies are abundant, and burying them for later consumption during periods 

of low availability (Vander Wall 1990), while non-hoarders engage in alternative 

behaviour such as hibernation or migration (Vander Wall 1990). Andersson and 

Krebs (1978) suggest that the benefits gained from food hoarding (also referred 

to as ‘storing’ or ‘caching’: Kraus 1983) are dependent upon: the cost of storing; 

the value of the food item when consumed immediately or stored for later 

consumption; how likely it is that the stored item will be recovered; as well as 

costs associated with potential theft of the food hoard.  

 

A number of factors have been reported to affect decisions about food storage. 

Whether a food item is consumed or cached can depend upon factors which 

enhance storage time, including the size and weight of the food item (Jansen, 

Bongers & Hemerik 2004; Jacobs 1992a; Muñoz & Bonal 2011; Preston & 

Jacobs 2009; Xiao, Zhang & Wang 2004; 2005), and its perishability and 

germination time (Smallwood, Steele & Faeth 2001; Steele, Hadj-Chikh & 

Hazeltine 1996). However, consideration of these is beyond the scope of this 

review. The social environment at the time of foraging can also influence 

caching decisions. Individuals compete with conspecifics and heterospecifics for 

the same resources while foraging for food to eat and store, and so they must 

act in ways that minimise the potential for antagonistic encounters with more 

dominant competitors, while maximising their foraging effort to offset 

competition for resources, and ensuring the long-term survival of their caches; 

this might include transporting food away from locations high in conspecific 

density (Hopewell et al. 2008; Spritzer & Brazeau 2003). Predation risks are 

also taken into account when foraging and storing food; individuals act in ways 
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to minimise their exposure to predators, such as foraging or caching closer to 

trees that might provide an escape route (e.g., Steele et al. 2014). However, the 

demands of minimising foraging competition can conflict with reducing predation 

risks, and some studies have indicated that a trade-off might exist but on-going 

research is needed to establish how these risks interact upon foraging and 

hoarding decisions.  

 

The focus of the current review will be upon foraging ecology of the eastern 

grey squirrel. This is a species that has received less attention in the food 

hoarding literature in comparison to corvids, but some studies have indicated 

that they could reveal a great deal about food hoarding decision making. This 

thesis will examine how foraging and caching decisions are made in relation to 

competition for forageable and stored food, what factors influence pilferage risk, 

and how trade-offs with predation risk can affect these decisions.  

 

Eastern grey squirrel behavioural ecology  

 

Eastern grey squirrels are among almost 300 species of squirrel worldwide. 

Within the family Sciuridae they are categorised as tree squirrels due to their 

native habitat of the hardwood deciduous trees of the North American continent 

(Steele & Koprowski 2001). They were introduced to Europe in the late 19th 

century and are now common to urban parklands and gardens in Britain where 

they thrive (Laidler 1980).  

 

Like most tree squirrels, grey squirrels are not highly social in their diurnal 

behaviour (Edelman & Koprowski 2007); females only interact with males during 

spring mating and occasionally related females will sleep in the same nest 

together for the purpose of thermoregulation during the winter months 

(Koprowski 1996). They are non-territorial, with overlapping home ranges 

(Bland 1977; Vander Wall & Jenkins, 2003), and so frequently forage alongside 

conspecifics (Lewis 1980), particularly during the autumn months when caching 

rates are high. They demonstrate a variety of complex communication systems 

which are primarily used for resource guarding (Thompson 1978, 1977) or as 

alarm behaviours (Lishak 1984), comprising auditory (Horwich 1972; Lishak 

1982, 1984), olfactory (Benson 1980; Taylor 1968, 1977; Koprowski 1993) and 
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visual signals. Due to competition for resources, less dominant young grey 

squirrel males tend to show gradual short distance dispersal to a neighbouring 

home range (Gull 1977; Thompson 1978). After they have established 

themselves in a population, they will often show site fidelity remaining in the 

same area of forest. Female grey squirrels largely show natal philopatry 

(Koprowski 1996).  

 

Although some species of tree squirrel do hibernate, Eastern grey squirrels 

instead just become less active over the winter months, reducing their body 

temperature and energetic needs so they do not need to feed as often (Steele & 

Koprowski 2001), and will rely on their hoarded food supplies.  

 

Foraging and hoarding of the Eastern grey squirrel 

 

The diet of an Eastern grey squirrel varies seasonally with what is available; in 

the spring and summer months they feed mainly upon plant material including 

buds, flowers, shoots and also fungi and insects (Steele & Koprowski 2001), 

while high nutrition content food supplies are abundant in the autumn when 

trees drop their nuts and seeds (Long 1995). During the autumn months, grey 

squirrels spend much of their time scatter hoarding these foods; they disperse 

single items across many different locations within their home range and rely on 

these stores to get them through the winter (Jacobs 1989), while preferring to 

consume more perishable foods while they forage (Hadj-Chikh, Steele & 

Smallwood 1996). They have been estimated to store around 3000 nuts in a 

season which are concealed with earth and leaf litter to reduce the likelihood of 

cache loss to scroungers (Macdonald, 1996).  

 

The following narrative has been adapted from Macdonald (1996), Laidler 

(1980) and Steele et al. (2008) to describe the typical sequence of behaviours 

that lead to a cache being made by a grey squirrel. While foraging for food, the 

squirrel encounters a nut; it will pick it up in its mouth, and manipulate it with its 

front paws. If the item is selected for hoarding (rather than eating) the squirrel 

will then usually locomote with the nut in its mouth holding it with its front 

incisors, often making several stops and sniffing the ground. Sometimes the 

squirrel will dig at the ground surface material with its front paws but then stop 
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and continue to locomote with the nut in its mouth, and may do this several 

times. Eventually the squirrel will stop with the nut, while still holding it in its 

mouth, will dig at the ground, and then deposit the item into the freshly dug 

hole. The squirrel then uses its front paws and nose to push the nut farther into 

the excavated site and uses several thrusts of its entire body to ensure the nut 

is secure. Finally the squirrel will cover the site with soil, plant and leaf litter and 

pat down the resulting cache with its front paws.  

 

The ontogeny of food hoarding  

 

Little is known about the developmental onset of the behaviours described 

above, except that it appears to be alike among individual adult squirrels 

(Horwich 1972). Caching is also widespread among other mammalian species 

and birds (Vander Wall 1990), particularly members of the corvid family (de Kort 

& Clayton 2006). Reports from several field and captive studies suggest that 

storing behaviour appears to be innately triggered but improves with age and 

experience (Clayton 1992; 1994; Haftorn 1992), cognitive development 

(Bugnynar, Stöwe & Heinrich 2007; Pollok, Prior & Gunturkun 2000; Zucca, 

Milos & Vallortigara 2007), and the maturation of memory and physiological 

brain development (Clayton 1996; Clayton & Krebs 1995). Experience plays an 

important role in the refining of foraging and storage techniques as the 

individual matures. 

 

In field observations of tits (crested tit, Parus cristutus, willow tit, P. montanus), 

Haftorn (1992) reported that juveniles first engaged in incomplete caching acts 

while still parentally dependent; for example, attempting to bury items but 

repeatedly dropping them, or immediately recovering and eating before fully 

concealing them. Social learning appeared to play very little role in acquisition 

of the behaviour; storing improved largely with experience alongside foraging 

efforts, so that juveniles became proficient independent storers before they left 

the nest. Clayton (1992) reported similar findings in two groups of hand-reared 

marsh tits, Poecile palustris; one was provided the opportunity to cache, the 

other group was prevented from caching for 24 days after they had become 

nutritionally independent from their parents. Clayton found that the onset of food 

storing and retrieving was largely determined by age, and interaction with others 
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was not necessary for developing food storing and retrieval behaviour; acquiring 

basic storing techniques (choosing suitable storage sites, appropriateness of 

items stored, the efficiency of and the rate of storing seeds) was mostly affected 

by the individual’s experience. In a further study Clayton (1994) prevented 

marsh tits from storing at different ages post-hatching. She found no evidence 

for a sensitive period for food storing or retrieval; all age groups developed 

caching with experience of handling food, rather than with age.  

 

In corvids links have been made between the development of food storing and 

recovery with the Piagetian stages of object permanence (Salwiczek, Schlinger, 

Emery & Clayton 2009). Object permanence involves an understanding that 

objects are separate and independent of the observer, and continue to exist 

even when they are no longer visible (Piaget 1954). Bugnyar et al. (2007) 

examined how object permanence could be linked to social aspects of 

development and experience of caching in captive young ravens, Corvus corax. 

They found that behaviour was dependent on age and appeared to develop in 

hierarchical stages that were associated with Piagetian stages of object 

permanence. In the first few days after hatching, individuals did not following 

moving objects (Stage I), but as their visual system developed they begin to 

visually track an item’s movement (Stage II). Juveniles then started to be able to 

recover a partially occluded item (Stage III) around the time they would normally 

leave the nest. Food storing seems to emerge in this stepwise manner so that 

by around two months post-fledging (Stage IV) they could recover a fully 

occluded item, demonstrating full adult caching behaviour. Although innately 

driven, there was also a role of experience during the development of caching 

behaviour. Progression to Stage V reflected the ability to keep track of multiple 

covering of caches and recaching, which was affected by experience of caching 

and recovery. In magpies, Pica pica (Pollok et al. 2000), and Eurasian jays, 

Garrulus glandarius (Zucca et al. 2007), improvement in cache retrieval was 

also linked to experience in Stages V and VI of object permanence, whereby 

birds could retrieve an item that had been visibly and invisibly displaced from 

hidden locations.  

 

Less research has been conducted on the development of caching in 

mammalian hoarders. Smythe (1978) reports observations of week old agoutis, 
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Dasyprocta punctata, picking up and attempting to bury small food items that 

the mother brings to the nest; by about 3 weeks old they are efficient seed 

buriers making sure that all their caches are fully concealed. Eibl-Eibesfeldt 

(1963) reports that in red squirrels, Sciurus vulgaris, food hoarding behavioural 

patterns appear stereotyped, even when the individual has no prior experience 

of digging or handling solid material. In one deprivation study, Eibl-Eibesfeldt 

hand-reared five young red squirrels taken from the nest and denied them the 

opportunity to handle any solid particles until 8-10 weeks old. When finally 

presented the opportunity to handle cachable items, they immediately went 

through the whole caching repertoire as described above. A further 13 hand-

reared squirrels were raised in the same circumstances, except when presented 

with a cachable item, were prevented from burying it in any substrate. In all of 

these cases the squirrels went through the first stages of the caching repertoire, 

up to attempting to push the item into the ground using their nose, and always 

at the base of a vertical object. In three of the cases, the squirrels went through 

the entire behavioural repertoire, even including covering the nut with non-

existing substrate and patting it down. The caching behaviour of infant grey 

squirrels also appears to develop along a similar pattern and time scale to that 

reported by Eibl-Eibesfeldt in red squirrels (personal observations). Although 

there are systematic reports of the development of caching behaviour among 

food hoarding mammals, and experience seems to play little role, it would be 

useful to know whether there are  more nuanced influences on particular 

aspects of caching. 

 

What is apparent among these observations of different caching species is a 

“motivationally controlled compulsion to cache” (p. 977: Grodzinski & Clayton 

2010). While caching is still in its developmental stages, juveniles engage in 

apparently costly caching behaviour: they attempt to store inedible non-food 

items (Bugnyar et al. 2007; Eibl-Eibesfeldt 1963), cache in unconcealed 

locations (Eibl-Eibesfeldt 1963; Smythe 1978), or hide and immediately retrieve 

items (Bugnyar et al. 2007; Haftorn 1992; Salwiczek et al. 2009). Grodzinski 

and Clayton (2010) suggest that the key function of these behaviours is to 

provide the individual with caching experience. These experiences also provide 

adult cachers the opportunity to learn to incorporate multiple factors into their 

hoarding behaviour (including: choosing a cache site, dealing with competitors, 
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how to reduce the risk of theft of stored food), so that “an initially compulsive 

behaviour gradually becomes more flexible and influenced by experience and 

cognition” (p. 977: Grodzinski & Clayton 2010). 

  

The role for individual experiences and social learning in the development of 

caching behaviour is perhaps limited, but may become more important in the 

later acquisition of efficient foraging and storage techniques (reviewed by Galef 

& Geraldeau 2001). Caching and pilfering experience also play a role in the 

development of strategies that prevent cache loss in corvids (Emery & Clayton 

2001). For example, Bugnyar et al. (2007) reported that experience gained from 

social interactions during development was important in learning to position 

caches to prevent stores from being stolen. The influence of the social 

environment and experience of cache theft upon future food hoarding behaviour 

is well documented in adult corvids and in some mammals, and will be 

discussed later in more detail. 

 

Social risks to foraging and hoarding  

 

Foraging for Eastern grey squirrels, as for many animals, frequently occurs 

within a context of conspecifics and heterospecifics (Koprowski 1994; Leaver et 

al. 2007; Lewis 1980; Schmidt & Ostfeld 2008; Spritzer & Brazeau 2003). As 

well as reducing predation risk through dilution (Bednekoff & Lima 1998), 

reducing the need for increased vigilance (Lima 1995), and informing the 

individual when it is safe to forage (Galef & Giraldeau 2001), social foraging can 

benefit the individual by informing when is the optimal time and location to 

forage through a process of local enhancement (Adams & Jacobs 2007; Heyes, 

Ray, Mitchell & Nokes 2000). Individuals are frequently more attracted to areas 

where conspecifics are foraging (reviewed by Galef & Giraldeau 2001): social 

foraging provides information about where is the optimal place to forage, when 

to forage (for example, at a previously depleted source that has now 

recovered), and when to leave the current patch for another. However, the 

social environment also presents fitness costs to the forager through increased 

competition for current resources and loss of buried food to theft, ‘cache 

pilferage’ (Clayton et al. 2007). To ensure optimal energy gain from foraging, 
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grey squirrels have been found to modify their behaviour to offset such costs, as 

will be discussed in the following sections. 

  

Competing for current resources 

 

Dominance hierarchies can exist at a food patch where individuals of differing 

social rank compete for food to eat and store (Booth, Gabriel, Joseph & Wafo 

2012; Shaw & Clayton 2012a). Within the Paridae and Corvidae social 

dominance has been suggested to affect food hoarding behaviour in two ways: 

scatter hoarders compete for access for food to store when they are foraging, 

and also when they are recovering caches of their own or conspecifics (Clayton 

et al. 2007). In their game theoretical model, Brodin, Lundborg and Clark (2001) 

predict that the costs and benefits of hoarding differ between those of different 

dominance rank. Dominant individuals can use their status to monopolise food 

supplies, and steal from subordinates, while subordinates tend to avoid 

engaging in cache pilferage because it could result in an aggressive interaction 

with those more dominant, and therefore will make more caches and invest 

more in hiding them since they cannot defend them from dominant thieves.  

 

A number of studies on food storing birds have reported different caching 

strategies between those of differing social rank. For instance, compared to 

subordinates dominant birds will use aggression to protect their own caches 

(Eurasian jay: Bossema 1979; Dally 2004; Goodwin 1956; Wilmore 1977; 

pinyon jay, Gymnorhinus cyanocephalus: Bednekoff & Balda 1996a; raven: 

Bugnyar & Heinrich 2005; Bugnyar & Kotrschal 2002; Western scrub-jay, 

Aphelocoma californica: Dally Emery & Clayton. 2005a), forage in more 

preferred locations (willow tit: Hogstad 1988), and supplant others while they 

are burying food (Eurasian jay: Shaw & Clayton 2012a). Whereas subordinates 

will suppress caching in the presence of other birds (New Zealand robin, 

Petroica australis: Burns & Steer 2006) opting to cache where there are fewer 

conspecifics (Eurasian jay: Shaw & Clayton 2012a).   

 

Interspecific dominance hierarchies can also exist at a food patch among 

individuals that compete for the same resources. For instance, Fisler (1977) 

observed free ranging California ground squirrels, Spermophilus beecheyi, to 
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dominate a food patch visited by a number of competing species (black-

throated sparrow, Amphispiza bilineata, house finch, Carpodacus mexicanus, 

cactus wren, Campylorhynchus brunneicapillus, Gambel’s quail, Lophortyx 

gambelii, white-tailed antelope squirrel, Ammospermophilus leucurus, 

Audubon’s cottontail, Sylvilagus audubonii). Wild Eastern grey squirrels are 

reported to dominate food patches shared with Eurasian red squirrels (Wauters, 

Gurnell, Martinoli & Tosi 2001; Wauters, Lurz & Gurnell 2000). Steller’s jays, 

Cyanocitta steller, have been observed to rob caches of Clark’s nutcrackers, 

Nucifraga columbiana (Tomback 1977). Presence of fox squirrels, Sciurus 

niger, has been found to suppress foraging in Steller’s jays (Bekoff, Allen & 

Grant 1999). In terms of food storing, more dominant species tend to engage in 

larder hoarding because they can use aggression to defend their stores and 

pilfer the stores of others (e.g., Ord's kangaroo rat, D. ordii, were dominant over 

Merriam's kangaroo rat, Dipodomys merriami: Jenkins 2011; chisel-toothed 

kangaroo rat, D. microps, and Merriam's kangaroo rat were dominant over dark 

kangaroo mice, Microdipodops megacephalus, and long-tailed and little pocket 

mice, Chaetodipus formosus and Perognathus longimembris: Jenkins & Breck 

1998).  

 

A number of field observations report that grey squirrels have a stable linear 

dominance hierarchy based around age, so that typically an adult male 

dominates over younger subordinate males and all females (Flyger 1955; 1960; 

Horwich 1972; Koprowski 1996; Pack, Mosby & Siegel 1967; Taylor 1966; 

Thompson 1978); this is maintained for most of the year, with peaks in agonistic 

interactions during mating seasons (Koprowski 1996; Thompson 1978). 

Experience, hormonal development and size seem to be important in 

determining social rank in grey squirrels (Pack et al. 1967); and their dominance 

relationships are established and maintained through behaviour, as well as 

visual and olfactory recognition (Horwich 1972). 

 

Few studies have examined how social rank among grey squirrels might affect 

their foraging behaviour. Allen and Aspey (1986) observed food competition in a 

group of captive grey squirrels at an experimental food station. They observed 

five different types of behaviour which they state were indicative of dominance 

and related to age and sex, all of which were initiated by one squirrel 
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approaching another at a feeder, including fighting, chasing, jumping-at or 

running at, approach/retreat interactions, and vocalisations. Some research 

shows that wild grey squirrels might act in ways to avoid competition when 

foraging in the presence of conspecifics, such as transporting food away from a 

food patch (Spritzer & Brazeau 2003), increasing vigilance levels to identify 

potential competitors (Tarigan 1994), and responding to the auditory presence 

of conspecifics with alarm behaviour (Partan, Fulmer, Gounard & Redmond 

2010; Partan, Larco & Owens 2009). 

 

Examining dominance hierarchies is further complicated when food hoarding is 

also involved; the social environment may affect an animal’s ability to ensure 

the safety of buried food stores. For instance, Spritzer (1999) reports anecdotal 

observations of squirrels aggressively defending their caches. To our 

knowledge there is only one study of grey squirrels that suggests there might be 

a link between social rank and individual differences in caching behaviour. 

Leaver, Martin and Romaine (unpublished data) found that dominant individuals 

would cache differently to subordinates, with more dominant grey squirrels 

clumping their caches while submissive individuals distributed their caches 

more widely. From this study it seems that caching behaviour in grey squirrels is 

affected by social dominance; possibly because higher ranking individuals may 

be more able to aggressively defend their caches, whereas subordinates may 

need to rely on other pilferage avoidance mechanisms. Further research would 

help to establish more clearly whether there are individual differences in the 

hoarding behaviour of grey squirrels based upon dominance, and by what 

mechanisms individuals use to ensure the survival of their caches. 

 

Minimising the loss of future resources 

 

Theft of hoarded food can be costly to scatter hoarders who are unable to 

defend their individual caches from pilferers. Estimated levels of cache pilferage 

vary considerably: Vander Wall and Jenkins (2003) reviewed natural and 

artificial cache pilferage rates in a number of caching species and suggest that 

rates for most long term hoarders probably fall between 2-30% per day; though 

the upper end of this range has been challenged by Leaver et al. (2007). 

Andersson and Krebs (1978) argue that for food hoarding to be an evolutionary 
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stable strategy the cacher must have a recovery advantage of its own stores. 

However, others argue that caching behaviour can be adaptive even in an 

environment of food theft and that some species are able to tolerate cache theft 

by engaging in reciprocal pilferage (Smulders 1998; Vander Wall & Jenkins 

2003). Within these systems individuals invest in their own food stores but also 

pilfer caches made by conspecifics; caching remains an evolutionary stable 

strategy because the hoarder is more likely to recover their own stores, but 

pilferage is tolerated because both hoarders and thieves can benefit from buried 

food. Models of reciprocal pilferage systems report pilferage tolerance as 

particularly high for small solitary animals that have overlapping home ranges, 

such as within the Rodentia and Paridae (Smulders 1998; Vander Wall & 

Jenkins 2003). The following section will examine research which has shown 

how cachers minimise the loss of their food stores to thieves and enhance their 

recovery successes. Later, the discussion will consider strategies used by 

pilferers to enhance their ability to locate caches made by conspecifics.  

 

Research has shown that a wide range of food hoarding species engage in 

behaviour that might help to minimise the risk of cache loss to competitors, 

indicating that actively attempt to avoid pilferage. For instance, after 

experiencing pilferage of their caches birds and rodents have been reported to 

engage in behaviour to help reduce future loss, including: re-locating caches 

(Merriam’s kangaroo rat: Preston & Jacobs 2005; Western scrub-jay: Dally 

Emery & Clayton 2005b), recovering and eating caches (Western scrub-jay: 

Emery et al. 2004), avoiding future caching in pilfered locations (black-capped 

chickadee, Parus atricapillus: Hampton & Sherry (1994); marsh tit: Stevens 

1984), spacing caches farther apart (Pere David’s rock squirrel, Sciurotamias 

davidianus, Korean field mouse, Apodemus peninsulae, striped field mouse, 

Apodemus agrarius, Chinese white-bellied rat, Niviventer confucianus, and rat-

like hamster, Tscherskia triton: Huang, Wang, Zhang, Wu & Zhang 2011), and 

reducing caching and increase eating (Pere David's rock squirrel: Luo, Yang, 

Steele, Zhang, Stratford & Zhang 2014). Furthermore, compared to when 

caching alone, storing food in the presence of other hoarders can result in a 

higher degree of cache theft (e.g., Steller's Jay, (Cyanocitta stelleri: Burnell & 

Tomback 1985; nuthatch, Sitta europaea: Carrascal & Moreno 1993; marsh tit: 

Sherry, Avery & Stephens 1982). As already discussed in the previous section, 
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dominant pilferers can supplant cachers while they are storing food by using 

their physicality, but, as will be examined later, sometimes onlookers can return 

to cache sites to pilfer after the cacher has left the area which helps to avoid 

confrontation with the cache owner. Some species are sensitive to social 

information at the time of caching and will adopt different strategies to help to 

minimise the risk of cache loss when storing in the presence of conspecifics (for 

reviews of social factors implicated in caching behaviour see: Brodin 2010; De 

Kort, Tebbich, Dally, Clayton et al 2006). 

 

Many studies that have investigated how food hoarders modify their caching 

behaviour in response to social cues have been conducted with social species 

of corvids and parids. When storing food in the presence of conspecifics, many 

hoarders engage in behaviour that serves to reduce the risk of theft of their 

stores. Some of these behaviours in food storing birds include: caching less in 

the presence of observers and more when alone (Clark’s nutcracker: Clary & 

Kelly 2011; coal tit, Parus ater: Brotons 2000; black-capped chickadee, P. 

articapillus: Stone & Baker 1989; Eurasian jay: Goodwin 1956; grey jay, 

Perisoreus canadensis: Burnell & Tomback 1985; magpie: Clarkson, Eden, 

Sutherland & Houston 1986; Northwestern crow, Corvus caurinus: James & 

Verbeek 1984; rook, C. frugilegus: Simmons 1968; Western scrub jay: Dally et 

al. 2005a; willow tit: Alatalo & Carlson 1987; Lahti & Rytkonen 1996), eating 

more in the presence of observers (nuthatch: Carrascal & Moreno 1993; rook: 

Dally, Clayton & Emery 2008), and delaying the onset of caching when in the 

presence of observers (black-capped chickadee: Stone & Baker 1989; magpie: 

Clarkson et al. 1986; raven: Bugnyar & Kotrschal 2002; Heinrich & Pepper 

1998). Several species of corvid and some parids also exploit visual aspects of 

their environment when caching in front of observers, such as caching behind 

visual barriers (raven: Bugnyar & Heinrich 2005; Bugnyar & Kotrschal 2002; 

Heinrich & Pepper 1998), storing in difficult-to-see areas (magpie: Clarkson et 

al. 1986; mountain chickadee, Poecile gambeli: Pravosudov 2008; Western 

scrub jay: Dally, Emery & Clayton 2004; 2005b), or at a greater distance from 

observers (coal tit: Brotons 2000; Western scrub jay: Dally et al. 2005b). They 

will also return to caches and re-bury them in new locations (Clark’s nutcracker: 

Clary & Kelly 2011; Eurasian jay: Cramp & Perrins 1994; Goodwin 1955; 1956; 

raven: Bugnyar & Kotrschal 2002; Heinrich 1999; Western scrub-jay: Dally et al. 
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2005a; Emery & Clayton 2001; Emery, Dally & Clayton 2004; Thom & Clayton 

2013).  

 

Much research shows pilferage-reduction behaviours are common to scatter 

hoarding birds that live within large social groups, where competition and the 

opportunity to steal after observing an individual cache are high, particularly 

those within the families Corvidae and Paridae. However, some studies have 

demonstrated that non-social species keep track of social cues while food 

hoarding. For example, Clark’s nutcracker's showed reduced levels of caching 

while being observed, and would recover and eat or re-cache more food items 

after being observed storing (Clary & Kelly 2011). Other evidence of pilferage 

avoidance behaviour among non-social species come from studies of 

mammalian food hoarders. Clarke and Kramer (1994) found that scatter 

hoarding Eastern chipmunks, Tamias striatus, change their caching locations 

depending upon the number of conspecifics at a food patch, which could help to 

reduce cache pilferage. Merriam’s kangaroo rats dig up their caches and rebury 

them when an observer is no longer present (Jenkins & Peters 1992). Even for 

less social species, foraging alongside conspecifics and heterospecifics is 

common when they depend upon the same resources. While there can be 

benefits to foraging alongside others (as already noted) for species that are less 

social, often the fitness costs, such as food theft, can outweigh the benefits. 

Therefore, engaging in behaviour to offset these risks, such as pilferage 

avoidance behaviour, when in the presence of potential competitors does not 

appear to be exclusive to social species, but these behaviours may be common 

to other scatter hoarders that do not develop within an exclusively social 

environment (Clary & Kelly 2011). 

 

Links have been made between the sophisticated cognitive abilities of corvids 

and some of the cache protection behaviour in which they engage; a key topic 

of research among those who study food storing corvids. When corvids have 

demonstrated some types of pilferage avoidance behaviour, researchers have 

argued that the behaviour is a form of prospective cognition. For instance, anti-

pilferage behaviour (e.g., caching using a visual obstruction) has been argued 

as possible evidence that some form of mental attribution, such as perspective 

taking, is used by cachers; and that individuals are anticipating and responding 
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to the potential pilferage of their caches (discussed in Clayton et al. 2007 and 

Grodzinski & Clayton 2010). Clayton (2007) suggests that a high degree of 

social cognition and general intelligence, as well as a relatively large brain with 

expanded avian prefrontal cortex, allows for the presence of these types of 

behaviour in some corvids. 

 

Nevertheless, cache protection behaviour has been reported in a number of 

mammalian cachers that are not usually considered to be as cognitively 

sophisticated as corvids. When in the presence of observers, individuals have 

been found to cache less (Norway rat, Rattus norvegicus: Denenberg 1952; 

Miller & Postman 1946), cache more, possibly to offset cache loss (Korean field 

mouse: Zhang, Wang & Zhang 2011; white-footed mouse, Peromyscus 

leucopus: Sanchez & Reichman 1987), disperse caches more widely (Pere 

David’s rock squirrel, Korean field mouse, striped field mouse, Chinese white-

bellied rat, and rat-like hamster: Huang et al. 2011; Eastern chipmunk: Clarke & 

Kramer 1994), and re-cache when the observer is no longer present (Merriam’s 

kangaroo rat: Jenkins & Peters 1992). Therefore, engaging in pilferage 

avoidance behaviour in response to social cues does not appear to be 

something that is exclusive to more cognitively complex species but common to 

other caching species. However, whether individuals are simply responding to 

the presence of conspecifics as cue to the risk of cache pilferage, or whether 

mental attribution processes are involved, like has been argued about corvids, 

is not fully understood in mammalian food hoarders.  

 

More evidence of audience effects upon food hoarding in mammals comes from 

field observations of Eastern grey squirrels. Though these are not a highly 

social species because they do not live in groups (Koprowski 1996), they are 

likely to benefit from engaging in cache protection behaviour due to the 

environments in which they forage, principally food patches that attract a high 

density of conspecifics during the peak caching season. Furthermore, they do 

not willingly share their food hoards with kin (Spritzer & Brazeau 2003) or 

conspecifics (Leaver et al. 2007). Tree dwelling species of squirrel also rely 

heavily on their visual system in comparison to other rodents (Van Hooser & 

Nelson 2006), and grey squirrels have a wide visual field (Kaas, Hall & Diamond 

1972) and excellent spatial acuity (Jacobs, Birch & Blakeslee 1982) which could 



33 
 

facilitate monitoring their social environment. These behavioural and 

morphological characteristics indicate that they may benefit by responding to 

social cues with pilferage avoidance behaviour.  

 

Hopewell and Leaver (2008) found that wild Eastern grey squirrels in the UK 

were sensitive to the presence of conspecifics when caching their food and 

performed behaviours that may help to prevent cache pilferage. In particular, 

when in the presence of other squirrels, the subjects would: show more 

vigilance; delay the start of their caching behaviour after collecting a nut; spend 

more time disguising their caches with leaf litter, especially when caching a 

preferred item; and made more interruptions to caching, particularly when 

storing preferred items. Further field studies by Leaver and colleagues report 

that grey squirrels will cache less in the presence of observers and more when 

alone, turn their backs to conspecifics while caching, space their caches farther 

apart (Leaver et al. 2007), and will transport food items and cache them at 

farther distances from the food source when there are competitors around, and 

especially when food availability is low (Hopewell et al. 2008).  

 

In the USA, Steele et al. (2008) report that in the presence of observers wild 

Eastern grey squirrels will eat more, store food in locations with less visual 

access and make more interruptions to their caching. Steele and colleagues 

also report the frequent occurrences of an interesting behaviour which they call 

‘deceptive caching’. Steele, et al. describe a typical caching episode by a 

squirrel (digging a hole, appearing to push a nut into the hole, and covering the 

site with soil and patting down the cache), however, at the end of the suite of 

behaviours the squirrel exits the site still nut carrying. They suggest that 

squirrels do this to deceive those individuals that may be watching to reduce the 

risk of cache pilferage. Leaver et al. (2007) suggest that studies such as these 

supports the idea that squirrels may also possess more complex cognitive 

abilities like those found in many corvid and some parid species; however, 

efforts to mislead conspecifics in this way have not been observed in studies of 

grey squirrels in the UK (Hopewell & Leaver 2008). Indeed, if ‘deceptive 

caching’ was intentional, this type of behaviour is more characteristic of species 

that demonstrate highly sophisticated cognitive abilities, and has been reported 

in some corvids (raven: Bugnyar & Kotrschal 2004; Heinrich 1999; rook: Seed, 
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Emery & Clayton, personal observation in Dally, Clayton et al 2006). While 

Steele and colleagues (2008) do acknowledge that it would be premature to 

suggest that the nature of the deceptive caching they report is ‘cognitively 

tactical’, the behaviour, nevertheless, is consistent with some of the definitions 

of tactical deception, and qualifies as a behaviourally deceptive and an adaptive 

‘pilferage-averting behaviour’. Though sensitive to the social context, Steele et 

al. note that further detailed and controlled studies are needed to clarify what 

specific cues cachers respond to when engaging in behaviour to reduce 

pilferage, and understand the triggering factors of this type of behaviour among 

squirrels. 

 

Furthermore, grey squirrels have been shown to be sensitive to heterospecific 

presence in the context of potential cache theft. Steele et al. (2008) found that 

after witnessing a human pilfer their recently made cache, wild squirrels would 

react by caching out of view or eating more nuts rather than caching them. 

However, as this study does not represent an ecologically relevant risk to 

caches, namely pilferage by a human, this might indicate that squirrels are 

simply responding to cache loss, as opposed to witnessing the theft of their 

caches. Further studies that aim to isolate experience of cache loss from social 

cues of pilferage would help to clarify how squirrels might be assessing 

pilferage risk, and elucidate whether they assess risks to caching in a similar 

way to corvids.  

 

There is some evidence to suggest that corvids might pose a risk to the caches 

of grey squirrels. Vernelli (2013) observed magpies follow grey squirrels and 

pilfer their newly made caches. Some species of corvid also possess 

observational spatial memory and so are able to return to pilfer caches some 

time after the cacher has left the area (this will be discussed in more detail 

later). Two studies have directly investigated the risks that corvids pose to grey 

squirrel caches and reveal seemingly incompatible results. When playbacks of 

blue jay, Cyanocitta cristata, vocalisations were played to wild caching grey 

squirrels, they reduced their foraging effort when recovering caches, compared 

to retrieving caches they made in the absence of the playbacks (Schmidt & 

Ostfeld, 2008). However, grey squirrels do not appear to engage in the same 

anti-pilferage behaviour at the time of caching in the presence of corvids 
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compared to when caching in front of a conspecific audience. In field 

observations squirrels were found to make more caches while alone, bury 

caches farther apart in the presence of conspecifics, and face away from other 

squirrels while burying food but not while caching in the view of corvids (Leaver 

et al. 2007). Given that corvids can fly to observe a cache being made, it is 

possible that engaging in pilferage avoidance behaviour would not benefit a 

caching squirrel. However, whether heterospecifics pose similar risks as 

conspecifics to foraging and caching grey squirrels requires further 

investigation. 

 

Using pilferage as an effective foraging strategy 

 

Throughout periods of low food availability, scatter hoarding birds and mammals 

must recover large numbers of their scattered caches. As has been discussed, 

individuals engage in behaviour to offset the risk of cache loss to thieves. 

However, given that pilferage is a problem for many species of hoarder, how do 

cachers ensure they have a good chance of recovering their own stores, and 

how do thieves increase their pilfering success? Bugnyar & Kotrschal (2002) 

argue that there is an ‘evolutionary arms race’ between cachers and the 

pilferers: within species, the ability for cachers to engage in cache concealment 

behaviour has evolved alongside ways that pilferers increase their potential for 

stealing a cache. The following sections will examine two strategies that scatter 

hoarders use to recover their stores, namely spatial memory and visual cues. In 

respect of each, it will be examined how cache thieves may also take 

advantage of using similar strategies to increase their pilferage efforts beyond 

random search. 

 

Strategy 1: Spatial memory 

 

Spatial memory plays an important role in the behaviour of many scatter 

hoarding birds and some scatter hoarding mammals in recovering their own 

food stores (for reviews see: Sherry 1992; Shettleworth 1990; Smulders, Gould 

& Leaver 2010). Some birds can recover their caches with a great degree of 

accuracy and after an extended period of time (Clark's nutcracker: Kamil & 
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Balda 1985; Tomback 1980: Vander Wall 1982; Vander Wall & Hutchins 1983; 

Eurasian nutcracker, Nucifraga caryocatactes: Conrads & Balda 1979; 

pinyon jay, Gymnorhinus cyanocephalus: Balda & Kamil 1989; Romonchuk 

1995; raven: Heinrich & Pepper 1998; magpie: Feenders & Smulders 2011; coal 

tit: Male & Smulders 2007a; marsh tit: Sherry, Krebs & Cowie 1981; 

Shettleworth & Krebs 1982; black-capped chickadee: Sherry 1984). However, 

compared with birds, mammals can rely more heavily on olfactory cues to 

locate their stores so they may have less need to use spatial memory. 

Nevertheless, when comparing the use of spatial memory over olfactory cues, 

mammalian cachers benefit from spatial memory to locate their stores 

compared to those using random olfactory search (Merriam’s kangaroo rat: 

Jacobs 1992b; pine chipmunk, Tamias amoenus: Vander Wall 1991, 2000; deer 

mouse, Peromyscus maniculatus: Vander Wall 2000; for reviews of rodents 

using memory to recover caches see: Smith & Reichman 1984; Smulders et al. 

2010). Remembering the location of buried caches, as opposed to simply 

relying on olfaction, is critical for the survival of scatter hoarding grey squirrels. 

This species are active all winter in climates where caches are frequently under 

snow for several weeks, making it more difficult for them to be recovered using 

olfactory information (Lewis 1980). Experimental studies demonstrate that grey 

squirrels can use spatial memory to recover their own caches (Jacobs & Liman 

1991), and that they prefer to use spatial and visual information (discussed 

later) over olfactory cues for recovering artificial caches (McQuade, Williams & 

Eichenbaum 1986). Moreover, Macdonald (1997) suggests that the spatial 

memory of grey squirrels is accurate enough to use in cache recovery.  

 

In relation to cache pilferage, some species can also learn and remember the 

locations of caches that they have seen others make, an ability that requires a 

highly accurate observational spatial memory (OSM). This can be used to 

increase pilferage success, and may be a more efficient strategy than random 

olfactory search, and it is safer than immediately pilfering a cache because the 

cache owner might still be in the area (Clayton & Emery 2009). A number of 

species of birds and rodents have been observed to pilfer a few minutes after a 

cache has been made (magpie:Vernelli 2013; raven: Bugnyar & Kotrschal 2002; 

Schied & Bugnyar 2008; black capped chickadee: Baker, Stone, Baker, 

Shelden, Skillicorn & Mantych 1988; Hitchcock & Sherry 1995; Eastern grey 
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squirrel: Steele et al. 2014; Merriam’s kangaroo rat: Daly, Jacobs Wilson & 

Behrends 1992; North Island robin, Petroica longipes: Armstrong, Garland & 

Burns 2012), however pilfering by observation has the risk of the cacher still 

being close. Using OSM allows the pilferer to return to caches at will after the 

cacher has left the area, and has only been experimentally tested and found in 

a few corvids and one parid: Mexican jays, Aphelocoma ultramarina, and pinyon 

jays return to efficiently pilfer caches after a delay of 1-2 days (Bednekoff & 

Balda 1996a; 1996b), Western scrub jays can pilfer after a four hour retention 

interval (Griffiths, Duart & Clayton, unpublished data in Clayton, Griffiths, Emery 

& Dickinson 2001; Watanabe & Clayton 2007), and great tits, Parus major, can 

accurately locate caches made heterospecifics after a 24 hour interval (Brodin & Urhan 

2014).   

 

Some species are reported to have highly accurate spatial memory but perform 

poorly in OSM tasks that require longer retention intervals than a few minutes 

(e.g., black-capped chickadee: Baker et al. 1988; Hitchcock & Sherry 1995; 

Sherry 1984). The presence of OSM among some species, but not others, has 

led some researchers to suggest that the ability to locate conspecifics’ caches 

has a basis in social cognition (Heinrich & Pepper 1998). OSM has a strong 

cognitive component, such as the requirement for an understanding of object 

permanence and delayed local enhancement (discussed in Scheid & Bugnyar 

2008). Within the ‘evolutionary arms race’, the propensity to develop strategies 

for protecting caches and experiencing or engaging in pilferage depends upon 

opportunities for social learning, and thus may be influenced by group living 

(Dally, Clayton et al. 2006). Thus, Bednekoff & Balda (1996b) suggest that for 

non-flocking species such as the Clark’s nutcracker who perform less well in 

OSM tests, despite being a specialised cacher, the opportunities for watching 

another bird may be relatively infrequent compared to highly social pinyon jays 

or Mexican jays who demonstrate longer retention intervals, and this may be 

related to the degree of development of observational learning abilities. An 

alternative viewpoint has also been suggested for why some caching species 

possess OSM while others do not. When Scheid & Bugnyar (2008) compared 

ravens (socially dynamic cachers), against jackdaws, Corvus monedula 

(socially cohesive but cache less), for retrieving cached food items, jackdaws 

performed less well compared to the ravens. They suggest that observational 
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memory abilities might be more connected with how much the species relies on 

caches for food, rather than simply social life. In this regard, it is possible that 

OSM has evolved as a consequence of social living but in combination with 

cache dependence (Bednekoff & Balda 1996b). However, a recent study 

reporting the proficient cache locating abilities of a non-hoarding species, the 

great tit, at recovering caches made by marsh tits does not support this 

viewpoint. More studies on a wider a range of caching species that vary in  their 

dependency upon caches, and differ in their sociality would help to further an 

understanding of this. 

 

Though some corvids use OSM to pilfer caches, very little is known about 

pilfering behaviour in general among food hoarding species: the majority of 

studies investigate artificial experimenter-made caches as a measure of 

pilferage rates, particularly in wild studies because it difficult to monitor true 

cache pilferage (Vander Wall & Jenkins 2003). Grey squirrels are a suitable 

candidate to further investigate OSM in cache pilferage. Squirrels appear to be 

sensitive to their social environment, and might be engaging in socially and 

cognitively complex behaviour when ensuring the safety of their caches in a 

similar manner to corvids. They are predominantly asocial but forage and cache 

where there are competitor conspecifics and heterospecifics, and they can use 

spatial memory to locate their own caches. Further research would clarify what 

cues are used during cache pilferage and whether conspecific audiences do 

pose a risk to caching squirrels, as well as whether a specialist non-corvid 

caching species can also OSM to pilfer. On the other hand, if squirrels did not 

use observational spatial memory to pilfer caches then this would pose further 

questions of how squirrels engage in cache pilferage; an alternative strategy is 

discussed next. 

 

Strategy 2: Visual cues 

 

Scatter cachers have been reported to remember the spatial location of their 

stores and make use of visual cues and landmarks as beacons to aid cache 

recovery and locate experimenter or conspecific made caches. A number of 

captive experiments and a few field observations report the use of landmarks as 

beacons by corvids and parids during caching and recovery. Captive Clark’s 
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nutcrackers have a preference to cache close (within 5cm) to large conspicuous 

objects (Vander Wall, 1982); the more visual cues that are available the fewer 

errors they make when recovering their stores (Kamil, Goodyear & Cheng 

2001); and when visual cues close to cache sites have been moved or removed 

they have difficulty retrieving their stores (Balda & Turek 1984; Gould-Beierle & 

Kamil 1996). Studies of captive black-capped chickadees similarly report that 

the removal of visual landmarks from their enclosure resulted in reduced 

recovery accuracy (Cheng & Sherry 1992; Duff, Brownlie, Sherry & Sangster 

1998; Herz, Zanette & Sherry 1994). Adding visual cues close to cache sites 

increased recovery accuracy for captive grey jays compared to when there were 

no cues (Bunch & Tomback 1986). In the absence of other spatial information, 

or when misleading spatial information is presented, captive Western scrub jays 

and magpies use visual cues to retrieve food (Feenders & Smulders 2011; 

Watanabe 2005). Wild European jays, Garrulus glandarius, use nearby objects 

to locate cached food, show a preference for using objects that stand out from 

their background in terms of colour, and prefer vertical to horizontal beacons 

(Bossema 1979).  

 

Some scatter hoarding mammals also use visual cues when they cache food, 

and are better at recovering their stores when visual cues are available 

(Merriam’s kangaroo rat: Barkley & Jacobs 1998; Mongolian gerbil, Meriones 

unguiculatus: Collett, Cartright & Smith 1985; Southern flying squirrel, 

Glaucomys volans: Gibbs, Lea & Jacobs 2007; laboratory rat: Olton & 

Samuelson 1976; yellow pine chipmunk: Vander Wall 1991; Vander Wall, 

Briggs, Jenkins, Kuhn, Thayer & Beck 2006), and are better at recovering their 

caches compared to when they just use random olfactory search (Merriam’s 

kangaroo rat: Jacobs 1992b; pine chipmunk: Vander Wall 1991; 2000; deer 

mouse: Vander Wall 2000; for reviews of rodents and other mammals using 

memory to recover caches also see: Smith & Reichman 1984; Smulders et al. 

2010; Sherry 1985). Captive Eastern grey squirrels have been shown to use 

visual cues to recover their own caches, and are surprisingly accurate at doing 

so despite their caches being close to those made by other squirrels (Jacobs & 

Liman 1991). McQuade et al. (1986) demonstrated that grey squirrels 

preferentially use extrinsic cues (visual and spatial information) over olfactory 

cues to locate experimenter made caches. McQuade et al. trained wild-caught 
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squirrels to associate three different and distinct cues with a seed reward 

contained in a petri dish: olfactory cues (flower extracts on the covers of the 

petri dish), visual cues (coloured tape covering the dish), and spatial cues (a 

3x4 spatial arrangement of the dishes around the arena), and found that 

squirrels showed a preference for visual and spatial cues when provided the 

opportunity to recover from all types of cue simultaneously.  It is much more 

difficult to study natural cache recovery in the wild, with researchers still opting 

for experimenter-made caches: in one such study, grey squirrels were found to 

locate caches with 62.5% accuracy after a delay of 20 days using visual cues; 

in comparison, red squirrels (who are less reliant on scattered caches for 

survival) were far less accurate (Macdonald 1997). These studies demonstrate 

that landmarks can be used as beacons and illustrate the critical role that they 

can have upon the caching decisions and recovery success and discovery of 

caches in a variety of food hoarding species. 

 

Some researchers have argued that the use of visual cues during caching gives 

cachers a recovery advantage over cache pilferers (McQuade et al. 1986). 

However, if we return to the argument presented by Bugnyar & Kotrschal 

(2002), that cachers and pilferers are in an evolutionary arms race, given that 

cachers have evolved ways to more efficiently locate their own caches (i.e., 

using visual cues), it is possible that pilferers of the same species (who possess 

the same cache retrieval mechanisms) might have evolved similar cache 

pilfering mechanisms alongside cachers; that is to say, food thieves might use 

visual cues to increase their pilfering success. This is an idea that has not been 

empirically tested, though some studies do indicate that this behaviour could be 

likely for cache pilferers. For instance, Vander Wall (1982) reported that Clark’s 

nutcrackers preferentially searched near objects, where caches were more 

concentrated, to recover caches that they had not made themselves. The 

studies mentioned above of grey squirrels used caches that the squirrels had 

not made themselves to measure cache recovery using impermanent features 

and reported squirrels as accurate at retrieving these caches (McQuade et al 

1986; Macdonald 1997). For wild rural and urban grey squirrels the most useful 

visual cues are likely to be vegetation, such as trees and shrubs, as well as 

manmade fixtures. In wild jays, Bossema (1979) reported the use of “vertical 

structures such as saplings and tree trunks” (p. 1). Some studies report that 
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artificial caches made closer to the base of trees are stolen at higher rates in 

locations that are frequented by grey squirrels (Leaver, Jayne & Lea 2014; 

Steele et al. 2014), however the precise reason for this is not clear. It is possible 

that caches are more vulnerable to pilferage under trees because the tree acts 

as a beacon to both cachers and pilferers of the whereabouts of hoarded food, 

as indicated by Bossema. However, it is also possible that many animals spend 

more time foraging under the cover of trees because there is generally more 

food in these locations and they offer an escape from predators, naive 

competitors happen upon caches more often closer to trees. Further research of 

this type would help to provide insight into the cues that squirrels, and hoarders 

in general, use when engaging in cache pilferage and also when deciding 

where is the optimal place to store food in terms of cache longevity. 

 

Predation risks while foraging and hoarding 

 

According to optimal foraging theory, the goal of the foraging animal is to 

maximise the rate at which energy can be acquired from the environment, while 

using the least amount of time to acquire a given amount of energy. Foraging 

decisions, such as where and when to eat or hoard, require a trade-off between 

these two conflicting goals (Sinervo 2006). The preceding discussions have 

highlighted how risks posed by conspecific, and sometimes heterospecific, 

competitors can affect whether the individual is foraging and hoarding optimally, 

and ultimately the long term survival of the individual. However, the costs and 

benefits of social foraging become more complex when the costs of predation 

are taken into account, and there appears to be a multi-way trade-off between 

these decisions. Predators pose a more direct risk to the fitness of foraging 

animals and therefore greatly impact their foraging decisions. While foraging, 

animals assess risk and change their behaviour to lower their probability of 

being predated (Lima & Dill 1989). However, behavioural strategies which 

lessen predation risk are often at odds with behaviour to maximise efficient 

foraging and hoarding (Valone & Lima 1987): for instance, there is a trade-off 

between efficient feeding (choosing to eat at a patch) and exposing oneself to 

increased predation risk. Moreover, areas with higher risks of predation might 

be the optimal places to forage and store, potentially due to less competition by 

other foragers; though further research is necessary to explore how they are 
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traded-off against one another. The following discussion will examine what is 

already known about grey squirrel foraging behaviour and how it changes under 

predation risk. It will then go on to explore the role of predation risk in hoarding 

efficiency, separate from the topic of general foraging, and how there might be a 

trade-off between predation risk with risks posed by competitors and pilferers.   

 

The effect of predation risk on foraging behaviour  

 

Tree squirrels, which include grey squirrels, inhabit wooded rural and urban 

areas, making use of trees for both feeding and safety. While they spend much 

of their time foraging close to trees for fallen nuts and seeds, they often have to 

travel beyond the cover of the tree canopy in order to locate more resources as 

food becomes scarce in their current patch (Lima, Valone & Caraco 1985). 

Foraging at an increased distance from tree canopy can put the individual at 

greater risk from both aerial and terrestrial predators (reviewed in Verdolin 

2006). Grey squirrels are well adapted to respond to cues of predation; they are 

fast and agile while on the ground as well as in the trees, and use a 

combination of senses to monitor for the presence of predators. They can use 

olfactory information from predator scent marks, such as droppings and urine, 

to help to determine how recently the predator was in the vicinity, reducing their 

foraging time in locations where a predator has been recently, and thus 

reducing their exposure to risk (Booth et al. 2012; Müller-Schwarze 2009). They 

monitor for visual and auditory alert behaviour from nearby conspecifics which 

may indicate predator presence, and respond to these by increasing their 

vigilance (Lishak 1984; Partan et al. 2010; Partan et al. 2009). While some 

animals interrupt their feeding  in order to visually scan their environment for 

potential predators, squirrels can benefit from bipedal vigilance while continuing 

to eat or handle food; they use this to obtain information about the environment, 

and will spend more time being vigilant if their view is obstructed (Makowska & 

Kramer 2007). What is more, grey squirrels actively engage in various 

behaviours directly aimed towards predators, such as using tail signals, 

“flagging”, (Partan et al. 2010; Partan et al. 2009) or vocalisations (Lishak 1984) 

to ward them off, though these are often performed at a high cost to foraging 

(Makowska & Kramer, 2007; Shonfield, 2011). 
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There is an extensive literature exploring how predation risk affects foraging 

decisions (reviewed in Verdolin 2006), however focus here will be on research 

that has been carried out with squirrels. The risk of predation is powerful in 

shaping the foraging strategies of squirrels, affecting where they forage and for 

how long. At artificial food patches, fox squirrels (Brown Morgan & Dow 1992), 

chipmunks and grey squirrels (Bowers, Jefferson & Kuebler, 1993) feed less in 

exposed areas away from tree canopy. When foraging in areas farther from 

cover, grey squirrels eat and handle the same quantity of seeds faster than in 

areas of safety (Newman, Recer, Zwicker & Caraco, 1988). Flight initiation 

distance, the distance at which they begin to flee if exposed to a predator, 

increases as they become farther away from refuge (Dill & Houtman, 1989). 

Squirrels reduce their foraging time in locations that have cues of predator 

presence, including odours (Booth et al. 2012; Müller-Schwarze 2009), and 

visual cues (Thorson, Morgan, Brown & Norman 1998).  Perceived risk of 

predation also appears to affect diet choice: grey squirrels trade-off energy 

intake (Lima et al. 1985) and handling time (Lima & Valone 1986) against the 

risk of predation while foraging at a distance from safety, showing a preference 

for consuming smaller food items at the foraging patch, a behaviour which 

quickly increases energy consumption, while preferring to transport larger food 

items to the safety of cover for consumption.  

 

Grey squirrels might also benefit from conspecifics while foraging at the same 

patch which might be an adaptation to lessen predation risk. While foraging 

alongside others, individuals have less chance of being detected and increased 

probability of escaping if they are attacked (‘dilution effect’), they do not need to 

visually scan for predators as frequently (‘many-eyes’ detection effect) so can 

spend less time being vigilant and more time feeding (Delm 1990; Bednekoff & 

Lima 1998). Furthermore, information detected about potential predation threats 

is likely to be of improved quality among a group, compared to that gathered by 

lone foragers (Bell, Radford, Rose, Wade & Ridley 2009). Research on group 

living species supports these “safety in numbers” hypotheses with studies 

reporting reduced vigilance with increasing group size (“the group size effect” 

reviewed by Roberts, 1996). Likewise, feeding rates decline among smaller 

groups, possibly owing to the increased need for vigilance: a meta-analysis by 

Verdolin (2006) reports that foraging success is reduced when individuals 
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spend more time engaging in anti-predator vigilance. In grey squirrels, foraging 

effort is increased when there are conspecifics present: Hopewell et al. (2008) 

found that they increased their rate of returning to a nut patch, spending less 

time transporting items, when conspecifics were present compared to when 

foraging alone, and Bowers et al. (1993) report that they spend less time 

searching for food if there are fewer other foragers. These studies could 

indicate that the presence of conspecifics at a patch allows individual squirrels 

to engage in increased foraging because of the lessened predation risk. 

However, given that grey squirrels are not a group living species, these findings 

might also be explained by foraging competition, which will be considered next. 

 

It has been theorized that although increased group size while foraging helps to 

lessen the risk of predation, the reason for reduced vigilance among larger 

foraging groups might not be directly linked to the safety of the group. The 

‘scramble competition’ hypothesis suggests that vigilance declines as a function 

of increasing feeding rate due to greater competition for food while foraging 

among groups (Beauchamp 2003). As a result, there are costs for predator 

detection with less time devoted to being vigilant (Beauchamp & Ruxton 2003). 

A number of studies have investigated and modelled scramble competition with 

varying results. For instance, Beauchamp and Livoreil (1997) investigated the 

many eyes hypothesis in spice finches (Lonchura punctulata) and found that 

vigilance levels decreased with group size. However, they also found that 

foraging and feeding rate increased with group size, which is consistent with the 

view that vigilance is decreased owing to increased competition, as opposed to 

reduced predation. On the other hand, some studies have found more influence 

of predation risk than competition under group foraging competition (Lima, 

Zollner & Bednekoff 1999), and Bednekoff and Lima (2004) report that scramble 

competition only holds for stable small groups; individuals in larger groups feed 

considerably less because of the increased competition.  Nevertheless, the 

relationship between these three factors is complex and multiplicative, with the 

effects of predation interacting with the effects of competition upon vigilance 

and feeding levels. 

 

With regard to squirrel foraging behaviour, though the group size effect and 

scramble competition hypothesis have not been tested among grey squirrels, it 
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is likely that due to the nature of their foraging both might be involved. A number 

of studies report that they trade-off foraging decisions based upon predation risk 

(e.g., Lima et al. 1985), and individuals are also highly competitive for resources 

yet still forage at the same patch as conspecifics, suggesting that this might be 

adaptive for predator avoidance. However, how foraging competition and 

predator vigilance are traded-off against one another to influence foraging 

strategy is unknown in grey squirrels. Whether there is also a trade-off 

implicated in caching decisions among scatter hoarders will next be addressed. 

 

The effect of predation risk on caching decisions 

 

From the previous discussion, it is evident that foraging animals face a complex 

trade-off in choosing when and where to forage between the costs and benefits 

of social foraging and the costs of predation. For animals that scatter hoard food 

matters are yet more complicated. Not only will the trade-off with predation risk 

affect decisions while they are searching for food to eat, it will also be relevant 

while they cache the food item, and when they come to recover the cache. We 

know from a number of studies that scatter hoarders transport food to locations 

where the probability of pilferage is reduced (e.g., Muñoz & Bonal 2011; 

Stapanian & Smith 1986). In addition, they adjust their food storing behaviour in 

ways that minimise predation risk (reviewed below). However both of these 

types of study typically only consider the trade-offs between the benefits of 

limiting pilferage or predation separately against the energetic costs of where to 

place caches. In reality, for wild-living individuals they are likely to be highly 

connected. The next section will firstly review research that has been carried 

out concerning caching decisions in relation to predation risk, and then will 

consider how these decisions are affected by risks associated with competition, 

including pilferage risk.  

 

While many studies have investigated the effects of predation risks on foraging 

decisions across many species, including hoarders, fewer have investigated 

how predation risk might affect caching decisions among food storing animals. 

Predation risk is likely to have considerable impact upon individual caching 

choices, such as whether an item is consumed or cached, and when and where 

it is buried. Grey squirrels have been found to preferentially cache items that 
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have a greater consumption time, as opposed to eating them, meaning that the 

individual spends less time on the ground eating exposed to predators (Jacobs 

1992). When predation risk is at its lowest individuals make more caches and 

take more time to cache (Merriam’s kangaroo rat: Leaver 2004). Predation risk 

might also influence decisions about where the item is stored, in terms of safety 

while caching and retrieving, in a similar way to how it affects where to forage 

versus where to eat (Lima et al. 1985).  

 

Previous discussions have highlighted how many species of food hoarders are 

sensitive to pilferage risks while caching which can affect how, when and where 

they store food. However, the optimal conditions for minimising predation are 

frequently in conflict with ensuring security of caches. For instance, Daly et al. 

(1990) report that wider cache dispersion can increase predation risk due to 

increased exposure during travel time; but a number of studies show that 

caches that are dispersed more widely are also at lower risk of pilferage (Leaver 

2004; Leaver et al. 2014; Male & Smulders 2007a; 2007b). Some species have 

been found to trade-off these risks while caching; studies show that various 

species of food hoarding animals prefer to space caches more widely if they 

contain favourable food items more than caches of less valuable foods (crested 

and willow tit: Jokinen & Suhonen 1995; Merriam’s kangaroo rat: Leaver 2004; 

Leaver & Daly; yellow pine chipmunk: Vander Wall 1995; fox squirrel: Stapanian 

& Smith 1984; grey squirrel: Hadj-Chikh et al. 1996; red squirrel: Hurly & 

Robertson 1987; Steele, Hadj-Chikh & Hazeltine 1996; Longland & Clements 

1995; Japanese squirrel, Sciurus lis: Tamura et al. 1999).  

 

Few studies have directly investigated the trade-off between predation and 

pilferage risk among scatter hoarders, with those that have been conducted 

mainly measuring distance from cover as an assay of predation risk. These 

studies report that both artificial and natural caches placed in exposed locations 

are less likely to be stolen than those placed closer to areas that provide safety 

from predators, namely trees (artificial caches: Leaver et al. 2014; Steele et al. 

2014; natural caches: fox squirrels: Stapanian & Smith 1986; Japanese 

squirrels: Tamura et al. 1999). Two field studies have directly compared the 

trade-off between pilferage risk and predation risk in food storing rodents. 

Leaver (2004) found that Merriam’s kangaroo rat distributed favourable items 
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more widely while caching despite the greater exposure to predators. Perea, 

González, San Miguel and Gil (2011) found that moonlight levels influenced 

pilferage of seeds in a nocturnal rodent, wood mouse, Apodemus sylvaticus. 

They found that seeds were removed more rapidly in open habitats and when 

there were increased moonlight levels, in comparison to sheltered locations. 

Grey squirrels have been reported to show a preference for caching in more 

exposed locations, as opposed to close to cover (fox squirrels: Stapanian & 

Smith 1986), or will cache more profitable food items in locations more exposed 

to predators than compared to non-profitable items (grey squirrels: Steele et al. 

2014). Steele et al. (2014) suggest that caches closer to cover are more likely to 

be pilfered because there is lower risk of predation for opportunistic cache-

pilferers to forage in these locations. Stapanian and Smith (1978; 1986) suggest 

that while cache-owners can move quickly and deliberately between their 

remembered caches in exposed areas, thieves must forage much more slowly 

in order to pilfer caches using olfactory cues, necessitating foraging in safer 

locations.  

 

These studies illustrate that foraging individuals do not always act in ways to 

simply minimise predation risk, but that the role of the social environment 

heavily influences assessments of predation risk in relation to foraging and 

hoarding decisions. When making caching decisions, hoarders face a trade-off 

between minimising the risks of predation and reducing the risks that 

competitors pose to their caches; in terms of cache longevity, it can be more 

profitable to store food in areas of higher predation risk. Less is known about 

what specific cues individuals are responding to when making caching 

decisions based upon predation risks. It is evident that more research would 

clarify which aspects of social and predatory risks are responded to by grey 

squirrels and what contribution this makes to their foraging and caching 

decisions. 

 

General conclusion 

 

The body of this literature review has focussed upon the food storing and 

pilfering behaviour of corvids because more is known about how they respond 

to cache pilferage risk than in scatter hoarding mammals. The few field studies 
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that have been conducted on grey squirrels indicate that they might share 

similar behaviour with corvids when making hoarding decisions. In terms of 

foraging and caching, controlled research is needed to investigate what specific 

cues squirrels are using to assess competition and pilferage risk. Individual 

differences are also thought to affect hoarding strategies in dominance-

structured flocks of birds; given that research indicates that squirrels use 

dominance during foraging, it is possible that they might use it to form their 

caching decisions like in birds. Furthermore, heterospecific competitors might 

also affect foraging decisions in squirrels since they are known to compete for 

resources with different caching species, such as corvids. This literature review 

has also asked questions about cache pilferage from the perspective of the thief 

as  well as the cacher; very few studies have investigated factors that influence 

pilfering success among scatter caching species. Because foraging and 

pilfering are not a simple one-way process for all hoarding animals, the 

questions addressed in this literature review have also highlighted how 

decisions about foraging competition and pilferage risk need to be considered 

from the point of view of a multi-way trade-off with predation risk, which bears 

the greatest fitness cost.   
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Thesis preview 

 

As can be seen from the literature review, a wide range of studies have 

explored how corvids respond to different risks to their food hoarding behaviour. 

Fewer studies have investigated the behaviour of non-corvid scatter cachers in 

response to combinations of different risks upon foraging and hoarding. 

However, a handful of studies have indicated that wild grey squirrels might 

engage in similar behaviour to corvids in terms of the strategies they use to limit 

the costs of hoarding. This thesis presents two laboratory studies that have 

experimentally investigated how grey squirrels respond to different cues of 

pilferage risk (conspecific presence and cache loss), and whether conspecific 

audiences pose a risk to caching individuals. However, responding to pilferage 

risk is not a simple decision based upon the isolated cues that are presented in 

laboratory studies. Wild individuals face a multi-way trade-off in choosing where 

and when to forage, in terms of the costs and benefits of social foraging and the 

costs of predation. While elements of this trade-off have been considered 

before so that we know how grey squirrels respond to individual cues, the full 

system has not. Therefore, three field studies have been carried out that 

investigate different risk factors to foraging grey squirrels; in particular, how 

competition for resources, pilferage risk and predation risk interplay and affect 

food acquisition, storage and cache longevity. Note that it was in the nature of 

this research that several of the studies were conducted in parallel to one 

another. The laboratory studies were carried out consecutively but at the same 

time as the field studies. The locations of the field study presented in Chapters 

5 and 6 did not overlap and therefore they were carried out at the same time as 

one another because they were examining behaviour that is seasonally based. 

The extent to which the different studies could build information on one another 

was therefore limited.  

 

Previous studies carried out with grey squirrels in the field indicate that 

individuals are sensitive to the presence of conspecifics while storing food, and 

modify their future hoarding behaviour in response to experience of pilferage. In 

Chapter 2, results are presented from the first study conducted with grey 

squirrels that has manipulated both observer presence and pilferage experience 

while in a controlled laboratory environment. This study measured whether the 



50 
 

subjects changed their eating and caching behaviour while under these 

conditions and whether they engaged in pilferage reduction behaviour that 

might serve to minimise the potential loss of their caches. This helps to clarify 

whether captive grey squirrels respond in a similar way to that seen in wild grey 

squirrels and laboratory studies conducted with corvids.  

 

The fact that grey squirrels modify their caching behaviour while in the presence 

of conspecifics suggests that onlookers pose a threat to caches. A second 

laboratory study is presented in Chapter 3 which explored cache pilferage from 

the point of view of the pilfering squirrel. This study investigated whether grey 

squirrels have evolved the ability to use OSM to pilfer caches they have seen a 

conspecific make, a pilferage technique which has been reported in some 

species of corvid. In order to make direct comparisons with the few studies 

carried out with corvids an experimental set up that had already been used to 

test OSM was employed so that the results of the current study could be 

analysed in the same manner and more easily compared to existing studies. 

 

Chapter 4 examines an alternative strategy by which squirrels might gain and 

maintain access to their resources (current, stored and stolen), namely social 

dominance. Some studies with other species of food hoarder indicate that 

dominant and subordinate individuals behave differently when storing food, with 

subordinate individuals being risk averse to predation cues to offset increased 

competition with more dominant individuals. This study has investigated this by 

measuring if social rank affected cache placement decisions relative to 

competition, pilferage and predation risks in a group of wild squirrels.   

 

Chapter 5 further looks into the influence of decisions about predation risk but 

this time when pilfering caches. Previous research has indicated that there is a 

pilferage-predation risk trade-off when deciding upon the optimal place to store 

food, with items cached in locations high in predation risk associated with cache 

longevity. However, given that locations that provide cover and an escape route 

from predators, i.e., trees, also have abundant food availability, a higher density 

of competitors, and might act as beacons, it is difficult to conclude the 

contribution these other factors might be having on pilferage rates. This study 

experimentally investigated pilferage behaviour from the point of view of the 
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thief in a natural setting. The pilferage rates of artificial caches were compared 

across four different types of visual cue that varied in whether they provided 

safety from predators, were a reliable food supply, or simply acted as a beacon. 

This provides insight into whether pilferers just target trees because they are 

beacons for caches or whether they target particular tress because they provide 

protection from predation risk and/or higher food availability. 

 

In Chapter 6, a final study isolates responses to different risk factors to 

determine what contribution they make to foraging decisions. Different cues of 

risk were manipulated by presenting auditory playbacks to wild grey squirrels to 

simulate risks they might face while foraging: namely, risks posed by 

conspecifics and heterospecifics that compete for the same resources as 

squirrels, and risks posed by predators. Behaviour was monitored in response 

to the playbacks to determine the individual impact upon alert and foraging 

behaviours. 

 

Finally Chapter 7 provides a general discussion and evaluation of the data 

chapters, and integrates what has been found from these new studies with what 

is currently known about Eastern grey squirrel behaviour. 
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Chapter 2: The effects of audience and pilferage on caching 

behaviour in the Eastern grey squirrel: a laboratory study.  

 

Introduction 

 

Food storing behaviour is widespread among birds and mammals that have 

evolved in an environment where the availability of food is variable according to 

season and individuals must compete for food resources. Animals hoard items 

such as nuts, seeds, and plant material, when supplies are abundant, and 

recover them during periods of low food availability (for discussions of the 

evolution of food hoarding see: Andersson & Krebs 1978; Roberts 1979; Smith 

& Reichman 1984; Vander Wall, 1990). However, these stores are vulnerable to 

theft by opportunistic foragers, with rates of pilferage estimated to be as much 

as 30% per day for some long term hoarders (Vander Wall & Jenkins 2003, 

though the upper range of this figure has been questioned owing to the fact that 

it is predominantly based on data from experimenter-made caches: Leaver et al. 

2007). Hoarding animals have evolved a variety of strategies that help to 

minimise the loss of their food stores to pilferers. Larder hoarders reduce the 

risk of their food being stolen by bulk storing food items around their nest site 

which they aggressively defend from thieves, while scatter hoarders disperse 

single items in multiple caches across many different locations within their home 

range. Higher rates of cache theft have been reported when food is stored in 

view of other hoarders compared to when caching alone (e.g., Burnell &  

Tomback 1985;  Carrascal & Moreno 1993; Sherry et al. 1982; Vander Wall 

1990; Vander Wall & Smith 1987). Some species have been reported to be 

sensitive to eavesdroppers at the time of caching and will alter their behaviour 

in the presence of potential competitors in ways that might help to minimise 

cache theft (for reviews of social factors implicated in caching behaviour see: 

Brodin 2010; de Kort et al. 2006; Dally, Clayton et al. 2006; Grodzinski & 

Clayton 2010; Vander Wall & Smith 1987). The current study adds to this 

growing field of research by exploring how the social environment and 

experience of pilferage affect caching behaviour in the Eastern grey squirrel. 
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Audience effects on caching 

 

A variety of wild and captive studies investigating ‘pilferage reduction 

behaviours’ have been conducted among food storing Passeriformes and 

Rodentia. These report that hoarders adopt different strategies when storing 

food in audience situations in contrast to storing alone, which may serve to 

minimise cache loss to onlookers (see Table 1). A large number of studies have 

reported that some species within the Corvidae and Paridae are particularly 

sensitive to the presence of conspecifics while they are hoarding, and will 

engage in a variety of different strategies to reduce pilferage of their caches. 

Some of these strategies have been claimed to involve quite complex cognition, 

such as awareness of an observer’s visual perspective (for a recent discussion 

of this topic see Grodzinski & Clayton 2010, and references therein). A series of 

laboratory studies by Clayton and colleagues with Western scrub jays have 

investigated these behaviours in depth. Typically these studies employ two 

adjacent cages, one containing a caching bird and the other containing an 

observing bird. The caching bird is given the opportunity to cache in two visually 

and spatially distinct locations, one that the observer has full visual access to 

and one that is made more visually obscure (e.g., by being at a greater distance 

from the observer; by having a barrier: Dally et al 2005b; by being in a more 

shaded location: Dally et al. 2004). The researchers compare the birds’ location 

preferences and the type of strategies used in the observed condition with when 

they cache in private. For example, Dally et al. (2005b) reported that, compared 

to when caching alone, jays caching in the presence of an observer preferred to 

hide items in distant sites and out-of-view and moved them multiple times while 

doing so; when the observer was removed they returned to their caches and re-

cached them in a new location. Furthermore, experienced jays (those that had 

experience of being a thief themselves) were more likely to re-cache after being 

observed compared to birds that did not have experience of pilfering (Emery & 

Clayton 2001). 
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Table 1. Different “pilferage reduction behaviour” documented among food hoarding 

birds and mammals when in audience conditions.  

Class Strategy  Species 

AVES:  

Corvidae & 

Paridae 

Cache less in the 

presence of observers / 

more when alone 

Clark’s nutcracker: Clary & Kelly (2011); coal 

tit: Brotons 2000; black-capped chickadee: 

Stone & Baker (1989); Eurasian jay: 

Goodwin (1956); grey jay: Burnell & 

Tomback (1985); magpie: Clarkson et al. 

(1986); Northwestern crow: James & 

Verbeek (1984); rook: Simmons (1968); 

Western scrub jay: Dally et al. (2005a); 

willow tit: Alatalo & Carlson (1987); Lahti & 

Rytkonen (1996) 

Cache more in the 

presence of observers / 

less when alone 

Eurasian jay: Bossema (1979); raven: 

Heinrich & Pepper (1998); Western scrub jay: 

Emery et al. (2004) 

Eat more in the 

presence of observers 

Nuthatch: Carrascal & Moreno (1993); rook: 

Dally et al. (2008) 

Delay the onset of 

caching when in the 

presence of observers 

Magpie: Clarkson et al. (1986); black-capped 

chickadee: Stone & Baker (1989) 

Limit visual information 

by storing food with 

less visual access to 

observers 

Magpie: Clarkson et al. (1986); mountain 

chickadee: Pravosudov (2008); raven: 

Bugnyar & Heinrich 2005; Bugnyar & 

Kotrschal (2002); Heinrich & Pepper (1998); 

Western scrub-jay: Dally et al. (2004; 2005b) 

Limit auditory 

information about the 

location of caches by 

choosing a quieter 

caching substrate 

Eurasian jay: Shaw & Clayton (2012b); 

Western scrub jay: Stulp, Emery, Verhulst & 

Clayton (2009) 

Move caches when in 

the presence of 

observer 

Eurasian jay: Cramp & Perrins (1994); 

Goodwin (1956); raven: Bugnyar & Kotrschal 

(2002); Western scrub-jay: Dally et al. 

(2005a, 2005b) 
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Move caches when the 

observer is absent   

Clark’s nutcracker: Clary & Kelly (2011); 

Eurasian jay: Goodwin (1955); raven: 

Heinrich 1999; Western scrub-jay: Emery & 

Clayton 2001; Emery et al. (2004); Thom & 

Clayton (2013) 

Spacing caches farther 

away 

Grey jay: Waite & Reeve (1995); magpie: 

Clarkson et al. (1986); marsh tit: Sherry et al. 

(1982); willow tit: Lahti, Koivula, Rytkonen, 

Mustonen & Welling (1998) 

Use aggressive 

behaviour to protect 

caches  

Eurasian jay: Bossema (1979); Goodwin 

(1986); Wilmore (1977); rook: Goodwin 

(1986); Western scrub-jay: Dally et al. 

(2005a) 

Using misinformation: 

caching 

inedible items; leading 

conspecifics away from 

food caches; making 

empty caches 

Raven: Bugnyar & Kotrschal (2004); Heinrich 

(1999); rook: Seed et al., personal 

observation in Dally, Clayton et al. (2006) 

MAMMALIA: 

Rodentia   

Cache less in the 

presence of observers / 

more when alone 

Eastern grey squirrel: Leaver et al. (2007); 

rat: Denenberg (1952); Miller & Postman 

(1946) 

Cache more in the 

presence of observers / 

less when alone 

Korean field mouse and Chinese white-

bellied rats: Zhang et al.  (2011); white-footed 

mouse: Sanchez & Reichman (1987) 

Eat more in the 

presence of observers 

Eastern grey squirrel: Steele et al. (2008) 

Limit visual information 

by storing food with 

less visual access to 

observers 

Eastern grey squirrel: Leaver et al. (2007); 

Steele et al. (2008) 

Make more 

interruptions to caching  

‘Curtailed digging’ Eastern grey squirrel: 

Hopewell & Leaver (2008); ‘multiple caches’ 

Steele et al. (2008) 
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Spend more time 

disguising caches  

Eastern grey squirrel: Hopewell & Leaver 

(2008) 

Move caches when the 

observer is absent   

Merriam’s kangaroo rat: Jenkins & Peters 

(1992) 

Spacing caches away 

from the source or 

more widely dispersed 

Pere David’s rock squirrel, Korean field 

mouse, striped field mouse,  Chinese white-

bellied rat, and rat-like hamster: Huang et al. 

(2011); Eastern chipmunk: Clarke & Kramer 

(1994); Eastern grey squirrel: Leaver et al. 

(2007); Hopewell et al. (2008) 

Switch from majority 

scatter hoarding to 

larder hoarding 

Pere David’s rock squirrel: Lu & Zhang 

(2005); Korean field mouse: Zhang et al. 

(2011); Merriam’s kangaroo rat: Preston & 

Jacobs (2001) 

Use aggressive 

behaviour to protect 

caches  

Eastern chipmunk: Clarke & Kramer (1994); 

Eastern grey squirrel: Leaver et al. 

(unpublished data); Merriam’s kangaroo rat: 

Preston & Jacobs (2001); Merriam’s 

kangaroo rat: Daly, et al. (1992) 

Using misinformation: 

making empty caches 

Eastern grey squirrel: Steele et al. (2008) 

 

Less is known about pilferage reduction behaviour in mammalian cachers. 

There appears to be some evidence that they might use similar strategies to 

those used by corvids and parids, as well as using different strategies to avoid 

pilferage (in Table 1). Table 1 shows that grey squirrels demonstrate a range of 

behaviours that might serve to lessen pilferage risk. Among this literature are 

three field studies conducted by Leaver and colleagues (Hopewell & Leaver 

2008; Hopewell et al. 2008; Leaver et al. 2007) on caching behaviour in a 

population of wild Eastern grey squirrels. In these studies the researchers 

monitored squirrels’ natural caching behaviour and found that they were 

sensitive to the presence of conspecifics and would use ‘evasive tactics’ when 

caching to minimise pilferage of their hoards. In particular grey squirrels would: 

space their caches farther apart; orient their backs to other squirrels when 

burying nuts (Leaver et al. 2007); show more vigilance behaviour; delay the 
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start of their caching after collecting a nut; spend more time disguising their 

caches with leaf litter, especially when caching a preferred hazelnut compared 

to a non-preferred almond; make more curtailed digs whereby the individual 

begins digging to deposit a food item but then interrupts the behaviour by being 

vigilant and moving to a new location without depositing the item, particularly 

when storing preferred food items (Hopewell & Leaver 2008); and transport food 

items and cache them at farther distances from the food source when there are 

competitors around, especially when food availability is low (Hopewell et al. 

2008). These studies provide a vital comparison to the literature which is 

dominated by studies carried out with corvids (advised by Dally, Clayton et al. 

2006), as well as a useful platform to further investigate by what mechanisms 

grey squirrels are protecting their food stores.  

 

Pilferage effects on caching  

 

Studies that investigate social influences on caching (such as those in Table 1) 

typically assume that pilferage risk is determined by the presence of observers 

at the time of caching. However, there may be other ways that food-storing 

animals determine the risk of pilferage. An important variable to examine in 

these types of study is how prior experience of pilferage may influence future 

caching behaviour, which is much more difficult to control and monitor in field 

studies. As can be seen in Table 2, fewer studies of this nature have been 

conducted, even with birds. Furthermore the general methodology appears to 

be more variable than methods used in studies investigating audience effects, 

which can make it more difficult to make between-species comparisons.  For 

instance, Hampton and Sherry (1994) reported that black-capped chickadees 

will avoid caching in locations where they have had previous stores pilfered, 

and in a similar species Lucas and Zielinski (1998) found that Carolina 

chickadees cached more after experience of pilferage; while Baker and 

Anderson (1995) reported that the black-capped chickadees in their study did 

not adjust their behaviour in terms of caching location or quantity in response to 

pilferage. These differences could be due to inconsistencies in methodology. 

The birds studied by Baker and Anderson experienced complete pilferage, while 

those in the studies of Hampton and Sherry (1994) and Lucas and Zielinski 

(1998) only experienced partial loss of their food stores, as well as differing in 
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whether the caching and pilferage was observed or not. Dally, Clayton et al 

(2006) suggest that partial pilferage encourages the expression of pilferage 

reduction behaviour, so that storers only engage in behaviour to protect their 

caches if there is some possibility that they could later recover at least some of 

them.  

 

Table 2. Different “pilferage reduction behaviour” documented among food hoarding 

birds and mammals after experiencing partial or complete pilferage.  

Class 
Pilferage 

experienced 
Strategy Species  

AVES:  

Corvidae & 

Paridae 

Partial Cache more  

 

Carolina chickadee, Poecile 

carolinensis: Lucas & 

Zielmski (1998) 

Partial Switch to caching 

a non-preferred 

item 

Western scrub-jay: Clayton, 

Dally, Gilbert & Dickinson 

(2005) 

Partial Move caches 

around more 

Western scrub-jay: Dally et al. 

(2005a) 

Partial Recover and eat 

more caches  

Western scrub-jay: Emery et 

al. (2004) 

Partial Reduce search 

times for caches, 

and decrease 

future caching, in 

pilfered locations 

Black-capped chickadee: 

Hampton & Sherry (1994) 

   

Complete Unaffected: do not 

avoid previously 

pilfered cache 

sites when storing 

food, and do not 

increase number 

of caches made 

 

Black-capped chickadee, 

Paws utricapihs: Baker & 

Anderson (1995) 
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MAMMALIA: 

Rodentia   

Partial Cache in out of 

view sites 

Eastern grey squirrel: Steele 

et al. (2008) 

Partial Move caches to 

an non-preferred 

location  

Merriam’s kangaroo rat: 

Preston & Jacobs (2005) 

Complete  Increase scatter 

hoarding and 

decrease larder 

hoarding 

Pere David’s rock squirrel, 

Korean field mouse, striped 

field mouse, Chinese white-

bellied rat, rat-like hamster: 

Huang et al. (2011) 

Almost complete 

pilferage 

Increase larder 

hoarding and 

decrease scatter 

hoarding 

Merriam’s kangaroo rat: 

Preston & Jacobs (2001) 

 Complete Increase distance 

items buried from 

food source  

 

Pere David’s rock squirrel, 

Korean field mouse, striped 

field mouse, Chinese white-

bellied rat, rat-like hamster: 

Huang et al. (2011) 

 

Within the rodent literature Preston and Jacobs (2001, 2005) have directly 

compared the responses of Merriam’s kangaroo rats to the mere presence of a 

competitor versus when competitor presence was paired with pilferage. They 

reported that kangaroo rats did not change their caching strategy in response to 

the mere presence of a conspecific (Preston & Jacobs 2001) or heterospecific 

(Preston & Jacobs 2005) competitor, but they did when presence of a 

competitor was also paired with pilferage. Preston and Jacobs suggest that 

kangaroo rats assess pilferage risk from experience of being pilfered and alter 

their future cache strategy to minimise further risk. The only study (to my 

knowledge) that has investigated the effect of cache loss on pilferage reduction 

behaviour in Eastern grey squirrels is that of Steele et al.  (2008). In a series of 

field experiments with wild squirrels the researchers attempted to elicit different 

kinds of ‘pilferage averting behaviour’ by robbing caches. The researchers 

presented a series of nuts to a focal squirrel, and after several caches were 

made, another researcher removed the last cache that the squirrel had made 
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while attempting to remain in the visual presence of that squirrel. Another series 

of nuts was then presented to the squirrel and its pilferage averting behaviour 

was monitored. They found that squirrels were more likely to cache nuts in 

“sites that were either out of view of or inaccessible to observers” (p. 711) 

following experience of pilferage. The researchers regarded this as evidence 

that squirrels engage in pilferage averting behaviour after witnessing partial 

pilferage of their caches by a human.   

 

The field studies conducted by Leaver and colleagues and Steele et al indicate 

that squirrels might be responding to cues of pilferage risk (the presence of 

conspecifics) as well as observation of cache pilferage (albeit by a human) by 

changing their caching behaviour. However, unlike with the Passeriform 

literature, these claims have not been tested experimentally under controlled 

laboratory conditions, and so it is difficult to isolate the precise cue that squirrels 

use to assess pilferage risk while caching; whether, as in corvids, conspecific 

presence specifically cues responses to pilferage risk among grey squirrels, or if 

they respond more to pilferage itself, as in kangaroo rats. These factors have 

not previously been tested together, and therefore the aim of the current study 

is to investigate whether observer presence and / or experience of pilferage in a 

laboratory environment induces pilferage reduction behaviour in grey squirrels.  

 

Audience and pilferage effects on caching 

 

In the current study six captive squirrels were presented a pile of 15 intact 

hazelnuts and their behaviour was monitored under five experimental 

conditions: being observed by a squirrel, being observed by a human, being 

observed by a squirrel plus experiencing total pilferage of caches, being 

observed by a human plus total pilferage of caches, and being pilfered but not 

observed. Behaviours were compared to a baseline when the focal squirrel was 

not observed or pilfered. We measured whether the subjects changed their 

eating and caching behaviour (latency to cache, latency to eat, number of 

caches, number of nuts eaten) while under these conditions and whether they 

engaged in pilferage reduction behaviour that might serve to minimise the 

potential loss of their caches (caches recovered then reburied, caches 

recovered then eaten, curtailed digging, caching orientation, cache location). In 



61 
 

light of the research that has been discussed, we predicted that subjects would 

respond to conspecific cues of pilferage risk and / or experience of pilferage by 

changing their future caching and eating behaviour and engaging in more 

pilferage reduction behaviour, but they should not respond to mere human 

presence as a source of pilferage risk because humans do not normally pose a 

risk to squirrel caches. 

 

Method 

 

Ethics and licensing 

 

The study conformed to the Association of Animal Behaviour Guidelines for the 

Use of Animals in Research (2012), and was carried out with permission of the 

University of Exeter Psychology Ethics Committee. Subjects were housed at the 

University of Exeter, with permission of the Home Office because of restrictions 

in UK law for handling non-native species. 

  

Animals 

 

The subjects comprised six captive-raised Eastern grey squirrels (four males 

and two females) obtained from wildlife charities, unable to be re-released into 

the wild according to UK law (Wildlife and Countryside Act 1981). Five subjects 

were aged 1-2 years and one subject was aged 7-8 years old at the time of 

testing. Four of the subjects were housed in separate adjacent cages within the 

same room, and two of the subjects were housed together but in a separate 

room to the four other squirrels. The study took place during the spring and 

summer of 2011 and 2012 but not all squirrels were housed and tested at the 

same time. Subjects had not previously participated in cache-pilfering 

experiments. 

 

Housing and apparatus  

 

The housing and testing cages were the same as those reported in Hopewell, 

Leaver, Lea and Wills (2009) but with different furnishings in the testing cages. 

Housing comprised four large indoor cages: three cages were in the same room 
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and were adjacent to one another (each cage size 1.9 x 1.8 x 2.5 m), and the 

fourth cage was in a separate room (size 3 x 1.8 x 2.5 m). Each cage was 

formed of metal mesh and concrete walls and equipped with various furnishings 

including shelves, nest boxes, cardboard tubes, shredded paper bedding, 

ropes, small branches, and wood shavings on the floor. These home cages 

were set to a 12L:12D light period and a temperature of 19°C. The subjects 

were fed each evening after trials had finished for that day. They were fed in 

their home cages on a mixture of flaked maize and wheat, dried vegetables and 

seeds, and a water bottle was available at all times filled with fresh water and 

dietary supplement (Vetzyme Stress®).  

 

Attached to each of the three adjacent cages was a shared tunnel made of wire 

mesh which ran from the top of each cage to the testing room. The tunnel had a 

manually controlled metal plate door at the entrance to the test cage, and at the 

entrance to each of the squirrel’s cages. The tunnel was designed so that only 

one cage had access to a test cage at any one time. The tunnel of the single 

cage in the separate room had independent access to the test room through a 

hole in the cage wall (20 x 20 cm), manually operated by a plate door. Over a 

period of several weeks leading up to testing, subjects were trained to use this 

tunnel to access and cache in the testing room.   

 

The subjects were tested in a separate testing cage to their home cage which 

was in an adjoining room to the two home cage rooms, and consisted of a large 

cage (3 x 1.8 x 2.5m) made of metal mesh and with concrete walls (see Figure 

1). This cage was divided in half by a metal mesh wall, and each half of the 

cage could be accessed by the experimenter through a door on the front mesh 

wall. Both sides to the cage could be accessed by the squirrel through a small 

door (20 x 20 cm) in the central divide which the experimenter could control 

from outside the cage. The floor of the test cage was lined with ceramic tiles; six 

metal caching trays (each 30 x 5 x 30 cm) were placed on the floor in one of the 

test cages, and each tray was filled to the surface with wood shavings. During 

caching trials a pile of 15 in-shell hazelnuts were placed on the floor in the 

centre of the test cage; we chose in-shell hazelnuts as the focal food item 

because during prior food-preference testing these nuts appeared to be the 

cached items of choice, and they have been favoured in previous caching 
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studies due to their energy content (Hopewell & Leaver 2008). Temperature 

was kept at a constant 19°C; lighting in the room was controlled by the 

experimenter and remained on at all times the subjects were in the test room. A 

water bottle was placed in both sides of the test room filled with fresh water and 

Vetzyme Stress® supplement.  

 

Figure 1. An example arrangement of the test room and test cages (not to scale). The 

caching trays were positioned so that there were three along the centre dividing wall 

and three along the opposite concrete wall. We adjusted which cage the caching trays 

appeared depending upon which home cage the subject squirrel was accessing the 

test room from. 

 

During experimental trials behaviour of the focal subject was recorded using a 

hand-held video camera (Panasonic SDR-H90) positioned in a tripod 1m 

outside the focal squirrel’s cage door; this allowed behaviour during the 

experimental trials to be viewed multiple times for accuracy. Within each of the 

home rooms and the test room, surveillance cameras were installed so that the 

squirrels could also be monitored remotely in live experiment through a PC 

outside the test room, using the software ViewCommander-NVR Version 4. 

 

Experimental design and procedure 

 

The experiment used a within-subjects design that consisted of alternating 

baseline and treatment blocks (presented in a randomised order for each 
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subject) as shown in Tables 3 and 4. Each baseline and treatment block 

consisted of three repetitions of trials conducted on separate days (with the first 

repetition of each block acting as a learning trial). The experiment lasted a total 

of 33 non-continuous days of testing for five squirrels and 15 days of testing for 

one squirrel (who died before the study was completed), but in order to reduce 

possible boredom effects testing days were not run concurrently. The interval 

between trials within a block was 24-48 hours, and the gap between each 

condition was 48-72 hours. The experiment was completed in two sections for 

operational reasons: some squirrels showed a decreasing tendency to enter the 

test room over time, so this was combatted by introducing a lengthy rest period 

into the study for all of the squirrels; this also controlled for seasonal effects as 

subjects could be tested in the same time of year. Blocks 1-5/6 were completed 

first and then there was an approximate nine month interval before blocks 6/7-

11 were completed. After each caching trial subjects were allowed to return 

later that day to recover their caches in private and determine their fate. All 

caching trials lasted approximately 60-90 minutes depending upon the following 

pre-determined criteria: the subject had been in the test cage for a minimum of 

30 minutes, and since it had last eaten or cached there had been a period of 

inactivity for 15 minutes, at which time the trial was ended. 

 

Table 3. Description of the experimental conditions. Subjects were exposed to each of 

the treatments in a randomised order (but always commencing with baseline 1).  

Block  Condition  Description  Duration  

1 Baseline 1 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 

2 Treatment A 
Caching in front of squirrel with no 

pilferage. 

1 learning + 2 

experimental trials. 

3 Baseline 2 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 

4 Treatment B 
Caching in front of human with no 

pilferage. 

1 learning + 2 

experimental trials. 

5 Baseline 3 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 
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6 Treatment C 
Caching in front of squirrel with 

pilferage. 

1 learning + 2 

experimental trials. 

7 Baseline 4 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 

8 Treatment D Caching in front of human with pilferage. 
1 learning + 2 

experimental trials. 

9 Baseline 5 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 

10 Treatment E Unobserved and pilfered. 
1 learning + 2 

experimental trials. 

11 Baseline 6 Unobserved and unpilfered. 
1 learning + 2 

experimental trials. 

 

Table 4. Order that each subject was exposed to each of the experimental conditions 

over the two testing periods of the study. During analysis one of the baselines blocks 

was randomly selected to act as a comparison control condition.  

Squirrel 

identity 

Treatment order for 

testing period 1 

Treatment order for 

testing period 2 

Control 

condition 

Arnold C D  E B A Baseline 4 

Leonard E A B  C D Baseline 5 

Perky D C - Baseline 3 

Sarah B E A  D C Baseline 6 

Simon D C  B A E Baseline 2 

Wonder C D  A E B Baseline 1 

 

During baseline trials the subject was in the test room alone and was permitted 

to eat or cache items at will. The subject was allowed to return to its home cage 

and all remaining un-cached nuts were removed. Approximately 3 hours later 

the subject was allowed to return to the testing cage to recover its caches to eat 

or re-cache. The recovery trial lasted approximately 30 minutes. Caches 

remained in place for the duration of the baseline trials, but were removed at the 

end of each block.  
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During the treatments the subjects were observed caching by either another 

squirrel or by a human observer in the adjacent test cage. In the squirrel 

observer treatment the observer was a non-cage-mate and non-roommate 

squirrel. In the human observer treatment the observer was the principal 

experimenter (K.J.), however during the trial the experimenter was dressed in 

all-black clothing – at all other times the experimenter wore laboratory clothing 

around the subjects (white lab coat or white overalls). The human observer 

would sit on the floor in the centre of the observer cage, facing toward the 

testing cage, while remaining silent; when the focal squirrel moved position in 

the test cage, the observer would orientate their head toward their position in 

order to ensure their gaze was always fixed on the focal individual. When the 

subject returned for its recovery trial the caches had either been removed by the 

experimenter or were left intact, depending upon the condition. On trials where 

the caches were not removed they remained in place for the duration of the 

treatment trials, but were removed at the end of each block.  

 

During the trials where the caches were pilfered, the principal experimenter 

removed all caches before the recovery trial. For the unobserved pilfered 

treatment the experimenter wore latex gloves to remove the caches. For the 

human observer condition the experimenter did not wear gloves while removing 

the caches and ensured that the scent from her hands was distributed 

throughout the substrate. For the squirrel observer condition the experimenter 

removed the nuts from the caching trays wearing latex gloves. Following this 

the squirrel that acted as the observer during that trial was allowed to access 

the test cage to explore the caching trays for 5-10 minutes so that they 

contained its scent cues.  

 

Behavioural scoring  

 

For each subject, one of the baseline blocks was selected randomly (using trials 

2 & 3) to act as a comparison ‘unobserved unpilfered’ condition with which to 

compare the other 5 treatment conditions (see Table 4); this meant that all 

conditions would have the same number of testing days (note that there was 

little variability across the baseline trials between blocks, Appendix A). 

Behavioural measurements were manually scored from watching digital media 
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files of video playbacks. We predefined behaviour using an ethogram (see 

Table 5) and measured the following: latency to cache, latency to eat, number 

of caches made, number of nuts eaten, number of caches recovered then 

reburied, number of nuts recovered then eaten, number of curtailed digs, 

orientation to neighbouring cage when caching, and location of caches in 

relation to neighbouring cage. During video scoring the principal experimenter 

was blind to all the conditions, except for the conditions which had an observing 

squirrel in the neighbouring cage (because the observing squirrel could 

frequently be seen). 

 

Table 5. Ethogram of behaviour coded from the videos during experimental and 

baseline trials. 

Strategy Behaviour Description 

Eating 

versus 

caching 

preferences 

 

Latency to 

cache 

Caches were operationally defined according to the 

following description that has been adapted from 

Laidler (1980), Macdonald (1995), and Steele et al. 

(2008): The squirrel finds a nut, picks it up in its mouth, 

and manipulates it with its front paws. It then locomotes 

with the nut in its mouth, often making several stops 

and sniffing the ground. Sometimes the squirrel digs at 

the ground surface material with its front paws but then 

continues to move with the nut in its mouth, and may 

do this several times (curtailed digging). Eventually 

the squirrel stops with the nut, while still holding it in its 

mouth, digs at the ground, and then deposits it into the 

freshly dug hole. The squirrel uses its front paws and 

nose to push the nut further into the site and uses 

several thrusts of its whole body. If the behaviour 

resulted in a nut buried, the time of the first thrust was 

the latency to cache. This distinctive thrusting action 

is usually only performed after they have deposited the 

nut (however, see Steele et al. 2008). Finally the 

squirrel covers the site with substrate and pats down 

the resulting cache with its front paws. When the 

squirrel leaves the location of the cache, it is clear that 

the squirrel is no longer carrying a nut in its mouth. 
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 Latency to 

eat 

The subject makes an effort to break into a nut using its 

teeth (accompanied by a scratching sound) which was 

recorded as the start time of the behaviour; followed by 

consuming the contents of the nut. This does not 

simply involve manipulating a nut with its paws and 

teeth to change its orientation, and refers to intact 

hazelnuts only, not discarded shells or woodchip.  

 Number of 

caches made 

The number of new caches that have resulted from the 

trial. Does not include nuts dug up before the end of 

the trial.  

 Number of 

nuts eaten 

The number of nuts the squirrel broke open and 

consumed the contents. 

Pilferage 

reduction 

behaviour 

Number of 

caches 

recovered 

then reburied 

An existing cache is dug up, held in mouth and front 

paws, and then re-buried according to the caching 

description above. The nut might have been re-buried 

at the place it was recovered, or moved and re-buried 

some time later.  

 Number of 

nuts 

recovered 

then eaten 

An existing cache is dug up and then consumed 

according to the eating description above. 

 

 Number of 

curtailed digs 

Also see the description of curtailed digging under the 

caching description above and Hopewell and Leaver 

(2008). The squirrel must have been holding a nut at 

the time of the dig. The behaviour does not 

immediately result in a cache. 

 Orientation to 

neighbouring 

cage when 

caching 

Orientation was recorded as either facing (consisting of 

a front or side view) or not facing (with back to) 

adjacent cage. 

 Location of 

cache in 

relation to 

neighbouring 

cage 

The precise location the cache was buried in was noted 

and recorded as either near or far to the adjacent cage.  
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Analysis  

 

We used a 2 x 3 repeated measures design which examined the main effect of 

pilferage risk (pilferage, no pilferage), the main effect of observer presence 

(unobserved, human observer, squirrel observed), and an interaction between 

these two variables. Five subjects (N = 5) were tested across the six conditions, 

using the two consecutive experimental trials from each block, and one subject 

(N = 1) across three conditions (non-independent observations n = 10-12).  

 

Generalised Estimating Equations (GEE) were used for most of the analyses in 

this study. GEE allows for analysis of related repeated measurements in non-

normally distributed data (Ballinger 2008; Garson 2012; Hanley, Negassa, 

Edwardes & Forrester, 2003), accommodates for a small and uneven number of 

subjects by allowing all data points to be included in the sample size (Hanley, 

Negassa, Edwardes & Forrester 2003) and allows for a robust estimation of 

regression parameters and the production of standard errors (Ghisletta & Spini 

2004). Furthermore, GEE allows for variable interactions to be investigated, 

which standard non-parametric analyses of correlated data do not allow for, 

thus providing the most comprehensive method of analysis for this data.  

 

Separate tests were conducted to assess the main effects of condition on each 

of the dependent measures. GEEs were carried out using an inverse Gaussian 

regression (for positively skewed data without absolute zero values) with an 

identity link function (non-transformed) for latency to cache and latency to eat. 

GEEs were carried using a Tweedie regression (for a distribution with scale and 

absolute zero values) with an identity link function for number of caches made, 

number of nuts eaten, number of caches recovered then reburied, number of 

nuts recovered then eaten, and number of curtailed digs. All GEE analyses 

were carried out using a first-order autoregressive (AR(1)) working correlation 

matrix (for related measurements), and using pairwise comparison contrast 

tests with a Bonferonni adjustment for multiple comparisons. We report the best 

model based on the Goodness of Fit statistic quasi-likelihood under 

independence criterion (QIC) and the corrected quasi-likelihood under 

independence model (QICC, a corrected version that rewards parsimony), with 

smaller values indicating a better fit.  
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For analyses that where the GEE model was not appropriate or if data were 

normally distributed we used a repeated measures analysis of variance 

(ANOVA) examining the main effects of pilferage risk, observer presence, and 

an interaction between these two variables. To examine orientation to adjacent 

cage when caching we compared the proportion of caches made per trial when 

facing toward the adjacent cage with the proportion of caches made facing 

away from the adjacent cage, For caching distance to adjacent cage we 

compared the proportion of caches made near to the adjacent cage with the 

proportion of caches made far away from the adjacent cage). All reported data 

conform to assumptions of ANOVA (with equality of covariance matrices at a 

significance level above .001, and equality of error variances above .05, as 

defined by Pallant 2007), the more conservative lower bound epsilon value has 

been reported for sphericity, and Pillai’s trace has been reported as it is a more 

robust multivariate test statistic (which accounts for small sample size and 

unequal N values: Pallant 2007).  

 

Data were analysed using Microsoft Office Excel 2010 and SPSS 16.0 for 

Windows. Significant models are reported to minimum of 5% alpha level. 

 

Results 

 

Boxplots for all measures within the category eating-caching preferences and 

within the category of pilferage reduction behaviour are presented in Figure 2.  
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Figure 2. Boxplots comparing (a) the latency to eat and cache, (b) the number of nuts 

eaten and cached, (c) the number of nuts recovered then reburied or eaten, and (d) the 

number of curtailed digs made across each condition. 

 

Eating versus caching preferences 

 

A GEE was carried out for latency to cache which reported QIC = 2.131, QICC 

= 12.17. There was no main effect of pilferage (approaching significance, p = 

.052), there was a significant main effect of being observed, X2 (df = 2, N = 6, n 

= 12) = 41.29, p < .001, and there was no pilfered x observed interaction (p = 

.169).  The main effect of being observed is displayed in Figure 3 with results 

from follow-up pairwise comparison contrast tests which show that subjects 

cached significantly earlier when being observed by another squirrel compared 

to a human or when caching alone.  
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Figure 3 The effect of being observed on mean latency to cache. Bars represent ± 1 

standard error. * p < .05. 

 

A GEE was carried out for latency to eat which reported QIC = 4.411, QICC = 

13.67. There was a significant main effect of pilferage, X2 (df = 1, N = 6, n = 12) 

= 4.56, p = .033, there was no main effect of being observed (approaching 

significance, p = .096), and there was no pilfered x observed interaction 

(approaching significance, p = .099). Figure 4 shows that subjects started 

eating significantly earlier after experiencing pilferage compared to when they 

had not experienced pilferage.   

 



73 
 

 

Figure 4 The effect of being pilfered on mean latency to eat. Bars represent ± 1 

standard error. * p < .05. 

 

A GEE was carried out for number of caches made which reported QIC = 

132.83, QICC = 132.25. There was no main effect of pilferage (p = .136), the 

main effect of being observed was significant, X2 (df = 2, N = 6, n = 12) = 

113.45, p < .001, and there was a significant pilfered x observed interaction, X2 

(df = 2, N = 6, n = 12) = 10.55, p = .005. The main effect of being observed is 

displayed in Figure 5(a) with results from follow-up pairwise comparison 

contrast tests which show that subjects made fewer caches when being 

observed by another squirrel compared to when there was no observer, and 

even fewer caches when being observed by a human compared to not being 

observed. The pilferage x observer interaction is displayed in Figure 5(b) which 

shows that subjects cached less in all of the observed conditions compared to 

the unobserved conditions, and the fewest number of nuts when being 

observed by a human with no pilferage; thus not being pilfered resulted in fewer 

caches being made but only when being observed by a human. 
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Figure 5. (a) The effect of observer presence and (b) pilferage paired with observer 

presence on the mean number of caches made. Bars represent ± 1 standard error. * p 

< .05, ** p < .001. 
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A GEE was carried out for number of nuts eaten which reported QIC = 127.86, 

QICC = 125.92. There was a significant main effect of pilferage, X2 (df = 2, N = 

6, n = 12) = 11.48, p = .001, a significant main effect of being observed, X2 (df = 

2, N = 6, n = 12) = 16.01, p < .001, and no pilferage x observed interaction (p = 

.130). The main effect of pilferage is displayed in Figure 6(a) which shows that 

subjects eat more following pilferage. The main effect of being observed is 

displayed in Figure 6(b) with results from follow-up pairwise comparison 

contrast tests which show that subjects eat more when being observed by 

another squirrel.  

 

Figure 6. (a) The effect of being pilfered and (b) the effect of observer presence on the 

number of nuts eaten. Bars represent ± 1 standard error. * p < .05. 



76 
 

Pilferage reduction behaviour 

 

A GEE was carried out for number of caches recovered and then reburied 

which reported QIC = 252.16, QICC = 240.87. There was no main effect of 

pilferage (p = .467), there was a significant main effect of being observed, X2 (df 

= 2, N = 6, n = 12) = 15.272, p < .001, and there was no pilfered x observed 

interaction (p = .378).  The main effect of being observed is displayed in Figure 

7 with results from follow-up pairwise comparison contrast tests which show that 

subjects re-cached more nuts when being observed by another squirrel.  

 

Figure 7. Effect of observer presence on number of caches recovered then reburied. 

Bars represent ± 1 standard error. * p < .05. 

 

A GEE was carried out for number of caches recovered and then eaten which 

reported QIC = 138.35, QICC = 144.22. There was no main effect of pilferage 

(approaching significance, p = .074), there was a significant main effect of being 

observed, X2 (df = 2, N = 6, n = 12) = 21.18, p < .001, and there no pilfered x 

observed interaction (p = .242). The main effect of being observed is displayed 

in Figure 8 with results from follow-up pairwise comparison contrast tests which 

show that subjects recover more caches to eat when being observed by another 

squirrel, and recover the least caches to eat when being observed by a human.  
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Figure 8. Effect of observer presence on number of caches recovered then eaten. Bars 

represent ± 1 standard error. * p < .05, ** p < .001. 

 

A GEE was carried out for the number of curtailed digs made prior to caching 

which reported QIC = 181.85, QICC = 182.63. There was a significant main 

effect of pilferage, X2 (df = 1, N = 6, n = 12) = 5.73, p = .017, there was a 

significant main effect of being observed, X2 (df = 2, N = 6, n = 12) = 17.92, p < 

.001 and there was no pilfered x observed interaction (p = .368). The main 

effect of pilferage is displayed in Figure 9(a) which shows that subjects make 

more curtailed digs after experiencing pilferage of their caches. The main effect 

of being observed is displayed in Figure 9(b) with results from follow-up 

pairwise comparison contrast tests which show that subjects make more 

curtailed digs when being observed by another squirrel compared to a human 

observer.  
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Figure 9. (a) The effect of being pilfered and (b) observer presence on the number of 

curtailed digs made. Bars represent ± 1 standard error. * p < .05, ** p < .001. 
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A repeated measures ANOVA was carried out to compare the proportion of 

caches buried near or far to the adjacent observer’s cage. There was no main 

effect of pilferage (p = .577), no main effect of being observed (p = .713), and 

no pilferage x observer interaction (p = .755).  

 

A repeated measures ANOVA was carried out to compare the proportion of 

caches buried facing towards or away from the adjacent observer’s cage. There 

was no main effect of pilferage (p = .704), no main effect of being observed (p = 

.671), and no pilferage x observer interaction (p = .492). 

 

Discussion 

 

This study provides evidence that grey squirrels directly responded to both 

conspecific presence and pilferage experience and that they use this 

information when making caching decisions to avoid pilferage. Subjects were 

found to change their caching behaviour in response to being observed by a 

conspecific by caching earlier and making fewer caches, while their eating 

behaviour changed in response to pilferage experience with subjects 

consuming more nuts more quickly after caches had been pilfered. Being 

observed by a conspecific also resulted in more occurrences of pilferage 

reduction behaviour, including re-caching, eating caches and making more 

curtailed digs, while being pilfered also increased the number of curtailed digs 

made. Given that they responded similarly to being pilfered as being observed 

this indicates that pilferage reduction behaviour might come about because 

squirrels are uncertain about their caching decisions, as opposed to pilferage 

reduction behaviour serving a deceptive function. Being observed by a human 

seemed to have an inhibitory effect upon behaviour with fewer caches made 

and commencing later than compared to a conspecific observer, fewer curtailed 

digs, and fewer nuts recovered. Overall it appears that risk of pilferage posed by 

conspecific presence impacted on behaviour in ways that might serve to directly 

minimise future cache loss (making fewer overall caches, spending more time 

finding a suitable cache location, and moving and eating caches), whilst actual 

loss of caches encouraged more rapid consumption of available food. 
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Audience and pilferage effects upon caching decisions  

 

This study provides strong support for the field studies of Leaver and colleagues 

that squirrels are sensitive to conspecifics as potential pilferers of their caches 

and actively engage in pilferage reduction behaviour, and also lends support to 

the work of Steele et al in that they also respond to experience of pilferage. Like 

kangaroo rats, grey squirrels do not live in groups (Koprowski 1996); observer 

effects are more commonly found in group-living species such as the corvids, 

that have a high occurrence of observing other flock members cache. However, 

this study shows that squirrels respond in similar ways to corvids to safeguard 

their caches, as well as assessing prior pilferage risk as reported in kangaroo 

rats. Furthermore, these behavioural strategies appear to be ecologically 

adaptive. When caches are at risk of future pilferage it is adaptive to invest 

more time in securing these long term energy reserves by minimising the 

possibility that nearby observers can locate caches; spending more time 

caching and re-caching, consuming caches, and making curtailed digs can 

serve to confuse onlookers to the whereabouts of buried food (Hopewell & 

Leaver 2008; Steele et al 2008), or even obscure olfactory cues. However, in 

circumstances where caches have already disappeared it is more adaptive to 

make use of immediate energy reserves if more pilferage will occur (discussed 

in Sherry 1985, but also see Lucas, Pravosudov & Zielinski 2001). This appears 

to be a similar strategy to that reported in some of the corvid literature; for 

instance, Emery et al. (2004) reported that scrub jays switched their caching 

and recovery behaviour after being pilfered from predominantly re-caching to 

predominantly eating the contents of caches. Emery et al. suggest that this 

flexible caching strategy is advantageous because eating these items when the 

risk of theft is high enables them to generate internal energy reserves. 

 

Our results show no effects of observer presence or pilferage experience on 

caching orientation and location. Field studies of grey squirrels also report 

similar behaviour: Leaver et al. (2007) report that squirrels orient their backs to 

other squirrels when burying, and Steele et al (2008) found that they will hide 

food in out of view locations after experiencing pilferage. Within the corvid 

literature researchers have found that captive birds are highly sensitive to these 

factors; as well as being responsive to the mere presence of onlookers 
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(because it cues pilferage risk), they also appear to be aware of the observer’s 

visual perspective and choose to cache in locations that are more visually 

obscure to their onlookers (e.g., Dally et al. 2005a; 2005b; Dally et al. 2004). 

The current findings could be explained by the experimental set-up of the study 

which constrained cache placement to a much smaller area than that of wild 

squirrels, particularly so the caching squirrel was never out of visual contact 

with the observer. It would be informative to conduct further controlled studies in 

a similar vein to those of Clayton and colleagues (e.g., including visual barriers) 

to further investigate what specific factors of the social environment influence 

these caching decisions; specifically whether grey squirrels are simply using a 

rule-of-thumb to assess pilferage risk based on observer presence or whether 

they are sensitive to the observer’s viewpoint at the time of caching, like corvids 

(e.g., Dally et al. 2004; Dally et al. 2005). 

 

We also found that squirrels made even fewer caches and recovered and ate 

fewer nuts when they were being observed by a human, compared to when 

being observed by another squirrel. The squirrels in this study were fully 

habituated to, and did not appear fearful in any way of, human presence. 

However, there is a possibility that even human-raised squirrels have an innate 

tendency to be weary of humans. Very little research has investigated foraging 

and caching decisions in relation to human presence. Leaver et al. (2014) found 

that wild squirrels did not adjust their distance to the safety of cover in response 

to changes in human disturbance levels when caching or foraging; unlike the 

research of Steele et al. (2008), this supports our current data that squirrels do 

not view human presence a source of pilferage risk. An alternative reason for 

our current findings could be because human presence might represent a 

different cue to these captive squirrels, namely a source of food. It would 

therefore not be adaptive to engage in energetic costly behaviour such as 

burying and recovering caches when humans represent a usually predictable 

source of food. We do not know whether a wild population of squirrels would 

demonstrate similar behaviour; frequently wild squirrels do approach humans 

for food, at least in urban environments. It is however, extremely unlikely that 

wild or captive squirrels would normally regard humans as a source of 

competition for resources or caches.  
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Studying laboratory housed squirrels  

 

There are always limitations in studies of this nature, which is true of most 

behavioural research conducted in laboratory environments. For a species that 

scatter hoards across their entire home range area, captive testing arenas 

cannot represent natural caching behaviour on an ecologically realistic scale 

(Hitchcock & Sherry 1995). This may account for some of the findings already 

discussed (caching orientation and location). Perhaps more naturalistic captive 

settings (such as wildlife sanctuaries that cannot re-release their grey squirrels, 

and can house them in very large outdoor enclosures) would be a more 

favourable setting to carry out future studies of this nature. It is also difficult to 

gain large enough sample sizes in captive studies, particularly when rearing and 

housing non-domesticated species that are not particularly suited to such 

environments. Nevertheless, even with a small sample size, the results from the 

current study reveal some important behavioural data that provide a platform 

from which future research can be carried out.     

 

As well as future studies manipulating the influence of the observer as outlined 

above (e.g., by incorporating visual barriers in this type of study design), it 

would also be interesting to vary pilferage experience. Some studies selectively 

‘pilfer’ certain caches rather than removing them all (Hampton & Sherry 1994) to 

see if the subjects learn which areas are more risky for caching. As pilfering 

does not suppress caching completely it might be interesting to investigate if 

repeated partial pilfering at the same locations affects decisions about where 

future caches are buried. Indeed, partial theft of caches would provide a more 

ecologically relevant model of cache robbing, and could be investigated with 

wild marked subjects.  

 

Conclusion  

 

We conclude that scatter hoarding mammals can respond directly to conspecific 

presence as a cue of pilferage risk and also to experience of pilferage. We have 

shown that they will flexibly adjust behavioural strategies in ways that may help 

in preventing future cache pilferage. Similar controlled studies could identify the 

mechanisms involved in these behaviours in order to facilitate further 
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understanding of what squirrels know about their observers and whether 

perhaps more complex cognition is involved, as reported in corvids. 
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Chapter 3: The role of observational spatial learning in cache 

pilfering by Eastern grey squirrels: a laboratory study. 

 

Introduction 

 

For food hoarding to be an evolutionary stable strategy a cacher must have a 

recovery advantage of its own stores (Andersson & Krebs 1978; for an 

alternative view see Smulders 1998; Vander Wall & Jenkins 2003), storing food 

in such a way that others are prevented from stealing it while the cacher is able 

to successfully recover it (Kamil & Balda 1990). The literature reviewed in 

Chapter 2 illustrates the risks that cachers face in securing their stores, and 

reveals some of the ways different species go about minimising these risks. For 

example, individuals are sensitive to audiences while caching and will minimise 

opportunities for their caching behaviour to be observed by others. Such 

behaviour would be adaptive if onlookers are able to locate a cache through 

observation; that is, to commit its location to spatial memory and recover that 

information at a later time. We know that spatial memory plays an important role 

in the behaviour of many scatter hoarding birds and some scatter hoarding 

mammals (including grey squirrels) in recovering their own food stores 

(reviewed in Smulders et al. 2010). However, some species of food storing 

corvid have been found to learn and remember the locations of caches that they 

have seen others make and use this information to pilfer stores when the 

cacher is absent. For an onlooker to successfully pilfer by observation, the 

individual must possess highly accurate observational spatial memory (OSM). 

The current study aims to investigate whether grey squirrels have evolved a 

similar ability to use OSM to pilfer caches; an ability that we would predict to 

find, given their careful and extensive behavioural adjustments during caching 

when in the presence of conspecific observers, several of which appear to 

conceal information of the whereabouts of their caches (reviewed and 

experimentally tested in Chapter 2). 
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Pilfering behaviour 

 

Pilfering the food caches of others offers an individual access to resources 

without having the time and energetic costs associated with foraging and 

caching (Shaw & Clayton 2012b). Despite the large number of studies on food 

caching across different species, information on the behaviour of pilferers is 

limited. When recovering their own caches, individuals are reported to use a 

number of different strategies: olfactory information (deer mouse: Vander Wall 

2000; grey squirrel: Calahane 1942; Jacobs & Liman 1991), visual cues 

(reviewed in Chapter 5) and spatial memory (corvids, parids and rodents 

reviewed in Smulders et al. 2010). There is evidence that they might use some 

of these strategies when recovering artificial caches or pilfering the caches of 

others: random olfactory search (Clark’s nutcracker: Kamil & Balda 1985; deer 

mouse: Howard & Cole 1967; Howard et al. 1968; VanderWall 2000; grey 

squirrel: McQuade et al. 1986; magpie: Buitron & Nuechterlein 1985; Merriam’s 

kangaroo rat: Reichman & Oberstein 1977; raven: Harriman & Berger 1986; 

yellow pine chipmunk: Vander Wall 1991) and visual cues (reviewed and 

experimentally tested in Chapter 5). However, very few studies have 

investigated whether OSM might be used to pilfer caches that an individual has 

observed being made.  

 

Pilferage can occur under two circumstances: immediately after a cache has 

been observed, or after a delay. A number of caching species have been 

observed to pilfer by observation immediately after they have witnessed a 

cache made, allowing them immediate access to the energy store of another 

individual, with minimal energy expenditure from foraging. However this does 

carry the risk of the cache owner still being nearby which could result in an 

agonistic encounter. The safer option is to remember the spatial location of the 

cache and return to pilfer it  after some time has elapsed. By using OSM to 

pilfer caches there are a number of benefits over other pilferage strategies. A 

pilferer can visit a cache site after a storer is no longer present, thus avoiding 

potential conflict arising from cache defence (Emery 2004).  Remembering the 

locations of others caches means that less time is spent foraging or searching 

for stores through random search and so reduces energy expenditure. OSM 

allows the thief to locate a cache quickly and accurately, minimising exposure 
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time to potential predators and interaction with competitors (Bednekoff & Balda 

1996a).  

 

OSM in caching birds and rodents 

 

There are no field studies that have experimentally tested and found OSM in 

scatter hoarders, owing to it being difficult to study in wild populations. The few 

laboratory studies that have been carried out tend to involve small numbers of 

captive birds, particularly corvids. Typically these studies involve a caching bird 

and an observer bird placed in two adjacent cages. The observing bird watches 

the caching bird bury several food items; the caching bird is removed, and the 

observer is given access to the caching arena after varying time intervals. 

Studies have found that some food storing corvids can accurately recover 

caches they observed being buried by another cacher, but the delay after which 

accuracy declines varies between species. It has even been reported that the 

pilferers frequently engage in behaviour that  facilitates observation of caching 

behaviour, such as  changing their position and orientating themselves to gain a 

better view of a caching conspecific (raven: Bugnyar & Kotrschal 2002; 

Eurasian jay: Shaw & Clayton 2012b; Thom & Clayton 2013; Western scrub jay: 

Grodzinski, Watanabe & Clayton 2012). A list of the species that OSM has been 

studied in and whether OSM has been demonstrated is presented in Table 6. 

 

 

Table 6. Studies that have investigated or reported OSM among different caching 

species.  

Species Dependency upon caching Evidence of OSM 

Corvidae   

Common 

magpie 

Moderate generalist cacher, 

makes short term stores 

throughout the year (Clarkson et 

al. 1986; de Kort & Clayton 

2006). 

They have been observed following 

squirrels and stealing their caches after 

they have made them but it has not 

been experimentally tested whether 

they can do this after a time delay 

(Vernelli 2013). 
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Clark’s 

nutcracker 

Specialised cacher, shows 

seasonal peak in caching and is 

dependent upon long-term 

stores (Bednekoff & Balda 

1996b; Vander Wall & Balda 

1977). 

Observers were found to perform at 

better than chance when recovering a 

cache they had seen a conspecific 

make after one day’s delay only, 

though after two days cachers were 

more accurate than observers 

(Bednekoff & Balda 1996b). 

Gray jay Specialised cacher, shows 

seasonal peak in caching and is 

dependent upon long-term 

stores (Wait & Reeve 1992 in de 

Kort & Clayton 2006). 

In a laboratory study jays did not 

accurately recover caches observed 

made by another bird after a few 

minutes’ delay (Bunch & Tomback 

1986).  

Jackdaw Infrequent cacher (Henty 1975; 

de Kort & Clayton 2006). 

Compared to chance, observers do not 

accurately recover items after a 1 

minute delay having watched these 

being buried by a human (Schied & 

Bugnyar 2008). 

Mexican 

jay 

Occasional cacher, not highly 

dependent upon stores 

(Bednekoff & Balda 1996b). 

Observers perform as well as cachers 

at a delay of one and two days 

(Bednekoff & Balda 1996b). 

Pinyon jay Specialised cacher, shows 

seasonal peak in caching and is 

dependent upon long-term 

stores (Bednekoff & Balda 

1996a) 

Observers recovered caches better 

than chance after 1-2 days delay, but 

cachers made significantly fewer errors 

than observers (Bednekoff & Balda 

1996a). 

Raven Moderate generalist cacher, 

makes short term stores 

throughout the year (Heinrich & 

Pepper 1998) 

Observers can accurately pilfer the 

caches of conspecifics after a 5 minute 

interval (Bugnyar & Kotrschal 2002), 

they fail to recover caches they had not 

seen being made (Heinrich & Pepper 

1998) and will recover items they 

observed buried by a human after a 1 

minute delay (Schied & Bugnyar 2008).  
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Western 

scrub jay 

Moderate generalist cacher, 

makes short term stores 

throughout the year (de Kort & 

Clayton 2006 ) 

They will recover more food they 

observed being cached compared to 

when they did not observe the caching 

event after 4 hours (Griffiths et al. 

unpublished data in Clayton et al. 

2001), they show a preference for 

watching caching-related behaviour in 

conspecifics compared to any other 

behaviour (Grodzinski, Watanabe & 

Clayton 2012), and they demonstrate 

mental rotation when pilfering caches 

they observed made by a conspecific 

(Watanabe & Clayton 2007). 

Other 

species 

  

Black-

capped 

chickadee 

Specialised cacher, shows 

seasonal peak in caching and is 

dependent upon long-term 

stores (Sherry 1984). 

In laboratory experiments observers 

will pilfer caches immediately they have 

observed made by another bird, but 

have a low recovery rate for caches 

when tested several hours later 

compared to their own caches (Baker 

et al. 1988; Hitchcock & Sherry 1995). 

Eastern 

grey 

squirrel 

Specialised cacher, shows 

seasonal peak in caching and is 

dependent upon long-term 

stores. 

They have been observed watching 

cachers from tree-tops and then 

moving to the ground to pilfer, but it has 

not been experimentally tested whether 

they can do this after an extended 

delay (Steele et al. 2014). 

Great tit Non-hoarder In the laboratory, great tits remembered 

the locations of caches made by marsh 

tits after a 1 hour and 24 hour interval 

(Brodin & Urhan 2014). 

Merriam’s 

kangaroo 

rat 

Generalised cacher, dependent 

upon long-term stores (Leaver & 

Daly 2001; Seferta 1998). 

There is only one anecdotal 

observation of caches being pilfered 

immediately after the cache was 

created (Daly et al. 1992). 
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North 

Island 

robin 

Occasional short-term cacher, 

not highly dependent upon 

stores (Armstrong et al. 2012). 

Observers can recover small numbers 

of items over short intervals (~1minute) 

that they observed buried by a human 

(Armstrong et al. 2012).  

 

It has been suggested that species that perform well in OSM tests also tend to 

be social and rely heavily upon caches; in comparison those that perform less 

well tend to be not particularly social species (e.g., Clark’s nutcracker: 

Bednekoff & Balda 1996b), or not highly dependent upon cached food (e.g., 

jackdaw: Schied & Bugnyar 2008). However, one study that investigated the 

use of OSM by a non-hoarding parid, the great tit, disputes this claim:  in the 

laboratory great tits were found to remember the locations of caches made by 

marsh tits for up to 24 hours (Brodin & Urhan 2014). Thus it is possible that 

OSM might even be common to non-caching species that evolved alongside 

hoarders. Nevertheless, this is difficult to generalise because no other studies 

have investigated the use of OSM in cache pilfering within taxonomic groups 

other than corvids, such as rodents.  

 

Pilfering and cache protection behaviour have been reported in a variety of food 

hoarding species, with many cachers engaging in behaviour that serves to limit 

the opportunity for onlookers to witness a cache. For this behaviour to be 

adaptive for the caching individual, the pilferer should benefit from observing a 

cache. In addition, many of these species also possess accurate spatial 

memory to locate their own caches. Therefore, it is likely that OSM might be 

more widespread among caching species than those that have been studied.   

 

Bugnyar & Kotrschal (2002) suggest that the cachers and pilferers are engaged 

in an ‘evolutionary arms race’, where cachers develop methods to minimise the 

risk of cache pilferage, while pilferers develop strategies that allow them to 

more easily locate and steal others caches. Experimentally investigating 

whether non-corvid species possess OSM will help to determine how scatter 

hoarders actually engage in pilfering, and whether the so-called cache 

protection behaviours they perform serve a similar function to that suggested in 

corvids. This might help researchers in this field to understand whether similar 
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adaptive pressures have led to the evolution of OSM among different caching 

species. 

 

Grey squirrels and OSM 

 

Grey squirrels present an ideal opportunity to study OSM in a mammalian 

species. In terms of their social system they are tolerant of conspecifics but 

actively compete with them for resources: they are predominantly non-social 

(Koprowski 1996) yet are non-territorial with overlapping home-ranges so many 

have access to the same food patch and will forage alongside one another 

(Lewis 1980; Vander Wall & Jenkins, 2003). Tree dwelling species of squirrel 

rely heavily on their visual system in comparison to other rodents (Van Hooser 

& Nelson 2006); grey squirrels have a wide visual field (Kaas et al. 1972), 

excellent spatial acuity (Jacobs et al. 1982), use spatial memory to recover their 

own caches, and use visual cues when recovering artificial caches (McQuade et 

al. 1986), all of which would facilitate pilfering by observation. Moreover, grey 

squirrels engage in behaviours that help to minimise the loss of their caches to 

pilferers; in the presence of conspecifics they will delay the onset of caching 

(experimentally reported in Chapter 2), cache less (Leaver et al. 2007; 

experimentally reported in Chapter 2), eat more (Steele et al. 2008; 

experimentally reported in Chapter 2), recover more caches (experimentally 

reported in Chapter 2) make more interruptions to caching (Hopewell & Leaver 

2008; Steele et al. 2008; experimentally reported in Chapter 2), spend more 

time disguising caches (Hopewell & Leaver 2008), orientate away from 

observers (Leaver et al. 2007), store food in locations with less visual access to 

observers, and make empty caches (Steele et al. 2008). Ultimately, as 

suggested by Leaver et al. (2007), the fact that grey squirrels alter their caching 

behaviour in the presence of conspecifics suggests that onlookers pose a threat 

to caches. With these behavioural and morphological characteristics in mind, 

squirrels would benefit from possessing OSM to increase their pilfering success. 

 

In order to be able to make direct comparisons of OSM abilities between 

species we adapted the experimental set up and procedures of our current 

study from Griffiths et al. (unpublished data in Clayton et al. 2001) and the 

training- and blind-test-trials of Watanabe and Clayton (2007), but without the 
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more advanced rotation tests those authors used to test mental rotation ability. 

Employing an experimental set up that had already been used to test OSM 

meant that the results of the current study could be analysed in the same 

manner and more easily compared to existing studies.  

 

During habituation trials we allowed laboratory housed grey squirrels to observe 

a conspecific cache and then after a fixed delay of watching the caching event 

the subject was given access to pilfer the caches with both visual and olfactory 

cues present. After the learning phase we then compared pilferage behaviour 

under two experimental conditions: (1) observers were prevented from watching 

the caching squirrel (but could still hear them) and caches remained intact, 

meaning that they could only use odour cues to locate the caches; (2) 

observers witnessed caching but the caches and odour cues were removed 

before pilfering was allowed, meaning that observers could only use visual 

information to locate the (empty) cache sites. The efficiency and accuracy of 

search and pilferage behaviour (and pilferage attempts when caches were 

removed) was recorded. We predicted that if OSM was being used by squirrels 

to locate caches then they would be more accurate and efficient in their 

searching and pilfering behaviour after they had witnessed the caches being 

made compared to when they had not seen them being made but could only 

rely on olfactory cues.  

 

Method 

 

Ethics and licensing 

 

The study conformed to the Association of Animal Behaviour Guidelines for the 

Use of Animals in Research (2012), and was carried out with permission of the 

University of Exeter Psychology Ethics Committee. Subjects were housed at the 

University of Exeter, with permission of the Home Office because of restrictions 

in UK law for handling non-native species. 
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Animals 

 

The subjects comprised four captive-raised Eastern grey squirrels (three males 

and one female: Arnold, Leonard, Simon and Sarah) obtained from wildlife 

charities, unable to be re-released into the wild according to UK law (Wildlife 

and Countryside Act 1981). At the time of testing three subjects were aged 2-3 

years and one subject was 8-9 years old. Two of the subjects were housed in 

separate adjacent cages within the same room, and two of the subjects were 

housed together but in a separate room to the other squirrels. The study took 

place from February through April 2013 with trials run sequentially. Subjects 

had participated in one caching experiment approximately one year prior to this 

study, in which they experienced having their caches pilfered (presented in 

Chapter 2).One week prior to commencing the current study the subjects were 

familiarised with the new arrangement of the testing arena, where each squirrel 

was allowed to explore the apparatus for a few minutes each day leading up to 

their first day of testing, though during this time there was never any food 

available to cache in the test room. This meant that the first few days of testing 

were not affected by the subjects’ experience of a novel testing environment.  

 

Housing and apparatus 

 

Housing conditions were the same as those described in Chapter 2, and the 

same testing room and cages were used but with different apparatus. Along the 

dividing mesh wall in each test cage was a curtain that could be rolled out on 

either side when needed to fully obstruct visual access between both sides of 

the cage. During the study one side of the testing cage acted as the observer’s 

cage, while the other side acted as the cacher’s cage. Eight metal caching trays 

(each 30 x 5 x 30 cm) were placed on the floor in one side of the test cage in a 

2 x 8 formation along the central mesh wall. Each tray was separated into four 

sections by a wooden divider inserted into the tray, so that there was a total of 

32 equal cells (15 x 15 x 5 cm), and each cell was filled to a 4cm depth with 

wood shavings (see Figure 10). Each subject had its own caching trays and 

sawdust that were re-used between trials; sawdust was mixed among cells 

between trays before each the start of each trial, and any soiled sawdust was 
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removed in order to minimise odour cues within subjects. The experimenter 

wore latex gloves during handling of all material.  
 

Figure 10.  An example arrangement of the test room and test cages (not to scale). The 

caching trays were positioned along the centre dividing wall. We counterbalanced the 

placement of the caching trays between the two cages . When caching trays were on 

the left side of the test cage the arrangement was mirrored.  

 

For each caching trial half of the sawdust-filled cells were covered using 

transparent laminate sheets that prevented caching in either the 16 front or 16 

rear area cells of the cage. The location of the laminate covers alternated 

between trials for each subject and was counterbalanced across trials, 

repetitions and squirrels, which prevented the cacher from using the same 

locations throughout the experiment. Sixteen pieces of laminate covered the 

tops of the sawdust of each cell and were held in place using a Bulldog Clip ® 

along each side of the cell. Clips were also placed in the same position on the 

cells that did not have a laminate cover. A thin layer of sawdust was placed on 

the surface of each laminate to conceal any visual cues of its presence (e.g., 

reflection from room lighting). Between each trial the laminate sheets were 

cleaned with unscented anti-bacterial wipes and re-used.  
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During caching trials a pile of 5 hazelnuts without shells and 10 hazelnuts with 

shells intact were placed on the floor in the centre of the test cage. We used 

hazelnuts because they were found to be a cached item of choice compared to 

other intact nuts (discussed in Chapter 2). We also offered hazelnuts without 

shells because in a prior study the subjects frequently chose to eat several nuts 

before caching; offering hazelnuts with no shells meant that the trial could be 

run more quickly if the squirrel chose to eat items before caching (this 

procedure was also used by Watanabe & Clayton 2007 using a combination of 

live/dead wax worms, peanuts and husked sunflower seeds). At no time did a 

squirrel ever cache a nut that was not in a shell. 

 

All observations were recorded using a hand-held video camera (Panasonic 

SDR-H90) positioned on a tripod 1m outside the focal squirrel’s test cage door; 

this allowed observations to be conducted remotely and behaviour to be viewed 

multiple times for accuracy. Within each of the home rooms and the test room, 

surveillance cameras were installed so that the squirrels could also be 

monitored remotely in live experiment through a PC outside the test room, using 

the software ViewCommander-NVR Version 4. This meant that we could 

monitor experimental progress remotely without disturbing the subjects with our 

presence.  

 

Experimental design and procedures 

 

We used a within subjects design where all four subjects participated as both an 

observer and cacher, though our principal interest was the pilfering behaviour of 

the observer squirrel. For each observing squirrel, the experiment consisted of 

four trials (2 habituation trials followed by 2 test trials) where one trial was run 

every four days over a total 13 day period. During the four day break between 

trials, each subject acted as a cacher for another squirrel to observe but using 

the opposite side of the test cage so that their caching trays were absent, 

marking the trial as unique, and the laminate placed in the opposite location. 

After completing all four trials the subject had a seven day rest period before 

participating in a second repetition of the experiment. A total of three repetitions 

of the experiment were run which meant that each squirrel acted as an observer 

three times and as cacher to each of the other three subjects once.  
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Trials consisted of two habituation trials (differing in the location of the laminate 

covers), which were followed by two different test trials, A and B (differing in 

whether the observer squirrel could smell or see caches). The order of the test 

trials, the side of the caching test cage, and the position of the laminate were 

counterbalanced across all squirrels according to the plan presented in 

Appendix B. During the habituation trials the observer had access to both 

olfactory and visual information of the location of nuts buried by the caching 

squirrel, that is to say the curtain was not used and all caches were present 

when the observer was given access to pilfer. During Test A the curtain was 

used to fully obstruct the view of the caching squirrel by the observer squirrel for 

the duration of the trial, but all caches were present when the observer was 

given access to pilfer. In Test B the curtain was not used so that the observer 

had full visual access to the cacher, but before the observer was given access 

to pilfer, all caches were removed and sawdust mixed between all cells in order 

to distribute remaining odour cues across all trays rather than where the caches 

were buried, and any soiled sawdust was removed. New unused sawdust was 

used at the start of each of the three experimental repetitions.     

 

The caching squirrel’s cage was set up according to the pre-determined 

schedule of Appendix B, with trays, laminate, nuts and curtain (if necessary) in 

position before allowing subjects into the test room. The observer squirrel was 

encouraged to enter the observing cage and rewarded with a single mealworm. 

Next the caching squirrel was allowed to enter the test cage containing the 

sawdust-filled trays to eat the hazelnuts without shells and cache the intact 

hazelnuts anywhere in the 16 uncovered cells. The duration of the caching trial 

was dependent upon how long it took the caching squirrel to eat and cache the 

nuts, up to a maximum of two hours; if the caching squirrel did not eat or cache 

within the first 15 minutes of entering the test cage it was planned that the trial 

would be suspended but at no time was this necessary. A time-constraint was 

set for each of the caching trials so that there would be a minimum delay for the 

observer squirrel to access the caches after witnessing them being buried. After 

each cache was made, if another was not made within the following 15 minutes 

the caching squirrel was immediately encouraged out of the testing arena and 

back to its home cage where it was always rewarded with a single mealworm. 

Within this time constraint the minimum number of caches made was one and 
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the maximum was six. The experimenter then entered the caching cage, pulled 

down the curtain to obstruct the view of the observer (if it was not already 

drawn, as in Test A), removed the laminate from the covered cells, and 

removed any remaining un-consumed and un-cached nuts or empty shells. We 

then removed all cached items: during the two habituation-trials and during Test 

A new nuts were placed in the cells of the original caches (to enable the cacher 

to later recover their true caches, rather than replacements), and in Test A the 

curtain remained down; in Test B caches were removed and not replaced, the 

sawdust was re-distributed and finally the curtain was removed before the 

experimenter exited the test cage.  

 

The observer squirrel was then allowed to enter the caching squirrel’s cage via 

the small inter-connecting door, which was then shut, and the experimenter 

exited the test-room to resume remote monitoring. The observer remained in 

this cage until it had either found all of the caches (excluding Test B), searched 

all cells, or had been inactive for 15 minutes. The subject was then returned to 

its home cage.  

 

Finally, we re-distributed the sawdust, removed soiled sawdust and replaced all 

of the original nuts in their cells to give the caching squirrel the opportunity to 

recover its own caches after the observer had exited the test room. The 

recovery trial ended after all caches were recovered or after 15 minutes of 

inactivity.  

 

Behavioural measures 

 

Behavioural data were collected for the duration of time that the observer had 

access to the caching cage. Owing to the nature of the video data it was not 

possible for the experimenter to remain blind to the condition or location of the 

caches during analysis.  

 

The subject’s accuracy of searching the testing arena was monitored as in 

Watanabe and Clayton (2007) as follows. In all trials one side of the total 

caching area was covered by transparent laminate so that the caching squirrels 

could only bury food in one side of the arena, either the front or rear cells. 
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According to Watanabe and Clayton the observers should preferentially search 

the correct side of the arena first if they remembered in which side of the arena 

the demonstrator had cached. Therefore we recorded whether the first search 

behaviour was on the correct side, i.e. the side that had not been covered by 

the laminate. We also recorded the proportion of time the observer spent 

engaged in search behaviour in the correct and incorrect sides of the testing 

arena in order to measure whether observers were exploring the cells equally or 

mainly searched the side that contained caches. Search behaviour was defined 

as sniffing the surface of the sawdust while stationary or while locomoting 

between cells, while not carrying a nut. 

 

To determine the accuracy of pilferage, several additional measures were taken 

based upon pilferage efficiency and accuracy throughout the recovery trial 

(adapted from measures used by Watanabe & Clayton 2007). We defined an 

instance of pilferage (and pilferage attempt for Test B) as the subject having its 

head submerged in the sawdust substrate while engaging in digging behaviour. 

To assess pilferage efficiency, we recorded the following: the number of 

incorrect cells where attempted pilferage occurred before pilfering a correct cell 

that contained a cache (or attempting to pilfer from a correct cell in Test B); and 

the latency of pilfering a correct cell that contained a cache (or attempting to 

pilfer from a correct cell in Test B). To assess pilferage accuracy we recorded 

the following: whether the first pilferage attempt was in the correct location, a 

neighbouring location, the correct side only, or the incorrect location; and the 

distance of the first pilferage attempt to the nearest cache location (or cell that 

had previously contained a cache in Test B). Distance was measured to the 

nearest cm from where a nut had been cached in a cell to the location where 

the squirrel made its first pilferage attempt (where its head was submerged in 

the sawdust of a cell). We did not record all pilfer attempts, only the first, as 

during many trials the subject would employ a strategy of attempting to pilfer 

from every cell. According to Watanabe and Clayton the advantage of using 

measures based upon pilferage efficiency and accuracy, as opposed to the 

proportion of items recovered, is that we can compare the habituation trials and 

Test A with Test B when no food was present for the observer to recover. 
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Whether the observing squirrel had visual access to caches when they were 

being made was also monitored throughout the experiment via the remote 

viewing camera. Frequently the observer appeared to visually follow the 

behaviour of the caching squirrel, often frantically shadowing their movements 

from the adjacent cage. However, caches where the observer was facing away 

from the cacher while a nut was being buried are excluded from analyses for 

the conditions where visual access was available (a total of five caches were 

excluded from Test B; none needed excluding from the habituation trials). This 

has been done to reduce the possible effects of attentiveness on cache 

pilfering. In studies where the subject was not always observing caches various 

strategies have been employed, including directing the subjects attention to the 

position of the cache as it was being made by calling their name (Scheid & 

Bugnyar 2008; Scheid, Range & Bugynar 2007), or allowing caches to be 

observed only from restricted location to help to monitor which caches have 

been observed (Grodzinski, Watanabe & Clayton 2012).  

 

Squirrels also made caches in non-tray locations during the study, and we could 

not prevent this. As these caches were clearly visible from the observing 

squirrel cage, we included these caches in the analysis (totalling two caches 

across all repetitions).  

 

Analysis 

 

This study used a one factor repeated measures design to examine the main 

effects of condition (olfactory cues and visual access, olfactory cues only, visual 

access only) upon each of the dependent measures. Data from habituation trial 

1 was excluded from analysis as this served as a training period. Four subjects 

(N = 4) were tested in each of the three conditions: visual access and olfactory 

cues present, olfactory cues only, visual access only. Results from all three 

experimental repetitions are included in analysis.  

 

GEEs were used for most of the analyses in this study for the reasons outlined 

in Chapter 2. All GEE analyses were carried out using a first-order 

autoregressive (AR(1)) working correlation matrix (for related measurements), 

and using pairwise comparison contrast tests with a Bonferroni adjustment for 
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multiple comparisons. The best models are reported based on the Goodness of 

Fit statistic QIC and the corrected QICC model, with smaller values indicating a 

better fit.  

 

Separate tests were conducted to assess the main effects of condition on each 

of the dependent measures. A GEE was carried using a binary regression with 

a logit link function for whether the first search attempt was made in the correct 

side of the arena. GEEs were carried out using a Tweedie regression (for a 

positively skewed distribution with scale and absolute zero values) with an 

identity link function for number of pilfering attempts, and distance of the first 

pilferage attempt to the nearest cache location. GEEs were carried out using an 

inverse Gaussian regression (for positively skewed data without absolute zero 

values) for latency to pilfer from the correct cell, and location of the first pilfer 

attempt (whether a correct cell, correct neighbouring cell, correct side of the 

arena, or incorrect side).  

 

For analyses that did not accommodate a GEE model, separate repeated 

measures ANOVAs were used, namely the proportion of time the subject spent 

searching the front and rear of the testing arena. All reported data conform to 

assumptions of ANOVA (with equality of covariance matrices at a significance 

level above .001, and equality of error variances above .05, as defined by 

Pallant 2007).  

 

Data were analysed using Microsoft Office Excel 2010 and SPSS 16.0 for 

Windows. Significant models are reported to a minimum of 5% alpha level. 

 

Results 

 

Search accuracy 

 

There was a trend for subjects to search on the correct side of the arena (i.e., 

the one that had not been previously covered by laminate) more when they 

used olfactory cues only (M = .83, SD = .39, correct search attempts) compared 

to when they only had visual access alone (M = .33, SD = .49), or could use 

both types of information (M = .50, SD = .52), displayed in Figure 11. A GEE 
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was carried out which showed QIC = 49.10, QICC = 48.73, reporting no 

significant effect of condition upon whether the first search attempt was made 

on the correct side of the arena (approached significance, p = .071).  

 

 

Figure 11. Number of times the first search attempt was made on the correct side of 

the testing arena, the side that contained (or previously contained, in Test B) caches, 

across conditions. Error bars represent 95% confidence intervals. 

 

In terms of the amount of time the observer spent engaged in search behaviour 

in the front and rear of the testing arena, subjects spent on average 825 

seconds searching the front section of the arena and 750 seconds searching 

the rear section of the arena, displayed in Figure 12. A repeated measures 

ANOVA was conducted which reported no effect of condition on the amount 

spent searching the front and rear of the testing arena (p = .313, observed 

power = .17).  
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Figure 12. Time spent searching the front and rear cells of the testing arena, in 

seconds. Error bars represent 95% confidence intervals. 

 

Pilferage efficiency 

 

With visual access only squirrels attempted to pilfer from an incorrect cell an 

average of 4.60 (SD = 6.40) times before visiting a correct cell, compared to 

having olfactory cues only (M = .73, SD = .92), or a combination of both cues (M 

= .83, SD = 1.20), displayed in Figure 13. A GEE was carried out and showed 

QIC = 84.86, QICC = 87.01, reporting no significant effect of condition upon the 

number of pilferage attempts made (p = .112).  
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Figure 13. Number of incorrect pilfering attempts made before attempting to pilfer from 

a correct cell across conditions. Error bars represent 95% confidence intervals. 

 

In terms of latency of making a pilferage attempt in a correct location, subjects 

were quicker to locate the correct cell when using both olfactory cues and also 

had visual access (M = 90, SD = 155 seconds) compared to when using 

olfactory cues alone (M = 219, SD = 382) or only had visual access (M = 196, 

SD = 202), displayed in Figure 14. A GEE was carried and showed QIC = 6.09, 

QICC = 6.87, reporting no significant effect of condition upon the time it took to 

locate a correct cell (p = .103). 
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Figure 14. Latency, in seconds, to make a pilferage attempt from the correct cell, 

across conditions. Error bars represent 95% confidence intervals. 

 

Pilferage accuracy 

 

In terms of where the first pilferage attempt was most likely to occur, when 

using both cues combined 50% of attempts were made in the correct cell, and 

when using olfactory cues 50% of attempts were made in the correct cell. The 

remaining data for where the first pilfering attempt was made based on each 

location is displayed in Figure 15. A GEE was carried out which showed QIC = 

9.92, QICC = 11.29, reporting that there was no effect of condition on where the 

first pilferage attempt was most likely to occur (p = .199). 
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Figure 15. The percentages for the three conditions across each location where the 

first pilfering attempt was made. Error bars represent 95% confidence intervals. 

 

When both visual access and olfactory cues were available the first pilfering 

attempt was made an average of 19cm (SD = 26) away from a correct cell; 

when olfactory cues only were available the distance to the correct cell was 16 

(SD = 19), and when visual access was available M = 33cm (SD = 22), as 

displayed in Figure 16. A GEE was carried out which showed QIC = 297.82, 

QICC = 301.05, reporting that there was no effect of condition upon how far 

away the first pilferage attempt was made from a correct cell (approached 

significance p = .092). There was a trend for subjects to make their pilferage 

attempts closer to caches when using olfactory cues alone, in comparison to 

visual access only, or combined visual and olfactory information. 
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Figure 16. Distance of the first pilfering attempt from a correct cell, in cm. Error bars 

represent 95% confidence intervals.  

 

Discussion 

 

This was the first investigation of whether a rodent species uses OSM to aid 

cache pilferage. The results do not provide any evidence that squirrels use 

OSM to pilfer caches. In terms of search accuracy observers were more likely to 

search on the correct side of the caching arena when they were relying upon 

odour cues to locate caches than when relying on visual access or a 

combination of both types of information, however this this finding only 

approached significance. In terms of pilferage accuracy observers made their 

first pilferage attempt closer to the correct cell when relying upon odour cues 

alone as compared to using visual information or a combination of both cues, 

however this only approached significance. Although these differences between 

conditions were not significant, they were both in the opposite direction to those 

predicted by OSM; this makes it unlikely that the true population trend is in the 

direction of what would be predicted by OSM. The results suggest that OSM 

pays no part in grey squirrels’ cache pilferage attempts, at least under the 

conditions of the present experiment. 
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Pilfering without OSM  

 

Food storing rodents, parids and corvids have been shown to demonstrate 

pilferage reduction behaviour in the form of limiting visual information of the 

whereabouts of their cache sites. This suggests that onlookers pose a threat to 

cachers if they observe them storing food. Some species of corvid pose a threat 

to cachers because they can pilfer by OSM when they witness a cache. 

However, because pilferage behaviour has not been investigated in many other 

non-corvid species it was unclear whether onlookers of other caching species 

may pose the same risks to caches by pilfering using OSM. Grey squirrels were 

not found to pilfer caches using OSM in our current study, but showed some 

preference for using olfactory cues.  

 

Among the species that have been experimentally investigated in OSM studies, 

jackdaws, grey jays and black-capped chickadees have been reported to fail in 

OSM tasks. Jackdaws are not specialised cachers and they do not depend 

upon hoards for their long-term survival, and thus engaging in cache protection 

behaviour would be more costly than the benefits gained from caching. 

However, grey jays and black-capped chickadees are specialised cachers, 

dependent upon their stores, and they live in social groups during the caching 

season so there is a high opportunity for witnessing conspecifics making 

caches. Hitchcock and Sherry (1995) report that in captive studies of black 

capped-chickadees pilferage is not that common, and they suggest that cache 

theft by conspecifics might be a rare occurrence in wild chickadees, thus these 

birds are unlikely to possess OSM. Nevertheless black capped chickadees have 

been reported to limit their caching in the presence of conspecifics; Stone and 

Baker (1989) suggest this helps them to limit opportunistic pilferage, as 

opposed to pilferage by observation, because there are fewer other foragers in 

the vicinity. Similarly, grey jays have been reported to demonstrate evasive 

behaviour and limit or cease their caching when in the presence of 

heterospecific pilferers but not conspecific pilferers (Burnell & Tomback 1985). 

Burnell and Tomback suggest that grey jays have evolved this strategy in 

response to Steller’s jays because this species are thought to frequently pilfer 

from grey jays, while other grey jays do not frequently steal caches from one 
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another. Because cache pilferage is not a problem within each of these species, 

they are unlikely to possess OSM.  

 

On the other hand, captive studies of grey squirrels report that they recover 

caches that they have not made themselves (e.g., McQuade et al. 1986; 

Macdonald 1997; the current data), so it appears that pilferage is much more 

frequent in this species and may be a problem to cachers. Given that they do 

not appear to use OSM to steal caches they have witnessed being made, future 

studies should explore by what other means grey squirrels, and indeed other 

cache pilfering species, engage in cache pilferage.  

 

Given that grey squirrels change their behaviour in response to a conspecific 

audience it is highly likely that conspecifics do pose a threat to caching 

squirrels. However, the risk of being observed by a conspecific while caching 

might be different for squirrels as it is in those species that possess OSM. 

Hopewell, Leaver and Lea (2008) present data that suggests squirrels might 

primarily respond to conspecifics as competitors for resources rather than as 

pilferers of their caches. Thus, orienting oneself away from an onlooker while 

burying food might help to reduce the risk associated with competition, such as 

having food stolen while caching by a more dominant individual. Bugynar and 

Kotrschal (2002) suggest that raiding of food caches in species that do not use 

OSM is achieved when the cacher is still present and when the pilferer is the 

more dominant individual. Thus immediate pilferage can be achieved by a more 

dominant individual using local enhancement cues (Gibb 1960). In species that 

use OSM on the other hand, the observer can delay raiding until the cacher has 

left the area, which then allows subordinates a means to compete indirectly for 

food without physically displacing dominant individuals (Armstrong et al. 2012; 

Dally et al. 2005a). The role of competition in caching behaviour is discussed 

further in Chapter 4.  

 

Comparing squirrels with corvids 

 

Of the studies of various corvid species, the majority conclude that they 

possess some degree of OSM. Given that onlookers can return to pilfer caches 

after a delay simply by observation, this helps to explain why corvids engage in 
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pilferage reduction behaviour that seeks to minimise the opportunity for 

onlookers to witness caches being made (for the most recent review see 

Grodzinski & Clayton 2010). This illustrates Bugnyar & Kotrschal’s (2002) 

argument that within species cachers and pilferers evolve different strategies to 

compete with one another according to the selection pressure; caching 

individuals evolve behaviour to minimise the risk of cache pilferage, which has 

selected for pilferers to evolve strategies that allow them to pilfer more easily. In 

corvids, this has selected for OSM. On the other hand, in grey squirrels the 

adaptive pressures might have resulted in the selection of different pilferage 

strategies, such as pilfering immediately after observing a cache (witnessed in 

grey squirrels by Steele et al. 2014); such a strategy could be aided by being a 

more dominant individual, which we know squirrels use to access food 

resources (reviewed in Chapter 4). This requires further investigation to fully 

understand the specific risks that conspecifics pose to grey squirrels, a question 

that is addressed more fully in Chapters 4 and 6.  

 

An important point to consider is that the study design is likely to have 

contributed to the outcome of the study. We used methodology adapted from 

the corvid literature. However the actual food storing behaviour of corvids is 

very different from that of squirrels. For instance, corvids do not have the same 

sensitive sense of smell as rodents, with smaller olfactory bulbs, and thus 

olfaction is used less in cache retrieval and pilfering than in rodents (Vander 

Wall 1988). Magpies (Buitron & Nuechterlein 1985) and ravens (Harriman & 

Berger 1986) can use olfaction to detect caches but odour cues tend not to be 

used to enable cache recovery (discussed in Male & Smulders 2007a). 

Although previous research has shown that grey squirrels have a preference for 

recovering their own caches using visual cues over olfactory cues (McQuade et 

al. 1986), in the current study because using visual information was not always 

reliable (i.e., on trials where the nut was removed), the observer might have 

favoured using odour cues as opposed to using OSM; indeed there was a trend 

for this in the data, but we cannot conclude that this is the case with such a 

small sample size and non-significant effects. Designing an experiment without 

odour cues might provide a more ecologically relevant situation in which rodents 

might make use of OSM, rather than adapting a study that is more suited to 

avian cachers.  
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The problems with laboratory caching studies 

 

The largest drawback of this study (and those presented in Table 6) has already 

been outlined in Chapter 2, namely that captive testing arenas cannot represent 

natural caching behaviour in an ecologically realistic way. Natural caches made 

in the wild are spaced at much greater distances, and onlookers are often much 

farther away compared to in a laboratory testing arena. In addition, the costs 

and benefits of caching for captive animals are not the same as for their wild 

counterparts. If caches are not made the captive individual still has a reliable 

supply of food; if caches are lost, more cacheable items will be presented; and if 

an observer does not steal a cache it will not go hungry. As well as reducing 

motivation to cache, recover and pilfer, conditions of captivity could also reduce 

the motivation (or indeed ability for those housed alone) to engage in pilferage 

avoidance behaviour. Therefore we might not be seeing an accurate 

representation of the caching and pilfering behaviour that would be expected in 

wild populations. Future research should aim to investigate caching decisions in 

wild animals; though observing natural caching behaviour can be more time-

consuming, and restricted to peak caching seasons (at least in seasonal 

cachers like grey squirrels), it would provide much more ecologically relevant 

data to study squirrels in the future as well as corvids.  

 

Using laboratory housed grey squirrels, in particular, is also problematic for 

several reasons. Being a non-domesticated species they require considerable 

effort and hand-rearing from a very young age to habituate to captivity. They 

have substantial housing requirements to maintain their natural behaviour and 

prevent escapees, for the most part being housed singly, and even with all this 

they do not always thrive. For these reasons it is difficult to achieve large 

enough sample sizes for experimental studies, meaning that studies are often 

repeated measures with observers and pilferers partaking in both roles in the 

same experiment; moreover, individuals tend to be re-tested between studies 

that investigate similar behaviour which could affect the internal validity of the 

research. This again, is a common feature of many laboratory studies that 

investigate food hoarding behaviour.  
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It is essential that future research is carried out on the pilferage behaviour of 

caching species, particularly with other taxa that demonstrate pilferage 

avoidance behaviour, in order to understand whether similar adaptive pressures 

have led similar caching and pilferage strategies among different species. This 

study is valuable in that it is the first to experimentally investigate the use of 

OSM by grey squirrels, and as such it is the first to explore the use of OSM by a 

mammalian caching species. Unfortunately there were several drawbacks that 

prevented strong conclusions being drawn, the most notable of these being 

sample size. Nevertheless, previous studies that have reported OSM have been 

subject to the same experimental difficulties; Watanabe and Clayton’s (2007) 

study used an sample size of seven observers and still reported evidence of 

OSM. This suggests that studying more laboratory squirrels would simply allow 

us to conclude with more certainty that grey squirrels do not possess OSM.  

 

Conclusion  

 

In conclusion, though OSM has long been acknowledged as a possibility by 

those interested in food hoarding species, the behaviour of pilferers has not 

received nearly as much interest as the behaviour of cachers. The evolutionary 

pressures of food storing cannot be fully understood without understanding 

cache loss, and how this is prevented and achieved within species. In the 

current study we have shown that grey squirrels do not use OSM to pilfer 

caches in a laboratory setting. Given that previous studies have shown that they 

adjust their behaviour in ways to minimise cache theft in the presence of 

observers, it is more likely that they do this to prevent immediate pilferage by 

conspecifics but field studies would help to clarify this. The current study 

provides a basis for exploring different strategies used by grey squirrels and 

other species that engage in cache pilferage. 
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Chapter 4: Dominance effects on caching in 

wild Eastern grey squirrels. 

 

Introduction 

 

Foraging squirrels face a trade-off between resource competition, pilferage risk 

and predation risk: an individual squirrel must respond flexibly to competitors at 

a food patch (Hopewell et al. 2008), so that aggressive encounters with 

conspecifics are avoided, and food acquisition is maximised; they should cache 

as much food as possible whilst ensuring that caches are at lowest risk of theft 

by conspecifics (Macdonald 1996); and must also minimise the potential for 

predation by heterospecifics (Lima et al. 1985). Grey squirrels have been shown 

to adjust their foraging and caching behaviour in response to social and 

predatory risks (reviewed in Chapters 2 and 6 respectively) in a similar way to 

some food caching birds. Among food hoarding birds social dominance has also 

been found to have a large influence upon individual caching strategies; those 

differing in social rank adopt different methods of sequestering, storing and 

recovering food in response to pilferage and predation risks. There is some 

evidence to suggest that grey squirrels have a clear dominance structure, 

however, it is not known whether they also employ different foraging and 

hoarding strategies based upon social rank in the same way as caching birds. 

The current study has addressed how dominance influences foraging strategies 

among different ranking grey squirrels and whether there are individual 

differences in their food hoarding and cache protection behaviour in relation to 

social and predatory risks. 

 

Social dominance in food storing birds 

 

Many scatter hoarding birds tend to live in small groups structured by rank, 

where there are a lot of opportunities for witnessing conspecifics storing food, 

as well as a high risk of losing stored food to competitors. Chapters 2 and 3 

discuss some of the ways individuals can reduce costs associated with social 

foraging and cache loss. For species that forage in dominance structured 

groups, relative social rank can influence individual hoarding strategies. Within 

the Paridae and Corvidae social dominance has been suggested to affect food 
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hoarding behaviour in two ways: scatter hoarders compete for access for food 

to store when they are foraging, and also when they are recovering caches of 

their own or conspecifics (Clayton et al. 2007). Brodin et al. (2001) suggest that 

individuals of differing social rank behave differently in the way that they forage, 

cache and retrieve food. More dominant individuals use their status to 

monopolise food supplies at the source as well as recovering their own and 

subordinates’ caches, while lower ranking individuals cannot pilfer the food 

hoards of those more dominant and so need to invest more energy in hiding 

caches which they cannot defend from dominant thieves. A variety of studies 

have shown how different caching strategies are found between dominant and 

subordinate birds in order to achieve optimal energy gain from hoarding. For 

instance, compared to subordinates, dominant birds use aggression to protect 

their caches (pinyon jay: Bednekoff & Balda 1996a; raven: Bugnyar & Heinrich 

2005; Bugnyar & Kotrschal 2002; Eurasian jay: Goodwin 1956; Dally 2004; 

Western scrub-jay: Dally et al. 2005a), forage in more preferred locations 

(willow tit: Hogstad 1988), and supplant others while they are burying food 

(Eurasian jay: Shaw & Clayton 2012a). Subordinates on the other hand, 

supress caching in the presence of other birds (New Zealand Robin: Burns & 

Steer 2006), opting to cache where there are fewer conspecifics (Eurasian jay: 

Shaw & Clayton 2012a).  

 

Social dominance in food storing rodents 

 

Despite not having a similar group living structure as some caching corvids and 

parids, there is evidence that social dominance may affect hoarding behaviour 

in food storing mammals that forage at the same patch. Some between species 

comparisons show that more dominant individuals prefer to larder hoard 

because they can use aggression to defend their stores (chisel-toothed 

kangaroo rats and Merriam's kangaroo rats were dominant over dark kangaroo 

mice and long-tailed and little pocket mice: Jenkins & Breck 1998). Similar 

strategies have been found within species with dominants more likely to larder 

hoard and pilfer the stores of others (Eastern chipmunk: Clarke & Kramer 1994; 

red squirrel, Tamiasciurus hudsonicus: Gerhardt 2005). There has been very 

little study of how dominance relationships affect food hoarding and cache 

protection behaviour among grey squirrels. There is evidence that they engage 
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in similar cache protection behaviour to birds and that conspecific presence 

signals pilferage risk (reviewed and experimentally tested in Chapter 2). 

However, since they do not seem to use OSM to pilfer caches like corvids 

(reviewed and experimentally tested in Chapter 3), it is unclear what pilferage 

strategy would warrant behaviour that serves to reduce pilferage by 

observation. It has been reported that squirrels can immediately pilfer after 

witnessing a cache being made (Steele et al. 2014), something which being a 

more dominant individual could benefit because there would be less risk 

involved. Accordingly this would also support the view that some cachers would 

need to engage in strategies that minimise the possibility of this occurring, 

namely subordinates.  

 

Grey squirrels are mostly asocial (Koprowski 1996), they do not share their food 

hoards with kin (Spritzer & Brazeau 2003), and they actively engage in 

behaviours to minimise the loss of their caches to pilferers (reviewed in Chapter 

2), suggesting they do not willingly share their food hoards (Leaver et al. 2007). 

However, they are non-territorial with overlapping home-ranges and so come 

into frequent contact with other squirrels while foraging at the same food patch 

(Lewis 1980; Vander Wall & Jenkins, 2003). Therefore, despite being asocial, 

hierarchies appear to exist among individuals that frequent the same foraging 

patch. A number of studies have reported that grey squirrels demonstrate a 

stable linear dominance hierarchy, and use their physical attributes to 

monopolise food patches, with larger mature males relying on aggression to 

dominate females and younger subordinate males (Allen & Aspey 1986; Flyger 

1955; 1960; Horwich 1972; Koprowski 1996; Pack et al. 1967; Taylor 1966; 

Thompson 1978). What is less clear from this research is whether lower ranking 

squirrels employ strategies to offset the increased competition they face. Some 

research shows that grey squirrels might act in ways to compensate the 

additional competition for resources when foraging in the presence of 

conspecifics; grey squirrels have been found to increase their foraging time 

when conspecifics are present compared to when they are absent (Hopewell et 

al. 2008). Other research shows that some grey squirrels act in ways that might 

serve to limit antagonistic interaction with foraging conspecifics, such as 

transporting food away from a food patch (Spritzer & Brazeau 2003), increasing 
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vigilance levels to identify potential competitors (Tarigan 1994), and monitoring 

the auditory presence of conspecifics (Partan et al. 2010; Partan et al. 2009). 

 

In a similar vein to what has been reported in birds, grey squirrels might also be 

sensitive to dominance networks while they are storing food. Spritzer (1999) 

reports anecdotal observations of squirrels aggressively defending their caches. 

Currently, however, there is only one observational study that suggests there 

might be a link between social rank and caching behaviour of the grey squirrel: 

Leaver et al. (unpublished data) noted that dominant individuals appear to 

cache differently to subordinates, with more dominant grey squirrels clumping 

their caches while subordinate individuals distribute their caches more widely. 

From this study, it seems that the higher ranking individuals may be more able 

to aggressively defend their caches, whereas subordinates may need to rely on 

other pilferage avoidance mechanisms such as those based upon social 

information at the time of caching. For example, squirrels that change their food 

hoarding when conspecifics are present could be doing so to minimise 

competitive interactions (e.g.: caching less: Leaver et al. 2007; eating more: 

Steele et al. 2008; storing food in out of sight locations: Leaver et al. 2007; 

Steele et al. 2008) and to protect their caches from pilfering dominant squirrels 

(making more interruptions to caching: Hopewell & Leaver 2008; Steele et al. 

2008; spending more time disguising caches: Hopewell & Leaver 2008; and 

spacing caches father apart from one another: Leaver et al. 2007). Accordingly, 

the first research question of the current study was whether there were 

individual differences in the foraging and hoarding behaviour of the grey squirrel 

and whether this is related to their dominance structure. More specifically, we 

investigated whether subordinate individuals engaged in more cache protection 

behaviour than dominants, including making more curtailed digs, facing away 

from conspecifics or behind visual barriers when caching, and caching where 

there was fewer conspecifics.  

 

Effects of dominance upon decisions about pilferage risk and predation risk 

  

It is clear that the social environment presents several problems to food storing 

species: competing for resources with conspecifics, avoiding aggressive 

encounters, and minimising pilferage risk, all of which should cause them to be 
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wary of foraging at patches where there is a higher density of competitors, 

particularly for a less social species like the grey squirrel. However, at the same 

time, individuals must minimise their risk of being predated, the optimal 

conditions for which frequently conflict with securing food resources; for 

instance, studies of the dilution effect frequently show that predation risk can be 

reduced when foraging among many individuals (Bednekoff & Lima 1998; Elgar 

1989; Galef & Giraldeau 2001; Rausch, Siu, Stevenson, Sydnor 2012). Since 

areas of vegetation will attract competitors because they provide both a source 

of food and a means of cover and escape from predators, therefore squirrels 

could benefit from the presence of other foragers in terms of predation risk.  

 

Though a number of studies have investigated how predation risk affects 

general foraging or hoarding efficiency (e.g. Daly, Wilson, Behrends & Jacobs 

1990; Leaver 2004; Steele et al. 2014; Valone & Lima 1987), fewer have 

incorporated the role of dominance structure in response to predation risk. 

There is some evidence to suggest that in dominance-structured groups of birds 

the risk of predation affects dominants and subordinates differently. Subordinate 

flocking willow tits have been found to forage in riskier places (Ekman 1987; 

Koivula et al., 1994), and transport food farther from the source and cache in 

more exposed locations than dominants (Lahti et al. 1998). Such behaviour 

reduces foraging competition with dominants and the risk of cache loss but 

increases the risk of predation. It seems that because subordinates are 

restricted by dominants in where and when they can forage and cache, they 

must take higher risks, while dominants can monopolise patches of lower 

predation risk (Lange & Leimar 2001). There is also some research to show  

that dominant food storing birds carry less fat reserves than subordinates, which 

makes them less of a target to predators (Lundborg & Brodin 2003). Birds with 

greater fat stores are at a higher risk of being killed by a predator because of 

reduced in-flight manoeuvrability (Witter & Cuthill 1993), and an increase in fat 

requires more foraging, which is performed at a cost in time spent being vigilant 

(Lima & Dill 1990). On the other hand, dominant individuals can invest more into 

their external energy stores (Lucas et al. 2001) such as by caching more and 

protecting their hoards. 
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Scatter hoarding rodents are known to transport food to locations where the 

probability of pilferage is reduced (Muñoz & Bonal 2011; Stapanian & Smith 

1986; Steele et al. 2014). Several studies report that grey squirrels adjust their 

foraging behaviour in response to predation risk, for example, by reducing their 

foraging time in more exposed locations compared to areas of cover (Brown et 

al. 1992; Booth, et al. 2012; Bowers et al. 1993; Newman et al. 1988) or 

transporting food to cover to eat and cache (Lima & Valone 1986; Lima et al. 

1985). However both of these types of study typically only consider the trade-

offs between the benefits of limiting pilferage or predation separately against the 

energetic costs of where to place caches. In reality, for wild-living individuals 

these two trade-offs are likely to be highly connected. To date, only one study 

has reported that there might be a trade-off between minimising the risks of 

predation and reducing the risks that competitors pose. In the first part of their 

study Steele et al. (2014) found that artificial caches buried close to trees were 

at higher risk of cache theft compared to those buried in the open. This 

suggests that, in terms of cache longevity, it is profitable to store food in areas 

of higher predation risk. In the second part of their study they found that when 

storing a profitable food item grey squirrels would preferentially cache in open 

areas that were higher in predation risk, compared with when they were storing 

non-profitable items. This study demonstrates how decisions about predation 

risks can be closely connected to the pilferage risks posed by competing 

conspecifics. 

 

Furthermore, because research indicates that squirrel hoarding behaviour is 

influenced by social dominance, then it is likely that this pilferage-predation risk 

trade-off will also be influenced by social dominance. When making cache-

placement decisions dominants and subordinates are likely to trade-off these 

risks differently, with subordinates exposing themselves to increased predation 

risks by placing their caches in more exposed locations to protect them from 

pilferage, compared to higher ranking individuals who can use aggression to 

increase their access to food. While there is evidence to suggest that food 

storing birds might be behaving this way, this has not been studied in grey 

squirrels. In comparison to some of the caching birds studied, grey squirrels are 

obligate long-term scatter hoarders and are highly dependent on the long-term 

survival of their stores; they are therefore likely to be under strong selection 
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pressure to make optimal adjustments to their caching behaviour in response to 

social dominance and predation risk. 

 

Grey squirrels: social dominance, pilferage risk and predation risk 

 

From the literature reviewed here it is apparent that grey squirrel food hoarding 

behaviour is similar to that of some avian cachers in a number of ways: they 

demonstrate social hierarchies that influence their foraging access; they adjust 

their behaviour to conspecific audiences in ways that might help to reduce 

pilfering of their caches; and they incorporate predation risk into decisions about 

cache placement. The current study addresses whether social hierarchies play 

a role in the caching behaviour of grey squirrels and whether dominants and 

subordinates behave differently in response to competition, pilferage risk and 

predation risk; with subordinates more likely to act in ways to reduce pilferage 

but in doing so increasing their exposure to predators. Understanding whether 

those differing in social rank behave differently while caching, might also help to 

reveal more about the pilferage behaviour of grey squirrels. We know that food 

storing birds use a variety of strategies to pilfer, such as exerting social 

dominance to displace cachers, and sometimes they use OSM, but little is 

known about pilferage in grey squirrels. Since squirrels demonstrate social 

hierarchies, it is possible that they are engaging in similar dominance-based 

pilferage strategies to some species of flocking birds. This would help to clarify 

why they engage in pilferage avoidance behaviour, though do not appear to use 

OSM.  

  

In the current study, dominance interactions were measured in wild squirrels at 

a provisioned food source in order to confirm that the study population was 

composed of a linear hierarchical structure as previously found for grey 

squirrels. Using aggression, chases and displacement behaviours as measures 

of dominance, it was predicted that higher ranking individuals would sequester 

more food while subordinate individuals would cache more food.  

 

Cache placement was monitored in order to determine where squirrels 

preferred to cache as a function of three different risk factors:  
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(1) caching distance from a provisioned food source provided a measure 

of competition avoidance since at the source there was a high density of 

conspecifics;  

(2) caching distance from conspecifics when the conspecifics were 

oriented toward the cacher provided a measure of effort to avoid 

pilferage risk;  

(3) caching distance from refuge was measured as an assay of a 

squirrel’s willingness to expose itself to predation risk.  

 

It was predicted that compared to dominants, subordinates would cache farther 

from the food source to avoid competition, farther from on-looking neighbours in 

an effort to reduce pilferage risk, and farther from cover as they would be less 

risk-averse than dominant individuals.  

 

Given that there is a trade-off of where caches are placed in relation to risks of 

pilferage, competition and predation, we investigated whether squirrels modified 

their use of pilferage reduction behaviour in relation to where caches were 

placed and in relation to their social ranking. Pilferage reduction behaviour 

included behaviour previously been reported to be used by caching grey 

squirrels (reviewed in Chapter 2), including how many curtailed digs were 

performed when caching, whether the cacher faced toward or away from 

conspecifics while caching, and whether they cached behind a visual barrier or 

not. In relation to where caches were placed, the individual predictions for each 

pilferage reduction strategy is presented in Table 7; while in relation to squirrel 

identity we predicted that overall lower ranking individuals would make more 

use of pilferage reduction strategies while caching in comparison to those that 

were higher ranking.  
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Table 7. Predictions of which pilferage reduction strategy would be used by cachers 

depending upon if they act primarily in ways to limit pilferage risk, competition, or 

predation risk.   

Hypothesis 

based upon 

distance to 

risk of… 

Whether pilferage reduction strategy is used while caching: 

Curtailed digs Caching orientation Use of visual barrier 

Cache 

pilferage  

More curtailed 

digging minimises 

the possibility for 

pilferage. 

Facing away from 

conspecifics minimises 

the possibility for 

pilferage. 

Using a visual barrier 

minimises the 

possibility for pilferage.  

Competitive 

interaction 

Fewer curtailed 

digs means caches 

can be made more 

quickly, so 

minimising 

exposure time to a 

competitor. 

Facing onlookers 

allows the cacher to 

monitor their positions. 

Avoiding using a visual 

barrier allows the 

cacher to monitor the 

positions of 

competitors. 

Predation Fewer curtailed 

digs means caches 

can be made more 

quickly, thus 

minimising 

exposure time to 

predators. 

Facing towards 

onlookers helps to 

monitor the vigilance of 

onlookers to potential 

predator cues. 

Avoiding using a 

barrier allows the 

cacher to monitor the 

vigilance of onlookers 

to potential predator 

cues. 
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Method 

 

Ethics and licensing  

 

Trapping was carried out in accordance with the ‘Association of Animal 

Behaviour Guidelines for the Use of Animals in Research’, the University of 

Exeter Psychology Ethics Committee, and under a Natural England permit to 

live trap and release.  

 

Trapping of subjects 

 

Trapping and observations were carried out during the peak food hoarding 

season from September through December 2011 at Streatham Campus, 

University of Exeter, Devon, UK. An area of campus was chosen (latitude 

N50:44:03, longitude W3:32:13) that was approximately 60 x 25 metres and 

predominantly consisted of evergreen and deciduous nut-bearing trees and 

rhododendron bushes with a clearing in the centre where squirrels tended to 

forage and cache. Ten traps (Tomahawk Live Trap, Wisconsin, U.S.A., model 

#202) were spaced in sheltered areas around this site, baited with peanut butter 

and checked at 1-2 hour intervals. When a squirrel was trapped, it was weighed 

(juveniles < 405g, adults > 535g, as per Heller 1978), sexed, PIT tagged, and its 

fur was marked in a distinctive pattern (e.g., back spot, side crosses) with black 

hair dye, before being released at the same location in which it had been 

trapped. A total of 17 squirrels were marked but not all were subsequently 

observed engaging in competitive or caching behaviour. Accordingly, 9 were 

included in the competition data and 11 were included in the in the caching data 

of this study.  

 

Design and procedure 

 

At the start of each observation session 100 hazelnuts in shells were placed on 

a tree stump (approx. diameter 1m) in the centre of the observation site. A video 

camera was positioned 3m east of the tree stump facing the provisioned food 

and an observer sat 20-25m north of the tree stump. Observations were 

conducted from approximately 09:30 and/or 14:00, and each session continued 
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until all of the hazelnuts were gone (M = 1h 14m, SD = 29m) or for a maximum 

of two hours. Approximately 40 hours of data were collected in 36 observation 

sessions over 26 non-consecutive days.  

 

Dominance interactions 

 

During observations and from the videos that were collected, data were 

obtained relating to dominance interactions between squirrels at the site of the 

provisioned food (the tree stump). Records were made each time a chase 

occurred between two squirrels in the observation area, or an attempted 

displacement was made at the provisioned food. The identity of both the 

chaser/displacer and the squirrel that was being chased/displaced was 

recorded, and also whether the chase/displacement was successful, i.e., 

whether the chasing/displacing squirrel successfully prevented the other squirrel 

from accessing the provisioned food during that specific interaction. If the 

chase/displacement was not successful the chaser would be considered to 

have lost the interaction. The criteria we used to define interactions are 

provided in Table 8. 
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Table 8. Criteria for dominance. Each time a squirrel attempted to gain access to food 

in the presence of another squirrel, this was recorded as one behavioural event, with 

one winning squirrel (dominant) that gained or maintained access to the food and one 

losing squirrel (subordinate) that did not have access or lost access to the provisioned 

food source, or made an unsuccessful displacement attempt (adapted from Allen & 

Aspey 1986 and Thompson 1978). Only chases/displacements that occurred at the 

provisioned food source were included in analysis, so that we could exclude behaviour 

that was potentially unrelated to dominance. At no point was there more than one 

squirrel at the food source without an antagonistic interaction occurring. 

Dominance interaction  Dominant Subordinate 

Two squirrels approach the provisioned food source; 

Squirrel A waits for Squirrel B to take a nut first. 

B A 

Squirrel A is at the provisioned food source and Squirrel B 

approaches. Squirrel A leaves the food source in 

response to the approach or presence of Squirrel B, or 

Squirrel A is chased away by Squirrel B. Such behaviour 

has been operationally defined as a displacement 

according to Hopewell et al. (2008) “where one squirrel 

moves out of the nut patch when approached by another” 

(p. 1145). 

B A 

Squirrel A approaches the food source where Squirrel B 

is already located. Squirrel B prevents Squirrel A from 

accessing the food either by: B chasing A away from the 

provisioned food; or, B performs vigilant behaviour 

directed at A in the form of raised fur and tail, often 

accompanied by vocalisations, and Squirrel A retreats 

from the food source. 

B A 

If the previous scenario is displayed but the receiver 

Squirrel A does not retreat from the food source as a 

direct result of the presence of Squirrel B, then Squirrel B 

is said to have lost the interaction encounter. 

 

A B 
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Caching data 
 

Collecting data on cache placement allowed us to see how this varied in 

response to pilferage risk, competition risk and predation risk. Caches were 

operationally defined according to a description adapted from Steele et al. 

(2008), Laidler (1980) and Macdonald (1995) which is presented in Table 5, 

Chapter 2. 

 

During observations, the observer recorded data onto a check sheet which 

consisted of a scale map of the observation site, illustrating the positions of 

trees and shrubbery (Figure 17). This enabled the following records to be made 

each time a cache was made by a marked or unmarked squirrel: the time the 

cache was made; the identity of the caching squirrel (marking, age, sex); the 

location of each cache, including distance from the provisioned food (as an 

assay of competition risk), distance from nearest facing neighbour (as an assay 

of pilferage risk), and distance from nearest escape tree (as an assay of 

predation risk); whether the cached nut was a provisioned hazelnut or not; the 

orientation of the squirrel while caching (cardinal direction and relative to other 

squirrels: facing toward or away from their nearest neighbour as defined in 

Leaver et al. 2007); the presence of other squirrels at the observation site at the 

time the cache was made, including the number, location, orientation and 

identity; whether there was a visual barrier (e.g., a shrub) between the caching 

squirrel and their nearest neighbour at the time of the cache; and finally, the 

number of curtailed digs made prior to caching, including total number made 

prior to each cache. 
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Figure 17. Map of observation site. Also used as an observation check sheet to record 

the location of each cache and other information at the time of the cache. Each square 

represents approximately 1.5m2. 
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Statistics  

 

The dominance interactions allowed us to generate a social network of who 

consistently supplanted whom at the provisioned food. These data were 

analysed using UCINET version 6 (Analytic Technologies, Kentucky, USA) and 

also using the methods reported in Lehner (1998) for analysing linearity (p. 332-

335). Cache placement distances to the food source, neighbouring squirrels, 

and refuge analysed for differences based upon dominance rank. Statistical 

tests reported from these data have been calculated predominantly using non-

parametric methods (a Kruskall-Wallis analysis) due to a substantial skew in the 

data.  

 

We used SPSS Version 16.0 to carry out statistical analysis for the data on 

cache placement. All of our measures were checked for outliers, skew and 

normality; where violations were apparent and transformations unsuccessful 

(Kolmogorov-Smirnov p < .01, advised in Pallent 2007), we carried out a 

Generalized Linear Model (GZLM). We applied a backward elimination process 

resulting in a minimum adequate model with the lowest Akaike’s Information 

Criterion (AIC) for assessing model fit; selecting the model that was most 

efficient at explaining the variance in the data. Based upon our hypotheses we 

were interested in three types of pilferage reduction behaviour: the number of 

curtailed digs made prior to caching, whether a visual barrier was between the 

cacher and their nearest neighbour, and the facing orientation of the caching 

squirrel from their nearest neighbour. We investigated whether these pilferage 

reduction behaviours were displayed depending upon cache placement. Three 

GZLM’s were carried out which included the following measures of cache 

placement as predictors of pilferage reduction behaviour in each model: caching 

distance in metres to cover (exposure to predation risk), caching distance in 

metres to food source (risk of competition), and caching distance in metres to 

nearest neighbour that was orientated toward the caching event (effort to avoid 

pilferage risk). Post-hoc pairwise comparison tests were carried out with a 

Bonferonni adjustment for multiple comparisons. 
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Results  

 

Descriptive statistics for both dominance interactions and cache placement for 

each of the marked squirrels are presented in Table 9. As can be seen from the 

table there is a skew to the both the caching and social rank data; one squirrel 

(End Half of Tail, adult male) dominated the provisioned food over most of the 

observation periods and was responsible for most of the chases/displacements 

made (161/183) as well as most of the caches (85/303) in comparison to other 

individual squirrels. Throughout observations all 100 of the provisioned nuts 

were taken by squirrels within an average of 1h 14m. 
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Dominance interactions 
 

A dyadic interaction dominance matrix was used to generate an ordinal 

dominance hierarchy based on chases/displacements made and won versus 

those received and lost for the marked squirrels that were observed in 

interactions at the provisioned food. This was calculated as per the method of 

Brown (1975) to better control for treatment of reversals and intransitivity in the 

data. This is presented in an interaction matrix (Figure 18), which shows the 

identity of individuals making and receiving most chases/displacements, and 

reflects the best order of dominance in the group. 

 

Figure 18. Dominance network of the marked squirrels based on interactions at a food 

source. Calculated using the method of Brown (1975) and generated using UCI NET; 

those relationships represented as equal ranks come from Landau’s Va = 1 + 0.5 

formula. The squirrel denoted by the black circle node initiated and won the most 

chases/displacements (but also lost three interactions) and also was dominant over the 

most squirrels, followed by squirrels represented by the dark grey square nodes who 

were each dominant over three squirrels, the soft edge medium grey node represents a 

squirrel that was dominant to two squirrels, and the squirrels represented by the grey 

diamonds were each dominant to one squirrel. The grey upward triangle nodes depict 

squirrels that were always only the recipient of a chase/displacement. Four squirrels 

(white inverted triangles) were not involved in any interactions but were observed at the 

provisioned food when there were other squirrels present. 
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We used Landau’s index of linearity (in Lehner 1996; equivalent to the method 

of Kendall 1948) to assess whether the dominance network was a linear 

hierarchy, which allowed ranking of squirrels based upon the number of 

individuals subordinate  to them (Table 8). The index (h) is calculated to the 

following formula: 

 

 

 

Linearity was calculated using Va = 1 + 0.5 for individuals of equal rank where V 

represents the number of animals that individual ‘a’ dominates. A low value of 

for the degree of linearity was attained, h = 10.2. This non-linear relationship is 

likely due to several squirrels in the hierarchy having attained equal ranks, and 

because most interactions were made by one squirrel dominating all others at 

the provisioned food patch. Thus, the food competition dominance network 

reflects more of a tyrannical or despotic structure. 

 

Cache placement and dominance rank 

 

Data for caching distances based upon individual identity are presented in 

Table 9, which do not reveal any striking differences between the tyrant squirrel 

and its subordinates. Therefore, we used Landau’s index of dominance rank to 

explore whether there was a difference in caching distances, as opposed to 

individual identity. As the data were skewed because one squirrel dominated 

the provisioned food patch, this could have limited the amount of food that other 

squirrels in the vicinity could sequester. Therefore we used non-parametric 

analyses that were not sensitive to violations of normality. We compared if there 

were differences in the following measures according to relative dominance 

rank: caching distance from provisioned food, caching distance from cover, 

caching distance from nearest neighbour. Overall the squirrels tended to place 

caches an average of 11.71m (SD = 6.01) away from the food source, 11.58m 

(SD = 6.06) from their nearest neighbour, and 2.61m (SD = 1.82) from cover 

(data for caching distances based upon individual identity are presented in 
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Table 9).  A Kruskall-Wallis analysis revealed no significant differences for any 

of the measures (p > .05) based upon dominance rank.  

 

Cache placement and pilferage reduction strategies 

 

In order to examine whether pilferage avoidance behaviours were displayed as 

a function of caching distance to different areas of risk three GZLMs were 

carried out. These measured whether different pilferage avoidance strategies 

(caching orientation, curtailed digging, and use of visual barrier) were used 

differentially as depending upon caching distances to areas high in pilferage 

risk, competition and predation risk. A summary of their outcome is presented in 

Appendix C.   

 

For the number of curtailed digs made, a GZLM was carried out based upon a 

Gamma probability distribution with an Identity Link Function. The minimum 

adequate model was significant, AIC =214.25, X2 (24) = 5.41, p < .001. The 

best predictors for explaining the variance in the number of curtailed digs made 

was the caching distance from their nearest on-looking squirrel X2 (22) = 5.31, p 

< .001, and the caching distance from the food source X2 (21) = 69.23, p < .001. 

The number of curtailed digs that were made was significantly affected by 

caching distance to the nearest on-looking squirrel and caching distance from 

the food source, so that the number of curtailed digs increased as caches were 

placed farther away from conspecifics and farther away from the provisioned 

food source. These results are presented in Figure 19. 
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Figure 19.  Result of GZLM follow-up tests for number of curtailed digs made as a 

function of (a) caching distance to nearest squirrel, and (b) caching distance to the 

provisioned food. Error bars represent ± 1 standard error. * p < .05, ** p < .001. 
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For caching orientation to nearest neighbour, a GZLM was carried out based 

upon a binary logistic probability distribution. The minimum adequate model 

was significant, AIC =206.45, X2 (72) = 78.73, p = .001. The best predictor for 

explaining the variance in the number of curtailed digs made was the caching 

distance from their nearest on-looking squirrel X2 (26) = 12.81, p < .009. 

Squirrels would be more likely to orientate themselves away from the nearest 

onlooking neighbour when they were farther away from them, displayed in 

Figure 20. No other factors were significant in the optimal model. 

 

  

Figure 20. Results of GZLM follow-up tests for caching orientation to nearest neighbour 

as a function of distance to nearest neighbour. Error bars represent ± 1 standard error. 

* p < .05. 

 

A GZLM was carried out based upon a binary logistic probability distribution to 

determine whether subjects were more likely to use a visual barrier while 

caching in the presence of another squirrel. Use of a visual barrier did not vary 

as a result of any of the cache placement distances included in the full model, 

AIC =200.72, X2 (74) = 69.22, p = .107. 
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Discussion 
 

To determine whether dominant and subordinate squirrels behaved differently 

when foraging and caching, we first examined social structure within our 

subjects. It was found that one squirrel (End Half of Tail: an adult male) was 

responsible for the majority of caches made and won more dominance 

interactions than any other squirrel. However, the nature of the social hierarchy 

was tyrannical which contrasted with our expectations of a linear hierarchy. As a 

function of dominance rank cache placement was also measured in terms of 

distance to the food source, other squirrels and refuge. We found that there 

were no differences in these measures based upon dominance rank.  

 

 We then compared whether there were differences in use of pilferage reduction 

behaviour as a function of cache placement. In terms of using a visual barrier 

between themselves and the nearest conspecific, there was no effect of cache 

placement.  

 

 In terms of caching orientation to the nearest conspecific, squirrels would be 

more likely to orientate themselves away from their nearest neighbour when 

they cached farther away from them, and orient toward them when placing 

caches close to them. This finding lends support for a competition-avoidance 

hypothesis and indicates that squirrels might be acting in ways to visually 

monitor potential competitors, which may minimise the possibility of an agonistic 

encounter. However, it is also possible that in locations where there is a higher 

density of squirrels, that individuals are more likely to face toward another 

squirrel. 

Finally in terms of caching distance to the nearest neighbour, squirrels made 

more curtailed digs when they cached farther away from a conspecific and 

farther away from the food source. This is opposed to what we would expect 

from an individual minimising their pilferage risks, and thus we can reject our 

pilferage-avoidance hypothesis. It is possible that when caching close to a 

conspecific or at a location where the density of foraging competitors is high 

(i.e. a food source), an onlooker could pose a more immediate risk of 

competition to the cacher by supplanting or chasing the caching individual. Thus 

engaging in curtailed digging could be risky to the cacher in locations where 
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there is high foraging competition or when conspecifics are close by. This could 

suggest once again squirrels are acting in ways to avoid competitive 

interactions.  

 

Dominance hierarchy in the grey squirrel and its effect on caching 

 

As an underlying basis for this study, we aimed to quantify a linear dominance 

hierarchy previously reported in grey squirrels so that we could explore its 

effects on their food hoarding behaviour. However, the dominance hierarchy we 

found was notably different from what we expected. Previous studies report that 

grey squirrels have a transitive linear dominance hierarchy, where a number of 

higher ranking adult males dominate younger subordinate males and females 

(Allen & Aspey 1986; Flyger 1955; 1960; Horwich 1972; Koprowski 1996; Pack 

et al. 1967; Taylor 1966; Thompson 1978). While we found that the most 

dominant squirrel in our population was an adult and male as expected, the 

nature of the dominance network in the current study did not reveal what had 

been previously found with grey squirrels. This produced unexpected, but 

nevertheless interesting, effects on the rest of our behavioural measures.  

 

After calculating dominance rank within our population, our study aimed to 

explore whether individuals of different status made different cache placement 

decisions. Despite having one clear high ranking individual within our 

population, no differences in cache placement were found between the different 

dominance ranks. Again, this finding is not what we expected to find. While this 

has not been studied in grey squirrels, the literature on food storing rodents and 

birds shows that dominance plays a an important role in food hoarding 

behaviour in terms of where to forage (Hogstad 1988), when (Burns & Steer 

2006) and where to cache (Shaw & Clayton 2012a), and how to protect stores 

(Bugnyar & Heinrich 2005; Bugnyar & Kotrschal 2002; Goodwin 1956; Dally 

2004; Dally et al. 2005a; Jenkins & Breck 1998). However, given the dominance 

network that was found in the current study, with one individual monopolising 

resources, it is doubtful whether there would be individual differences in caching 

strategies among subordinates who had limited access to the provisioned food 

source.  
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There are methodological reasons that could have contributed toward the 

current results. The provisioning methodology used here has the advantage of 

increasing the number of caches observed during a limited study period and 

thus can greatly increase volume of data. While some studies scatter the 

provisioned food rather than positioning in one location we chose not to do this 

so that we could observe food competition to determine dominance structure. 

However, presenting a large regular supply of food to a population of squirrels 

creates an artificial bonanza situation that could have affected the natural 

dynamics of the population network. This could be particularly problematic if the 

provisioned source is placed at the centre of one individual’s home range but 

where other squirrels also forage. In the current study this might had led to the 

formation of a tyranny where one would not normally exist. An alternative way to 

run this type of study would be to conduct observations of caching whilst 

naturally foraging (as opposed to a provisioning), but use a provisioning station 

at different locations and at separate times around the observation site to study 

dominance interactions. This might help to provide a more natural competitive 

situation, and reveal any changes in dominance hierarchy as provisioning is 

moved across the site. However, for studies that are limited to monitoring 

behaviour during peak caching times it might provide limited data, with too few 

caches observed for trends to be determined.  

 

Looking more closely at the previous studies conducted, their individual 

methodology varies considerably. For instance, Allen and Aspey (1986) 

measured competition for access to a food bucket in a group of wild-caught 

squirrels placed in an enclosed arena, while Thompson (1977) and Koprowski 

(1966) simply monitored natural occurrences of aggression in free-ranging 

individuals that were not even necessarily engaged in foraging. Despite using 

different ways to measure dominance, across these studies linear hierarchies 

are consistently reported. The current study used a methodology that was 

similar to Pack et al. (1967). In their study they monitored the natural 

occurrences of dominance interactions of marked individuals at a provisioned 

feeding station. As in the current study, dominance was assessed in terms of 

displacements and chases by a dominant toward at subordinate which 

prevented access to the provisioned food. Similarly, adult males were 

responsible for the majority of these. At one of their sites, even with a relatively 



136 
 

low sample size (similar to the current study) of 19 individual squirrels they 

reported a “straight line hierarchy” (p. 723). 

 

If methodological differences between studies (for example, in food 

provisioning, the size of the site or population) do not provide a full explanation 

of why the current data are so different from previous results, perhaps the social 

environment could offer an interpretation. Indeed it is likely that the data from 

one rogue squirrel has contributed to this outcome; this individual might simply 

not have been representative of how squirrels behave. However, because this 

one individual had such an impact upon the rest of the study population at the 

experimental site, it is impossible to determine how the social network would 

have been different without this one squirrel, whether it would be linear, or 

whether simply another squirrel would take over its rank. 

 

Cache placement in relation to competition, pilferage and predation  

 

Although the dominance data were not as expected, we were still able to 

explore pilferage avoidance behaviour in relation to the cache placement 

decisions of our sample population. This was done in terms of how far they 

cached food from its source where there was likely to be a high risk of 

competition, how far they cached from their nearest onlooking neighbour, and 

how far they cached from refuge. Generally squirrels appeared to act in ways 

that were associated with sensitivity to risk of competition rather than pilferage. 

Cachers were more likely to face conspecifics when they cached closer to them 

and were less likely to make curtailed digs in the close proximity of conspecifics. 

These results support the research of Hopewell et al. (2008) who report that, at 

a food patch, grey squirrels respond to conspecifics primarily as competitors 

rather than potential pilferers. Given the nature of the dominance network in the 

current study, the benefits of monitoring the behaviour of competitors (rather 

than facing away to cache, or caching behind a visual barrier) are clear; an 

aggressive squirrel was monopolising food supplies and all others needed to 

monitor this individuals behaviour. 

 

Our current data do not lend any support to the pilferage avoidance literature. A 

number of caching birds and mammals have been reported to engage in 
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behaviour while caching that serves to limit visual information about the location 

of stores. For instance, when being observed caching some species have been 

shown to place caches behind visual barriers (Bugnyar & Kotrschal 2002), face 

away from conspecifics (Leaver et al. 2007), store in more shaded locations 

(Dally et al. 2004), and in more out-of-sight locations (Dally et al. 2005b; 

Heinrich & Pepper 1998; Pravosudov 2008; Steele et al. 2008) compared to 

when are not being observed. From these results one would predict that a 

cacher in the current study would be more likely orient away from onlookers to 

conceal information about their cache, whereas the opposite was reported in 

the current data. In addition to this, Hopewell and Leaver (2008) found that grey 

squirrels made more curtailed digs in the presence of conspecifics compared to 

when caching alone, but in the current study we found they made fewer 

curtailed digs when they were closer to another squirrel. However, there are 

several methodological reasons why our current results cannot be directly 

compared with those from previously studies, particularly design and population 

structure differences. 

 

As already discussed, the current study used provisioning, which creates an 

exaggerated competitive situation. Even though there is more than enough food 

available, because the food is presented as a bonanza rather than a foraging 

patch, the competition to cache is intensified. At a time of year when caching 

rates are already at their peak, the provisioned food encourages an accelerated 

rate of caching compared to what they would be naturally, with individuals 

attempting to sequester and store as much food as possible before the bonanza 

is depleted. Provisioned nuts were taken by squirrels within 1-2 hours, with the 

majority of these taken out of sight and stored or eaten before the same 

individual returned to repeat the behaviour. Given this urgency to cache, and 

such an abundant supply of food, it could be argued that the motivation to 

engage in pilferage-reduction behaviour is reduced, with the pressure of 

competing with others at the same provisioned patch being made much more 

immediate.  

 

Another possible reason why we did not find support for ourpilferage avoidance 

hypothesis as we expected may be because studies that report these 

behaviours do not tend to take measurements of cache placement (i.e., in terms 
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of distance from the food source, neighbour or refuge) as a function of whether 

pilferage avoidance was displayed (e.g., Leaver et al. 2007). Typically cache 

distribution is recorded or behaviour is measured as present or absent, as 

opposed to being recorded as a function of distance from locations varying in 

risk as it was in the current study. In addition, studies that do link pilferage 

avoidance to dominance tend to be conducted on species that are known to 

demonstrate a clear dominance network (e.g., Eurasian jay: Shaw & Clayton 

2012a). Given that the dominance hierarchy in the current study was so 

different from what would be expected from previous studies, it makes the 

results relating to cache placement behaviour difficult to generalise to other 

populations of squirrels. 

 

Finally, we also expected to find a difference in pilferage reduction behaviour in 

terms of willingness to incur predation risk while caching. This was not found, so 

the current study was not able to further understanding of how predation risk 

might be traded-off against other risks, such as pilferage. Though this kind of 

trade-off has been studied in other food hoarding species, our knowledge of it in 

squirrels is limited, with only one study reporting that they may trade-off 

predation with pilferage in their placement decisions (Steele et al. 2014). 

Further research on grey squirrels cache placement behaviour would provide a 

great contribution to this topic and increase our understanding of how squirrels 

are deciding where to cache; it could also help to clarify how squirrels decide 

where to pilfer as this is something that is still unclear (discussed in Chapter 5). 

 

There are several possible reasons why no differences in caching distance to 

refuge were observed in our current study. It is possible that the measure of 

predation risk was not sensitive enough to detect differences in behaviour. The 

study site was selected because it was known as having had a large population 

of grey squirrels for a number of years. However, this location also had 

substantial canopy cover (60-80% throughout the study) and provided extensive 

areas of refuge from both terrestrial and aerial predators (hence its thriving 

population of squirrels). Therefore the risk of predation may not have been 

substantial in this location, particularly when the more immediate threat of 

competition was so high from one dominant squirrel. Though many studies do 

use distance to refuge as a measure of predation risk (e.g., Brown et al. 1992; 
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Bowers et al. 1993; Ekman 1987; Lahti et al. 1998; Newman et al. 1988), often 

measuring or simulating direct cues of predation risk, such as visual or auditory 

cues, can provide a more direct measure of behaviour in response to these 

cues. Rather than providing a degree of risk, this enables the experimenter to 

monitor differences in behaviour (for example, cache placement) when the cue 

is present versus when it is absent. In environments where competition is high, 

such as during peak caching season, or those that have abundant canopy 

cover, which is typical for grey squirrels, exploring behaviour in this way would 

help to distinguish behaviours that are in response to competition from those 

that are in response to perceived predation risk (discussed in Chapter 6).  

 

Conclusion 

 

This study has reported a more exaggerated dominance network than grey 

squirrels were previously thought to have, and social dominance was not found 

to affect cache placement in a similar manner to food storing birds. Squirrels in 

the current study appeared to engage in behaviour that allowed them to more 

easily respond to a competitive behaviour, including: orienting themselves 

toward and engaging in less curtailed digging while caching in proximity to 

conspecifics. Our measure of predation risk was not found to influence 

behaviour in any way. Because of the unexpected findings several 

methodological concerns have been outlined that could have contributed to the 

outcome of the study. It is suggested that future exploration of these topics 

investigate them in a different manner; some suggestions have been outlined, 

and alternative field methods are presented in Chapters 5 and 6.   
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Chapter 5: Factors affecting cache pilferage rates at landmarks: 

predation risk and food availability. 

 

Introduction 

 

The ability to locate and recover their stores can influence scatter hoarders 

decisions about where they make their caches. Spatial information and visual 

landmarks have been reported to be used by a number of food hoarding 

species, including grey squirrels, to act as beacons during caching and recovery 

of their stores. Caching species also pilfer the caches of others while foraging, 

though the precise mechanisms they use to achieve this are unclear among the 

Paridae and Rodentia. The problem of pilferage has been examined extensively 

across a range of species from the point of view of the cacher (reviewed in 

Chapter 2), however few studies, beyond the OSM literature, have investigated 

the behaviour of pilferers. Given that cachers use visual cues to aid memory for 

their stores, the current study addresses whether landmarks might act as a 

beacon to aid pilferers by cuing the location of caches. 

 

Cues used during caching and recovery 

 

Food storing Corvidae and Paridae appear to be careful where they place their 

caches. Field and captive studies show that the use of spatial information 

(discussed in Feenders & Smulders 2011 and Vander Wall 1989) and local 

cues (“beacons”) can play a strong role in food caching and may be used to aid 

recovery. For instance, some birds demonstrate a preference to cache close to 

landmarks (black-capped chickadee: Herz et al. 1994; Clark's nutcracker: 

Vander Wall, 1982; Kamil, Balda & Olson 1994; Balda & Turek 1984; magpie: 

Feenders & Smulders 2011; Western scrub jay: Watanabe 2005), show site 

preferences that enhance retrieval accuracy (Male & Smulders 2007a), and 

have difficulty recovering food when visual cues have been moved or removed 

(black-capped chickadee: Brodbeck 1994; Cheng & Sherry 1992; Duff et 

al.1998; Clark's nutcracker; Gould-Beierle & Kamil 1996).  
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Some scatter hoarding mammals also appear to use visual cues from their 

environment when they cache food, and are better at recovering their stores 

when landmarks are intact (Merriam’s kangaroo rat: Barkley & Jacobs 1998; 

Mongolian gerbil: Collett et al. 1985; Southern flying squirrel: Gibbs et al. 2007; 

laboratory rat: Olton & Samuelson 1976; yellow pine chipmunk: Vander Wall 

1991; Vander Wall et al. 2006). However, cache recovery in mammalian scatter 

hoarders differs from birds because they can more heavily rely on olfactory 

cues to locate their stores. Nevertheless, when comparing the use of spatial 

and visual cues with olfactory information, cachers appear to benefit more from 

spatial and visual cues to locate their stores compared to those using random 

olfactory search (Merriam’s kangaroo rat: Jacobs 1992b; pine chipmunk: 

Vander Wall 1991, 2000; deer mouse: Vander Wall 2000; for reviews of rodents 

and other mammals using memory to recover caches also see: Smith & 

Reichman 1984; Smulders et al. 2010; Sherry 1985). These studies 

demonstrate that landmarks can act as visual cues and can have a critical role 

upon caching decisions and recovery success in a variety of scatter hoarding 

species.  

 

Cues used during caching and recovery in the Eastern grey squirrel  

 

Remembering the location of buried caches, as opposed to simply relying on 

olfaction, should be critical for the survival of scatter hoarding grey squirrels. 

This species is active all winter in climates that are frequently under snow for 

several weeks, if not months, making it more difficult for caches to be recovered 

by olfactory cues alone (Lewis 1980). It is estimated that grey squirrels store 

around 3000 caches per season (Macdonald 1996), placing individual nuts and 

seeds in separate cache sites, and recovering them anywhere up to several 

months later (Thompson & Thompson 1980).  

 

Experimental studies show that grey squirrels demonstrate proficient cache 

recovery. They have been found to be better at recovering their own caches 

than those they have not seen buried by others (Jacobs & Liman 1991). Jacobs 

and Liman suggest that squirrels will return to locations where they have buried 

nuts using visual cues, but then search for the precise location by the odour of 

the cache contents. Macdonald (1997) demonstrated that wild squirrels 
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remembered the precise locations of artificial caches using visual cues, and 

suggests that the memory of grey squirrels is accurate enough to use in cache 

recovery. Moreover, even though squirrels possess powerful olfactory 

capabilities (Lewis 1980), McQuade et al. (1986) found that grey squirrels prefer 

to use visual and spatial cues over olfactory cues to recover experimenter-made 

caches. McQuade et al. trained wild-caught squirrels to associate three different 

and distinct cues with a seed reward contained in a petri dish: olfactory cues 

(flower extracts on the covers of the petri dish), visual cues (coloured tape 

covering the dish), and spatial cues (a 3x4 spatial arrangement of the dishes 

around the arena). The researchers found that squirrels were able to 

successfully recover caches using all types of cue after a delay of 1-2 days, but 

when provided the opportunity to recover from all types of cue simultaneously, 

squirrels showed a preference in which type of cue they would use. Squirrels 

preferred to use visual cues the most when locating hidden food, then spatial 

cues, and least of all used olfactory cues. McQuade et al. even found that when 

seeds were removed from the petri dishes squirrels would continue to follow 

cues in this order of preference when they were no longer associated with a 

reward. This study shows how extrinsic information (visual and spatial cues) is 

preferred over olfactory information during recovery of artificial caches, but also 

demonstrates how these cues could enhance cache recovery.   

 

Cache pilferage in the Eastern grey squirrel 

 

It is interesting among the cache-recovery literature, that subjects frequently 

recover items that they had not made themselves. Pilfering behaviour is 

widespread among food storing species, particularly those that scatter cache. 

Within several species of Corvidae pilfering behaviour has been attributed to the 

use of OSM, though there is little evidence for this among Paridae and 

Rodentia, or indeed squirrels (reviewed and experimentally tested in Chapter 3). 

Many scatter cacher species reside within dominance structured groups, and 

thus being more dominant can also help in accessing caches if they are pilfered 

immediately (reviewed in Chapter 4). However, what of the pilfered nuts which 

have not been observed being buried? Given that squirrels show a preference 

for using visual cues to store food, it is possible that food thieves might use 

visual cues to direct their pilfering efforts. 
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In order to explore this it is important to consider what type of landmark or 

environmental feature might serve as a beacon to a caching squirrel. In the 

studies mentioned above small man-made visual cues were provisioned to 

captive (coloured cinder blocks: Jacobs & Liman 1991; coloured petri dishes: 

McQuade et al. 1986) and wild subjects (poles with coloured signs: Macdonald 

1997). This may be problematic firstly because these items do not necessarily 

represent the types of feature that a squirrel would encounter in its natural 

habitat, and secondly, because the visual cues were impermanent and 

removable this makes them more unpredictable features within these squirrels’ 

landscapes to rely on to recover caches. For naturally foraging grey squirrels, 

the most useful visual cues are likely to be trees, shrubs, rocks and other 

permanent landscape features that remain constant throughout the year; urban 

squirrels may rely on man-made fixtures as well. Therefore, in order to explore 

the type of visual cue that squirrels might use to cache and aid pilferage, it is 

important to consider features that are regularly encountered by foraging wild 

grey squirrels.  

 

A number of studies show that artificial caches made closer to the base of trees 

are stolen at higher rates. To measure pilferage risk in relation to cache 

placement, Leaver et al. (2014) carried out a field study that buried hazelnuts at 

varying distances to trees and in different spaced clusters. It was found that 

nuts buried closer to the base of trees were at a higher risk of being stolen, as 

well as those that were placed close to other caches, compared to those in 

wider distributions and farther away from the tree. This study supports previous 

research that caches spaced more widely are less vulnerable to pilferage (e.g., 

Leaver 2004; Male & Smulders 2007b; 2008), and more recently that trees are 

a source of pilferage (Steele et al. 2014). However, these findings do not 

provide any indication of why caches closer to the base of trees may be more 

vulnerable to pilferage.  

 

It is possible that caches are more vulnerable to pilferage under trees because 

the tree acts as a beacon to both cachers and pilferers of the whereabouts of 

hoarded food. However, it is also possible that because squirrels spend more 

time foraging under the cover of trees, they happen upon caches more often in 
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these locations. It has been suggested that survival rates of caches are lower 

near a food source because they are pilfered more extensively by naïve 

competitors that visit the location more frequently than other areas of vegetation 

(Brodin, 1993; Clark & Clark 1984; Janzen 1970; Tamura 1998; 1999; Tamura, 

Hashimoto & Hayashi 1999). Alternatively, Stapanian and Smith (1978; 1986) 

and Steele et al. (2014) suggest that caches closer to cover are more likely to 

be pilfered because there is lower risk of predation for opportunistic cache-

pilferers to forage in these locations. Thus, the reason that caches are stolen at 

a higher rate when stored closer to the base of trees is unclear; because it is 

safer to forage closer to a potential escape route, because there is generally 

more food available under the cover of trees, because the density of caches is 

higher under trees and so attracts pilferers as a source of food, or indeed some 

combination of these factors. The goal of the current study is to investigate this 

experimentally from the point of view of the pilfering animal in order to 

determine whether pilferage rates differ depending upon predation risk or food 

availability. This will also help to provide insight into whether pilferers target 

trees as beacons for caches specifically or whether other types of landmark are 

pilfered from equally. 

 

Pilferage rates at trees: predation risk and food availability 

 

The current study was conducted to examine the pilferage behaviours of wild 

squirrels. Artificial caches were buried around landmarks that were permanent 

features of the landscape and could act as visual cues to indicate the location of 

caches. In order to ascertain whether trees were pilfered from more because 

they provided an escape route or acted as a source of food, we buried artificial 

caches around naturally food-bearing trees (that provide nuts and seeds during 

the autumn months), non-food bearing trees (that do not provide any source of 

food to a caching squirrel other than leaves and bark) and manmade landmarks 

(lampposts and signposts) that were difficult for squirrels to climb, provided no 

overhead cover, and were not close to natural sources of food. In addition, half 

of these manmade landmarks were also provisioned with food to investigate if 

pilferers were simply attracted to profitable sources of food, regardless of their 

location. Because the caching activity of grey squirrels is highly seasonal, 

peaking in mid to late autumn (Thompson & Thompson, 1980) we monitored 
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pilferage rates at these four types of landmarks across two seasons: autumn 

(where there is an abundant food supply and high level of caching among 

squirrels) and spring (where there is a low natural food supply, and squirrels are 

reliant upon recovering their caches for food).  

 

We made two contrasting predictions about the type of strategy that might be 

used by pilferers, and one prediction based upon seasonal difference in 

pilferage: (1) If pilferers were primarily choosing their foraging locations in order 

to avoid predation risk, pilferage rates would be highest at the food-bearing and 

non-food bearing trees, which provide safety from predation. (2) If pilferers 

chance upon caches opportunistically while foraging near profitable food 

sources, then pilferage rates should be highest at the food-bearing trees and 

food-bearing lamp/sign-posts. (3) Caches should be at greater risk from 

pilferers in the spring when nut availability is low compared to the autumn, when 

food is abundant. 

 

Method 

 

Authorisations 

 

This study was carried out in accordance with the Association of Animal 

Behaviour Guidelines for the Use of Animals in Research (2012), the University 

of Exeter Psychology Ethics Committee, and with permission of the University 

of Exeter Director of Grounds. 

 

Population 

 

Pilferage rates of artificial caches were monitored across 15 sites (N = 15) on 

the University of Exeter Streatham Campus. The campus flora comprises a 

wide variety of species across 113 hectares of botanical gardens, parkland and 

woodland and so provided an ideal location for this study. The sites were a 

minimum of 250m apart from one another to avoid overlapping home ranges 

between individuals (monitored using Free GPS iPhone application by Code 

Burners and verified by www.itouchmap.com). Previous research has reported 

that the maximum known linear measure of home range size for a grey squirrel 
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is 136.7 metres (Doebel & Mc Ginnes 1974), a measure which has been used 

for similar purposes in recent grey squirrel studies (e.g., Getschow, Rivers, 

Sternman, Lumpkin & Tarvin 2013); and the maximum known distance a 

squirrel will travel for food from its nest is approximately 220m (Jacobs 1989). 

Therefore there is a good degree of certainty that the sites sampled the 

pilferage behaviour of different squirrels.  

 

Verifying target population  

 

We monitored the pilferage activity at the sites for the duration of the study in 

order to verify that we were indeed measuring pilferage by squirrels rather than 

sympatric corvids who forage on the same resources as the resident squirrels, 

and have been observed to pilfer the freshly made caches of squirrels (Vernelli 

2013), and have been reported to use their cognitive abilities to help them steal 

caches as opposed to smell (discussed in Shettleworth 1990). Throughout the 

testing days at each site we also monitored squirrel activity. At 48 hour intervals 

a 10 minute observation session took place to ensure there were still squirrels 

present. If during this observation period at least one squirrel had not been 

observed anywhere at the site, the site would have been excluded from the 

study (in no cases was this necessary). Furthermore, on days when we buried 

artificial caches, sites were monitored from approximately a 20m distance for 30 

minutes immediately after burial to ensure that corvid onlookers did not retrieve 

any of the caches, and to monitor any immediate pilferage by squirrels. In 

addition, on days when caches were checked for pilferage, sites were 

monitored for any visual signs of other species that might be visiting the sites, 

such as footprints, fur, or faeces. On several of these occasions squirrels were 

witnessed pilfering the artificial caches (once unexpectedly recorded on a video-

camera phone), and wild rabbits were present at intact caches but were 

uninterested in the caches or provisioned food. The only evidence of excavating 

and eating the artificial caches matched what would be expected from squirrels 

extracting their contents (see Jacobs 1989 and references therein).  
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Design 

 

This study comprised a 2x2x2 repeated measured design where each of the 15 

sites acted as a subject. Each site contained four landmarks that could act as 

beacons for food storing squirrels and thus also for pilferers. We examined the 

main effect of predation risk (mature tree versus lamp/sign-post) and the main 

effect food availability (food-bearing/provisioned versus non-food-bearing/non-

provisioned) on pilferage rates, across two seasons (non-independent 

observations n = 30); with the 4 types of landmark tested in autumn 2012 at 

each site, and 4 different landmarks tested in spring 2013 at the same sites.  

 

The landmarks were within approximately 20m of one another, and were 

selected for their similarity in that they had a minimum of 1m grass 

circumference, and were at similar distances from roads, paths, buildings, and 

without any additional sources of refuge within the vicinity (i.e. overhanging 

neighbouring tree canopy). The tree landmarks were always mature so that they 

could provide a suitable escape / cover from a predator for a squirrel. The food-

bearing trees were species that provided seeds that squirrels were known to 

consume and cache, including 7x beech (Fagus spp.), 8x chestnut (Aesculus 

spp.) and 15x oak (Quercus spp) trees. The non-food trees simply provided 

refuge to a squirrel but were not a source of food, including ash 5x (Fraxinus 

spp.), 8x birch (Betula spp.), 6x English lime (Tilia spp.), 7x maple (Acer 

spp.),2x willow (Salix spp.), and 2x palm (Arecaceae spp.) trees. For the man-

made landmarks we selected a series of signposts and lampposts that were 1-

3m in height as these acted as a potential beacon but could not offer cover from 

an aerial predator, or a means of escape from a terrestrial predator. So that 

foraging individuals would learn that the food-bearing lamp/sign-post landmarks 

were a source of food, they were provisioned with 30 acorns (origin Quercus 

spp.) on day 1 of testing (in both the autumn and spring testing seasons), and 

topped up on days 3 and 5 if any had been eaten (at least 10 nuts had always 

been eaten), so that there was always a maximum of 30 nuts (discussed in 

Table 10). Note that the acorns used to provision were collected from non-test 

locations; acorns were always used to provision because of their greater 

availability at these non-test sites compared to other types of nut. 
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Procedure 

 

The study was carried out over 20 consecutive days for each landmark, and all 

four landmarks at each site were tested during the same 20 day period, but not 

all sites were tested at the same time (3 sites in September, 6 sites in October, 

and 6 sites in November 2012; with corresponding order for March, April, May 

2013). Procedures for each site are listed in Table 10, illustrations of the 

distributions of the artificial caches are presented in Figure 21, and the structure 

of the artificial cache is presented in Figure 22.  

 

Table 10. Study procedures. The study took place between 10am and 4pm over a 20 

day period for each of the sites and landmarks. Note that all natural and provisioned 

material at the sites were handled using latex gloves. 

Day Activity 

1 - One of each of the four landmark types were selected at each site that was 

being tested. 

- Quadrat measurements were taken (average of three 25cm2 measures) 

within 1m of each landmark to monitor current food availability (if non-food 

bearing landmarks had any food items within their circumference an 

alternative landmark was selected).  

- One of the lamp/sign-posts landmarks was randomly selected to act as food-

bearing, and 30 acorns (origin Quercus spp.) were scattered on the ground 

within a 1m radius of its base.  

3 - Quadrat measures were taken, and any acorns that had been removed from 

the provisioned lamp/sign-posts were replenished (so that there was always 

a maximum of 30). 

5 - As per day 3. 

7 - At a 1m (± 20cm) radius around each landmark ten caches were made, each 

containing one single hazelnut (with shell), placed at equal 1m (± 20cm) 

distance from one another. To make this cache a hole was excavated 5cm 

into the soil using a metal teaspoon, a hazelnut was pressed into the hole, a 

pinch of green unscented fish tank gravel was placed on top of the nut, and 

the site was recovered with soil and leaf litter so that the ground and 

surrounding area looked undisturbed.  
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8 - Sites were visited to record the number and location of caches pilfered. 

9 - Sites were visited to record the number and location of caches pilfered. 

10 - Sites were visited to record the number and location of caches pilfered. 

11 - Sites were visited to record the number and location of caches pilfered. 

14 - Sites were visited to record the number and location of caches pilfered. 

17 - Sites were visited to record the number and location of caches pilfered. 

20 - Sites were visited to record the number and location of caches that had been 

removed. All remaining caches and gravel were removed from the sites.  

 

 

 

Figure 21. Example of cache distribution around a landmark. Stars represent caches 

placed at approximate 1m distances from one another and the landmark. 
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Figure 22. Illustration of the composition of each cache. The fish tank gravel was used 

so that it was easily visible to the experimenter when scattered around the excavated 

cache after the nut had been removed. This method has been successfully used in 

previous field research (Leaver et al. 2014). Hazelnuts were chosen because they have 

been favoured in previous captive and field food-preference tests which is likely due to 

their slow perishability and high nutritional value. 

 

Analysis 

 

We analysed two measures: (1) pilferage levels in terms of whether landmarks 

experienced total-, some-, or no pilferage, and (2) the number of items stolen at 

different time intervals, namely the first three days after caches were buried 

versus the last three days that caches were buried. Models reported are 2x2x2 

factorial designs that examine the main effects of predation risk (tree versus 

lamp/sign-post), the main effects of food availability (food-bearing versus non-

food bearing), and the main effects of season (autumn versus spring), and two-

way interactions between these variables.  

 

These data were not normally distributed, and therefore we opted to perform 

GEEs which accommodate this and our small sample size for the same reasons 

as outlined in Chapter 2 of this thesis. GEE’s were carried out using a ordinal 

regression with a cumulative logit link function, with an independent correlation 

structure. Follow-up comparison contrasts tests were carried out with a 

Bonferroni adjustment for multiple comparisons.  
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To compare whether there were differences in the proportion of caches pilfered 

in the first three days after burying compared to the last three days we carried 

out a repeated measures t-test. To compare whether pilferage varied between 

the conditions over the first three days and last three days we used a 2x2x2 

repeated measures ANOVA; this examined the main effects of predation risk 

(tree versus lamp/sign-post), the main effects of food availability (food-bearing 

versus non-food bearing), and the main effects of season (autumn versus 

spring), and two-way interactions between these variables. These data conform 

to parametric assumptions (with homogeneity of variance-covariance matrices 

at a significance level above .001, equality of error variances above .05, as 

defined by Pallant, 2007), and due to the small sample size the more robust 

models have been reported.  

 

Data were analysed using Microsoft Office Excel 2010 and SPSS 16.0 for 

Windows, with significant models reported to minimum 5% alpha level. 

 

Results 

 

The data demonstrated both floor and ceiling effects with a high proportion of 

cases where no caches were pilfered, a few cases where some of the caches 

were pilfered, and again a high occurrence of cases where all caches were 

pilfered (Figure 23). The number of cases where either no pilferage occurred or 

all caches were taken across the conditions is displayed in Table 11.  
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Figure 23. Histogram showing the frequency of combined pilferage at all landmarks.  

Table 11. Patterns of pilferage across the conditions (30 of each landmark type) and 

seasons (60 of each season) where 0% and 100% pilferage occurred. Total average 

pilferage rates were 42% (M = 4.23, SD = 4.25). 

 Number of cases 

 Zero pilferage Total pilferage 

Food-bearing tree  14 10 

Non-food-bearing tree 16 5 

Food-provisioned 

lamp/sign-post 
15 6 

Non-food-provisioned 

lamp/sign-post 
16 5 

Autumn  22 17 

Spring 39 9 
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Total number of caches pilfered  

 

Owing to the data having both floor and ceiling effects, analyses were 

conducted in terms of whether there was no pilferage, some pilferage, or total 

pilferage from the landmarks. A GEE was carried out and it revealed no main 

effect of predation risk (p = .102), no main effect of food availability (p = .306), 

no predation risk x food availability interaction (p = .597), and no food 

availability by season interaction (p = .595). However, there was a significant 

main effect of season, X2 (df = 1, N = 60, n = 120) = 2.70, p = .009, with more 

total pilferage occurring in the autumn compared to the spring, displayed in 

Figure 24(a). There was also a significant predation risk x season interaction, X2 

(df = 1, N = 30, n = 120) = 8.03, p = .005, and follow-up contrast tests revealed 

that trees experienced the most total pilferage in the autumn and the least total 

pilferage in the spring in comparison to lamp/sign-posts, displayed in Figure 

24(b). 
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Figure 24. Rates of total pilferage across (a) seasons, and (b) trees and lamp-sign-

posts across seasons. Bars represent ± 1 standard error. Note that “spring lamp/sign-

posts” x “spring trees” approached significant at p = .070. 
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Caches pilfered over time 

 

We compared whether there were differences in proportion of caches pilfered 

on the first three days after burying compared to the last three days. A paired 

samples t-test revealed a significant difference between the two measures, t 

(119) = 5.07, p = .001 (Partial Eta squared .18), with more caches being taken 

during the first three days of the experiment, which is displayed in Figure 25.  

 

 

Figure 25. Graph showing the difference in proportion of caches pilfered between the 

first three days of pilferage with the last three days. Bars represent ± 1 standard error. 

** p < .001. 

 

Finally, we compared whether there were differences in mean pilferage at the 

first three days after burying with the last three days between the conditions. A 

three by two repeated measures ANOVA revealed that there was no main effect 

of predation risk (p = .487), no main effect of food availability (p = .071), no 

main effect of season (p = .361), no predation x food availability interaction (p = 

.441), and no season x predation interaction (p = .234), and no season x food 

availability interaction (p = .712). 
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Discussion 

 

Overall, we found no effect of predation risk or food availability on total 

pilferage. However, there was an effect of season with more landmarks 

experiencing complete pilferage of their caches in the autumn than compared to 

the spring. There was also a mediating effect of predation risk upon season; in 

the autumn trees (low predation risk) were more likely to have all their caches 

removed from around them, and in the spring trees were least likely to have all 

their caches removed from around them, compared to lamp/sign-posts (high 

predation risk). We also found that more caches were pilfered during the first 

three days compared to the last three days of testing, but predation risk, food 

availability and season did not influence this outcome. 

 

Previous research has indicated that caches buried close to trees are at higher 

risk of theft (Leaver et al. 2014; Stapanian & Smith 1978; 1986; Steele et al. 

2014) which might be because naive competitors spend more time foraging in 

these locations for one of two reasons: because trees provided a reliable source 

of food from which to forage, and/or because trees provided an escape route 

from potential terrestrial predators, and cover from aerial predators. There is 

evidence to support both of these points of view; trees do provide optimal 

foraging locations because of their food availability (Brodin, 1993; Clark & Clark 

1984; Janzen 1970; Tamura 1998; 1999; Tamura et al. 1999), as well as refuge 

and cover from predators (Stapanian & Smith 1978; 1986; Steele et al. 2014). 

However, it was not clear whether other possible landmarks that provided 

different combinations of these factors would also be subject to similar levels of 

pilferage. From the results of our study, we found that locations that differed in 

their food availability did not vary in their rates of cache pilferage. In terms of 

locations that differed in predation risk, we found that pilferage rates did vary 

but the relationship was complex: in the autumn pilferage was higher at trees, 

and in the spring pilferage was higher at man-made landmarks. We also 

incorporated the influence of season in our experiment and found that it 

influenced cache pilferage in the opposite direction to what we predicted, with 

higher rates of pilferage experienced during the autumn. 
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Overall pilferage rates  

 

The data distribution for the total number of caches pilfered demonstrated floor 

and ceiling effects. There was a high occurrence of cases where no caches 

were pilfered, very few cases where only some of the caches were pilfered, and 

a relatively high number of cases where all caches were pilfered. In addition we 

also found that caches were more likely to be pilfered in the days immediately 

following when they were buried compared to the last three days. These results 

suggest two things: firstly, that squirrels visited our cache sites relatively soon 

after nuts were buried at them; and secondly, that once a pilferer had located 

one cache they would continue searching in the immediate area for more 

caches. This is in line with previous studies that report that more closely spaced 

caches are at greater risk of pilferage (e.g., Male & Smulders 2007b; 2008).  

 

Research indicates that squirrels frequently re-locate their own caches 

(unpublished observations in Jacobs & Liman 1991; experimentally shown in 

Chapter 2), however it is unknown whether this is a strategy also used by 

pilferers within the same species to prevent a cacher from recovering their 

store. Throughout our study we monitored each landmark for evidence of eating 

around its vicinity, looking for discarded hazelnut pieces but none were ever 

found. In addition, on the one occasion when pilferage was filmed at a 

landmark, we recorded re-caching of all 10 nuts. Therefore, it is likely that when 

a cache was found that it was transported to be eaten or buried in another 

location, as opposed to close to where it was found. 

 

Seasonal differences in pilferage rates 

 

Food hoarding animals are reliant upon resources that are seasonally variable 

in predictable ways. Grey squirrels demonstrate seasonal differences in their 

foraging, hoarding and caching behaviour in response to food availability 

(Thompson 1978). In the current study we hypothesised that pilferage rates 

would be higher in the springtime when competition for recovering caches was 

high, in comparison to the autumn when competition for burying caches was 

high. However, we found the opposite with more incidents of total pilferage 

occurring in the autumn in comparison to the spring.  
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Our original prediction was based upon the knowledge that in the autumn 

squirrels spend more time caching mature husked nuts when they are plentiful 

in preparation for the coming months when there is less food to forage (e.g., 

Steele & Koprowski 2001; Hadj-Chikh et al. 1966). In the springtime when 

resources are scarce squirrels seek out and recover high energy food hoarded 

during the autumn to supplement their low energy (e.g., buds of trees) spring 

diet (Thompson & Thompson 1980). Therefore, it is possible that because 

squirrels generally spend more time foraging for nuts to cache in the autumn 

months that they were more likely to come across our artificial caches by 

chance, in comparison to the spring when they hoard less. In addition, when 

storing food a number of scatter hoarding species have been reported to return 

to their caches, recover and rebury them, which might help to reduce loss of 

stores to pilferers (reviewed and experimentally tested in squirrels in Chapter 2), 

as well as to refresh memory for their cache locations (unpublished 

observations of squirrels in Jacobs & Liman 1991). Consequently, engaging in 

this behaviour would also increase their encounter rate with our artificial caches 

in the autumn months. Alternatively, in the springtime squirrels recover their 

own caches but, because there are generally fewer caches to recover, they are 

less likely to engage in opportunistic pilferage. 

 

Seasonal differences in aversion to predation risk 

 

We also found seasonal differences in where squirrels pilfered in terms of 

predation risk: in the autumn, caches placed close to the refuge of trees 

experienced more pilferage compared to lamp/sign-posts, while in the spring 

there was a trend for man-made landmarks (that were more exposed to 

predators) to experience higher pilferage than trees. Some researchers have 

suggested that caches placed close to trees are at a higher risk of theft because 

trees provide a safer location to forage (Stapanian & Smith 1978; 1986; Steele 

et al. 2014). The data we collected in the autumn supports this point of view; 

however the data we collected in the spring is not consistent with this 

explanation. 
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There is a possible reason that we found a seasonal difference in pilferage at 

landmarks differing in predation risk, which integrates with the argument of 

Steele and colleagues (2014). Given that squirrels prefer to forage in safer 

locations, in the autumn when resources are plentiful they can be more 

selective about where they forage; choosing locations closer to trees which 

provide cover and an escape route from predators. However, in the spring when 

caches are depleting and other resources are limited, squirrels have to be less 

selective over where they forage in order to obtain sufficient resources; 

therefore, being less averse to predation risk helps them to meet this demand, 

and foraging close to other possible landmarks helps them increase the 

probability and speed that they will encounter a cache. This idea could be easily 

investigated by incorporating the study design of Leaver et al. (2014) into the 

current experiment: test different landmark types across different seasons, but 

also bury nuts at different distances to the landmarks in order to measure 

whether those buried closer to landmarks are pilfered at the same rates as 

those buried farther away. 

 

Alternatively, the study design could account for the seasonal difference in 

pilferage at landmarks differing in predation risk. Specifically, because only the 

food bearing lamp/sign-posts were provisioned in the springtime, and the trees 

that would naturally bear food only in the autumn months were not provisioned, 

this could account for why there was a trend for pilferage rates to be higher at 

man-made landmarks, compared to the depleted food trees, in the springtime. 

In the current study trees that provided food in the autumn were not provisioned 

in the spring because it was expected that squirrels would have already learned 

these as locations that had a high food density. Whether they also learn to 

forage less in these locations in the springtime could easily be incorporated in a 

further study by consistently provisioning the food trees throughout seasonal 

changes in natural food availability. Nevertheless, it is evident that squirrels are 

pilfering from all types of landmark in both seasons, albeit less overall pilferage 

occurs in the springtime, and they can learn that man-made landmarks can be a 

source of food. 
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Using landmarks to pilfer 

 

Overall, we found that all four types landmark were pilfered from, including the 

un-provisioned lamp/sign-posts which offered no obvious benefits to foragers. 

However, given that our current data found that pilferage from all types of 

landmark did not differ in terms of food availability or predation risk alone (only 

in relation to season), our results show that both natural and man-made 

landmarks are high risk locations to bury caches. Furthermore, because there 

was a trend for pilferage rates to be higher at lamp/sign-posts in the spring in 

comparison to trees, this indicates that squirrels might forage close to these 

type of landmark, and possibly that man-made landmarks might be used as 

cues during cache pilferage. In the laboratory grey squirrels have been trained 

to locate hidden food using landmarks and even show a preference for 

landmarks and visual cues when they were able to use olfaction (McQuade et 

al. 1986).  

 

Throughout this study we refer primarily to the pilfering behaviour of squirrels, 

however we cannot be 100% certain that squirrels were always the pilferers of 

our caches, even though measures were taken to monitor this. Nevertheless, if 

non-squirrel species also pilfered, our data still reflect the cache locations that 

are at greater risk of theft from other species. Indeed squirrels compete with 

both conspecifics and heterospecifics that also store and pilfer food (reviewed in 

Chapter 6).  

 

In a situation where the pilferer has not witnessed a cache being made, very 

little is known about how pilferers steal the stores of others across a range of 

scatter hoarding species. From the existing literature, we know that squirrels 

and other scatter hoarders can learn to associate visual cues with cache 

locations which can be used to assist recovery (e.g., grey squirrels: Macdonald 

1997; McQuade et al. 1986); however, the majority of these studies are either 

tested under laboratory conditions or use cues that subjects would not naturally 

be exposed to in field conditions. Across the range of scatter hoarding species 

there is still very little known about how pilferers steal caches. Therefore, this 

study provides a platform for future research to investigate more about the 

behaviour of cache pilferers. For instance, it would be interesting to investigate 
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in the field if there is an optimal distance at which caches are placed from 

landmarks, so that the landmark still acts as a cue for the caching individual, but 

the cache is placed far enough away to limit pilferage from thieves using visual 

cues to pilfer. Such a study would require monitoring natural caches and 

individual squirrels over a long period of time in order to provide data about 

cache recovery, which is lacking in the grey squirrel literature. 

 

Cachers versus pilferers 

 

A final matter that needs revisiting is the behaviour of the caching individual. If 

certain locations provide easier and more accurate retrieval for a cacher, and 

pilferers evolve to more frequently visit these locations, then these locations 

would no longer provide benefits to the caching individual.  

 

Some authors suggest that pilferage may be tolerated among solitary hoarders 

if a large enough number of pilferers also cache food, thus allowing pilfering to 

be reciprocal. We know from the literature that grey squirrels actively engage in 

a variety of behaviours to minimise the loss of their caches to pilferers 

(reviewed in Chapter 2), suggesting they do not willingly share their food hoards 

(Leaver et al. 2007). However, given the number of caches pilfered in the 

current study, they also appear to be well adapted as cache pilferers. Moreover, 

Vander Wall and Jenkins (2003) suggest that grey squirrels are likely to be 

tolerant of reciprocal cache pilferage, despite not being altruistic cachers. 

Thompson and Thompson (1980) estimate that wild squirrels recover around 

84% of caches. Therefore, it seems appropriate that cachers should either 

avoid caching in locations where high pilferage occurs, or engage in behaviour 

that serves to offset the increased risk of pilferage. While at the same time, 

pilferers adapt ways to enhance their opportunity for cache theft: VanderWall 

and Jenkins (2003) suggest that if a species ‘cannot avoid or prevent pilferage’ 

(p. 661) then they might respond by investing their energy into being an efficient 

pilferer. 

 

One study has highlighted how caching and pilfering strategies can exist within 

the same system among grey squirrels. As well as finding that rates of theft of 

artificial caches was lower beyond the canopy of trees, Steele et al. (2014) 
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found that grey squirrels preferentially cached more profitable food items in 

areas that were more exposed to predators, beyond the canopy cover of trees, 

compared to less profitable items that were cached in locations associated with 

high pilferage. They suggest that squirrels trade-off decisions about predation, 

food value and pilferage, which can affect caching strategy. Stapanian and 

Smith (1986) report similar behaviour in fox squirrels who prefer to cache in 

more exposed locations, as opposed to close to cover. They suggest that 

cache-owners can move quickly and deliberately between their remembered 

caches in exposed areas, but thieves must forage much more slowly in order to 

pilfer caches using olfactory cues. Furthermore, Devenport, Luna and 

Devenport (2000) investigated cache placement tactics in thirteen-lined ground 

squirrels, Spermophilus tridecemlineatus, who are reported to both larder and 

scatter hoard, and found that squirrels avoided placing caches close to 

‘prominent objects’ which might help to reduce the chance of discovery by 

competitors.  

 

Further field studies are required to understand the behaviour of pilfering scatter 

hoarders in order to determine how it fits in with the strategies that cachers 

engage in to avoid pilferage. However, observing cache recovery behaviour is 

difficult in the field. Individual caches need to be marked and monitored for 

extended periods of time, and when a cache is uncovered you need to know 

whether the individual is recovering its own cache or pilfering. While this is 

much easier to achieve with captive studies, they do not provide enough space 

for cache placements to be interpreted on an ecologically relevant scale. Thus 

future research of this kind should continue to study behaviour in the field, 

perhaps using camera traps or closed-circuit television cameras, which might 

help to overcome some of the problems associated with studying wild squirrels.  

 

Conclusion 

 

Bugnyar & Kotrschal (2002) suggest that cachers and pilferers are engaged in 

an ‘evolutionary arms race’, where cachers develop methods to minimise the 

risk of cache pilferage, while pilferers develop strategies that allow them to 

more easily locate and steal others caches. This relationship has received little 

examination among scatter hoarding Paridae and Rodentia and, therefore, the 
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current study investigated by what means pilferers might increase their success 

at stealing caches. Combined with the findings from previous studies that show 

that pilferage rates are higher closer to trees, the results of the current study 

suggest that landmark use, predation risk and seasonality might play a role in 

pilferage behaviour. However, the mechanisms by which pilferers locate caches 

are still far from understood. 
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Chapter 6: Behavioural responses of wild Eastern grey 

squirrels to auditory playbacks of competitors and predators. 

 

Introduction  

 

Grey squirrels frequently forage within a social context of conspecifics, 

heterospecific competitors and potential predators.. Social foraging can benefit 

the individual in a number of ways, including providing information about optimal 

foraging conditions and reducing costs associated with predation risk. However 

there are fitness costs associated with increased competition from social 

foraging, and there is some evidence to suggest that there might be a trade-off 

between reducing the risks posed by predation and competition. In the current 

study we examined whether grey squirrels are differentially sensitive to different 

cues of risk while foraging, and we looked at how their behaviour is modified in 

response to social and predatory risks. 

  

Foraging among conspecifics: the costs and benefits 

 

The social environment can influence an individual’s decisions on where and 

when to forage. Foraging alongside others can benefit individuals by allowing 

them to more easily locate resources through a process of local enhancement 

(Adams & Jacobs 2007; Heyes et al 2000; Galef & Giraldeau 2001), and 

informing them about the optimal place to search for food (Galef & Giraldeau 

2001). Conspecifics can provide information about when it is safe to forage 

(Galef & Giraldeau 2001), reduce the need for vigilance during feeding (Lima 

1995), and reduce predation risk by dilution (Bednekoff & Lima 1998; Elgar 

1989; Galef & Giraldeau 2001; Rausch et al. 2012).  

 

However, social foraging also presents a fitness cost to the forager. Individuals 

must compete with one another for the same food resources while foraging and 

during cache recovery, and increased competition can increase the possibility of 

antagonistic encounters (Gerber et al. 2004). Dominant grey squirrels have 

been found to use their rank to monopolise a food patch, to sequestering food 

to eat and store (reviewed in Chapter 4). Some grey squirrels will act in ways 
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that help to avoid antagonistic interaction with conspecifics while foraging, such 

as transporting food away from a food patch (Hopewell et al 2008), increasing 

their vigilance levels (Tarigan 1994), or demonstrating alarm behaviour 

including tail flagging, barking and vigilance which may serve to ward off 

potential competitors (Partan et al. 2010; Partan et al. 2009). All these 

behaviours can only be performed at a costs to time spent foraging. 

 

In addition, because grey squirrels are a scatter caching species, they must 

also compete for cacheable items to recover and consume at a later time when 

there is less food available.  They have been found to engage in different 

behavioural strategies to offset the risks of caching while conspecifics are 

present. Grey squirrels modify their caching behaviour in the presence of 

conspecifics in ways which reduce the possibility that their food stores might be 

stolen (Hopewell & Leaver 2008; Hopewell et al. 2008; Leaver et al. 2007), and 

they have been reported to make empty caches in the presence of conspecifics, 

may serve to confuse potential theives (Steele et al. 2008). 

 

Foraging among competing heterospecifics: the costs and benefits 

 

Foraging in the presence of heterospecifics that share similar food sources, 

habitats or predators may have some of the same advantages as foraging with 

conspecifics. Avarguès-Weber, Dawson & Chittka (2013) suggest that 

heterospecifics could provide as much valuable information as conspecifics. For 

instance, some sciurids eavesdrop on the alarm calls of sympatric bird species 

in order to obtain information on predation risk (red squirrel: Randler 2006a; 

Eastern chipmunk: Schmidt, Lee, Ostfeld & Sievingc 2008). However, very few 

studies have investigated whether heterospecifics could enhance information 

about optimal foraging locations, with the majority of these on invertebrates 

(Avarguès-Weber et al. 2013), though squirrels are known to forage at the same 

food patches as other species and compete with them for access (Bekoff et al. 

1999; Fisler 1977; Wauters et al. 2000; 2001).  

 

As with conspecifics, there are disadvantages as well as advantages in foraging 

with heterospecifics. Corvids live alongside grey squirrels and compete for the 

some of the same resources while foraging and storing food. Some species of 
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corvid could pose a particular threat because they have been demonstrated to 

possess good observational spatial memory, which can increase their accuracy 

for locating caches they have seen being made by others (reviewed in Chapter 

3). There is also evidence of corvids following grey squirrels and raiding their 

caches after observing them being made (Vernelli 2013). Two studies have 

directly investigated the role that corvids might play as competitors for caches. 

Schmidt and Ostfeld (2008) used playbacks of jay vocalisations at varying 

distances to simulate pilferage risk to caching grey squirrels. They found that 

squirrels reduced their effort when recovering cached food if recordings of blue 

jays were played closer to the foraging patch while they were caching. 

However, when actually storing food, squirrels do not appear to be sensitive to 

a corvid audience in the same way as they are to a conspecific audience. 

Leaver et al. (2007) reported that grey squirrels spaced their caches father 

apart in the presence of conspecifics, and oriented with their backs to 

conspecifics when caching, but they did not do this when caching in the 

presence of corvids. They suggest that facing away from corvids while caching 

may not provide the cache protection advantages that it has to a conspecific 

audience, given that corvids can fly to observe the caching squirrel from an 

aerial location. Given that corvids pose similar risks as conspecifics to foraging 

and caching grey squirrels there are good reasons to expect them squirrels to 

react to them as heterospecific pilferers. 

 

Predation risk while foraging  

 

A further factor that impacts upon foraging is the threat of predation. Urban grey 

squirrels are prey to a variety of species including red foxes (Booth et al. 2012; 

Müller-Schwarze 2009; Rausch et al. 2012), raptors (Temple 1987) and 

domestic animals (Makowska & Kramer 2007). Frequently there is a trade-off 

between foraging efficiency and reducing predation risk. Grey squirrels engage 

in anti-predator behaviourincluding bipedal vigilance (Makowska & Kramer 

2007), and alarm vocalisations (Bakken 1959; Horwich 1972; Lishak 1977; 

Partan et al. 2010; Partan et al. 2009), all of which can incur a cost to time 

spent foraging (Makowska & Kramer 2007; Shonfield 2011). Predation risk also 

affects decisions about where to forage and for how long. In locations where 

predation risk is high grey squirrels reduce their foraging time compared to 
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areas under tree canopy or shade (Booth, et al. 2012; Bowers et al. 1993; 

Brown et al. 1992; Kilpatrick 2003; Newman et al. 1988), and will transport food 

to eat in an area of cover (Lima & Valone 1986; Lima et al. 1985).  

 

However, often locations that are less exposed to predation also have 

increased foraging competition. Thus, sometimes individuals forage and cache 

in locations more exposed to predators in order to avoid interactions with more 

dominant competitors (crested tit, Parus cristatus: Lens, Adriaensen & 

Dhondt,1994;  willow tit: Ekman 1987; Koivula et al., 1994; Lahti et al. 1998). 

Grey squirrels have also been found to trade-off the risk of cache theft against 

the risk of predation, preferring to cache more profitable food items in open 

areas exposed to predators compared to storing non-profitable items closer to 

tree-cover where there is also a higher risk of cache theft (Steele et al. 2014). 

These studies demonstrate that foraging individuals do not always act in ways 

to simply minimise predation risk, but that the role of the social environment 

heavily influences foraging and hoarding decisions about predation risk. 

However, less is known about what contribution social and predatory risks make 

to overall foraging decisions.   

 

Risks while foraging: conspecific-and heterospecific-competition and predation 

risk 

 

It is clear that squirrels face a multi-way trade-off in choosing where and when 

to forage, in terms of the costs and benefits of social foraging and the costs of 

predation. They engage in different behavioural strategies to offset these risks 

while foraging and storing food, such as engaging in vigilance behaviour, 

changing how they forage, cache or recover food. While elements of this trade-

off have been considered before so that we know how grey squirrels respond to 

multiple cues, the full system has not. The current study isolates responses to 

these different risk factors to determine what contribution they make to foraging 

decisions.  

 

In the current study we used auditory playbacks to simulate some of the risks 

that wild grey squirrels might face while foraging: risks posed by other squirrels, 

risks posed by other species that compete for the same resources as squirrels 
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(corvids), and risks posed by predators. We monitored behavioural changes in 

alert behaviour (vigilance, escape and vocalisations) and foraging duration and 

distance from safety, across three time periods (before, during or after 

playback). Auditory playbacks provide a powerful tool in many behavioural 

studies of wild animals and can be particularly useful for monitoring behavioural 

responses to risk cues (e.g., Murphy, Lea & Zuberbühler 2013). This technique 

allowed us to isolate responses to the three different risk factors in order to 

determine their relative significance in modifying squirrels’ foraging and alert 

behaviours. 

 

We predicted that if squirrels respond to the calls of conspecifics and 

heterospecifics as potential competitors for resources then they should act in 

ways which maximise foraging, including engaging less time in alert behaviour 

(being vigilant, escaping to areas of safety, vocalising) and more time spent 

foraging. On the other hand, if they respond to conspecifics and heterospecifics 

as sources of antagonistic interaction then we predicted that they would act in 

ways to minimise potential contact by increasing their alert behaviour, and 

foraging farther away from trees. Finally we predicted that the predator playback 

would increase the time squirrels engaged in alert behaviour, which would be 

performed at a cost to foraging, and that they would respond by seeking areas 

closer to safety, or escape into trees. 

 

Method 

 

Study sites and sample  

 

Observations were carried out in urban parkland of towns in South and East 

Devon between 0900-1600 hours from October 2012 through January 2013, to 

coincide with the peak natural caching patterns of grey squirrels in this region. 

Sites were selected where squirrels were foraging or had previously been seen 

foraging. We visited a total of 97 different locations, observing one squirrel at 

each site. Forty of these locations provided satisfactory independent 

experimental observations of adult squirrels that remained in view for the 

necessary length of time to conduct observations (criteria are discussed later in 

detail). Sites were more than 300 metres apart from one another (monitored 
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using Free GPS iPhone application by Code Burners and verified by 

www.itouchmap.com) to avoid overlapping home ranges between individuals 

(the maximum known linear measure of home range size recorded for a grey 

squirrel is 136.7 metres: Doebel & Mc Ginnes 1974, a measure which has been 

used for the same purpose in other recent grey squirrel studies, e.g., Getschow 

et al. 2013); therefore we can say with a good degree of certainty that our 

observations at different sites are independent (N = 40).  

 

Experimental design and playback stimuli 

 

This study used a between subjects design so that each of the 40 squirrels was 

exposed to one of four playback conditions: squirrel calls (N=10), corvid calls 

(N=10), predator calls (N=10), or white noise (N=10).  Each playback was 

unique and only used once during the study, to minimise the possibility for 

pseudoreplication and control for the potential referential content of the calls 

(Kroodsma 1989), excluding the white noise playback which was used as a 

control stimulus and played at ten different sites, see Table 12. The order that 

each playback stimulus was presented was predetermined so that there was a 

equal number of stimuli for each of the four conditions.  

 

Table 12. Descriptions of playbacks used as stimuli. All calls were obtained from the 

National Sounds Archive, London, UK, FreeSound.org and personal recordings. Each 

stimulus was played only once, excluding white noise.  

Condition Stimuli  Description and context 

Conspecific 10 x different combination “kuk” 

and “quaa” calls (Horwich 1972; 

Lishak 1984). 

These are thought to be alarm 

vocalisations produced by grey 

squirrels; they are produced 

separately as well as in 

combination with one another, and 

comprise a similar frequency 

composition and sound intensity. 

Heterospecific 

competitor 

2 x different raven calls, 

“gurgling croak” 

(http://www.allaboutbirds.org/gui

de/common_raven/sounds); 

These are ‘contact calls’ made by 

adult corvids, thought to be used to 

communicate to other birds at a 

distance (Westerfield, 2011), and 

http://www.allaboutbirds.org/guide/common_raven/sounds
http://www.allaboutbirds.org/guide/common_raven/sounds
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4 x different crow, Corvus 

corone, calls, “multiple caw” 

(Westerfield 2011); 

2 x different magpie calls, 

“chacker chacker” (Redondo 

1991; http://www.garden-

birds.co.uk/birds/magpie.htm); 

2 x different rook calls, “multiple 

caw” (Røskaft & Espmark 1982). 

all have a similar amplitude range. 

Species were selected that known 

to compete for resources with 

squirrels and reside in similar 

habitats. Calls were selected to be 

similar in structure to one another.   

Predator  1 x buzzard, Buteo buteo, 

circling call (Krüger 2002); 

2 x different goshawk, Accipiter 

gentilis, calls, “agitated wail” 

(http://www.allaboutbirds.org/gui

de/northern_goshawk/sounds);  

1 x red tail hawk, Buteo 

jamaicensis, “kee-eeeee-arr” 

flight scream 

(http://www.allaboutbirds.org/gui

de/red-tailed_hawk/sounds);  

1 x  kestrel, Falco tinnunculus, 

“klee-klee-klee” excitement call 

(http://www.allaboutbirds.org/gui

de/american_kestrel/sounds);  

2 x different peregrine, Falco 

peregrinus, “kak, kak, kak” pair 

calls 

(http://www.allaboutbirds.org/gui

de/Peregrine_Falcon/sounds);  

3 x different red fox, Vulpes 

vulpes, adult yell barks  (Newton 

Fisher, Harris, White & Jones 

1993); 

2 x different Labrador dog, 

Canis familiaris, play barks (Yin 

& McCowan 2004). 

These predators are common to 

urban-living squirrels, and all 

stimuli originate from adult 

individuals. The raptor calls are 

those that are normally produced 

in a flight context (thus, not 

produced by hunting birds), and 

the canid vocalisations are those 

produced in a play context. Thus, 

the playbacks are purely to 

simulate the presence rather than 

immediate threat. Calls were 

selected to be similar in structure 

to one another.   

http://www.garden-birds.co.uk/birds/magpie.htm
http://www.garden-birds.co.uk/birds/magpie.htm
http://www.allaboutbirds.org/guide/northern_goshawk/sounds
http://www.allaboutbirds.org/guide/northern_goshawk/sounds
http://www.allaboutbirds.org/guide/red-tailed_hawk/sounds
http://www.allaboutbirds.org/guide/red-tailed_hawk/sounds
http://www.allaboutbirds.org/guide/american_kestrel/sounds
http://www.allaboutbirds.org/guide/american_kestrel/sounds
http://www.allaboutbirds.org/guide/Peregrine_Falcon/sounds
http://www.allaboutbirds.org/guide/Peregrine_Falcon/sounds
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Control 1 x white noise recording used 

ten times, generated by 

Audacity 2.0.3.  

Previously demonstrated to be a 

successful control condition with 

squirrels (Schmidt & Ostfeld 2008). 

 

Each audio stimulus was taken from digital recordings of vocalisations coming 

from a single individual. Using Audacity 2.0.3, recordings were edited to be 

monophonic, background noise was removed, and they were cut to provide 15 

seconds of playback. During the 15 second playback the audio was intermittent 

rather than continuous, but it was edited so that there was no more than 3 

seconds of silence between each sound made. During the 15 seconds of 

playback each of the sounds emitted was unique, in that they were not digitally 

edited to be repeated, but naturally followed on from one another in the original 

digital recording. All of the types of vocalisations chosen ranged between 50-

100dB and were relatively similar in structure to one another across categories 

(Figure 26).  

 

 

Figure 26. Spectrogram of typical playback for each of the experimental conditions 

(generated using Audacity 2.0.3).  

 

The calls were levelled using iTunes and the amplitude for each call was 

adjusted using a sound level meter (Cirrus Research Limited Sound Level 

Meter, verified using Free GPS Version 3.6.2 iPhone application) at 1 metre 

from the source in the type of natural environment in which the experiments 

took place, to the average natural peak amplitude of the stimulus species: 
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average squirrel playback amplitude was at a natural peak of 70dB (Lishak 

1984, 1982), average corvid peak playback amplitude was 75dB (Blumstein, 

Daniel, Griffin & Evans 2000; Goodson & Adkins-Regan 1997; Heinrich 1988; 

Searcy & Caine 2003), average predator calls peaked at 80dB (raptor: Chu, 

2001; Jurisevic & Sanderson 1998; Krüger 2002; Searcy & Caine 2003; fox: 

Frommolta, Goltsman & Macdonald 2003; domestic dog: Randler 2006b); and 

white noise was at a constant 90dB (which has been used as the maximum 

sound intensity in previous playback studies with grey squirrels, e.g., Schmidt & 

Ostfeld 2008). Calls were played using an iPhone4S (volume adjusted to pre-

determined dB level for each call) connected by a 25 metre audio cable to an X-

mini™ II speaker at full volume, so that the observer could operate the calls at a 

distance to the speaker away from the main observation area. Pre-determined 

criteria established when calls would be played according to several factors, 

including the distance of the focal individuals (discussed later in detail).  

 

Procedure and measures 

 

Three principal observers were involved in collecting data for this study. We 

achieved high levels of inter- observer reliability (between 76-100% agreement 

for all measures, calculated using the index of concordance technique reported 

in Martin & Bateson 1993), but worked in pairs for the majority of observations 

(N = 27 out of 40) to ensure consistency in recording. Observers sat at the edge 

of the observation site (starting observations at a minimum of approximately 

20m from the nearest squirrel), close to shrubs or a tree so they appeared less 

exposed. The speaker was placed on the ground in the centre of the 

observation area, a minimum of 5m away from the base of a tree/shrub, 

covered with leaves or grass, and operated from a distance using an iPhone4S. 

Observation of a focal individual would commence five minutes after arriving at 

the study site to allow the animal time to habituate to our presence and to 

minimise potential disturbances in the data.  

 

A focal squirrel was selected using opportunity sampling of any squirrel that was 

on the ground, and behavioural data were recorded using a digital audio voice 

recorder (iPhone4S or Olympus DM-450). Continuous sampling was used to 

monitor the start and end times of all behaviours and changes in location of the 
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focal squirrel. Observers recorded the following behaviours, focussing on 

activities that might affect fitness (McGregor 2000). (1) Vigilance: while on 

ground, individual stops current behaviour, becomes bipedal with body in a 

stretched upright position with head high, ears forward, and not eating or 

manipulating food, but can be holding food, may also be tail flagging, or foot 

tapping (adapted from Blumstein & Arnold 1995, & Partan et al 2010). (2) 

Escape: fleeing to an area of refuge. (3) Foraging: searching for food, 

manipulating items, eating food, carrying food, caching food; can be bipedal or 

quadrupedal, but must be on the ground. (4) Vocalisation. (5) Average distance 

the squirrel was to an area of refuge to the nearest .5m: refuge included any 

natural or man-man structure that would provide safety from a terrestrial or 

aerial predator. We also made a deliberate effort to monitor any deceptive 

caching behaviour that occurred as defined by Steele et al. (p. 706, 2008); this 

behaviour has not been documented among populations of grey squirrel outside 

the two in their study.  

 

Before commencing playback, observers collected 3 minutes of continuous 

behavioural data from one focal squirrel. After this time the 15 second auditory 

stimulus was played if the conditions adhered to the following criteria: the 

squirrel had remained on the ground for a minimum of 75 seconds immediately 

prior to the onset of the playback, had not engaged in alert behaviours 

(vigilance, vocalisation, escape) during the prior 30 seconds, was within 10-30 

metre range of the speaker, and had not been exposed to the natural auditory 

presence of conspecifics, heterospecific competitors, or predators. Observers 

continued watching the focal squirrel for a further 3 minutes after the playback 

had ended if it remained in sight. If it escaped up a tree and was still visible we 

continued to monitor behaviour for a further 3 minutes, and waited to record its 

latency to return from the tree if this continued beyond 3 minutes (maximum 

latency was 196seconds). A total of 56 out of 97 observations were discarded 

before playback commenced because the observations did not meet these 

criteria (essentially squirrels were not in sight long enough), and one 

observation was discarded during playback because the focal squirrel went out 

of sight at the time of the playback and so we could no longer be certain of its 

identity when it returned into view. 
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Statistics  

 

We carried out a 3 x 4 mixed design repeated measures ANOVA to examine 

the main effects of time-period (pre-, during- and post-playback) and condition 

(conspecific, corvid, predator, control), and the time-period by condition 

interactions on the following dependent measures: vigilance duration, foraging 

duration and foraging/vigilance distance to refuge. Data for the measure 

‘distance’ were transformed using a square root transformation which corrected 

violated assumptions of sphericity, homogeneity of variance and equality of 

covariances. We used the more robust Pillai’s Trace significance test where P ≤ 

0.05 was the criterion to further examine the outcome of the model. All follow-up 

pairwise comparison contrast tests were conducted with a Bonferroni 

adjustment to account for multiple comparisons. 

 

We performed a chi-square analysis to assess differences between conditions 

and time-periods on frequency of escape behaviour.  

 

Finally if the focal squirrel had responded to the playback by demonstrating any 

alert behaviour (the individual stopped foraging, and commenced vigilance, 

vocalisation, or escape behaviour during the stimulus playback) we measured 

the duration it took for the squirrel to resume foraging from the time the call was 

played. Data were transformed using a square root transformation which 

corrected violated assumptions of homogeneity of variances. A one-way 

between subjects ANOVA was conducted to examine differences in latencies 

between the four conditions, and subsequent planned follow-up pairwise 

comparison contrast tests were conducted using a Bonferroni adjusted alpha 

level.  

 

We used Microsoft Excel 2010 and SPSS Version 16.0 to carry out the 

analyses. 
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Results 

 

Descriptive statistics for vigilance and foraging durations and distance to refuge 

across the 4 playback conditions and during the three time periods are 

displayed in Table 13. 

 

Table 13. Descriptive statistics showing mean (and standard deviation) of behaviour 

during the three playback periods. 

 Conspecific 

n=10 

Corvid 

n=10 

Predator 

n=10 

Control 

n=10 

 Pre During Post Pre During Post Pre During Post Pre During Post 

Vigilance 

duration 

/seconds 

1.54 

(.73) 

6.00 

(2.04) 

4.14 

(1.55) 

2.96 

(1.50) 

5.40 

(2.25) 

2.10 

(1.28) 

.60 

(.35) 

11.10 

(1.84) 

3.66 

(1.46) 

2.12 

(.76) 

2.10 

(1.14) 

.70 

(.41) 

Foraging 

duration 

/seconds 

9.60 

(1.73) 

8.70 

(2.13) 

7.36 

(1.75) 

11.26 

(1.41) 

8.10 

(2.35) 

10.70 

(1.77) 

12.40 

(1.25) 

1.80 

(1.16) 

7.80 

(1.84) 

10.92 

(1.39) 

11.40 

(1.69) 

9.74 

(1.39) 

Distance 

to refuge 

/metres 

2.19 

(.72) 

2.07 

(.56) 

1.34 

(.46) 

.89 

(.24) 

1.65 

(.51) 

1.46 

(.37) 

4.84 

(1.54) 

2.75 

(.96) 

1.54 

(.49) 

3.48 

(1.09) 

5.64 

(2.40) 

4.50 

(2.04) 

 

Durations and distances of foraging and vigilance  

 

A mixed ANOVA (with condition as between-subjects factor and time-period as 

within subjects factor) showed no main effect of condition on distance to refuge 

(p > .05), vigilance duration (p > .05) or foraging duration (p > .05) and no main 

effect of time-period on distance to refuge (lower bound test, p > .05). There 

were significant main effects of time-period on vigilance duration (F2,72 = 14.11, 

p < .001, sphericity assumed) and foraging duration (F2,72 = 6.40, p = 0.003, 

sphericity assumed), both with a moderate effect size (Partial Eta squared .28 

and .15 respectively). There was no time-period by condition interaction on 

distance to refuge (lower bound test, p > .05), but there was a significant time-

period by condition interaction on vigilance duration (F6,72 = 3.67, p = 0.003, 

sphericity assumed) and foraging duration (F6,72 = 3.40, p = .005, sphericity 
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assumed), both with a moderate effect size (Partial Eta squared .23 and .22 

respectively).  

 

Subsequent planned contrast tests were carried out using a Bonferroni adjusted 

alpha level (p ≤ .016) for the main effects of time period on vigilance and 

foraging durations, their results of which are included in Figure 27. For vigilance 

duration there were significant differences between the pre- and during-

playback conditions (p < .001) and between the during- and post-playback 

conditions (p < .001). Figure 27(a) shows that squirrels spent significantly more 

time being vigilant when the call was being played compared to the pre- and 

post-playback time periods, indicating that they attended to the playbacks.  For 

foraging duration there was a significant difference between the pre- and 

during-playback conditions (p = .002), and the differences between the pre- and 

post-playback conditions approached significance (p = .028). Figure 27(b) 

shows that squirrels spent significantly more time foraging prior to the playback 

compared to when the call was being played, and there was a trend for them to 

spend more time foraging after the call had been played compared to when the 

call was being played. 

 

Figure 27. The effects of time-period on (a) vigilance and (b) foraging behaviours, 

including outcome of planned follow-up analyses. * p < .05, ** p < .001, and error bars 

represent 95% confidence intervals.   
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For the time-period by condition interaction we conducted planned follow-up 

analyses to examine differences between the four conditions at the ‘during-

playback’ and post-playback periods. We conducted a ANOVA with condition as 

a fixed factor and vigilance duration during playback and foraging duration 

during playback as dependent measures. During playback we found significant 

effects of condition for vigilance duration (F3,36 = 3.98, p = .015) and foraging 

duration (F3,36 = 4.64, p = .008), both with a moderate effect size (Partial Eta 

squared .25 and .28 respectively), but there were no significant differences 

between conditions post-playback (p > 0.05). Subsequent planned contrast 

tests using a Bonferroni adjusted alpha level (p ≤ .01) revealed significant 

differences between both vigilance duration and foraging duration for the 

predator and control conditions during playback (p = .002, p = .001 

respectively), illustrated in Figure 28. During the experimental playback period, 

squirrels exposed to predator calls spent significantly more time being vigilant 

compared to the control condition, and spend significantly less time foraging 

than during the control condition.  

 

 

Figure 28. The effects of condition on (a) vigilance duration and (b) foraging duration. 

The outcome of the planned follow-up analyses conducted on the time-period by 

condition interaction are displayed. * p < .05, ** p < .001, and error bars represent 95% 

confidence intervals.   
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Frequency of escape behaviour 

 

A chi square test was carried out to assess differences between conditions and 

between the time periods for frequency of escape behaviour. We did not find 

any significant differences in the amount of escape behaviour demonstrated 

between the conditions or for the different time periods (p > .05).  

 

Latency to resume foraging post-playback-initiated-alert-behaviour 

 

During all playbacks, the behaviour of focal squirrels was observed and defined 

as follows: no response, whereby the focal squirrel did not change from foraging 

to any alert behaviour during playback, and appeared to ignore the stimulus 

(conspecific condition N = 1, corvid N = 1, predator N = 0, control N = 7), or alert 

behaviour (as previously defined). Figure 29 shows latency to resume foraging 

after displaying alert behaviour during playback, which reveals that squirrels 

responded similarly to the conspecific and corvid playbacks, and both latencies 

to return to foraging were longer than the control condition. They took even 

more time to resume foraging behaviour when exposed to the predator 

playback compared to the three other conditions.  These data were analysed 

using a one-way between subjects ANOVA which revealed a statistically 

significant difference between the conditions (F3,36 = 26.90, p < .001) with a 

large effect size (Partial Eta squared .69). Subsequent planned contrast tests 

using a Bonferroni adjusted alpha level (p = .008), revealed significant 

differences between all conditions (p < .001), excluding the conspecific and 

corvid conditions whose condition means were not significantly different from 

one another (p > 0.008), see Figure 29.  
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Figure 29. Differences in mean latencies to resume foraging across the different 

playback conditions if alert behaviour was demonstrated. ** p > .001, and error bars 

represent 95% confidence intervals.   

 

Incident of ‘deceptive’ caching 

Of the 97 locations visited while collecting behavioural observations we 

witnessed one occurrence of a ‘deceptive caching’ event that adhered to the 

description of Steele et al. (2008). A systematic description of the observation is 

presented in Table 14. We started observing the focal squirrel when it was 

approximately 15m from 5-10 other squirrels, however, it then moved to an area 

that was more than 20m away from any competitor species, which is when the 

conspecific stimulus was played. The ‘deceptive cache’ was observed 49 

seconds after the playback had ended while the squirrel was still in the same 

approximate location. Throughout observations the experimenter remained 

approximately 25m away from the focal squirrel, monitoring behaviour using 

binoculars and a digital voice recorder, and joined by another person that was 

an untrained observer. The observation took place at Higher Cemetery, St 

Mark's Avenue, Exeter on 11th December 2012. 
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Table 14. Systematic observation of a possible ‘deceptive caching’ event. The focal 

squirrel was exposed to the playback at 16minutes 3seconds into observation, and the 

‘deceptive caching’ occurred at 17minutes 7seconds. 

Behaviour description Time 

At the time of the playback, the focal squirrel responded by escaping in 

opposite direction to the call, while nut carrying, and jumping onto a 

gravestone, where it then sat being vigilant.  

16m 03s 

While on the gravestone, it manipulated a nut with its paws and mouth, and 

while intermittently eating the nut. 

16m 32s 

It then jumped off grave, while nut carrying, and made several digs at the base 

of the grave. 

16m 37s 

Moving 1m away from the grave it had previously sat on, it dug a hole while nut 

carrying.  

16m 44s 

While nut carrying, it stopped digging and demonstrated vigilance behaviour. 16m 49s 

It then dug another hole. 17m 01s 

Moving to a locating 1m from the base of a tree, it appeared to cache the nut at 

1m from the tree, facing toward the tree trunk and NE cardinal direction: a hole 

was dug in the ground, the squirrel then made the typical thrusting action 

directed toward the cavity, covered it with soil and patted the ground above 

down. However the squirrel then moved 1m away from area so that it was now 

0m from the tree and it still had the nut in its mouth.  

17m 07s 

It ran up a tree with the nut in its mouth. 17m 24s 

The focal squirrel then descended the tree and dug 2 holes at its base. 17m 47s 

It stopped digging behaviour and was vigilant to a rook call.  18m 05s 

It then began manipulating the nut in his mouth and paws, sometimes 

appearing to nibble it. 

18m 22s 

Current behaviour ended and it was vigilant instead. 18m 55s 

It then repeated nut manipulation behaviour.  19m 06s 

Finally the squirrel made a true cache, facing the tree, in a NE direction, and at 

1/2m from the tree but 2m away from where the ‘deceptive’ cache had been 

made (i.e., on the opposite side of the tree). 

19m 29s 

The squirrel then sat on the same gravestone above the cache that was just 

made, approximately 1/2m away from it, and was vigilant.  

19m 38s 

It then ran away while being vigilant and went out of sight at 21min 29sec. 21m 29s 
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Discussion 

 

We found a strong effect of time-period on foraging and vigilance durations. 

During the period when the stimulus was being played, there was a decrease in 

foraging and an increase in vigilance during the call. In particular, squirrels 

displayed more vigilance and less foraging when exposed to predator playbacks 

compared to the control white noise playbacks. We also found significant 

differences between latencies to resume foraging depending upon which call 

was played. Squirrels exposed to the predator playback took longer to resume 

foraging after the playback compared to the corvid and conspecific conditions to 

which squirrels responded similarly, taking longer to resume foraging than those 

squirrels in the control condition who scarcely responded to the playback.  

 

Overall our results show that grey squirrels responded to the playbacks of 

corvids and conspecifics similarly by displaying alert behaviour when the calls 

were played and delayed recommencing their foraging behaviour after the calls 

had ceased. This supports the hypothesis that squirrels respond to these social 

risks as sources of potential antagonistic encounters, acting in ways that 

increase their ability to monitor their surroundings by pausing their foraging 

behaviour. Likewise, squirrels responded to predator calls by increasing the 

time they were engaged in alert behaviour during the playback, which was 

performed at a cost to foraging which is as predicted. However, our study 

shows that although the different cues of risk had similar disruptive effects on 

foraging for the three experimental playbacks, there were differences in degree 

of response, with predatory cues bringing about longer disruption to foraging 

than social cues.   

 

Foraging among competitors 

 

Previous studies demonstrate that while there are benefits to social foraging 

(reviewed in Galef & Giraldeau 2001), for an asocial species like the grey 

squirrel (Koprowski 1996) there are a number of costs associated with foraging 

near either conspecifics or heterospecifics who use the same resources. The 

increased competition for resources fosters a need to spend more time foraging 

(Pravosudov & Lucas 2000), and the potential for agonistic encounters 
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encourages more vigilance behaviour (Tarigan 1994), but is performed at a cost 

to foraging (Makowska & Kramer 2007; Shonfield 2011). Our study clarifies how 

grey squirrels respond to potential sources of competition while foraging. In 

response to the risks of both types of social cue, squirrels predominately acted 

in ways that indicated they viewed the calls of other squirrels and corvids as 

worthy of caution, as opposed to  a signal of increased foraging competition. 

Future studies could also incorporate the playbacksof calls of other animals in 

order to assess if they respond similarly.  

 

The effect of the playback upon foraging was not prolonged: after the playback 

had ended squirrels re-started foraging in an average of 12 seconds for 

conspecifics and 15 seconds for heterospecific competitors. It seems that 

squirrels benefit by being wary of nearby competitors, but resume foraging soon 

after the threat of competition ceases. It is reasonable that squirrels should not 

remain disturbed for an extended period after the auditory risk has ceased, as it 

is more profitable for them to maintain a consistently high level of foraging than 

engage in occasional bouts of vigilance after exposure to a risk cue. In 

particular, there may be high costs associated with reduced foraging at a time of 

year when squirrels are increasingly busy caching food for the approaching 

winter months.  However, it is possible that alert behaviours would extend for a 

longer period of time at other times of year when the associated foraging costs 

are not as high. 

 

Corvids share similar resources with squirrels and are also known to pilfer their 

caches (Vernelli  2013). However, based upon the past literature it was unclear 

how squirrels would react to the corvid playbacks because the results are 

difficult to compare among the studies that have examined whether grey 

squirrels are sensitive to corvid presence. Leaver et al. (2007) report that 

squirrels do not change their behaviour while caching in the presence of 

corvids, while Schmidt and Ostfeld (2008) report that they do alter their 

behaviour when recovering food that was buried in the presence of corvids. Our 

current study provides evidence that squirrels are sensitive to the auditory 

presence of corvids that compete with squirrels for food resources. 

Furthermore, they respond to corvid vocalisations in a similar manner to the 

alarm calls of conspecifics while foraging. A recent study has found that grey 
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squirrels are responsive to alarm calls made by passerine species if they are 

acoustically similar to squirrel calls (Getschow et al. 2013). However, in our 

study the corvid calls were not alarm calls but instead contact calls directed at 

other birds. Corvids vocalising to one another could pose an aggressive hazard 

to a lone foraging squirrel; they are often larger than grey squirrels, and 

frequently forage with other corvids for the same resources as squirrels. Thus it 

seems adaptive that the squirrels respond by engaging in alert behaviour 

temporarily until the threat has passed. The specific risk which corvids pose to 

squirrels, whether as competitors for food, cache thieves, sources of 

aggression, or all three, is still open to more investigation, but our current study 

highlights that further research in this area would be valuable in order to more 

fully understand interspecific foraging competition.  

 

Foraging among competitors and predators 

 

Our study also contributes to the existing literature of how predation risk affects 

the foraging behaviour of grey squirrels. When under increased perceived risk 

of predation grey squirrels engage in more vigilance behaviour (Partan et al 

2010; Partan et al. 2009), which incurs a cost to the amount of time spent 

foraging (Brown et al. 1992; Makowska & Kramer 2007; Shonfield 2011). In 

addition, because we have isolated responses to social and predatory risk cues, 

our study directly compares the contribution that each of these make to overall 

foraging decisions. Previous research has shown that while some individuals 

preferentially forage and eat in areas closer to safety (Booth, et al. 2012; 

Bowers et a. 1993; Brown et al. 1992; Kilpatrick 2003; Lima & Valone 1986; 

Lima et al. 1985; Newman et al. 1988), some will forage or cache in locations 

more exposed to predators when the risk of competition is high (Ekman 1987; 

Koivula et al., 1994; Lahti et al. 1998; Steele et al. 2014). In the current study 

we have shown that squirrels responded similarly to both predatory and social 

cues by interrupting their foraging behaviour and engaging in alert behaviours, 

social cues had less enduring disruptive effects to foraging than the predator 

cues. This could be partly because the presence of foraging competitors 

reduces the cost of defence against predators. Indeed it has been shown that 

squirrels will monitor alarm calls of both competing conspecifics and 

heterospecifics and change their vigilance behaviour accordingly (Partan et al. 
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2010; Partan et al. 2009; Randler 2006a; Schmidt et al. 2008). Thus being alert 

to calls of competitors reduces the need for sustained vigilance to calls of 

predators. Nevertheless, in an environment where all three cues of risk would 

be present it is likely that squirrels would be more tolerant to nearby 

heterospecifics and conspecifics despite their potential disruptive effects to 

foraging.  

 

There is a possibility that our conspecific playback stimuli could be signalling 

predation risk. Squirrels communicate through a variety of means (auditory, 

Horwich, 1972; Lishak, 1982; Lishak, 1984; olfactory, Taylor, 1977; visual, 

Thompson, 1978) yet most of their communication tends to relate to aggression 

or threatening conditions (Clark, 2005; Horwich 1972; Gurnell 1987; Steele & 

Koprowski, 2001) and is primarily used for resource guarding (Thompson, 

1978), during mating (Thompson, 1977) and as predator alerts directed at both 

other squirrels and the predator itself (Lishak, 1984), particularly tail signals and 

vocalisations (Partan et al. 2009; Partan et al. 2010). The vocalisations used in 

our study were combination “kuk” and “quaa” alarm calls (Horwich 1972; Lishak 

1984). Previous research has suggested that such alarm signals are more likely 

to be displayed when conspecifics are present (Partan et al. 2010) and 

therefore our playbacks could be signalling the risk of conflict with another 

squirrel, but it is possible that they may also signal predator presence. However, 

it is not currently known whether there are subtle differences in the nature of 

calls when directed at a conspecific or otherwise. If subjects were responding to 

conspecific calls as predator alerts then we might expect a similar response to 

the conspecific playback as to the predator playback. Our results demonstrate 

that this is not the case; the conspecific vocalisations appear to present a lesser 

risk than those of the predator calls. Squirrels reacted to conspecific calls by 

interrupting foraging to a lesser degree than when they heard a predator call, 

and this suggests that the response is associated with avoidance of intraspecific 

conflict rather than cue of predation 

 

Incident of ‘deceptive’ caching 

 

A final observation that has not yet been discussed is that of our systematic 

recording of the possible “deceptive caching” event. Steele et al. (2008) are the 
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only researchers to describe this behaviour, which is similar to a ‘normal 

caching’ event in most respects, except during ‘deceptive caching’ the individual 

does not deposit any food in the cache. Steele et al reported the behaviour 

occurring between 13.2 – 22.3% out of 255 caching events across two sites and 

two seasons. They describe how this type of behaviour occurred more often in 

the close presence of conspecifics and after being pilfered by a human, and 

therefore they suggest that squirrels may do this to deceive those individuals 

that are watching in order to reduce the risk of cache pilferage. Our current 

study is the first, to our knowledge, to report this behaviour in an individual 

outside the two populations observed by Steele and colleagues. Furthermore, 

this specific type of behaviour has not been observed in similar studies of grey 

squirrels (Hopewell & Leaver 2008). However, due to the rarity of it in the 

scientific literature, the behaviour does not appear to be a widespread strategy 

used by grey squirrels as part of their daily food storing activities.  

 

Conclusion 

 

This study has shown that squirrels respond differently to cues of predation than 

to cues of conspecific and heterospecific presence, illustrating how they pose 

different risks to foraging. Squirrels respond to these different cues of risk by 

demonstrating alert behaviour and limiting their foraging. The perceived 

presence of competitor species appears to have short-term disruptive affects 

upon foraging, rather than facilitating it, suggesting that these calls may signal 

sources of inter- and intra-specific conflict. Foraging is disturbed for a greater 

length of time after predator calls because of more time engaged in alert 

behaviour when potential predators could be around. Overall, these behavioural 

changes are somewhat short-lived, possibly indicating that there are high costs 

associated with reduced foraging. 
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Chapter 7: General discussion 

 

Overview: foraging in the face of risks 

 

The aim of this thesis was to explore how grey squirrels respond to different 

risks in relation to their foraging and food hoarding behaviours, and which 

factors were associated with cache pilferage behaviour. A series of five studies 

were conducted across laboratory and field conditions to examine the 

contribution of competition, pilferage risk and predation risk upon foraging, 

caching and pilfering. Each study combined various aspects of these factors in 

order to determine how they affected behaviour. Some studies focussed on 

squirrels as cachers, others on them as pilferers. The next section will discuss 

each of these factors in relation to conclusions which can be drawn from the 

studies presented in this thesis. Following this, some methodological 

considerations will be presented; some of the difficulties that were faced while 

investigating these topics will be discussed, including ways that future research 

could overcome them, alongside ideas to further research in this area.  

 

Foraging competition  

 

Previous research has indicated that there are costs and benefits to social 

foraging: foraging neighbours limit the availability of resources as well as acting 

as a direct source of potential conflict because competitors feed from the same 

patch (Gerber et al. 2014); nevertheless foraging alongside others can be less 

costly than foraging alone because of the benefits of being at reduced risk of 

predation (Verdolin 2006). Two field studies were carried out to investigate how 

competition from conspecifics and heterospecifics affected foraging and caching 

behaviour in grey squirrels.  

 

Intraspecific competition  

 

Grey squirrels are considered to be asocial but they also frequently forage 

alongside conspecifics who share the same food patch (Koprowski 1996). 

Foraging in a social environment can be adaptive because individuals have less 

chance of being targeted through the dilution effect and they do not need to 
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visually scan for predators as often, so can spend less time being vigilant and 

more time foraging (Lima 1995). This thesis presents two studies indicating that 

squirrels are averse to social environments, and thus may not benefit from 

social foraging. Chapter 6 illustrated that the auditory presence of conspecifics 

resulted in squirrels increasing their time spent being vigilant, which lessened 

the amount of time they spent foraging, and also that they took longer to 

resume foraging when exposed to calls of squirrels in comparison to a control 

playback stimulus. Data in Chapter 4 shows that squirrels were attentive to 

conspecifics while foraging and acted in ways to minimise contact with them; 

the presence of a more dominant conspecific minimised other squirrels’ access 

to the provisioned food source, and while storing food individuals engaged in 

behaviour that allowed them to more easily respond to competition; for 

example, caching squirrels would be more likely to orient towards conspecifics 

when they were closer to them or in areas high in foraging competition. 

Previous research has indicated that grey squirrels are sensitive to conspecific 

presence while foraging and modify their behaviour in different ways; for 

example, they will transport food away from locations high in conspecific density 

(Hopewell et al. 2008; Spritzer & Brazeau 2003), and engage in alarm (Partan 

et al. 2009; Partan et al. 2010) and vigilance behaviours (Tarigan 1994) in 

response to conspecific cues. In combination the results from this thesis 

suggest that the social environment imposes risks for foraging grey squirrels 

that necessitate increased vigilance and forestalls food access. This supports 

the idea that squirrels respond to conspecifics as sources of antagonistic 

encounters, acting in ways that limit the possibility of interaction, as opposed to 

viewing conspecifics as competitors for resources, in which case they would be 

more likely to increase their foraging efforts.  

 

Interspecific competition 

 

Complex relationships can exist between heterospecific competitors across 

different food hoarding species (e.g., Leaver & Daly 2001), though it is a topic 

that has received very little research attention.  The data in Chapter 6 reported 

that squirrels responded similarly to the calls of conspecifics as they did 

competitor heterospecific species in terms of foraging and vigilance behaviours. 

Whether grey squirrels responded to corvids as competitors while foraging had 
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not previously been investigated, and the findings were ambiguous as to 

whether they responded to them as potential cache pilferers. Chapter 6 helps to 

clarify that corvids may be viewed as a potential source of negative interaction 

as opposed to competitors for resources, since foraging effort decreased after 

exposure to playbacks of corvid vocalisations. Given that the presence of 

heterospecific competitors necessitates increased vigilance while foraging, 

these findings might help to explain why Leaver et al. (2007) reported that 

squirrels did not orient themselves away from corvids while hoarding food, and 

that Schmidt and Ostfeld (2008) found that squirrels reduced their foraging 

effort while recovering food that had been buried in locations where corvid calls 

were played. Further research is needed on the effect that heterospecific 

competitors have upon grey squirrel foraging, particularly corvids as they are 

known to steal the caches of squirrels and might use OSM while doing so. 

When studies are carried out examining the behaviour of wild squirrels in 

response to conspecifics, measuring the presence of heterospecifics could 

easily be incorporated into designs and might help to reveal a lot more about 

this relationship.  

 

Pilferage risk 

  

The literature in this thesis illustrates the wide range of research that has been 

carried out with corvids on the topic of cache pilferage. A large number of 

studies have experimentally investigated in the laboratory the specific behaviour 

in which hoarders engage to reduce the risk of cache loss to thieves, and a few 

have also explored how actual pilferage is achieved. Field observations had 

revealed that squirrels might behave in a similar way to corvids when storing 

food (Hopewell & Leaver, Hopewell et al. 2008; Leaver et al. 2007; Steele et al. 

2008), and one anecdotal observation indicated that cache loss from 

conspecific observers was a risk in squirrels (Steele et al. 2014). A laboratory 

study, presented in Chapter 2 experimentally investigated whether grey 

squirrels used social cues to assess pilferage risk, and a field study in Chapter 

4 explored whether relative dominance status also affected cache decision 

making. Following on from this, cache theft was investigated from the 

perspective of the pilferer, as opposed to the cacher, in a laboratory (Chapter 3) 
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and a field experiment (Chapter 5) that both tested what cues are used by 

thieves when pilfering caches.  

 

Cues used to assess pilferage risk: pilferage experience, conspecific presence, 

and dominance 

 

Field research had indicated that grey squirrels respond to conspecific 

audiences when storing food in ways that might help to minimise cache theft, 

though the precise reasons for this are unclear. Chapter 2 presents data from 

the first controlled laboratory study of audience and pilferage effects upon grey 

squirrels. Data show that grey squirrels directly respond to conspecific presence 

as an indicator of pilferage risk and modify their food hoarding behaviour in 

ways that reduce the possibilities of pilferage; for instance, when observed by a 

conspecific squirrels would cache more quickly, make fewer caches, and 

recover more of their caches. Squirrels also responded to experience of cache 

loss, but this encouraged them to start eating sooner and eating a greater 

number of nuts, as opposed to modifying their caching behaviour. This supports 

what has been reported in field studies (Hopewell & Leaver, Hopewell et al. 

2008; Leaver et al. 2007; Steele et al. 2008), as well as clarifying that squirrels 

are not simply responding to experience of theft of their caches but also 

respond to social cues.  

 

Previous studies with corvids indicate that scrub jays and Eurasian jays (two 

species much studied in terms of their caching behaviour) were sensitive to the 

social conditions at the time caching in terms of relative dominance of the 

observing individual (e.g., Dally, Emery et al. 2006; Shaw & Clayton 2012a). 

This was not possible to replicate in the laboratory owing to the difficulties of 

establishing dominance networks among a captive population, therefore a wild 

population of squirrels was studied to determine whether dominance played a 

role in caching behaviour. Data presented in Chapter 4 shows that dominance 

had an impact upon individuals’ access to resources, which supports previous 

research that squirrels use their dominance to monopolise food supplies (e.g., 

Allen & Aspey 1986), but no individual differences in caching behaviour were 

found in respect of strategies to reduce pilferage. However, as the dominance 

network in the focal population was very different from what previous research 
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had found in grey squirrels, it was uncertain whether dominance would affect 

food hoarding behaviour in a situation when the more often reported linear 

hierarchy was found.  

 

Finally, one study by Steele et al. (2008) had reported frequent occurrences of a 

behaviour among two different observation sites which they referred to as 

“deceptive caching”. This behaviour has never been observed outside of the 

populations described by Steele and colleagues, and thus it was thought that it 

might be unique to native Eastern grey squirrels inhabiting the USA. The 

squirrels used in all of the studies of this thesis were Eastern grey squirrels 

residing in UK to which they are not native. Throughout all laboratory and field 

behavioural investigations in this thesis a conscious effort was made to detail 

any incidents of “deceptive caching”. Chapter 6 reports the only systematic 

observation of the behaviour witnessed in one wild squirrel which conforms to 

the description provided by Steele et al.  Therefore “deceptive caching” might 

not be something that is limited to native grey squirrels but might also be used, 

albeit infrequently, by grey squirrels residing in the UK. There could also be an 

alternative explanation for the behaviour reported in Chapter 6 which is still 

consistent with Steele et al.’s observations: it is possible that squirrels might be 

swapping an existing cached nut for a new nut as opposed to making an empty 

cache (Hempel de Ibarra, personal communication), because the point at which 

the swap occurs would be unseen (i.e., when the squirrel’s head is below 

ground level). It is not possible to state with any certainty that “cache swapping” 

rather than “empty caching” is occurring, but it does provide a more 

parsimonious explanation for the behaviour observed; indeed “deceptive” 

caching among the corvid literature is associated with more complex cognition 

which we do not know if squirrels possess. It is also possible that the behaviour 

might even serve a deceptive function without squirrels intending it to; whether 

they are making an empty cache or swapping a nut, the same function would be 

served. Perhaps a more precise definition of the behaviour is required, or more 

rigorous observation techniques could be used with populations where the 

behaviour is seen more frequently, such as using video cameras so that 

behaviour can be analysed more closely. 
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How pilferage is achieved: social and visual cues  

 

Pilfering of stored food is common across scatter hoarding species. For cache 

protection strategies that are used in audience situations to be adaptive, an 

observer must pose a risk to the caching individual. In some species, pilferage 

can be achieved at the time of caching, for instance by a more dominant 

individual supplanting a subordinate while they are caching (however, this is not 

something that was witnessed in squirrels while collecting data for Chapter 4). 

Given that squirrels were sensitive to social cues in the study presented in 

Chapter 2, it was logical to then explore whether the presence of conspecifics 

was in fact a risk to caching squirrels. Pilferage reduction behaviours reported in 

corvids have been attributed to some species being able to remember the 

locations of caches they observed made by another bird (e.g., Watanabe & 

Clayton 2007). Returning to pilfer a cache after the owner has left the vicinity 

provides a more adaptive pilferage strategy than immediate theft pilfering a 

cache because there is less risk posed by the cache owner still being close by. 

It was investigated whether grey squirrels could use OSM to pilfer caches they 

had observed another squirrel make. The study in Chapter 3 found no evidence 

for squirrels using OSM to engage in cache pilferage, and squirrels were slightly 

more accurate (though not significantly so) at recovering caches they had not 

seen being made in comparison to those they had witnessed. Therefore, it is 

unlikely that squirrels engage in pilferage reduction behaviour for the same 

reasons suggested in some corvid species, principally OSM and sophisticated 

cognition; instead pilferage reduction behaviours are likely to be a behavioural 

response to conspecific presence providing a cue of pilferage risk.  

 

Given that squirrels were not using OSM, it was important to explore what other 

strategies might have use to increase their encounter rate with caches that they 

had not witnessed being made. Previous studies had reported that caches 

placed close to the bases of trees had high rates of theft compared to those 

placed farther away (e.g., Steele et al. 2014), but it was unclear why this might 

be. The study presented in Chapter 5 used artificial caches made at different 

landmarks that varied in their exposure to predators and also their food 

availability; this could help to determine if these factors had an impact upon 

cache theft given that it is more likely that squirrels would forage in locations 
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higher in food availability and lower in predation risk, as well as indicating 

whether landmarks could be used by pilferers to locate caches. No evidence 

was found for a pilferage strategy based upon food availability, but there did 

appear to be an increase in the rate of cache theft in the springtime at man-

made landmarks, in comparison to the autumn where caches were more likely 

to be pilfered from trees; this will be discussed later in more detail in relation to 

pilferage and predation risks. Though this research does not explain how 

pilferers are actually locating caches and whether landmarks are used as 

beacons to pilfer,  it does illustrate where and when pilferage is more likely to 

occur. Further studies are recommended to specifically test the hypothesis that 

trees and man-made landmarks might be used as beacons in food retrieval and 

pilferage by grey squirrels.  

 

Predation risk 

 

In wild animals, deciding where to forage, cache or pilfer is not a simple 

decision based upon an isolated cue as it can be in laboratory studies. Wild 

individuals are presented with an abundant amount of information that affects 

where and when they choose to forage. Predation risk has considerable 

influence on foraging decisions but is rarely investigated in relation to other risks 

such as those presented by competitors. Three field studies presented in 

Chapters 4, 5 and 6 investigated how predation risk was incorporated into 

foraging, hoarding and pilferage decisions, in relation to the risks that 

competitors pose both to caches and while foraging.  

 

Predation risk in relation to general foraging 

 

An abundant amount of research shows that foragers are sensitive to cues of 

predation (reviewed in Verdolin 2006). Typically studies of grey squirrels 

measure foraging distance from refuge as an assay of predation risk, though 

few studies have investigated how foraging behaviour is modified in response to 

specific cues of predation. Chapter 6 includes data from a study which 

presented auditory playbacks to wild foraging grey squirrels in order to measure 

how foraging behaviour was affected by the perceived presence of predator 

species. Predator playbacks were consistently found to increase vigilance 
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behaviour and decreased foraging behaviour, and individuals did not resume 

foraging for an average of 100 seconds after the playback. The effect of 

competitor playbacks on foraging behaviour also produced a similar outcome 

though responses were less enduring than to the predator playbacks. Some 

researchers consider grey squirrel vocalisations to act as cues of predation risk 

because they are directed toward predators, as opposed to toward conspecifics 

(discussed in Partan et al. 2009; Partan et al. 2010), though this not been 

experimentally investigated. Nevertheless, these results highlight the disruption 

that predatory cues have upon foraging which reflects how the risk that 

predation disturbs foraging more than the risk of competition, or indeed cues of 

predation by conspecifics.  

 

Predation risk in relation to cache placement 

 

Foraging distance to refuge has been used as a measure of predation 

assessment in several previous studies of grey squirrels, with individuals opting 

to forage or consume food in locations closer to trees (e.g., Lima & Valone 

1986; Lima et al 1985). Cache placement relative to predation risk is less 

understood, with a recent study by Steele et al. (2014) reporting that grey 

squirrels prefer to place favourable items in locations more exposed to 

predators because it reduces the risk of pilferage. Chapter 4 measured the 

distance squirrels placed their caches from trees and found they placed nuts an 

average of 2.61m away from the base of trees, but this was not related to any 

pilferage reduction behaviours (dominance, curtailed digging, use of visual 

barriers, or caching orientation). It is possible that the choice of observation site 

with a large percentage of canopy cover gave too much protection from 

predation risk relative to the other measures, as squirrels will naturally forage 

where there is more canopy cover. In addition, simply using observational data 

to measure willingness to expose oneself to predation may not be a suitable 

way to measure the behaviour. Instead, experimental field methods seem to 

reveal more about how behaviour changes in response to changes in risk, with 

manipulations such as placing food in different locations that vary in exposure to 

predators (e.g., Newman, et al. 1988), or using predator cues like the study 

presented in Chapter 6.  
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Predation risk in relation to pilferage risk 

 

Finally, the relationship between cache pilferage and predation risk was 

explored, from the perspective of the pilferer in terms of where would be the 

optimal location to forage and to thieve caches, and from the perspective of the 

cacher in terms of the optimal location to ensure cache longevity. Previous 

studies had reported that grey squirrels chose to cache more favourable items 

away from trees (Steele et al. 2014). It was suggested by Steele and colleagues 

that this was because trees provided safer locations to forage for naive pilferers 

as well as an escape route from predators. However, this may not be the 

reason for cachers’ preferences; rather trees might simply have more foragers 

around them because they provide a source of food. Chapter 5 presents data 

that experimentally investigated these different hypotheses at four different 

types of landmark that varied in predation risk and food availability. This study 

found no differences in pilferage rates of caches in terms of food availability, but 

there was difference in pilferage rates between the autumn and spring in 

locations that varied in predation risk. The finding that pilferage rates were 

higher in areas low in predation risk in the autumn, i.e., trees, supports the 

suggestion of previous researchers; that individuals are more likely to encounter 

caches while foraging in locations that provide safety from predators (Stapanian 

& Smith 1978; 1986; Steele et al. 2014). With regards to pilferage in the spring, 

it was suggested that the mediating effect of season could be due to seasonal 

differences in food availability. It was suggested that in the spring there are 

generally fewer caches available and therefore pilferers are more likely to 

forage away from safety, in comparison to the autumn when there are an 

abundance of caches being made. This is supported by Thompson (1978) who 

found that in the spring grey squirrel foraging activity peaked and home range 

size increased, which is suggested to be as a result of food shortage at this time 

of year. Researchers tend to not study caching-related behaviours in squirrels 

outside of the peak autumn caching period, however, the results from Chapter 5 

indicate that it would be worth investigating further. Field observations carried 

out across different seasons of where squirrels forage relative to trees would 

help to clarify if there are any differences in aversion to predation risk as a 

function of seasonal food availability.  
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A note on foraging cognition  

 

Among the corvid literature, it is thought that many of the behaviour in which 

they engage while caching and pilfering might be due to their sophisticated 

cognitive abilities (reviewed in Clayton et al. 2007 and Grodzinski & Clayton 

2010). The data in Chapter 2 supports research on wild squirrels which shows 

that, like corvids, squirrels engage in pilferage reduction behaviour in response 

to conspecific presence (Hopewell & Leaver 2008; Hopewell et al. 2008; Leaver 

et al. 2007; Steele et al. 2008). However, when looking at squirrel foraging, 

caching and pilfering behaviour more broadly from the data presented in this 

thesis, the mechanisms for behaviour reported in corvids are likely to be 

different of that in squirrels. It seems that grey squirrels simply respond to 

immediate risks in their environment and change their behaviour accordingly 

depending upon the costs and benefits; using strategies that have evolved 

because they help to minimise the costs of foraging and hoarding when 

exposed to cues of risk. The behaviours in which corvids engage while storing 

food are suggested to be more sophisticated tools that serve to deprive 

competitors of information, which is linked to complex cognition such as mental 

attribution (Grodzinski & Clayton 2010). That squirrels simply modify their 

behaviour in response to cues of risk provides a more parsimonious explanation 

for the way that they behave. However, there is still the potential for future 

research to be conducted to establish whether squirrels are sensitive an 

observers point of view while caching, like in corvids. Overall, this thesis helps 

to elucidate previous research on grey squirrels that investigated whether some 

of their behavioural strategies might be related to more complex cognition 

(discussed in Hopewell 2008). 

 

Summary: foraging in the face of risks 

 

This thesis has shown how different risks affect grey squirrel foraging and 

hoarding behaviour; a variety of field and laboratory studies have manipulated 

cues of risk in relation to competition from heterospecifics, conspecific presence 

and dominance rank, pilferage risk and experience, and predation.  

 



196 
 

Grey squirrels were found to respond to conspecifics as cues of risk while 

foraging and caching, and they modified their behaviour in ways that helped 

them to keep track of their presence, for example, facing toward them, and 

engaging in vigilance. When storing food, squirrels responded to conspecific 

presence by adjusting their caching behaviour in ways that might help to 

minimise pilferage. They were also vigilant of competing heterospecific species, 

namely vocalisations of corvids, which indicated that heterospecifics were 

regarded as a risk more than as a competitor for resources.  

 

Cache pilferage was apparent in locations where grey squirrels were observed. 

Pilferage rates were not uniform across locations or seasons, instead some 

caches were more likely to be stolen from than others. Pilferage was higher in 

the autumn when squirrels spend more time foraging for nuts to bury, than 

compared to the spring. Predation risk also fed into foraging decisions and 

impacted upon cache pilferage rates in two ways. Firstly, in terms of pilferage 

rates, in the springtime when there were fewer caches to recover, pilferage 

rates were higher in areas more exposed to predators, indicating that squirrels 

were less averse to predation risk when there were fewer resources to forage. 

Secondly, predator cues were found to be disruptive to squirrel foraging 

because of the need to spend more time being vigilant.  

 

Overall each of these factors were found to disrupt grey squirrel foraging and/or 

caching behaviour to different degrees. When combining the results of the 

studies in this thesis, squirrels seem to be most affected by predatory cues 

while foraging, and wary of competitors because they might pose a risk to 

personal safety. In the laboratory where the risk of interacting with a competitor 

was removed but pilferage risk was high, squirrels responded to conspecifics as 

though they posed risks to their caches. 

 

Methodological considerations 

 

The studies carried out in this thesis allowed us to examine questions about 

behavioural responses to risk in both captive and wild grey squirrels. A number 

of challenges were faced using both laboratory and field methods, some of 

which have already been outlined in Chapters 2 through 6. The following 
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discussion will re-address some of the issues raised by the methodology, and 

justify the choice of methods at the time, alongside suggestions for 

improvements to the methodologies that could be used in future studies.   

 

Laboratory studies 

 

For the study presented in Chapter 2 it was essential that experiments were 

carried out with captive individuals. Prior research had already indicated a 

tendency for squirrels to modify their behaviour in response to conspecific and 

heterospecific presence as well as pilferage, but it was unclear what their 

separate impacts were upon behaviour. By carrying out a laboratory controlled 

study these variables could be isolated in order to determine their individual 

effects, something which cannot be easily achieved in field investigations. 

Similarly for the study presented in Chapter 3, the nature of the investigation 

meant that it was necessary to isolate variables so that their individual impacts 

on behaviour could be assessed, namely olfactory and social cues. By carrying 

out experiments in a captive situation, procedures could be used that had been 

tried and tested with other species so that direct comparisons could be made 

between the results. Furthermore, while some studies have reported OSM 

anecdotally in wild individuals, it is not something that can be easily (if at all) 

studied in the field, thus necessitating captive studies.  

 

Nevertheless, there are a number of disadvantages to studying wild behaviour 

in captive animals. First and foremost, captive environments cannot adequately 

represent the natural habitat of wild animal in an ecologically realistic way; for 

example, in terms of the size of arena, social dynamics, challenges and risks 

faced, among many other aspects. More specifically, for studies that investigate 

caching behaviour, the costs and benefits of where, when and how individuals 

forage, cache or pilfer, are not the same for captive animals as for their wild 

counterparts. While some captive environments do strive to make living 

conditions appear more natural, such as zoological parks, the conditions 

necessary to carry out controlled laboratory studies certainly do not, because 

they seek to control potential extraneous variables. Therefore, while controlling 

variables allows their effects to be studied in isolation from one another, these 

measures do not realistically represent how they would appear in wild 
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populations. This may explain why some studies of captive animals do not yield 

the same results as those conducted with wild individuals; for example, spatial 

memory in grey squirrels is not always possible to replicate in the laboratory 

(e.g., Meier, 2011) as it appears in wild squirrels (Macdonald 1996). The 

squirrels in the current study were motivated to cache all year round, however 

this has not been true of previous investigations with captive squirrels (Hopewell 

2008). Thus, captive individuals might not behave in a way that can be 

generalised to wild populations. Unfortunately, this is a problem across all 

studies that attempt to study natural behaviour among captive individuals.  

 

A second problem with using laboratory housed animals is testing a large 

enough sample size in order for results to be meaningful. As has already been 

noted in Chapters 2 and 3, using non-domesticated species requires effort to 

habituate them to captivity and often hand-rearing from a very young age (in the 

case of grey squirrels, approximately four weeks old in order for them to 

habituate to humans). These conditions can be difficult to achieve. For grey 

squirrels in particular, minimum housing requirements can be substantial: most 

of the time they need to be housed individually; each cage requires adequate 

materials and space for them to engage in some natural behaviour, and provide 

adequate psychological and physical stimulation in order to prevent abnormal or 

damaging behaviour; they are great escape-artists meaning that structurally the 

cages require maintenance to remain sound; in the UK, as they are a non-

native species, housing must be approved by the Home Office and subject to 

regular inspection; they need frequent positive contact with humans so that they 

do not become timid and less willing to participate in experiments; and on top of 

this, the costs of husbandry, food and veterinary care need to be met. 

Ultimately, meeting these basic needs requires considerable time, space and 

finances, even to house only a small number of individuals. What is more, there 

is still a high probability that a number of individuals will not thrive; of the 17 

squirrels that were obtained to investigate studies in this thesis, only six 

individuals were sufficiently habituated and / or survived long enough to 

participate in studies. It seems that grey squirrels simply do not adjust well to 

captivity. These reasons might indicate why so few studies have been carried 

out with captive grey squirrels in the past. Small sample sizes are a common 

problem across laboratory studies, but nonetheless a large number of studies 
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still reveal interesting results. Furthermore, in spite of the difficulties of faced by 

studying laboratory housed grey squirrels, two studies in this thesis present 

valuable data that has helped to further our understanding of grey squirrel 

caching and pilfering behaviour.   

 

Field studies 

 

In Chapters 2 and 3 the suggestion was made that more naturalistic captive 

settings should be used to study grey squirrels, such as wildlife sanctuaries that 

house individuals in large outdoor enclosures. Though variables could not be as 

easily manipulated and controlled as in laboratory studies, the results from such 

research would be more ecologically relevant and be more generalizable to wild 

populations. Nevertheless, where suitable techniques are available it should be 

preferable to study wild individuals, as a field situation can provide much more 

ecologically relevant data. The studies presented in Chapters 4 through 6 opted 

to investigate behaviour in its natural setting. There were two major difficulties 

with studying grey squirrel behaviour in the field. Firstly, even though samples 

much larger than in the laboratory were more easily achieved, locating a large 

enough sample size for a particular experimental design, while minimising 

pseudoreplication, was still challenging. Secondly, it was difficult to observe 

enough instances of a desired behaviour when data collection was limited to the 

peak caching season, a period of three months each year. For these reasons, 

three different methodologies were applied depending upon the questions being 

asked, which attempted to overcome these difficulties. Each of these 

methodologies addressed these problems in different ways, as will now be 

discussed.  

 

For the first field study (presented in Chapter 4) it was necessary that we 

measure a dominance network so that this could be used to determine whether 

there were differences between high and low ranking individuals in terms of 

their caching decisions. This meant that multiple behavioural events needed to 

be recorded for individual squirrels to determine whether their behaviour was 

consistent over time. Therefore data collection was focussed to one location to 

measure the behaviour of one population of squirrels; marking individuals 

avoided the possibility of pseudoreplication. The observation site was 
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provisioned with nuts to ensure that enough behavioural interactions were 

witnessed to measure dominance, and enough instances of caching behaviour 

were included in the data during the limited data collection period. While these 

methods were necessary for the study design, they presented several 

problems. Though traps were placed in and surrounding the study site in order 

to mark squirrels for identification purposes, an unknown number of unmarked 

individuals contributed to the data. Unfortunately this is always going to be a 

difficulty when opting for this method; some individuals may never be trapped 

and marked, and then consequently there is the decision of how to handle the 

data from unmarked individuals. Trapping and marking can also be quite time 

consuming, which needs to be traded-off against time that could be spent 

making behavioural observations, and it restricts data collection to locations in 

which trapping has been successful. Nevertheless, this method can yield a lot of 

behavioural data about a small number of individuals, which can be a useful 

design for some types of research question. Provisioning food in one central 

location meant that a large number of behavioural interactions were recorded 

which helped to build a social network based upon dominance, as well as also 

measuring a large number of caches made out of the provisioned food. 

Unfortunately, the provisioning probably did result in an unexpected tyrannical 

hierarchy, perhaps because receiving a large amount of food in this manner is 

not a frequent natural occurrence. This meant that although interesting 

conclusions could be drawn about caching behaviour in general, it was more 

difficult to do this in relation to dominance behaviour. Data collected from 

provisioning methods is definitely enhanced in terms of quantity (it is unlikely 

that enough interactions or natural caches would have been witnessed without 

it), but provisioning is a method that should be used with caution depending 

upon the behavioural questions being asked.  

 

A different data collection method was used in the field behavioural study 

presented in Chapter 6. In this study the problems associated with marking 

squirrels at one location were avoided, as well as still managing to avoid 

pseudoreplication; only one squirrel was observed at each site visited. 

Obviously, it may not always be feasible to use this method (for example as with 

the study presented in Chapter 4, or in general with any study where repeated 

measurements of individuals are required). It can also be time consuming and 



201 
 

costly to get to a large enough number of sites, and there is no guarantee of 

collecting the data that you need on each visit. However, the advantages of 

using this data collection method far outweigh the costs, and where possible I 

would advocate using this method to observe behaviour in squirrels. Sample 

size is virtually limitless because it simply depends on how many can be visited 

in one caching season. Appendix D provides a list of locations across South 

and East Devon that were used in Chapter 6 and could be used to speed up the 

research process for future investigators wanting to use this method to collect 

behavioural data on squirrels.  

 

One consideration worth bearing in mind before setting out to collect data in this 

manner, concerns whether using this method will generate enough data. As 

already noted there is a difficulty of witnessing enough of a particular behaviour 

because data collection on squirrel foraging is typically limited to the autumn 

months. Indeed, the data collected for Chapter 6 had originally included caching 

behaviour but not enough instances were witnessed in order to include it in the 

study. Therefore, it is suggest that combining the methods used in the studies of 

Chapters 4 and 6 might help to overcome this problem; principally, that 

provisioning is used but across multiple locations, observing only one focal 

animal at each site. However, instead of provisioning as a bonanza, it would be 

preferable (and more ecologically valid) to use less food and scatter it across an 

observation site to increase the number of caches witnessed. Using such a 

method presents the focal animals with a foraging situation that is much more 

familiar, not simply from food dropped by trees, but also from people who visit 

parkland to feed animals.  

 

A third approach was used in Chapter 5, namely measuring the pilferage rates 

of experimenter-made artificial caches, a method used in a large number of 

studies within the literature. The biggest limiting factor of this study is locating a 

suitable area where it can be carried out; a location that is large enough to 

provide a number of discrete populations of squirrels, and where permission is 

granted to make artificial caches. Although, this study design takes a lot of 

person-hours to conduct, it can yield large data sets, and is certainly a method 

that would benefit future studies. It is also an appropriate method if assistance 

from volunteers is available as the techniques require minimal training in 
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behavioural observations. If possible, also using video recorders at each 

location could monitor the behaviour of the pilfering animals; this would help to 

further determine how they locate caches, and what is done with the pilfered 

food. Nevertheless, this could be financially costly and the risks of theft or 

damage to equipment in public locations could be high.  

 

Future directions  

 

This thesis has helped to clarify what cues grey squirrels are sensitive to when 

making caches; specifically, that squirrels primarily respond to the presence of 

conspecifics when making food hoarding decisions. Considerably more studies 

have been carried out with food hoarding corvids to further identify mechanisms 

that might be involved in these behaviour. Not only do corvids respond to the 

mere presence of conspecifics as potential pilferers, but when presented with 

the opportunity to store food in locations with less visual access to onlookers 

they preferably cache in these locations (e.g., Dally et al. 2004; Dally et al. 

2005). This has been attributed to theory of mind like abilities among some 

species of corvid, suggesting that they are aware of their observer’s point of 

view when storing food. Studies in the field with grey squirrels indicate that they 

may behave similarly to corvids; for example, Leaver et al. (2007) report that 

wild grey squirrels are more likely to cache oriented away from conspecific 

onlookers. In the laboratory study presented in Chapter 2, this was not found, 

and in the field study presented Chapter 4 the opposite was found to be the 

case; however these results could be attributable to the different experimental 

designs of the studies. For instance, when the caching and the observer squirrel 

are so close to one another, the cacher may not engage in such behaviour 

because it would simply not be effective to reduce pilferage, and when a 

competitor is at closer distances it could even benefit the cacher to monitor their 

competitors location. It is suggested that further research use a design that has 

been tried and tested in other laboratory studies to more easily identify how and 

why squirrels are responding to onlookers. For instance, Dally and colleagues 

reported that Western scrub jays would hide food in locations that provided 

more difficult visual access to onlookers, such as in the shade (Dally et al. 

2004), or in out of view locations (Dally et al. 2005), regardless of their distance 

to onlookers. This is something that the current laboratory conditions could be 
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easily adapted to measure. Moreover, now that it has been clarified that 

squirrels respond to conspecifics as potential immediate pilferers of their 

caches, this type of study could be conducted in the field; for instance, by 

providing distinct visual barriers at field sites, scatter-provisioning animals on 

one side of the barrier and measuring where they prefer to cache. This would 

help to determine whether squirrels are actually sensitive to conspecifics 

observing where they cache, or if caching is simply inhibited by their mere 

presence. Furthermore, by studying the behaviour in the field it would be easy 

to measure behaviour in response to the presence of heterospecific competitors 

who also access the provisioned food. Far less is known about heterospecific 

than conspecific competition across different caching species, though data in 

this thesis indicates that it does affect foraging behaviour and so it is definitely 

something that should be incorporated into field studies.  

 

A second major area that is in need of much more research, not only in grey 

squirrels, but caching animals in general, is how animals pilfer. Some species 

are sensitive to pilferage, which indicates that pilfering behaviour is a real 

problem. However, little is known about how pilfering is achieved. This thesis 

has reviewed some of the strategies that might be used by different species to 

engage in cache pilfering behaviour, it also presents the first studies conducted 

with grey squirrels to assess whether they can use OSM to pilfer, or whether 

they might simply pilfer in optimal foraging locations away from predation and 

close to food. These studies reveal that squirrels use olfactory cues to locate 

caches as opposed to OSM, and that pilferage is not achieved by simply 

foraging in the the most likely foraging locations. However, much more research 

needed to be carried out in this field to further understand the specific cues 

used to engage in cache pilfering behaviour. Because it is a much more difficult 

behaviour to monitor than caching, particularly in field studies, future studies are 

likely to be within laboratory conditions or to use experimenter-made caches in 

the field.  

 

Conclusions 

 

The data in thesis has explored how different cues of risk influence foraging, 

caching and pilfering behaviour in the grey squirrel. Predator cues have been 
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reported to be most disruptive to foraging behaviour in comparison to 

competitors, but seasonal differences in food availability appears to influence 

aversion to predation risk when pilfering. Squirrels respond to conspecific and 

heterospecific competitors in ways that help to avoid potential negative 

interactions while foraging; and when storing food, squirrels respond directly to 

conspecifics as sources of risk to their caches. Overall, this thesis helps to 

clarify results of previous field observations that have been carried out on grey 

squirrels by incorporating combinations of the different challenges they face 

while foraging. Some of the findings present new directions that future research 

should pursue, including the mechanisms that squirrels use to assess pilferage 

risk in conspecifics, and what cues might be used to aid cache pilferage. 
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Appendices 

 

Appendix A: For study presented in Chapter 2. For each squirrel one block 

from the baselines was selected randomly to be used as a control condition. 

Therefore, we wanted to ensure that are baseline measures provided consistent 

measures across time. This is displayed for the following measures: (a) Latency 

to eat and cache across each block. (b) Number of nuts eaten and cached 

across each block. 
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Appendix B: For study presented in Chapter 3. Sequence of trials for all four 

subjects across the three repetitions. Subjects were randomly allocated in terms 

of laminate position and cage side across the trials. 

 

Key:  

Habituation trial 1 = olfactory cues present & visual access available. 

Habituation trial 2 = olfactory cues present & visual access available. 

Test A = visual access blocked, with olfactory cues & caches present. 

Test B = removal of olfactory cues (caches absent), with visual access 

available. 

 

 

Trial 

Description 

Day 

sequence 
Repetition 

Laminate 

side 

Observer 

identity 

Observer 

cage 

Cacher 

identity 

Cacher 

cage 

Habituation 

trial 1 

1 1 Front Arnold Left Sarah Right 

2 1 Rear Leonard Right Simon Left 

3 1 Rear Sarah Right Arnold Left 

4 1 Front Simon Left Leonard Right 

Habituation 

trial 2 

 

5 1 Rear Arnold Left Sarah Right 

6 1 Front Leonard Right Simon Left 

7 1 Front Sarah Right Arnold Left 

8 1 Rear Simon Left Leonard Right 

Test A 
9 1 Front Arnold Left Sarah Right 

10 1 Rear Leonard Right Simon Left 

Test B 
11 1 Rear Sarah Right Arnold Left 

12 1 Front Simon Left Leonard Right 

Test B 
13 1 Rear Arnold Left Sarah Right 

14 1 Front Leonard Right Simon Left 

Test A 
15 1 Front Sarah Right Arnold Left 

16 1 Rear Simon Left Leonard Right 

Habituation 1 2 Front Sarah Right Simon Left 
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trial 1 

 

2 2 Rear Arnold Left Leonard Right 

3 2 Rear Simon Left Sarah Right 

4 2 Front Leonard Right Arnold Left 

Habituation 

trial 2 

5 2 Rear Sarah Right Simon Left 

6 2 Front Arnold Left Leonard Right 

7 2 Front Simon Left Sarah Right 

8 2 Rear Leonard Right Arnold Left 

Test A 9 2 Front Sarah Right Simon Left 

Test B 10 2 Front Arnold LH Leonard Right 

Test A 11 2 Rear Simon Left Sarah Right 

Test B 12 2 Rear Leonard Right Arnold Left 

Test B 13 2 Rear Sarah Right Simon Left 

Test A 14 2 Rear Arnold Left Leonard Right 

Test B 15 2 Front Simon Left Sarah Right 

Test A 16 2 Front Leonard Right Arnold Left 

Habituation 

trial 1 

 

1 3 Front Simon Left Arnold Right 

2 3 Rear Sarah Right Leonard Left 

3 3 Rear Arnold Right Simon Left 

4 3 Front Leonard Left Sarah Right 

Habituation 

trial 2 

 

5 3 Rear Simon Left Arnold Right 

6 3 Front Sarah Right Leonard Left 

7 3 Front Arnold Right Simon Left 

8 3 Rear Leonard Left Sarah Right 

Test A 9 3 Rear Simon Left Arnold Right 

Test B 10 3 Front Sarah Right Leonard Left 

Test B 11 3 Front Arnold Right Simon Left 

Test A 12 3 Front Leonard Left Sarah Right 

Test B 13 3 Front Simon Left Arnold Right 
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Test A 14 3 Rear Sarah Right Leonard Left 

Test A 15 3 Rear Arnold Right Simon Left 

Test B 16 3 Rear Leonard Left Sarah Right 
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Appendix C: For study presented in Chapter 4. A summary of the outcome of 

GZLMs which measured whether different pilferage avoidance strategies were 

used as a function of caching distances to pilferage risk, competition and 

predation. Outcomes correspond with predictions that were made in Table 7. 

Results show that subjects primarily acted in ways to avoid competition. There 

were no differences in strategy use depending upon squirrel identity.  

  

Caching 

distance in 

relation to 

risk of… 

Predictors: 

Curtailed digs Caching orientation Use of visual barrier 

Cache 

pilferage  

One of the best 

predictors for 

explaining whether 

cachers engaged in 

curtailed digging was 

caching distance to 

nearest neighbour. 

Squirrels made fewer 

curtailed digs when 

closer to another 

squirrel. This is in the 

opposite direction to 

what would be 

predicted in terms of 

pilferage avoidance. 

 The best predictor for 

explaining whether 

cachers would 

orientate themselves 

away from onlookers 

while caching was 

distance from another 

squirrel. Squirrels 

were more likely to 

face toward a 

neighbour when 

closer to them. This is 

in the opposite 

direction of what 

would be predicted in 

terms of pilferage 

avoidance. 

 Not-significant in the 

model. 

 

 

Competitive 

interaction 

 

 

 One of the best 

predictors for 

explaining whether 

cachers engaged in 

curtailed digging was 

caching distance to 

  

 

Not-significant in the 

model. 
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the food source. 

Squirrels made fewer 

curtailed digs when 

they cached close to 

the food source. This 

is in the predicted 

direction of what 

would be expected in 

terms of competition 

avoidance. 

Predation Not-significant in the 

model. 

Not-significant in the 

model. 

Not-significant in the 

model. 

 

  



211 
 

Appendix D: List of locations visited during the playback study of Chapter 6 

where there was a high density of grey squirrels. Owing to the size of some 

locations it is possible to conduct more than one observation and still have a 

good degree of certainty that you are observing a discrete population of 

squirrels. All locations consist of urban parkland are within a 30 mile radius of 

the University of Exeter Streatham Campus.  

 

Exeter and surrounding areas 

Alphington Church graveyard, Alphington 

Bartholomew Cemetery  

Bury Meadow Park 

Hele Road Church graveyard 

Exeter Cathedral 

Exeter Cemetery 

Northernhay Gardens 

Priory Road Park 

Quayside parks  

Rougemont Gardens 

Southernhay Gardens 

The Imperial pub beer gardens 

University of Exeter Streatham Campus 

University of Exeter St Lukes Campus 

 

Exmouth and surrounding areas 

Manor Gardens 

Phear Park 

St Michaels Church graveyard  

Woodbury Church graveyard, Woodbury  

 

Newton Abbot and surrounding areas 

Ashburton Church graveyard, Ashburton 

Bitton Park, Teignmouth 

Chudleigh Church graveyard, Chudleigh 

Courtney Park 

Decoy Country Park 
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East Park, Teignmouth 

Forde Park 

Hackney Marshes, Kingsteignton 

Kingskerswell Church graveyard, Kingskerswell 

Kingsteignton Church graveyard, Kingsteignton 

Mill Marsh Park, Bovey Tracey 

Stover Country Park, Stover 

 

Paignton and surrounding areas 

Oldway Mansion 

Preston Park, Preston 

Victoria Gardens 

 

Torquay and surrounding areas 

Cary Park 

Cary Avenue Park 

Chapel Woods 

Cockington Village Meadow 

Cockington Village Ponds 

Illsham Road meadow 

Meadow opposite Kents Cavern 

St Marychurch Church graveyard 

Thatcher Rock 

The Tessier Gardens 

Torre Church graveyard 

Torre Abbey Meadows 

 

Totnes and surrounding areas 

Berry Pomeroy Castle, Berry Pomeroy 

Dartington Gardens  

Totnes Castle 

Totnes Road Church 

Totnes Road Park 
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