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Abstract

Linking number, writhe and twist are three important measures of a curve’s ge-

ometry. They have been well studied and their definitions extended to open curves

situated between two horizontal planes [1]. However, many applications of these

tools involve geometries that have a curved nature to them [2]. For example, the

magnetic coronal-loops in the Sun’s atmosphere share a spherical boundary (the

photosphere). We reformulate these ideas in a spherical geometry, and then explore

the oddities of this curved space to show that our new concept is consistent with its

older, flat counterpart.

The second part of this project concerns a series of datasets from plasma exper-

iments at Basic Plasma Science Facility, UCLA, Los Angeles. These experiments

involve the creation of flux ropes inside a large (18m) plasma machine. A strong

background magnetic field is applied which ensures that field lines travel from one

end of the cylindrical device to the other. Due to mutual J × B forces, the flux

ropes twist and tangle about each other.

We study three separate datasets: the first one involving two flux ropes; the

second, three flux ropes; the final two flux ropes. The last experiment is perhaps

the most exciting as the plasma velocity has been recorded. This extra data allows

us to employ two different non-equivalent concepts of magnetic helicity. First, we

use the surface flux formulation that makes various ideal assumptions, discarding

several terms in Ohm’s law. This is compared to helicity calculated by use of wind-

ing numbers – a construction without these ideal assumptions. By examining the

difference of these two results, it is shown that we may arrive at a measure of the

resistivity present in the system.

The plasma investigations described above rely on being able to seed magnetic

field lines across the length of the machine. This is not a simple process. The

dataset itself is spatially non-uniform which makes numerical integration to obtain

field lines difficult. Even before integration is considered, a method to interpolate

on our data grid of magnetic flux density is needed. This requires further careful

considerations. Any interpolator must ensure that the data remains divergence-free;

this requirement imposes conditions on the continuity of the derivatives. We have

written a code to perform tricubic spline interpolation, and demonstrate that by

using a particular method for fixing the coefficients, this level of continuity can be

achieved.

3



Contents

List of Figures 6

1 Introduction 8

1.1 Units and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Linking number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Linking number derivation . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Writhe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1 Introduction

1.1 Units and abbreviations

For the numerical results in this project we choose to use the standard international

(SI) system of units. In many cases we could define our own unit so as to incorporate

various physical constants, but this approach might obscure matters when sharing

our results with our plasma physicist partners at UCLA.

We use the following abbreviations:

Abbreviation Meaning

MHD Magnetohydrodynamics

UCLA University of California, Los Angeles

QSL Quasi-separatrix

LaPD The large plasma device

HDF5 Hierarchical Data Format version 5

GSL GNU Scientific Library

1.2 Introduction

This project is about the entanglement of curves. Perhaps the most basic question

one could ask about this subject is: given two closed curves that are somehow en-

twined, what is the extent of their entanglement? This question has been much

studied and is not, in general, simple. A first approach might consider counting

the signed number of crossings of the two curves. This approach has its problems:

consider for example, the knot in figure 1a. It is not immediately apparent that this

knot is equivalent to the un-knot. This problem, the ’un-knotting problem’, is so

difficult that a polynomial time algorithm has not yet been found [8]. The issue here

is that crossing number does not tell us enough about the topology of the curves,

but rather their geometry.

In 1833 the German mathematician Carl Friedrich Gauss mentioned the idea of

linking number as a brief note in his diary [10]. Gauss was considering the path

of asteroids across the sky when he realised that an asteroid’s path would be re-

stricted to a range of latitudes if its orbit did not link with Earth’s [3]. It is not

clear how Gauss formalised this idea into the Gauss linking integral, but Ricca et

al. [10] suggests that he might have used his knowledge of terrestrial magnetism for

this purpose.
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(a) (b)

Figure 1: (a) The un-knot. Determining whether a knot is equivalent to the unknot

is a NP-problem. (b) The Borromean rings. Although none of the links are free, the

pairwise linking numbers are zero (for details see [9]).

As Gauss noted [11], linking number is–most importantly–invariant to smooth

deformation of the curves as long as they are not permitted to pass through each

other: it tells you about the topology of a curve rather than its geometry. However,

this measure isn’t without its problems. Consider the set of links in 1b. The linking

number of any individual link is zero, but all three links are bound in place. Note

that it is possible to define higher order linking numbers which are non-zero in this

situation [12][13]. Putting aside this issue, linking number is an important and

widely used tool in many areas of study including molecular biology[14][15], fluid

dynamics[16] and super-fluid dynamics[17].

1.3 Linking number

Consider two closed curves entangled in some arbitrary way. If we give both curves a

direction, then from one particular viewing angle it is possible to label each crossing

with a sign according to figure 2.

Figure 2: Each crossing is given a sign.

Definition: Linking number.
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Let x(s) and y(s′) be two closed curves parameterised by arc-length. Define

the unit tangent vectors as T̂ x = dx/ds and T̂ y = dy/ds′. The linking of the two

curves is:

Lk =
1

4π

∮
x

∮
y
T̂x(s)× T̂ y(s′) · x(s)− y(s′)

|x(s)− y(s′)|3
ds ds′. (1)

The linking number of two curves is invariant to the motions of the curves as long

they are not allowed to pass through each other. All types of crossings will come in

pairs which will ensure that the linking number remains an integer.

Theorem: The linking number of two closed curves equals half the signed num-

ber of crossings seen in any projection i.e.:

Lk =
1

2
(C+ − C−), (2)

where C+ & C− equal the number of positive and negative crossings respectively. For

a proof, or for six alternative (albeit more abstract) equivalent concepts of linking

number, see [18].

1.4 Linking number derivation

Let γ1(s), γ2(t) : S → R3 be two closed curves. The Gauss map Γ : T 2 → S2 is

defined as:

Γ(s, t) =
γ1(s)− γ2(t)

‖γ1(s)− γ2(t)‖
. (3)

This mapping associates each pair of points on the curves with a point, say p, on

the unit sphere. Let the domain of Γ be M and the image of Γ be N as in figure 3.

This mapping will not in general be a bijection.

Consider the projection of the two curves onto the plane perpendicular to a

sphere at p. In this projection a crossing occurs when (s, t) → p, which may hap-

pen any number of times depending on the curves. The signed average number of

crossings will be the number of times the map covers the sphere. This will be the

number of times the image of Γ covers the sphere: the number of times M wraps

around N . This is the degree of map. We can find this by calculating the area of

the image of Γ and dividing it by the area of a unit sphere. It will be necessary to

define the following:

Definition: Derivative map.

Let E denote Euclidean space and let F : Em → En be a mapping. Define v

10



Figure 3: The Gauss map. Here the torus is mapped onto a sphere.

to be a tangent vector to Em at p. The derivative map F∗(v) is the initial velocity

of the curve t→ F (p+ tv) in En. F∗ is then the function that maps tangent vectors

of Em to tangent vectors of En. Note that by definition, a tangent vector v at p

will be mapped to a tangent vector F∗(v) at F (p).

Definition: Pullback map.

Let F : Em → En be a mapping. The pullback map F ∗ is the function that

maps forms from En back on to Em.

Definition: Jacobian.

As M and N are orientable surfaces we can define the Jacobian function, J

on M as:

Γ∗(dN) = J dM. (4)

Let v,w be any two tangent vectors at a point p on M . If these vectors are small,

they can be used to approximate an area ∆M , and the corresponding vectors,

Γ∗v,Γ∗w, approximate a small area at Γ(p) on N (see figure 3).

Definition: Area form.

Let U be the unit normal vector at p and Ū be the unit normal vector at

Γ(p). The area 2-forms are:

dM(v,w) = U(p) · v ×w = ±‖v ×w‖, (5)

dN(Γ∗v,Γ∗w) = Ū(Γ(p)) · Γ∗v × Γ∗w = ±‖Γ∗v × Γ∗w‖. (6)
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From equations 4 and 6 we have:

J(p) dM(v,w) = (Γ∗dN)(v,w), (7)

= dN(Γ∗v,Γ∗w), (8)

= Ū(Γ(p)) · Γ∗v × Γ∗w, (9)

= ‖Γ∗v × Γ∗w‖, (10)

= Γ(∆M). (11)

From equation 11 we can deduce that |J(p)| measures how much Γ is expanding

area. Recall that we wished to know how many times M covers N . Therefore, what

we need to do is find the total area of the image and divide by the area of the unit

sphere (4π). The area of Γ(M) is:∫∫
M

J dM =

∫∫
M

Γ∗dN, (12)

=

∫∫
N

dN(Γ∗v,Γ∗w), (13)

=

∫∫
N

Ū (p) · Γ∗v × Γ∗w, (14)

=

∮
γ1

∮
γ2

T̂ γ1(s)× T̂ γ2(t) ·
γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
dsdt. (15)

Finally, dividing by 4π gives the well known formula for the linking of the two curves

Lk =
1

4π

∮
γ1

∮
γ2

T̂ γ1(s)× T̂ γ2(t) ·
γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
dsdt. (16)

1.5 Twist

Twist measures the rotation rate of a secondary curve about an axis curve. For the

axis curve define: T̂ as the unit tangent vector and V̂ as the unit normal vector

oriented towards the secondary curve. Define twist to be:

Tw =
1

2π

∮
x
T̂ (s) · V̂ (s)× dV̂ (s)

ds
ds. (17)

Twist measures the rotation rate of a secondary curve about an axis curve: it

measures the winding of the secondary curve about T̂ . It will be of help later to

define the concept of a ribbon. Consider again an axis curve together with a nearby

secondary curve: a ribbon is the surface that spans between the two curves; it is the

surface in which the series of V̂ (s) vectors live.

1.6 Writhe

Writhe equals the number of crossings of a curve with itself averaged over all pro-

jection angles. Writhe is a measure of the extent to which the axial curve would lay

12



flat in a 2-D plane. Writhe is not a topological invariant: although it is unaffected

by the Reidermeister moves II and III, move I changes the writhe by one (see figure

4). This means that writhe cannot be a topological measure as it depends on the

geometry of the curves. Writhe is equal to:

Wr =
1

4π

∮
x

∮
x
T̂ (s)× T̂ (s′) · x(s)− x(s′)

|x(s)− x(s′)|3
dsds′. (18)

In contrast to twist, writhe is not a local quantity and is independent of the

second curve. Writhe measures how much a ribbon is helical; how much it is

corkscrewed up on a larger scale than just twist.

1.7 Călugăreanu’s theorem

In 1959 Călugăreanu formalised these ideas and proved that linking number could

be decomposed into twist and writhe. These two quantities vary as the curves are

deformed, but their sum is constant provided the curves aren’t permitted to pass

through each other. Any deformation of the curves can be arrived at by a series of

Reidermeister moves (described in figure 4). We say two knots are equivalent if they

can be related to each other by a series of Reidermeister moves [19].

Figure 4: The three Reidermeister moves. Linking number is invariant to any of

these deformations. Note that any deformation that doesn’t allow the curves to pass

through one another can be build up from these three moves.

Călugăreanu’s theorem:

Lk = Tw +Wr. (19)

This theorem says that linking number is the equal to the sum of twist and writhe.

For Călugăreanu’s proof see [20], or for an alternative modern proof in English see

[21]. To get an intuitive sense of this theorem, consider an untwisted strip of elastic

band. If one starts to twist the end points, twist will be injected into the band. At
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some point, an instability will be reached, and the band will buckle; this buckling

process converts twist into writhe.

1.8 The Frenet frame

The Frenet frame is a set of basis vectors that are defined in terms of vectors that

originate on a specific curve. Here we will describe how to formulate the Frenet

frame in R3; however, it is possible to extend this to Rn [22]. Let κ be the curvature

of a curve x at a point s, that is

κ =

∣∣∣∣∣dT̂ (s)

ds

∣∣∣∣∣ . (20)

So κ is a measure of how fast the tangent vector changes direction, or equivalently,

the fraction of acceleration due to a change of direction for a particle following the

curve – tight fast turns will result in large values of κ. Define the normal and the

binormal vectors to be

N̂ =
1

κ

dT̂

ds
, B̂ = T̂ × N̂ . (21)

These quantities satisfy the Frenet-Serret equations

dT̂ (s)

ds
= κN̂ , (22)

dN̂ (s)

ds
= τB̂ − κT̂ , (23)

dB̂(s)

ds
= −τN̂ . (24)

Where torsion, τ = −N̂ · dB̂
ds

, measures the speed of rotation of the binormal vector

B̂. Note that if the curvature is zero (e.g. a straight line), then N̂ and B̂ are not

well defined (for a study of what happens at such points of inflexion, see [23]. These

three vectors define an orthonormal basis {T̂ , N̂ , B̂}.

1.9 Winding number

Consider two curves spiralling upwards in the z-direction parametrised by z. Let the

relative position vector point from one curve to the other, and let θ be the angle of

this vector against the positive x-axis. The winding of the two curves is

∆θ mod 2π = θztop − θzbottom . (25)

This is the most efficient way to calculate winding numbers. However, this equation

is only useful if the curves rotate less than one complete turn – if this occurs a more
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sophisticated approach is needed. We consider a small change in θ, say dθ, and then

integrate upwards

w =
1

2π

∫
C

dθ

dz
dz. (26)

In terms of the relative position vector itself this may be written

wab =
1

2π

∫
1

r2
ab

ẑ · rab ×
drab
dz

dz. (27)

1.10 Electromagnetism

Electromagnetism is the study of the interaction between charges, and electric and

magnetic fields. Maxwell’s equations relate magnetic and electric fields. In the usual

way we denote the vector magnetic flux density as B, the electric field as E, and

the charge density as ρ. Maxwell’s equations are

∇ ·E =
ρ
ε0 , (Gauss’ law) (28)

∇ ·B = 0, (No magnetic monopoles) (29)

∇×E = −∂B
∂t

, (Faraday’s law of induction) (30)

∇×B = µ0

(
J + ε0

∂E
∂t

)
. (Ampère’s circuital law) (31)

Qualitatively, these equations state: electric fields are produced by either charges

or time varying magnetic fields; magnetic fields are generated either by currents

or changing electric fields. The divergence-free condition is required so that the

magnetic field is physical. The constant that appears in Gauss’ law is the electric

constant ε0. This is a measure of the permittivity of free space, that is, a measure

of how much space resists the formation of an electric field – it has the value

ε0 =
1

µ0c2
≈ 8.854× 10−12Fm−1. (32)

The term on the right hand side contains a constant µ0. This is the magnetic

counterpart to ε0. The vacuum permeability of free space is:

µ0 = 4π × 10−7Hm−1. (33)

For a thorough introduction to electrodynamics see the Feynman Lectures [24].

1.11 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the dynamics of electrically conduct-

ing fluids and the magnetic fields that interact with them. The name of the field

itself was coined by Hannes Alfvén in 1942 [25], however, the first MHD experiment

was performed long before this in 1832 by the British physicist Michael Faraday.
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Faraday demonstrated that electricity could be generated by moving a conductor

through a stationary magnetic field [26].

The generalised form Ohm’s law [27] is

E + v ×B = ηJ +
1

ne
J ×B − 1

ne
∇ · P e +

me

ne2

∂J

∂t
. (34)

The first term on the right is the Spitzer resistivity, the second the Hall term, the

third the electron pressure term, and the last the electron inertial term. n is the

free electron density per volume, e the amount of charge that one electron carries,

me the electron rest mass and v the velocity of the plasma. In figure 5 Cothran et

al. compare the magnitude of the terms in this equation.

Figure 5: Figure from a paper by Cothran et al. [27]. The authors recorded data

from 3-D plasma experiments and then compared the magnitude of the terms in

Generalised Ohm’s law (equation 34).

The equations of MHD follow from Maxwell’s equations after making a few

assumptions. A key assumption of ideal MHD is that equation 34 can be taken as

E + v ×B = 0. (35)

Here a number of terms have been omitted. One of the assumptions of ideal MHD

is that the plasma has infinite electrical conductance so the diffusion is zero; this is

often a good approximation if the magnetic diffusion time scale is longer than the

time scale of interest. Gombosi et al. [28] note that even under this assumption,

resistivity can still manifest as a numerical phenomenon (also see [29]). As the fluid

is modelled as having zero resistivity and so is a perfect conductor the magnetic field

will remain frozen in place (in the reference frame of the plasma). For a discussion

of the appropriateness of this simplification see [30]. The equations of MHD will

not be used in this project and so we will not state them in full here – for a good

introduction to MHD see [31]. However, in the final plasma experiment we study

we will test the extent to which the magnetic field remains frozen in the plasma.

It can be shown that Maxwell’s equations together with the ideal form of Ohm’s

law lead to the induction equation

16



∂B

∂t
= ∇× (v ×B) + η∇2B. (36)

Noting that the vector potential A satisfies ∇ × A = B, we can uncurling both

sides of the above equation to obtain

∂A

∂t
= v ×B +∇φ, (37)

where the φ term results from our choice of gauge.

1.12 Magnetic energy

The electromotive force E around a stationary closed path is defined as

E =

∮
E · dl = −dΦ

dt
, (38)

where Φ is the magnetic flux. The amount of flux in a circuit is proportional to the

current, I, so we may write

Φ = LI, (39)

for some constant L. Note that the magnetic flux through a surface S is

Φ =

∫∫
S

B · dS. (40)

Writing B in terms of its vector potential A this becomes

Φ =

∮
A · dl, (41)

where the integral is taken over the closed curve that bounds the surface.

Consider an electrical circuit in which there is no current flowing. If we start to

allow current to flow in this circuit – so here ∂E
∂t
6= 0 – it is clear from Ampère’s law

(equation 31) that a magnetic field will form. The total work done in the circuit is

dW

dt
= −E I = I

dΦ

dt
= IL

dI

dt
. (42)

The work done in a circuit as the current starts to flow and reaches a value of I is

given by the time integral of this equation [32] and an application of equation 41

W =
1

2
LI2, (43)

=
1

2
I

∮
A · dl. (44)

Replacing the line current by a current distribution and applying Stokes’ theorem

gives

W =
1

2

∫
V

A · JdV. (45)

17



Using Ampère’s law this is

W =
1

2µ0

∫
A · (∇×B)dV. (46)

Vector identities give

A · (∇×B) = B ·B −∇ · (A×B). (47)

So the energy integral becomes

W =
1

2µ0

(∫
B2dV −

∫
S

A×B · dS
)
. (48)

If we integrate over all of space the second term goes to zero (this is due to the fact

that the cross product term decreases more quickly than bounding area increases as

you move away from a current loop). So finally,

W =
1

2µ0

∫
B2dV. (49)

This energy, W , measures the amount of energy needed to create a magnetic field.

1.13 Helicity

Whether the term helicity is used in fluid dynamics [33] or plasma physics [34], it is

meant as a quantity which measures the extent of twistedness. Magnetic helicity is

a measure of how much a magnetic field wraps around itself. It measures something

about a magnetic field’s topology rather than its geometry, allowing us to compare

two different situations even if properties, such as the field strength, are very dif-

ferent. One of the reasons it is so useful is that it is a conserved quantity as long

as the field lines remain frozen in the plasma [35] [36]. It can be shown that, under

certain conditions, even if the magnetic field undergoes reconnection, helicity will

be approximately conserved [37]. The Magnetic helicity of two flux tubes {x,y}, is

defined as [38]

H = − 1

4π

∫ ∫
B(x) · r

r3
×B(y) d3yd3x, (50)

where r = y − x. By writing B in terms of vector potential

B = ∇×A, (51)

and using the Coulomb gauge (∇ ·A = 0), this becomes

H =

∫
V

A ·BdV . (52)

This vector potential may be found using

A(x) = − 1

4π

∫
V

r

r3
×B(y) d3y. (53)
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This expression for helicity will be gauge invariant as long as the magnetic field has

no component in the normal direction to the boundaries of the volume in question

(B·n|s = 0). To see this, consider a gauge transformation of the form A→ A+∇ψ,

which means that H changes by

δH =

∫
∇ψ ·BdV, (54)

=

∫
∇ · (ψB)dV, (55)

=

∫
S

ψB · dS, (56)

= 0. (57)

To see that it is conserved in ideal MHD we take the time derivative of equation

52.

dH

dt
=

∫
∂A

∂t
·BdV +

∫
A · ∂B

∂t
dV, (58)

=

∫
∂A

∂t
· ∇ ×AdV +

∫
A ·

(
∇× ∂A

∂t

)
dV (59)

The electric field is given by

E = −∇V − ∂A

∂t
, (60)

where V is the electric potential. This can be used to eliminate the time derivative

of A so that dH/dt becomes

dH

dt
= −

∫
(∇V +E) ·BdV −

∫
A · (∇×E)dV, (61)

= −
∫
∇ · (VB)dV −

∫
E ·BdV −

∫
A · (∇×E)dV. (62)

The first term on the right here is arrived at by noting that B is divergence-free.

Using the vector identity

A · (∇×E) = E · (∇×A)−∇ · (A×E), (63)

and Stoke’s theorem we have

dH

dt
= −

∫
S

VB · dS −
∫
E ·BdV −

∫
E · (∇×A)dV +

∫
∇ · (A×E)dV. (64)

Our earlier requirement that B · n̂ = 0 means that the first term is zero. The second

and the third term are the same, which gives:

dH

dt
= −2

∫
E ·BdV +

∫
∇ · (A×E)dV, (65)

= −2

∫
E ·BdV +

∫
S

A×E · dS, (66)

= −2

∫
E ·BdV +

∫
S

(A ·B)v − (A · v)B · dS. (67)
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From Ohm’s law the first term cancels in the resistivity-free limit η = 0. Let us

examine the other two terms. If we have outward plasma flow then the normal

component of the velocity will be non-zero – this contribution is the first of these

two terms. The last term concerns footpoints of magnetic flux tubes (see figure 6)

moving on the boundary. For example, one method of building up helicity in a solar

coronal loop is boundary point motions due to differential rotational [39].

It is important to note that we began the above calculation by differentiating

equation 52: this equation is only valid if we integrate over all space, or otherwise, in

a magnetically closed volume. In 1984, Berger & Field [37] defined a gauge invariant

helicity for open volumes in terms of a relative minimum energy state background

field (see figure 6). Let P be this background field and Ap its corresponding poten-

tial. Then we define

H =

∫
V

(A+Ap) · (B − P )d3x. (68)

where Ap is the unique vector potential that satisfies

n̂ · ∇ ×Ap = Bn, (69)

∇ ·Ap = 0, (70)

Ap · n̂ = 0. (71)

Here n̂ is the vector normal to the boundary of the volume. Note that B is the total

magnetic field within the volume and A its potential. We will refer to equation 68

Figure 6: Relative helicity is defined in terms of a background magnetic field and

corresponding potential. By using the vacuum field (with no helicity) as the relative

field we can calculate the helicity of the open segment in a topological and gauge

invariant way. Reproduced from [3].

as the relative helicity equation. As the more involved calculation to take the time
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derivative of this equation is given in detail by Berger & Field, we just state the

result
dH

dt
= −2

∫
E ·BdV + 2

∫
S

(Ap · v)B − (Ap ·B)v · dS. (72)

Note that hereB is the total magnetic field density including the background field P ,

and also that Ap is only the vector potential of the background field (P = ∇×Ap).

This equation is of particular use when working with open flux tubes such as coronal

loops emanating from the solar photosphere. Splitting this up, we define

dH

dt surfaceF lux
= 2

∫
S

(Ap · v)B − (Ap ·B)v · dS, (73)

dH

dt dissipation
= −2

∫
E ·BdV. (74)

Helicity can be expressed in terms of winding numbers [38]. Consider a collection

of i linked flux tubes within a volume V, and note that B = 0 outside of each tube.

Each tube carries a flux Φi which is aligned along the direction of the field. The

total flux is then

Φi =

∫
Si

B · dS, (75)

where Si is the cross sectional surface area of the ith flux tube. Noting that B is zero

everywhere except inside the flux tubes, the original equation for helicity (equation

50) can be re-written as a sum of over all the flux tubes in a volume

H = − 1

4π

∑
i

∑
j

∫
i

d3xi

∫
j

d3xj

[
Bi ·

r

r3
×Bj

]
, (76)

= − 1

4π

∑
i

∑
j

∮
i

dsi

∫
Ai

dAi

∮
j

dsj

∫
Aj

dAj

[
Bi ·

r

r3
×Bj

]
, (77)

= − 1

4π

∑
i

∑
j

∫
Ai

∫
Aj

∮
i

∮
j

dx

ds
· r
r3
× dy

ds
dsidsj|Bi| dAi |Bj| dAj. (78)

HereAi denotes the cross-sectional area of the ith flux tube. Then from the definition

of linking number (equation 1), and also equation 75 we have

H =
∑
i

∑
j

LijΦiΦj. (79)

Berger and Prior [1] show that, for curves that always travel upwards, we cab write

linking number in terms of winding numbers:

Lk =
∑
i

∑
j

wij. (80)

Thus we can write helicity as

H =
∑
i

∑
j

wijΦiΦj. (81)
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Magnetic helicity can be related to the magnetic energy as defined in the previous

sections [3]. ∣∣∣∣dHdt
∣∣∣∣ ≤

√
2ηW

∣∣∣∣dWdt
∣∣∣∣. (82)

Where W is the magnetic energy, η the resistivity.

1.14 Solar applications of helicity

The Sun is the 4.6 billion year old [2] star at the centre of our solar system. It

is a spherical ball of hot plasma with intense magnetic fields, composed of mostly

hydrogen, with smaller amounts of helium and other elements. It has a solar cycle of

about 11 years. During this time the level of solar activities, such as the appearance

of sunspots or the eruptions of solar flares, vary.

A sunspot is an area on the surface of the sun (the photosphere) which is ex-

periencing intense magnetic activity. Sunspots are seen as a different colour to

neighbouring areas due to being cooler as the magnetic field inhibits convection.

They appear in pairs, each having a different magnetic polarity. There is a fairly

strong relationship between the rate of appearance of sunspots and the Sun’s solar

cycle. Figure 7 shows the famous “butterfly” diagram. From this we can make a

number of observations: sunspots only appear at a range of latitudes; the current

stage of the cycle affects the chance of finding a sunspot at a certain latitude; early

in the cycle sunspots appear at high latitudes and move towards the equator.

Figure 7: The Sun’s 11 year solar cycle. Sunspots appear far away from the equator

at a solar minimum and move towards lower latitudes. Reproduced from http:

//www.nasa.gov.

In 1925, the astronomer George Hale published a paper [40] suggesting that,

roughly 80% of the time, the sign of helicity in sunspots can be predicted by the

sunspot’s location. If the sunspot was located in the northern hemisphere, the
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sunspot would swirl counter-clockwise, southern hemisphere, clockwise. This rela-

tionship is not dependant upon where the Sun is in its solar cycle. These results

have later been confirmed, for example [41].

Figure 8: A magnetic coronal loop emanating out of the photosphere. We cannot

observe the magnetic field directly – ionised gas aligns itself along lines of magnetic

flux. Reproduced from http://www.nasa.gov.

Another solar feature of interest is coronal loops. Coronal loops (shown in fig-

ure 8) originate at sunspots and emanate upwards, into the solar corona. They are

intense magnetic fields that have had helicity injected, through processes such as

differential rotation. Using equation 68, helicity in these coronal loops can be esti-

mated (for example see [42]). As the magnetic field below the photosphere cannot

be observed, a minimum energy state field is used (see figure 6).

An open question is why the corona (∼1 million K) is so much hotter than the

photosphere (∼5000K). One explanation [43] is that the magnetic fields in these

coronal loops undergo reconnection, falling to a lower energy state by releasing

massive amounts of energy as heat. Such reconnection events have been observed

[44][45].
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1.15 C++

When writing numerical codes there are several important matters to consider. The

first is the choice of language. Fortran has been around for a long time and has many

mature software libraries, which is one of the reasons that it is the most frequently

used in numerical computation [46]. Although Fortran would be a fine choice for

the programs in this project, we choose C++ as a personal preference.

Like Fortran, C++ is a compiled language. C++ is an extension of C and of-

fers many features not found in the original. In fact, if something is possible in a

programming language, it is probably possible in C++. C++ is a high-level, multi-

paradigm language supporting procedural, functional, object-oriented and generic

programming.

The main user difference between Fortran and C++ is that a C++ programmer

has greater access to low-level elements, such as memory, which are taken care of

in the former case. This can be both a blessing and a curse. For example, consider

a situation in which a calculation requires a fixed-sized workspace of memory. If

this calculation has to be repeated multiple times, one after another, it may be

advantageous not to release the workspace in memory after one calculation and use

it for the next – thus avoiding an allocation delay. The trade-off here is that this

optimisation, possible in C++, adds an extra avenue for programmer errors.

If speed is of concern, then there is one matter that every programmer should be

aware of. Consider a dataset residing in a computer’s RAM. Each time an individual

value is required the CPU will fetch the value and place it in its cache. However, the

processor is designed in such a way that it fetches a fixed amount of memory each

time. So, in practice, a request for a single value will mean many neighbouring data

values (a typical desktop computer has a cache line size of 64K = 8 double precision

floats) are copied at the same time. If possible, programmers should design their

programs so that they access data sequentially. For a good overview of numerical

methods in C++ see [47].

1.16 HDF5

Hierarchical Data Format version 5 [4] is an award-winning [48] data format that is

widely used in scientific applications which require the storage of large quantities of

data. Many experiments require the recording of data with at least three dimensions.

Two dimensional data can quite easily be stored as a table in a text file. When we

consider three or more dimensions more thought has to be taken, and it would be
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difficult, without explanation, for another user to guess the structure of a file. HDF5

provides a solution to this and has, in addition, the following advantages:

• Files are self-describing

• Supports very large datasets with no limits on the complexity of data structure.

• Will run on a huge variety of platforms.

• Native support in Matlab and Mathematica.

• High-level APIs in C/C++/Fortan and Java with parallel I/O support.

• Supports compression.

A HDF5 file is composed of two types of objects:

• HDF5 group

• HDF5 dataset

Each HDF5 file contains at least one group. This group can then contain one or

more datasets. The process of accessing a dataset involves the use of two hyper-

slabs. A hyper-slab is selection of a file or memory area that one wishes to access.

Normally users would have a source and destination hyper-slab which need not be of

the same size, or even, the same dimension (see figure 9). As the data we have access

to is stored in the HDF5 format we have written general C++ container classes for

reading/writing to HDF5 files. These are included in the appendix.

1.17 GSL

The GNU Scientific Library (GSL) [49] is a software library designed for numerical

computation that has been in use for nearly twenty years. It is written in C but

has wrappers for several other programming languages including C++. The library

contains routines for many different types of integrators, interpolators and numerical

derivatives. We use the library to fit cubic splines so that we may take derivatives

of our data.
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Figure 9: The structure of a HDF5 file. Image from [4].
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2 Writhe in a spherical geometry

“‘I couldn’t afford to learn it.” said the Mock Turtle with a sigh. “I only took the

regular course.”

“What was that?” inquired Alice.

“Reeling and Writhing, of course, to begin with,” the Mock Turtle replied; “and

then the different branches of Arithmetic Ambition, Distraction, Uglification, and

Derision.”’ Lewis Carroll, Alice’s Adventures in Wonderland [50].

2.1 Linking in a spherical geometry

Many applications of the measures detailed here involve geometries that have a

curved nature to them [2]. For example, the magnetic coronal-loops in the Sun’s

atmosphere share a spherical boundary (the photosphere). Also, biologists are in-

terested in calculating the writhe of DNA which has a curved central axis [51]. The

purpose of this work is to extend the existing concepts of linking number, twist and

writhe, so that they work in a consistent manner in spherical geometry. The work

from this chapter has been accepted for publication [52].

Spherical geometry has several intrinsic differences to flat space. Firstly, the

usual coordinate system (ρ, θ, φ) contains points that cannot be uniquely described;

if ρ = 0 or θ = 0 or θ = π, then one or more of the other components can be changed

without altering a point’s position. Another difference is that on a sphere, Euclid’s

fifth postulate breaks down: two parallel lines need not stay a fixed distance apart.

A consequence of this is that in general it is not possible to define parallel vectors;

one must first define how to move a vector around – the connection – before this is

possible.

It is worth noting that not all curved manifolds exhibit the features described in

the last paragraph – consider the surface of a cone. Intuitively, it might seem that

the surface of a cone is somehow less curved than that of a sphere. The difference

between a cone and a sphere is that a cone can be unrolled into something flat,

whilst a sphere cannot: a sphere has innate curvature.

Another consideration becomes apparent when you attempt to differentiate a

vector. The basis vectors in spherical geometry are not constant, and so the deriva-

tive of a vector must contain an expression describing how the basis changes – the

Christoffel symbols.
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2.2 Relative position vector

Working in a spherical coordinate system (ρ, θ, φ) (where φ is the azimuthal an-

gle), consider two curves that wind around each other. Assume that these curves

continually travel upwards radially so that they may be parametrised by ρ. Define

the relative position vector r(ρ) to be the vector originating on the axis curve and

pointing along the geodesic towards the secondary curve at a particular height in ρ

(see figure 10). The magnitude of this vector is given by the great-circle distance be-

tween the two curves. Note that r(ρ) is not well defined if the points are antipodal.

Figure 10: Two points on the curves at a particular height in ρ. The relative position

vector r(ρ) points along the geodesic on a constant ρ surface from the first curve to

the second.

2.3 Crossings

Suppose two closed curves wind around each other. At a given radial height ρ, a

crossing will be seen from some range of observation angles. Specifically, a crossing

will occur at an observation angle when the relative position vector, r(ρ), is pointing

either directly towards or away from an observer who is looking along geodesics in
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the shell of constant ρ. So if r(ρ) makes n complete rotations, all observers will see

2n crossings. Later we will use rotations of r to measure the number of crossings.

2.4 Division

We wish to use the Frenet frame as a basis, so we will – following Berger & Prior

[1] – split the curve into sections, with end points at extrema. Curves can then be

parametrised in terms of ρ. Let σi(ρ) be defined as:

σi(ρ) =


1, ρ ∈ (ρi, ρi+1) and ds/dρ > 0;

−1, ρ ∈ (ρi, ρi+1) and ds/dρ < 0;

0, ρ 6∈ (ρi, ρi+1).

(83)

σ can then be used to keep track of whether a section i is a monotonically increasing

or monotonically decreasing segment.

2.5 Winding

When measuring how much the curves wind around each other we are measuring

how much the relative position vector r rotates. Let α be the amount r rotates,

then the rotation rate of α is given by:

dα

dρ
=
ρ̂ · r(ρ)× r′(ρ)

|r(ρ)|2
. (84)

The net winding angle between two spherical heights is

∆α =

∫ ρ2

ρ1

dα

dρ
dρ. (85)

The winding number is:

w =
1

2π

∫ ρ2

ρ1

1

r2
ρ̂ · r × dr

dρ
dρ. (86)

2.6 Linking number

For a closed curve the linking number equals half the signed (according to figure 2)

number of crossings seen from any projection. We wish to establish linking number

in terms of winding numbers in the ρ direction, so we will be interested in directions

perpendicular to ρ: namely, the directions obtained by varying β in:

n̂(β) = cos(β)θ̂ + sin(β)φ̂. (87)

Theorem 1.

Let x be a closed curve with pieces i = 1, ..., n, and curve y be a closed curve
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with pieces j = 1, ..,m. Let αij be the orientation of the relative position vector

rij(ρ) = yj(ρ)− xi(ρ) relative to φ̂.

Then the linking of the two curves is:

Lk =
n∑
i=1

m∑
j=1

1

2π

∫ ∞
0

σiσj
dαij
dρ

dρ, (88)

=
n∑
i=1

m∑
j=1

σiσj
2π

∆αij. (89)

Proof of theorem 1.

Following Berger and Prior (2001) [1], the theorem will be proved by examining the

crossings of the two curves. First, recall how the crossing number C(n̂) relates to

linking:

Lk =
1

2
C(n̂), (90)

where C = C+ − C− and n̂ is a direction obtained by varying β in equation 87.

Consider a region in ρ where both curves exist and are travelling upwards (so

σiσj = 1). Note that if only one or neither of the curves exist then σiσj = 0. These

curves wind around each other through an angle ∆αij according to equation 85.

Consider observers perpendicular to ρ̂; that is, an observer viewing from a direction

n̂ in equation 87. If rij makes a complete rotation then all observers will see two

crossings. If rij only makes a partial rotation then ∆αij/π gives the fraction of

observers that see a crossing. If an observer witnesses a series of crossings due to rij

continually oscillating back and forth, then each crossing will have a different sign

and cancel out. So ∆αij/π gives the average number of crossings over all projection

angles.

Next, consider what would happen if one of σs is of a different sign. When they

are both of the same sign and ∆αij > 0 the crossing will be positive. If one of the

curves has a different sign then the crossing becomes negative. Hence the average

signed crossing number is

C̄ =
1

π

n∑
i=1

m∑
j=1

σiσj∆αij. (91)

The linking number equals half this number which gives equation 89.
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Figure 11: We wish to formulate an expression for the linking number of the portion

of the curves caught between the two shells.

2.7 The linking of open curves

From now on we will make a notational distinction between classical closed-curve

linking, Lk, and linking, L, concerning the linking of open curves. Later on this will

be done similarly for open writhe W and open twist T .

We wish to define linking number for curves that do not close upon themselves.

Consider two entangled closed curves that are both cut by a spherical shell as in

figure 11. Let ρmin and ρmax be the maximum and minimum heights both curves

reach and let ρ0 define a shell somewhere in between. Define the winding of the

curves below ρ0 as:

L(ρ0) =

∫ ρ0

0

dL
dρ
dρ =

∫ ρ0

ρmin

dL
dρ
dρ. (92)

Also,

dL
dρ

=
n∑
i=1

m∑
j=1

dLij
dρ

, (93)

=
n∑
i=1

m∑
j=1

σiσj
2π

dαij
dρ

. (94)

Theorem 2.

L(ρ0) is invariant to motions which do not move the intersecting points of the curves
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with the ρ = ρ0 shell.

Proof of theorem 2.

First consider motions of the curves below ρ0 which do not move the intersecting

points. In the region where ρ > ρ0 the winding of the curves is unaffected, so the

linking ∫ ρmax

ρ0

dL
dρ
dρ (95)

does not change. The total linking number, Lk, is invariant, so the difference

L(ρ0) = Lk −
∫ ρmax

ρ0

dL
dρ
dρ (96)

must be as well. Hence motions below ρ0 do not alter L(ρ0). Next, consider motions

above ρ0. These motions do not change the winding of the curves below ρ0, so L(ρ0)

is unaffected.

Corollary to theorem 2. Now consider a situation where the two curves are

bound between two spherical shells, and let the shells be positioned so that the

curves are open in their extent in-between – these open segments can be thought of

as a braid (see figure 12). By theorem 2 the linking of the two curves is invariant to

motions which do not move the end points.

Figure 12: By theorem 2 the linking of the red and blue curves is invariant to

motions that disappear at the boundary.
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2.8 Deformations

The nature of spherical geometry means that we must examine an additional issue.

Consider the two red and black ribbons in figure 12. Can we smoothly deform the

red ribbon so as to reverse the sign of the crossing? It turns out you can – see figure

13. Here the end points of the ribbons have remained fixed, but the black ribbon is

now on top.

Figure 13: The ribbon in red is smoothly deformed keeping the end points fixed.

The winding of the two ribbons has changed by a degree of one.

It might seem that the linking number according to equation 89 has changed,

however, this is not the case: the linking number is still equal to one. Let’s examine

what is happening by looking at figure 14. In the process of moving the middle part

of the ribbon, twist has been injected. As the ribbon is deformed writhe is converted

into twist. If we expand the sum of winding numbers in equation 89

L =
1

2π
(∆α12 + ∆α21 + ∆α11 + ∆α22). (97)

The self-winding quantities refer to internal twist in the ribbons, whilst the cross-

term represents the writhe contribution. For the diagram on the left of figure 14:

∆α12 = ∆α21 = π, ∆α11 = ∆α22 = 0, L =
1

2π
(π + π) = 1.

Whilst on the right we have:

∆α12 = ∆α21 = −π, ∆α11 = 4π, ∆α22 = 0, L =
1

2π
(−π − π + 4π) = 1.

Note that this procedure could be performed any number of times. For example,

if we deformed the green ribbon in figure 14 so that it returned to its original

configuration we would have:

∆α12 = ∆α21 = π, ∆α11 = 4π, ∆α22 = −4π,

L =
1

2π
(π + π + 4π − 4π) = 1.
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Figure 14: Before deforming: L = 1, T = 0 and W = 1. Post deformation: L = 1,

T = 2 and W = −1. Hence in both cases L = 1 as expected.

So we can conclude that a deformation of this form does not affect the linking num-

ber.

The above example illustrates an important point: in this spherical system, only

for ribbons, and not single curves, is linking number conserved – a single curve has

no thickness to become twisted.

2.9 Twist of open curves

Twist is a purely local quantity; it only involves vectors in the immediate neigh-

bourhood of the axis curve. Thus it is meaningful to write

T (ρ0) =

∫ ρ0

ρmin

dT (ρ)

dρ
dρ, (98)

to denote the twist of an open curve. We will now use equation 83 to split the curve

into pieces and express twist as the sum of these individual contributions. Let the

curve in question be parameterised by arc-length s. Recall that twist is defined as

Tw =
1

2π

∮
x
T̂ (s) · V̂ (s)× dV̂ (s)

ds
ds. (99)

And so

T =
∑
i

Ti, (100)

=
∑
i

∫ smaxi

smini

dTi
ds
ds, (101)

=
∑
i

∫ ρmaxi

ρmini

dTi
ds

∣∣∣∣dsdρ
∣∣∣∣ dρ. (102)

Note that σi keeps track of the sign of ds
dρ

. From equation 99 and the fundamental

theorem of calculus:

dT
dρ

=
∑
i

dTi
ds

∣∣∣∣dsdρ
∣∣∣∣ =

∑
i

σi
2π
T̂ i(ρ) · V̂ i(ρ)× V̂

′
i(ρ). (103)
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Finally,

T (ρ0) =

∫ ρ0

ρmin

∑
i

σi
2π
T̂ i(ρ) · V̂ i(ρ)× V̂

′
i(ρ) dρ. (104)

2.10 Writhe of open curves

Define the writhe between two radial heights as

W(ρ0) =

∫ ρ0

ρmin

dW(ρ)

dρ
dρ, (105)

where the derivative is still to be determined.

Note that we can split up equation 89 into a local part where i = j, and a

non-local part where i 6= j. This can be used to write the change of winding as

L′(ρ) =
∑
i

L′i(ρ) +
∑
i 6=j

L′ij(ρ). (106)

Here the first term is the local, and the second, the non-local contribution respec-

tively. Writhe can be decomposed in a similar manner:

W ′(ρ) =
∑
i

W ′i(ρ) +
∑
i 6=j

W ′ij(ρ). (107)

Using Călugăreanu’s theorem (equation 19), this quantity can be expressed in terms

of twist and linking number. The local part is

W ′i(ρ) = L′i(ρ)− T ′i (ρ), (108)

and the non-local contribution:

W ′ij(ρ) = L′ij(ρ)− T ′ij(ρ) = L′ij(ρ) =
σiσj
2π

α′ij(ρ) for (i 6= j). (109)

For consistency with the standard concept of writhe, it would be good if these new

quantities W ′i and W ′ij just depended on the axis curve. It turns out – see theorem

3 – that the local part W ′i does, but unfortunately, W ′ij depends on the secondary

curve as well.

To examine the local part of W we will need the concept of a twist-tube. Let

the axis curve x define the central axis of a tube and let the secondary curve y lie in

the tube’s surface. We will keep track of how the tube is twisted by using something

similar to cylindrical coordinates and setting y to be the azimuthal axis; a particular

choice of y is called a framing [1]. So the winding of y corresponds to the amount

by which the tube is twisted (in an untwisted tube, y would not wind around x). A
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twisted-tube is a tube constructed in this manner whose surface is filled with curves

parallel to y (a tube like this with elastic energy is called an isotropic rod [53]).

It will be useful to define some notation and two sets of basis vectors. First define

λ = dρ/ds and µ = |ρ̂× T̂ |. Parameterise x by arc-length s and y by arc-length s1.

Define the unit tangent vector

T̂ (s) =
dx

ds
= λρ̂+ µT̂⊥, (110)

where T̂⊥ denotes the part of the tangent vector that is perpendicular to ρ̂.

Surround the axis curve x with a tube and let V̂ be the unique (as described

below) unit vector normal to T̂ i.e. V̂ · T̂ = 0. Let Ŵ = T̂ × V̂ so that {T̂ , V̂ , Ŵ }
forms the first orthonormal basis. There exists a family of secondary curves y on

this tube, one for each value of β ∈ [0, 2π) in

y(ρ, β) = x(ρ) + εÛ(ρ, β), (111)

where

Û(ρ, β) = cos(β)V̂ (ρ) + sin(β)Ŵ (ρ). (112)

Note that V̂ is unique as it always points to the β = 0 secondary curve. Define the

second basis as (see the left-hand side of figure 16)

{T̂ , f̂ , ĝ} = {T̂ , ρ̂× T̂ /µ, T̂ × (ρ̂× T̂ /µ)}. (113)

(ignoring for time being the possibility of T̂ being parallel to ρ̂). As V̂ and Ŵ are

perpendicular to T̂ we may write

(
V̂

Ŵ

)
=

(
cosψ(ρ) sinψ(ρ)

− sinψ(ρ) cosψ(ρ)

)(
f̂

ĝ

)
. (114)

for some angle of rotation ψ(ρ).

Theorem 3.

Consider the set of secondary curves living in a twisted tube’s surface and let

W ′i(ρ) ≡< L′i(ρ)− T ′i (ρ) >, (115)

where <> denotes an average over all secondary curves in the tube surface. Then

W ′i only depends on the axis curve and is given by

W ′i(ρ) =
κiBρi

2πλi

1

(1 + |λi|)
, (116)
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where Bρ is the radial component of the binormal vector (see equation 21). Also

T ′i (ρ) =
1

2π
(ψ′ + µ−2κBρ), (117)

and

L′i(ρ) =
1

2π

(
ψ′ + λ−1µ−2κBρ

)
. (118)

Proof of theorem 3.

Equation 103 can now be written in terms of the contribution from piece i ac-

cording to equation 83:

Ti =

∫ smaxi

smini

dTi
ds
ds =

∫ ρmaxi

ρmini

dTi
ds

∣∣∣∣dsdρ
∣∣∣∣ dρ, (119)

and so

T ′i (ρ) =
dTi
ds

∣∣∣∣dsdρ
∣∣∣∣ =

σi
2π
T̂ i(ρ) · V̂ i(ρ)× V̂

′
i(ρ). (120)

We will consider a neighbourhood of some point on the curve which is not a

maxima or minima so that the curve can be parametrised by ρ, i.e. λ = dρ/ds 6= 0.

As twist and writhe do not change under a reversal of a curve we can assume λ > 0,

so by our definition σ > 0.

As V̂ and Ŵ are orthogonal, V̂ · Ŵ = 0. By the product rule

V̂
′
· Ŵ = −Ŵ

′
· V̂ ≡ ω. (121)

This expression – note its lack of dependence on choice of secondary curve (β) – will

simplify things later on. From equation (103) with σ > 0 we have,

2πT ′ = T̂ · Û × Û
′
, (122)

= T̂ × (cos(β)V̂ + sin(β)Ŵ ) · (cos(β)V̂
′
+ sin(β)Ŵ

′
), (123)

= (cos(β)Ŵ − sin(β)V̂ ) · (cos(β)V̂
′
+ sin(β)Ŵ

′
), (124)

= ω. (125)

So T ′ only depends on the geometry of the axis curve, which by equation 98 means

that T only depends on the axis curve.

Consider the relative position vector r at some point x(s). The tip of the r(ρ)

vector points to a point on a secondary curve y at the different arc-length s1 at

the same radial height. We wish to express x(s1) and Û(s1, β) in terms of vectors

involving s (see figure 15). Taking a Taylor expansion about s and putting in s1

gives

x(s1) = x(s) + (s1 − s)
dx

ds
+ ..., (126)

Û(s1, β) = Û(s, β) + (s1 − s)
dÛ

ds
+ .... (127)
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Figure 15: We seek to express x(s1) and Û(s1, β) in terms of vectors involving s.

Therefore

y(s1, β) = x(s1) + εÛ(s1, β), (128)

≈ x(s) + εÛ(s, β) +

(
T̂ (s) + ε

dÛ(s, β)

ds

)
(s1 − s). (129)

Dropping higher order terms

r = y(s1, β)− x(s), (130)

≈ εÛ(s, β) + T̂ (s)(s1 − s). (131)

The radial component of r, rρ, is zero by definition. We have

s1 − s ≈ −εUρ(s)/Tρ(s) = −εUρ(s)/λ(s). (132)

So to the first order in ε,

r = ε(Û − λ−1UρT̂ ). (133)

Define R = r/ε. Using equations 84 and 94, and letting ε→ 0 gives

L′ = ρ̂ ·R×R′

2π|R|2
. (134)

We will now need to express R in two new coordinate systems. Recall that µ =

|ρ̂× T̂ | and that

{T̂ , f̂ , ĝ} = {T̂ , ρ̂× T̂ /µ, T̂ × (ρ̂× T̂ /µ)}, (135)

and (
V̂

Ŵ

)
=

(
cosψ(ρ) sinψ(ρ)

− sinψ(ρ) cosψ(ρ)

)(
f̂

ĝ

)
. (136)
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This can be used to rewrite equation 112 in terms of f̂ and ĝ.

Û = cos(β)V̂ (ρ) + sin(β)Ŵ (ρ), (137)

= cos(β + ψ)f̂ + sin(β + ψ)ĝ. (138)

L′ is a measure of how much winding the relative position vector r does about

ρ̂. With this in mind, we will seek to decompose r into basis vectors that lie in the

plane orthogonal to ρ̂. Let

ĥ = ρ̂× f̂ = −T̂⊥/µ. (139)

Figure 16: The two frames {T̂ , f̂ , ĝ} and {ρ̂, f̂ , ĥ}. For both figures f̂ is directed

into the page.

So we now have such a frame (see figure 16). We need to express the old basis

{T̂ , f̂ , ĝ} in terms of this one. The ’bac-cab’ vector identity gives

ĝ = T̂ × (ρ̂× T̂ /µ), (140)

= ρ̂(T̂ · T̂ /µ)− T̂ /µ(T̂ · ρ̂), (141)

= µ−1(ρ̂− TρT̂ ), (142)

= µ−1(ρ̂− Tρ(T̂ ρ + T̂⊥)), (143)

= µ−1(ρ̂− λ(T̂⊥ + λρ̂)), (144)

= µ−1((1− λ2)ρ̂− λT̂⊥). (145)

Using Pythagoras’ theorem

1− λ2 = 1− T̂
2

ρ, (146)

= T̂
2

⊥, (147)

= |ρ̂× T̂⊥|2, (148)

= µ2. (149)
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So finally we can write

ĝ = µρ̂+ λĥ. (150)

We can do the same for the tangent vector

T̂ = T̂ ρ + T̂⊥, (151)

= λρ̂− µĥ. (152)

Now expressing Û in this basis using 138

Û = µ sin(β + ψ)ρ̂+ cos(β + ψ)f̂ + λ sin(β + ψ)ĥ. (153)

We can use this to rewrite R in this new frame

R = cos(β + ψ)f̂ + λ−1 sin(β + ψ)ĥ; (154)

R2 = cos2(β + ψ) + λ−2 sin2(β + ψ). (155)

The last quantity we need to work out for equation 134 is

R′ = cos(β + ψ)(λ−1ψ′ĥ+ f̂
′
) + sin(β + ψ)(−ψ′f̂ + λ−1ĥ

′
− λ′λ−2ĥ). (156)

Using vector identities gives us

(f̂ × ĥ
′
+ ĥ× f̂

′
) · ρ̂ =

(
(f̂ · f̂

′
)ρ̂− (f̂ · ρ̂)f̂

′
+ (ρ̂ · f̂

′
)f̂ − (ρ̂ · f̂)f̂

′)
· ρ̂,

= 0.

Note that

f̂ × f̂
′

= ĥ× ĥ
′
=
(
µ−2ρ̂ · (T̂ × T̂

′
)
)
ρ̂, (157)

= µ−2λ−1κ
(
ρ̂ · (T̂ × N̂ )

)
ρ̂, (158)

= µ−2λ−1κBρρ̂. (159)

where Bρ is the radial component of the binormal vector B̂. Now we are ready to

calculate L′.

ρ̂ ·R×R′ = λ−1ψ′ + sin(β + ψ) cos(β + ψ)λ′λ−2 (160)

+(sin2(β + ψ)λ−2 + cos2(β + ψ))(λ−1µ−2κBρ).

So finally,

L′ =
ρ̂ ·R×R′

2π|R|2
,

=
1

2π

(
λψ′ − λ′ sin(β + ψ) cos(β + ψ)

sin2(β + ψ) + λ2 cos2(β + ψ)
+ κλ−1µ−2Bρ

)
. (161)
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Recall that a choice of secondary curve in the twisted-tube is equivalent to a choice

of β ∈ [0, 2π). We wish to average this expression over all secondary curves y in the

twisted-tube, so we need to integrate 161 over β. The last term does not depend

on β and so is constant. We deal with the first two terms separately. The first one

gives

I =
λψ′

2π

∫ 2π

0

1

λ2 cos2(β + ψ) + sin2(β + ψ)
dβ. (162)

Let t = β + ψ, so dt = dβ:

=
λψ′

2π

∫
1

λ2 cos2(t) + sin2(t)
dt, (163)

=
λψ′

2π

∫
1

λ2 + (1− λ2) sin2(t)
dt. (164)

As cos2(t) = 1− sin2(t). Now multiplying through by sec2(t) gives:

=
λψ′

2π

∫
sec2(t)

λ2 sec2(t) + tan2(t)− λ2 tan2(t)
dt, (165)

=
λψ′

2π

∫
sec2(t)

λ2 + tan2(t)
dt. (166)

(as sec2(t) = 1 + tan2(t)). Now let u = tan(t), so du = sec2(t)dt.

=
λψ′

2π

∫
1

λ2 + u2
du, (167)

=
ψ′

2πλ

∫
1

1 + (u
λ
)2
du. (168)

Let s = u/λ, so ds = 1/λ du.

=
ψ′

2π

∫
1

1 + s2
ds, (169)

=
ψ′

2π
tan−1(s), (170)

=
ψ′

2π
tan−1

(
tan(ψ + β)

λ

)
. (171)

Let s0 be the value of s when β = 0 i.e.

s0 ≡
tan(ψ)

λ
. (172)

Note that tan(β + ψ) will go to infinity when β + ψ = π/2 and β + ψ = −π/2.

tan−1 is a multi-valued function, so we have a choice of which branch to select.

We will choose the one at the origin and proceed by breaking up the integral at

its discontinuities. Suppose −π/2 < s0 < π/2. If s0 is not in this range subtract
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multiples of π until it is.

I =
ψ′

2π

(∫ ∞
s0

1

1 + s2
ds+

∫ ∞
−∞

1

1 + s2
ds+

∫ s0

−∞

1

1 + s2
ds

)
=

ψ′

2π

[
(tan−1(∞)− tan−1(s0)) + (tan−1(∞)− tan−1(−∞)) ,

+(tan−1(s0)− tan−1(−∞))
]
,

=
ψ′

2π
(π/2− tan−1(s0)) + (π/2− (−π/2)) + (tan−1(s0)− (−π/2)),

= ψ′.

And then looking at the second term:

I =

∫ 2π

0

cos(β + ψ) sin(β + ψ)

λ2 cos2(β + ψ) + sin2(β + ψ)
dβ. (173)

Let u = λ2 cos2(β + ψ) + sin2(β + ψ) so

du = 2 sin(β + ψ) cos(β + ψ)− 2λ2 cos(β + ψ) sin(β + ψ)dβ. (174)

Which means we can write

I =
1

2− 2λ

∫
du

u
, (175)

=
1

2− 2λ
[ln(u)]λ

2

λ2 , (176)

= 0. (177)

Putting these results together

L′ = 1

2π

(
ψ′ + λ−1µ−2κBρ

)
. (178)

All that remains now is to express twist in this new frame and subtract it from the

above equation. From equation 125

2πT ′ = V̂
′
· Ŵ ,

= (cos(ψ)f̂ + sin(ψ)ĝ)′ · (cos(ψ)ĝ − sin(ψ)f̂), (179)

= ψ′ + f̂
′
· ĝ, (180)

= ψ′ + ρ̂×

(
T̂

µ

)′
· T̂ × (ρ̂× T̂ /µ), (181)

= ψ′ +
λ

µ2
(ρ̂ · T̂ × T̂

′
), (182)

= ψ′ + µ−2κBρ. (183)

Also,

2πW ′ = 2π < L′ − T ′ >, (184)

=
(
ψ′ + µ−2λ−1κBρ

)
−
(
ψ′ + µ−2κBρ

)
, (185)

=
κBρ

µ2

(1− λ)

λ
, (186)

=
κBρ

λ

1

(1 + λ)
. (187)
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So we have proved the theorem for 0 < λ < 1. If λ = 1 then the tangent vector is

parallel to the ρ̂ axis, so the rate of winding about ρ̂, L′, is the same as the rate

winding about the tangent vector T ′, thus W ′ = 0 (to see this note that Bρ will be

zero in this case). For consistency with standard writhe (equation 18), W ′ should

not change sign if s→ −s. If this happens, Bρ → −Bρ so define W ′ here as

W ′ = κBρ

2πλ

1

(1 + |λ|)
. (188)

2.11 Surface winding

The last section was concerned with how linking changes as the radial distance is

varied. In this section we keep the radial distance constant and look at how linking

changes in time due to motions. Let ρ0 define the layer that is of interest.

In defining the problem we want to avoid the possibility of magnetic monopoles.

There are two ways to go about this. Firstly, we could have two flux tubes cutting

our layer, each having the same magnitude but oppositely directed radial fluxes.

The net radial flux would then be zero, so ∇·B = 0 as required. The problem with

this approach is that it is then not possible to study each tube individually. Instead,

we will introduce a net return flux as in figure 17.

For each flux tube i:

Biρ =


Φi
A1
− Φi

4πρ20
, inside spot

− Φi
4πρ20

. outside spot
(189)

So each tube’s contribution is shared out over the surface area of the sphere.

So we have two flux tubes bounded between two spherical shells. Suppose that

flux tube one is at the north pole and that the second tube is at co-latitude θ0.

Let them both have flux Φ. We wish to examine the change in helicity as the end

point of one of the flux tubes moves around on the bottom shell. Let tube two move

though an angle of φ0 on the circle of co-latitude defined by θ0 (see figure 18).

From equation 79 the change of helicity is equal to

δH = Φ2 (2δL12 + δT1 + δT2) . (190)

We will examine the linking term first. As tube two moves it will wind with tube

one and also with the return flux. The amount of return flux it winds with will be
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Figure 17: We introduce a net return flux to ensure that there are no magnetic

monopoles. Each tube’s B-field is shared out evenly and directed back into the

surface.

proportional to the surface area of the polar cap that it circumscribes:

δL12 =
φ0

2π

(
1− area of polar cap at θ0

4πρ2
0

)
, (191)

=
φ0

2π

(
1

2
+

cos(θ0)

2

)
. (192)

Next, we will need to work out the self-linking terms; these refer to the internal

twist inside each flux tube. So we will need to calculate how much tube two twists

as it moves through φ0. To investigate this, we will move an arbitrary vector along

the same path and measure how much it rotates. We will need to introduce some

additional tools beforehand.

2.12 Parallel transport

In this section we will review several aspects of differential geometry that will be

required in future calculations; for a general introduction see [54].

Define the 2-sphere as

S(θ, φ) = {ρ sin(θ) cos(φ), ρ sin(θ) sin(φ), ρ cos(θ)}. (193)
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Figure 18: Tube two rotates around the circle defined by its co-latitude.

The metric will be

gab =

(
∂θS · ∂θS ∂θS · ∂φS
∂θS · ∂φS ∂φS · ∂φS

)
, (194)

=

(
ρ2 0

0 ρ2 sin2(θ)

)
. (195)

Let the arbitrary vector we will study be v. It will be of the form

v(φ) = (vρ(φ),vθ(φ),vφ(φ)). (196)

We will need to use differentiation to look at changes in the neighbourhood of v.

For example, one could look at the α = ρ components:

∂v

∂ρ
=

(
∂vρ

∂ρ
êρ +

∂vθ

∂ρ
êθ +

∂vφ

∂ρ
êφ

)
+

(
vρ
∂êρ
∂ρ

+ vθ
∂êθ
∂ρ

+ vφ
∂êφ
∂ρ

)
.

The first three terms here describe how the vector itself has change, whilst the last

three seek to express how the basis or coordinate grid changes.

In general we have
∂v

∂xα
=
∂vβ

∂xα
êβ + vβ

∂êβ
∂xα

. (197)

The components of the last term in this equation describe how the basis vectors

change, and are given a special name, the Christoffel symbols Γγβα. Using these we

can rewrite equation 197 as

∂v

∂xα
=

(
∂vβ

∂xα
+ vγΓβγα

)
êβ. (198)
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Definition: Covariant derivative.

The covariant derivative of the vector v in the vector field u is defined as

∇uv = ui
(
∂iv

j + vkΓjki
)
. (199)

This derivative describes how a vector varies as it is transported along a curve. We

wish to transport v keeping it as close to parallel as possible. More precisely, we re-

quire that for each infinitesimal amount v is transported, it remains locally parallel.

Definition: Parallel transport.

Let u be the curve we wish to transport v along. Then we say that v is

parallel transported along u if

∇uv = 0. (200)

Definition: Geodesic.

A geodesic is a curve whose tangent vector remains parallel when transported

along itself. For a sphere, these are curves that follow a great circle. So when trans-

porting v, we would expect it to rotate – relative to the curve’s tangent vector – for

every angle θ0 that gives a curve which does not lie on the equator.

Definition: Inner product.

The inner product of two vectors a & b is

< a, b >= g(a, b) = gija
ibj. (201)

The angle α between these two vectors is

cos(α) =
< a, b >

||a|| ||b||
, ||a|| =

√
g(a,a). (202)

2.13 Twist calculation

We can now calculate how much v rotates. Note that the radial part of v will remain

constant as the vector moves across the surface; we will ignore this component and

treat v as a 2D vector. Expanding equation 200 gives

0 = ui
(
∂iv

j + vkΓjki
)
. (203)

where

Γijk = gimΓmjk; (204)

Γmjk =
1

2
(gmj,k + gmk,j − gjk,m). (205)
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There are only three non-zero Christoffel symbols

Γφφθ = Γφθφ = gφφΓφφθ = cot(θ); (206)

Γθφφ = gθθΓθφφ = − sin(θ) cos(θ). (207)

By using equation 203 we get

∂φv
θ + vφΓθφφ = 0; (208)

∂φv
φ + vθΓφθφ = 0. (209)

We are left with two partial differential equations to solve.

∂vθ

∂φ
= vφ sin θ0 cos θ0; (210)

∂vφ

∂φ
= −vθ cos θ0

sin θ0

. (211)

Differentiating the first equation, putting it into the second, and doing the same the

other way around we obtain

∂2vθ

∂φ2
= −vθ cos2(θ0); (212)

∂2vφ

∂φ2
= −vφ cos2(θ0). (213)

Letting Ω = cos(θ0), these equations have solutions of the form

vθ(φ) = A sin(Ωφ) +B cos(Ωφ); (214)

vφ(φ) = C sin(Ωφ) +D cos(Ωφ). (215)

Using the initial condition that v(φ = 0) = (vθ0, v
φ
0 ) we find that

B = vθ0, D = vφ0 . (216)

The other two coefficient may be found by differentiating equations (214-215)

∂vθ

∂φ
= ΩA cos (Ωφ)− Ωvθ0 sin (Ωφ), (217)

∂vφ

∂φ
= ΩC cos (Ωφ)− Ωvφ0 sin (Ωφ), (218)

and solving these equal to equations (210-211). This gives

vθ = vφ0 sin(θ0) sin(Ωφ) + vθ0 cos(Ωφ), (219)

vφ = −vθ0
sin(Ωφ)

sin(θ0)
+ vφ0 cos(Ωφ). (220)

We wish to compare this vector to its original form before it has been transported

using equation 202. To do this both vectors must live in the same tangent space.
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With this in mind, let φ0 = 2π so that v traverses one complete circle of constant

co-latitude, and both the transported vector and the original one are in the same

tangent space. Now using equation 202 we can write

cos(α) =
gabv(0)av(2π)b√

gabv(0)av(0)b
√
gabv(2π)av(2π)b

, (221)

= cos(2πΩ) = cos(2π cos(θ0)). (222)

=⇒ α = 2π cos(θ0). (223)

Given that in the circle of constant co-latitude that v travelled, curvature will be

uniform, this rotation can be evenly divided out over the whole circle. Thus it makes

sense to divide by 2π and write

α = φ0 cos(θ0). (224)

So if v is moved through an angle φ0, at co-latitude θ0, then it will rotate by

φ0 cos(θ0). Recall that our aim here was to calculate how much tube two rotates as

it moves as pictured in figure 18. If this tube is rotated positively, then the twist

induced will be negative and vice-versa. This means that the change in twist after

the motion will be

δT1 = 0 , δT2 = −φ0

2π
cos(θ0). (225)

So now we have all the terms in equation 190 we can work out:

δH = Φ2 (2δL12 + δT1 + δT2) , (226)

= Φ2 φ0

2π

[
2

(
1

2
+

cos(θ0)

2

)
+ 0 + (− cos(θ0))

]
, (227)

= Φ2 φ0

2π
. (228)

This coincides with the change in helicity we would have if we were working in a

flat geometry.

2.14 Planetary rotation

Next we will consider what would happen if both tubes moved around 2π. This

could be thought of as one complete solid rotation of the sphere keeping the top of

the tubes fixed. The tube at the north pole will rotate by 2π causing a negative

twist of T1 = −1. The lower tube will also rotate about by 2π cos(θ0), and so twist

by T2 = −2π cos(θ0). The tubes will also wind with each other according to equation

192.
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The change in helicity is

δH = Φ2 (δT1 + δT2 + 2δL12) , (229)

= Φ2
[
− 1− cos(θ0) + 2

(
1

2
+

cos(θ0)

2

)]
, (230)

= 0. (231)

This is what is expected as, relative to each other, there is no winding going on.

2.15 Conclusion

In this section we have extended the measures, linking number, twist and writhe

to a spherical geometry. By splitting curves at extrema we were able to formulate

these quantities in terms of functions parameterised by radius. Through this process

we explored several issues that do not arise in a flat geometry. One such point is

the possibility to smoothly deform a ribbon in such a way that its winding number

changes. However, we demonstrated that this does not affect the linking number

which remains a valid measure.

In a similar way to Berger and Prior’s [1] definition of open writhe in flat space,

we proved that if the difference between linking number and twist was averaged over

all secondary curves in a tube, then writhe is independent of the axis curve. This

was important so as to be consistent with closed formulations of writhe.

Finally, we examined the implications of calculating helicity in this curved space.

We considered the situation of flux tubes bound between two spherical shells of con-

stant radius. Here we introduced a net return flux so as to avoid the problem of

magnetic monopoles. By looking at examples, we showed that our concept of helic-

ity is consistent with its flat counterpart.

In further work we hope to apply the measures detailed here to numerical data.

In particular, it would be interesting to compare our open curve equations for writhe

to other attempts to calculate writhe for open curves – one such is Fuller (1978) [14].

Fuller details how writhe can be calculated for open curves by extending the ends of

a main curve with straight lines, and then connecting them at great distance from

the main curve (this join’s impact going to zero as its distance to the main curve

goes to infinity). Writhe could be calculated using both methods and the results

compared. In addition to this it would be interesting to see how these ideas could

be extended to other geometries.
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3 The Large Plasma Device

“How far is truth susceptible of embodiment – that is the question, that is the

experiment.” Friedrich Nietzsche, The Gay Science [55].

3.1 Introduction

We study several plasma experiments performed by Professor Walter Gekelman and

his team at University of California, Los Angeles (UCLA). The device used to ob-

tain data is the upgraded Large Plasma Device – LaPD from here on – shown in

figure 19. Construction of the original device began in 1985 and was completed five

Figure 19: The Large Plasma Device at Basic Plasma Science Facility, UCLA, Los

Angeles. Image reproduced from http://plasma.physics.ucla.edu.

years later, for details please see [56]. In 2001, work was completed that significantly

improved the device’s capabilities. In its current form, the LaPD is an 18m long

cylindrical plasma machine capable of maintaining steady-state magnetic fields of

up to 3.5kG. It was designed as a general purpose facility, and has advanced many

areas of plasma physics including magnetic reconnection [7], waves [57], instabilities

[58], turbulence and transport [59]. Around half the experimental time is offered at

no cost to outside users.
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Plasma is created through means of a cathode-anode pulsed discharge at one end

of the cylinder (see figure 20). The barium-oxide coated cathode is heated to approx-

imately 900◦C to induce electron emission through thermionic means. A capacitor

bank stores charge until it is released to produced the plasma. The experiments we

study are stable enough so that they can be repeated and diagnosed at a different

spatial location until a complete dataset can be obtained. Data is obtained using

Figure 20: A schematic of the LAPD. The circular rings around the edge are elec-

tromagnets that are used to create an axial background field. Plasma is generated

by a discharge of current from the cathode. Image obtained from [5].

probes via one of the device’s 450 ports. Several different types of probes are used.

Magnetic flux density is obtained by first measuring dB/dt using a Ḃ-probe and

then integrating. A Ḃ-probe measures magnetic flux by exploiting Faraday’s law

(equation 30): a changing magnetic field induces an electric field. The scalar electric

potential – voltage – induced across the probe can be measured. The component of

the electric field is equal to minus the rate of change of the electric potential in that

direction i.e.

E = −∇V. (232)

A Mach probe, depicted in figure 21, is an electric probe which is used to measure the

velocity field of the plasma. The probe is aligned so as one side is facing upstream

and the other downstream, and the current at either side obtained by use of Ampère’s

law (equation 31). The plasma velocity at the probe’s position is proportional to
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the ratio of these currents [60] i.e.

v ∝ ln

(
Iupstream
Idownstream

)
. (233)

For more detail please see a recent review paper by Kyu-Sun Chung [61].

Figure 21: Several different Mach probes. As you move from left to right in the

picture the probes gain the ability to pick up currents from more directions. Image

from http://plasma.physics.ucla.edu.

3.2 The experiments

We have access to three separate plasma experiments which we will discuss in turn.

They all involve three-dimensional flux ropes entwined along the length of the cylin-

der. A strong background guide-field, which is a couple of orders of magnitude

stronger than the traverse field, is used to create flux ropes that travel from one end

of the cylinder to the other. The team at UCLA is able to visualise the flux ropes

and identify the quasi-separatrix – a region where the gradients of the mapping of

magnetic field lines are much larger than unity [62] – as shown in figure 22.

Each flux rope is created from its own cathode emitter and experiences mutual

Lorentz forces. The force on a point charge is given by

F = q(E + v ×B). (234)

However, instead of a single discrete charge we have a charge distribution that is

in motion. Let dF and dq be the force on, and charge of, a small section of this

distribution. We may write

dF = dq(E + v ×B), (235)

and then divide by a small volume element dV to give

f = ρ(E + v ×B). (236)
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Figure 22: A visualisation of our first experiment. The surface in blue is the quasi-

separatrix. Figure reproduced from [5].

Here f is the force density and ρ is the charge density. Noting that J = ρv this can

be written as

f = ρE + J ×B. (237)

The flux ropes will exert mutual J ×B forces, causing twisting and entanglement

of the field lines as shown in figure 22.

For each experiment we wish to use winding numbers to calculate helicity as

per equation 81. This method of calculating helicity has a number of advantages.

Firstly, we can isolate any subset of the field lines and calculate helicity in a gauge-

invariant way. This would allow one to calculate helicity even if the whole region

had not been diagnosed. If we study the winding of field lines from the whole region,

then the answer will be the same as if we used the relative helicity equation (equation

68). It is clear that before this is possible, field lines will need to be seeded across

the volume. This will be discussed in the next section.

3.3 Interpolation

In 1885 the German mathematician Karl Weierstrass proved an important theorem

which we now know as the Weierstrass approximation theorem. It states: every con-

tinuous curve on a closed interval can be approximated by a polynomial to within any

desired tolerance. By any prescribed accuracy it is meant that for any curve, there

is a polynomial of some degree which will approximate it to within any prescribed

error. To see Weierstrass’ proof (in German) see [63], or for a modern overview see

[64]. Note that using higher order polynomials does not automatically improve the
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accuracy of splines; in fact, high order splines should be avoided as they tend to

oscillate too wildly creating problems known as Runge’s phenomenon [65]. A lower

order spline, defined over many smaller intervals, is usually advisable over a higher

order spline, defined over fewer larger intervals [66].

Our data is typically arranged as a [1001, 65, 65, 14, 3] = [t, x, y, z, v] array where

v = {0, 1, 2} corresponds to the {x, y, z} component of the vector field. Typical

dimensions are:

x ∈ [−6, 10] (cm) ∆x = 0.25 (cm)

y ∈ [−10, 6] (cm) ∆y = 0.25 (cm)

z ∈ [127.8, 958.5] (cm) ∆z = 63.9 (cm)

t ∈ [4.12, 4.76] (ms) ∆t = 0.00064 (ms)

To calculate helicity using winding numbers we will need to seed field and follow

lines in the magnetic field. This means that we need to use an interpolator. We are

presented with two problems:

1. How to keep ∇ ·B = 0,

2. How to ensure that the interpolated values are continuous.

One way we can ensure that the first condition holds is by interpolating on the

vector potential A, and then taking the curl (as B = ∇ ×A) of the result. This

is possible as we have been supplied with data for the vector potential. In 2006,

Mackay et al. [67] investigated the impact of the loss of the first condition on nu-

merical simulations. They found that breaking these conditions can lead to sizeable

errors as seen in figure 23.

It turns out that the two issues mentioned above are actually related: ∇·B = 0

can only be satisfied if
∂2Ai
∂xj∂xk

=
∂2Ai
∂xk∂xj

, (238)

which can only be guaranteed to be true if the interpolating function is continuous

in its first and second derivatives: that is, it is C2.

There are several ways in which we could interpolate. To discuss these tech-

niques it will be helpful to visualise our data as a three dimensional grid made up of

lots of cubic cells, so that that each point has associated with it eight neighbouring

vertices (see figure 24).
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Figure 23: Comparison of errors from a paper by Mackay et al. [67]. The energy of

a particle was calculated. A cubic spline interpolator (with ∇ ·B = 0) is shown in

the solid line, and a multi-linear interpolator (∇ ·B 6= 0) in the dotted one.

The most simple method would be to use the eight vertices of the cubic cell

and linearly interpolate – this method is called trilinear interpolation. However,

this method will not produce a result with a continuous derivative (recall that we

require C2 from equation 238) so it is unsuitable.

Another method would be to use splines. A spline is a piece-wise defined curve

that can be used to approximate a function to a required degree of smoothness. We

will be interested in cubic splines as we require the result to be C2. For an interval

i, define its cubic spline element as

fi(x) = ai + bix+ cix
2 + dix

3. (239)

To find the coefficients we impose the continuity condition: that is, we specify

that the polynomial’s values, first and second derivatives match up at the boundary

points between intervals. Consider the points xi in figure 25. If we have n curve

segments then we have 2n equations fixing the end points of the segments. We will

gain another 2(n − 1) equation from ensuring the first and second derivatives are

continuous at the boundaries (the tangents match). This means in total we have

4n− 2 equation for a system with 4n unknowns. We need another two equations so

that the system is well defined. One way to go about this is to use periodic boundary

conditions. In this case you would require that f ′(x0) = f ′(xn) and f ′′(x0) = f ′′(xn).

We use what is known as natural boundary conditions and set f ′′(x0) = f ′′(xn) = 0

as this offers greater control and makes more sense with respect to the experiment

under study, as we are in Euclidean space rather than on a torus. For details of how

a system like this is solved mathematically see [68] or [69], or for details of how to

55



Figure 24: One method of interpolating is trilinear interpolation. Here the value at

P is an average of all the neighbouring nodes.

Figure 25: A cubic spline made up of n curve segments will have 4n unknown. The

continuity condition only fixes 4n− 2 of the coefficients. We use natural boundary

condition to fix the remaining two.

implement this on a computer see [70].

Numerical Recipes [70] suggests that the 1D spline interpolation method can be

extended to 2D by first fitting splines across all rows in our grid, and then using

these splines to interpolate at the required point. These y-values can then be used as

knots to fit a final vertical spline, allowing interpolation at a 2D grid-point. Notice

that although the same horizontal splines are used every time and could be saved,

each vertical spline will be unique to the look-up point.

In 3D the vertical knot values could be found by applying the 2D technique at

each layer in height. Our dataset has dimensions (x × y × z) = (65 × 65 × 14), so

each 2D interpolation will require the fitting of 64 + 1 splines. This needs to be
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done at each z-height, so we have in total (64 + 1) ∗ 14 + 1 = 911 splines per single

(x, y, z) look-up. This must be done for Ax, Ay and Az. We wrote a program that

does this, but after testing over a few times shots, it was found that the computing

time was prohibitive. A faster solution was needed.

3.4 Cubic Hermite interpolation

The problem with using cubic splines is that each evaluation of the vector-field re-

quires construction of fresh splines. This is because each call for the vector potential

A will necessitate the costly process of constructing a vertical spline, as previously

mentioned. Hermite interpolation offers a solution to our problem by creating an in-

terpolator that is unique to each grid cell, rather than to each point. An interpolator

for each 3D cell can be calculated and stored before it is needed in further calcula-

tions. As Hermite interpolation uses polynomials we are guaranteed C∞ within the

interval. The overall continuity will depend on the continuity of the derivatives at

the boundaries.

A cubic Hermite spline is a polynomial defined by the values and derivative of a

function at its end points. In one dimension it has the the form

f(x) = a3x
3 + a2x

2 + a1x+ a0. (240)

Let [x1, x2] be an interval. The four coefficients can be found by solving the system

of equations

f(x0) = a3x
3
0 + a2x

2
0 + a1x0 + a0, (241)

f(x1) = a3x
3
1 + a2x

2
1 + a1x1 + a0, (242)

f ′(x0) = 3a3x
2
0 + 2a2x0 + a1, (243)

f ′(x1) = 3a3x
2
1 + 2a2x1 + a1. (244)

This method can be extended to higher dimensions. Bicubic interpolation uses

a polynomial of the form

f(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj. (245)

To fix the sixteen coefficients aij, we need to use higher derivatives than before so

that we have sixteen independent equations. Four equations can be obtained from

the four corners, and then another eight can be found by taking the partial derivative

of these four. The last four will require knowledge of the cross derivative fxy.

3.5 Tricubic interpolation

As we will be working with three dimensional data we will need to use tricubic

interpolation. We split the region into cells and define an interpolator piece-meal

57



for each 3D grid cell. We follow the method described by Lekien and Marsden [71].

For each 3D grid-cell we fit a polynomial of the form

f(x, y, z) =
3∑
i=0

3∑
j=0

3∑
k=0

aijkx
iyjzk, (246)

where the 43 = 64 coefficients need to be determined. The coefficients can be fixed

by requiring the polynomials to be C1, that is, we require knowledge of the following

at each node {
f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂2f

∂x∂y
,
∂2f

∂x∂z
,
∂2f

∂y∂z
,

∂3f

∂x∂y∂z

}
. (247)

For example consider the labelling of a grid cell as seen in figure 24. From the first

few values of f we have

f(0, 0, 0) = a000; f(0, 0, 1) =
3∑

k=0

a00k;

f(1, 0, 0) =
3∑
i=0

ai00; f(1, 0, 1) =
3∑
i=0

3∑
k=0

ai0k.

We end up with a huge system of linear equations. If we define

x ≡ [f(0, 0, 0)...fxyz(1, 1, 1)]T , (248)

α ≡ [a000...a111]T . (249)

Then the problem can be reduced to finding an inverse of A such that

Aα = x. (250)

This inverse, A−1x then contains all of the coefficients aijk. By scaling, this matrix

can then be used to fit a Hermite polynomial on a grid cell even when the cube isn’t

of unit dimensions. For example, if the cube has dimensions (xdim, ydim, zdim), then

the interpolation at (x, y, z) is

f = f(x/xdim, y/ydim, z/zdim); (251)

we are mapping our cube on to the unit cube. Note that the derivatives in equation

247 also require scaling.

As the matrix A−1 is so integral to the interpolator, Lekien and Marsden kindly

provide a link to download the 64x64 matrix. Unfortunately the link is dead. How-

ever, the matrix and and some functions to use the interpolator can be found bundled

as part of an image-processing library [72].

We now need to consider two things. Firstly, we mentioned that a requirement

for an interpolation method was that it had to be C2. Secondly, how do we go about
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calculating the derivatives in equation 247? Lekien and Marsden [71] suggest that

we could use some type of finite-difference approximation.

Figure 26 details the continuity of the derivatives under such an interpolating

scheme. Examining this, we note that all we require for C2 is to have continuity in

three extra derivatives {
∂2f

∂x2
,
∂2f

∂y2
,
∂2f

∂z2

}
. (252)

It turns out that these three derivatives are not linearly independent from the lower

derivatives in equation 247. For example, if we let p1 be the point (0, 0, 0) in figure

24, and p2 be the point (1, 0, 0), then:

∂2f

∂x2

∣∣∣∣
p1

= 2a200 = 6f |p2 − 6f |p1 − 4
∂f

∂x

∣∣∣∣
p1

− 2
∂f

∂x

∣∣∣∣
p2

. (253)

A sense of why this is can be found by considering what happens along one edge

of the cubic cell. Along this edge, equation 246 reduces to a 1D cubic polynomial,

which is already uniquely determined by its first derivatives from equations (241-

244). This means that the derivatives in equation 252 are already prescribed by the

function and its first derivatives.

A standard result from the study of functions (for example see [73]) is that the

sum, or linear combination of continuous functions, is itself continuous. Hence, if

we fix the derivatives in equation 247 in such a way as they are continuous, then the

derivatives in equation 252 will also be continuous and our interpolator C2! Note

that is it possible, by using high-order polynomials, to construct an interpolator that

is C2 without placing a restriction on how the derivatives are obtained; for example

see [74]. We will use cubic splines, which are C2, to find the derivatives. Figure 27

displays, as an example, the results of this method by plotting the derivative ∂2
yzAx

along side ∂2
zyAx.
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TRICUBIC INTERPOLATION 467

Table III. Continuity of the interpolated function and its derivatives.

x = 0, 1 y = 0, 1 z = 0, 1 Global

f y y y y

�f
�x

y y y y

�f
�y y y y y

�f
�z

y y y y

�2f

�x2 n y y n

�2f

�y2 y n y n

�2f

�z2 y y n n

�2f
�x�y y y y y

�2f
�x�z

y y y y

�2f
�y�z y y y y

�3f

�x3 n y y n

�3f

�y3 y n y n

�3f

�z3 y y n n

�3f

�x2�y n y y n

�3f

�x2�z
n y y n

�3f

�x�y2 y n y n

�3f

�y2�z y n y n

�3f

�x�z2 y y n n

�3f

�y�z2 y y n n

�3f
�x�y�z y y y y

The three first columns give the continuity with respect to a particular
face. The last column gives the global continuity properties in 3D spaces.
Functions marked with ‘y’ are necessarily continuous. Functions marked
with ‘n’ are not necessarily continuous for any data set.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:455–471

Figure 26: Continuity of the derivatives in this tricubic spline interpolator. For an

explanation and proof see [71].
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Figure 27: An example of the continuity this method ensures. ∂2
yzAx is plotted along

side ∂2
zyAx at a particular instance in time. This result is from the third experiment.
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3.6 Runge-Kutta

Now that we have found a way to interpolate B we need a method to integrate

upwards in height to seed field lines. We can view this as an initial value problem.

Let

x(z) =

(
x(z)

y(z)

)
, (254)

be the path of field line originating from a point y0. Let Bin = Bi(xn). Then

ẋ =
1

|B|

(
Bxn

Byn

)
,x(0) = y0. (255)

There is an issue of scales that we need to consider. Recall the typical dimensions

that were given in the preceding section:

x ∈ [−6, 10] (cm) ∆x = 0.25 (cm)

y ∈ [−10, 6] (cm) ∆y = 0.25 (cm)

z ∈ [127.8, 958.5] (cm) ∆z = 63.9 (cm)

t ∈ [4.12, 4.76] (ms) ∆t = 0.00064 (ms)

The grid in the X-Y plane is much finer (over sixty times) than the grid along

the length of the cylinder in the Z plane. Consider a simple Euler stepping scheme:

xn+1 = xn +
h

|B|

(
Bxn

Byn

)
, (256)

zn+1 = zn + h
Bzn

|B|
. (257)

Note that in the last term Bzn/|B| ≈ 1 as the guide field along z is much stronger

than the traverse field. We need h to be quite small so that equation 256 does not

jump around too much; however, such a small choice of h will mean that equation

257 takes many steps to span the interval. To avoid this issue we define

h̃ ≡ h
Bzn

|B|
. (258)

This means that equations (256-257) become

xn+1 = xn +
h̃

Bzn

(
Bxn

Byn

)
; (259)

zn+1 = zn + h̃. (260)

Now a reasonably sized step in h̃ won’t cause xn+1 to oscillate wildly. Euler’s method

is a first order approximation and as such is not a very accurate. A better choice
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of integrator is a Runge-Kutta method. The classical Runge-Kutta method can be

defined as:

xn+1 = xn +
1

Bz(xn)

h

6
(k1 + k2 + k3 + k4); (261)

zn+1 = zn + h; (262)

k1 =

(
Bx(zn,xn)

By(zn,xn)

)
; (263)

k2 =

(
Bx(zn + 1

2
h,xn + h

2
k1)

By(zn + 1
2
h,xn + h

2
k1)

)
; (264)

k3 =

(
Bx(zn + 1

2
h,xn + h

2
k2)

By(zn + 1
2
h,xn + h

2
k2)

)
; (265)

k4 =

(
Bx(zn + h,xn + hk3)

By(zn + h,xn + hk3)

)
. (266)

The main difficulty with using Runge-Kutta methods is selecting an appropriate

step-size: one too small and the calculation will be too expensive, one too large and

the end result could be extremely inaccurate. Also, it should be noted that the ideal

size of the step-size may not be constant throughout the domain of a problem; some

areas may require a fine resolution to resolve, whereas, other more stable regions

may be sped through more quickly with a larger step-size.

In 1969, E. Fehlberg [75] described one possible solution: the Runge-Kutta-

Fehlberg method. Under this scheme, one additional calculation is performed which

allows for a higher order error estimate. If this error estimate is too large the step-

size is reduced, too small, then it is increased. Let h be the step-size. This method

is accurate to O(h4) with an error estimate of O(h5), and so is often referred to

as RK45. For thorough treatment of this method and others in the Runge-Kutta

family see [76].

3.7 Resistivity

We will use our measurements of helicity to estimate a value for the diffusion term.

From equation 81 we can write dH/dtnon−ideal as

dH

dt non−ideal
=
−1

π

∑
i

∑
j

(
dwi
dt

Φ2
i +

dwj
dt

Φ2
j + 2

dθij
dt

ΦiΦj

)
, (267)

and recall that in equation 73 we had

dH

dt ideal
= 2

∫
S

((Ap · v)B − (Ap ·B)v) · dS. (268)
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Note that here the background field Ap is equal to the guide field, and also that B

is the total magnetic flux density including this guide field.

As Berger [34] demonstrates, the non-ideal helicity dissipation due to resistivity

may be written as
dH

dt dissipation
= −2

∫
E ·Bd3x. (269)

The last three equations can be put together to give

dH

dt non−ideal
=
dH

dt ideal
+
dH

dt dissipation
. (270)

Or rearranging we have

dH

dt non−ideal
− dH

dt ideal
= −2

∫
E ·Bd3x. (271)

Now we must re-examine the terms in Ohm’s law (equation 34) with the aim of

making a substitution for E. We do not have data to work out the pressure term so

it will be neglected. The electron inertial term will only be significant on collision

time-scales so this is also neglected. This gives

dH

dt ideal
− dH

dt non−ideal
= 2

∫
ηJ ·Bd3x. (272)

We define an effective resistivity ηeff by making the assumption that the currents

move parallel to the magnetic field:

ηHeff ≡
dH
dt ideal

− dH
dt non−ideal

2
∫
J ·Bd3x

. (273)

We need to calculate the current density J . Ampère’s law states

∇×B =

(
µ0J + µ0ε0

∂E

∂t

)
, (274)

where µ0 is the permeability of free space, that is

µ0 = 4π × 10−7V sA−1m−1, (275)

and ε0 is the vacuum permittivity

ε0 =
1

µ0c2
. (276)

Recall that Faraday’s law of induction is

∇×E = −∂B
∂t

. (277)

Let l0 and t0 be typical values for length and time respectively. Using Faraday’s law

of induction (equation 277), and letting E0 and B0 be typical values of the electric

and magnetic fields we may make the approximation

E0

l0
≈ B0

t0
. (278)

64



Applying this approximation to the last term in equation 274 gives

µ0ε0
E0

t0
≈ B0l0

c2t20
=
v2

0B0

c2l0
≈ v2

0

c2
|∇ ×B|. (279)

where v0 is a typical plasma velocity. A typical value for our data is 2 × 103ms−1.

This makes

µ0ε0
∂E

∂t
≈ v2

0

c2
|∇ ×B| ≈ 10−27. (280)

This term is significantly smaller than the first term of the right-hand side in equa-

tion 274 and so will be neglected; it is only important on collision time scales. Thus

we can use equation 274 to calculate J ignoring the second term of the right.

Now for the ∂J/∂t term in equation 34:

me

ne2

∂J

∂t
=

me

ne2µ0

(
∂(∇×B)

∂t

)
≈ me

ne2

B0

t0µ0l0
=
meε0c

2B0

ne2t0l0
. (281)

Typical values here are

B0 = 102G, t0 = 10−4s, l0 = 10−1m,n = 2× 1012cm−3. (282)

This gives

me

ne2

∂J

∂t
≈ (9.1× 10−31)(8.9× 10−12)(3× 108)2(10−6)

(2× 1018)(1.6× 10−19)2(10−4)(10−1)
≈ 10−6. (283)

This term is significantly smaller than the first term of the right-hand side in equa-

tion 34 and so will be neglected; it is only important on collision time scales. The

only term we need to calculate here is the J · B term on the right hand side of

equation 273.

3.8 Quadrature

The word quadrature originates from the Latin word “quadratura” which means the

process of squaring [77]. Historically, the term refers to the calculation of area by

any method. We use it here to denote some numerical method that seeks to find the

approximate area under a curve. The most basic of such schemes is known as the

trapezium rule. This involves using trapezia – the area of which are easily found – to

approximate the region. Figure 28 shows one particular section of the region where

a trapezium has been fitted; note that for functions that have a lot of curvature this

method could be quite inaccurate.

Our first approach, to a later problem in this project, was to use the trapezium

rule. The trapezium rule or any numerical integration scheme will struggle when the

integrand changes quickly. Figure 29 shows our efforts. A more accurate method

with some error control is needed for our purposes. For a detailed study of the
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Figure 28: The trapezium rule will provide an under-estimation if the function is

concave.

quadrature of oscillating functions see [78].

A more accurate method comes from a careful study of figure 28. What would

happen if we increased the height of the trapezium? The top would no longer meet

the curve segment at its end-points and, more importantly, we would gain some

extra area that might cancel out the pink area we missed in our approximation.

Figure 30 suggests this is possible. It turns out that for polynomial curves this

method yields an exact answer. Estimate the integral by writing∫ 1

−1

f(x)dx ≈
n∑

=1

wif(xi). (284)

We need to solve this to determine the intersection points, xi, and their correspond-

ing weights wi. We will use n = 2 points. Then we have∫ 1

−1

f(x)dx ≈ w1f(x1) + w2f(x2). (285)

Letting f = 1, x, x2, x3 successively leads to four equations with four unknowns:

w1 + w2 = 2; (286)

w1x1 + w2x2 = 0; (287)

w1x
2
1 + w2x

2
2 = 2/3; (288)

w1x
3
1 + w2x

3
2 = 0. (289)
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Figure 29: The diffusion term (equation 272) calculated by using a trapezium rule.

A more accurate method is needed.

Solving this system gives∫ 1

−1

f(x)dx ≈ f(−1/
√

3) + f(1/
√

3). (290)

As we have used a linear combination of polynomials up to degree three, this method

will be exact if the curve is a polynomial of degree less than three. In general, the

result will be exact if its order is less than or equal to 2n−1 [64]. So, if our function

was a quartic polynomial we would need to use n = 3 and solve a system of five

equations containing terms up to x5. There is a better way to do this by considering

orthogonal polynomials.

Definition: Orthogonal polynomials.

A polynomial, pn(x), is an orthogonal polynomial with respect to a weight

function w(x) if ∫ b

a

w(x)xkpn(x)dx = 0, for k = 0, . . . , n− 1. (291)

The Legendre polynomials can be defined recursively as:

P0(x) = 1; P1(x) = x;

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (292)
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Figure 30: The intersection points (x1, x2) have been chosen so that the extra area

cancels out the missed area. This is Gaussian quadrature.

In the case of Legendre polynomials w(x) = 1. It turns out that it is not a coinci-

dence that the roots of the third polynomial,

P2 =
1

2
(3x2 − 1), (293)

are ±1/
√

3. The roots of the Legendre polynomials determine the xi points (see [79]

for details). The weights are given by the following formula [80]:

wi =
2

(1− x2
i )P

′
n(xi)2

. (294)

Legendre polynomials are not the only polynomials that can be used here; many

other orthogonal polynomials can be used instead, for example, Jacobi polynomials,

or Hermite polynomials.

It would be nice to be able to obtain an error estimate for our integrator. One

common method for doing this is to carry out the calculation twice, the second time

at a higher precision, and then take the difference as an error estimate. The trou-

ble with this is that none of the Legendre polynomials share roots, except maybe

at the midpoint of the interval. This would mean that it would be impossible to

embed the lower order rule inside the higher one, so as to cut down on the number

of evaluations (for an example of this see the Runge-Kutta-Fehlberg method used

in subsection 3.6).
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In 1965, the Russian Aleksandr Semenovish Kronrod proposed an elegant solu-

tion to this problem [81]. Let

Gn =
n∑
i=1

wif(xi), (295)

be the standard formula for Gaussian quadrature. Konrad suggested a new formula:

K2n+1 =
n∑
i=1

aif(xi) +
n+1∑
j=1

bjf(yj). (296)

The clever thing about this formula is that it uses all n points evaluated in the

Gauss formula. The extra terms require n+ 1 additional points, so this means that

K2n+1 is a 2n+ 1 point rule. Gn can now be worked out at no additional cost, and

the difference between it and K2n+1 used as an error estimator.

We now need some way of choosing the extra points yj. In 1905 the Dutch math-

ematician Thomas Stieltjes defined a series of polynomials that offered a solution.

Stieltjes polynomials, En+1, are polynomials that satisfy∫ b

a

Pn(x)En+1(x)xkw(x)dx = 0, k = 1, . . . , n, (297)

where Pn(x) is a system of orthogonal polynomials with a corresponding weight

function w(x). Stieltjes conjectured that if Pn(x) are the Legendre polynomials,

then the zeros of En+1 will be in the interval [−1, 1] and they will alternate with

the zero of Pn [6]. In 1934, a Hungarian mathematician, Gábor Szegö, was able to

prove these conjectures [82]. For example see figure 31 which shows one of the most

popular schemes, (G7,K15), which uses seven Gauss and fifteen Kronrod points.

The method described above forms what is known as Gauss-Konrad quadrature.

This is the standard numerical integration scheme used in many numerical integra-

tion libraries, including QUADPACK [83], GSL [49], NAG [84] and R [85]. For our

purposes, and in general, we need to be able to use this method on any domain, not

just [−1, 1]; one may use the following rule [86] in such cases:∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
b− a

2
z +

a+ b

2

)
dz. (298)

We use an existing software package Cubature written by Professor Steven John-

son of Massachusetts Institute of Technology. The Cubature library offers high

performance, adaptive, multi-dimensional integration over hypercubes. That is, it

computes integrals of the form∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f(x)dnx. (299)
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Figure 31: One of the most popular numerical integration schemes (G7,K15). Re-

produced from [6].

The algorithm works by recursively partitioning the region into smaller subdomains

until convergence is achieved. If the dimension of a system is large, then it might

be more efficient to consider alternate schemes such as Monte Carlo methods. The

algorithm used in this library is described in papers by A. C. Genz and A. A. Malik

[87], and also later by J. Berntsen, T. O. Espelid, and A. Genz [88].

The results of this integrator are displayed later in figures (45-46). The dissipa-

tion oscillates in a similar manner to the helicity. It is worth noting that the largest

change in helicity (figure 43) occurs at t = 4.2 and corresponds to the largest jump

in the dissipation term (figure 45).

3.9 Energy dissipation

We can also calculate the dissipation term by using an energy conservation equation.

The flux of electromagnetic energy is given by the Poynting vector S

S =
1

µ0

E ×B. (300)

Taking the divergence and using a vector identity, we can write

∇ · (E ×B/µ0) = ((∇×E) ·B −E · (∇×B))/µ0. (301)
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Ampère’s and Faraday’s laws are

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (302)

∇×E = −∂B
∂t

. (303)

This means we can replace the curl terms in equation 301

−∇ ·E ×B/µ0 =
1

µ0

B · ∂B
∂t

+E ·
(
J + ε0

∂E

∂t

)
, (304)

=
1

µ0

∂

∂t

(
1

2
B2

)
+ ε0

∂

∂t

(
1

2
E2

)
+E · J . (305)

Rearranging gives

∂

∂t

(
1

2µ0

B2 +
ε0
2
E2

)
= −∇ ·E ×B/µ0 −E · J . (306)

The terms on the left are the magnetic energy and the electric energy. On the right

we have the electromagnetic energy flux, and a term measuring the amount of power

being transferred into the electromagnetic field. This is an energy continuity equa-

tion: it states that the rate of change of the amount of energy in a region is equal

to the minus of the amount of energy flowing out, minus the the rate at which the

field is doing work.

If we integrate both sides of equation 306 over the whole region and apply the

divergence theorem to the E ×B term we obtain:

1

2µ0

∫
∂(B2)

∂t
d3x+

ε0
2

∫
∂(E2)

∂t
d3x+

1

µ0

∫
E ×B · dS = −

∫
E · Jd3x. (307)

The third term should be taken over the boundaries of the region. Again we will

neglect the electric field term. As our integration domain is time-independent, we

can write ∫
∂(B2)

∂t
d3x =

d

dt

∫
B2d3x. (308)

This result follows from the continuity of B. So we now have

1

2µ0

d

dt

∫
B2d3x+

1

µ0

∫
E ×B · dS = −

∫
E · Jd3x. (309)

Integrating this equation between t = 0 and some later time t = T leads to

1

2µ0

(∫
B2|t=0 d3x−

∫
B2|t=T d3x

)
=

1

µ0

∫∫
E×B ·dSdt+

∫∫
E ·Jd3xdt. (310)

This equation says that the total energy change is equal to the negative of the sum of

the Poynting flux across the boundaries and the power transferred by the magnetic
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field. Using Ohm’s law (equation 34) and Ampère’s law (equation 274), we can write

the Poynting term as

1

µ0

∫∫
E ×B · dSdt =

1

µ0

∫∫
(ηJ +B × v +

1

ne
J ×B)×B · dSdt, (311)

=
1

µ2
0

∫∫ (
η∇×B + µ0B × v + ... (312)

+
1

ne
(∇×B)×B

)
×B · dSdt.

Recall that n is the free electron density per volume and e is the amount of charge

that one electron carries. Now we need to examine the last term – the total power

transferred into the region:∫∫
E · Jd3xdt =

∫∫
ηJ2 + (B × v) · J d3xdt, (313)

=
1

µ2
0

∫∫
η(∇×B)2 + µ0(B × v) · (∇×B) d3xdt. (314)

Using this equation and the equation for the Poynting term above, we wish to

rearrange equation 310 so that we can define an effective energy dissipation ηeff .

We have

ηEeff (T ) ≡ 1∫∫
(∇×B)×B · dSdt+

∫∫
(∇×B)2 d3xdt

(315)

∗
(
µ0

2

∫
B2|t=0 −B2|t=T d3x+ µ0

∫ ∫
(v ×B) · (∇×B) d3xdt

+

∫ ∫ [
1

ne
B × (∇×B) + µ0(v ×B)

]
×B · dSdt

)
,

where the time integrals are from t = tstart to t = T . As before with the ηHeff we

are assuming that the currents are parallel to the electric field.

3.10 Winding numbers

Berger and Prior [1] show that, for flux tubes that always travel upwards, we have

Lk =
∑
i

∑
j

wij, (316)

where wij is the winding number – see equation 27. Combing this with equation 79

gives

H =
∑
i

∑
j 6=i

ΦiΦjwij +
∑
i

Φ2
iwii. (317)

The first term represent the mutual helicity between flux tubes, whilst the second

represent self helicity – this arises from winding of field lines inside each flux tube.

Consider the self helicity contribution of one individual tube. That tube will contain
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many smaller flux tubes, each with a flux of δΦ. That tube’s contribution to the

second term in equation 317 is

H =
∑
i

∑
j 6=i

(δΦ)2wij +Hself . (318)

It is clear that the first term here will be significantly smaller than the first term in

equation 317. Hself will be smaller again. Thus, if we fill our region with a large

enough number of flux tubes then the self helicities will go to zero.

There are two equivalent ways to define winding number mentioned in the in-

troduction. Consider two curves, say a and b, and let rab(z) = rb(z)− ra(z) be the

relative position vector pointing from curve a to curve b. Let θab(z) be the orien-

tation of this vector relative to the positive x-axis. The first method is to directly

sum up the displacement of θab moving upward in height, that is,

wab =
1

2π

∮
dθab
dz

dz. (319)

This method has the disadvantage of requiring a call to the arctan function to

calculate θab as

θab = arctan(
raby
rabx

). (320)

Note that it is very important here that a four-quadrant arctan function is used.

The second way is to work with the derivatives of rab:

wab =
1

2π

∮
1

r2
ab

ẑ · rab ×
drab
dz

dz. (321)

If we use a fixed interval width in both cases to calculate the integrals numerically,

then the second method will be quicker. However, the results this method produces

are significantly more noisy (see figure 32). For this reason the first method is used.

The errors accumulated here are not due to errors in the estimation of the derivative.

They are a result of the integrand varying on a finer resolution than the interval

width. This is confirmed by using a cubic spline to estimate the derivatives.

As mentioned previously, the self helicities go to zero as the number of field lines

increase, so they will be ignored. In all the experiments in this project we have a

strong guide field along the length of the device. This guide field is several orders

of magnitude larger than the transverse field, so we make the approximation

H =
Φ2

n2

∑∑
a6=b

wab, (322)

where Φ = Φguide and is shared out evenly across all of the field lines.
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Each field line winds with every other field line. So the field line at (x, y) winds

with the field line at (x′, y′), and the field line at (x′, y′) winds against the line at

(x, y). So if we have an n × n grid of field lines, we have n2 ways of choosing the

first field line, and then n2 − 1 ways to choose the second. This means there are

n4 − n2 pairings, half of which are repeats. We halve the size of the calculation by

considering only the unique pairings, and then doubling the answer.
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Figure 32: Magnetic helicity via winding numbers. This result is from experiment

three. The blue curve shows the result of using equation 321 to find the winding

numbers, the green equation 319. Both using the same sized interval width ∆z. We

use the green result in further calculations.

Note that there are two ways in which we could calculate the derivative of helicity.

We have a choice of

(1)
dH

dt winding
≡ d

dt
H(t). (323)

(2)
dH

dt winding
≡ −2

π

∑
i

∑
j

(
dθij
dt

ΦiΦj

)
. (324)

In (1) we calculate winding numbers (using equation 322) and then find the numer-

ical time derivative of the result. Option (2) comes from moving the time derivative

inside H(t). The problem with this is that it requires the field lines to be continuous

in time. This may not be true if the magnetic field is not frozen into the plasma.

We make the first choice.
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3.11 Helium experiment

We study a helium plasma experiment involving two flux ropes. The flux ropes are

situated in a strong background magnetic field (600G) and run from one end of the

cylinder to the other. The transverse component of the magnetic field is several

orders of magnitude smaller than the guide field.

Our data is arranged as [547, 41, 41, 200, 3] = [t, x, y, z, v] where v = {0, 1, 2}
corresponds to the {x, y, z} component of the vector field. The dimensions are:

x ∈ [−2.4, 1.8] (cm) ∆x = 0.105 (cm)

y ∈ [4.2, 9] (cm) ∆y = 0.12 (cm)

z ∈ [63.9, 830.7] (cm) ∆z = 3.8533 (cm)

t ∈ [−221.44, 2399.4] (ms) ∆t = 4.7998 (ms)

The magnetic flux density B in our dataset is given in units of gauss:

1G =
V s

104m2
. (325)

We will write helicity in terms of webers, where

1Wb = 1V s. (326)

A snap-shot of one position in time is shown in figure 33. The two entangled

flux ropes can be identified visually. We calculate helicity using winding numbers

(equation 322). Our results are shown in figure 34. Helicity is roughly conserved

but oscillates. Figure 35 shows the derivative of helicity over the entire experiment,

whilst figure 36 shows an enlarged section of this derivative. A reason for this

oscillation is not known, however we suggest that helicity may be leaving the region

and then coming back at a later point in time. Gekelman et al. [89] noted that

the frequency of helicity oscillation corresponded to the frequency of the observed

shear Alfvén waves. Another possibility is that field lines repeatedly undergo a

process of entangling and untangling during each oscillation. The team at UCLA

also calculated helicity but, instead of winding numbers, they employed the relative

helicity equation (equation 68). We would expect our method of formulating helicity

in terms of winding numbers to be more reliable as, equation 68 is only valid if

integrated over all of space.

This work has been published in the journal Physica Scripta [5].
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Figure 33: The entire set of fieldlines for one time shot. It appears possible to

identify visually the two ropes.
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Figure 34: The magnetic helicity calculated using winding numbers (equation 322).
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Figure 35: dH/dt from winding numbers.
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Figure 36: A zoomed in section of dH/dt over the time values in the middle of the

experiment where we have less wild oscillation.
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3.12 Argon 3-rope experiment

The next experiment we study is with argon plasma, similar in set up to the previous

experiment, except that this time three flux ropes are created. The experiment is

described in detail in [7]. The main difference is that we have three flux ropes, and

multiple QSLs can be observed at the same time – see figure 38. Our results show
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Figure 37: A Runge-kutta attempt to seed fieldlines. As the integrator requests a

value outside of the monitored region a value of zero is returned.

that the flux ropes move too far off centre with many of the field lines leaving the

monitored region. This is shown in figure 37. The team at UCLA plan to repeat

this experiment with larger data planes so as to avoid this problem.
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Figure 38: With three flux ropes multiple QSLs can be observed (shown here in

light blue and pink).

3.13 Argon 2-rope experiment

We study the results of a 2-rope Argon plasma experiment. The experiment’s pa-

rameters are listed in figure 39. A plot of the velocity data for a choice of height

and time is displayed in figure 40. We will use equation 322 to calculate helicity

using winding numbers and then take the time derivative of the result. This will be

compared with the surface flux helicity equation (equation 73). The flux Φ in the

cross-sectional area is

Φ = Bguidefield × Areagrid, (327)

= 330G× 162cm2, (328)

= 330G× 162cm2, (329)

= 84480Gcm2, (330)

= 84480
Wb

108
, (331)

= 8.448 ∗ 10−4Wb. (332)
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Figure 39: The experimental parameters.

To get a feel for the size of helicity that we should find, note that a uniform twist

of one turn would give a helicity of

H =
Φ2

n2
(n4 − n2), (333)

=
7.1369 ∗ 10−7

652
(654 − 652), (334)

= 3.0146 ∗ 10−3Wb2. (335)

Figure 42 shows our findings. Helicity here is about −6.4 × 10−4Wb2 which

corresponds for about one fifth of a turn clockwise. Figure 41 shows a selection of

field lines from a time shot about half way through the data. A twist of about one

quarter appears consistent with this figure. Note that a twist of the top plane in the

clockwise direction will result in a negative helicity. Helicity oscillates in a similar

manner to the previous experiment.

Using figure 42 we can estimate the size of the time derivative of helicity dH/dt.

We choose the points (4.199ms,−7.096×10−4Wb2) and (4.245ms,−5.914×10−4Wb2)

(indicated by the green points on figure 336), and calculate

|∆H|
∆t

=
1.182× 10−4Wb2

4.6 ∗ 10−5s
≈ 2.57Wb2s−1. (336)

This appears to be consistent with our results shown in figure 43.
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Figure 40: The velocity data for the layer z = zmax at a time instance half way

through the data.

For the flux surface helicity (equation 73) we need the velocity data. This has

been normalised to the ion sound speed, which is given by:

cs = 9.79× 105

√
Te
µ
. (337)

The electron temperature of the background plasma, Te, is 4eV . The tempera-

ture inside the flux ropes may be higher than this; however, this would be hard to

correct for as temperature is spatially non-uniform. The parameter µ is the ratio of

the ion mass to the proton mass – for argon µ = 40. This makes cs = 3.1×105cms−1.

So the velocity data needs to be multiplied by 3.1× 105cms−1.

Figure 44 shows our results. Helicity is conserved overall, but oscillates. The

largest oscillation occurs between 4.2-4.32ms. The derivative oscillates around zero

as expected. dH/dtwinding is larger than dH/dtsurfF lux. We would expect this to be

the case as we are neglecting the dissipation term (equation 74). Another reason is

that with winding numbers we are assuming that none of the flux leaves through

the side of the region: this is almost the case, but not quite. The field lines that

do leave, which are few in number, leave when they are near the top plane of the

region. If this happens, we use the field lines last known position, before it departed
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Figure 41: A selection of field lines half way through our data.

the region, to find its winding.

In a similar experiment, Gekelman el al. [89] calculated helicity using equation

68) and found that it is not conserved. For this experiment our results show that

this is not the case, but it does similarly oscillate. A possible explanation for this is

that helicity is leaving and then returning to the monitored region. Also, Gekelman

el al. note that the frequency with which helicity oscillates seems to correspond to

the oscillations in the Alfvén waves, however, this has not been investigated.

In 1974 Taylor conjectured [90] that if the dissipation occurs on small scales

due to reconnection, then helicity dissipation should be much smaller than energy

dissipation. We calculate

mean(ηHeff ) = 4.6828× 10−4Ωm, mean(ηEeff ) = 5.05× 10−2Ωm. (338)

In agreement with the conjecture, our energy resistivity is one hundred times larger

on average than the helicity resistivity.

Recall that we define an effective resistivity as

ηHeff ≡
dH
dt ideal

− dH
dt non−ideal

2
∫
J ·Bd3x

. (339)
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Figure 42: Magnetic helicity via winding numbers. The green points are used to

estimate the derivative of helicity in equation 336.

To work this out we need to calculate the denominator. Using equation 274 we

substitute for J :

2

∫
J ·Bd3x =

2

µ0

∫
(∇×B) ·Bd3x. (340)

A plot of this term is provided in figure 45. ηHeff is shown in figure 46. The largest

oscillation in resistivity occurs at the beginning of the experiment.

We can also calculate the magnetic energy according to equation 49; this is shown

in figure 47. The energy oscillates with the largest jump being again at t = 4.2.

Figure 48 shows the effective dissipation term. The power term (equation 314 –

figure 49) and the Poynting flux term (equation 312 – figures 50-51) show similar

patterns.

Recall that earlier – equation 315 – we defined an effective dissipation in terms

of energy conservation, ηeff , as:

ηEeff (T ) ≡ 1∫∫
(∇×B)×B · dSdt+

∫∫
(∇×B)2 d3xdt

. (341)

∗
(
µ0

2

∫
B2|t=0 −B2|t=T d3x+ µ0

∫ ∫
(v ×B) · (∇×B) d3xdt

+

∫ ∫ [
1

ne
B × (∇×B) + µ0(v ×B)

]
×B · dSdt

)
We will now calculate this quantity. Figure 48 shows our results. There is some

difference in our resistivity measurements. ηEeff remains positive for the entire

experiment, whilst ηHeff oscillates changing sign and seems to capture more detail

about the resistivity after the initial largest oscillation. Differences could be due to
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Figure 43: The time derivative of helicity obtained from the winding number for-

mula.

many oppositely signed windings on a small scale cancelling out.

Is there a way we can estimate the resistivity η? With this aim we consider the

time for a magnetic field to diffuse into a stationary unmagnetised plasma. Recall

the generalised form of Ohm’s law:

E + v ×B = ηJ +
1

ne
J ×B − 1

ne
∇ · P e +

me

ne2

∂J

∂t
. (342)

For simplicity – following Chen [91] – we neglect the second term (the Hall term)

and the last term (electron inertia term). Taking the curl of the remaining terms

gives

∇×E = η(∇× J), (343)

=
η

µ0

[∇× (∇×B)]. (344)

Using Faraday’s law (equation 30) to eliminate the electric field leads to

∂B

∂t
=

η

µ0

∇2B. (345)

Let tdiff be the time taken for the magnetic field to diffuse into the plasma with

length ldiff . From above we have

tdiff =
µ0l

2
diff

η
. (346)

This is the total time for the magnetic field to diffuse into the plasma. If we consider

a partial diffusion, ∆B, we can write

ηSpitzer ≡
B0

∆B

µ0l
2
diff

∆t
. (347)
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Figure 44: The total surface flux.

To estimate ∆B we need a sense of how much the magnetic field varies: we plot

the size of the magnetic field in the X − Y plane and use this. Figure 54 shows our

results. For completeness we also include a plot showing how |Bz| varies – figure 55.

ηSpitzer =
B0

∆B

µ0l
2
diff

∆t
, (348)

=
10−3

1.122× 10−4

(4π × 10−7)(10−1)2

7.3× 10−5
, (349)

= 1.72× 10−3Ωm. (350)

This is about a factor of ten smaller than ηHeff and ηEeff . Although the team at

UCLA are unable to provide an estimate for the resistivity in this experiment, we

do have access to results from other, similar experiments. We can compare our

results with the results of Gekelman et al. [5] for the first experiment detailed in

this project. Gekelman et al. calculate helicity and then use the helicity Schwarz

inequality (equation 82) to estimate η. The ratio of this to ηSpitzer is shown in figure

53 – η/ηSpitzer is about about half an order of ten.

It is interesting that ηHeff oscillates about zero while ηEeff does not. This might

be expected as, unlike energy, helicity can be both positive and negative. The

energy resistivity cannot be negative as this would violate the second law of ther-

modynamics: an increase in entropy must be accompanied by a corresponding input

of energy.

To investigate the reliability of our results, we re-write equation 309 as

−
(
dW

dt
+

1

µ0

∫
E ×B · dS

)
=

∫
E · Jd3x, (351)
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Figure 45: The dissipation term – equation 340.

where W is the magnetic energy. The first term on the left is shown in figure 52 and

the complete left-hand side in figure 56. This should be equal to the power term on

the right (figure 49).

This is not quite the case but they do appear to be correlated. A possible

explanation for their difference is that we have not measured all of the terms in

Ohm’s law. The team at UCLA do not have a way of measuring the pressure term.

It is probably not a scalar quantity.
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Figure 46: The effective resistivity calculated via helicity.
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Figure 47: The magnetic energy.
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Figure 48: We define an effective resistivity by assuming that the currents move

parallel to the magnetic field.
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Figure 49: The power being transferred from the magnetic field.
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Figure 50: The Poynting flux through the base of the region.
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Figure 51: The Poynting flux through the top of the region.
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Figure 52: The time derivative of magnetic energy.
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Figure 53: The ratio of ηH to ηSpitzer reproduced from [5]. This data is from the first

experiment in this project. We include it as a point of comparison for our results.
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Figure 54: The average value of |Bx−y| through different snapshots in time. The

points in green are the values used in our calculation to estimate the resistivity

(equation 349).
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Figure 55: Average value of |Bz|. Note that the guide field (330G) has been sub-

tracted.
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Figure 56: The left hand side of equation 351. This should be equal to the power

term on the right (figure 49)
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3.14 Drift velocity

As mentioned in the introduction, in ideal MHD the magnetic field remains frozen

in the plasma. This is something that we can test. Consider figure 57. The red line

shows a field line at t = 0, and the blue shows the same field line at t = 1. Let

x0 and x1 be the horizontal placement of the top of field line at t = 0 and t = 1

respectively. If the field were frozen in to the plasma we would expect

x1 = x0 + ∆tv|t=0. (352)

As a measure of the plasma deviation away from an ideal form we measure the

difference

xdrift(tn+1) ≡ |x(tn+1)− (x(tn) + ∆t · v(tn))|. (353)

The result is shown in figure 58. Note the similarities between this graph and that

of dH/dt (figure 43) and ηHeff (figure 46). In a similar manner we can calculate

Figure 57: The position of one field line at t = 0 and at t = 1. If the magnetic field

was ”frozen in” then the field line would simple move with the plasma velocity v,

and end up as the line in blue. The slip-velocity vs measures how much the field

line’s velocity deviates from this, due to non-ideal behaviour.

drift velocities as the extra velocity vector needed at each spatial point to keep the

plasma moving with the magnetic field. As a matter of curiosity, we define

dH

dt frozenfield
=

∫
S

(Ap ·B)(v + vdrift)− (Ap · (v + vdrift))B · dS. (354)
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Figure 58: Spatial deviation of the field lines away from the frozen in condition.

The result is shown in figure 59. We were hoping that this addition would make up

some of the difference between dH/dtwinding (figure 43) and dH/dtsurfF lux (figure 44).

Unfortunately, it does not. However, the profiles of the graphs are now extremely

similar – see figure 60.

Note that in many of our previous calculations the greatest jump in the quantity

occurs at around t = 4.18ms. With this in mind, we plot the drift velocities before

this point, at this point, and then much later. Figures (61-63) show our results.

The drift velocities seem to want to spiral around in two separate swirls (centred at

about (6,8) and (8,13) in figures 61 and 63). At the point where we have the largest

non-ideal field line movement (t = 4.18 – figure 58) this behaviour changes into a

circulation about the centre. We do not have an explanation for this.
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Figure 59: dH/dt after the addition of the drift velocity.

4.2 4.3 4.4 4.5 4.6 4.7

−4

−2

0

2

4

time (ms)

d
H

/d
t 

(W
b

2
s

−
1
)

Figure 60: A comparison of the profiles of dH/dtwinding (blue) and dh/dtsurfaceflux

(green). Here dh/dtsurfaceflux has been rescaled to match the amplitude of

dH/dtwinding. Notice how similar the profiles are after the addition of the drift

velocity to the calculation.
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Figure 61: The drift velocity at t = 4.15ms .
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Figure 62: The drift velocity at t = 4.18ms.
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Figure 63: The drift velocity at t = 4.79ms.
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4 Conclusions

4.1 Spherical writhe

This project has had two separate parts; we will discuss them in order. Our work

on linking number, writhe and twist was to demonstrate how these measures can be

extended to a spherical geometry. We used methods similar to those developed for

open braid-like curves extended between two planes.

The nature of spherical geometry gave the work added complexity. In particular,

we examined how it was possible to smoothly deform a ribbon so as to change its

winding number with another curve. However, through an example we showed that

linking number was unaffected and so still well defined.

In a similar way as for open curves between two flat planes, spherical open writhe

was defined. It was proved that by taking an average over all secondary curves in a

tube’s surface, writhe only depends on the axis curve.

We then considered how surface motions moving the end points of flux tubes

would affect the helicity defined in terms of linking number. This led us to derive an

expression – using parallel transport – for how much a flux tube is twisted when its

end point moves on a path that is not a geodesic. Changing the end point of the two

curves does change the linking of the two tubes, but they twist by a corresponding

amount, so that the effect cancels out, and is consistent with helicity in flat space.

Finally, we gave an example of what would happen if the whole lower surface was to

rotate (as might happen in planetary rotation) – helicity doesn’t change as, relative

to each other, the tubes are not winding.

4.2 UCLA experiments

To analyse the results from our plasma experiments, we needed to develop a way

to seed field lines through the length of the cylindrical device. The divergence-free

condition on B, so that we have a physical field, led to a requirement on the conti-

nuity of the interpolator. We showed that if the coefficients of tricubic splines were

fixed in a particular manner, then this continuity condition could be realised.

Armed with the interpolator, we set about writing a code to find these field lines.

The fact that our grid is highly non-uniform in dimension, meant that we had to be

careful how we went about implementing the RK45 stepper method.

98



Some of the integrals we went on to calculate required sophisticated methods

to numerically integrate accurately, within a reasonable time frame. We used an

existing adaptive Gauss-Konrad type quadrature package to find these results.

In all of our work we find that helicity oscillates. The team at UCLA have noted

in their work that this is also the case. A possible explanation for this is that the flux

tubes are continually winding and unwinding on small scales within each oscillation.

Overall, helicity in these experiments is roughly conserved.

We use two separate methods to calculate resistivity: first through helicity, and

then through energy conservation. In both cases we find resistivity to be of the

same order. Our results match a theoretical estimate of resistivity. Our results are

in agreement with Taylor’s 1974 conjecture [90] that helicity dissipation should be

much smaller than energy dissipation.

The helicity resistivity sees more wild oscillation and, interestingly, is both neg-

ative and positive. An explanation for this is that, unlike energy which is aware of

the second law of thermodynamics, helicity can be both positive and negative. The

energy resistivity cannot become negative because this implies a decrease in entropy

in the system.

As we have both the magnetic field, and the velocity field, we tested the ex-

tent to which the magnetic field moves with the plasma (one of the assumptions of

MHD). We use the amount that the magnetic field moves away from the plasma to

define a drift velocity. Helicity, using the surface flux equation, is then re-calculated

to include the effect of the drift. This has the effect of changing the derivative of

helicity so that it oscillates both positively and negatively, in the same way that

dh/dtwinding does. Although the scales are different, the frequency and shape of the

oscillations seem to be a much closer match.

For this project we have developed a set of sophisticated computer programs to

analyse many aspects of magnetic field data. Further use of these tools is planned

for the repeat of the second experiment – the one involving three flux ropes. In

addition to experimental data, we would also like to have the chance to apply these

to numerical simulations. Such simulations might allow cleaner conclusions to be

drawn.

Time has been a constraint on this project. Our hopes were to do the resistivity
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estimate for the second, three rope, experiment. Unfortunately, the data acquisi-

tion planes were not large enough and this was not possible. A number of results

have had to be re-done due to problems mostly centring around measuring of the

velocity data. For the final experiment, access to accurate data was only possible in

the first week of February this year – about one year later than originally anticipated.

We calculated all of the terms in the generalised Ohm’s law equation with the

exception of the electron pressure term. The team at UCLA do not have an idea

at present how to measure this. It would be interesting to see, how much the

resistivity would change, if we ignored the anomalous terms in Ohm’s law, so that

E + v ×B = ηJ (which is a frequently used approximation).

5 Programs

This section contains a selection of programs that were used to obtain the results in

this project. Two container classes were created to deal with the data in HDF5 files.

The first (page 101) is a container class that can read data in, whilst the second

(page 103), is a container class than can write its contents to disk. On page 105 is

the program used to seed field lines using tricubic splines. Our program to calculate

winding numbers is included on page 121.
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 1  //////////////////////////////////////////

 2  // C++ header file for                  //

 3  // HDF5 reader/container                //

 4  //                                      //

 5  // Any program using this should be     //

 6  // compiled using h5c++ script.         //

 7  //                                      //

 8  // For large datasets JHDF5 object      //

 9  // should be placed on the freestore.   //

10  //                                      //

11  // Change dims to dataset dims.         //

12  //////////////////////////////////////////

13  

14  // dataset dimensions

15  

16  const int ND=3;

17  const int NZ=14;

18  const int NX=65;

19  const int NY=65;

20  const int NT=1001;

21  

22  #include <iostream>

23  #include <string.h>

24  

25  #ifndef H5_NO_NAMESPACE

26  #ifndef H5_NO_STD

27      using std::cout;

28      using std::endl;

29  #endif  // H5_NO_STD

30  #endif

31  

32  // C++ HDF5 header

33  #include "H5Cpp.h"

34  

35  #ifndef H5_NO_NAMESPACE

36      using namespace H5;

37  #endif

38  

39  class JHDF5{

40  private:

41      H5std_string FILE_NAME;

42      H5std_string DATASET_NAME;

43  public:

44      JHDF5(const JHDF5&);

45      JHDF5& operator= (const JHDF5&);

46      JHDF5(H5std_string fname,H5std_string dname){

47          FILE_NAME=fname; DATASET_NAME=dname; };

48      // Buffer to store data.

49      double buffer[NZ][NY][NX] __attribute__ ((aligned (64)));

50      // Function to read data.

51      void initialise(int,int);

52  };

53  

54  // copy constructor

55  JHDF5::JHDF5(const JHDF5& other){

56      FILE_NAME=other.FILE_NAME; DATASET_NAME=other.DATASET_NAME;

57      memcpy(buffer,other.buffer,sizeof(buffer));

58  }

59  

60  // copy assignment constructor

61  JHDF5& JHDF5::operator= (const JHDF5& other){

62      this->FILE_NAME=other.FILE_NAME;

63      this->DATASET_NAME=other.DATASET_NAME;

64      memcpy(this->buffer,other.buffer,sizeof(other.buffer));

65      return *this;

66  }
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67  

68  // function to read data

69  void JHDF5::initialise(int v,int tpos){

70      H5File file(FILE_NAME, H5F_ACC_RDONLY);

71      DataSet dataset = file.openDataSet(DATASET_NAME);

72      DataSpace dataspace = dataset.getSpace();

73  

74      hsize_t offset[]={0,0,0,0,0};

75      hsize_t count[]={1,NZ,NY,NX,1};

76      hsize_t memoffset[]={0,0,0};

77      hsize_t memcount[]={NZ,NY,NX};

78  

79      dataspace.selectHyperslab(H5S_SELECT_SET, count, offset);

80      DataSpace memspace(3, memcount);

81      memspace.selectHyperslab(H5S_SELECT_SET, memcount, memoffset);

82      // Initialise data

83      memset(buffer,0,NX*NY*NZ);

84      // Read data

85      dataset.read(buffer, PredType::NATIVE_DOUBLE, memspace, dataspace);

86  }

102



 1  //////////////////////////////////////////

 2  // C++ header file for                  //

 3  // HDF5 writer/container                //

 4  //                                      //

 5  // Any program using this should be     //

 6  // compiled using h5c++ script.         //

 7  //                                      //

 8  // For large datasets myArray object    //

 9  // should be placed on the freestore.   //

10  //                                      //

11  //                                      //

12  //////////////////////////////////////////

13  

14  #include <iostream>

15  #include <string.h>

16  

17  #ifndef H5_NO_NAMESPACE

18  #ifndef H5_NO_STD

19      using std::cout;

20      using std::endl;

21  #endif  // H5_NO_STD

22  #endif

23  

24  // C++ HDF5 header.

25  #include "H5Cpp.h"

26  

27  #ifndef H5_NO_NAMESPACE

28      using namespace H5;

29  #endif

30  

31  class myArray{

32  public:

33      static const int dimt = 1001;

34      myArray(){memset(buffer,0,dimt);}

35      myArray(const myArray&);

36      ~myArray(){}

37      myArray& operator= (const myArray&);

38      // Buffer to store data.

39      double buffer[dimt];

40      // Function to write data.

41      void write(const H5std_string,const H5std_string);

42      // Function to create data file

43      void createFile(const H5std_string,const H5std_string);

44  };

45  

46  // copy constructor

47  myArray::myArray(const myArray& other){

48      memcpy(buffer,other.buffer,sizeof(buffer));

49  }

50  

51  // copy assignment constructor

52  myArray& myArray::operator= (const myArray& other){

53      memcpy(this->buffer,other.buffer,sizeof(other.buffer));

54      return *this;

55  }

56  

57  void myArray::createFile(const H5std_string FILE_NAME,const H5std_string DATASET_NAME){

58      H5File* file= new H5File( FILE_NAME, H5F_ACC_TRUNC );

59      /* Fill value for the dataset */

60      int fillvalue = 0;

61      DSetCreatPropList plist;

62      plist.setFillValue(PredType::NATIVE_DOUBLE, &fillvalue);

63      hsize_t dims[]={dimt};

64      const int rank=1;

65      DataSpace dataspace(rank, dims);

66      DataSet* dataset = new DataSet(file->createDataSet(
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67          DATASET_NAME, PredType::NATIVE_DOUBLE, dataspace, plist));

68      delete dataset;

69      delete file;

70  }

71  

72  // function to write data.

73  

74  void myArray::write(const H5std_string FILE_NAME,const H5std_string DATASET_NAME){

75      H5File* file = new H5File(FILE_NAME,H5F_ACC_RDWR);

76      DataSet* dataset = new DataSet(file->openDataSet(DATASET_NAME));

77  

78      int rankmem = 1;

79      hsize_t dimsmem[] = {dimt};

80      DataSpace memspace(rankmem, dimsmem);

81      hsize_t offsetmem[]={0};

82  

83      DataSpace dataspace = dataset->getSpace();

84      int rank = dataspace.getSimpleExtentNdims();

85      hsize_t count[] = {dimt};

86      hsize_t offsetdata[] = {0};

87  

88      dataspace.selectHyperslab(H5S_SELECT_SET, count, offsetdata);

89      memspace.selectHyperslab(H5S_SELECT_SET, dimsmem, offsetmem);

90      dataset->write(buffer, PredType::NATIVE_DOUBLE, memspace, dataspace);

91      delete dataset;

92      delete file;

93  
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  1  // command to compile

  2  // ./h5c++ 3dsplinesv3.cpp -std=c++0x -pthread -O3 -msse4 -o 3dsplines /usr/local/lib/libgslcblas.a

/usr/local/lib/libgsl.a /usr/local/lib/libtricubic.a

  3  

  4  ///////////////////////////////////////////

  5  // Program to seed fieldlines using RK45 //

  6  // and tricubic splines.                 //

  7  ///////////////////////////////////////////

  8  

  9  #include <future> // Thread handlers:

 10  #include <chrono>

 11  #include <thread>

 12  #include <mutex>

 13  #include <gsl/gsl_errno.h> // Error handler

 14  #include <gsl/gsl_spline.h> // Splines

 15  #include <gsl/gsl_odeiv2.h> // Adam-Bashforth methods

 16  #include "JHDF5interp3v2.h" // contains class to read hdf5 files.

 17  #include "myArrayv3.h" // contains class to write hdf5 files.

 18  #include "tricubic.h"

 19  

 20  const double XPOS[65]={-6,-5.75,-5.5,-5.25,-5,-4.75,-4.5,-4.25,-4,-3.75,-3.5,-3.25,-3,-2.75,-2.5,-2.25,-2,-

1.75,-1.5,-1.25,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.25,3.5,3.75,4,4.25,4.5,

4.75,5,5.25,5.5,5.75,6,6.25,6.5,6.75,7,7.25,7.5,7.75,8,8.25,8.5,8.75,9,9.25,9.5,9.75,10};

 21  const double YPOS[65]={-10,-9.75,-9.5,-9.25,-9,-8.75,-8.5,-8.25,-8,-7.75,-7.5,-7.25,-7,-6.75,-6.5,-6.25,-6

,-5.75,-5.5,-5.25,-5,-4.75,-4.5,-4.25,-4,-3.75,-3.5,-3.25,-3,-2.75,-2.5,-2.25,-2,-1.75,-1.5,-1.25,-1,-0.75,-0.5

,-0.25,0,0.25,0.5,0.75,1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.25,3.5,3.75,4,4.25,4.5,4.75,5,5.25,5.5,5.75,6};

 22  const double ZPOS[14]={127.8,191.7,255.6,319.5,383.4,447.3,511.2,575.1,639,702.9,766.8,830.7,894.6,958.5};

 23  

 24  std::mutex readLock;

 25  std::mutex writeLock;

 26  

 27  // Class to seed streamline at a particular time

 28  class worker{

 29  public:

 30      worker();

 31      ~worker()

 32      {

 33          //delete results;

 34          delete Ax; delete Ay; delete Az;

 35          gsl_interp_accel_free(lookupACCx);

 36          gsl_interp_accel_free(lookupACCy);

 37          gsl_interp_accel_free(lookupACCz);

 38      }

 39      void seed(int); // Actually do the seeding

 40  private:

 41      // array to hold Hermite coefficients

 42      double ax[13][64][64][64];

 43      double ay[13][64][64][64];

 44      double az[13][64][64][64];

 45  

 46      // Return magnetic field

 47      double getBx(double,double,double);

 48      double getBy(double,double,double);

 49      double getBz(double,double,double);

 50  

 51      // Grid spacing

 52      const double delX = 0.25;

 53      const double delY = 0.25;

 54      const double delZ = 63.9;

 55      const double minX = -6;

 56      const double maxX = 10;

 57      const double minY = -10;

 58      const double maxY = 6;

 59      // Data size

 60      const int NX = 65;

 61      const int NY = 65;
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 62      const int NZ = 14;

 63  

 64      // Pointers for holding the data

 65      JHDF5* __restrict__ Ax; // Not strictly std c++0x but supported by g++

 66      JHDF5* __restrict__ Ay;

 67      JHDF5* __restrict__ Az;

 68  

 69      // GSL requires all parameters to be passed through a void*

 70      // create structure to hold parameters and cast to void*

 71      struct dparams{

 72          worker* inst;

 73          double p1, p2;

 74      };

 75      struct dparams params;

 76  

 77      // Wrapper function needed due to pointer differences function/member function

 78      static int wrapfunc(double , const double [], double [],void*);

 79      myArray* __restrict__ results;

 80      void getCoeffsX(int);

 81      void getCoeffsY(int);

 82      void getCoeffsZ(int);

 83      double getValX(double, double, double);

 84      gsl_interp_accel * lookupACCx;

 85      gsl_interp_accel * lookupACCy;

 86      gsl_interp_accel * lookupACCz;

 87  

 88  };

 89  

 90  // Constructor:  allocate space to read dataset when seed() is called

 91  // Initialise variables containing the grid spacing

 92  worker::worker(): Ax(new JHDF5("/media/jack/D87ED1CB7ED1A294/Ar_A.hdf5","FRF_A")), Ay(new JHDF5(

"/media/jack/D87ED1CB7ED1A294/Ar_A.hdf5","FRF_A")), Az(new JHDF5("/media/jack/D87ED1CB7ED1A294/Ar_A.hdf5",

"FRF_A")), lookupACCx(gsl_interp_accel_alloc()),

 93      lookupACCy(gsl_interp_accel_alloc()),lookupACCz(gsl_interp_accel_alloc()){}

 94  

 95  // Wrapper functions for numerical differentiation.

 96  // GSL protype is f(double, void*) so all args much go through

 97  // a void*

 98  

 99  // Perform the seeding

100  void worker::seed(int time){

101      results = new myArray();

102      // Read the data corresponding to t=time

103      getCoeffsX(time);

104      getCoeffsY(time);

105      getCoeffsZ(time);

106      // Set up Adams-bashforth system:

107      gsl_odeiv2_system sys = {&wrapfunc,nullptr,2,this};

108      /* GSL driver which will step system.

109      Function prototype: (const gsl_odeiv2_system * sys,

110      const gsl_odeiv2_step_type * T, const double hstart,

111      const double epsabs, const double epsrel */

112      gsl_odeiv2_driver * d =

113      gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rkf45,

114                    1e-4, 1e-4, 0.0);// 1e-4 ok

115      double t,ti; // Step from t to ti during each run.

116  

117      double yi[2]; // Store result in yi

118      int i,j,count;

119      for (i = 0; i < 65; ++i){

120          for (j = 0; j < 65; ++j){

121              gsl_odeiv2_driver_reset(d);

122              yi[0] = XPOS[i];

123              yi[1] = YPOS[j];

124              t = ZPOS[0];

125  
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126              // Store result in output array

127              results->buffer[0][i][j][0]=yi[0];

128              results->buffer[1][i][j][0]=yi[1];

129              results->buffer[2][i][j][0]=t;

130              //cout<<x[i]<<","<<y[j]<<endl; //11

131              for (count = 1; count < 50; ++count){

132                  // interate through height

133                  ti = t + 16.95306;

134                  gsl_odeiv2_driver_apply (d, &t, ti, yi); // Step

135                  if (yi[0] < minX)

136                      yi[0] = minX;

137                  else if (yi[0] > maxX)

138                      yi[0] = maxX;

139                  if (yi[1] < minY)

140                      yi[1] = minY;

141                  else if (yi[1] > maxY)

142                      yi[1] = maxY;

143  

144                  results->buffer[0][i][j][count]=yi[0];

145                  results->buffer[1][i][j][count]=yi[1];

146                  results->buffer[2][i][j][count]=ti;

147              }

148          }

149      }

150  

151      writeLock.lock();

152      results->write("seeds.hdf5","tzero",time);

153      writeLock.unlock();

154      gsl_odeiv2_driver_free (d); // Free memory

155  

156      delete results;

157  }

158  

159  // Perform numerical differentiation.

160  double worker::getBx(double xp, double yp, double zp){

161      // Range check:

162      if (xp < minX)

163          xp = minX;

164      else if (xp > maxX)

165          xp = maxX;

166      if (yp < minY)

167          yp = minY;

168      else if (yp > maxY)

169          yp = maxY;

170  

171      double result1, result2;

172  

173      int i = gsl_interp_accel_find (lookupACCz,ZPOS,14,zp);

174      int j = gsl_interp_accel_find (lookupACCy,YPOS,64,yp);

175      int k = gsl_interp_accel_find (lookupACCx,XPOS,64,xp);

176      result1 = tricubic_eval(az[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,0,1,0)/delY;

177      result2 = tricubic_eval(ay[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,0,0,1)/delZ;

178  

179      return result1-result2;

180  }

181  

182  double worker::getBy(double xp, double yp, double zp){

183      // Range check:

184      if (xp < minX)

185          xp = minX;

186      else if (xp > maxX)

187          xp = maxX;

188      if (yp < minY)

189          yp = minY;

190      else if (yp > maxY)

191          yp = maxY;
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192  

193      double result1, result2;

194      int i = gsl_interp_accel_find (lookupACCz,ZPOS,14,zp);

195      int j = gsl_interp_accel_find (lookupACCy,YPOS,64,yp);

196      int k = gsl_interp_accel_find (lookupACCx,XPOS,64,xp);

197      result1 = tricubic_eval(ax[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,0,0,1)/delZ;

198      result2 = tricubic_eval(az[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,1,0,0)/delX;

199  

200      return result1-result2;

201  }

202  

203  double worker::getBz(double xp, double yp, double zp){

204      // Range check:

205      if (xp < minX)

206          xp = minX;

207      else if (xp > maxX)

208          xp = maxX;

209      if (yp < minY)

210          yp = minY;

211      else if (yp > maxY)

212          yp = maxY;

213  

214      double result1, result2;

215      int i = gsl_interp_accel_find (lookupACCz,ZPOS,14,zp);

216      int j = gsl_interp_accel_find (lookupACCy,YPOS,64,yp);

217      int k = gsl_interp_accel_find (lookupACCx,XPOS,64,xp);

218      result1 = tricubic_eval(ay[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,1,0,0)/delX;

219      result2 = tricubic_eval(ax[i][j][k],(xp-XPOS[k])/delX,(yp-YPOS[j])/delY,(zp-ZPOS[i])/delZ,0,1,0)/delY;

220  

221      return result1-result2;

222  }

223  

224  // Wrapper function for integrator

225  inline int worker::wrapfunc(double t, const double yi[], double f[],void *params){

226      worker* inst = (worker* )params;

227      f[0] = inst->getBx(yi[0],yi[1],t)/inst->getBz(yi[0],yi[1],t);

228      f[1] = inst->getBy(yi[0],yi[1],t)/inst->getBz(yi[0],yi[1],t);

229      return GSL_SUCCESS;

230  }

231  

232  void worker::getCoeffsX(int time){

233      double fval[NZ][NY][NX];

234      double dfdxval[NZ][NY][NX];

235      double dfdyval[NZ][NY][NX];

236      double dfdzval[NZ][NY][NX];

237      double d2fdxdyval[NZ][NY][NX];

238      double d2fdxdzval[NZ][NY][NX];

239      double d2fdydzval[NZ][NY][NX];

240      double d3fdxdydzval[NZ][NY][NX];

241  

242      // Need variable to hold columns of the arrays

243      double yvals[NZ][NX][NY];

244      double zvals[NX][NY][NZ];

245      // Loop indices

246      int i,j,k,l;

247      readLock.lock();

248      Ax->initialise(0,time);

249      readLock.unlock();

250      // use a gsl cubic spline with natural bcs.

251      const gsl_interp_type *t = gsl_interp_cspline;

252  

253      // Single accelerator, change later!

254      gsl_interp_accel * myACC = gsl_interp_accel_alloc();

255      // Hold the splines:

256      gsl_interp* xInterp[NZ][NY];

257      gsl_interp* yInterp[NZ][NX];
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258      gsl_interp* zInterp[NY][NX];

259      gsl_interp* dxdyInterp[NZ][NX];

260      gsl_interp* dxdzInterp[NY][NX];

261      gsl_interp* dydzInterp[NY][NX];

262      gsl_interp* dxdydzInterp[NY][NX];

263  

264      // extract columns:

265      for (i = 0; i < NZ; ++i){

266          for (j = 0; j < NY; ++j){

267              for (k = 0; k < NX; ++k){

268                  yvals[i][j][k] = Ax->buffer[i][k][j];

269                  zvals[j][k][i] = Ax->buffer[i][j][k];

270              }

271          }

272      }

273  

274      for (i = 0; i < NZ; ++i){

275          for (j = 0; j < NX; ++j){

276              xInterp[i][j] = gsl_interp_alloc(t,NX);

277              yInterp[i][j] = gsl_interp_alloc(t,NY);

278              gsl_interp_init(xInterp[i][j],XPOS,Ax->buffer[i][j],NX);

279              gsl_interp_init(yInterp[i][j],YPOS,yvals[i][j],NY);

280          }

281      }

282  

283      for (i = 0; i < NY; ++i){

284          for (j = 0; j < NX; ++j){

285              zInterp[i][j] = gsl_interp_alloc(t,NZ);

286              gsl_interp_init(zInterp[i][j],ZPOS,zvals[i][j],NZ);

287          }

288      }

289  

290      for (i = 0; i < NZ; ++i){

291          for (j = 0; j < NY; ++j){

292              for (k = 0; k < NX; ++k){

293                  dfdxval[i][j][k] = gsl_interp_eval_deriv(xInterp[i][j],XPOS,Ax->buffer[i][j],XPOS[k],myACC

);

294                  gsl_interp_accel_reset(myACC);

295                  dfdyval[i][j][k] = gsl_interp_eval_deriv(yInterp[i][k],YPOS,yvals[i][k],YPOS[j],myACC);

296                  gsl_interp_accel_reset(myACC);

297                  dfdzval[i][j][k] = gsl_interp_eval_deriv(zInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC);

298                  gsl_interp_accel_reset(myACC);

299              }

300          }

301      }

302      // Now for second derivatives:

303      for (i = 0; i < NZ; ++i){

304          for (j = 0; j < NY; ++j){

305              for (k = 0; k < NX; ++k){

306                  yvals[i][j][k] = dfdxval[i][k][j];

307                  zvals[j][k][i] = dfdxval[i][j][k];

308              }

309          }

310      }

311      for (i = 0; i < NZ; ++i){

312          for (j = 0; j < NY; ++j){

313              dxdyInterp[i][j] = gsl_interp_alloc(t,NY);

314              gsl_interp_init(dxdyInterp[i][j],YPOS,yvals[i][j],NY);

315          }

316      }

317  

318      for (i = 0; i < NY; ++i){

319          for (j = 0; j < NX; ++j){

320              dxdzInterp[i][j] = gsl_interp_alloc(t,NZ);

321              gsl_interp_init(dxdzInterp[i][j],ZPOS,zvals[i][j],NZ);

322          }

109



323      }

324  

325      for (i = 0; i < NZ; ++i){

326          for (j = 0; j < NY; ++j){

327              for (k = 0; k < NX; ++k){

328                  d2fdxdyval[i][j][k] = gsl_interp_eval_deriv(dxdyInterp[i][j],YPOS,yvals[i][j],YPOS[k],myACC

);

329                  gsl_interp_accel_reset(myACC);

330                  d2fdxdzval[i][j][k] = gsl_interp_eval_deriv(dxdzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

331                  gsl_interp_accel_reset(myACC);

332              }

333          }

334      }

335  

336      for (i = 0; i < NZ; ++i){

337          for (j = 0; j < NY; ++j){

338              for (k = 0; k < NX; ++k){

339                  zvals[j][k][i] = dfdyval[i][j][k];

340              }

341          }

342      }

343  

344      for (i = 0; i < NY; ++i){

345          for (j = 0; j < NX; ++j){

346              dydzInterp[i][j] = gsl_interp_alloc(t,NZ);

347              gsl_interp_init(dydzInterp[i][j],ZPOS,zvals[i][j],NZ);

348          }

349      }

350  

351      for (i = 0; i < NZ; ++i){

352          for (j = 0; j < NY; ++j){

353              for (k = 0; k < NX; ++k){

354                  d2fdydzval[i][j][k] = gsl_interp_eval_deriv(dydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

355                  gsl_interp_accel_reset(myACC);

356              }

357          }

358      }

359  

360      // Now the one third derivative:

361      for (i = 0; i < NZ; ++i){

362          for (j = 0; j < NY; ++j){

363              for (k = 0; k < NX; ++k){

364                  zvals[j][k][i] = d2fdxdyval[i][j][k];

365              }

366          }

367      }

368  

369      for (i = 0; i < NY; ++i){

370          for (j = 0; j < NX; ++j){

371              dxdydzInterp[i][j] = gsl_interp_alloc(t,NZ);

372              gsl_interp_init(dxdydzInterp[i][j],ZPOS,zvals[i][j],NZ);

373          }

374      }

375  

376      for (i = 0; i < NZ; ++i){

377          for (j = 0; j < NY; ++j){

378              for (k = 0; k < NX; ++k){

379                  d3fdxdydzval[i][j][k] = gsl_interp_eval_deriv(dxdydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],

myACC);

380                  gsl_interp_accel_reset(myACC);

381                  fval[i][j][k] = Ax->buffer[i][j][k];

382              }

383          }

384      }
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385  

386      // Free memory:

387      for (i = 0; i < NZ; ++i){

388          for (j = 0; j < NY; ++j){

389              gsl_interp_free(xInterp[i][j]);

390              gsl_interp_free(yInterp[i][j]);

391              gsl_interp_free(dxdyInterp[i][j]);

392          }

393      }

394  

395      for (i = 0; i < NY; ++i){

396          for (j = 0; j < NX; ++j){

397              gsl_interp_free(zInterp[i][j]);

398              gsl_interp_free(dxdzInterp[i][j]);

399              gsl_interp_free(dydzInterp[i][j]);

400              gsl_interp_free(dxdydzInterp[i][j]);

401          }

402      }

403  

404      gsl_interp_accel_free(myACC);

405  

406      // Calculate coefficients:

407      ///The order of the points is as follow:

408      ///  0: x=0; y=0; z=0;

409      ///  1: x=1; y=0; z=0;

410      ///  2: x=0; y=1; z=0;

411      ///  3: x=1; y=1; z=0;

412      ///  4: x=0; y=0; z=1;

413      ///  5: x=1; y=0; z=1;

414      ///  6: x=0; y=1; z=1;

415      ///  7: x=1; y=1; z=1;

416      // Array to hold coefficients:

417  

418      double Pfval[8];

419      double Pdfdxval[8];

420      double Pdfdyval[8];

421      double Pdfdzval[8];

422      double Pd2fdxdyval[8];

423      double Pd2fdxdzval[8];

424      double Pd2fdydzval[8];

425      double Pd3fdxdydzval[8];

426  

427      for (i = 0; i < NZ - 1; ++i){

428          for (j = 0; j < NY - 1; ++j){

429              for (k = 0; k < NX -1; ++k){

430  

431                  double Pfval[8] = {fval[i][j][k],fval[i][j][k+1],fval[i][j+1][k],fval[i][j+1][k+1],fval[i+1

][j][k],fval[i+1][j][k+1],fval[i+1][j+1][k],fval[i+1][j+1][k+1]};

432                  double Pdfdxval[8] = {dfdxval[i][j][k],dfdxval[i][j][k+1],dfdxval[i][j+1][k],dfdxval[i][j+1

][k+1],dfdxval[i+1][j][k],dfdxval[i+1][j][k+1],dfdxval[i+1][j+1][k],dfdxval[i+1][j+1][k+1]};

433                  double Pdfdyval[8] = {dfdyval[i][j][k],dfdyval[i][j][k+1],dfdyval[i][j+1][k],dfdyval[i][j+1

][k+1],dfdyval[i+1][j][k],dfdyval[i+1][j][k+1],dfdyval[i+1][j+1][k],dfdyval[i+1][j+1][k+1]};

434                  double Pdfdzval[8] = {dfdzval[i][j][k],dfdzval[i][j][k+1],dfdzval[i][j+1][k],dfdzval[i][j+1

][k+1],dfdzval[i+1][j][k],dfdzval[i+1][j][k+1],dfdzval[i+1][j+1][k],dfdzval[i+1][j+1][k+1]};

435                  double Pd2fdxdyval[8] = {d2fdxdyval[i][j][k],d2fdxdyval[i][j][k+1],d2fdxdyval[i][j+1][k],

d2fdxdyval[i][j+1][k+1],d2fdxdyval[i+1][j][k],d2fdxdyval[i+1][j][k+1],d2fdxdyval[i+1][j+1][k],d2fdxdyval[i+1][j+

1][k+1]};

436                  double Pd2fdxdzval[8] = {d2fdxdzval[i][j][k],d2fdxdzval[i][j][k+1],d2fdxdzval[i][j+1][k],

d2fdxdzval[i][j+1][k+1],d2fdxdzval[i+1][j][k],d2fdxdzval[i+1][j][k+1],d2fdxdzval[i+1][j+1][k],d2fdxdzval[i+1][j+

1][k+1]};

437                  double Pd2fdydzval[8] = {d2fdydzval[i][j][k],d2fdydzval[i][j][k+1],d2fdydzval[i][j+1][k],

d2fdydzval[i][j+1][k+1],d2fdydzval[i+1][j][k],d2fdydzval[i+1][j][k+1],d2fdydzval[i+1][j+1][k],d2fdydzval[i+1][j+

1][k+1]};

438                  double Pd3fdxdydzval[8] = {d3fdxdydzval[i][j][k],d3fdxdydzval[i][j][k+1],d3fdxdydzval[i][j+

1][k],d3fdxdydzval[i][j+1][k+1],d3fdxdydzval[i+1][j][k],d3fdxdydzval[i+1][j][k+1],d3fdxdydzval[i+1][j+1][k],

d3fdxdydzval[i+1][j+1][k+1]};
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439  

440                  // Adjusting values as box size is not unity.

441                  for (l = 0; l < 8; ++l) {

442                      Pfval[l]*=1.0;

443                      Pdfdxval[l]*=delX;

444                      Pdfdyval[l]*=delY;

445                      Pdfdzval[l]*=delZ;

446                      Pd2fdxdyval[l]*=delX*delY;

447                      Pd2fdxdzval[l]*=delX*delZ;

448                      Pd2fdydzval[l]*=delY*delZ;

449                      Pd3fdxdydzval[l]*=delX*delY*delZ;

450                  }

451                  tricubic_get_coeff(ax[i][j][k],Pfval,Pdfdxval,Pdfdyval,Pdfdzval,Pd2fdxdyval,Pd2fdxdzval,

Pd2fdydzval,Pd3fdxdydzval);

452              }

453          }

454      }

455  }

456  

457  void worker::getCoeffsY(int time){

458      double fval[NZ][NY][NX];

459      double dfdxval[NZ][NY][NX];

460      double dfdyval[NZ][NY][NX];

461      double dfdzval[NZ][NY][NX];

462      double d2fdxdyval[NZ][NY][NX];

463      double d2fdxdzval[NZ][NY][NX];

464      double d2fdydzval[NZ][NY][NX];

465      double d3fdxdydzval[NZ][NY][NX];

466  

467      // Need variable to hold columns of the arrays

468      double yvals[NZ][NX][NY];

469      double zvals[NX][NY][NZ];

470      // Loop indices

471      int i,j,k,l;

472      readLock.lock();

473      Ay->initialise(1,time);

474      readLock.unlock();

475      // use a gsl cubic spline with natural bcs.

476      const gsl_interp_type *t = gsl_interp_cspline;

477  

478      // Single accelerator, change later!

479      gsl_interp_accel * myACC = gsl_interp_accel_alloc();

480      // Hold the splines:

481      gsl_interp* xInterp[NZ][NY];

482      gsl_interp* yInterp[NZ][NX];

483      gsl_interp* zInterp[NY][NX];

484      gsl_interp* dxdyInterp[NZ][NX];

485      gsl_interp* dxdzInterp[NY][NX];

486      gsl_interp* dydzInterp[NY][NX];

487      gsl_interp* dxdydzInterp[NY][NX];

488  

489      // extract columns:

490      for (i = 0; i < NZ; ++i){

491          for (j = 0; j < NY; ++j){

492              for (k = 0; k < NX; ++k){

493                  yvals[i][j][k] = Ay->buffer[i][k][j];

494                  zvals[j][k][i] = Ay->buffer[i][j][k];

495              }

496          }

497      }

498  

499      for (i = 0; i < NZ; ++i){

500          for (j = 0; j < NX; ++j){

501              xInterp[i][j] = gsl_interp_alloc(t,NX);

502              yInterp[i][j] = gsl_interp_alloc(t,NY);

503              gsl_interp_init(xInterp[i][j],XPOS,Ay->buffer[i][j],NX);
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504              gsl_interp_init(yInterp[i][j],YPOS,yvals[i][j],NY);

505          }

506      }

507  

508      for (i = 0; i < NY; ++i){

509          for (j = 0; j < NX; ++j){

510              zInterp[i][j] = gsl_interp_alloc(t,NZ);

511              gsl_interp_init(zInterp[i][j],ZPOS,zvals[i][j],NZ);

512          }

513      }

514  

515      for (i = 0; i < NZ; ++i){

516          for (j = 0; j < NY; ++j){

517              for (k = 0; k < NX; ++k){

518                  dfdxval[i][j][k] = gsl_interp_eval_deriv(xInterp[i][j],XPOS,Ay->buffer[i][j],XPOS[k],myACC

);

519                  gsl_interp_accel_reset(myACC);

520                  dfdyval[i][j][k] = gsl_interp_eval_deriv(yInterp[i][k],YPOS,yvals[i][k],YPOS[j],myACC);

521                  gsl_interp_accel_reset(myACC);

522                  dfdzval[i][j][k] = gsl_interp_eval_deriv(zInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC);

523                  gsl_interp_accel_reset(myACC);

524              }

525          }

526      }

527      // Now for second derivatives:

528      for (i = 0; i < NZ; ++i){

529          for (j = 0; j < NY; ++j){

530              for (k = 0; k < NX; ++k){

531                  yvals[i][j][k] = dfdxval[i][k][j];

532                  zvals[j][k][i] = dfdxval[i][j][k];

533              }

534          }

535      }

536      for (i = 0; i < NZ; ++i){

537          for (j = 0; j < NY; ++j){

538              dxdyInterp[i][j] = gsl_interp_alloc(t,NY);

539              gsl_interp_init(dxdyInterp[i][j],YPOS,yvals[i][j],NY);

540          }

541      }

542  

543      for (i = 0; i < NY; ++i){

544          for (j = 0; j < NX; ++j){

545              dxdzInterp[i][j] = gsl_interp_alloc(t,NZ);

546              gsl_interp_init(dxdzInterp[i][j],ZPOS,zvals[i][j],NZ);

547          }

548      }

549  

550      for (i = 0; i < NZ; ++i){

551          for (j = 0; j < NY; ++j){

552              for (k = 0; k < NX; ++k){

553                  d2fdxdyval[i][j][k] = gsl_interp_eval_deriv(dxdyInterp[i][j],YPOS,yvals[i][j],YPOS[k],myACC

);

554                  gsl_interp_accel_reset(myACC);

555                  d2fdxdzval[i][j][k] = gsl_interp_eval_deriv(dxdzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

556                  gsl_interp_accel_reset(myACC);

557              }

558          }

559      }

560  

561      for (i = 0; i < NZ; ++i){

562          for (j = 0; j < NY; ++j){

563              for (k = 0; k < NX; ++k){

564                  zvals[j][k][i] = dfdyval[i][j][k];

565              }

566          }

113



567      }

568  

569      for (i = 0; i < NY; ++i){

570          for (j = 0; j < NX; ++j){

571              dydzInterp[i][j] = gsl_interp_alloc(t,NZ);

572              gsl_interp_init(dydzInterp[i][j],ZPOS,zvals[i][j],NZ);

573          }

574      }

575  

576      for (i = 0; i < NZ; ++i){

577          for (j = 0; j < NY; ++j){

578              for (k = 0; k < NX; ++k){

579                  d2fdydzval[i][j][k] = gsl_interp_eval_deriv(dydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

580                  gsl_interp_accel_reset(myACC);

581              }

582          }

583      }

584  

585      // Now the one third derivative:

586      for (i = 0; i < NZ; ++i){

587          for (j = 0; j < NY; ++j){

588              for (k = 0; k < NX; ++k){

589                  zvals[j][k][i] = d2fdxdyval[i][j][k];

590              }

591          }

592      }

593  

594      for (i = 0; i < NY; ++i){

595          for (j = 0; j < NX; ++j){

596              dxdydzInterp[i][j] = gsl_interp_alloc(t,NZ);

597              gsl_interp_init(dxdydzInterp[i][j],ZPOS,zvals[i][j],NZ);

598          }

599      }

600  

601      for (i = 0; i < NZ; ++i){

602          for (j = 0; j < NY; ++j){

603              for (k = 0; k < NX; ++k){

604                  d3fdxdydzval[i][j][k] = gsl_interp_eval_deriv(dxdydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],

myACC);

605                  gsl_interp_accel_reset(myACC);

606                  fval[i][j][k] = Ay->buffer[i][j][k];

607              }

608          }

609      }

610  

611      // Free memory:

612      for (i = 0; i < NZ; ++i){

613          for (j = 0; j < NY; ++j){

614              gsl_interp_free(xInterp[i][j]);

615              gsl_interp_free(yInterp[i][j]);

616              gsl_interp_free(dxdyInterp[i][j]);

617          }

618      }

619  

620      for (i = 0; i < NY; ++i){

621          for (j = 0; j < NX; ++j){

622              gsl_interp_free(zInterp[i][j]);

623              gsl_interp_free(dxdzInterp[i][j]);

624              gsl_interp_free(dydzInterp[i][j]);

625              gsl_interp_free(dxdydzInterp[i][j]);

626          }

627      }

628  

629      gsl_interp_accel_free(myACC);

630  
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631      // Calculate coefficients:

632      ///The order of the points is as follow:

633      ///  0: x=0; y=0; z=0;

634      ///  1: x=1; y=0; z=0;

635      ///  2: x=0; y=1; z=0;

636      ///  3: x=1; y=1; z=0;

637      ///  4: x=0; y=0; z=1;

638      ///  5: x=1; y=0; z=1;

639      ///  6: x=0; y=1; z=1;

640      ///  7: x=1; y=1; z=1;

641      // Array to hold coefficients:

642  

643      double Pfval[8];

644      double Pdfdxval[8];

645      double Pdfdyval[8];

646      double Pdfdzval[8];

647      double Pd2fdxdyval[8];

648      double Pd2fdxdzval[8];

649      double Pd2fdydzval[8];

650      double Pd3fdxdydzval[8];

651  

652      for (i = 0; i < NZ - 1; ++i){

653          for (j = 0; j < NY - 1; ++j){

654              for (k = 0; k < NX -1; ++k){

655  

656                  double Pfval[8] = {fval[i][j][k],fval[i][j][k+1],fval[i][j+1][k],fval[i][j+1][k+1],fval[i+1

][j][k],fval[i+1][j][k+1],fval[i+1][j+1][k],fval[i+1][j+1][k+1]};

657                  double Pdfdxval[8] = {dfdxval[i][j][k],dfdxval[i][j][k+1],dfdxval[i][j+1][k],dfdxval[i][j+1

][k+1],dfdxval[i+1][j][k],dfdxval[i+1][j][k+1],dfdxval[i+1][j+1][k],dfdxval[i+1][j+1][k+1]};

658                  double Pdfdyval[8] = {dfdyval[i][j][k],dfdyval[i][j][k+1],dfdyval[i][j+1][k],dfdyval[i][j+1

][k+1],dfdyval[i+1][j][k],dfdyval[i+1][j][k+1],dfdyval[i+1][j+1][k],dfdyval[i+1][j+1][k+1]};

659                  double Pdfdzval[8] = {dfdzval[i][j][k],dfdzval[i][j][k+1],dfdzval[i][j+1][k],dfdzval[i][j+1

][k+1],dfdzval[i+1][j][k],dfdzval[i+1][j][k+1],dfdzval[i+1][j+1][k],dfdzval[i+1][j+1][k+1]};

660                  double Pd2fdxdyval[8] = {d2fdxdyval[i][j][k],d2fdxdyval[i][j][k+1],d2fdxdyval[i][j+1][k],

d2fdxdyval[i][j+1][k+1],d2fdxdyval[i+1][j][k],d2fdxdyval[i+1][j][k+1],d2fdxdyval[i+1][j+1][k],d2fdxdyval[i+1][j+

1][k+1]};

661                  double Pd2fdxdzval[8] = {d2fdxdzval[i][j][k],d2fdxdzval[i][j][k+1],d2fdxdzval[i][j+1][k],

d2fdxdzval[i][j+1][k+1],d2fdxdzval[i+1][j][k],d2fdxdzval[i+1][j][k+1],d2fdxdzval[i+1][j+1][k],d2fdxdzval[i+1][j+

1][k+1]};

662                  double Pd2fdydzval[8] = {d2fdydzval[i][j][k],d2fdydzval[i][j][k+1],d2fdydzval[i][j+1][k],

d2fdydzval[i][j+1][k+1],d2fdydzval[i+1][j][k],d2fdydzval[i+1][j][k+1],d2fdydzval[i+1][j+1][k],d2fdydzval[i+1][j+

1][k+1]};

663                  double Pd3fdxdydzval[8] = {d3fdxdydzval[i][j][k],d3fdxdydzval[i][j][k+1],d3fdxdydzval[i][j+

1][k],d3fdxdydzval[i][j+1][k+1],d3fdxdydzval[i+1][j][k],d3fdxdydzval[i+1][j][k+1],d3fdxdydzval[i+1][j+1][k],

d3fdxdydzval[i+1][j+1][k+1]};

664  

665                  // Adjusting values as box size is not unity.

666                  for (l = 0; l < 8; l++) {

667                      Pfval[l]*=1.0;

668                      Pdfdxval[l]*=delX;

669                      Pdfdyval[l]*=delY;

670                      Pdfdzval[l]*=delZ;

671                      Pd2fdxdyval[l]*=delX*delY;

672                      Pd2fdxdzval[l]*=delX*delZ;

673                      Pd2fdydzval[l]*=delY*delZ;

674                      Pd3fdxdydzval[l]*=delX*delY*delZ;

675                  }

676                  tricubic_get_coeff(ay[i][j][k],Pfval,Pdfdxval,Pdfdyval,Pdfdzval,Pd2fdxdyval,Pd2fdxdzval,

Pd2fdydzval,Pd3fdxdydzval);

677              }

678          }

679      }

680  }

681  

682  void worker::getCoeffsZ(int time){

683      double fval[NZ][NY][NX];
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684      double dfdxval[NZ][NY][NX];

685      double dfdyval[NZ][NY][NX];

686      double dfdzval[NZ][NY][NX];

687      double d2fdxdyval[NZ][NY][NX];

688      double d2fdxdzval[NZ][NY][NX];

689      double d2fdydzval[NZ][NY][NX];

690      double d3fdxdydzval[NZ][NY][NX];

691  

692      // Need variable to hold columns of the arrays

693      double yvals[NZ][NX][NY];

694      double zvals[NX][NY][NZ];

695      // Loop indices

696      int i,j,k,l;

697      readLock.lock();

698      Az->initialise(2,time);

699      readLock.unlock();

700      // use a gsl cubic spline with natural bcs.

701      const gsl_interp_type *t = gsl_interp_cspline;

702  

703      // Single accelerator, change later!

704      gsl_interp_accel * myACC = gsl_interp_accel_alloc();

705      // Hold the splines:

706      gsl_interp* xInterp[NZ][NY];

707      gsl_interp* yInterp[NZ][NX];

708      gsl_interp* zInterp[NY][NX];

709      gsl_interp* dxdyInterp[NZ][NX];

710      gsl_interp* dxdzInterp[NY][NX];

711      gsl_interp* dydzInterp[NY][NX];

712      gsl_interp* dxdydzInterp[NY][NX];

713  

714      // extract columns:

715      for (i = 0; i < NZ; ++i){

716          for (j = 0; j < NY; ++j){

717              for (k = 0; k < NX; ++k){

718                  yvals[i][j][k] = Az->buffer[i][k][j];

719                  zvals[j][k][i] = Az->buffer[i][j][k];

720              }

721          }

722      }

723  

724      for (i = 0; i < NZ; ++i){

725          for (j = 0; j < NX; ++j){

726              xInterp[i][j] = gsl_interp_alloc(t,NX);

727              yInterp[i][j] = gsl_interp_alloc(t,NY);

728              gsl_interp_init(xInterp[i][j],XPOS,Az->buffer[i][j],NX);

729              gsl_interp_init(yInterp[i][j],YPOS,yvals[i][j],NY);

730          }

731      }

732  

733      for (i = 0; i < NY; ++i){

734          for (j = 0; j < NX; ++j){

735              zInterp[i][j] = gsl_interp_alloc(t,NZ);

736              gsl_interp_init(zInterp[i][j],ZPOS,zvals[i][j],NZ);

737          }

738      }

739  

740      for (i = 0; i < NZ; ++i){

741          for (j = 0; j < NY; ++j){

742              for (k = 0; k < NX; ++k){

743                  dfdxval[i][j][k] = gsl_interp_eval_deriv(xInterp[i][j],XPOS,Az->buffer[i][j],XPOS[k],myACC

);

744                  gsl_interp_accel_reset(myACC);

745                  dfdyval[i][j][k] = gsl_interp_eval_deriv(yInterp[i][k],YPOS,yvals[i][k],YPOS[j],myACC);

746                  gsl_interp_accel_reset(myACC);

747                  dfdzval[i][j][k] = gsl_interp_eval_deriv(zInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC);

748                  gsl_interp_accel_reset(myACC);
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749              }

750          }

751      }

752      // Now for second derivatives:

753      for (i = 0; i < NZ; ++i){

754          for (j = 0; j < NY; ++j){

755              for (k = 0; k < NX; ++k){

756                  yvals[i][j][k] = dfdxval[i][k][j];

757                  zvals[j][k][i] = dfdxval[i][j][k];

758              }

759          }

760      }

761      for (i = 0; i < NZ; ++i){

762          for (j = 0; j < NY; ++j){

763              dxdyInterp[i][j] = gsl_interp_alloc(t,NY);

764              gsl_interp_init(dxdyInterp[i][j],YPOS,yvals[i][j],NY);

765          }

766      }

767  

768      for (i = 0; i < NY; ++i){

769          for (j = 0; j < NX; ++j){

770              dxdzInterp[i][j] = gsl_interp_alloc(t,NZ);

771              gsl_interp_init(dxdzInterp[i][j],ZPOS,zvals[i][j],NZ);

772          }

773      }

774  

775      for (i = 0; i < NZ; ++i){

776          for (j = 0; j < NY; ++j){

777              for (k = 0; k < NX; ++k){

778                  d2fdxdyval[i][j][k] = gsl_interp_eval_deriv(dxdyInterp[i][j],YPOS,yvals[i][j],YPOS[k],myACC

);

779                  gsl_interp_accel_reset(myACC);

780                  d2fdxdzval[i][j][k] = gsl_interp_eval_deriv(dxdzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

781                  gsl_interp_accel_reset(myACC);

782              }

783          }

784      }

785  

786      for (i = 0; i < NZ; ++i){

787          for (j = 0; j < NY; ++j){

788              for (k = 0; k < NX; ++k){

789                  zvals[j][k][i] = dfdyval[i][j][k];

790              }

791          }

792      }

793  

794      for (i = 0; i < NY; ++i){

795          for (j = 0; j < NX; ++j){

796              dydzInterp[i][j] = gsl_interp_alloc(t,NZ);

797              gsl_interp_init(dydzInterp[i][j],ZPOS,zvals[i][j],NZ);

798          }

799      }

800  

801      for (i = 0; i < NZ; ++i){

802          for (j = 0; j < NY; ++j){

803              for (k = 0; k < NX; ++k){

804                  d2fdydzval[i][j][k] = gsl_interp_eval_deriv(dydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],myACC

);

805                  gsl_interp_accel_reset(myACC);

806              }

807          }

808      }

809  

810      // Now the one third derivative:

811      for (i = 0; i < NZ; ++i){
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812          for (j = 0; j < NY; ++j){

813              for (k = 0; k < NX; ++k){

814                  zvals[j][k][i] = d2fdxdyval[i][j][k];

815              }

816          }

817      }

818  

819      for (i = 0; i < NY; ++i){

820          for (j = 0; j < NX; ++j){

821              dxdydzInterp[i][j] = gsl_interp_alloc(t,NZ);

822              gsl_interp_init(dxdydzInterp[i][j],ZPOS,zvals[i][j],NZ);

823          }

824      }

825  

826      for (i = 0; i < NZ; ++i){

827          for (j = 0; j < NY; ++j){

828              for (k = 0; k < NX; ++k){

829                  d3fdxdydzval[i][j][k] = gsl_interp_eval_deriv(dxdydzInterp[j][k],ZPOS,zvals[j][k],ZPOS[i],

myACC);

830                  gsl_interp_accel_reset(myACC);

831                  fval[i][j][k] = Az->buffer[i][j][k];

832              }

833          }

834      }

835  

836      // Free memory:

837      for (i = 0; i < NZ; ++i){

838          for (j = 0; j < NY; ++j){

839              gsl_interp_free(xInterp[i][j]);

840              gsl_interp_free(yInterp[i][j]);

841              gsl_interp_free(dxdyInterp[i][j]);

842          }

843      }

844  

845      for (i = 0; i < NY; ++i){

846          for (j = 0; j < NX; ++j){

847              gsl_interp_free(zInterp[i][j]);

848              gsl_interp_free(dxdzInterp[i][j]);

849              gsl_interp_free(dydzInterp[i][j]);

850              gsl_interp_free(dxdydzInterp[i][j]);

851          }

852      }

853  

854      gsl_interp_accel_free(myACC);

855  

856      // Calculate coefficients:

857      ///The order of the points is as follow:

858      ///  0: x=0; y=0; z=0;

859      ///  1: x=1; y=0; z=0;

860      ///  2: x=0; y=1; z=0;

861      ///  3: x=1; y=1; z=0;

862      ///  4: x=0; y=0; z=1;

863      ///  5: x=1; y=0; z=1;

864      ///  6: x=0; y=1; z=1;

865      ///  7: x=1; y=1; z=1;

866      // Array to hold coefficients:

867  

868      double Pfval[8];

869      double Pdfdxval[8];

870      double Pdfdyval[8];

871      double Pdfdzval[8];

872      double Pd2fdxdyval[8];

873      double Pd2fdxdzval[8];

874      double Pd2fdydzval[8];

875      double Pd3fdxdydzval[8];

876  
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877      for (i = 0; i < NZ - 1; ++i){

878          for (j = 0; j < NY - 1; ++j){

879              for (k = 0; k < NX -1; ++k){

880  

881                  double Pfval[8] = {fval[i][j][k],fval[i][j][k+1],fval[i][j+1][k],fval[i][j+1][k+1],fval[i+1

][j][k],fval[i+1][j][k+1],fval[i+1][j+1][k],fval[i+1][j+1][k+1]};

882                  double Pdfdxval[8] = {dfdxval[i][j][k],dfdxval[i][j][k+1],dfdxval[i][j+1][k],dfdxval[i][j+1

][k+1],dfdxval[i+1][j][k],dfdxval[i+1][j][k+1],dfdxval[i+1][j+1][k],dfdxval[i+1][j+1][k+1]};

883                  double Pdfdyval[8] = {dfdyval[i][j][k],dfdyval[i][j][k+1],dfdyval[i][j+1][k],dfdyval[i][j+1

][k+1],dfdyval[i+1][j][k],dfdyval[i+1][j][k+1],dfdyval[i+1][j+1][k],dfdyval[i+1][j+1][k+1]};

884                  double Pdfdzval[8] = {dfdzval[i][j][k],dfdzval[i][j][k+1],dfdzval[i][j+1][k],dfdzval[i][j+1

][k+1],dfdzval[i+1][j][k],dfdzval[i+1][j][k+1],dfdzval[i+1][j+1][k],dfdzval[i+1][j+1][k+1]};

885                  double Pd2fdxdyval[8] = {d2fdxdyval[i][j][k],d2fdxdyval[i][j][k+1],d2fdxdyval[i][j+1][k],

d2fdxdyval[i][j+1][k+1],d2fdxdyval[i+1][j][k],d2fdxdyval[i+1][j][k+1],d2fdxdyval[i+1][j+1][k],d2fdxdyval[i+1][j+

1][k+1]};

886                  double Pd2fdxdzval[8] = {d2fdxdzval[i][j][k],d2fdxdzval[i][j][k+1],d2fdxdzval[i][j+1][k],

d2fdxdzval[i][j+1][k+1],d2fdxdzval[i+1][j][k],d2fdxdzval[i+1][j][k+1],d2fdxdzval[i+1][j+1][k],d2fdxdzval[i+1][j+

1][k+1]};

887                  double Pd2fdydzval[8] = {d2fdydzval[i][j][k],d2fdydzval[i][j][k+1],d2fdydzval[i][j+1][k],

d2fdydzval[i][j+1][k+1],d2fdydzval[i+1][j][k],d2fdydzval[i+1][j][k+1],d2fdydzval[i+1][j+1][k],d2fdydzval[i+1][j+

1][k+1]};

888                  double Pd3fdxdydzval[8] = {d3fdxdydzval[i][j][k],d3fdxdydzval[i][j][k+1],d3fdxdydzval[i][j+

1][k],d3fdxdydzval[i][j+1][k+1],d3fdxdydzval[i+1][j][k],d3fdxdydzval[i+1][j][k+1],d3fdxdydzval[i+1][j+1][k],

d3fdxdydzval[i+1][j+1][k+1]};

889  

890                  // Adjusting values as box size is not unity.

891                  for (l = 0; l < 8; l++) {

892                      Pfval[l]*=1.0;

893                      Pdfdxval[l]*=delX;

894                      Pdfdyval[l]*=delY;

895                      Pdfdzval[l]*=delZ;

896                      Pd2fdxdyval[l]*=delX*delY;

897                      Pd2fdxdzval[l]*=delX*delZ;

898                      Pd2fdydzval[l]*=delY*delZ;

899                      Pd3fdxdydzval[l]*=delX*delY*delZ;

900                  }

901                  tricubic_get_coeff(az[i][j][k],Pfval,Pdfdxval,Pdfdyval,Pdfdzval,Pd2fdxdyval,Pd2fdxdzval,

Pd2fdydzval,Pd3fdxdydzval);

902              }

903          }

904      }

905  }

906  

907  int main(){

908  

909      myArray* __restrict__ filer = new myArray();

910      filer->createFile("seeds.hdf5","tzero");

911      delete filer;

912      gsl_set_error_handler_off();

913      const int noThreads = 4;

914      worker* workers = new worker[noThreads];

915      std::future<void> future[noThreads];

916      std::future_status status[noThreads];

917  

918      for (int i = 0; i < noThreads; ++i){

919          future[i] = std::async(std::launch::async, &worker::seed, workers+i, i);

920          std::cout<<"Initialised thread for t = "<<i<<std::endl;

921      }

922  

923      int t = noThreads;

924  

925      while (t<1001){

926          for (int i = 0; i < noThreads; ++i){

927              status[i] = future[i].wait_for(std::chrono::milliseconds(0));

928              if (status[i] == std::future_status::ready) {

929                  if (t < 1001){// Needed to address issues at the end of the time interval.
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930                      future[i] = std::async(std::launch::async, &worker::seed, workers+i, t);

931                      std::cout<<"Initialised thread for t = "<<t<<std::endl;

932                      std::cout<<"Total progress: "<<t/10<<"% complete."<<std::endl;

933                      ++t;

934                  }

935              }

936          }

937          std::this_thread::sleep_for(std::chrono::seconds(10));

938      }

939      for (int i = 0; i < noThreads; ++i){

940          future[i].wait();

941      }

942  

943      delete [] workers;

944  

945      return 0;

946  }
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  1  /* Program to calculate helicity via winding numbers. */

  2  

  3  /* To compile:

  4  /usr/local/hdf5/bin/h5c++ windingatan.cpp -o windingatan -std=c++0x -pthread -O3

  5  */

  6  

  7  #include <iostream>

  8  #include <math.h>

  9  #include "myArrayv3.h"

 10  #include "JHDF5interp3v2.h"

 11  #include <future>

 12  #include <chrono>

 13  #include <thread>

 14  #include <mutex>

 15  

 16  myArray results;

 17  

 18  std::mutex readLock;

 19  

 20  const double phi = 0.00000000213444;

 21  

 22  void WINDING(int time){

 23      JHDF5* data = new JHDF5("seedsNew.hdf5","tzero");

 24      readLock.lock();

 25      data->initialise(time);

 26      readLock.unlock();

 27      const double pi = 3.141592654;

 28      int i,j,l,seed1[2],seed2[2],a;

 29      const int xdim = 65;

 30      const int ydim = 65;

 31      const int zdim = 50;

 32      double r12x[zdim],r12y[zdim],th12[zdim];

 33      double diff,totalw=0;

 34      //Calculate the winding number

 35      int list[xdim*ydim][2],u,v;

 36      for (u = 0; u < xdim; u++){

 37          for (v = 0; v < ydim; ++v){

 38              list[u+xdim*v][0]=v;

 39              list[u+xdim*v][1]=u;

 40          }

 41      }

 42      for (i = 0; i < xdim*ydim; ++i){

 43          for (j = i+1; j < xdim*ydim; ++j){

 44  

 45              seed1[0]=list[i][0];

 46              seed1[1]=list[i][1];

 47              seed2[0]=list[j][0];

 48              seed2[1]=list[j][1];

 49  

 50              r12x[0] = data->buffer[0][seed2[0]][seed2[1]][0]-data->buffer[0][seed1[0]][seed1[1]][0];

 51              r12y[0] = data->buffer[1][seed2[0]][seed2[1]][0]-data->buffer[1][seed1[0]][seed1[1]][0];

 52              th12[0] = atan2(r12y[0],r12x[0]);

 53  

 54              //Convert to polars

 55              for (a = 1; a < zdim; ++a){

 56                  r12x[a] = data->buffer[0][seed2[0]][seed2[1]][a]-data->buffer[0][seed1[0]][seed1[1]][a];

 57                  r12y[a] = data->buffer[1][seed2[0]][seed2[1]][a]-data->buffer[1][seed1[0]][seed1[1]][a];

 58                  //Use four quadrant atan

 59                  th12[a] = atan2(r12y[a],r12x[a]);

 60  

 61                  diff = (th12[a]-th12[a-1]);

 62                  if (diff > pi){

 63                      diff=diff-2*pi;

 64                  }

 65                  else if (diff<-pi){

 66                      diff=diff+2*pi;
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 67                  }

 68                  totalw+=diff;

 69              }

 70           }

 71      }

 72      delete data;

 73      results.buffer[time] = totalw*phi/(65*65*2*pi);

 74  }

 75  

 76  int main(){

 77  

 78      const int noThreads = 4;

 79      std::future<void> future[noThreads];

 80      std::future_status status[noThreads];

 81  

 82      for (int i = 0; i < noThreads; ++i){

 83          future[i] = std::async(std::launch::async, &WINDING, i);

 84          std::cout<<"Initialised thread for t = "<<i<<std::endl;

 85      }

 86  

 87      int t = noThreads;

 88  

 89      while (t < 1001){

 90          for (int i = 0; i < noThreads; ++i){

 91              status[i] = future[i].wait_for(std::chrono::milliseconds(0));

 92              if (status[i] == std::future_status::ready) {

 93                  if (t < 1001){

 94                      future[i] = std::async(std::launch::async, &WINDING, t);

 95                      std::cout<<"Initialised thread for t = "<<t<<std::endl;

 96                      std::cout<<"Total progress: "<<t/10<<"% complete."<<std::endl;

 97                      ++t;

 98                  }

 99              }

100          }

101          std::this_thread::sleep_for(std::chrono::seconds(2));

102      }

103      for (int i = 0; i < noThreads; ++i){

104          future[i].wait();

105      }

106  

107      results.createFile("windingatan.hdf5","w");

108      results.write("windingatan.hdf5","w");

109  

110      return 0;

111  

112  
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[20] G. Călugăreanu, Rev. Math. Pures Appl. 4, 5 (1959).

[21] M. R. Dennis and J. H. Hannay, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci. 461, 3245 (2005).

[22] M. Abate and F. Tovena, Curves and Surfaces (Springer Publishing, New York,

USA, 2012).

[23] H. K. Moffatt and R. L. Ricca, Proc. R. Soc. A 439, 411 (1992).

[24] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics:

Mainly Electromagnetism and Matter (Addison-Wesley, Boston, USA, 2009).

[25] H. Alfvén, Nature 150, 405 (1942).

[26] F. James, editor, The Correspondence of Michael Faraday (Short Run Press

Ltd., Exeter, 1993).

[27] C. D. Cothran et al., Geophysical Research Letters 32 (2005).

[28] T. I. Gombosi, K. G. Powell, and B. van Leer, Journal of Geophysical Research:

Space Physics 105, 13141 (2000).

[29] S. Fromang and J. Papaloizou, A&A 476, 1113 (2007).

[30] R. Lundin et al., Annales Geophysicae 23, 2565 (2005).

[31] P. Davidson, An Introduction to MagnetohydrodynamicsCambridge Texts in

Applied Mathematics (Cambridge University Press, Cambridge, UK., 2001).

[32] D. Griffiths, Introduction to Electrodynamics (Pearson Education, Upper Saddle

Rvr, NJ, USA, 2012).

[33] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University

Press, Cambridge, UK, 2000).

[34] M. Berger, Plasma Physics and Controlled Fusion 41, B167 (1999).

[35] L. Woltjer, Proceedings of the National Academy of Science 44, 489 (1958).

[36] D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press,

Cambridge, UK, 1997).

[37] M. A. Berger and G. B. Field, J. Fluid Mech. 147, 133 (1984).

124



[38] H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).

[39] L. van Driel-Gesztelyi, P. Démoulin, and C. H. Mandrini, Advances in Space

Research 32, 1855 (2003).

[40] G. E. Hale, PASP 37, 268 (1925).

[41] R. S. Richardson, The Astrophysical Journal 93, 24 (1941).

[42] T. T. Yamamoto, K. Kusano, T. Maeshiro, T. Yokoyama, and T. Sakurai,

Astrophysical Journal 624, 1072 (2005).

[43] E. Priest, Heating the solar corona by magnetic reconnection, in Plasma

Astrophysics And Space Physics, edited by J. Bchner, I. Axford, E. Marsch,

and V. Vasylinas, pp. 77–100, Springer Netherlands, 1999.

[44] H. Isobe and K. Shibata, Journal of Astrophysics and Astronomy 30, 79 (2009).

[45] P. Démoulin and E. Pariat, Advances in Space Research 43, 1013 (2009).

[46] L. Fosdick et al., An Introduction to High-performance Scientific Computing

(MIT Press, Cambridge, USA, 1996).

[47] B. Flowers, An Introduction to Numerical Methods in C++ (Oxford University

Press, New York, USA., 2000).

[48] R. Magazine, R&d 100 awards, http://www.rdmag.com/award-winners/

2002/08/flexible-data-management, 2012.

[49] M. Galassi et al., GNU scientific library, http://www.gnu.org/software/

gsl/, 2013.

[50] L. Carroll, Alice’s Adventures in Wonderland (Mac Millan, London, UK., 1948).

[51] A. Bates and A. Maxwell, DNA Topology, Second ed. (Oxford University Press,

Oxford, UK, 2005).

[52] J. Campbell and M. Berger, Helicity, linking, and writhe in a spherical geome-

try, in Knotted, Linked and Tangled Flux in Quantum and Classical Systems, ,

Journal of Physics conference series Vol. -, pp. –, Institute of Physics, London,

to appear.

[53] G. H. M. van der Heijden and J. M. T. Thompson, Nonlinear Dyn. 21, 71

(2000).

[54] O. Barrett, Elementary Differential Geometry (Academic Press, London, UK,

1966).

125

http://www.rdmag.com/award-winners/2002/08/flexible-data-management
http://www.rdmag.com/award-winners/2002/08/flexible-data-management
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/


[55] F. Nietzsche and W. Kaufmann, The Gay Science: With a Prelude in Rhymes

and an Appendix of SongsVintage (Random House, New York, USA., 2010).

[56] W. Gekelman et al., Review of Scientific Instruments 62, 2875 (1991).

[57] S. Rosenberg and W. Gekelman, Geophysical Research Letters 25, 865 (1998).

[58] B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and I. Joseph, Physics

of Plasmas 20, 055704 (2013).

[59] T. A. Carter and J. E. Maggs, Phys. Plasmas 16, 012304 (2009).

[60] I. H. Hutchinson, Phys. Rev. A 37, 4358 (1988).

[61] K.-S. Chung, Plasma Sources Science and Technology 21, 063001 (2012).

[62] E. R. Priest and P. Démoulin, J. Geophys. Res. 100, 23,443 (1995).

[63] K. Weierstrass, Proceedings of the Prussian Academy of Sciences 2 (1885).

[64] J. D. Faires and R. L. Burden, Numerical Methods, Third ed. (Brooks-Cole

Publishing, Pacific Grove, USA, 2002).
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