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ABSTRACT 

Multi-objective design or extended design of Water Distribution Systems (WDSs) 

has received more attention in recent years. It is of particular interest for 

obtaining the trade-offs between cost and hydraulic benefit to support the 

decision-making process. The design problem is usually formulated as a multi-

objective optimisation problem, featuring a huge search space associated with a 

great number of constraints. Multi-objective evolutionary algorithms (MOEAs) 

are popular tools for addressing this kind of problem because they are capable 

of approximating the Pareto-optimal front effectively in a single run. However, 

these methods are often held by the “No Free Lunch” theorem (Wolpert and 

Macready 1997) that there is no guarantee that they can perform well on a wide 

range of cases. 

To overcome this drawback, many hybrid optimisation methods have been 

proposed to take advantage of multiple search mechanisms which can 

synergistically facilitate optimisation. In this thesis, a novel hybrid algorithm, 

called Genetically Adaptive Leaping Algorithm for approXimation and diversitY 

(GALAXY), is proposed. It is a dedicated optimiser for solving the discrete two-

objective design or extended design of WDSs, minimising the total cost and 

maximising the network resilience, which is a surrogate indicator of hydraulic 

benefit. GALAXY is developed using the general framework of MOEAs with 

substantial improvements and modifications tailored for WDS design. It features 

a generational framework, a hybrid use of the traditional Pareto-dominance and 

the  -dominance concepts, an integer coding scheme, and six search 

operators organised in a high-level teamwork hybrid paradigm. In addition, 

several important strategies are implemented within GALAXY, including the 

genetically adaptive strategy, the global information sharing strategy, the 

duplicates handling strategy and the hybrid replacement strategy. One great 

advantage of GALAXY over other state-of-the-art MOEAs lies in the fact that it 

eliminates all the individual parameters of search operators, thus providing an 

effective and efficient tool to researchers and practitioners alike for dealing with 

real-world cases. 
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To verify the capability of GALAXY, an archive of benchmark problems of WDS 

design collected from the literature is first established, ranging from small to 

large cases. GALAXY has been applied to solve these benchmark design 

problems and its achievements in terms of both ultimate and dynamic 

performances are compared with those obtained by two state-of-the-art hybrid 

algorithms and two baseline MOEAs. GALAXY generally outperforms these 

MOEAs according to various numerical indicators and a graphical comparison 

tool. For the largest problem considered in this thesis, GALAXY does not 

perform as well as its competitors due to the limited computational budget in 

terms of number of function evaluations. 

All the algorithms have also been applied to solve the challenging Anytown 

rehabilitation problem, which considers both the design and operation of a 

system from the extended period simulation perspective. The performance of 

each algorithm is sensitive to the quality of the initial population and the random 

seed used. GALAXY and the Pareto-dominance based MOEAs are superior to 

the  -dominance based methods; however, there is a tie between GALAXY 

and the Pareto-dominance based approaches. 

At the end, a summary of this thesis is provided and relevant conclusions are 

drawn. Recommendations for future research work are also made. 
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min minimisation of a given dataset 

N population size 

n number of objectives 

N/A not applicable 

Nd number of diameter options available 

NI node index 

nl number of loading conditions 

nn number of demand nodes 

norm normalisation of a given variable 

np number of pipes to be optimised 

npj number of pipes connected to node j 

npl number of pipes in loop l 

npu number of pumps 

nr number of reservoirs 

ns number of time steps under loading condition j 

nt number of tanks in the system 

i
tN  number of offspring to be generated by operator i at generation t 
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o 
inequality constraints reflecting the operational requirements, 
such as pressure head at each demand node and flow velocity in 
a pipe 

P set of pipes 

Pd conditional probability of downward variation 

Pdcm probability of dither creeping mutation 

min max,dcm dcmP P  lower and upper bounds of probability of dither creeping mutation 

Pi power of pump i 

i
tP

 number of offspring contributed by operator i at generation t 

Q water consumption at demand nodes 

in
iQ  water flowing into node i 

out
iQ  water flowing out of node i 

Qj water demand at node j 

Qk discharge of reservoir k 

Qt amount of flow leaving tank t 

r1, r2 uniformly distributed random numbers between (0, 1) 

rand a uniformly distributed random number sampled between (0,1) 

randi a uniformly distributed random integer between [a, b] 

randn a normally distributed random number sampled between (0,1) 

RT a uniformly distributed random number sampled between [-1, 1] 

u uniformly sampled random number between (0, 1) 

UB, LB vectors of upper and lower bounds of decision variables 

V velocity of water in pipes 

Vi flow velocity in pipe i 

max
iV  maximum flow velocity requirement of pipe i 
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i
tV  velocity of particle i at generation t 

, ,a b c
t t tX X X  

three randomly selected individuals from current population at 
generation t, and they must be different from each other and from 

i
tX  

i
tX  current best non-dominated solution at generation t 

,a bα α  
variables calculated based on the selected parents ( a

tX  and b
tX ), 

UB, LB and cη  

( )β α  
a vector randomly generated, given a uniformly sampled random 
number u between (0, 1) and a distribution index of cη  for 

Simulated Binary Crossover 

γ  specific weight of water 

δ  
a vector of small variations which are obtained from a polynomial 
distribution of a given uniformly sampled random number u 
between (0, 1) 

ΔH  head loss in a pipe 

Δ l
iH  head loss in pipe i within loop l 

iε  side length of each box in the i-th objective 

1 2,z z
ε  maximum differences among n objectives of two selected 

solutions, one from the AF and the other from the RF 

2z
ε  maximum differences among n objectives of the nearest solution 

in the AF to a given solution z2 in the RF 

cη  distribution index for Simulated Binary Crossover 

mη  distribution index of Polynomial Mutation 

κ  roughness height 

σ  a scaling factor which is equal to 
max min( 1)

10

D D 
 

ω  inertia factor 
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1. INTRODUCTION 

1.1. Background and Motivation 

Water Distribution Systems (WDSs) play a crucial role in a modern city. A WDS 

distributes potable treated water to households, and commercial and industrial 

users. Water delivered via a WDS should not only be of adequate quantity and 

pressure, but also satisfy water quality standards. Building a new WDS, 

especially a large network, always incurs large (capital) expenditures. Therefore, 

it is well understood that sufficient consideration of financial and technical 

issues should be taken during the course of WDS design. 

Failures can happen frequently in an existing WDS over time as components 

deteriorate (e.g., the ageing of pipes due to corrosion). During the operation of a 

WDS, continuous attention should be paid to the status of its components, as 

their failure, either hydraulic or structural, would result in the interruption of 

water supply, thus decreasing the service level of a water company. Replacing 

existing pipes and/or adding new pipes, can improve the performance of a WDS. 

However, funding is often strictly limited and thus a cost-efficient plan is 

required. 

Historically (even today in some cases), the design of WDSs mainly relied on 

engineers’ knowledge and experience. Nevertheless, this is not sufficient to 

cope with large networks, which are common to major cities nowadays. As 

optimisation algorithms, for instance, linear programming (LP), non-linear 

programming (NLP) and evolutionary algorithms (EAs), emerged, it became 

popular to formulate the task as an optimisation problem and solve it using 

these tools. This trend increased particularly during the late 1960s and 1970s 

and quite a few applications can be found in the literature from then on 

(Schaake and Lai 1969; Shamir 1974). On the other hand, various hydraulic 

models were proposed to simulate the behaviour of a WDS. These 

mathematical models were able to capture the hydraulic and water quality 

characteristics of a WDS in steady state or extended period. EPANET 

(Rossman 2000) is one of these packages which is open-source and regarded 
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as an “industry standard” software tool in this field. For this reason, it is used 

throughout this thesis (via its Programmer’s Toolkit) for the hydraulic 

simulations. 

Different formulations have been presented to account for the optimal design of 

WDSs. Previously, single-objective formulations, the so called least-cost design, 

were considered, and focused on minimising the capital cost. The conservation 

of mass and energy of the network system and the pressure requirement of 

demand nodes were treated as the constraints. But later, this formulation was 

often criticised and its drawbacks were highlighted (Engelhardt et al. 2000; 

Walski 2001) as it did not reflect the true concerns of decision makers and the 

criteria whereby WDSs are usually assessed. Multi-objective, particularly two-

objective, formulations have therefore received more attention, since they 

properly reflect the nature of engineering design, i.e., minimising the cost and 

maximising the system performance (e.g., reliability). Constraint violation (e.g., 

nodal pressure shortfall) was once considered as the other objective and thus 

forming an unconstrained, multi-objective optimisation (MOO) problem. 

However, this formulation did not address the issues raised in the single-

objective formulation. Furthermore, the optimal solutions following this 

formulation cannot ensure a reliable network under abnormal conditions (e.g., 

pipe bursts), which is critical to WDSs. As improvements in constraint handling 

techniques have been developed for MOO (Deb et al. 2002), modern algorithms 

are able to deal with constrained optimisation problems. Hence, more insights 

into the trade-offs between the costs and the benefits (like reliability) can be 

explored and analysed. 

At present, it is a common practice to apply optimisation algorithms to solve the 

problem of WDS design using a hydraulic simulation model. Especially, EAs 

(e.g., Genetic Algorithms) have received more attention as they are easy-to-use, 

flexible and have been successfully applied to solve a wide range of problems 

in other fields. Meanwhile, the realistic concerns have considerably driven the 

broad applications of multi-objective evolutionary algorithms (MOEAs) to the 

design problems. 
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Nevertheless, the main criticisms of evolutionary algorithms (both single and 

multi-objective versions) include their robustness (especially on large problems), 

accuracy and parameterisation issues. That is, these algorithms usually require 

a large number of function evaluations and multiple runs to find the near-optimal 

solution(s). Additionally, individual parameters of these algorithms should be 

fine-tuned, which is generally based on rules of thumb and/or the trial-and-error 

approach, thus being computationally expensive especially for large and/or 

complex problems. 

On the other hand, most applications of evolutionary algorithms in the literature 

have focused on a few small-to-medium sized problems, which were 

inadequate to meet real-life requirements. In other words, there is a gap 

between the capability of state-of-the-art optimisation algorithms and their 

performance on large and complex WDS design problems. Although some 

medium-to-large sized problems were introduced, relevant data are often 

unavailable for the community of researchers and practitioners alike to test their 

own algorithms on these problems. Therefore, there is a lack of standardised 

benchmark tests (including both cases and formulations) for the optimal design 

of WDSs. 

Recently, several hybrid algorithms have been proposed in order to improve the 

effectiveness and efficiency of multi-objective optimisation by combining 

different algorithms and/or strategies. The comparative studies (Raad et al. 

2011; Hadka and Reed 2013; Reed et al. 2013) have shown that they can 

outperform the mainstream MOEAs on various test functions and benchmark 

problems in other fields. However, an in-depth study on these hybrid algorithms 

for the optimal design of WDSs is still missing, which motivates the work carried 

out in this thesis. 

This thesis investigates existing hybrid frameworks and aims to develop an 

improved hybrid algorithm in order to further increase the capacity of current 

optimisation algorithms for the optimal design of WDSs. A WDS benchmark 

archive (WDSBA) is set up to facilitate the comparison of these algorithms 

systematically and comprehensively, collecting up to twelve networks from the 
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literature. A two-objective formulation, i.e., minimising the cost and maximising 

a surrogate indicator of hydraulic benefit, is adopted throughout the experiments. 

The proposed hybrid algorithm and other referential algorithms including hybrid 

algorithms and state-of-the-art MOEAs are examined and compared on the 

problems in the WDSBA, considering both ultimate and dynamic performances. 

1.2. Aims and Objectives 

The main objective of this thesis is to improve the current hybrid frameworks for 

the two-objective design or extended design of WDSs. Here, the term “hybrid 

framework” refers to an algorithm that uses diverse search operators 

(population-based EAs and other types) and different strategies simultaneously. 

More specifically, each detailed objective is described as follows. 

 To investigate the state-of-the-art hybrid frameworks in the literature and 

to identify their advantages and disadvantages when applied to the 

optimal design or extended design of WDSs. These hybrid algorithms 

include both EA and non-EA based approaches. 

 To develop an improved hybrid algorithm by tailoring the general 

framework of MOEAs systematically for the discrete nature of WDS 

design and by reconsidering the hybrid paradigm from the viewpoints of 

exploration and exploitation. 

 To set up an archive of benchmark WDS design or extended design 

problems (as many as possible) collected from the literature. A uniform 

formulation, focusing on two objectives constrained optimisation, is 

generalised throughout these benchmark problems. It will facilitate the 

comparative study on the proposed hybrid algorithm and other reference 

algorithms. 

 To apply the proposed hybrid algorithm to solve the problems in the 

WDSBA, and to compare its performance with state-of-the-art hybrid 

algorithms and other MOEAs in terms of both during and at the end of 

the optimisation process. These will be referred to as dynamic and 

ultimate performance respectively. Different computational budgets will 

be considered in accordance with search space sizes of these problems. 
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In addition, for hybrid algorithms the dynamic variations of search 

operators will be monitored and analysed to explain the performance of 

these methods. 

 To apply all the algorithms considered in this thesis to solve the Anytown 

benchmark problem (Walski et al. 1987), which represents a challenging 

extended design problem as it involves operational considerations (i.e., 

pump scheduling). The performance on this difficult problem will further 

demonstrate their potential for solving more complex problems. 

In addition, special attention is given in this thesis to the following aspects: 

1. The best-known Pareto-optimal front (PF) or the true PFs (for small 

design problems) are obtained in this work for each of the benchmark 

problems. These PFs will be available in the public domain and can be 

used as the reference set for the purpose of quantitative comparison. 

2. Diagnoses of the failure of hybrid algorithms on some cases are given. 

The reasons for the deterioration are taken into account when developing 

the improved hybrid framework. 

1.3. Layout 

This thesis is organised into 7 chapters including this introduction. 

In Chapter 2 a literature survey is presented. Firstly, a review of multi-objective 

optimal design of WDSs is given. Then the reviews of hybrid optimisation 

algorithms, particularly the EAs based ones, are provided. Finally, a review of 

the performance assessment of multi-objective optimisation is presented. 

In Chapter 3 the proposed hybrid algorithm is developed step by step based on 

the general framework of MOEAs. The developments include the selection of 

algorithmic framework, dominance concept, variable coding scheme, search 

operators and paradigm of hybridisation. In addition, some important strategies 

implemented in the proposed hybrid method are explained. Then, a sensitivity 

analysis is carried out to verify the robustness of one search operator, which 
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contributes to eliminating the individual parameters of the proposed algorithm. A 

brief summary is given at the end of this chapter. 

In Chapter 4 a WDS benchmark archive is set up by collecting as many as 

possible networks in the public domain. Firstly, a generalised formulation 

considering two objectives, i.e., minimising the cost and maximising a surrogate 

indicator of hydraulic benefit, is presented. Then, twelve benchmark networks 

are introduced in ascending order of search space size following a uniform 

format. The features and classification of these networks are also discussed. 

In Chapter 5 the proposed hybrid algorithm, as well as the other state-of-the-art 

MOEAs, are applied to solve the problems in the WDSBA. The experimental 

setup is described firstly, including (1) a variety of numerical indicators and a 

graphical tool for performance evaluation; (2) computational budgets in terms of 

the number of function evaluations (NFEs) for different cases, and (3) the 

algorithmic setup, i.e., the configurations of individual parameters for each 

algorithm. Next, multiple independent runs using these algorithms with the 

same NFEs are carried out on each benchmark problem. Their attainments, 

both ultimate and dynamic, are compared and discussed. Finally, a summary is 

provided and relevant conclusions are drawn. 

In Chapter 6 all the algorithms considered in the thesis are applied to solve the 

Anytown rehabilitation problem, which is based on an extended period 

simulation model. First, a brief history of this problem is given. Then, the 

formulation is introduced, which is adapted from the one presented in Chapter 4 

as the operation of the Anytown network is taken into account. After that, the 

problem is solved by each algorithm via multiple runs, and the results obtained 

are compared and discussed. In the end, a summary is given and relevant 

conclusions are drawn. 

In Chapter 7 the key findings of the thesis are summarised and relevant 

conclusions are drawn. Finally, recommendations for future research work are 

provided. 
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2. LITERATURE REVIEW 

2.1. Introduction 

In this chapter a literature review of multi-objective design or the extended 

design of WDSs is first presented. Then, hybrid optimisation algorithms, 

especially those that appear superior to state-of-the-art MOEAs, are reviewed. 

In addition, a review of current methods for the performance assessment of 

multi-objective optimisation is covered as it plays an essential role in the 

comparison of different algorithms. 

In Section 2.2 the design of WDSs is posed as a constrained MOO problem. 

Both general and specific problem formulations are given from a mathematical 

viewpoint. Then, a review of the applications of optimisation methods to the 

design of WDSs is provided. Some important issues related to this topic are 

also discussed. 

Hybrid optimisation algorithms, as the main focus of this thesis, are reviewed in 

more detail in Section 2.3, including both EA and non-EA based approaches. A 

concise introduction to hybrid optimisation algorithms is first presented. After 

that, several state-of-the-art multi-objective hybrid algorithms are reviewed 

individually. At the end of this section, the advantages and disadvantages of 

current hybrid algorithms are given, and some important issues, e.g., 

robustness and parameterisation, are discussed. 

In Section 2.4 a review of various methods for the performance assessment of 

MOO is given. It covers both quantitative indicators and qualitative/graphical 

based approaches. In addition, the main characteristics and suitability of these 

methods are discussed. 

Section 2.5 summarises this chapter. 
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2.2. Multi-Objective Optimal Design of WDSs 

2.2.1. Introduction 

A concise history of the multi-objective design or extended design of WDSs is 

provided in this section. Specifically, the focus is on deterministic design 

applications using evolutionary algorithms, since this represents a major 

concern in the literature. Probabilistic design methods are briefly discussed in 

Section 2.2.4. In this thesis, the word “design” refers to the determination of the 

sizes of all the pipe components given the configuration (layout) of a network 

system. In contrast, the word “extended design” or “rehabilitation” refers to the 

determination of the potential intervention options for a subset of pipe 

components and the associated sizes. Note that the words “extended design” 

and “rehabilitation” are used interchangeably hereafter. 

In fact, the design of a WDS usually involves the consideration of many criteria 

(e.g., cost, pressure, reliability or even water quality), which are normally in 

conflict with each other, and thus, design is intrinsically multi-objective. Although 

Gessler (1985) presented solutions as the trade-off between nodal pressure 

and total cost, Halhal et al. (1997) arguably made the first attempt to optimise 

the rehabilitation problem of WDSs in the MOO sense. Halhal et al. (1997) 

addressed the problem of minimising capital cost and maximising a combination 

of benefits using the structured messy genetic algorithm (SMGA). 

Since the introduction of various MOEAs from the late 1980s, these algorithms 

have been gradually adopted for solving the WDS design or rehabilitation 

problems. Cheung et al. (2003) tested Strength Pareto Evolutionary Algorithm 

(SPEA) (Zitzler and Thiele 1999) and Multi-Objective Genetic Algorithm (MOGA) 

(Fonseca and Fleming 1993) on the same problem tackled by Gessler (1985). 

SPEA was observed to outperform MOGA in terms of the quality of solutions 

obtained and time required. Farmani et al. (2003b) discussed the advantages 

and disadvantages of four MOEAs and compared their performance on two 

benchmark problems. They concluded that the elitist Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) (Deb et al. 2002) was a viable tool to find Pareto 

optimal solutions. Keedwell and Khu (2003) proposed a hybrid algorithm based 
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on the well-known NSGA-II and solved the New York Tunnels problem 

(Schaake and Lai 1969) in an effective way. A local search procedure was 

incorporated into NSGA-II by increasing and decreasing the sizes of two pipes 

in small steps until a dominating solution was found. Other MOEAs were also 

used for the design or rehabilitation purposes, like SPEA2 (Farmani et al. 

2005a), Multi-Objective Cross Entropy (MOCE) (Perelman et al. 2008) and a 

class of algorithms based on the concept of probabilistic model building (Olsson 

et al. 2009). An incomplete survey of multi-objective design or rehabilitation of 

WDSs via MOEAs is given in Section 2.2.3. 

Recently, there is a growing trend of applying hybrid algorithms in the context of 

MOO to WDSs. Besides the early work presented by Keedwell and Khu (2003), 

Raad et al. (2008) employed the jumping gene adaptation of NSGA-II to the 

design of WDSs, minimising cost and maximising network resilience (Prasad 

and Park 2004). The modified version of NSGA-II was able to find better 

solutions which were highly resilience and had low costs. Di Pierro et al. (2009) 

applied two versions of hybrid algorithms, taking advantage of machine learning 

techniques, to optimise the design of two real-world networks of medium and 

large size. They showed that these hybrid methods, especially Learnable 

Evolution Model for Multi-Objective optimisation (LEMMO), were promising in 

bridging the gap between the quality of solutions obtained and the 

computational effort invested. They were capable of approximating the Pareto-

optimal front (PF) with a significant reduction of function evaluations (hydraulic 

simulations). Raad et al. (2009) were the first to introduce the hyper-heuristic 

approach, known as A Multi-Algorithm, Genetically Adaptive Multi-objective 

(AMALGAM) method (Vrugt and Robinson 2007), to the design of WDSs. 

Although different from its original form, this version of AMALGAM 

demonstrated the best performance with regard to a number of benchmark 

problems. This point was further highlighted by solving a large real-world 

rehabilitation problem (Raad et al. 2011). Norouzi and Rakhshandehroo (2011) 

combined the concept of a Self Organising Map (SOM), a versatile 

unsupervised artificial neural network (Kohonen 1990), with NSGA-II and tested 

this SOM-NSGA-II on two small benchmark networks, minimising cost and 
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maximising resilience index (Todini 2000). They claimed that SOM successfully 

discovered similarities between individuals of the population and could benefit 

the crossover operator, which resulted in a faster convergence or a wider 

diversity. 

Most recently, Wang et al. (2014b) compared two types of high-level hybrid 

algorithms, namely the original AMALGAM and the multi-objective hybrid 

optimisation (MOHO) (Moral and Dulikravich 2008), on a range of benchmark 

problems collected from the literature. They found that AMALGAM and MOHO 

may suffer from deterioration in performance especially on large and complex 

problems. In contrast, Creaco and Franchini (2013) developed a low-level 

hybrid algorithm based on NSGA-II, which was shown to be dramatically 

superior to NSGA-II on four small to medium sized real-world design problems. 

In short, various MOEAs have been applied to the multi-objective design or 

extended design of WDSs in the past two decades. For a comprehensive 

review of this area readers are referred to Raad (2011). He pointed out that a 

common problem in most of the aforementioned studies lies in the fact that only 

a small number of networks, if not relatively simple networks, were considered. 

This makes difficulty in drawing general conclusions about algorithmic 

performance. Actually, there is also a lack of widely accepted problem 

formulations when comparing these MOEAs. Some works formulated the 

design problems as unconstrained MOO problems, whereas others focused on 

constrained MOO problems. Furthermore, the effect of parameterisation of 

various MOEAs was not well addressed in the literature. However, it is without 

doubt that hybrid algorithms are promising for the optimisation of WDSs. 

Nevertheless, there is obviously a lack of systematic comparative studies 

among these hybrid methods, which is the main focus of this thesis. 

2.2.2. Problem Formulation 

General Problem Formulation 

Real-world applications of optimal WDS design often involve a number of 

objective functions as mentioned in Section 2.2.1. In the literature, most 
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relevant works focused mainly on the two-objective optimal design of WDSs, 

considering the minimisation of total costs and maximisation of system benefit 

(e.g., reliability). Therefore, this thesis follows this constrained, two-objective 

formulation and aims at finding the best trade-off between costs and system 

benefit for a given design problem. Fu et al. (2012a) firstly proposed a many-

objective formulation of WDS design, in which up to six goals were considered 

simultaneously. However, it is out of the scope of this thesis. 

A general problem formulation of the two-objective design or rehabilitation of 

WDSs (concerning only pipe components) is given in Eq. (2.1). It includes the 

objective functions, decision variables and a set of constraints. The main 

objectives are: (i) minimising the total capital cost and (ii) maximising the 

hydraulic benefit, which can be considered from diverse perspectives (see the 

subsequent section). The decision variables are usually the diameter settings 

(or diameter option indices) of all or a subset of pipes. The MOO model is 

subject to various constraints. In general, three types of constraints are 

considered: (1) bounds on decision variables (subject to availability in the 

market); (2) physical constraints such as conservation of mass and energy 

(handled implicitly by a hydraulic solver); and (3) operational constraints 

(regulation requirements). 
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(2.1)

Where, np - number of pipes to be optimised; Cu - unit cost corresponding to a 

specific diameter option; Di - diameter of pipe i; Li - length of pipe i; D - pipe 

diameters; H - hydraulic heads; Q - water consumption at demand nodes; Nd - 

number of diameter options available; V - velocity of water in pipes; g - equality 

constraints; o - inequality constraints reflecting the operational requirements, 

such as pressure head at each demand node and flow velocity in a pipe. 
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Specific Problem Formulation 

Total Capital Cost 

Constructing or upgrading a WDS requires a great amount of capital 

expenditure. The total capital costs (initial investment) of such a project are 

mainly comprised of the purchase, transportation and installation (including 

excavation) of pipe components. Obviously, these processes cannot be finished 

at one time, which implies that the expenditure occurs at different stages and 

time value of money (e.g., discount rate) should be considered. 

In addition, a more realistic way to measure the total capital costs is to consider 

the life-cycle cost (converted to the corresponding net present value), which 

includes the initial cost of pipes, the cost of replacement of old pipes, the cost of 

cleaning and lining existing pipes and the expected repair cost for pipe breaks 

(Jayaram and Srinivasan 2008). However, various factors need to be taken into 

account in such a situation, and they may vary according to other reasons (e.g., 

the break rate of pipe varies according to materials and locations), which is out 

of scope of the thesis. 

Hence, for the sake of simplicity, only the initial costs associated with pipe 

components are considered for the calculation of total capital costs. 

Hydraulic Performance Benefit 

Many aspects of a WDS can be considered during the design stage, such as 

system reliability and water quality. Among these concerns, system reliability is 

of great importance to most water companies and as such it has received 

attention in the past two decades. 

Todini (2000) introduced the resilience index indicator (denoted as Ir) to 

optimise the design of looped municipal networks, based on the concept of 

“resilience” of a system under stressed or failure conditions. Generally speaking, 

a system that contains sufficient surplus power at each node is able to cope 

with possible failures (either mechanical failure, like pipe bursts or hydraulic 

failure due to changes in water demand), which inevitably results in increased 

internal energy dissipation. Increasing Ir will lead to improved network 
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performance under abnormal conditions. Moreover, Ir is computationally 

efficient compared with other reliability based indicators, which require 

extensive statistical analyses. The definition of Ir is given in Eq. (2.2). 
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Where, Ir – resilience index; nn - number of demand nodes; Qj, Hj and Hj
min - 

demand, actual head and minimum head of node j; nr - number of reservoirs; Qk 

and Hk - discharge and actual head of reservoir k; npu - number of pumps; Pi - 

power of pump i; γ  - specific weight of water. 

However, using Ir as an indicator has some drawbacks: (1) the increase in value 

of this indicator does not necessarily result in the improvement of network 

reliability (Prasad and Park 2004); and (2) it cannot handle networks with 

multiple sources (Jayaram and Srinivasan 2008). Later on, Prasad and Park 

(2004) proposed an improved resilience based indicator, known as network 

resilience (denoted as In), which took both the nodal surplus head and the 

uniformity of pipes connected to that node into account. By comparing the 

results with former hydraulic benefit measures (Ir, minimum surplus head and 

total surplus head), they substantiated that the maximisation of In improved both 

the surplus power of demand nodes and continuity of size between adjacent 

pipes, which assisted a network in countering the stressed conditions (e.g., pipe 

breakage). The equation of In will be presented in Chapter 4. 

Tanyimboh and Templeman (1993) proposed a flow entropy measure based on 

the informational entropy function (Shannon 1948). Flow entropy measures the 

uniformity of pipe flow rates across the network. It is better at representing 

multi-source networks and considers the reliability issue in a probabilistic way. 

The application of this indicator to a complex WDS design problem showed that 

the flow entropy can alleviate the drawbacks of using Ir and thus can be used as 

a surrogate reliability measure (Prasad and Tanyimboh 2008). 
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Recently, Raad et al. (2010b) compared four reliability surrogate measures, 

including flow entropy (Prasad and Tanyimboh 2008), Ir (Todini 2000), In 

(Prasad and Park 2004) and a mixed reliability surrogate (normalised flow 

entropy multiplied by Ir), and recommended In as the most practical measure for 

general WDS design. Besides being able to eliminate impracticable loops in the 

network, In was proved to be correlated to failure reliability in terms of demand 

satisfaction under pipe outage conditions. 

Therefore, the network resilience indicator is used in this thesis to account for 

the hydraulic performance benefit of WDSs for design or rehabilitation purposes. 

EPANET software (Rossman 2000) is employed to run the hydraulic simulation, 

by which the variables required for the calculation of In are obtained. 

2.2.3. Multi-Objective Optimisation Methods 

As mentioned in Section 2.2.1, various MOEAs have been applied to address 

the optimal design or rehabilitation of WDSs in the past two decades. Table 2.1 

gives a survey of the most representative works (comparative studies) in the 

literature. These studies are summarised chronologically according to four 

criteria, i.e., problem formulation (objectives), methodologies (algorithms), 

experimental setup (computational budget) and performance indicators. It is 

evident that (1) NSGA-II is still one of the most popular algorithms considered in 

the water community; and (2) there is a clear trend that more benchmark 

problems and more advanced methodologies (e.g., formulations, algorithms and 

performance indicators) are being considered in the research activities. 
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Table 2.1 Most representative studies of multi-objective optimal design or rehabilitation of WDSs in past two decades 

Papers Objectivesa Algorithms 
Experimental Setup 

Performance Indicators 
Typeb Computational Budget No. of 

NFEc Popd Gene Runs Cases

(Wang et al. 2014b) 
Min(C) 

Max(In) 

AMALGAM 

MOHO 

NSGA-II 

NFE 
25,000-

500,000 
100 

250-

5,000 
30 12 

(1) ratio of hypervolume 

(2) number of solutions contributed 

(3) graphical comparison 

(Creaco and Franchini 

2013) 

Min(C) 

Max(In) 

A Low-Level Hybrid Algorithm 

NSGA-II 
NFE 

25,000-

100,000 
100 

250-

1,000 
1 4 graphical comparison 

(Raad et al. 2011) 
Min(C) 

Max(In) 
23 MOEAs Time N/A 64-256 N/A 30 9 

(1) dominance rank 

(2) hypervolume metric 

(Norouzi and 

Rakhshandehroo 

2011) 

Min(C) 

Max(Ir) 

SOM-NSGA-II 

NSGA-II 
NFE N/A N/A 100-200 N/A 2 

(1) graphical comparison 

(2) generational distance 

(Raad et al. 2010a) 
Min(C) 

Max(In) 

AMALGAMndu 

AMALGAMndug 

NSGA-II 

DE 

UMDA 

GREEDY 

Time N/A 100 N/A 30 4 
(1) dominance rank 

(2) hypervolume metric 

(Di Pierro et al. 2009) 
Min(C) 

Min(Impd) 

ParEGO 

LEMMO 

PESA-II 

NFE 
873-

600,000 
100-400

100-

2,000 
10 2 

(1) graphical comparison 

(2) size of Pareto front 

(3) hydraulic performance metrics 

(Olsson et al. 2009) 
Min(C) 

Min(Itpd) 

NSGA-II 

UMDA 
NFE 

200,000-

250,000 

200-

2,500 

100-

1,250 
5-10 3 

(1) graphical comparison 

(2) hypervolume metric 
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Min(C) 

Min(Impd) 

hBOA 

CSM 

(3) coverage metric 

(Raad et al. 2009) 
Min(C) 

Max(In) 

AMALGAMnjgp 

AMALGAMnjg 

NSGA-II 

NSGA-II-JG 

GREEDY 

NFE 10,000 100 100 20 4f 
(1) graphical comparison 

(2) hypervolume 

(Perelman et al. 2008) 
Min(C) 

Min(Impd) 

MOCE 

NSGA-II 
NFE 

76,800-

3,360,000 

200-

1,000 

384-

3,360 

30-

50 
2 

(1) graphical comparison 

(2) generational distance 

(3) distance measure 

(4) distribution measure 

(Raad et al. 2008) 
Min(C) 

Max(In) 

NSGA-II 

JG 
Time N/A 100 N/A 30 4 

(1) dominance count rank 

(2) hypervolume metric 

(Farmani et al. 2005a) 
Min(C) 

Min(Impd) 

NSGA-II 

SPEA2 
NFE 

100,000-

300,000 
100 

1,000-

3,000 
5-20 3 

(1) graphical presentation 

(2) binary epsilon-indicator 

(3) binary coverage indicator 

(Nicolini 2004) 
Min(C) 

Min(Impd) 

ENGA 

NSGA-II 

CNSGA-II 

NFE 25,000 50 500 10 1 
(1) convergence index 

(2) sparsity index 

(Prasad and Park 

2004) 

Min(C) 

Max(In) 
NSGA NFE 

100,000-

2,000,000 
100-200

1,000-

10,000 
1-3 2 graphical comparison 

(Cheung et al. 2003) 
Min(C) 

Min(Impd) 

MOGA 

SPEA 
NFE 

5,000-

100,000 
100-500 50-200 30 1 

(1) set coverage metric 

(2) graphical comparison 

(3) processing time 

(Farmani et al. 2003b) 

Min(C) 

Min(Itpd) 

and 

NSGA-II 

PAESg 

MOGA 

NFE 200,000 200 1,000 2 2 graphical comparison 
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Min(C) 

Min(Impd) 

NPGA 

(Keedwell and Khu 

2003) 

Min(C) 

Min(Itpd) 

NSGA-II 

NSGA-II+Local Search 
NFE 

5,000-

15,000 
100-200 50-150 3 1 graphical comparison 

(Todini 2000) 
Min(C) 

Max(Ir) 
Heuristic Approach N/A N/A N/A N/A N/A N/A N/A 

(Halhal et al. 1997) 
Min(C) 

Max(Benefit) 

SMGA 

SGA 
NFE 

5,000-

25,000 
40 125-625 3 2 graphical comparison 

Note: aC in the objective function means Cost. bThe types of optimisation include computational time based and number of function 

evaluations based. cNFE means number of function evaluations. dPop means population size. eGen means number of generations for 

optimisation. fThe experimental settings were not applied to the real world case. gPAES did not follow the experimental setup specified in 

the table above, but it was allowed to evaluate the same number of trial solutions (i.e., 200,000). N/A means that the relevant information 

is not applicable. Impd means maximum pressure deficit. Itpd means total pressure deficit. For the acronym of each algorithm, please refer 

to List of Abbreviations. 
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2.2.4. Other Issues of WDS Design 

Demand Driven Model vs. Pressure Dependent Demand Model 

It is well understood that the accuracy of a hydraulic simulation model is of great 

importance to its application, since a model which cannot simulate the real 

behaviour of a system would result in misguided decision making, thus wasting 

a huge amount of money and other resources. Most works in the literature 

address the design problems using a conventional hydraulic model, i.e., the 

demand driven model (DDM). A DDM (e.g., EPANET) assumes that water 

demand at each node is always satisfied, and then the equations of mass and 

energy conservation are solved to calculate the pressures at nodes and flow 

rates in links. Simulation using such kind of models, either in the steady-state or 

extended period simulation (EPS) condition, works well for a WDS under normal 

conditions, in which the minimum nodal pressures are satisfied. However, in 

real-world networks, the systems may suffer from pressure deficiencies due to 

various reasons, such as pump failures, pipe bursts, fire fighting or planned 

maintenance work causing the disconnection of major pipes (Siew and 

Tanyimboh 2012). The DDM cannot cope with these situations and thus may 

produce inaccurate results for the nodal demands and pressures. For instance, 

the entire nodal demand can be fulfilled with water under low or even negative 

pressure in a DDM, which is unrealistic and proves to be one of the drawbacks 

of a DDM. 

To deal with this issue, many pressure dependent demand (or pressure driven 

demand) models (PDDM) have been proposed and verified on a number of 

benchmark networks, considering both normal and pressure deficient scenarios. 

Some methods (Bhave 1991; Gupta and Bhave 1996; Kalungi and Tanyimboh 

2003; Ang and Jowitt 2006) used the DDM repetitively until a satisfactory 

hydraulic consistency was obtained, thus requiring intensive computation. This 

may limit its applicability to large networks. In contrast, other methods (Cheung 

et al. 2005; Rossman 2007; Giustolisi et al. 2008; Morley and Tricarico 2008; 

Tanyimboh and Templeman 2010; Siew and Tanyimboh 2012) incorporated the 

PDDM by introducing a head-flow relationship in the hydraulic equations. A 
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comprehensive review of the PDDM can be found in Wu et al. (2009) and Siew 

and Tanyimboh (2012). 

The DDM can exaggerate the pressure shortage and is unable to cope with 

different pressure-deficient scenarios commonly found in a real network system. 

Using the PDDM for the optimal design or rehabilitation of a WDS under various 

scenarios can provide more useful information to modellers and decision 

makers than the traditional DDM. Thus, a solution found following this approach 

is likely to significantly improve the reliability and robustness of the system. 

Nevertheless, it should be noted that the work undertaken in this thesis only 

considers the normal condition within a WDS, that is, water consumption at 

demand nodes can be fully met at the adequate pressure. Hence, only the 

conventional hydraulic model, namely a demand driven EPANET 2 solver, is 

used throughout the thesis. 

Model Uncertainties 

WDS simulation models cannot perfectly describe the behaviour of a real-life 

network, especially for large and complex systems. Even as a practical tool to 

analyse WDSs, there are numerous factors that introduce uncertainties to the 

simulation models. Kapelan et al. (2005) provided a summary of various factors 

that lead to uncertainties in WDS modelling. However, only uncertainties in 

water consumption and pipe roughness coefficient were considered in their 

work. In fact, these types of uncertainties are intrinsic to a WDS, mainly caused 

by the fluctuations of water use and the deterioration of pipe components. 

The stochastic optimal design of WDSs (Lansey et al. 1989; Xu and Goulter 

1999; Tolson et al. 2004) can be quite computationally demanding. Therefore, 

probability-based approaches have been frequently employed to cope with the 

uncertainties associated with WDSs, in which unknown variables (e.g., nodal 

demands and roughness coefficients) are sampled from a pre-specified 

probability density function in problem formulation. Babayan et al. (2005) 

presented such a method by linking an efficient Genetic Algorithm (GA) to an 

integration-based uncertainty quantification method, considering demand 

uncertainty. Kapelan et al. (2005) and Giustolisi et al. (2009) considered 
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uncertainties in both nodal demand and pipe roughness, and formulated the 

robust WDS design as a MOO. These works also focused on improving the 

computational efficiency (reduced time) when locating the robust solutions on 

the PF. 

Since it is not one of the objectives of this thesis, all the benchmark models (see 

Chapter 4) used in this thesis are considered deterministically. Nevertheless, it 

is worth noting that omitting uncertainty in the design phase may produce an 

under-design network which can be problematic from a long-term perspective 

(Babayan et al. 2005). 

2.3. Hybrid Optimisation Algorithms 

There exist many ways of creating hybrid optimisation algorithms. However, 

those based on metaheuristics (e.g., EAs) are primarily considered in the 

following section as they generally make few assumptions about the domain-

specific knowledge and thus are often used in a wide range of applications. In 

addition, since MOO is the major concern of the thesis, hybrid algorithms that 

are proposed for single-objective optimisation are not considered specifically. 

2.3.1. Introduction 

MOO is aimed at solving a problem involving more than one objective (often 

conflicting with each other), with or without constraints. In contrast to single-

objective optimisation, the outcome of MOO is a set of solutions which are non-

dominated to each other, representing the trade-off relationship between 

different goals. Here, the non-domination means that no solution can 

outperform the other solutions in all objectives. Such an optimal set of solutions 

in the decision variable space is called the Pareto-optimal Set (PS), whereas its 

shape in the corresponding objective space is known as the PF. 

Generally speaking, the goal of MOO is to find the PS and PF to a given 

problem. However, it is not easy to achieve such a goal as MOO is intrinsically 

multi-modal, which means that an optimiser can be easily trapped in local 

optima. Therefore, an algorithm which is able to approximate the PF as close as 

possible and to maintain a wide distribution of solutions along the PF is much 
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preferred by the analysts and decision makers. Among various techniques for 

dealing with MOO problems, MOEAs have increasingly gained attention due to 

the success and flexibility in a wide range of applications. Coello (2006) 

presented a historical review of the field of MOEAs over the past three decades 

and categorised their development into two distinct generations. The first 

generation of MOEAs (from 1983 to 1998) was characterised by the simplicity of 

the algorithms, but there was a lack of methodologies to validate them. In 

contrast, the second generation of MOEAs (from 1998 to date) emphasised the 

efficiency aspect (both at the algorithmic level and the data structure level), 

which was characterised by adopting the mechanism of elitism. In addition, 

many test problems and performance indicators were proposed during this 

period to facilitate the validation of the second generation of MOEAs. Hybrid 

algorithms, which combine different MOEA concepts (mechanisms) into a 

unified framework, emerged recently in the literature. Jourdan et al. (2009) 

proposed to extend an existing taxonomy (Talbi 2002) of hybrid algorithms 

using exact methods and metaheuristics. Four basic types of hybrid algorithms 

were derived from the taxonomy; that is, low-level relay hybrid, low-level 

teamwork hybrid, high-level relay hybrid and high-level teamwork hybrid. A 

review on state-of-the-art hybrid MOEAs is presented in Section 2.3.2. 

Currently, it might be too early to say whether hybrid MOEAs can represent the 

third generation of MOEAs in the community. However, it is worth investigating 

the mechanism and performance of these hybrid methods on a wide range of 

real world applications, like the multi-objective design or rehabilitation of WDSs, 

which is the focus of this thesis. This will facilitate the understanding of hybrid 

MOEAs from both theoretical and practical perspectives. 

2.3.2. State-of-the-Art Multi-Objective Hybrid Algorithms 

A summary of several efficient multi-objective hybrid algorithms reported in the 

literature is presented in the following section. Some are dedicated MOEAs 

which are tailored for the optimal design or rehabilitation of WDSs; whereas the 

others are of general purpose type which are suitable for a wide range of 

problems. Note that not all hybrid algorithms from the literature are included, but 
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only those with useful features for the problem under consideration in this thesis 

are covered. 

ParEGO 

ParEGO (Knowles 2005) was proposed as an effective and efficient search tool 

in the situation where the number of function evaluations is highly restricted due 

to financial and/or temporal considerations. The method was extended from the 

single-objective Efficient Global Optimisation algorithm (Jones et al. 1998). 

ParEGO learns a Gaussian process model of the search landscape, which is 

frequently updated after each function evaluation. More precisely, a version of 

the design and analysis of computer experiments (DACE) model (Sacks et al. 

1989) was used to approximate the search space, which appeared to work well 

in cases with low noise and a small number of dimensions. Different objective 

values were aggregated into a single one using the augmented Tchebycheff 

function, and at each iteration, a different weight vector was chosen to gradually 

build an approximation to the PF. A steady state genetic algorithm was 

embedded within ParEGO to discover the solution that maximises the expected 

improvement with respect to the DACE model. Since, at each step, ParEGO 

requires hundreds of matrix inversions based on the solutions found so far, it 

can be computationally expensive for longer searches. In addition, ParEGO 

may not be well-suited for the problems involving a large number of decision 

variables (high dimensionality), which is the case in the design of WDSs. 

In Knowles (2005), ParEGO generally outperformed NSGA-II on nine selected 

benchmark test problems, featuring low-dimensional, non-pathological 

characteristics. Di Pierro et al. (2006; 2009) applied ParEGO for the first time to 

the multi-objective design of WDSs, comparing it with another hybrid algorithm, 

known as LEMMO (Jourdan et al. 2004), and PESA-II (Corne et al. 2001). The 

results showed that ParEGO could achieve a satisfactory performance with a 

significant reduction in the number of function evaluations. 

LEMMO 

Jourdan et al. (2004; 2005a; 2005b) developed a Pareto-dominance based 

hybrid MOEA by integrating a Learnable Evolution Model (Michalski et al. 2000) 
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into NSGA-II (Deb et al. 2002). Learnable Evolution Model for Multi-Objective 

optimisation (LEMMO) was applied to solving the optimal design and 

rehabilitation problems of WDSs. In order to improve the performance of MOEA 

as well as reduce the NFEs, the whole procedure was comprised of evolution 

phases and learning phases. In the evolution phases, NSGA-II was 

implemented as usual and a set of training data was collected. Then, after every 

10 generations, the C4.5 induction algorithm (Quinlan 1993) was implemented 

to extract rules from the resulting decision tree. The algorithm used the best and 

the worst 30% of solutions found with respect to a specific objective (randomly 

swapped in each learning phase) as good and bad sets, respectively. These 

new criteria (i.e., positive and negative rules from C4.5) were applied to 

generate offspring and repair the ones matching the negative rules. 

LEMMO was compared with NSGA-II and PESA-II, which were well-known 

benchmark MOEAs in the literature. The comparative studies (Jourdan et al. 

2005b; Di Pierro et al. 2009) proved that LEMMO was promising in tackling 

complex network design problems associated with a large number of pipes. It 

can save substantial computational budget and improves the performance 

significantly. 

AMALGAM 

Vrugt and Robinson (2007) proposed a multi-algorithm, genetically adaptive 

multi-objective method, named AMALGAM, as a high-level teamwork hybrid 

optimisation framework (Talbi 2002). It employed four sub-algorithms 

simultaneously, including NSGA-II (Deb et al. 2002), adaptive metropolis search 

(AMS) (Haario et al. 2001), particle swarm optimisation (PSO) (Kennedy and 

Eberhart 2001) and differential evolution (DE) (Storn and Price 1997). 

AMALGAM was designed to overcome the drawbacks of using an individual 

algorithm, and thus is suitable for a wide range of problems. The strategies of 

global information sharing and genetically adaptive offspring creation were 

implemented in the process of population evolution. More specifically, the pool 

of current best solutions was shared among sub-algorithms for reproduction. 

The basic idea of adaptive multi-method search was to take full advantage of 
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the most efficient sub-algorithm and to keep a balance in using diverse methods. 

Each algorithm was allowed to produce a number of children according to the 

reproductive rate (ratio of the children alive to the children created) in the 

previous generation. However, if a sub-algorithm failed to contribute even a 

single individual in the latest population, a minimum number of individuals (5 as 

the bottom line) were consistently maintained for it to generate the offspring. 

Therefore, the most successful sub-algorithm (with highest reproductive rate) 

was favoured by giving more spaces to accommodate its offspring, but none 

was completely discarded even though it exhibited the worst performance. 

In addition, AMALGAM provided a general template which is flexible and 

extensible, and can easily accommodate any other population-based algorithm. 

Raad et al. (2009; 2011) subsequently demonstrated that this hybrid framework, 

with other ingredients specially tailored for WDS design or rehabilitation, 

convincingly outperformed NSGA-II for a large real-world problem. Nevertheless, 

Wang et al. (2014b) argued that AMALGAM may suffer a severe deterioration in 

performance due to the loss of adaptive capabilities when facing complex 

design problems. 

MOHO 

In contrast to AMALGAM, Moral and Dulikravich (2008) presented another 

Pareto-dominance based multi-objective hybrid optimisation algorithm (MOHO) 

as a high-level relay hybrid metaheuristic, which implemented three sub-

algorithms in a sequential manner. MOHO coordinates the Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) (Zitzler et al. 2002), the Multi-Objective 

Particle Swarm Optimisation (MOPSO) (Eberhardt et al. 2001) and the Non-

Dominated Sorting Differential Evolution (NSDE, a low-level hybrid 

metaheuristic combining NSGA-II and DE), and decides which one of them is to 

generate offspring using the automatic switching procedure. More specifically, 

MOHO proceeds by choosing one of three sub-algorithms for producing the 

next generation based on the performance of the currently employed algorithm. 

Five different indicators for measuring improvements on finding non-dominated 

solutions, including the quality of approximation and distribution, were used to 
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determine whether to continue with a particular sub-algorithm or change to 

another one. 

MOHO evaluated the performance of its sub-algorithms on five distinct 

improvements: (1) changes in the size of non-dominated set; (2) whether the 

new solution could dominate any member in the last generation; (3) changes in 

the hypervolume indicator; (4) changes in average Euclidian distance; (5) 

increase in the spread indicator. The innovative part of this evaluation strategy 

was that MOHO considers not only the quality of the non-dominated set in the 

next generation (i.e., in terms of convergence and diversity), but also takes into 

account the perturbation introduced by the potential solutions, which might bring 

substantial improvement in later iterations. 

Wang et al. (2014b) showed that MOHO was less efficient than AMALGAM for 

a diverse range of benchmark design or rehabilitation problems. Therefore, it is 

not considered in the comparative studies in Chapters 5 and 6. 

Borg 

Using  -MOEA (Deb et al. 2005) as its predecessors, Borg (Hadka and Reed 

2013) incorporated more advanced features into a unified framework, including 

 -dominance,  -progress (a measure of convergence speed), randomised 

restart, and auto-adaptive multi-operator recombination (similar to AMALGAM). 

The comparative study (Hadka and Reed 2012) on thirty-three instances of 

three well-known test suites revealed that it was efficient and reliable on various 

problems with difficult characteristics. Besides its flexibility, Borg showed a large 

region of so-called “sweet spots” (Purshouse and Fleming 2007) in the 

parameterisation space, indicating a robust, high-performing method. 

The advantages of Borg are threefold: (1) usage of  -box dominance archive 

contributes to maintaining the convergence and diversity concurrently 

throughout search; (2) the combination of time continuation (Srivastava 2002), 

adaptive population sizing, and two types of randomised restart (i.e.  -progress 

triggered restart and population-to-archive ratio triggered restart) boosts the 

algorithm towards PF; (3) simultaneous employment of multiple recombination 
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operators enhances performance on a wide assortment of problem domains. In 

addition, using the steady-state, elitist model of  -MOEA (Deb et al. 2005) 

makes it easily extendable for use on parallel architectures. Borg has also been 

successfully used to solve various challenging, many-objective, real-world 

problems in the domain of water resources (e.g., rainfall-runoff calibration, long-

term groundwater monitoring and risk-based water supply portfolio planning). 

For greater details, the reader is referred to Reed et al. (2013). 

2.3.3. Other Issues of Hybrid Optimisation Algorithms 

Parameterisation and Robustness 

EAs are frequently criticised for their heavy computational overhead and 

parameterisation issue (Kollat and Reed 2006). It is a common practice to allow 

a great number of function evaluations for optimisation; however, there is no 

guarantee that the best PF can be found. On the other hand, it is well 

established that the individual parameters can greatly impact on the 

performance of EAs. Although there are some recommended settings (rules of 

thumb), the problem-dependent parameters of EAs usually require a fine-tuning 

process, which is time-consuming especially for large and/or complex problems. 

It is also risky to adopt the current best combination of parameters for another 

application. The issue can be even more challenging for hybrid algorithms, 

since more parameters are probably involved. 

Consequently, some efforts have been made to develop the adaptive or self-

adaptive EAs in order to alleviate this issue to some extent. Abbass (2002) 

presented a self-adaptive DE in which the crossover and mutation rates were 

altered in the same way as yielding offspring from parents in each generation. 

Zheng et al. (2013b) encoded the crossover probability and differential weight 

into the chromosome and updated their values at the individual level during 

evolution. These approaches can be expected to reduce the effort required to 

fine-tune an algorithm, thus being robust for a range of applications. 
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Constraint Handling 

Most real-world optimisation problems contain constraints, including side 

constraints and/or functional constraints (Hassan et al. 2005). Here, the side 

constraints refer to the allowed range of decision variables, whereas the 

functional constraints involve other considerations related to the specific 

requirements of the problem formulation. The existence of these constraints 

usually adds another level of difficulty to the problem, since an algorithm must 

be able to move out of the infeasible region to identify the optima. Various 

methods have been developed to handle constraints, from the widely used 

penalty-function to the more advanced strategies, like the Inverse Parabolic 

Spread method introduced by Padhye et al. (2013b). Penalty-function based 

strategies are criticised because they usually require the specification of a 

scaling factor (weight) to properly discriminate among infeasible solutions. In 

contrast, one commonly used strategy, which is penalty-free, was proposed by 

Deb et al. (2002) in NSGA-II. It deals with constraints in the selection process 

by discriminating against infeasible solution with respect to feasible ones. This 

turned out to be very effective and efficient for solving constrained problems. 

However, as stated in Singh et al. (2013), such a strategy forced NSGA-II to 

approach the global optima through the feasible region only. On the contrary, 

the strategy they applied, i.e., preserving a small portion of ‘good’ infeasible 

solutions, drove the algorithm from various directions, thus increasing the 

chance to reach the global optima. 

Other constraint-handling methods also exist. For example, MOEAs themselves 

can be used to convert a problem from constrained to unconstrained by treating 

the constraint violation as an additional objective. However, this method 

inevitably increases the computational complexity of the original problem, 

thereby suffering from the ‘curse of dimensionality’. 

2.4. Performance Assessment 

It is important to verify the capacity of a newly-developed algorithm against 

existing ones (usually the most popular algorithms) through comparative studies. 

Nevertheless, it is always non-trivial to consider how the performance should be 
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evaluated. Note that there are mainly two distinct goals in MOO: (1) to 

approximate the PF as close as possible (convergence); and (2) to maintain a 

good spread of solutions in the objective space (diversity) (Deb et al. 2002). 

Ideally, a good algorithm is expected to discover the solutions lying on the PF 

and well distributed over the entire objective space (spread). However, this is 

not always possible when dealing with difficult problems. 

In most general cases, the outcome of MOO is a set of solutions, known as 

non-dominated solutions, rather than a single solution (scalar) as in single-

objective optimisation. The complexity arises due to the fact that the relationship 

between the data sets obtained by different algorithms may not be easy to 

interpret. For instance, Figure 2.1 shows several scenarios which one may 

encounter during MOO (assuming that both objectives are to be minimised). In 

case (a), one can easily tell that set A is better than set B in terms of closeness 

to the PF (shown in a thicker solid line). However, in case (b), set A and B are 

incomparable as part of solutions in set A are dominated by those in set B, and 

vice versa. Case (c) demonstrates a more complicated situation, in which set A 

is better than set B in terms of convergence, while set B covers a wider range of 

objective space compared to set A. In these cases (b and c), the comparison of 

non-dominated solutions obtained by different algorithms is difficult. 

 

(a) A converges better than B. (b) A and B are incomparable. (c) A and B are incomparable. 

Figure 2.1 Several types of relationship between two sets of non-dominated 

solutions 
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Roughly speaking, there are two types of approach which are commonly 

employed in comparative studies: (1) quantitative performance indicators; and 

(2) graphical approaches. They are complementary to each other in some 

sense. A review of both approaches is provided in the following sections. 

2.4.1. Quantitative Performance Indicators 

As MOEAs have been successively applied to a wide range of applications, 

there is a clear trend that various methods are compared on benchmark 

problems in a rigorous and systematic manner (Zitzler et al. 2000; Deb et al. 

2002; Farmani et al. 2005a; Bradstreet et al. 2007; Raad et al. 2011; Reed et al. 

2013). Quantitative performance indicators are widely adopted in this case to 

measure explicitly the quality of solutions found by algorithms. So far, a number 

of metrics have been proposed to map the quality of non-dominated solutions to 

a scalar value. Some are designed for evaluating a unique characteristic of non-

dominated solutions, i.e., convergence or diversity, whereas other metrics are 

used for measuring the quality of solutions in a combined sense. Table 2.2 

summarises commonly used unary metrics (i.e., the indicator assigns each 

approximation set a scalar value that reflects a certain aspect of the quality) in 

the literature. 

Although unary quality indicators (and their combinations) are capable of 

capturing specific aspects of algorithms on test problems, many of them do not 

respect the dominance relations between approximation sets (Zitzler et al. 

2003). For instance, despite a set A may be evaluated to be better than set B 

according to the unary indicator(s); B can be superior to A with respect to the 

dominance relations. On the contrary, binary indicators, e.g., the binary  -

indicator and binary coverage indicator (Zitzler et al. 2003), eliminate such 

theoretical limitations of unary indicators in principle. 

2.4.2. Graphical Approaches 

When comparing the performance of different algorithms in the context of MOO, 

it is an intuitive way to illustrate the non-dominated solutions obtained in the 

objective space (mainly on a two-dimensional graph). Thus, the Pareto fronts 
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obtained via various algorithms can be directly compared by plotting them on 

the same graph (or side by side). Due to the stochastic nature of MOEAs, 

multiple runs are usually conducted and the aggregated Pareto front, 

representing the best solutions ever found, is then to be compared with those 

reported by other algorithms. 

Table 2.2 Commonly used unary quantitative performance indicators 

Type Metric Range Ideal Value 

Convergence 

Error Ratio 
(Veldhuizen 1999) 

[0, 1] 0 

Set Coverage 
(Zitzler 1999) 

[0, 1] 0 

Generational Distance 
(Veldhuizen 1999) 

[0,  ) 0 

Gamma Metric 
(Deb et al. 2002) 

[0,  ) 0 

Runtime Convergence 
(Deb and Jain 2002) 

[0, 1] 0 

Diversity 

Chi-Square-Like Deviation
(Srinivas and Deb 1994) 

[0,  ) 0 

Spacing 
(Schott 1995) 

[0,  ) 0 

Delta Metric 
(Deb et al. 2002) 

[0,  ) 0 

Runtime Diversity 
(Deb and Jain 2002) 

[0, 1] 1 

Both Aspects 

Hypervolume 
(Zitzler 1999) 

(0,  )   

Unary -indicator 
(Zitzler et al. 2003) 

[0,  ) 0 

 -performance 
(Kollat and Reed 2005) 

[0, 1] 1 

However, this can be difficult to present and results in biased interpretations in 

practice. Moreover, the question of where and by how much (in the objective 

space) one algorithm outperforms another one cannot be answered adequately. 

To bridge the gap, López-Ibáñez et al. (2010) proposed a graphical tool, called 
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the empirical attainment function (EAF1), to estimate the attainment function 

(Fonseca et al. 2001) using the data collected from several independent runs. 

The method is able to demonstrate the boundaries of attainment surface 

detected by an algorithm through multiple runs and highlight the performance 

differences between two competing algorithms. This is particularly useful for 

comparative study and thus is extensively employed in this thesis. In addition to 

that, only the first-order EAF is considered which gives the probabilistic 

performance (typically showing the best, the median and the worst attainment 

surfaces) of obtaining a solution vector in the objective space through multiple 

runs. 

Another good example of graphical approach for comparative study was found 

in Hadka and Reed (2012; 2013), in which a grey-shaded plot was incorporated 

into a diagnostic framework to illustrate the overall performance of various 

MOEAs across thirty-three benchmark problems. However, this is due to the 

difficulty of showing attainment surface in case of many-objective (four or more) 

optimisation. Since the two-objective optimisation is considered in this thesis, 

using the EAF tool, rather than the grey-shaded plot, can provide a direct 

comparison of the performances of various MOEAs in the objective space. 

2.4.3. Advantages and Disadvantages 

It is of great importance to carefully select performance indicators as the 

outcome of the comparison largely depends on the exact definition of the 

indicators. Therefore, Deb (2001) suggested using at least two metrics when 

comparing the performance of two or more algorithms. Despite being able to 

assess the performance in a quantitative way, the aforementioned indicators 

present some drawbacks. 

Knowles and Corne (2002) critically compared a variety of published metrics 

following the framework of ‘outperformance relations’ (Hansen and Jaszkiewicz 

                                            

1 The package of EAF graphical tool is implemented in R language and can be accessed via the 

following hyperlink http://iridia.ulb.ac.be/~manuel/eaftools. 



Chapter 2 - Literature Review 

 

 
55 
 

1998). Also, these metrics were analysed according to other qualities, such as 

dependency on a reference set and computational overhead. They 

recommended using three R metrics (Hansen and Jaszkiewicz 1998) and 

hypervolume metric (Zitzler 1999). The R metrics, which require choosing a set 

of utility functions and numerical integration, may be difficult to apply in practice. 

In contrast, the latter possesses more desirable features (e.g., intuitive, scale 

independent and compatible with the outperformance relations) and is suitable 

for moderate-sized non-dominated sets in low-dimensional cases. 

Later on, Zitzler et al. (2003) developed a mathematical framework for 

quantitative comparison of the performance of different algorithms in MOO. 

They proposed a rigorous analysis solely based on the relations of dominance 

of two approximation sets, i.e., strictly dominates, dominates, better, weakly 

dominates, and incomparable. They argued that the comparison methods 

should be at least capable of detecting whether one set is better than another. 

This means that it should be compatible and complete with respect to as many 

of the dominance relations (as aforementioned) as possible. Therefore, a finite 

combination of unary quality indicators, for instance one for convergence and 

another for diversity, were not able to achieve this goal. Therefore, several 

binary quality indicators were proposed as they showed compatibility and 

completeness with most of the dominance relations. However, the number of 

values to be considered for binary indicators was doubled. 

2.4.4. Other Issues 

Ultimate Performance vs. Dynamic Performance 

Most comparative studies of MOO used several performance indicators, and 

focused purely on what was achieved at the end of optimisation (i.e., ultimate 

performance). Therefore, these works may miss some interesting (potentially 

important) information about the performance of algorithms compared during 

the course (i.e., dynamic performance), which include how and when a method 

discovered the final solutions. Therefore, a generation-wise measurement of the 

performance of an algorithm (as demonstrated in most single-objective 

optimisation) can provide more insights into its characteristics as well as the 
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features of problems solved. Zitzler et al. (2002) emphasised the importance of 

tracing the performance of an algorithm over time. This would help to identify 

the differences on convergence speed and premature convergence (or 

stagnation). Deb and Jain (2002) discussed the desirable properties of running 

metrics and proposed two indicators for measuring dynamic convergence and 

diversity. As some indicators mentioned in Section 2.4.1 have become more 

and more popular, they have been frequently used to evaluate the dynamic 

performance in the comparative studies. Such work can be found in Kollat and 

Reed (2006) and Fu et al. (2012a). 

Computational Complexity 

The computational complexity of quality indicators is worth taking into account 

when evaluating the performance of an algorithm. For example, the 

hypervolume indicator, which measures the volume of objective space 

dominated by a non-dominated set, has a runtime complexity of O(NM-1), where 

N is the cardinality of the non-dominated set and M is the number of objectives. 

Although some quicker implementations (Beume and Rudolph 2006; While et al. 

2011) exist, it should be borne in mind that the calculation of hypervolume can 

be time-consuming, especially when used for dynamic performance 

assessment on high-dimensional problems. Some computational complexity 

analyses about the indicators mentioned in Section 2.4.1 were given in 

(Knowles and Corne 2002). 

In the context of multi-objective optimal design of WDSs, the PF is multi-modal, 

discrete and not uniformly distributed. Moreover, it is usually unknown a priori 

(except for some extremely simple networks). By acknowledging the challenge 

of performance assessment of MOO, in this thesis both quality indicators and a 

graphical approach which are complementary to each other are employed to 

provide a better interpretation of the solutions finally obtained. In particular, four 

performance indicators (i.e., generational distance, unary hypervolume, unary 

additive  -indicator and  -performance) as well as the EAF tool are jointly 

used to compare both the ultimate and dynamic performance of various 

algorithms considered. The reasons for doing so are threefold: (1) they 
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represent the most recommended indicators in many comparative studies 

(Knowles and Corne 2002; Zitzler et al. 2003; Fonseca et al. 2006; Hadka and 

Reed 2012); (2) the  -performance indicator (Kollat and Reed 2005) is added 

to cope with the MOEAs using the concept of  -dominance (Laumanns et al. 

2002); (3) main functional objectives of MOO, i.e., convergence, diversity and 

consistency, can be appropriately evaluated by using a combination of these 

methods. 

On the other hand, since all these adopted metrics assume the existence of a 

reference set (PF or a good approximation to the PF), the best-known PF of 

each benchmark problems (see Chapter 4) of WDSs is taken as the reference 

set. These best-known PFs (including the PFs of three simple cases) were 

obtained by means of running several state-of-the-art MOEAs extensively and 

filtering the best solutions obtained through multiple runs. 

2.5. Summary 

In this chapter, a literature review of multi-objective design and rehabilitation of 

WDSs and hybrid optimisation methods is presented. 

In Section 2.2, a review of the multi-objective optimal design or rehabilitation of 

WDSs is first given. It includes problem formulations and methodologies 

available. In particular, MOEAs were the main focus as they demonstrate many 

advantages over classical methods. Other relevant issues (i.e., hydraulic 

simulation models and model uncertainties) involved in optimal design or 

rehabilitation of WDSs are also briefly discussed. 

In Section 2.3, a review of hybrid optimisation algorithms, which is the central 

topic of this thesis, is presented. Several state-of-the-art hybrid methods are 

introduced chronologically, followed by a description of the issues about 

parameterisation and constraint handling techniques. 

In Section 2.4, various performance assessment methods, including numerical 

indicators and graphical approaches are discussed as they play an important 



Chapter 2 - Literature Review 

 

 
58 
 

role in the comparative study. The performance assessment method adopted in 

this thesis is also specified in the end. 
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3. GALAXY-A NEW HYBRID MOEA FOR MULTI-

OBJECTIVE DESIGN OF WDS 

3.1. Introduction 

In this chapter, an innovative hybrid multi-objective evolutionary algorithm is 

proposed, which is inspired by state-of-the-art hybrid optimisation methods. This 

new hybrid algorithm is termed Genetically Adaptive Leaping Algorithm for 

approXimation and diversitY (GALAXY), and it incorporates up to six search 

operators into a unified framework, taking advantage of their synergistic effect 

to improve the effectiveness and efficiency of searches. 

In Section 3.2, some fundamental questions at the development stage are first 

raised and discussed. Then, a general framework of the GALAXY approach is 

illustrated followed by the detailed description of each component. Finally, 

several important strategies employed inside GALAXY are explained. 

To address the parameterisation issue commonly faced by MOEAs, Section 3.3 

carries out a sensitivity analysis to verify the robustness of the dither creeping 

operator, which is the only part of GALAXY that requires parameter fine-tuning. 

Thus, the number of user-specified parameters is significantly reduced, which 

can benefit researchers and practitioners alike in dealing with other applications. 

In Section 3.4, the entire chapter is summarised. 

3.2. Design of GALAXY 

In this section, the development of the GALAXY method is explained in more 

detail, including some essential questions raised at the design stage and the 

corresponding methodologies which form the primary components of the 

proposed hybrid framework. Then, several important strategies are used to 

facilitate search in a more effective and efficient way. Note that GALAXY is not 

just an optimisation method but a framework which can be extended to create 

brand-new hybrid algorithms. 
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3.2.1. Design Consideration 

Before formally introducing the GALAXY method, it is worth analysing some 

fundamental questions related to the multi-objective design or rehabilitation of 

WDSs. Two types of questions are considered here, that is, (1) why the WDS 

design problem is difficult to solve; and (2) what aspects of hybrid algorithms 

should be well addressed. 

Firstly, a natural and typical way for solving a problem is to understand what the 

problem is and why it is difficult to solve. The constrained MOO formulation of 

WDS design is a computationally complex, NP-hard problem (Papadimitriou 

and Steiglitz 1998), of which the search space is enormous, discontinuous, non-

convex and multi-modal. In addition, the highly constrained nature of the 

problem, due to the service standards and operational requirements of a 

network adds another level of difficulty. A number of sources of difficulties of 

multi-objective design or rehabilitation of WDSs are summarised as follows: 

 The size of the network under consideration, i.e., the number of pipes 

(decision variables) to be optimised; 

 The number of commercially available pipe sizes (a range of discrete 

diameter options); 

 The type of hydraulic simulation involved: i.e., static (snapshot) or 

extended period simulation; 

 The number of loading conditions considered for the design purpose (in 

case of multiple loading conditions, one objective function evaluation 

requires several hydraulic simulations); 

 Other possible reasons, e.g., complex components (valves or control 

rules) existing in a network can significantly increase the non-linearity 

and complexity of the hydraulic simulation. 

These above mentioned issues are commonly encountered by a practitioner 

using an optimiser. Note that in this thesis all the benchmark networks, except 

the ’Anytown’ network (Walski et al. 1987), are gravity-fed systems or those 

supplied via a single pump. In other words, no complex hydraulic components 
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(e.g., pressure reducing valve) are included in the majority of benchmark 

problems, because the size of the network system (i.e., the number of pipes to 

be optimised) is regarded as the major source of difficulty. 

Secondly, in order to design a hybrid algorithm, the following questions should 

be raised beforehand. 

 What kind of algorithmic framework should be adopted, i.e., steady-state 

or generational? 

 Which dominance relationship should be employed, i.e., Pareto-

dominance or  -dominance? 

 Which coding scheme should be applied, i.e., binary, real or integer 

coding? 

 What criteria are used for selecting search operators? 

 What kind of hybridisation should be considered, i.e., parallel or 

sequential? 

 What specific strategies should be implemented to ensure and even 

enhance the performance of a hybrid algorithm? 

These questions must be properly addressed to propose a new and, hopefully, 

more powerful search tool for the multi-objective design or rehabilitation of 

WDSs. 

Finally, some common issues faced by MOEAs should also be taken into 

consideration. For instance, the parameterisation issue can greatly influence the 

behaviour of an MOEA, which may be alleviated to some extent by using 

adaptive or self-adaptive techniques (Zheng et al. 2013b). However, if fewer 

parameters are involved, the issue can be further simplified and is probably 

much easier to deal with. In addition, it should be borne in mind that the 

constraint handling method can affect the behaviour of MOEAs. Many MOEAs 

adopt the constrained-domination comparison (Deb et al. 2002) to handle 

infeasible solutions during optimisation. Others use a more traditional way, 

namely the penalty-function, to convert the problem to an unconstrained one. 
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In short, as discussed above, many aspects of multi-objective design or 

rehabilitation of WDSs via MOEAs require careful thought before proposing a 

new hybrid algorithm. In the next section, the GALAXY method is developed 

step by step by addressing the aforementioned concerns. 

3.2.2. Framework of GALAXY 

The majority of modern MOEAs were created following the Darwinian 

evolutionary concepts, i.e., survival of the fittest and adaptation to the 

environment. Padhye et al. (2013a) presented a Unified Approach for 

evolutionary algorithms (e.g., GAs, PSO and DE) in the context of real-

parameter optimisation of unimodal problems, called Evolutionary Optimisation 

System (EOS). The EOS includes four key steps, that is, Initialisation, Selection, 

Generation and Replacement. This framework also holds for MOEAs, although 

the Selection and Replacement steps need to adapt to multi-objective 

perspectives. 

Figure 3.1 illustrates a basic workflow of solving a general optimal design 

problem of WDS via MOEAs. Firstly, an initial population is randomly generated 

and evaluated by the objective functions, which involve hydraulic simulations. 

Secondly, the parents are selected from the population and offspring are 

generated. Then, the offspring are evaluated using the objective functions. If 

some of them dominate the members of the current population, the 

corresponding individuals are replaced by these offspring. This procedure is 

implemented repeatedly until a certain stopping criterion is satisfied. 

In theory, it is possible to propose a brand-new hybrid algorithm by altering all 

the key steps of the EOS. However, the current version of GALAXY implements 

hybridisation only at the Selection and Generation steps. The pseudo-code of 

GALAXY is illustrated in Figure 3.2 and the developments of main components 

of GALAXY are explained in subsequent sections in more details. 



Chapter 3 - GALAXY-A New Hybrid MOEA for Multi-Objective Design of WDS 

 

 
63 
 

 

Figure 3.1 Major steps in using MOEAs to solve a WDS design problem 

(adapted from (Padhye et al. 2013a)) 

GALAXY Method 
Inputs: population size (N), number of function evaluations (NFE) 
Outputs: Pareto approximation set (AS), Pareto approximation front (AF) 
Initialisation: 

Generate the initial population of N individuals randomly in the specified 
variable domains. 

Initialise the quotas* of six search operators equally such that ( NN
J J  

6

1
). 

Evaluation: 
Evaluate the objective function values of the initial population (involving 
hydraulic simulations). 
Rank the population using the non-dominated sorting procedure (Deb et al. 
2002). 
Update the current number of function evaluations (i.e., set I = N). 

While I <= NFE 
Selection: 

Choose all the members in the current population for the Generation step.
Generation: 

For J = 1 to 6 
Produce N candidate solutions from the current population using 
operator J. 
Select NJ offspring randomly from candidate solutions and save them to 
the offspring set. 

End 
Check whether the solutions in the offspring set are within the specified 
variable ranges. 

Evaluation: 
Evaluate the objective function values of the solutions in the offspring set. 

Replacement: 
Combine the current population and the offspring set as an intermediate 
population of size 2N. 
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Implement the duplicates handling strategy. 
Rank the intermediate population using the non-dominated sorting 
procedure. 
If the number of individuals in the top rank <= N 

Implement the normal replacement via the crowded-comparison 
operator (Deb et al. 2002). 

Else 
Implement the  -replacement strategy. 

End 
Form the next population of size N. 
Update the quotas* of search operators according to their contributions to 
the next population. 
Update the current number of function evaluations (i.e., set I = I + N). 

End 
Set the current population as AS. 
Set the objective function values of the current population as AF. 
Note: *A quota of a search operator refers to the number of offspring it is 

allowed to produce for the next generation. 

Figure 3.2 Pseudo-code of the GALAXY method 

3.2.3. Component Development 

3.2.3.1. Algorithmic Framework 

In MOEAs, there are generally two distinct algorithmic structures, namely the 

generational and the steady-state frameworks. The majority of current MOEAs 

in the domain are based on the generational framework, in which the offspring 

are first produced and then compared with their parents. For example, in each 

generation the NSGA-II (Deb et al. 2002) creates the same number of offspring 

as the population size, which are then merged with the current population 

before non-dominated sorting is applied. While in the steady-state framework, a 

child is compared with the current population immediately after it is created. If it 

is better than (i.e., dominating) at least one current solution, it is accepted and 

the population gets updated. This framework makes it possible to find good 

offspring solutions more efficiently in terms of computational time (Deb et al. 

2003). 

The main consideration towards the algorithmic framework lies in how important 

the implementation speed is. Since the Selection and Replacement in the 
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steady-state framework involve only comparisons based on the dominance 

relationship, computationally expensive sorting and truncation operations are 

eliminated. This can lead to a significant saving of computational time especially 

for high-dimensional problems. As shown in Deb et al. (2005), the  -MOEA 

evidently outperformed the NSGA-II and other MOEAs in terms of CPU time for 

various benchmark problems. However, for the two-objective design or 

rehabilitation of WDSs concerned in this thesis, the marginal gain on efficiency 

by using the steady-state framework is not significant. The reason is that the 

bottleneck of computation for this kind of problems lies in hydraulic simulations, 

rather than in non-dominated sorting and diversity preservation. Therefore, the 

commonly used generational framework as in the NSGA-II is taken as the 

algorithmic structure of the GALAXY method. 

On the other hand, both algorithmic frameworks involve elitism, which prevents 

good solutions found so far from being removed from the population 

subsequently. In the generational structure, the elitism is implicitly achieved by 

applying the non-dominated sorting operation to a combined set of parents and 

their offspring. In contrast, the steady-state structure explicitly implements 

elitism by comparing the offspring with each member in the population and in 

the external archive. 

3.2.3.2. Dominance Concept 

Although Goldberg (1989) did not present a Pareto-dominance based 

evolutionary algorithm in his book ‘Genetic Algorithms in Search, Optimization 

and Machine Learning’, it indeed influenced the creation of the first generation 

MOEAs (Coello 2006). In the Pareto-dominance concept, a solution is said to 

dominate another one if it is better than this solution in at least one objective 

and is no worse than this solution in the other objectives. Otherwise, they are 

said to be non-dominated with each other. In contrast, the  -dominance 

concept (Laumanns et al. 2002) does not regard two solutions with a difference 

less than i  in the i-th objective as non-dominated, thereby ensuring a good 

convergence and diversity simultaneously. Most recently, a more advanced 

dominance relationship, called the grid-dominance concept (Yang et al. 2013), 
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was proposed for solving many-objective optimisation problems; however, it is 

not considered in this thesis. 

In Figure 3.3, the Pareto-dominance and the  -dominance concepts are 

compared supposing that both objectives are to be minimised. The region 

dominated by a solution (e.g., solution A) is depicted in grey. Solution A and B 

are non-dominated to each other under the Pareto-dominance concept (see 

Figure 3.3(a)), as solution B is not located in the grey area. So, both of them are 

likely to be selected in the Selection or Replacement. On the contrary, the 

region dominated by solution A is enlarged under the  -dominance concept 

(see Figure 3.3(b)). Thus, solution B is  -dominated by solution A and 

discarded in the Selection or Replacement. In addition, solution C, which is 

located in the same  -box as solution A, is also removed because it has a 

larger Euclidean distance towards the lower-left corner of that  -box. 

 
(a) Pareto dominance concept (b)  -dominance concept 

Figure 3.3 Comparison of Pareto-dominance concept with  -dominance 

concept 

It can be seen from the comparison of different dominance concepts that the 

main differences lie in the trade-off between accuracy and efficiency. Actually, 

the  -dominance and others are relaxed forms of the Pareto-dominance, which 

can ensure good convergence and diversity at the price of losing some 

accuracy. This trade-off must be considered for solving high-dimensional 

problems, as the Pareto-dominance suffers from the curse of dimensionality 

f1

A

B

ε1
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with many solutions becoming non-dominated, which in turn decreases the 

selection pressure and lead to deterioration. 

For solving low-dimensional problems in terms of the number of objectives, like 

the two-objective optimal design of WDSs considered in this thesis, it is not 

necessary to incorporate advanced dominance concepts (e.g.,  -dominance). 

On the other hand, adopting the  -dominance concept for solving discrete 

combinatorial optimisation problems may lead to ‘genetic drift’, as the solutions 

containing useful gene information, but with the objective values less than i  in 

the i-th objective, are discarded. Therefore, the approximation front obtained by 

an  -dominance concept based approach is likely to be concentrated in a 

particular region of objective space. In other words, boundary solutions may be 

lost by using this concept. As it will be shown in Chapter 5, both Borg and  -

MOEA have difficulty in discovering solutions in the region of low and high 

network resilience. In addition, the  -dominance concept introduces at least 

two more parameters (i.e.,   value for each objective) to an end user, although 

it also brings some flexibility in controlling the precision of the obtained solutions. 

It is not clear whether such flexibility is beneficial to the decision makers, as the 

proper setting of   is usually difficult a priori, but the values can significantly 

affect the shape of the Pareto approximation set obtained. 

3.2.3.3. Variable Coding Scheme 

In the multi-objective design or rehabilitation of WDSs, the goal is to find a set of 

non-dominated solutions, of which the pipe diameter options are chosen from a 

list of commercially available sizes. Therefore, this kind of problem involves 

decision variables which are discrete in nature, or it is formally known as 

combinatorial optimisation. Many coding schemes are available for representing 

integer values, including the binary coding and the Gray coding (Simpson and 

Goldberg 1994). The binary coding expresses a gene using a series of bits, 

whose length depends on the range of a decision variable. For example, if 14 

sizes are available in the market, using the binary coding scheme requires at 

least 4 bits to encode a gene (pipe diameter). Then, a chromosome is 
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comprised of a group of genes by a concatenation of strings (0 or 1) of 4-bit 

length. 

However, the binary coding has some obvious drawbacks such as the so-called 

‘Hamming Cliffs’ (Goldberg 1989), i.e., when a small distance in genotype would 

lead to a large difference in phenotype. The Gray coding (Simpson and 

Goldberg 1994) was therefore developed to alleviate this problem to some 

extent. However, both of them tend to be inefficient when dealing with high-

dimensional problems in terms of number of decision variables, which is always 

the case with WDS design. In contrast, the real coding scheme, which 

eliminates the encoding and decoding processes from optimisation, expresses 

a variable in a straightforward way, thereby significantly shortening the length of 

a chromosome. Real coding has been shown to be superior to the binary coding 

scheme on many benchmark problems (Deb et al. 2002) and can increase the 

efficiency and robustness of evolutionary algorithms (Awad and Poser 2005). 

On the other hand, using the real coding scheme, which is specially designed 

for solving continuous problems, requires further adaptation to accommodate 

for discrete combinatorial optimisation problems. A simple yet meaningful way is 

to round off the real values to the nearest integer; however, it does not ensure 

one-to-one mapping from genotype to phenotype. Even if this is acceptable, the 

real coding scheme can still be problematic as the fractional part of any decision 

variable value is meaningless in terms of both genotype and phenotype of a 

solution in the context of optimal design of WDSs. Hence, a scheme which is 

chosen for handling integer variables is expected to be more efficient. 

Hereinafter, the integer coding scheme is used which is distinct from both the 

binary and the real coding schemes. 

Figure 3.4 illustrates the integer coding scheme in more detail. For each 

solution in the population of size N, the length of chromosome is equal to the 

number of decision variables ND (i.e., the number of pipes to be optimised). For 

each gene in the chromosome (e.g., G2 of Solution 2), there are a total of S 

diameter options to choose from. By using the integer coding scheme, there is 
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no redundant gene representation as seen in the binary coding scheme, and 

there is no waste of precision as suffered in the real coding scheme. 

 

Figure 3.4 Integer coding scheme used for the GALAXY method 

3.2.3.4. Search Operators 

Typically, an MOEA intrinsically balances two aspects of multi-objective 

optimisation during the search, which are known as exploration and exploitation. 

The former is aimed at searching the space globally in order to identify the near-

optimal regions, where the global optima are likely to be. In contrast, the latter 

attempts to conduct a fine-grained search locally in order to further improve the 

quality of current solutions. As such, an ideal search process (see the 

schematic shown in Figure 3.5) would first focus the search on the exploration 

aspect and locate the potential near-optimal areas; then the search would 

gradually switch from exploration to exploitation to locate the global optima. 

 

Figure 3.5 An ideal search process using an MOEA 
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It is of great importance to realise that these two aspects are achieved at the 

level of search operators, rather than at the level of topmost structure of an 

MOEA (i.e., Selection and Replacement). This fact can be attributed to the 

nature of each search operator, although it is difficult to accurately control its 

behaviour at present. In designing a powerful hybrid algorithm, several 

questions naturally arise, such as: what kinds of operators should be selected 

and what criteria are used for selecting search operators? 

For the first question, a diverse class of operators are preferred because it is 

likely that an operator cannot be effective and efficient for a wide range of 

applications, so that a combined use of different operators may perform well on 

many problems. Hence, an ‘optimised’ portfolio of these operators is expected 

to facilitate search and yield satisfactory outcome. However, the second 

question is not trivial and normally requires a trial-and-error approach to 

determine the criteria for selecting operators. 

In AMALGAM, four search operators were involved including GA, PSO, AMS 

and DE. These operators themselves have been found to be effective and 

efficient on a wide range of applications. However, when dealing with discrete 

combinatorial optimisation problems, their capabilities cannot be guaranteed. 

Quite opposite, as it will be shown in Chapter 5, the overall performance of the 

AMALGAM deteriorates when the complexity of problems increase, due to the 

fact that several of these operators are not effective and efficient in the context 

of WDS design. On the other hand, the AMALGAM involves setting of a total of 

11 individual parameters in addition to the population size and the number of 

function evaluations. A full list of these parameters are summarised in Table 3.1 

along with their default settings in the original AMALGAM. 

Since AMALGAM was originally proposed for coping with real-valued 

optimisation problems, it is found that the search operators within AMALGAM 

were actually not suitable for solving discrete combinatorial problems. However, 

such a combination of four operators inspires the selection of candidate 

operators dedicated for solving discrete problems. In other words, these 

operators need to adapt to the discrete problems and new operators should be 
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introduced in order to improve the search ability. In the subsequent section, the 

‘leaping ability’ of a search operator is first defined, then six search operators 

employed in the GALAXY method are described in a descending order of 

leaping ability in the global sense within the solution space. 

Table 3.1 Individual parameters of AMALGAM 

Search Operators Parameters Default Settings 

GA (SBX+PM) 

SBX rate 0.9 
distribution index for SBX 20 
PM rate 1/ND 
distribution index for PM 20 

PSO 

inertia factor 0.5+0.5u(0,1) 
cognitive weight 1.5 
social weight 1.5 
turbulence factor u(-1,1) 

AMS jump rate ND4.2  

DE 
scaling factor K u(0.2,0.6) 
scaling factor F u(0.6,1.0) 

Note: ND - number of decision variables; u(a, b) - a uniformly distributed 

random number between a and b; SBX - Simulated Binary Crossover; PM - 

Polynomial Mutation. 

Solving a discrete combinatorial optimisation problem is different from solving a 

continuous, real-valued problem. In particular, the values of decision variables 

are restricted to integers, thus the fractional part of decision variables will be 

omitted during the evaluation of objective functions. MOEAs essentially sample 

solutions randomly from within the search space to progressively approach the 

PF. When dealing with a continuous problem, MOEAs can achieve any 

specified precision, leading the stochastic search to being nearly ‘smooth’. In 

contrast, these algorithms have to explore solutions at a limited interval (at least 

equal to 1) in the search landscape when facing a discrete optimisation problem. 

Therefore, their behaviour is not ‘smooth’ anymore and appears to be ‘leaping’ 

in both the objective and the decision variable spaces. 

Consequently, when developing a hybrid algorithm, it is of great importance to 

employ search operators that are good at ‘leaping’ in the global or local sense. 
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More specifically, the good ‘leaping’ ability in the global sense refers to the 

search capability which can explore the space extensively, whereas the good 

‘leaping’ ability in the local sense refers to the search capability which is 

effective and efficient around a small area, aiming at further improving the 

fitness of solutions. 

Figure 3.6 illustrates this ‘leaping’ concept in more detail. The dark solid circles 

denote the targeted solutions in the reference front; whereas the grey solid 

circles denote the solutions obtained in the Pareto approximation front. The light 

grey circles represent the solutions obtained by the operator with good ‘leaping’ 

ability in the local sense; in contrast, the dark grey circles represent the 

solutions obtained by the operator with good ‘leaping’ ability in the global sense. 

The approximation front identified at generation t is annotated as AFt. As it can 

be seen from the figure below, solutions identified by the operator good at 

global search (exploration) move rapidly towards the boundary solutions in the 

reference set; while solutions found by the operator good at local search 

(exploitation) steadily approach the solutions in the reference set. As such, a 

combined use of search operators which are good at ‘leaping’ in the global and 

local sense is anticipated to drive the hybrid algorithm towards the PF quickly 

and consistently. To this end, up to six search operators are deployed in 

GALAXY according to their ‘leaping’ ability in the search space. 

 

Figure 3.6 Schematic of the ‘leaping’ ability of search operators 
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Search Operator 1: Turbulence Factor (TF) 

The PSO is a population-based stochastic optimisation algorithm, which mimics 

the movement of organisms in a bird flock or fish school. The initial position and 

velocity of the population, also known as particles, are randomly generated. 

Afterwards, the velocity and position of each particle is frequently updated 

according to its own flying experience ( bestp ) and that of all other particles ( bestg ). 

Such updating strategies in PSO are given in Eq. (3.1) (velocity) and Eq. (3.2) 

(position). The definition of bestp  and bestg  in the context of multi-objective 

optimisation are not as straightforward as in single-objective optimisation. In the 

AMALGAM, they were judged based on the Euclidean distance of particles’ 

objective function values to the best values found so far. In addition, a 

turbulence factor (denoted as RT) was subsequently used to perturb the 

particles’ positions in order to avoid the local optima (see Eq. (3.3)). 
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Where, i
tV  and i

tX  - current velocity and position of particle i, respectively;   - 

inertia factor; c1 and c2 - weights of cognitive and social factors of each particle; 

r1 and r2 - uniformly distributed random numbers between (0, 1); RT - a 

uniformly distributed random number sampled between [-1, 1]. 

In trial runs, PSO was observed to make significant contributions only at the 

beginning of search. In other words, it was completely ineffective after the first 

few generations (Wang et al. 2014b). This implies that the PSO wasted the 

opportunities which could be taken by other operators to find better solutions. 

Such a poor performance might be attributed to the definition of bestp  and bestg , 

which made it easier for the algorithm to get trapped in local optima. 

Interestingly, for solving discrete problems, the turbulence factor alone turned 

out to be very efficient, which enabled a superfast global search at the initial 
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stage of optimisation. Therefore, only this kind of perturbation is maintained in 

GALAXY, thus eliminating all the individual parameters in the original PSO. 

Search Operator 2: Differential Evolution (DE) 

The DE is another popular stochastic algorithm because of its simplicity. The 

method was proposed for real-valued problems and it works by iteratively 

improving a candidate solution by using weighted differences between other 

randomly sampled solution vectors. Eq. (3.4) shows such a strategy used by the 

DE within AMALGAM. The DE has been proved elsewhere to exhibit rotationally 

invariant feature (Storn and Price 1997), which means that it can cope with the 

strong interdependencies between decision variables. This is a favourable 

characteristic for the optimal design of WDSs, since the pipe sizes in a network 

are correlated, rather than being independent from each other. 
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Where, i
tX  - current position of individual i; a

tX , b
tX  and c

tX  - three randomly 

selected individuals from current population, and they must be different from 

each other and from i
tX ; K and F - uniformly generated numbers between (0.2, 

0.6) and (0.6, 1.0), respectively. These ranges encompass the recommended 

values (i.e., K=0.4 and F=0.8) reported by Iorio and Li (2005). 

In GALAXY, to adapt real-valued DE in AMALGAM to discrete problems, the 

basic form of DE (see Eq. (3.4)) is maintained but the weights K and F are set 

to 1 to suit the integer coding scheme. 

Search Operator 3 & 4: Simulated Binary Crossover for Integers (SBXI) & 

Uniform Mutation (UM) 

The GA usually consists of two parts, which are known as crossover and 

mutation. Currently, it remains unclear which one is the dominant driving force 

for evolutionary optimisation. The Schema Theorem (Holland 1975) provided a 

theoretical justification that crossover was the primary search mechanism while 

mutation was regarded as less important, being helpful in preserving the 

diversity of population. Spears (1993) pointed out that both operators 
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demonstrated different characteristics, i.e., disruption (exploration) and 

construction (exploitation). Crossover was more effective in constructing high 

order building blocks from low order ones compared with mutation; whereas 

mutation was good at disruption, thus providing higher level of exploration. 

However, Fogel (2006) and Zheng et al. (2010) challenged the Schema 

Theorem by finding that uniform crossover (more disruptive) outperformed one-

point and two-point crossover on many case studies. Others also asserted that 

mutation is the main operator for driving evolution (Vose 1994; Palmes et al. 

2005). It has been shown sufficiently that a GA without mutation tends to 

converge prematurely. 

Similarly, in the NSGA-II used by AMALGAM, it was unknown that whether 

Simulated Binary Crossover (SBX) or Polynomial Mutation (PM) (Deb et al. 

2002) played the major role. Moreover, SBX and PM were developed for solving 

problems with continuous search space, which does not necessarily mean that 

they can work well for the discrete search space. Some evidence exists that 

SBX can achieve similar performance to single-point crossover under binary 

coding scheme in solving discrete test functions (Deb and Agrawal 1995). 

Hence, trial runs were conducted to verify their performances for the multi-

objective design or rehabilitation of WDSs. It was found that SBX was not 

particularly useful in generating high quality solutions. Quite opposite, PM alone 

worked very well for a range of design problems. On the other hand, the spread 

of children from their parents after applying SBX and PM is determined by an 

exponential function, whose distribution of density is controlled by an index for 

SBX (see Eq. (3.5)-(3.7)) and PM (see Eq. (3.8)-(3.10)), respectively. A large 

value of the index usually leads to a small variation, which focuses the search 

around the current parents. In contrast, a small index allows farther jumps in the 

decision space. 
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Where, a
tX  and b

tX  - two different parents selected at generation t; )(  - a 

vector randomly generated, given a uniformly sampled random number u 

between (0, 1) and a distribution index of c  for SBX; UB and LB - vectors of 

upper and lower bounds of decision variables; a  and b  - variables calculated 

based on the selected parents ( a
tX  and b

tX ), UB, LB and c . 
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Where, i
tX  - current solution at generation t; UB and LB - vectors of upper and 

lower bounds of decision variables;   - a vector of small variations which are 

obtained from a polynomial distribution of a given uniformly sampled random 

number u  between (0, 1); m  - distribution index of PM. 

However, when dealing with discrete problems, a typical variation step must be 

equal to or larger than 1, which implies that a fine-grained fractional search 

would be meaningless in both decision and objective spaces. Therefore, to 

adapt SBX and PM to discrete problems, in this thesis, crossover is separated 

from mutation and both operators are modified to suit discrete problems. In 

particular, Eq. (3.6) and (3.7) are omitted deliberately and Eq. (3.5) is replaced 

with the simplified variations shown in Eq. (3.11). This modified crossover, 



Chapter 3 - GALAXY-A New Hybrid MOEA for Multi-Objective Design of WDS 

 

 
77 
 

which is named Simulated Binary Crossover for Integers (SBXI), is found to be 

compatible with the integer coding scheme in trial runs. Note that the probability 

of SBXI is fixed at 1.0. 
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Where, randi  - a uniformly distributed random integer between [a, b]; u - 

uniformly sampled random number between (0, 1). 

On the other hand, PM is replaced with Uniform Mutation (UM) to sample an 

integer value from within the variable domain. The mutation rate is equal to the 

inverse of number of decision variables (1/ND), which is the most 

recommended value for mutation (Goldberg 1989). It is worth mentioning that 

such an adaptation of SBX and PM also removes all the individual parameters 

(i.e., probability of SBX and PM and their distribution indices). 

Search Operator 5: Gaussian Mutation (GM) 

The AMS operator (Haario et al. 2001) was introduced to the AMALGAM with 

the attempt to prevent the ‘genetic drift’ suffered by many population-based 

algorithms, in which most individuals tend to converge towards a single solution. 

AMS is a sample method based on the Markov Chain Monte Carlo methodology 

that allows the offspring with lower fitness to replace their parents. Another 

advantage of AMS is the capability to sample effectively in high-dimensional 

distributions. The offspring are sampled from a normal distribution with the 

current best non-dominated solutions and their covariance as mean and 

standard deviation, respectively (see Eq. (3.12)): 
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Where, i
tX  and ),cov( i

t
i
t XX  - position and covariance of the best non-

dominated solutions at generation t; cn - jump rate which determines the spread 

of solutions around i
tX . 



Chapter 3 - GALAXY-A New Hybrid MOEA for Multi-Objective Design of WDS 

 

 
78 
 

As shown by Wang et al. (2014b), the AMS operator worked very well for small 

to medium sized WDS design problems. However, for larger and more complex 

design problems, it was not able to generate solutions of high quality as 

expected. To maintain the consistency of search operators within the GALAXY 

framework, this operator is excluded. Furthermore, as the mutation operator 

alone showed satisfactory performance in trial runs, another mutation operator, 

called Gaussian Mutation (GM) is therefore introduced into the GALAXY 

framework. It differs from the UM operator in the distribution of randomly 

sampled values in the domain of decision variables. In particular, a discrete 

Gaussian distribution (also known as normal distribution) is adopted as shown 

in Eq. (3.13). The probability of mutation for each decision variable is equal to 

the UM operator, namely 1/ND. The reason why   is set to a tenth of the range 

of diameter options is that it prevents a majority of random numbers generated 

from falling outside the available pipe sizes. 

 
min max
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D D
X σ randn X

 
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Where, minD  and maxD  - minimum and maximum diameter options for each pipe; 

  - a scaling factor which is equal to 
( )

10

1+minmax DD -
; randn  - a vector of 

random numbers drawn from the normal distribution between (0, 1) with the 

same size of tX ;   - a vector based product;    - an operator that rounds an 

element toward negative infinity. 

Search Operator 6: Dither Creeping (DC) 

To facilitate an intensified local search, a new operator, known as the dither 

creeping mutation (DC) (Zheng et al. 2013c), is introduced in the GALAXY 

framework, which combines the creeping mutation (Dandy et al. 1996) and 

dither mutation strategy (Das et al. 2005) to solve discrete pipe sizing problem. 

The original DC operator is characterised by a variant probability of mutation 

(denoted as dcmP ) for each individual, which is uniformly sampled from within a 

small range centred about 1/ND. Moreover, the pipe size is changed to the 

nearest smaller or larger diameter option, depending on the probability of 
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downward variation (denoted as dP ). Zheng et al. (2013c) revealed that a GA 

with DC but without crossover outperformed its counterparts for a range of 

benchmark design problems. 

Note that here the original DC is modified by yielding the probability of dither 

creeping at the level of gene, rather than at the level of chromosome. This is 

expected to bring more perturbation to each solution. On the other hand, an 

interesting feature of DC lies in the fact that the direction of creeping can be 

simply controlled by the dP . More specifically, using a smaller dP  steers the 

population towards the high cost region (also high in network resilience); 

whereas using a larger dP  pushes the population towards the low cost region. 

This characteristic can be very useful if a particular region of the Pareto-optimal 

front (PF) is of greater interest, although this is realised at the price of losing the 

whole picture of PF. Consequently, the dP  of the modified DC is uniformly 

sampled between (0, 1) rather than fixed at 0.5 as in the original DC, in which 

case the size of each pipe has an equal chance to be enlarged or reduced. 

Figure 3.7 illustrates the flowchart for both versions of DC operators. 

It should be highlighted that the search operators play the essential role in 

MOEAs, although the Selection and/or Replacement mainly steer the population 

towards the PF. After all, the capability of these operators determines whether 

the search space can be sampled in an effective and efficient manner. The 

reasons for selecting TF, DE, SBXI, UM, GM and DC as search operators for 

the GALAXY method are threefold. Firstly, their natures and behaviours are 

distinct from each other, which make it possible for each one to serve as the 

main driving force at different stages of search. Secondly, DE generates 

offspring by combining the information passed by other solutions; while the 

others work on an individual solution independently and perturb the solution at 

the level of gene. Therefore, the difference of operators in producing solutions 

may prevent GALAXY from getting trapped at local optima. Thirdly, from the 

viewpoint of leaping ability, TF, DE and SBXI are more likely to identify better 

solutions globally at early generations. In contrast, UM, GM and DC emphasise 
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local variations, being good at fine-tuning current solutions. As a result, a 

synergistic effect is anticipated by using a combination of six such operators to 

ensure a good balance of exploration and exploitation throughout the search. 

Dither Creeping 

dcmP : probability of dither creeping mutation; 
min

dcmP  and max
dcmP : lower and upper bounds of probability of dither creeping 

mutation; 

N and ND: population size and number of decision variable; 

dP : conditional probability of downward variation; 
i
tX : decision variable i at generation t; 
minD  and maxD :lower and upper bounds of diameter option; 

rand: a uniformly distribution random number sampled between (0,1); 

Original DC Modified DC 

For i=1, 2, …, N 

)( minmaxmin
dcmdcm

i
dcm

i
dcm PPrandPP   

For j=1, 2, …, ND 

If i
dcm

j Prand   

If d
k Prand   

min
1 max[ , 1]i i

t tX D X    

Else 
max

1 min[ , 1]i i
t tX D X    

End If 

End If 

End For 

End For 

For i=1, 2, …, N 

For j=1, 2, …, ND 

)( minmaxmin
dcmdcm

j
dcm

j
dcm PPrandPP 

If j
dcm

j Prand   

If d
k Prand   

min
1 max[ , 1]i i

t tX D X    

Else 
max

1 min[ , 1]i i
t tX D X    

End If 

End If 

End For 

End For 
Figure 3.7 Pseudo-code of the dither creeping mutation 

3.2.3.5. Paradigm of Hybridisation 

As mentioned in Chapter 2, Talbi (2002) presented a taxonomy of hybrid 

algorithms, defining four basic types including low-level relay hybrid, low-level 

teamwork hybrid, high-level relay hybrid and high-level teamwork hybrid. A low-

level hybrid method, either in the relay or teamwork fashion, usually embeds 

another metaheuristic into the main algorithm. Alternatively, a certain functional 

part of the main algorithm is replaced by another metaheuristic. For example, 

many low-level hybrid GAs incorporate a local search procedure (typically a 
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deterministic method) to intensify the refinement of solutions found so far. In 

contrast, a high-level hybrid method uses different metaheuristics as ‘self-

contained’, which means that no interruption exists in between these operators. 

As discussed in the previous subsection, the reason why six distinct operators 

are selected for the GALAXY method is that they are probably suitable to be 

highly efficient at different stages of the optimisation. Therefore, it may not 

make sense to blend these operators in a low-level hybrid framework. 

Furthermore, as concluded in Wang et al. (2014b), a high-level teamwork hybrid 

turned out to be more effective than a high-level relay hybrid, since the former 

was able to take full advantage of each method promptly and eliminated on-line 

performance evaluation of each operator (saving computational time). On the 

other hand, a high-level teamwork hybrid framework fits itself well for parallel 

computation, although it is out of the scope of this thesis. 

Therefore, it is believed that a high-level teamwork hybrid paradigm is more 

likely to produce better results in an efficient way. Thus, the GALAXY method 

adopts such a hybrid paradigm and embeds six aforementioned search 

operators in a unified structure. 

3.2.4. Strategies of GALAXY 

3.2.4.1. Constraint Handling Strategy 

Many constraint handling techniques exist in the literature (as discussed in 

Chapter 2). Two commonly used methods are the penalty-function based 

approach and the constrained-domination based approach. The penalty-

function based method usually requires the specification of a scaling factor to 

discriminate infeasible solutions from feasible ones by adding a reasonable 

large penalty to their objective values. A drawback of this method lies in the fact 

that a proper factor often relies on trial-and-error which may not be viable when 

dealing with large and complex design problems. In contrast, the constrained-

domination based method does not compare constraints with objective function 

values, thus eliminating the penalty parameter. It works as follows: assuming 

that two solutions (A and B) are randomly chosen from the population for 
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comparison, solution A is selected if: (i) A has a less constraint violation than B; 

or (ii) A dominates B when both are feasible solutions. Otherwise, one of them 

is chosen at random. 

Although some more advanced constraint handling techniques have been 

proposed, such as the Inverse Parabolic Spread method introduced by Padhye 

et al. (Padhye et al. 2013b), in this thesis a traditional penalty-free, constrained-

domination strategy (Deb et al. 2002) is adopted due to its simplicity and 

effectiveness. 

3.2.4.2. Genetically Adaptive Strategy 

One effective strategy for a high-level hybrid framework is the genetically 

adaptive, multi-algorithm search initially proposed in Vrugt and Robinson (2007), 

which was adopted by both AMALGAM and Borg. This strategy within the 

original AMALGAM framework works as follows. Firstly, the offspring pool Q0 of 

size N is created from the initial population P0 using four search operators 

simultaneously, with each operator contributing the same number of individuals 

(i.e., N/4). Next, a combination of the parents (P0) and the offspring (Q0), 

namely R0 (size 2N), is produced and ranked via the fast non-dominated sorting 

procedure (Deb et al. 2002). A number of individuals, N, from R0 are then 

selected based on their rank and crowding distance, forming the population for 

the next generation. Thereafter, the number of individuals produced by each 

search operator is determined according to the reproductive rate (ratio of the 

children alive to the children created) in the previous generation (see Eq. (3.14)). 

However, if a search operator fails to contribute even a single individual in the 

latest population, a minimum number of individuals are consistently maintained 

for it to generate in the next round. 
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Where, i
tN  - the number of offspring to be generated by operator i at generation 

t; N - population size; i
tP  - number of offspring contributed by operator i at 

generation t. 
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Since GALAXY incorporates six operators for solving discrete combinatorial 

problems, this genetically adaptive strategy is also adopted to facilitate an 

effective search using multiple methods simultaneously. Nevertheless, this 

strategy needs to be enhanced to maximise its impact on the dynamic 

performance of various search operators, which is specified in the following 

paragraphs. 

In fact, the threshold made in the original AMALGAM seems to be arbitrary and 

thus can be further improved. Because the genetically adaptive strategy itself 

can award or penalize search operators automatically according to their 

performances, it may not make sense to keep the inefficient operators at such a 

minimum value (i.e., 5). As shown in Wang et al. (2014b), when dealing with a 

more complex design problem, the behavior of AMALGAM was similar to 

NSGA-II with a smaller effective population size, leading to worse non-

dominated solutions. The reason for such a poor performance was that all the 

operators except the GA became incapable of finding high quality solutions, 

therefore AMALGAM worked like NSGA-II with the effective population size 

shrunk by 15%. 

To overcome this drawback, a subtle modification is introduced by reducing the 

minimum threshold from 5 to 1. In case that one of six operators fails to 

contribute a single child to the next population, it borrows one opportunity from 

the topmost operator in the previous round. If two of six operators fail, each of 

them borrows one opportunity from the two topmost operators, and so on. 

Therefore, the most successful operator (with the highest reproductive rate) is 

always favored by getting the highest number of offspring in the reproduction 

process, and no operator is completely discarded (i.e., at least one offspring to 

be generated) even though it exhibits the worst performance. 

3.2.4.3. Global Information Sharing Strategy 

This strategy was first mentioned by Vrugt and Robinson (2007), but was not 

well explained. The essential idea is to share the current population among 

each search operator in the Generation step. In particular, each operator 

generates the same number of candidate solutions, which is equal to the 
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population size, rather than just the number of individuals it is allowed to 

produce. This permits the not-so-good operators to benefit from the high quality 

solutions contributed by other operators. Then, a number of offspring, which is 

determined by the genetically adaptive strategy, are chosen at random from the 

candidate solutions produced by each operator. This global information sharing 

strategy allows the search operators with poor performance in previous 

generations to recover subsequently, thus increasing their opportunities to 

contribute better solutions in the later run. Note that this strategy can be only 

realised in the generational framework. 

3.2.4.4. Duplicates Handling Strategy 

It is worth noting that there is a much higher possibility that duplicate solutions 

will be generated in the context of discrete combinatorial problems than in real-

parameter continuous problems. Consequently, the possibility of discovering 

more and/or better solutions is wasted due to some solutions being repeated in 

the population. Furthermore, the actual number of non-dominated solutions is 

less likely to reach the population size at the end of the search. Some 

researchers (Chaiyaratana et al. 2007; Črepinšek et al. 2013) have suggested 

discarding duplicate individuals to improve the overall performance (mainly for 

diversity) of evolutionary algorithms. Hence, a ‘unique solution strategy’ is 

applied in the GALAXY method after the combination of the offspring and the 

current population, as shown in Figure 3.2. This strategy is aimed at checking 

and removing duplicate solutions that exist in the population thereby increasing 

the diversity by accommodating more non-dominated solutions. This method is 

also believed to prevent premature convergence of the population. 

3.2.4.5. Hybrid Replacement Strategy 

In MOEAs, the Replacement procedure plays a crucial role in steering the 

population towards the PF. As shown in Figure 3.2, a hybrid replacement 

strategy is implemented in the GALAXY framework. Specifically, after the 

creation of an intermediate population (It) using the unique solutions in the 

current population (Pt) and the offspring (Ot), the individuals are ranked using 

the fast non-dominated sorting (Deb et al. 2002). If the number of individuals in 



Chapter 3 - GALAXY-A New Hybrid MOEA for Multi-Objective Design of WDS 

 

 
85 
 

the top rank is no greater than the population size, the normal replacement is 

carried out as in the NSGA-II. Figure 3.8(a) demonstrates this procedure that 

the solutions with rank F1 and F2 are copied directly into the next population 

(Pt+1). The solutions with rank F3 are first sorted in a descending order of their 

crowding distance values. Then, a number of solutions (F3’), which is equal to 

the remaining spaces in the next population, are chosen from top to bottom. 

However, if the number of individuals with rank F1 exceeds the population size, 

the  -replacement (see Figure 3.8(b)) is carried out instead, in which the non-

dominated solutions in the first front are sorted once again based on the  -

dominance concept. Therefore, the  -non-dominated solutions are copied into 

the next population (Pt+1). If there are still free spaces left, some  -dominated 

solutions are also selected which have smaller distances to the ideal global 

optima (i.e., the point with the best value according to each objective function). 

(a) normal replacement (F1 <= N) (b)  -replacement (F1 > N) 

Figure 3.8 Concept of hybrid replacement strategy 

This hybrid replacement strategy is used to preserve the non-dominated 

solutions which may have reached the PF. In other words, the  -dominance 

comparison is employed to overcome the shortcoming of the crowding distance 

based sorting, which by aiming to achieve a relatively uniform spread usually 

leads to losing the solutions on the PF. Actually, for a discrete combinatorial 

optimisation problem, it is rare that the PF is uniformly distributed. Therefore, 
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the crowding distance based sorting, which was proposed for solving 

continuous problems, may become problematic. 

On the other hand, the  -replacement procedure implemented in this thesis 

differs from the traditional  -dominance comparison in two aspects. Firstly, it 

does not require any user-specified   precision for each objective. Instead, the 

  precisions are determined internally according to the extent of solutions in the 

first front. Secondly, it allows some  -dominated solutions to be selected, rather 

than being completely removed, provided that they are close to the global 

optima. Figure 3.9 depicts this idea in more details. First of all, the boundary 

solutions in the first front are identified and used to construct the 2-D boxes with 

i  as the side length in the i-th objective. The value of i  is calculated by Eq. 

(3.15). Note that the boundary solutions must be included in the next population. 

Therefore, the number of candidate solutions to be selected is N-2. In Figure 

3.9, the solid circles represent  -dominating solutions (e.g., B and C) in the first 

front; while the dashed circles represent  -dominated solutions (e.g., A and D). 

The grey area indicates the region dominated by  -dominating solutions. Since 

the number of non-dominated solutions in the 2-D boxes is larger than N-2, they 

are first compared using the  -domination concept. The  -dominating solutions 

are then included in the next population. If there are remaining spaces, the  -

dominated solutions with smaller Euclidean distances to the global optimum (i.e., 

the lower-right corner in Figure 3.9) are also chosen. 

 
2

minmax





N

ff ii
i  (3.15)

Where, i  - the side length of each box in the i-th objective; max
if  and min

if  - 

maximum and minimum values of the i-th objective, respectively; N - population 

size. 

As a result, this hybrid replacement strategy ensures that the non-dominated 

solutions in the first front, which are near to the global optima, are preserved. A 

good diversity of these solutions is also achieved via the  -replacement 

procedure. As it will be shown in Chapter 5, this strategy along with the 
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duplicates handling strategy significantly improves the  -performance metric 

(Kollat and Reed 2006) of the GALAXY method. 

 

Figure 3.9 Concept of  -dominated sorting 

3.3. Sensitivity Analysis 

Since the GALAXY method actually involves only one parameter, namely the 

probability of mutation for the UM, GM and DC. All the mutation operators are 

applied at a probability equal to 1/ND, which has been proved to be an effective 

setting (Goldberg 1989) and widely accepted by most researchers. Besides the 

mutation rate, DC still requires specifying the bounds of mutation rate, because 

for each gene the mutation probability of DC (denoted as dcmP ) samples a 

uniformly distributed random number within the bounds rather than a prefixed 

value. Therefore, it is necessary to investigate the sensitivity of the performance 

of DC with regard to the lower and upper bounds of mutation rate (denoted as 

min
dcmP  and max

dcmP , respectively). As suggested in Zheng et al. (2013c), a small 

interval of size )/1( NDO  was chosen to form the bounds of mutation rate (see 

Eq. (3.16)-(3.18)) centred at dcmP . Therefore, in this section the performance of 

DC is tested under different ranges of dcmP  from 0.01 to 0.90. 

 )(minmax
dcmdcmdcm POPP   (3.16)

Network Resilience (to be maximised)

- ε-dominating solutions
- ε-dominated solutions

A
B

C
D
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 dcmdcm PrangeP  )1(min (3.17)

 dcmdcm PrangeP  )1(max (3.18)

The quality of non-dominated solutions obtained by different bounds of mutation 

rate is evaluated via four performance indicators mentioned in Chapter 2, which 

are the generational distance (IGD), hypervolume (IHV), additive  -indicator ( I ) 

and  -performance (IEP). The detailed definition and mathematical formulation 

of these indicators can be found in Chapter 2 and Chapter 5, respectively. In 

addition, these performance indicators are normalised to reside between 0 and 

1, with 1 representing the ideal (best) value. 

Note that, the sensitivity analysis of the DC operator is not carried out for all the 

benchmark problems considered in this thesis, since it would inevitably incur 

expensive computational overhead. Instead, the tests are implemented on small 

to intermediate sized design problems and the overall achievements are 

compared in Table 3.2. The numbers in the table below are presented in the 

format of ‘mean (standard deviation)’, which are statistical results across 

multiple runs (30) on a total of 9 benchmark problems. 

Table 3.2 Average performance of DC measured by different performance 

indicators 

Range IGD IHV I  IEP 
0.01 0.9892 (0.0163) 0.9556 (0.0432) 0.9593 (0.0365) 0.2189 (0.2556)
0.05 0.9892 (0.0164) 0.9557 (0.0439) 0.9596 (0.0366) 0.2197 (0.2601)
0.10 0.9894 (0.0159) 0.9555 (0.0435) 0.9591 (0.0366) 0.2229 (0.2618)
0.15 0.9891 (0.0163) 0.9553 (0.0440) 0.9590 (0.0367) 0.2169 (0.2551)
0.20 0.9891 (0.0164) 0.9561 (0.0435) 0.9598 (0.0365) 0.2183 (0.2549)
0.25 0.9892 (0.0165) 0.9558 (0.0447) 0.9595 (0.0375) 0.2211 (0.2562)
0.30 0.9893 (0.0162) 0.9554 (0.0435) 0.9593 (0.0362) 0.2161 (0.2527)
0.35 0.9891 (0.0166) 0.9557 (0.0440) 0.9595 (0.0370) 0.2207 (0.2572)
0.40 0.9893 (0.0164) 0.9553 (0.0439) 0.9588 (0.0369) 0.2193 (0.2568)
0.45 0.9890 (0.0170) 0.9552 (0.0444) 0.9593 (0.0372) 0.2218 (0.2586)
0.50 0.9890 (0.0167) 0.9552 (0.0444) 0.9594 (0.0367) 0.2191 (0.2544)
0.60 0.9892 (0.0163) 0.9554 (0.0444) 0.9590 (0.0375) 0.2196 (0.2566)
0.70 0.9890 (0.0170) 0.9562 (0.0443) 0.9603 (0.0371) 0.2202 (0.2594)
0.80 0.9891 (0.0167) 0.9559 (0.0455) 0.9593 (0.0381) 0.2190 (0.2579)
0.90 0.9890 (0.0168) 0.9550 (0.0444) 0.9588 (0.0370) 0.2173 (0.2532)
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Note: The best practice on average in terms of each performance indicator 

(column-wise) is shown in bold. 

The analysis shows that the performance of DC is not very sensitive to the 

bounds of dcmP , as long as the probability of mutation is kept at a reasonable 

low value (e.g., 1/ND). This is a preferred feature for such an operator. By 

considering the overall performance in terms of convergence, diversity and 

consistency, a range equal to 0.70 is select to calculate the bounds of dcmP  

throughout this thesis. 

3.4. Summary 

This chapter presented a new hybrid algorithm, called GALAXY, for the multi-

objective design or rehabilitation of WDSs. In Section 3.2, some essential 

questions with regard to the characteristics of multi-objective design or 

rehabilitation of WDSs and the creation of a hybrid algorithm were first raised. 

Then, a framework for the GALAXY method was proposed based on the 

Evolutionary Optimisation System followed by the detailed development of each 

component. Finally, several important strategies implemented in the GALAXY 

framework were explained. Since the GALAXY method just involves one 

individual parameter (i.e., the probability bounds of the dither creeping mutation), 

a sensitivity analysis towards this parameter was carried out in Section 3.3, 

proving that GALAXY was not significantly affected by this parameter. As a 

result, the number of user-specified parameters within the GALAXY method 

was significantly reduced. 
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4. WATER DISTRIBUTION SYSTEM BENCHMARK 

ARCHIVE 

4.1. Introduction 

It is a common practice to verify the capability of a newly-developed algorithm 

on benchmark problems by comparing it with other algorithms. In the field of 

water resources engineering, there are quite a few benchmark problems which 

are available for testing and comparing MOEAs. For example, Reed et al. (2013) 

presented three many-objective test problems, including the rainfall-runoff 

model calibration, the groundwater monitoring design and the water supply 

portfolio planning. These cases introduce a certain degree of difficulty in the 

landscape of the search space, being deceptive, multi-modal, discontinuous 

and highly constrained. However, in the domain of WDSs, only a few 

benchmark networks are frequently used to address the optimal design 

problems, such as the two-loop network (Alperovits and Shamir 1977), the New 

York tunnel network (Schaake and Lai 1969) and the Hanoi network (Fujiwara 

and Khang 1990). These networks are usually small and therefore, it is not easy 

to distinguish the performance of different algorithms, or to draw conclusions 

which can benefit (large) real-world cases. 

On the other hand, from the viewpoint of multi-objective formulation, there is no 

universally accepted definition that can facilitate the direct comparison of 

various algorithms. More specifically, for the two-objective design of WDSs, one 

objective is generally the total capital cost, whereas the other one varies from 

case to case (as reviewed in Chapter 2). The unconstrained problem makes all 

solutions appear feasible so that the algorithm can search at the boundary of 

the feasible region. In that case, it may be difficult to find a solution within the 

feasible region. Furthermore, an inappropriate formulation may be criticised by 

practitioners as the optimal solutions are less useful or even misleading for real 

cases. 

One goal of using optimisation algorithms is to solve more complex problems in 

the real world. Nevertheless, it is difficult to choose the best method to 
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implement from the existing algorithms in the domain, because there are limited 

comparison studies of these algorithms for a wide range of problems (especially 

on large ones). Hence, as mentioned by Farmani et al. (2003a), it may be 

beneficial for optimisation researchers and practitioners in the water community 

to build up a library of cases to benchmark the target algorithms against others 

in a thorough and systematic fashion. 

This chapter aims to set out an archive of benchmark problems, termed Water 

Distribution System Benchmark Archive (WDSBA), to compare the proposed 

hybrid algorithms with state-of-the-art hybrid frameworks and other MOEAs. A 

uniform problem formulation is applied throughout this thesis for the two-

objective design or extended design of WDSs. Up to twelve problems featuring 

distinct characteristics and difficulties are included in the WDSBA, ranging from 

small to large. 

4.2. Uniform Problem Formulation 

A uniform formulation, i.e., same in terms of objective functions, types of 

decision variables and constraint violations, is applied to all the benchmark 

problems in order to compare different algorithms under a standardised 

framework. Therefore, the complexity among different benchmark problems 

mainly comes from the size of search space, which depends on the number of 

pipes in a specific network and the number of diameter (or intervention for 

rehabilitation cases) options for each pipe. By comparing algorithms on a wide 

range of benchmark problems, it is possible to draw a general conclusion from 

the overall performance of each algorithm. 

4.2.1. Objective Functions 

In the WDSBA, two main objectives are considered, the total capital cost 

associated with pipes and the network resilience (Prasad and Park 2004). The 

specific objectives are expressed in Eq. (4.1) and Eq. (4.2) respectively. 

 
1

min ( )
np

u i ii
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
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Where, C - total cost (problem dependent monetary unit); np - number of pipes; 

Cu - unit pipe cost depending on the diameter selected in a specific problem; Di 

- diameter of pipe i; Li - length of pipe i. 
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Where, In - network resilience; nn - number of demand nodes; Cj, Qj, Hj and 

Hj
min - uniformity, demand, actual head and minimum head of node j; nr - 

number of reservoirs; Qk and Hk - discharge and actual head of reservoir k; npu 

- number of pumps; Pi - power of pump i; γ - specific weight of water; npj - 

number of pipes connected to node j; j
iD  - diameter of pipe i connected to 

demand node j. 

4.2.2. Decision Variables 

The decision variables in each problem within the WDSBA are the diameters (or 

intervention options for rehabilitation cases) of pipes. Due to the availability of 

pipe sizes on the market (or from manufacturers), the diameter options are of 

discrete sizes. Thus, the decision variables are of the consecutive integer type, 

mapping to each available diameter size. The expression of decision variables 

is shown in Eq. (4.4). 

 DDDDDDDV inpi  };,...,,...,{ 21 (4.4)

Where, DV - decision variables; Di - diameter index of pipe i; np - number of 

pipes to be optimised; D - set of diameter options of a specific benchmark 

problem. 

4.2.3. Constraints 

The constraints in the uniform problem formulation consist of two parts, implicit 

and explicit constraints. Implicit constraints are the hard constraints that must 

be fulfilled during the optimisation (simulation) .They are controlled by the laws 
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of mass balance and energy conservation of a network system. This means that 

at each demand node the water consumption is equal to the difference of the 

water flowing into and out of that node, and the sum of the head loss due to the 

friction of pipe walls within each loop is equal to zero. The implicit constraints 

are expressed in Eq. (4.5) and Eq. (4.6) respectively. These constraints are 

automatically satisfied by using a hydraulic solver (e.g., EPANET2). 

 JiQQQ out
i

in
ii   ; (4.5)

Where, Qi - water demand of node i; Qi
in - water flowing into node i; Qi

out - water 

flowing out of node i; J - set of demand nodes. 

 LlH
npl

i

l
i 

;0
1

 (4.6)

Where, npl - number of pipes in loop l; l
iH  - head loss in pipe i within loop l; L - 

set of basic loops in a network system. 

The hydraulic head loss in a pipe due to the friction of pipe walls can be 

computed using different formulae. Two commonly used formulae for WDSs are 

the Hazen-Williams formula and the Darcy-Weisbach formula. The former is 

widely used in the United States., whereas the latter is theoretically correct and 

can be applied to all liquids over all flow regimes. A generalised formula for 

computing the hydraulic head loss (∆H) in a pipe is shown in Eq. (4.7). Two 

specific variants of this formula, i.e. the Hazen-Williams formula and the Darcy-

Weisbach formula are given in Eq. (4.8) and (4.9) respectively. 

 BAqH   (4.7)

Where, ∆H - head loss in a pipe; A - resistance coefficient; q - flow rate; B - flow 

exponent. 
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Where ∆H - head loss in a pipe (m); q - flow rate (m3/s); L - pipe length (m); C - 

Hazen-Williams roughness coefficient (unitless); d - pipe diameter (m); κ  - 

roughness height (m); ),,( qdκf  - Darcy friction factor (unitless) depending on 

,, dκ and q. 

Explicit constraints relate to those performance requirements of a network 

system. The pressure head requirement at demand nodes and the flow velocity 

in pipes are commonly considered during the design stage. There is only 

minimum pressure head requirement of demand nodes in most benchmark 

problems of WDSBA. However, four out of twelve problems (as shown in 

Section 4.3) have both minimum and maximum pressure head requirements for 

the demand nodes, which further limit the search space. At the same time, 

these four problems also have upper bounds of flow velocity throughout the 

networks. These explicit constraints are shown in Eq. (4.10) and Eq. (4.11) 

respectively. 

 JiHHH iii ∈∀≤≤ ;maxmin   (4.10) 

Where, Hi - head at node i; Hi
min - minimum head requirement at node i; Hi

max - 

maximum head requirement at node i; J - set of demand nodes. 

 PiVVi ∈∀≤ ;max
 (4.11)

Where, Vi - flow velocity in pipe i; Vmax - maximum flow velocity requirement; P - 

set of pipes. 

4.3. Water Distribution System Benchmark Archive 

A detailed description of each benchmark network is presented below. The 

description follows a uniform format, including a brief history of the network, a 

summary of the network components, design requirement (pressure head and 

flow velocity if any) and size of search space. In addition, the primary data, i.e., 

design criteria and diameter options and the associated unit prices are given in 

this section. Note that the benchmark networks are arranged according to the 

ascending order of search space. 
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4.3.1. Description of Benchmark Networks 

4.3.1.1. Two Reservoir Network (TRN) 

The TRN was first introduced by Gessler (1985) and later modified by Simpson 

et al. (1994) by adding two large diameter options for new pipes. It represents a 

benchmark network which considers multiple loading conditions, including one 

normal scenario and two fire flow scenarios. 

The TRN has eight pipes to be considered and the other existing pipes cannot 

be changed. There are two reservoirs with heads fixed at 365.76 m (left in 

Figure 4.1) and 371.86 m (right in Figure 4.1) and nine demand nodes. New 

pipes and cleaned pipes have the same Hazen-Williams roughness coefficient 

of 120. The minimum pressure of all the nodes under three demand patterns is 

specified in Table 4.1. The decision variables are the pipe diameters for five 

new pipes and alternative options, i.e., duplication or cleaning or ‘do nothing’, 

for three existing pipes. Each pipe has eight diameter options to choose from. 

Therefore, the search space is equal to 85x103≈3.28x107 discrete combinations, 

which makes the TRN the smallest combinatorial problem analysed in this 

thesis. Table 4.2 shows the available diameter options for pipe diameter and the 

associated unit costs. Figure 4.1 depicts the layout of TRN. The new pipes are 

shown as thick solid lines; whereas the new duplication pipes are shown as 

thick dashed lines. 

4.3.1.2. Two Loop Network (TLN) 

The TLN is arguably the simplest WDS benchmark network for design purposes 

in the literature. It was first presented by Alperovits and Shamir (1977) as a 

hypothetical network. The currency unit of cost has been chosen here to be the 

US dollar. 

The TLN contains eight pipes organised in two loops, six demand nodes under 

a single loading condition and is supplied by a reservoir with a constant head of 

210.0 m. As it is a hypothetical network, all the pipes have the same length 

(1000.0 m) and a Hazen-Williams coefficient of 130. The pressure is set to be at 

least 30.0 m at all the demand nodes. In this thesis, the limits on minimum and 



Chapter 4 - Water Distribution System Benchmark Archive 

 

 
96 
 

maximum head loss gradient of each pipe proposed in the original paper are 

ignored. Fourteen diameter options are considered for each pipe, ranging from 

25.4 mm (1.0 in.) to 609.6 mm (24.0 in.). Thus, the search space is equal to 

148≈1.48x109 discrete combinations. Table 4.3 shows the available pipe 

diameters and the associated unit costs. Figure 4.2 depicts the layout of TLN. 

Table 4.1 Minimum pressure at each node under three demand patterns of TRN 

Node ID 

Loading Conditions 
Normal Condition Fire Flow 1 Fire Flow 2 
Demand 

(l/s) 
Hmin 
(m) 

Demand
(l/s) 

Hmin 
(m) 

Demand 
(l/s) 

Hmin 
(m) 

2 12.62 28.18 12.62 14.09 12.62 14.09 
3 12.62 17.61 12.62 14.09 12.62 14.09 
4 0 17.61 0 14.09 0 14.09 
6 18.93 35.22 18.93 14.09 18.93 14.09 
7 18.93 35.22 82.03 10.57 18.93 14.09 
8 18.93 35.22 18.93 14.09 18.93 14.09 
9 12.62 35.22 12.62 14.09 12.62 14.09 

10 18.93 35.22 18.93 14.09 18.93 14.09 
11 18.93 35.22 18.93 14.09 18.93 14.09 
12 12.62 35.22 12.62 14.09 50.48 10.57 

Note: Hmin - minimum pressure head requirement. 

Table 4.2 Pipe intervention options and associated unit costs of TRN 

Diameter 
(mm) 

Unit Cost 
Diameter

(mm) 

Unit Cost 
New Pipe 

($/m) 
Cleaned Pipe

($/m) 
New Pipe

($/m) 
Cleaned Pipe

($/m) 
152 49.54 47.57 356 170.93 60.70
203 63.32 51.51 407 194.88 63.00
254 94.82 55.12 458 232.94 -
305 132.87 58.07 509 264.10 -
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Figure 4.1 Layout of TRN 

Table 4.3 Diameter options and associated unit costs of TLN 

Diameter 
(mm/in.) 

Unit 
Cost 
($/m)

Diameter 
(mm/in.) 

Unit 
Cost
($/m)

Diameter 
(mm/in.) 

Unit 
Cost
($/m)

Diameter 
(mm/in.) 

Unit 
Cost 
($/m)

25.4/1.0 2.0 152.4/6.0 16.0 355.6/14.0 60.0 558.8/22.0 300.0
50.8/2.0 5.0 203.2/8.0 23.0 406.4/16.0 90.0 609.6/24.0 550.0
76.2/3.0 8.0 254.0/10.0 32.0 457.2/18.0 130.0 - -

101.6/4.0 11.0 304.8/12.0 50.0 508.0/20.0 170.0 - -

 

Figure 4.2 Layout of TLN 
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4.3.1.3. BakRyan Network (BAK) 

The BAK, a combination of a design and extended design problem, was first 

introduced by Lee and Lee (2001) and it represents a water supply system in a 

city of South Korea. 

The BAK has fifty-eight pipes including nine new pipes to be determined, thirty-

five demand nodes, and one reservoir with a fixed head of 58.0 m. The Hazen-

Williams roughness coefficient for each new pipe is 100. The minimum pressure 

head above the ground elevation of each node is 15.0 m. Among the new pipes, 

six of them are parallel. There are eleven available pipe sizes, ranging from 

300.0 mm to 1,100.0 mm. Therefore, the search space is equal to 119≈2.36x109 

discrete combinations. Table 4.4 shows the diameter options and the 

associated unit costs. Figure 4.3 depicts the layout of BAK. The pipes to be 

considered are shown in thick solid lines. 

Table 4.4 Diameter options and associated unit costs of BAK 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

Diameter
(mm) 

Unit 
Cost 
($/m) 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

300.0 118.0 450.0 160.0 700.0 242.0 1,000.0 370.0
350.0 129.0 500.0 181.0 800.0 285.0 1,100.0 434.0
400.0 145.0 600.0 214.0 900.0 325.0 - -
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Figure 4.3 Layout of BAK 

4.3.1.4. New York Tunnel Network (NYT) 

The NYT was first proposed by Schaake and Lai (1969) as a rehabilitation 

activity undertaken to an existing tunnel system which was the primary water 

distribution system of the city of New York, USA. 

The NYT is comprised of twenty-one pipes organised in two loops, nineteen 

demand nodes, and one reservoir with a fixed head of 91.44 m (300 ft). All the 

existing pipes are considered for duplication in order to meet the projected 

future demand. The Hazen-Williams roughness coefficient for both new and 

existing pipes is 100. The minimum pressure of all the demand nodes is fixed at 

77.72 m (255 ft) except for nodes 16 and 17 that are 79.25 m (260 ft) and 83.15 

m (272.8 ft), respectively. A selection of fifteen diameter sizes is available as 

well as a ‘do nothing’ option. Therefore, the search space is equal to 

1621≈1.93x1025 discrete combinations. Table 4.5 shows the diameter options 

and the associated unit costs. Figure 4.4 depicts the layout of NYT. The new 

duplication pipes are shown as thick solid lines. 

 



Chapter 4 - Water Distribution System Benchmark Archive 

 

 
100 
 

Table 4.5 Diameter options and associated unit costs of NYT 

Diameter 
(mm/in.) 

Unit Cost 
($/m) 

Diameter 
(mm/in.) 

Unit Cost
($/m) 

Diameter 
(mm/in.) 

Unit Cost
($/m) 

914.4/36.0 307.05 2438.4/96.0 1036.09 3962.4/156.0 1891.70
1219.2/48.0 438.65 2743.2/108.0 1199.02 4267.2/168.0 2073.79
1524.0/60.0 578.48 3048.0/120.0 1366.34 4572.0/180.0 2258.99
1828.8/72.0 725.23 3352.8/132.0 1537.76 4876.8/192.0 2447.21
2133.6/84.0 877.99 3657.6/144.0 1712.96 5181.6/204.0 2638.25

4.3.1.5. Blacksburg Network (BLA) 

The BLA was first presented by Sherali et al. (2001) as a newly expanded 

subdivision of the water distribution system in the town of Blacksburg, Virginia. 

The network was then slightly modified by Bragalli et al. (2008) since the data 

was incomplete in the original paper and this modified network has been used 

throughout the thesis. 

 

Figure 4.4 Layout of NYT 
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The BLA consists of thirty-five pipes of which twelve have fixed diameters, one 

reservoir with a fixed head of 715.56 m2, and 30 demand nodes. A universal 

Hazen-Williams coefficient of 120 is applied to all the pipes under consideration. 

The pressure requirement of each node is limited within a specified range under 

the single loading condition. The minimum pressure head for each node is 30.0 

m, while the maximum pressure head varies from node to node and these 

values are provided in Table 4.6. In addition, there is also a constraint on the 

maximum flow velocity (2.0 m/s) for all the pipes. The total number of decision 

variables for the BLA problem is twenty-three. According to Bragalli et al. (2008), 

there are fourteen3 diameter options resulting in the search space equal to 

1423≈2.30x1026 discrete combinations. Table 4.7 shows the commercially 

available pipe sizes and the associated unit costs. Figure 4.5 depicts the layout 

of BLA. 

Table 4.6 Maximum pressure head requirement at each node of BLA 

NI 
Hmax 
(m) 

NI
Hmax 
(m) 

NI
Hmax

(m) 
NI

Hmax

(m) 
NI

Hmax

(m) 
NI 

Hmax 
(m) 

1 62.99 6 66.65 11 63.60 16 60.55 21 62.84 26 75.64 
2 65.73 7 67.26 12 72.44 17 72.74 22 62.08 27 74.88 
3 69.09 8 67.26 13 64.36 18 62.08 23 58.27 28 75.94 
4 59.18 9 72.59 14 62.38 19 60.40 24 51.71 29 69.39 
5 62.84 10 69.09 15 61.92 20 63.29 25 70.00 30 68.48 

Note: NI - node index which is a consecutive number starting from one to the 

total number of nodes in the network; Hmax - maximum pressure head 

requirement. 

 

                                            

2 This number is much higher than the original elevation of 659.28 m (2163 ft) in Sherali et al. 

(2001). 
3 This number was firstly introduced in Bragalli et al. (2008) and thereafter modified by adding 

another option (pipe elimination) in Raad’s PhD thesis. Herein, the option of pipe elimination is 

ignored as it will cause some end nodes disconnected from the water source. 
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Table 4.7 Diameter options and associated unit costs of BLA 

Diameter 
(mm) 

Unit 
Cost 
($/m)

Diameter 
(mm) 

Unit 
Cost 
($/m) 

Diameter
(mm) 

Unit 
Cost 
($/m) 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

25.40 0.52 152.40 18.90 355.60 102.89 558.80 254.08
50.80 2.10 203.20 33.60 406.40 134.39 609.60 302.37
76.20 4.72 254.00 52.50 457.20 170.09 - -

101.60 8.40 304.80 75.59 508.00 209.98 - -

 

Figure 4.5 Layout of BLA 

4.3.1.6. Hanoi Network (HAN) 

The HAN was first used by Fujiwara and Khang (1990) as a design problem and 

it represents a water distribution system in Hanoi, the capital of Vietnam. The 

Hanoi network has a large region of infeasible solutions in the landscape of 

decision variables, thus making it difficult to explore the search space (Dong et 

al. 2012). 

The HAN consists of thirty-four pipes organised in three loops, thirty-one 

demand nodes and one reservoir with a fixed head of 100.0 m. The Hazen-

Williams roughness coefficient for all pipes is 130. The minimum head above 

the ground elevation of each node is 30.0 m. There are six commercially 

available pipe sizes, ranging from 304.8 mm (12.0 in.) to 1016.0 mm (40.0 in.). 
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Therefore the search space is equal to 634≈2.87x1026 discrete combinations. 

Table 4.8 shows the diameter options and the associated unit costs. Figure 4.6 

depicts the layout of HAN. 

Table 4.8 Diameter options and associated unit costs of HAN 

Diameter 
(mm/in.) 

Unit Cost 
($/m) 

Diameter 
(mm/in.) 

Unit Cost
($/m) 

Diameter 
(mm/in.) 

Unit Cost 
($/m) 

304.8/12.0 45.73 508.0/20.0 98.39 762.0/30.0 180.75 
406.4/16.0 70.40 609.6/24.0 129.33 1016.0/40.0 278.28 

 

Figure 4.6 Layout of HAN 

4.3.1.7. GoYang Network (GOY) 

The GOY was initially presented by Kim et al. (1994) and it represents a water 

supply system in a city of South Korea. 

The GOY has thirty pipes, twenty-two demand nodes, and one constant pump 

of 4.52 kW linking to one reservoir with a constant head of 71.0 m. The Hazen-

Williams roughness coefficient for each new pipe is 100. The minimum pressure 

head above the ground elevation of each node is 15.0 m. There are eight 

commercially available pipe sizes, ranging from 80.0 mm to 350.0 mm. Thus, 

the search space is equal to 830≈1.24x1027 discrete combinations. Table 4.9 
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shows the diameter options and the associated unit costs. Figure 4.7 depicts 

the layout of GOY. 

Table 4.9 Diameter options and associated unit costs of GOY 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

Diameter
(mm) 

Unit 
Cost 
($/m) 

Diameter 
(mm) 

Unit 
Cost 
($/m) 

80.0 37.890 125.0 40.563 200.0 47.624 300.0 62.109
100.0 38.933 150.0 42.554 250.0 54.125 350.0 71.524

 

Figure 4.7 Layout of GOY 

4.3.1.8. Fossolo Network (FOS) 

The FOS was initially introduced by Bragalli et al. (2008) as a single 

neighbourhood of Bologna, called Fossolo in Northern Italy. Three instances 

were considered for this network. However, only one of them is adopted in this 

thesis as it represents the most complicated one in terms of the size of search 

space. 

The FOS has fifty-eight pipes, thirty-six demand nodes, and one reservoir with a 

fixed head of 121.0 m. The material for all the pipes is polyethylene. Due to the 

characteristic of polyethylene, a relatively high roughness coefficient of 150 is 

applied to all the pipes. The minimum pressure head of all the demand nodes is 

maintained at 40.0 m, while the maximum pressure head of each node is 

specified in Table 4.10. In addition, the flow velocity in each pipe is kept at less 



Chapter 4 - Water Distribution System Benchmark Archive 

 

 
105 
 

than or equal to 1.0 m/s. There are twenty-two sizes in total to choose from. 

Hence, the search space is equal to 2258≈7.25x1077 discrete combinations. 

Table 4.11 shows the available diameter options and the associated unit costs. 

Figure 4.8 depicts the layout of FOS. 

Table 4.10 Maximum pressure head requirement at each node of FOS 

NI 
Hmax 
(m) 

NI
Hmax 
(m) 

NI
Hmax

(m) 
NI

Hmax

(m) 
NI

Hmax

(m) 
NI 

Hmax 
(m) 

1 55.85 7 53.10 13 59.10 19 58.10 25 56.60 31 56.60 
2 56.60 8 54.50 14 58.40 20 58.17 26 57.60 32 56.80 
3 57.65 9 55.00 15 57.50 21 58.20 27 57.10 33 56.40 
4 58.50 10 56.83 16 56.70 22 57.10 28 55.35 34 56.30 
5 59.76 11 57.30 17 55.50 23 56.80 29 56.50 35 55.57 
6 55.60 12 58.36 18 56.90 24 53.50 30 56.90 36 55.10 

Note: NI - node index which is a consecutive number starting from one to the 

total number of nodes in the network; Hmax - maximum pressure head 

requirement. 

4.3.1.9. Pescara Network (PES) 

The PES was first presented by Bragalli et al. (2008) as a simplified real WDS 

in Pescara, a medium-size city in Italy. 

The PES has ninety-nine pipes, sixty-eight demand nodes, and three reservoirs 

with fixed heads between 53.08 m and 57.00 m. The pipe material is cast iron. 

A uniform Hazen-Williams roughness coefficient of 130 is applied to all pipes. 

The minimum pressure head of all the demand nodes is maintained at 20.0 m, 

while the maximum pressure head of each node is specified in Table 4.12. In 

addition, the flow velocity in each pipe is kept at less than or equal to 2.0 m/s. 

There are 13 pipe sizes, ranging from 100.0 mm to 800.0 mm. Thus the search 

space is equal to 1399≈1.91x10110 discrete combinations. Table 4.13 shows the 

available diameter options and the associated unit costs. Figure 4.9 depicts the 

layout of PES. 
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Table 4.11 Diameter options and associated unit costs of FOS 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

Diameter
(mm) 

Unit 
Cost 
(€/m) 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

16.00 0.38 61.40 4.44 147.20 24.78 290.60 99.58
20.40 0.56 73.60 6.45 163.60 30.55 327.40 126.48
26.00 0.88 90.00 9.59 184.00 38.71 368.20 160.29
32.60 1.35 102.20 11.98 204.60 47.63 409.20 197.71
40.80 2.02 114.60 14.93 229.20 59.70 - -
51.40 3.21 130.80 19.61 257.80 75.61 - -

 

Figure 4.8 Layout of FOS 

4.3.1.10. Modena Network (MOD) 

The MOD was also introduced by Bragalli et al. (2008) as a simplified real WDS 

in Modena, a medium-sized city in Italy. 

The MOD has 317 pipes, 268 demand nodes, and four reservoirs with fixed 

heads between 72.0 m and 74.5 m. The materials and sizes of commercially 

available pipes are the same as PES (see Table 4.13). A uniform Hazen-

Williams roughness coefficient of 130 is applied to all pipes. The minimum 

pressure head of all the demand nodes is maintained at 20.0 m. Since the 

maximum pressure head at each node of MOD would take too much space, it is 

provided in Table A.1 (See Appendix A). In addition, the flow velocity in each 
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pipe is kept at less than or equal to 2.0 m/s. There are thirteen pipe sizes (same 

as PES), so the search space is equal to 13317≈1.32x10353 discrete 

combinations. Figure 4.10 depicts the layout of MOD. 

Table 4.12 Maximum pressure head requirement at each node of PES 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

NI
Hmax

(m)
NI

Hmax

(m)
NI

Hmax

(m)
NI 

Hmax 
(m) 

1 54.1 13 53.8 25 53.2 37 52.8 49 55.2 61 54.9 
2 52.0 14 37.8 26 52.7 38 54.1 50 55.4 62 54.9 
3 53.5 15 53.0 27 53.4 39 54.1 51 53.7 63 53.7 
4 53.2 16 53.5 28 53.8 40 28.5 52 54.5 64 54.9 
5 54.8 17 54.2 29 54.2 41 29.7 53 54.2 65 55.5 
6 50.0 18 54.3 30 55.2 42 55.9 54 53.8 66 37.8 
7 50.5 19 55.2 31 53.2 43 54.9 55 53.4 67 54.9 
8 51.8 20 54.9 32 54.1 44 54.2 56 53.2 68 55.5 
9 52.7 21 55.0 33 53.3 45 53.7 57 53.9 - - 

10 51.8 22 38.3 34 54.9 46 55.2 58 54.0 - - 
11 29.0 23 53.8 35 50.3 47 55.2 59 52.8 - - 
12 53.8 24 55.4 36 50.3 48 55.4 60 52.8 - - 

Note: NI - node index which is a consecutive number starting from one to the 

total number of nodes in the network; Hmax - maximum pressure head 

requirement. 

Table 4.13 Diameter options and associated unit costs of PES 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

Diameter
(mm) 

Unit 
Cost 
(€/m) 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

100.0 27.7 250.0 75.0 450.0 169.3 800.0 391.1
125.0 38.0 300.0 92.4 500.0 191.5 - -
150.0 40.5 350.0 123.1 600.0 246.0 - -
200.0 55.4 400.0 141.9 700.0 319.6 - -
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Figure 4.9 Layout of PES 

 

Figure 4.10 Layout of MOD 

4.3.1.11. Balerma Irrigation Network (BIN) 

The BIN was initially investigated by Reca and Martínez (2006) and it 

represents an adaptation of the existing irrigation system in the Sol-Poniente 

irrigation district, which is located in Balerma, province of Almería, Spain. The 

distinguishing feature of this network is that all nodes have the same demand of 

5.55 l/s across the network. 
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The BIN has 454 relatively short pipes, 443 demand nodes (hydrants), and four 

reservoirs with fixed heads between 112.0 m and 127.0 m. The material of 

pipes is polyvinyl chloride (PVC). The Darcy-Weisbach roughness coefficient of 

0.0025 mm is applied to all the pipes. The minimum pressure head above the 

ground elevation is 20.0 m for all the demand nodes. There are a total of ten 

commercially available sizes, ranging from 113.0 mm to 581.8 mm. Therefore, 

the search space is equal to10454=1.00x10455 discrete combinations. Table 4.14 

shows the available diameter options and the associated unit costs. Figure 4.11 

depicts the layout of BIN. 

 

Figure 4.11 Layout of BIN 

Table 4.14 Diameter options and associated unit costs of BIN 

Diameter 
(mm) 

Unit 
Cost 
(€/m)

Diameter 
(mm) 

Unit 
Cost 
(€/m)

Diameter
(mm) 

Unit 
Cost 
(€/m) 

Diameter 
(mm) 

Unit 
Cost 
(€/m) 

113.0 7.22 162.8 14.84 285.0 45.39 581.8 215.85
126.6 9.10 180.8 18.38 361.8 76.32 - -
144.6 11.92 226.2 28.60 452.2 124.64 - -
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4.3.1.12. Exeter Network (EXN) 

The EXN was set up by the Centre for Water Systems (CWS) at the University 

of Exeter as a realistic and challenging duplication problem (Farmani et al. 

2004). The network serves a population of approximately 400,000 and needs to 

be reinforced to meet the projected demand in 2020. It consists of a great 

number of small pipes and few transmission mains, with a large head-loss 

range at the extremities of the system. Originally, this model was built as an 

extended period simulation model. It is simplified here as per Farmani et al. 

(2005a) by replacing two tanks with fixed head reservoirs and by turning the 

EPS model into a steady-state model, considering the peak demand of system 

over twenty-four hours. 

The EXN has 3,032 pipes including 567 pipes considered for duplication, five 

valves, 1,891 junction nodes and seven water sources. Two major reservoirs 

(node 3001 and 3002) supply water to the system at fixed heads of 58.4 m and 

62.4 m respectively. The system is also fed by its neighbour systems via node 

3003 to 3007 at fixed rates. Three non-return valves (also known as check 

valves) are connected to node 3001 and 3002 to control the flow direction into 

and out of the system. One pressure reducing valve is located in the 

downstream of node 3004 to maintain the downstream pressure below 58.4 m. 

One throttle control valve is also in the link downstream of node 3004 to control 

the flow and pressure of the system. 

The minimum pressure requirement of demand nodes is 20.0 m. There are ten 

available discrete pipe sizes and one extra option of 'do nothing'. Therefore, the 

search space is equal to 11567≈2.95x10590 discrete combinations, which makes 

EXN the largest combinatorial problem analysed in this thesis. The unit cost for 

duplicating the existing pipe depends on both the diameter selected and the 

road type. Table 4.15 shows the pipe diameters, the corresponding roughness 

heights (following Darcy-Weisbach formula) and unit costs. The location of 

major roads is specified in Table 4.16 in terms of pipe ID. Figure 4.12 depicts 

the layout of EXN. 
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It is worth noting that the EXN network used in this thesis is a slightly different 

from the one which can be obtained from the following web address 

http://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/expa

nsion/exnet.html. The modifications are summarised as follows: (1) Node 1610 

has been removed to avoid isolated junction; (2) 20 PM in the section of “TIMES” 

of input file has been changed to 8 PM; and (3) Since it is impossible for 

junction 1107 to meet the minimum pressure requirement, it is ignored in the 

calculation of constraint violation. In addition, it would be too complicated to 

highlight all the pipes considered for duplication, these pipes are tagged in the 

input file of EPANET2 model. 

 

Figure 4.12 Layout of EXN 
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Table 4.15 Pipe intervention options, roughness coefficients and associated unit 

costs of EXN 

Diameter 
(mm) 

Roughness 
(mm) 

Unit Cost 
(£/m) Diameter

(mm) 
Roughness 

(mm) 

Unit Cost 
(£/m) 

Minor 
Road

Major 
Road

Minor 
Road 

Major 
Road

110 0.03 85 100 400 0.23 250 290
159 0.065 95 120 500 0.3 310 340
200 0.1 115 140 600 0.35 370 410
250 0.13 150 190 750 0.43 450 500
300 0.17 200 240 900 0.5 580 625

Table 4.16 Location of major road in terms of pipe ID 

Road 
No. 

Pipe 
ID 

Road 
No. 

Pipe 
ID 

Road 
No. 

Pipe 
ID 

Road 
No. 

Pipe 
ID 

1 5016 12 2681 23 5066 34 2065
2 4899 13 2803 24 2063 35 3917
3 2791 14 2784 25 5239 36 3937
4 3172 15 5085 26 5117 37 3823
5 3121 16 2579 27 3513 38 3792
6 3154 17 2651 28 2493 39 3834
7 3147 18 3055 29 2297 40 2963
8 2759 19 4057 30 5063 41 3690
9 2821 20 2790 31 5165 - -

10 2752 21 2619 32 2369 - -
11 2769 22 2087 33 4072 - -

4.3.2. Classification and Features 

Table 4.17 summarises all the benchmark networks used in this thesis. The 

details include the number of component elements, i.e., junction, reservoir, tank, 

pipe, pump and valve, as well as the formula of hydraulic head loss. 

The benchmark networks in the WDSBA can be classified into different 

categories. For instance, according to the number of water sources and 

demand patterns, they can be categorised as single source or multiple sources 

network and single loading condition or multiple loading conditions, respectively. 

Another possibility is to classify the networks based on the type of hydraulic 

simulation, i.e., steady-state simulation or extended period simulation. However, 
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all the networks in the WDSBA are steady-state models. Table 4.18 shows the 

classification of these networks from two aforementioned viewpoints. 

Table 4.17 Number of each component of each benchmark network 

Network 
No. of Each Element 

Formula
Junction Reservoir Tank Pipe Pump Valve 

TRN 10 2 0 17(8) 0 0 H-W 
TLN 6 1 0 8 0 0 H-W 
BAK 35 1 0 58(9) 0 0 H-W 
NYT 19 1 0 42(21) 0 0 H-W 
BLA 30 1 0 35(23) 0 0 H-W 
HAN 31 1 0 34 0 0 H-W 
GOY 22 1 0 30 1 0 H-W 
FOS 36 1 0 58 0 0 H-W 
PES 68 3 0 99 0 0 H-W 
MOD 268 4 0 317 0 0 H-W 
BIN 443 4 0 454 0 0 D-W 
EXN 1891 2 0 3032(567) 0 2 D-W 

Note: H-W - Hazen-Williams formula; D-W - Darcy-Weisbach formula. The 

number inside the parentheses denotes the number of pipes considered for 

optimisation. Otherwise, it means that all the pipes are considered for 

optimisation. 

Table 4.18 Classification of each network used in this thesis 

Network SS/MS SL/ML Network SS/MS SL/ML 
TRN MS(2) ML(3) GOY SS SL 
TLN SS SL FOS SS SL 
BAK SS SL PES MS(3) SL 
NYT SS SL MOD MS(4) SL 
BLA SS SL BIN MS(4) SL 
HAN SS SL EXN MS(7) SL 

Note: SS - single source; MS - multiple sources; SL - single loading condition; 

ML - multiple loading conditions. The number inside the parentheses after MS 

or ML denotes the number of sources or loading conditions respectively. 

The features of each benchmark problem in the WDSBA are summarised in 

Table 4.19, including the number of decision variables and diameter options, 

the size of search space and design criteria. Note that these benchmark 
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problems are categorised into four groups, ranging from small to large. The 

source code of benchmark problems in C language can be downloaded from 

www.exeter.ac.uk/benchmarks-pareto-fronts. 

Table 4.19 Summary of the formulation of benchmark problems in WDSBA 

Problem 
No. of 

Search Space
Design Criteria 

DVs Options Hmin Hmax Vmax SL/ML

Small 
Problem 

TRN 8 8* 3.28x107 Yes No No ML
TLN 8 14 1.48x109 Yes No No SL
BAK 9 11 2.36x109 Yes No No SL

Medium 
Problem 

NYT 21 16 1.93x1025 Yes No No SL
BLA 23 15 2.30x1026 Yes Yes Yes SL
HAN 34 6 2.87x1026 Yes No No SL
GOY 30 8 1.24x1027 Yes No No SL

Intermediate 
Problem 

FOS 58 22 7.25x1077 Yes Yes Yes SL
PES 99 13 1.91x10110 Yes Yes Yes SL

Large 
Problem 

MOD 317 13 1.32x10353 Yes Yes Yes SL
BIN 454 10 1.00x10455 Yes No No SL
EXN 567 11 2.95x10590 Yes No No SL

Note: DV - decision variables; Hmin - minimum pressure head requirement; Hmax 

- maximum pressure head requirement; Vmax - maximum flow velocity; SL - 

single loading condition; ML - multiple loading conditions. *For the TRN problem, 

three of eight pipes are existing ones which have three options including ‘do 

nothing’, cleaning or duplication. Therefore, the number of design options of 

existing pipes is ten. 

4.4. Summary 

In this chapter, a Water Distribution System Benchmark Archive is set up based 

on twelve networks collected from the literature. A uniform problem formulation, 

i.e., two-objective optimal design or rehabilitation of WDSs, is applied to all the 

benchmark networks in the WDSBA. Then, each network is introduced following 

a uniform format in ascending order of search space. The main contribution of 

this chapter lies in providing a wide range of problems on which various 

optimisation methods can be benchmarked in a systematic way. A comparative 

study based on the WDSBA will give more insight into multi-objective 

optimisation using evolutionary algorithms. 
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5. EXPERIMENTS AND COMPARISONS ON 

BENCHMARK PROBLEMS 

5.1. Introduction 

This chapter applies the proposed GALAXY method and four other state-of-the-

art MOEAs, including two representative hybrid algorithms and two baseline 

MOEAs, to solve the benchmark design or rehabilitation problems in the 

WDSBA. 

In Section 5.2, the experiment is set up. Firstly, several suitable quantitative 

indicators are chosen from the literature for comparing the ultimate and dynamic 

performances of these algorithms. In addition, a tool based on an empirical 

attainment function (EAF), which was developed by López-Ibáñez et al. (2010), 

is employed to facilitate an intuitive comparison between the GALAXY method 

and its competitors in the objective space. Then, the computational budgets for 

various cases are justified using the baseline NSGA-II. Lastly, the individual 

parameters of each algorithm are determined. 

In Section 5.3, results obtained by various algorithms are compared and 

discussed for the selected cases. The performances of different algorithms are 

evaluated by numerical indicators and the EAF tool from both ultimate and 

dynamic perspectives. In addition, the hybrid algorithms are assessed from the 

viewpoint of dynamic variations of their search operators, which facilitates a 

deep understanding of the internal evolution of each hybrid method. 

In Section 5.4, this chapter is summarised and concluded. 

5.2. Experimental Setup 

This section describes the setup of experiments in which the GALAXY method 

is compared with four state-of-the-art MOEAs in the literature, from the 

perspectives of ultimate and dynamic performance. Among these four MOEAs, 

two of them are hybrid optimisation algorithms (i.e., AMALGAM and Borg as 

introduced in Chapter 2) and the others are baseline MOEAs including NSGA-II 
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(Deb et al. 2002) and  -MOEA (Deb et al. 2005). The reasons for choosing 

these four MOEAs are as follows. NSGA-II has been widely used as a 

benchmark MOEA in water engineering (Farmani et al. 2005b; Kollat and Reed 

2006; Raad et al. 2009), and it serves as the prototype of AMALGAM and 

GALAXY.  -MOEA was introduced after NSGA-II featuring the  -dominance 

concept, which is able to maintain the convergence and diversity simultaneously. 

 -MOEA uses the same search operators as NSGA-II, i.e., SBX and PM, but is 

based on a steady-state algorithmic framework. Borg was developed based on 

 -MOEA and more advanced strategies were involved, such as adaptive 

population sizing, randomised restart, and time continuation (Hadka and Reed 

2013). 

To evaluate the ultimate and dynamic performance of each algorithm, a 

combination use of numerical indicators and the EAF graphical tool are 

employed to facilitate an unbiased comparison and analysis. These MOEAs are 

applied to solve the benchmark problems in WDSBA, and the computational 

budget for each design problem is determined to ensure that all the algorithms 

converge properly. In addition, before implementing each algorithm, their 

individual parameters are set appropriately. 

5.2.1. Performance Indicators 

5.2.1.1. Generational Distance (IGD) 

This indicator measures an average distance of the non-dominated solutions in 

the Pareto approximation front (denoted as AF) from those in the Pareto 

reference front (denoted as RF). More specifically, the Euclidean distance in the 

objective space from each solution in the AF to the closest one in the RF is 

considered (see Eq. (5.1)). IGD purely measures the extent of convergence to 

the RF. Figure 5.1 illustrates the concept of IGD. Without loss of generality, both 

objectives are assumed to be minimised hereinafter. 
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Where, j
id  - the Euclidean distance from solution i in the AF to the solution j in 

the RF; AF  - the cardinality of AF. 

 

Figure 5.1 Illustration of concept of IGD 

5.2.1.2. Unary Hypervolume (IHV) 

This metric calculates the ratio of the volume of hypercube (in the objective 

space) dominated by solutions in the AF to that by solutions in the RF. Each 

hypercube is constructed with a reference point (normally a vector of worst 

objective values) and a solution as the diagonal corners. IHV represents a 

combined measure of convergence and diversity. A greater IHV value indicates 

better performance. Figure 5.2 illustrates the concept of IHV. The solutions in the 

AF are depicted as grey solid circles, and the solutions in the RF are depicted 

as dark solid circles. The grey area indicates the hypervolume dominated by the 

solutions in the AF; accordingly, the area encompassed by the dark solid circles 

and the reference point indicates the hypervolume dominated by the solutions in 

the RF. 
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Figure 5.2 Illustration of concept of IHV 

5.2.1.3. Unary Additive  -Indicator ( I ) 

This metric seeks the minimum distance that the AF must be translated in order 

to completely dominate the entire RF. That is, any solution in the RF is  -

dominated by at least one solution in the AF. Unlike IHV which tends to be 

insensitive to the gaps between consecutive solutions, I  is able to identify the 

objective vectors with poor proximity. As illustrated in the figure below, the 

dashed, empty circles represent the missing points in the AF. Therefore, I  

can easily capture the gap between AF and RF, indicating the inconsistency 

(uniform convergence to the RF) of the solutions in the AF. Hadka and Reed 

(2012) asserted that I  can report a metric two to three times worse than IGD 

and IHV in such a case. In other words, it represents not only the convergence of 

the AF, but also the consistency of the non-dominated solutions found, which is 

another desired feature of an MOEA. Figure 5.3 illustrates the concept of I . 

Given an AF and an RF, the I  can be computed following the Eq. 5.2-5.4 

(adapted from (Zitzler et al., 2003)). 
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 )(max 2
2 zRFz

I 


   (5.4)

Where, n - number of objectives; 21 ,zz
  - the maximum differences among n 

objectives of two selected solutions, one from the AF and the other from the RF; 

2z
  - the maximum differences among n objectives of the nearest solution in the 

AF to a given solution 2z  in the RF. 

 

Figure 5.3 Illustration of concept of I  (adapted from (Hadka and Reed 2012)) 

5.2.1.4.  -Performance (IEP) 

As both Borg and  -MOEA were created based on the concept of  -

dominance concept (Laumanns et al., 2002), the number of  -non-dominated 

solutions in the final archive is not necessarily equal to the population size. In 

other words, the reported best solutions have been filtered using a grid with 

user-specified   precisions. When comparing them with those found by non- -

dominance based algorithms (i.e., AMALGAM and NSGA-II), the calculation of 

aforementioned indicators (such as IHV) may be affected and result in a biased 

interpretation. Therefore, the  -performance metric is also included to alleviate 

the issue. 

This metric accounts for the proportion of solutions that are discovered within a 

user-specified   distance from the reference set (Kollat and Reed 2005). Firstly, 

a series of boxes are built with side lengths equal to i  for the i-th objective and 
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each solution in the RF being located in the centre of the box. Then, the number 

of solutions in the approximation set that fall within the boxes is counted. Note 

that only the closest one (in terms of Euclidean distance) in the approximation 

set is considered if multiple solutions match the criterion. Finally, the ratio of this 

number to the cardinality of the reference set represents the  -performance of 

this approximation set. In principle, this indicator measures the quality of non-

dominated solutions in terms of convergence in an absolute sense. Figure 5.4 

provides an illustration of calculating IEP. 

 

Figure 5.4 Illustration of calculation of IEP (adapted from (Kollat and Reed 2005)) 

5.2.1.5. Normalisation of Performance Indicators 

To deal with a wide variety of values measured by different performance 

indicators, all the aforementioned indicators are normalised to reside within the 

range [0, 1] if necessary, with 1 representing the ideal value. Thus, IGD and I  

are normalised by using Eq. (5.5) and Eq. (5.6), respectively. The ranges of IHV 

and IEP are intrinsically between 0 and 1. On the other hand, the qualified 

solutions (in the AF) considered for calculating the aforementioned metrics must 

be feasible and belong to the first rank. In other words, the inferior and/or 

infeasible solutions are omitted from the evaluation. 

 )0,1max()( GDGD IInorm  (5.5)

 )0,1max()(    IInorm (5.6)
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To compute all the aforementioned performance indicators, a reference set is 

required for each benchmark problem as the best approximation to the Pareto-

optimal front. To this end, five state-of-the-art MOEAs with their recommended 

parameter settings were applied to solve the benchmark problems in the 

WDSBA, given extensive computational budgets depending on the size of 

search space (Wang et al. 2014a). Three different population sizes were 

implemented for each MOEA with respect to the scale of each problem. The 

true Pareto-optimal fronts for small problems were achieved via full enumeration 

within the solution space; whereas the best-known Pareto fronts for the other 

problems were obtained by filtering the aggregated approximation sets found by 

all the methods. 

5.2.1.6. EAF Tool 

The EAF based graphical approach (López-Ibáñez et al. 2010) is employed as it 

provides a visual and intuitive way to compare different algorithms for two-

objective optimisation. The EAF can describe the probabilistic distribution (in the 

objective space) of the outcomes obtained by an algorithm via multiple runs. 

Moreover, it can provide useful information, such as where and how much one 

algorithm differs from another one. Such an example is provided in Figure 5.5, 

assuming that both objectives are to be minimised. Generally speaking, by 

combining the solutions finally obtained, the performances of two algorithms are 

plotted side by side and four types of information are demonstrated: (1) best 

attainment surface obtained by both algorithms (lower solid lines); (2) worst 

attainment surface obtained by both algorithms (upper solid lines); (3) median 

attainment surface of each algorithm (dashed lines); and (4) differences of 

EAFs between two algorithms. Such differences are encoded using discrete 

levels of grey colour: the darker an area is plotted, the larger the difference 

exists there. 
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Figure 5.5 An example of EAF plot (adopted from (López-Ibáñez et al. 2010)) 

5.2.2. Computational Budget 

As one of the most popular algorithms in the second generation MOEAs (Coello 

2006), the NSGA-II has been broadly used as the baseline algorithm in 

comparative studies. In order to determine what a sufficient computational 

budget in terms of the number of function evaluations (NFEs) is, the NSGA-II 

was applied extensively to solve some representative benchmark problems in 

Chapter 4 with different random seeds. Note that not all the algorithms were 

considered to determine the suitable computational budgets for various 

benchmark problems. This is because that the others algorithms were 

developed after NSGA-II and they were proved to achieve better performance 

on a wide range of test problems. The aforementioned indicators were 

monitored to assess the dynamic performance of NSGA-II, thus picking a 

suitable budget which is sufficient to ensure the convergence of NSGA-II. In 

other words, a budget was determined such that the improvement of the NSGA-

II’s convergence was less than a threshold (0.5% herein), implying that more 

computation was not necessary. Regarding the selection of benchmark 

problems, they were first categorised into four groups (from small to large 

networks) according to the size of search space, which is believed to be the 

major source of difficulty. Then, the problems with the largest search space in 

the first three groups (excluding the large network group) were solved by the 
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NSGA-II. Note that, the budget was not verified for the last group because the 

computational overhead was too high for the available computing resources. 

The trial runs and data post-processing for large networks would take 

exceptionally long time and massive disk space due to the duration of 

simulation and the analysis of dynamic performance, respectively. 

Given above, the BAK, GOY and PES were selected as the representative 

benchmark problems, and each was solved thirty times independently by the 

NSGA-II. A population size of 100 was kept and the number of generations was 

set to 2,000, which was equivalent to 200,000 NFEs. Through some trial runs, it 

was found that the distribution indices of SBX and PM had a significant impact 

on the performance of the real-coded NSGA-II. Thus, these indices were kept to 

be the same for SBX and PM and various different values were tested to 

identify the best index. Using the same procedure as mentioned previously, an 

index of 1 for SBX and PM turned out to return the best approximation sets on 

average according to various performance indicators (see Appendix C). 

Therefore, this value was adopted throughout the thesis. In addition, the 

crossover rate and the mutation rate were fixed at 0.9 and the inverse of the 

number of decision variables respectively, because these are the most 

recommended values in the literature (Deb et al. 2005; Vrugt and Robinson 

2007). 

Figure 5.6 illustrates the dynamic performance of the NSGA-II (both indices 

equal to one) using the full budget (i.e., after 2,000 generations) for the PES 

problem. Three intermediate points, i.e., at generation=500, 1,000, 1,500, are 

annotated to show the mean value of a specific metric over 30 runs. These 

values are then compared to the final achievement using the full budget. As 

indicated in Table 5.1, a proper computational budget is determined by 

confirming that no significant improvement in terms of IGD (convergence 

indicator) can be achieved subsequently. The threshold here is chosen to be 

0.5%, which is believed to be small enough from a practical perspective. The 

figures for the other two problems (i.e., BAK and GOY) are not shown here for 

brevity (see Appendix C). 
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(a) IGD (b) IHV (c) I  

Figure 5.6 Dynamic performance of the NSGA-II for the PES problem 

Table 5.1 Convergence test of the NSGA-II on benchmark problems 

Problem Gen 
Performance Indicator Improvement

(%) Low Budget Full Budget 
IGD IHV I  IGD IHV I  IGD IHV I

BAK 250 0.9999 0.9943 0.9974 0.9999 0.9991 0.9982 0.0 0.5 0.1

GOY 500 0.9964 0.9588 0.9560 0.9974 0.9659 0.9612 0.1 0.7 0.5

PES 1,000 0.9861 0.9232 0.9098 0.9900 0.9412 0.9253 0.4 1.9 1.7

Note: Gen - number of generations. 

As mentioned in Chapter 2, IGD, IHV and I can be used to evaluate different 

aspects of an MOEA for a particular problem. IGD focuses only on the 

convergence aspect while IHV is able to measure both convergence and 

diversity in a combined sense. I  can not only reflect the proximity of an 

approximation set but also implicitly assess the consistency (gaps between 

consecutive solutions) of an approximation set towards the Pareto-optimal front. 

Note that the improvements in IGD (see Table 5.1) for the three problems are 

less than 0.5%, indicating that the NSGA-II has converged after the selected 

generations. A relatively large improvement in terms of IHV and I  can be 

observed for the PES problem mainly due to the partial order of the Selection 

and Replacement procedures in the NSGA-II. That means convergence is of 

higher priority compared with diversity within the non-dominated sorting. So, the 

NSGA-II tries to improve the diversity after convergence. 
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In short, it can be asserted that 25,000 and 50,000 NFEs with a population of 

100 are enough for the small and medium sized problems, respectively. A total 

number of 100,000 NFEs with a population of 100 are required for the 

intermediate sized problems. In contrast, for large problems, the population size 

and the number of generations are doubled compared to the budget for the 

intermediate sized problems. This is equivalent to 400,000 NFEs in order to 

cope with the huge search space. Note that there is no guarantee that any 

algorithm can converge given this budget. However, an algorithm that can 

perform well with limited NFEs is preferred when dealing with real-world design 

problems, for which high computational budget may not be affordable. 

In addition, thirty independent runs are implemented for each benchmark 

problems using different random seeds. Here, it is worth mentioning that for 

each run the initial population of different algorithms are kept identical, thereby 

making them start the evolution from the same position in search space. This 

treatment is aimed at eliminating the impact of the quality of the initial 

population on the algorithm’s achievement. 

5.2.3. Algorithmic Setup 

It is well established that MOEAs suffer from the parameterisation issue (Kollat 

and Reed 2006; Hadka and Reed 2012). In other words, parameter settings 

play a crucial role in the performance of MOEAs considered. This issue can be 

even more complex when employing hybrid algorithms (e.g., AMALGAM and 

Borg) because they normally introduce additional parameters to be specified 

before application. As a result, it is of great importance to properly choose each 

parameter in a comparative study. In this chapter, these parameters are divided 

into two groups, i.e., general parameters and specific parameters. General 

parameters include those that are common for various algorithms, like the 

population size (N) and the number of function evaluations (NFEs); whereas the 

specific parameters involve those only employed by algorithms themselves. For 

general parameters, they are kept the same across different algorithms for 

various benchmark problems; but for specific parameters, they are determined 
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based on a careful literature survey as well as by conducting a sensitivity 

analysis. 

Since the GALAXY method actually involves only one specific parameter, 

namely the range of the probability of dither creeping mutation, it is determined 

through the sensitivity analysis given in Section 3.3 in Chapter 3. More precisely, 

this range is set to be 0.7; note that DC is not sensitive to the setting of this 

parameter. In addition, the probability of three mutation operators (i.e., UM, GM 

and DC) is set according to the most recommended value in the literature, 

which is equal to the inverse of the number of decision variables (i.e., 1/ND). 

Therefore, it is necessary to highlight that the GALAXY method stands out from 

the other hybrid methods (i.e., AMALGAM and Borg) as it is dedicated for 

solving discrete problems and effectively eliminates all the specific parameters 

of search operators. This is regarded as a desired feature of GALAXY by 

providing a very user-friendly tool for the two-objective optimal design or 

rehabilitation of WDSs. 

In contrast, the AMALGAM and Borg involve 11 and 15 individual parameters 

(see Table 5.2) respectively, which can greatly impact on their performance. In 

this thesis, the individual parameters of Borg and AMALGAM are not fine-tuned 

for two main reasons. Firstly, Borg features adaptive population sizing and “time 

continuation” strategy (involving several connected runs triggered by automatic 

restart). In fact, one of the main advantages of Borg is to eliminate the need for 

parameterisation, resulting in a highly reliable and efficient MOEA. Secondly, 

the primary control parameters in the AMALGAM (see Table 3.1 in Chapter 3) 

are not fixed by default. Instead, these parameters are randomly sampled from 

the high-performance ranges recommended in relevant papers (Parsopoulos 

and Vrahatis 2002; Gelman et al. 2003; Hu et al. 2003; Iorio and Li 2005). 

Hence, AMALGAM is also expected to reduce the issue of parameterisation to 

some extent. As shown in Reed (2013), Borg and AMALGAM were 

demonstrated to be the top performing methods among 10 benchmark MOEAs 

for a suite of water resources applications with real-valued and discrete 

variables (including rainfall-runoff calibration, long-term groundwater monitoring 
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and risk-based water supply portfolio planning). The control maps for these 

applications also highlighted the relatively large areas of “sweet spots” 

(Goldberg 2002) of Borg and AMALGAM with regard to their parameterisation, 

indicating that they are expected to return satisfactory results under the default 

settings. 

Table 5.2 Parameter settings for each algorithm 

Algorithm 
General Parameter 

(problem-dependent) Specific Parameters 
NFE N 

GALAXY 

25,000-
400,000 

100-200 
probability of mutation: 1/ND 

AMALGAM see Table 3.1 in Chapter 3 

Borg 

100-200; 
initial popSize: N 
min popSize: N 
max popSize: 10,000 
population ratio: 4 
selection ratio: 0.02 

SBX 
rate: 0.9 
distribution index: 1 

DE 
crossover rate: 0.6 
step size: 0.6 

UM rate: 1/ND 

SPX 
No. of parents: 10 
expansion rate: 110

PCX 
No. of parents: 10 
Eta: 0.1 
Zeta: 0.1 

UNDX
No. of parents: 10 
Zeta: 0.5 
Eta: 0.35/ ND  

PM 
rate: 1/ND 
distribution index: 1 

NSGA-II 
100-200 

SBX 
rate: 0.9 
distribution index: 1 

PM 
rate: 1/ND 
distribution index: 1 

 -MOEA same as NSGA-II 
Note: popSize - population size (N). DEs in GALAXY, AMALGAM and Borg are 

mutually different variants. In addition, PM in Borg is not employed individually 

as in the others. Instead, offspring produced by SBX, DE, SPX, PCX and UNDX 

are subsequently mutated using PM. 

On the other hand, as discussed in Section 5.2.2, the distribution indices of SBX 

and PM have a major impact on their search ability. So, the sensitivity analysis 
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base on these indices was carried out to find the best settings. Since all the 

algorithms except the GALAXY method employ SBX and PM as search 

operators, only NSGA-II was implemented in the sensitivity analysis, and the 

best settings (both equal to one) are applied to these MOEAs. The complete 

specifications of individual parameters of each method are provided in Table 5.2. 

In addition, as Borg and  -MOEA both require user-defined i  precision for the 

i-th objective, they are determined by a trial-and-error approach and provided in 

Table 5.3. It is worth mentioning that the precision settings provided in the table 

below for each benchmark problem is also used to calculate the IEP. 

Table 5.3  precision settings for each benchmark problem 

Benchmark 
Problem 

1st Objective: 
Cost Minimisation 
(in Millions Unit) 

2nd Objective: 
In Maximisation 

(-) 
Costbest Costworst

tcos  In
worst In

best
In  

TRN 0.399 5.525 0.01 0 1 0.001 
TLN 0.016 4.400 0.01 0 1 0.001 
BAK 0.378 1.389 0.001 0 1 0.001 
NYT 0 294.156 1 0 1 0.001 
BLA 0.058 1.299 0.001 0 1 0.001 
HAN 1.803 10.970 0.1 0 1 0.001 
GOY 0.175 0.330 0.001 0 1 0.001 
FOS 0.003 1.662 0.001 0 1 0.001 
PES 1.346 19.004 0.01 0 1 0.001 
MOD 1.989 28.083 0.01 0 1 0.001 
BIN 0.724 21.642 0.01 0 1 0.001 
EXN 0 97.501 0.01 0 1 0.001 

Note: The Costbest and Costworst for each case are obtained by setting the 

decision variables (i.e., pipe diameters) to the minimum and maximum 

commercially available sizes, respectively. For NYT and EXN cases, the 

Costbest is 0 because these are rehabilitation problems, including “do-nothing” 

option for each pipe. In
worst and In

best are ideal cases, which are determined by 

the definition of In. 

5.3. Results and Discussion 
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In this section, the ultimate and dynamic performances of the GALAXY method 

are compared with those obtained by its competitors (i.e., two hybrid algorithms 

and two baseline MOEAs). For the sake of brevity, four case studies in the 

WDSBA are selected for comparison purposes. Recall that the benchmark 

problems in the WDSBA are divided into four groups according to the size of 

search space; therefore, four representative cases are chosen from each of 

these groups to verify the performance of the GALAXY method. More 

specifically, BAK, HAN, PES, and EXN problems are examined in this section 

and the reasons are twofold: (1) BAK, PES and EXN represent the cases with 

the largest search space in the small, intermediate and large groups, 

respectively; and (2) HAN in the medium group has an extremely small feasible 

region which makes it difficult to locate the PF in a limited NFE. 

Here, it is necessary to clarify that the solutions used to compute the 

performance indicators (either ultimate or dynamic) are those with the highest 

rank in the population. In particular, for the Pareto-dominance based MOEAs 

(i.e., GALAXY, AMALGAM and NSGA-II), the solutions in the first front are 

chosen for computing various indicators; while for the  -dominance based 

MOEAs (i.e., Borg and  -MOEA) the solutions in the archive are selected. 

5.3.1. Ultimate Performance 

The results obtained by five algorithms for the four benchmark problems are 

shown in Table 5.4-5.7. A statistical analysis is provided across thirty 

independent runs for each performance indicator. The average, maximum, 

minimum and standard deviation of each indicator are compared among 

algorithms and the best value is shown in bold. In addition, the comparisons 

between GALAXY and the other MOEAs using the EAF tool are illustrated in 

Figure 5.7-5.10. 

For the BAK problem, all the algorithms were able to achieve a similar level of 

achievement in terms of IGD, IHV, and I , as revealed in Table 5.4. As it can be 

seen from this table, GALAXY slightly dominated the other MOEAs by attaining 

the majority of the best values in the statistical analysis. Moreover, GALAXY did 
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outperform the others in terms of IEP by covering nearly 75% of the true PF on 

average. In contrast, the other MOEAs were only able to identify about 60% of 

the true PF. This superiority of GALAXY can be attributed to the duplicates 

handling strategy and the hybrid replacement strategy, which ensures that the 

global best non-dominated solutions in between the boundary solutions are 

never been discarded. 

Table 5.4 Ultimate performance of various MOEAs for the BAK problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 1.0000 0.9999 1.0000 0.9999 1.0000 
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 
Min. 1.0000 0.9999 0.9999 0.9998 0.9996 
Std. 0.0000 0.0000 0.0000 0.0000 0.0001 

IHV 

Avg. 0.9953 0.9943 0.9933 0.9943 0.9915 
Max. 0.9999 0.9998 0.9998 0.9997 0.9971 
Min. 0.9931 0.9900 0.9901 0.9901 0.9869 
Std. 0.0032 0.0036 0.0024 0.0034 0.0026 

I  

Avg. 0.9977 0.9973 0.9973 0.9974 0.9954 
Max. 0.9985 0.9987 0.9990 0.9986 0.9973 
Min. 0.9973 0.9961 0.9961 0.9961 0.9932 
Std. 0.0005 0.0007 0.0006 0.0007 0.0017 

IEP 

Avg. 0.7408 0.5930 0.6225 0.5916 0.6046 
Max. 0.7482 0.6547 0.6403 0.6331 0.6331 
Min. 0.7338 0.5468 0.5971 0.5252 0.5827 
Std. 0.0040 0.0269 0.0075 0.0237 0.0161 

From the comparisons of EAF (see Figure 5.7), all the methods except the  -

MOEA were able to achieve very close and stable Pareto fronts in multiple runs. 

The  -MOEA failed to locate the solutions in the region of high network 

resilience, which was probably due to the usage of  -dominance concept. In 

contrast, Borg was able to overcome this deficiency via more advanced 

techniques, e.g., multi-operator search and adaptive population sizing. 
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Figure 5.7 Comparison of GALAXY with the other MOEAs for the BAK problem 

using the EAF tool 
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MOEAs found difficulties in discovering the boundary solutions, which was 

probably caused by removing non-dominated solutions which were  -

dominated, thus losing useful genes which were indispensable for finding 

boundary solutions. 
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Table 5.5 Ultimate performance of various MOEAs for the HAN problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9989 0.9984 0.9987 0.9986 0.9988
Max. 0.9996 0.9995 0.9996 0.9994 0.9995
Min. 0.9968 0.9966 0.9967 0.9970 0.9977
Std. 0.0006 0.0006 0.0006 0.0007 0.0005

IHV 

Avg. 0.9649 0.9245 0.9215 0.9620 0.9184
Max. 0.9878 0.9702 0.9694 0.9870 0.9432
Min. 0.9400 0.8751 0.8953 0.9259 0.8778
Std. 0.0157 0.0250 0.0165 0.0170 0.0157

I

 

Avg. 0.9800 0.9593 0.9595 0.9809 0.9603
Max. 0.9927 0.9851 0.9892 0.9936 0.9753
Min. 0.9652 0.9324 0.9452 0.9585 0.9370
Std. 0.0092 0.0136 0.0096 0.0098 0.0092

IEP 

Avg. 0.3879 0.2401 0.1886 0.2737 0.1827
Max. 0.4870 0.3670 0.2643 0.4574 0.2261
Min. 0.2835 0.1235 0.0939 0.1130 0.1322
Std. 0.0590 0.0611 0.0474 0.0936 0.0262

 

Figure 5.8 Comparison of GALAXY with the other MOEAs for the HAN problem 

using the EAF tool 
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For the PES problem, a similar observation to the HAN problem was obtained in 

Table 5.6.  -MOEA demonstrated the best overall convergence compared with 

the other MOEAs but the performances in terms of the other indicators were 

much worse. In contrast, GALAXY consistently performed very well in terms of 

all the indicators. In addition, it is worth highlighting its merit in terms of IEP that 

all the other MOEAs completely failed to approach any non-dominated solutions 

on the best-known PF. 

Table 5.6 Ultimate performance of various MOEAs for the PES problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9859 0.9610 0.9699 0.9860 0.9881 
Max. 0.9901 0.9835 0.9803 0.9900 0.9942 
Min. 0.9765 0.9506 0.9584 0.9791 0.9614 
Std. 0.0031 0.0063 0.0057 0.0031 0.0058 

IHV 

Avg. 0.9661 0.9342 0.8795 0.9205 0.8958 
Max. 0.9759 0.9593 0.8949 0.9360 0.9106 
Min. 0.9546 0.9139 0.8600 0.8996 0.8743 
Std. 0.0049 0.0115 0.0080 0.0084 0.0082 

I  

Avg. 0.9532 0.9517 0.8869 0.9098 0.8885 
Max. 0.9656 0.9658 0.9090 0.9297 0.9026 
Min. 0.9407 0.9107 0.8585 0.8850 0.8629 
Std. 0.0071 0.0103 0.0113 0.0101 0.0092 

IEP 

Avg. 0.0059 0.0000 0.0000 0.0000 0.0000 
Max. 0.0224 0.0000 0.0000 0.0000 0.0000 
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 
Std. 0.0092 0.0000 0.0000 0.0000 0.0000 

From the comparisons of EAF (see Figure 5.9), it can be clearly seen that 

GALAXY was capable of discovering boundary solutions in regions of high and 

low network resilience, which the other MOEAs were unable to reach. However, 

Borg, NSGA-II and  -MOEA successfully identified solution of better quality 

than GALAXY around the ‘knee point’ of the best-known PF. 
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Figure 5.9 Comparison of GALAXY with the other MOEAs for the PES problem 

using the EAF tool 

For the EXN problem, as can be seen from Table 5.7, Borg turned out to be the 
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other MOEAs, which in turn significantly hindered the search in the feasible 

region. This point will be further explained in Section 5.3.2. 

From the comparisons of EAF (see Figure 5.10), GALAXY was able to find 
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noting that the MOEAs moved towards different directions in the objective 

space. GALAXY, AMALGAM and NSGA-II tended to converge towards the 

region of high network resilience, whereas the Borg and  -MOEA attempted to 

converge towards the region of low network resilience. 

Table 5.7 Ultimate performance of various MOEAs for the EXN problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9359 0.9624 0.9621 0.9591 0.9597 
Max. 0.9460 0.9700 0.9686 0.9639 0.9664 
Min. 0.9262 0.9566 0.9514 0.9547 0.9511 
Std. 0.0050 0.0031 0.0032 0.0026 0.0037 

IHV 

Avg. 0.7822 0.8371 0.8553 0.8371 0.8346 
Max. 0.8024 0.8503 0.8695 0.8589 0.8445 
Min. 0.7628 0.8286 0.8286 0.8213 0.8160 
Std. 0.0101 0.0054 0.0096 0.0080 0.0063 

I  

Avg. 0.8524 0.8773 0.9240 0.8866 0.8972 
Max. 0.8696 0.8868 0.9407 0.8982 0.9090 
Min. 0.8367 0.8672 0.9051 0.8712 0.8776 
Std. 0.0092 0.0056 0.0084 0.0062 0.0054 

IEP 

Avg. 0.0000 0.0000 0.0000 0.0000 0.0000 
Max. 0.0000 0.0000 0.0000 0.0000 0.0000 
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 
Std. 0.0000 0.0000 0.0000 0.0000 0.0000 
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Figure 5.10 Comparison of GALAXY with the other MOEAs for the EXN 

problem using the EAF tool 
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5.3.2. Dynamic Performance 

In this section, the dynamic performances of each MOEA across generations in 

terms of four performance indicators (see Section 5.2.1) are illustrated and 

compared in Figures 5.11-5.14. In each figure, the solid line denotes the 

average performance according to an indicator (on the left vertical axis), 

whereas the dashed line denotes the standard deviation of an indicator through 

thirty runs (on the right vertical axis). Additionally, the grey area indicates the 

range of variations of an indicator during multiple runs. To facilitate the intuitive 

comparisons, the performances of MOEAs are plotted individually and 

organised in a stacked fashion. So, each row represents the dynamic 

performances of a specific MOEA in terms of four indicators; whereas each 

column represents the dynamic performances of various MOEAs in terms of a 

specific indicator. 

Generally speaking, the dynamic performances in terms of IGD, IHV and I  for 

different MOEAs turned out to be similar; that is, a significant improvement was 

achieved in the early stages of a run (usually less than one fifth of total 

generations) and then consistent but minor gains were maintained until the end 

of the search. It is worth pointing out that the concept of ‘generations’ for the  -

dominance based MOEAs (i.e., Borg and  -MOEA) differs from that of the 

other MOEAs that are based on the Pareto-dominance concept. Unlike the 

generational framework, the  -dominance based MOEAs feature a steady-state 

framework and update the external archive and the population in real time (i.e., 

after the creation of a new individual). However, to perform the comparison with 

the Pareto-dominance based MOEAs, the archive solutions at the interval of a 

‘generation’ are selected to calculate various indicators. 

For the BAK problem, it can be observed from Figure 5.11 that all the MOEAs 

demonstrated good performances as mentioned in Section 5.3.1. But GALAXY 

was able to reach a much higher IEP compared to the other MOEAs. The 

AMALGAM and NSGA-II stagnated in terms of IEP after around 50 generations; 

in contrast, the other MOEAs consistently improved IEP across generations, thus 

benefiting from the  -dominance based replacement. 
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For the HAN problem, it can be observed from Figure 5.12 that GALAXY 

consistently achieved better performances than the other MOEAs in terms of all 

the indicators. It is interesting to see that the AMALGAM and NSGA-II were able 

to exceed Borg and  -MOEA in terms of IEP. In addition, all the MOEAs 

struggled to move out of the infeasible region at the first few generations. 

For the PES problem, it can be seen from Figure 5.13 that the performances of 

various MOEAs look very similar and GALAXY again turned out to be the 

topmost performer by consistently obtaining better results in terms of each 

indicator. Note that GALAXY was the only algorithm which successfully 

discovered near-optimal solutions on the best-known PF at around 200 

generations. This exceptional progress can be attributed to the inclusion of the 

TF operator, being extremely efficient in the first few generations in approaching 

the boundary solutions in the region of high network resilience. 

For the EXN problem, it is evident in Figure 5.14 that GALAXY took much more 

effort than the other MOEAs to pass through the infeasible region, thus resulting 

in a relatively poor achievement at the end of the search. If it were able to move 

out of the infeasible region much sooner, GALAXY would probably achieve very 

similar performances, if not better. This expectation was hinted by the fact that 

GALAXY demonstrated relatively faster improvements especially for IHV. On the 

other hand, it is implied that the quality of initial population greatly impacts on 

the performance of an MOEA for solving a very complex design problem, which 

contains a large portion of infeasible solutions. Borg undoubtedly beat the other 

MOEAs by effectively finding feasible solutions at the early stage for such a 

complex design problems. As it will be discussed in Section 5.3.3, this superior 

performance benefited from the usage of various multi-parent search operators 

(i.e., SPX, PCX and UNDX). The dynamic performances of all the MOEAs in 

terms of IEP were not shown here because they completely failed on this aspect. 
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 -MOEA 

 

Figure 5.11 Dynamic performances of various MOEAs for the BAK problem 
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Figure 5.12 Dynamic performances of various MOEAs for the HAN problem 
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Figure 5.13 Dynamic performances of various MOEAs for the PES problem 
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Figure 5.14 Dynamic performances of various MOEAs for the EXN problem 
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5.3.3. Dynamic Variations of Search Operators 

In this section, the dynamic variations of multiple search operators within the 

hybrid algorithms are illustrated and further analysed. Figures 5.15, 5.16, 5.17, 

and 5.18 show the corresponding variations of search operators within hybrid 

algorithms for BAK, HAN, PES, and EXN, respectively. In each figure, the solid 

line denotes the average probability that each operator is employed for 

generating the offspring, and the grey area indicates the range of variations of 

this probability during thirty runs. These figures are particularly useful in 

understanding the behaviour of a hybrid method for a specific design problem. It 

is also worth mentioning that the adaptation of the portfolios of multiple 

operators in Borg differs from GALAXY and AMALGAM due to its steady-state 

structure. In Borg, each operator is selected for generating the offspring with a 

probability which is equal to its contribution to the members in the  -box 

dominance archive. This approach favours operators yielding high quality 

individuals in terms of both convergence and diversity. In contrast, GALAXY 

and AMALGAM, which do not use external archives, count the successful 

reproduction rate of each operator and adaptively distribute the portfolios for the 

next generation (see Section 3.2.4 in Chapter 3). 

For the selected cases, GALAXY consistently exhibited the desired 

characteristics. More specifically, the first three search operators (i.e., TF, DE 

and SBXI) with relatively strong leaping ability in the global sense made the 

contribution mainly during the first few generations (less than 25% of total 

generations). In contrast, the remaining operators (i.e., UM, GM and DC) with 

relatively strong leaping ability in the local sense gradually increased their 

employability towards the end of the search, indicating that it progressively 

moved from exploration to exploitation. This point is particularly evident for the 

DC operator, which consistently improved its probability for reproduction. 

However, for the EXN problem (see Figure 5.18), the TF operator did not seem 

very efficient, leading to low progress of GALAXY in the region of infeasible 

solutions. 
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For AMALGAM, the PSO was not useful most of the time. The AMS operator 

worked very well for the BAK (see Figure 5.15) and HAN (see Figure 5.16) 

problems, accounting for about 40% and more than 50% probability, 

respectively. But it failed to perform effectively for the PES (see Figure 5.17) 

and EXN (see Figure 5.18) problems. GA and DE constantly contributed many 

high quality solutions to the next population for the first three cases. For the 

EXN problem, AMS helped AMALGAM to pass through the infeasible region; 

afterwards, its influence subsided as PSO so that it made no contribution to the 

population. Thus, GA became the dominating operator and AMALGAM behaved 

very similar to NSGA-II but with smaller effective population size, because 

nearly 7.5% of population size were occupied by ineffective operators (PSO and 

AMS). Therefore, AMALGAM’s performance was expected to be worse than 

that of NSGA-II. 

For Borg, the dynamic variations of search operators were different from case to 

case. SBX and SPX made major contributions to the  -box dominance archive 

for the BAK and HAN problems. PCX also performed reasonably well for the 

HAN problem, and it became the dominant operator for the PES problem by 

taking up nearly 90% probability. For the EXN problem, SBX, PCX and UM 

were major operators, and UM steadily increased its probability up to nearly 90% 

from about 500 generations. Although DE and the other two multi-parent 

operators (i.e., SPX and UNDX) generally performed poorly, they indeed made 

important contributions in improving the feasibility of the  -box dominance 

archive. 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure 5.15 Dynamic performances of search operators of hybrid algorithms for the BAK problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure 5.16 Dynamic performances of search operators of hybrid algorithms for the HAN problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure 5.17 Dynamic performances of search operators of hybrid algorithms for the PES problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure 5.18 Dynamic performances of search operators of hybrid algorithms for the EXN problem 
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5.3.4. Results of the Other Benchmark Problems 

Due to the limited space, results for the other benchmark problems (tables and 

figures) are presented in Appendix D. A brief summary of these results is given 

below. Generally speaking, GALAXY consistently outperformed the other 

MOEAs for the majority of these problems. It achieved very similar IGD to the 

others, if not better, but attained much better IHV, I  and IEP values. 

However, for the NYT problem the hybrid MOEAs were outperformed by the 

baseline MOEAs (i.e., NSGA-II and  -MOEA), although the differences 

between GALAXY and the best values of IGD, IHV and I  were not substantial. 

The  -MOEA successfully covered around 24% solutions of the best-known PF 

focusing around the ‘knee point’, whereas the others were only able to locate 

less than 14% of these solutions. Borg turned out to be the worst algorithm in 

terms of all the indicators. Recall that NYT and EXN are extended design 

problems, in which a subset of pipes are considered for duplication. Therefore, 

the quality of a solution (in terms of objective function values) is also affected by 

the conditions of existing pipes in the system. This feature differentiates the 

extended design problems from pure design problems, in which all the pipe 

sizes need to be optimised. 

On the other hand, according to the theoretical assumption made in this thesis, 

the search operators play a crucial role in the performance of hybrid algorithms. 

As it can be seen from Figure D.19 and Figure 5.18, SBX and PCX turned out 

to be very effective in dealing with extended design problems. This can partially 

explain why the baseline MOEAs (i.e., NSGA-II and  -MOEA) were superior to 

hybrid algorithms for the NYT problem, and Borg became the best algorithm for 

the EXN problem. More specifically, for the NYT problem SBX was the best 

operator so that the baseline MOEAs which only contains SBX and PM 

converged much quicker compared to hybrid algorithms. While for the EXN 

problem, PCX and SBX appeared to be more efficient to overcome the 

influence of existing pipes, thus leading to the best overall performance of Borg. 

GALAXY, in contrast, did not involve the ‘standard’ SBX operator as well as 
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other multi-parent operators (e.g., PCX), and thus it showed relatively poor 

performance on the extended design problems. 

GALAXY was also slightly outperformed by AMALGAM according to IHV and I  

for the GOY problem. NSGA-II marginally outperformed the others in terms of 

IEP but it failed to cover the boundary solutions in the region of high network 

resilience. The success of AMALGAM for the GOY problem can be attributed to 

the merit of AMS, which effectively explored the Pareto distribution and found 

high quality solutions. 

It is worth noting that for intermediate and large problems, GALAXY was 

constantly superior to the other MOEAs according to various indicators. 

Surprisingly, none of the algorithms were able to locate solutions close to the 

best-known PF for the MOD problem, but GALAXY successfully identified a few 

boundary solutions for the BIN problem, whose search space is much larger 

than that of MOD. This again emphasised the importance of incorporating 

operators that have better exploration capability in the global sense (e.g., TF) 

into the hybrid framework. 

Regarding the dynamic variations of search operators of hybrid algorithms, 

GALAXY consistently demonstrated the desired behaviour that operators with 

different leaping capabilities were utilised effectively and efficiently for 

exploration and exploitation. For AMALGAM, GA and DE were shown to be 

effective for a wide range of cases. However, PSO was found to have difficulty 

in finding high quality solutions except for the TLN, GOY and FOS problems. 

AMS performed very well for cases with less than 60 decision variables (i.e., 

from the TRN to FOS problems). However, it completely failed for the remainder 

of problems with large search spaces. For Borg, SBX, PCX and SPX were the 

dominant operators across a number of benchmark problems. UM together with 

PCX became the leading operators especially for large problems. 

As it also can be seen from the related figures, the dynamic performance of 

GALAXY and the portfolios of its search operators were relatively stable across 

the benchmark problems. It always showed less, if not the least, variations 
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given different initial populations. This is an extra advantage of GALAXY whose 

behaviour is robust with respect to the initial status and random seed. 

5.4. Summary and Conclusions 

This chapter applied the GALAXY method as well as the other four MOEAs to 

solve the benchmark problems in the WDSBA. In Section 5.2, four performance 

indicators and the EAF tool were first described for measuring and comparing 

the ultimate and dynamic performances of various algorithms. Then, the 

computational budgets for cases with different complexity were justified using 

the baseline NSGA-II. To facilitate a fair comparison, the parameterisation of 

each MOEA was carefully dealt with and selected. Results obtained for some 

representative cases were compared and discussed in Section 5.3. The other 

results will be presented in Appendix D due to the limited space. 

The main conclusions of this chapter are as follows: 

 GALAXY generally outperformed the other MOEAs in terms of both 

ultimate and dynamic performances on the majority of benchmark 

problems according to various performance indicators and the EAF tool. 

The algorithm was able to effectively capture boundary solutions, thus 

maintaining a wide spread of solutions across the objective space. The 

search operators within the GALAXY framework behaved as expected, 

gradually moving search from exploration to exploitation by adapting their 

portfolios. In addition, its performance was more stable compared to its 

competitors, which is another favourable characteristic in practice. 

 However, the other MOEAs performed better than GALAXY for the EXN 

problem, and this was due to its struggle with infeasible solutions at early 

stages of the search. Borg, which successfully found feasible solutions in 

the first few generations, exhibited the best achievement. This may be 

attributed to the inclusion of many multi-parent search operators in its 

framework. However, it should be noted that all the algorithms were 

stopped before they sufficiently converged for the EXN problem, which 
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implied that GALAXY still had a chance to beat these MOEAs given more 

computational budget.  

 Another important conclusion discovered in this chapter is that many 

performance indicators should be considered to assess an MOEA from 

different aspects, e.g., convergence, diversity and consistency. A 

combined analysis of four numerical indicators and the EAF tool 

employed in this Chapter provided a complementary way to evaluate an 

algorithm’s performance comprehensively. 
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6. ANYTOWN REHABILITATION PROBLEM 

6.1. Introduction 

In this chapter, the proposed hybrid algorithm GALAXY, as well as the other 

MOEAs considered in Chapter 5, are applied to solve the complex, multi-

objective rehabilitation problem of the Anytown network (Walski et al. 1987). In 

Section 6.2, a concise history of this problem is given, followed by a clear 

problem description and formulation adopted in this thesis presented in Section 

6.3. In Section 6.4, the experiment is set up by justifying the computational 

budget and parameter settings of each algorithm. All the methods are used to 

solve the problem multiple times independently and the results obtained are 

compared and discussed in Section 6.5. Finally, the chapter is summarised and 

relevant conclusions are drawn in Section 6.6. 

6.2. A Concise History of the Anytown Rehabilitation Problem 

In preparation for the first session of the ‘Battle of the Network Models’ (Walski 

et al. 1987), the Anytown problem was established as a rehabilitation and 

operation problem to reinforce a hypothetical USA water network to meet the 

projected demand in 2005. It represented a challenging benchmark problem, 

which closely resembled the features commonly found in many real systems. 

The competition required the participants to find the least-cost design of new 

pipes, tanks, and pumps under multiple loading conditions, including average 

daily flow, instantaneous peak flow and three fire flow scenarios. For more 

details about this battle, readers are referred to Walski et al. (1987). 

Figure 6.1 shows the configuration of the Anytown network. Water is supplied 

from a clear well (node 40) with a fixed head of 10 ft (3.048 m) via three 

identical parallel pumps. Existing pipes located in the city region are shown in 

thicker solid lines, whereas the other solid lines represent the existing pipes in 

the residential region. The dashed lines denote new pipes under consideration. 

Two existing tanks are erected near node 14 and 17, each of which is linked by 

a short pipe, known as a riser, with a fixed length of 101 ft (30.785 m). The 
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specific design requirements for this network will be presented subsequently in 

Section 6.3. 

 

Figure 6.1 Configuration of the Anytown network (adopted from 

http://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/expa

nsion/anytown.php) 

Compared to other benchmark problems archived in Chapter 4, the Anytown 

problem gives reasonable consideration to both design and operations of a 

network system. This includes the introduction of a wide range of loadings, the 

design of new pipes, alternative options for existing pipes (duplication, or 

cleaning and lining), storage tank location and sizing as well as pump 

scheduling. In addition, the cost of pipe components not only depends on the 

diameter selected but also on the area (i.e., city or residential region) where the 

installation is going to take place. The capital and operational cost, which occur 

at different stages of the life-time of the system, are aggregated by considering 

the present worth of the operational cost based on an interest rate of 12% and 

an amortization period of 20 years. 
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In the ‘Battle of the Network Models’, although various methods in conjunction 

with manual calculations and engineering judgement were proposed to solve 

this complex problem, most solutions submitted by participants could not fully 

meet the design criteria, especially in the filling of tanks at off-peak loadings 

(Walski et al. 1987). Additionally, tank location and sizing were mainly 

determined subjectively rather than by incorporating them into an optimisation 

model. However, they all claimed that using optimisation models significantly 

improved the quality of their solutions. Several important insights into this 

problem were drawn from this battle, that is, tank location, tank sizing and pump 

operation dramatically affected pipe sizing, and thus these factors needed to be 

carefully considered during optimisation. 

Later on, many researchers made efforts to examine this challenging problem in 

different ways. Table 6.1 summarises some work from the literature, followed by 

a brief survey of these publications. 

Murphy et al. (1994) solved the Anytown problem using the Genetic Algorithm 

(GA) technique, handling pipe, pump and tank variables simultaneously in the 

optimisation model. The objective was to obtain a design with minimum capital 

and energy costs. To deal with infeasible solutions, a penalty cost, which was a 

function of the distance from feasibility, was added if a solution had constraint 

violations (pressure and/or tank level deficiency). Although a different 

interpretation was used from those presented in the ‘Battle of the Network 

Models’, they reported a much cheaper solution with a total cost of $11.335 

million, which was about 8% less than the cheapest one obtained in the Battle. 

It should be noted that a GA was coupled with a steady-state hydraulic model, 

as it was too computationally expensive at the time to run a simulation that 

represented the dynamic operation over an extended period. 

Walters et al. (1999) formulated the Anytown problem from a multi-objective 

perspective and applied an expanded Structured Messy Genetic Algorithm 

(SMGA) to include non-pipe decision variables (i.e., pumping installations and 

storage tanks). They managed to find even cheaper solutions compared to all 

the identified solutions in previously published papers. However, this may be 
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due to the different interpretation of the problem. Specifically, they allowed new 

tanks to exceed the upper limit of the given standard sizes, i.e., 1 million gallons 

(4546.09 m3), which made it possible to use the pumps in a more efficient way. 

It should be noted that no new pumping stations were considered, but pumps 

with identical characteristics to the existing ones could be installed in the current 

pumping station. In addition, the optimisation model was coupled with an 

extended period hydraulic model with a coarse simulation step (6 hours per time 

step). This was also limited by the unacceptable computational overhead for a 

more accurate simulation. However, a full simulation using a one hour time step 

was conducted to check the feasibility of the final solutions. 

Table 6.1 Optimisation of the Anytown problem in the literature 

Papers Objectives 
Optimisation 
Algorithms 

(Murphy et al. 1994) min(Cost+Penalty) Genetic Algorithm 

(Walters et al. 1999) 
min(Cost) 
max(1Benefit) 

SMGA 

(Farmani et al. 2005b) 
min(Cost) 
max(minimum Ir) 

NSGA-II 

(Vamvakeridou-Lyroudia et al. 
2005) 

min(Cost) 
max(Fuzzy Benefit) 

Genetic Algorithm + 
 fuzzy reasoning 

(Farmani et al. 2006) 

min(Cost) 
max(minimum Ir) 
min(maximum Water 
Age) 

NSGA-II 

(Vamvakeridou-Lyroudia et al. 
2006) 

min(Cost) 
max(Fuzzy Benefit) 

Genetic Algorithm + 
 fuzzy reasoning 

(Prasad and Tanyimboh 2008)
min(Cost) 
max(Flow Entropy) 

NSGA-II 

(Olsson et al. 2009) 
min(Cost) 
min(2Shortfall) 

UMDA 
hBOA 
CSM 
NSGA-II 

(Fu et al. 2012a) 
min(Cost) 
min(2Shortfall) 

 -NSGA-II + 
 sensitivity analysis 

(Wang et al. 2014b) 
min(Cost) 
max(minimum In) 

AMALGAM 
MOHO 
NSGA-II 
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Note: 1Benefit was defined as a weighted sum of various deficiency measures 

with respect to the design criteria. 2Shortfall was defined as a weighted sum of 

nodal pressure deficit and total tank level discrepancy. Ir denotes resilience 

index. In denotes network resilience. 

Although the aforementioned work found solutions that could work at the 

maximum daily demand, these designs lacked adequate capacities to fill tanks 

at off-peak loadings. Therefore, Farmani et al. (2005b) dealt with the average 

day demand, the peak day demand, as well as three fire flow demands for the 

first time using the NSGA-II. The problem was formulated to minimise the total 

cost and to maximise the resilience index (Todini 2000). More accurate 

hydraulic simulations (i.e., one hour per time step) were considered throughout 

all the loading conditions. Due to the nature of the Anytown problem (discrete 

and highly constrained), they finally obtained 8 non-dominated solutions, which 

satisfied all the design requirements. Another contribution of this work was that 

it provided a clear definition of the decision variables, objective functions and 

constraints. It should be noted that the problem formulation differed slightly from 

that used by Walters et al. (1999) in that no new pumps were considered and 

only up to two cylindrical tanks could be added. Moreover, tank characteristics 

were treated as independent variables which resulted in accelerating 

convergence of the algorithm in the feasible region. Later on, Farmani et al. 

(2006) applied the NSGA-II to solve the three-objective design of the Anytown 

problem, taking the minimisation of water age (a surrogate measure of water 

quality) as the additional objective into account. 

Vamvakeridou-Lyroudia et al. (2005) presented a practical way to solve the 

optimal design of the Anytown problem. GA was combined with fuzzy reasoning 

to search the solution space, aimed at minimising the costs and maximising a 

benefit/quality function. They successfully identified a solution which satisfied 

multiple criteria specified with reduced cost. However, it should be noted that 

their interpretation was different from those presented previously, especially for 

the treatment of storage tank variables. Subsequently, Vamvakeridou-Lyroudia 

et al. (2006) developed a multi-level, multi-criteria decision making process to 
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solve the Anytown problem in a hierarchical way, which transformed the 

optimisation into an ‘engineer friendly’ decision support system. 

Prasad and Tanyimboh (2008) solved the modified two-objective Anytown 

problem by proposing a tank design procedure and a surrogate measure for 

network reliability, called flow entropy (Tanyimboh and Templeman 1993). They 

assumed new tanks to be cylindrical and described their size implicitly. Besides 

the location of a tank, its volume, diameter-to-height ratio, minimum operational 

elevation, and fraction of minimum volume were regarded as independent 

variables. The flow entropy measures the uniformity of pipe flow rates and by 

maximising this indicator, a robust network under stressed conditions can be 

maintained. An extended period simulation was performed during optimisation 

with a hydraulic time step equal to 3 hours. The results demonstrated that their 

optimisation model was capable of exploring the search space effectively. 

However, it should be noted that this formulation was different from the original 

as well as the aforementioned versions by others researchers. 

The Anytown rehabilitation problem was also handled in Olsson et al. (2009), 

Fu et al. (2012a) and Wang et al. (2014b). The main differences between these 

works lie in the problem formulation and methodologies (algorithms) employed. 

Olsson et al. (2009) tried to solve a two-objective, unconstrained optimisation 

problem, aiming at minimising the cost and the weighted sum of pressure 

deficiency and tank level discrepancy. They applied three genetic algorithms 

which used probabilistic methods to explore building blocks and compared their 

performance with NSGA-II. Fu et al. (2012a) formulated the Anytown problem in 

the sense of many-objective, including up to six criteria being considered 

concurrently. An enhanced version of NSGA-II, called  -NSGA-II (Kollat and 

Reed 2006), was used to explore the high-dimensional space in an effective 

and efficient way. Wang et al. (2014b) focused on the two-objective, 

constrained formulation, but the second objective was substituted with the 

network resilience (Prasad and Park 2004), which is capable of alleviating some 

drawbacks of the resilience index (Todini 2000). They employed two hybrid 

evolutionary algorithms as well as NSGA-II. 
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In short, there exist various ways to formulate the Anytown benchmark problem 

and many algorithms have been applied to find optimal solutions. Nevertheless, 

these solutions obtained in the aforementioned papers cannot be directly 

compared, since the problem was interpreted from different viewpoints (e.g., 

number of objectives, variable representation and constraint handling). In other 

words, there is a lack of clear and uniform definition to benchmark different 

algorithms. The intention in the subsequent part of this chapter is to establish a 

detailed formulation, which is aimed at providing a constrained, multi-objective 

formulation (definition) of Anytown rehabilitation problem. 

6.3. Problem Formulation 

In this section, a brief problem description is given first. This is followed by the 

mathematical formulation of the Anytown problem adopted in this chapter. 

6.3.1. Problem Description 

The rehabilitation of Anytown network involves many possible options, including 

duplication of existing pipes, addition of new pipes, construction of new tanks 

and scheduling of the existing pump station. The candidate (feasible) solutions 

must satisfy various criteria with respect to the service standards and 

operational requirements. In addition, it is worth noting that Imperial units have 

been used in the subsequent parts of this chapter because of the original 

formulation of the Anytown rehabilitation problem. 

Design Options 

Pipes 

For each existing pipe, there are three options, i.e., duplication, cleaning and 

lining or “do nothing”; whereas for a new pipe, it can either be added by 

choosing a suitable diameter or simply discarded. A total of 10 diameter options 

are commercially available and the associated unit price (as shown in Table 6.2) 

is determined by both the location (in city or residential area) and the purpose of 

construction (i.e., addition, duplication or cleaning and lining). Generally 

speaking, duplicating an existing pipe involves more disruption and 

reconstruction of pavement roads; hence, it incurs more expenditure than 
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adding a new pipe or cleaning and lining an existing pipe. In addition, the 

excavation undertaken in a city area has a more significant impact than in a 

residential area, thus it is also considered to be more expensive. The roughness 

coefficients of existing pipes are projected C values for the year 2005 following 

the Hazen-Williams equation. Specifically, a cleaned and lined existing pipe has 

a C value of 125, whereas the C value of a new pipe is set to 130 by default. 

Old risers are not considered during optimisation, but new risers need to be 

specified if new tanks are built in the network system. 

Table 6.2 Pipe intervention options and associated costs 

Pipe 
diameter 

New 
pipes 

Duplicating existing 
pipes 

Clean and line existing 
pipes 

City Residential City Residential 
(in) ($/ft) ($/ft) ($/ft) ($/ft) ($/ft) 

6 12.8 26.2 14.2 17 12
8 17.8 27.8 19.8 17 12

10 22.5 34.1 25.1 17 12
12 29.2 41.4 32.4 17 13
14 36.2 50.2 40.2 18.2 14.2
16 43.6 58.5 48.5 19.8 15.5
18 51.5 66.2 57.2 21.6 17.1
20 60.1 76.8 66.8 23.5 20.2
24 77 109.2 85.5 30.1 -
30 105.5 142.5 116.1 41.3 -

Note: Since the diameters of existing pipes in the residential region are less 

than or equal to 20 inch, the cleaning and lining option for the diameter larger 

than this size is not applicable. 

Pumps 

Three identical pumps are utilised in the system and a five-point characteristic 

curve (flow-head or flow-efficiency) can be derived from the data given in Table 

6.3. A constant energy tariff that is equal to $0.12/kWh is applied throughout 24 

hours. The operational cost of the pumping station is considered for a horizon of 

20 years (for amortization purposes) and the present value of energy cost is 

based on an interest rate of 12%. 
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Table 6.3 Pump characteristics 

Discharge Pump head Efficiency (%)
(gpm) (ft) (wire to water)

0 300 0
2000 292 50
4000 270 65
6000 230 55
8000 181 40

Tanks 

As in Farmani et al. (2005b), the option of building up to two new tanks in 

places which are not directly linked to the existing tanks or water source is 

considered. As a result, there are 16 possible locations for building new tanks, 

i.e., except at node 1, 14 and 17 in Figure 6.1. Tank capital costs are 

considered as a function of volume, and the standard sizes and associated 

costs are given in Table 6.4. The cost of a tank with an intermediate size is 

interpolated linearly. Tanks are not permitted to be smaller or larger than the 

acceptable limits (i.e., smaller than 50,000 Imperial gallons or greater than 1 

million Imperial gallons). This is due to the financial consideration that a too 

small or large tank is not cost-efficient. 

Table 6.4 Capital cost of new tank 

Tank Volume Capital Cost
(Imperial gallons) ($) 

50,000 115,000
100,000 145,000
250,000 325,000
500,000 425,000

1,000,000 600,000

Operational Requirement 

Nodal Demand 

To provide a more reliable solution, five different loading conditions are 

considered concurrently, i.e., average day demand, instantaneous peak 

demand as well as three fire flow demands. Each of them specifies a typical 

pattern of water use and accounts for the performance of network under 

different scenarios. The base demand of each node under various loading 
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conditions is given in Table 6.5. The instantaneous peak demand is 1.8 times 

the average day demand; whereas each fire flow demand needs to supply the 

peak day flow which is 1.3 times the average day flow, as well as the flow 

required for fire fighting at the corresponding nodes. Demand variation (pattern) 

is specified in Table 6.6. 

Table 6.5 Base nodal demand under five loading conditions 

Node ID 
Loading Conditions (unit: gpm) 

Average day 
(24 hours) 

Instantaneous peak
(snapshot) 

Fire Flow 1
(2 hours) 

Fire Flow 2 
(2 hours) 

Fire Flow 3
(2 hours) 

2 200 360 260 260 260
3 200 360 260 260 260
4 600 1080 780 780 780
5 600 1080 780 1500 780
6 600 1080 780 1500 780
7 600 1080 780 1500 780
8 400 720 520 520 520
9 400 720 520 520 520

10 400 720 520 520 520
11 400 720 520 520 1000
12 500 900 650 650 650
13 500 900 650 650 650
14 500 900 650 650 650
15 500 900 650 650 650
16 400 720 520 520 520
17 1000 1800 1300 1300 1000
18 500 900 650 650 650
19 1000 1800 2500 1300 1300

Note: It is assumed that only the required flows specified in the table above are 

needed under each fire flow condition. The fire-fighting places (boldfaced in the 

corresponding columns) are at node 19, node 5-7, and node 11 and 17 

respectively. 

Nodal Pressure 

The pressure requirement of each node in the network varies according to 

different loading conditions. For the average day demand and the instantaneous 

peak demand, a minimum of 40 psi must be provided at each node. However, in 
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the fire flow scenarios, the pressure at each node should be maintained above 

20 psi. 

Table 6.6 Water demand pattern throughout a day 

Period Demand Factor
6 p.m.-9 p.m. 1.0

9 p.m.-12 p.m. 0.9
12 p.m.-3 a.m. 0.7

3 a.m.-6 a.m. 0.6
6 a.m.-9 a.m. 1.2

9 a.m.-12 a.m. 1.3
12 a.m.-3 p.m. 1.2

3 p.m.-6 p.m. 1.1

Tank Operation 

The two existing tanks have the same base elevation at 215 ft, and the 

minimum normal day level and the maximum level at 225 ft and 250 ft, 

respectively. This is equivalent to an effective capacity of 156,250 Imperial 

gallons for each tank. The water below the minimum normal day level is 

retained for emergency needs, giving a volume of 62,500 Imperial gallons for 

each tank. Tanks are required to be operated from the minimum normal day 

levels (at 6 p.m.) whatever loading condition is considered. Under average day 

demand, the capacity of each tank should be fully utilised, that is, it is required 

to reach the maximum and minimum levels at least once during a 24-hour 

simulation. Moreover, each tank needs to meet its minimum normal day level at 

the end of simulation. The retained capacity (water under the minimum normal 

day level) can only be used under fire flow demands. 

The newly-built tanks should also be operated as specified for the existing tanks. 

In evaluation of fire flow scenarios, one pump is forced to be out of service 

which adds a further stressed condition to the system. 

6.3.2. Problem Formulation 

As introduced in Chapter 4, two objectives are considered in the problem 

formulation, i.e., minimising the total cost and maximising the network resilience. 

However, due to the existence of tank and pump components in the network, 
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the main differences between the formulation of the Anytown problem from the 

one presented in Chapter 4 lie in the definitions of objectives, decision variables 

and constraints due to the operation of the Anytown network. 

Objectives 

The first objective is to minimise the total cost (see Eq. (6.1)), which consists of 

capital costs and operational costs. The capital cost includes the expenditure on 

pipes (i.e., new, duplicate or cleaning and lining ones) and new tanks (see Eq. 

(6.2)), whereas the operational cost is considered for an amortization period of 

20 years with the interest rate fixed at 12%. A daily operational cost of the 

pumping station is computed based on a constant energy price which is equal 

to $0.12/kWh. Note that the present value of the operational cost (see Eq. (6.3)) 

is used in the first objective. 

 )(min lOperationaCapitalTotal CPVCC   (6.1)

 
New
Tank

Clean
Pipe

nDuplicatio
Pipe

New
PipeCapital CCCCC  (6.2)

Where, CTotal - total costs; CCapital - capital costs; COperational - operational costs; 

PV - the present value of operational costs in a horizon of 20 years; New
PipeC  - the 

capital costs of new pipes (including risers for new tanks if any); nDuplicatio
PipeC  - the 

capital costs of duplication pipes; Clean
PipeC  - the capital costs of existing pipes 

which are to be cleaned and lined; New
TankC  - the capital costs of new tanks if any. 

 20

20

)12.01(12.0

]1)12.01[(
365)(




 Daily
lOperationa lOperationa

CCPV  (6.3)

Where, Daily
lOperationaC  - the daily operational costs; PV - the present value of the 

operational costs. 

The second objective is to maximise the minimum network resilience (In) during 

a 24-hour simulation under the average day flow condition. Eq. (6.4) shows the 

mathematical expression of In for the Anytown problem, which is adapted from 
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Eq. (4.2) given in Chapter 4 to include tanks as another source of power 

delivered into a network. 
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Where, nt - number of tanks in the system; Qt - amount of flow leaving tank t; Ht 

- hydraulic head at tank t. The other notations are the same as Eq. (4.2) 

presented in Chapter 4. 

Decision Variables 

Figure 6.2 shows the structure of a solution to the Anytown problem, which has 

a total of 77 decision variables organised in pipe, tank and pump sections. 

Variables 1 to 35 denote the decisions for existing pipes; including ‘do-nothing’, 

cleaning and lining, and duplication with a specific size (see Table 6.2). 

Variables 36 to 41 denote the decisions for new pipes, including the sizes 

specified in Table 6.2 and ‘do-nothing’ which implies that no pipe is laid here. 

The same decisions are applied to two risers of the new tanks. If a do-nothing 

option is chosen for a riser, the corresponding new tank will be disconnected 

from the system, indicating that it is not built. Variables 44 to 53 denote the 

decisions for two new tanks; of which each five-variable determines the location 

(i.e., which demand node the tank is linked with), operating levels (minimum 

normal day level, maximum level and tank bottom elevation) and tank diameter. 

Here, each tank is assumed to be cylindrical. For tank operating levels, it is 

worth noting that the randomly generated minimum level may exceed the 

maximum level. In this situation, these two values will be exchanged before 

being assigned to the corresponding decision variables. Variables 54 to 77 

denote the number of pumps switched on at each time step in a 24-hour 

simulation horizon. 

It is worth noting that this structure is much shorter than the one presented by 

Farmani et al. (2005b), which contained 112 variables for a solution. The 

differences (35 variables) between these two structures lie in how the pipe 

variables are dealt with. In the structure given by Farmani et al. (2005b), the first 
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35 decision variables were the high-level decisions for the existing pipes, which 

were to duplicate, to clean and line, or to leave these pipes. In contrast, the one 

adopted in this chapter merges these high-level decisions into the low-level 

decisions, which are the specific diameter options for the existing pipes. As a 

result, the search space size is significantly reduced, which is believed to help 

decrease the complexity of this problem to some extent. 

 

Figure 6.2 Structure of decision variables of a solution to the Anytown problem 

Constraints 

As introduced in Section 6.3.1, two kinds of explicit constraints are considered 

for the Anytown problem, that is, the minimum nodal pressure requirements for 

five loading conditions and the criteria for tank operation under the average 

daily flow scenario. Pressure deficiencies accumulated during the hydraulic 

simulations under various loading conditions and tank level differences during 

the 24-hour simulation are summed up to account for the total constraint 

violations. Mathematical expressions of pressure deficiencies and tank level 

differences are given in Eq. (6.5) and Eq. (6.6), respectively. A feasible solution 

must satisfy all the constraints under all loading conditions. The existence of 

these constraints is expected to introduce another level of complexity in addition 

to the vast search space. 

 min,
1= 1= 1=

min, <:= j
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j

nl

j
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nn

i j
ti

j HHifHHNPD ∑ ∑ ∑ -  (6.5)

Where, NPD - total nodal pressure deficiencies; nl - number of loading 

conditions; ns - number of time steps under loading condition j; nn - number of 

demand nodes; ti
jH ,  - pressure at demand node i at time step t under loading 

condition j; min
jH  - minimum nodal pressure requirement for loading condition j. 
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Where, nt - number of tanks in the system; min
ih  and max

ih  - minimum and 

maximum operation levels of tank i during 24 hours, respectively; min
iH  and 

max
iH  - minimum and maximum boundary levels of tank i, respectively; end

ih  and 

start
ih  - end and initial levels of tank i, respectively. 

6.4. Experimental Setup 

This formulation is a challenging design problem, and it was very difficult to 

obtain the reference set of the Pareto-optimal front of the Anytown problem. 

Unlike other benchmark problems archived in Chapter 4, the Anytown problem 

introduces various types of decision variables and design criteria, leading to a 

highly constrained search space with a great number of local optima. In fact, 

several preliminary runs were carried out using MOEAs with various 

combinations of population sizes and numbers of function evaluations (NFEs). It 

is found that the Pareto front obtained was quite sensitive to the quality of the 

initial population as well as the random seed, which in turn reveals that the 

Anytown problem is a more complicated design case compared with those 

presented in Chapter 4. 

On the other hand, even with a computational budget of up to 4 million NFEs, 

the MOEAs under consideration did not show an evident sign of convergence. 

Quite the opposite was found, in that the Pareto fronts obtained in multiple runs 

by various methods were dispersed over the objective space. Consequently, it 

is currently impossible to compare their ultimate or dynamic performances 

quantitatively, using indicators introduced in Chapter 5 due to the lack of a 

consistent reference set. Furthermore, it is still unknown what a suitable NFE is 

as the stopping criterion for the comparison purposes. Therefore, the 

computational budget is determined by choosing a suitable NFE according to 

the previous work for the Anytown problem. 

6.4.1. Performance Assessment 
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To provide a quantitative comparison between the Pareto fronts obtained by 

GALAXY and the other MOEAs, a binary coverage indicator (denoted as IC) is 

adopted to assess the relationship between the approximation sets (Zitzler 

1999). The IC is mathematically formulated in Eq. (6.7). 

 
B

baAaBb
BAIC

}:|{
),(





(6.7)

Where, A and B - two Pareto approximation sets for comparison purposes; a 

and b - any non-dominated solution in set A and B, respectively; B  - the 

cardinality of set B. ba   means that solution a weakly dominates solution b in 

terms of objective function values (i.e., a is not worse than b in all objectives). 

Note that Eq. (6.7) maps the ordered pair (A, B) to the interval [0, 1]. 1),( BAIC  

means that all the solutions in set B are weakly dominated by at least one 

solution in set A. On the contrary, 0),( BAIC  suggests the situation when 

none of solutions in set B are weakly dominated by any solution in set A. It is 

worth mentioning that ),( BAIC  is not necessarily equal to ),(1 ABIC . Therefore, 

the binary IC can adequately measure the relative quality of two approximation 

sets identified by GALAXY and its competitors. As in Zitzler et al. (2003), the 

binary IC indicator complies with the Pareto-dominance relationship in terms of 

compatibility and completeness. Such criteria are specified in Table 6.7. 

The EAF tool (López-Ibáñez et al. 2010) is not considered for comparing the 

approximation fronts obtained by GALAXY and the other MOEAs in the 

objective space. The reason is that the EAF tool is very useful to illustrate 

where and how much one algorithm is better than the other when both 

algorithms converge properly for a specific problem, whereas this condition is 

not satisfied for the Anytown problem. Instead, the Pareto fronts identified by all 

the MOEAs in a single run are plotted in the objective space to provide a 

straightforward comparison. 
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Table 6.7 Interpretation of the results of binary IC 

Results of 
Binary IC 

Relationship Interpretation 

N/A BA  
Every solution b in B is strictly dominated by at 
least one solution a in A (a is better than b in 
all objectives). 

1),( BAIC  
0),( ABIC  

BA  

Every solution b in B is dominated by at least 
one solution a in A (a is better than b in at 
least one objective and is not worse than b in 
the other objectives). 

1),( BAIC  
1),( ABIC  

BA  
Every solution b in B is weakly dominated by 
at least one solution a in A and BA  . 

1),( BAIC  BA   
Every solution b in B is weakly dominated by 
at least one solution a in A (a is not worse than 
b in all objectives). 

1),( BAIC  
1),( ABIC  

BA   A and B are identical. 

1),(0  BAIC  
1),(0  ABIC  

BA ||  A and B are incomparable. 

6.4.2. Computational Budget 

A summary of the literature survey is given in Table 6.8 in order to find out how 

much effort in terms of NFEs, population size and number of runs was made in 

solving the Anytown problem under different formulations. It is revealed from 

this table that most work on the Anytown problem used NFEs between 0.2 

million to 1.5 million, except for Vamvakeridou-Lyroudia et al. (2005; 2006) 

which addressed the problem using a fuzzy reasoning framework. It is worth 

noting that some papers (Olsson et al. 2009; Fu et al. 2012a) formulated the 

problem as unconstrained multi-objective optimisations, in which the constraint 

violations were treated as the second objective. Although it is practical to deal 

with a real-world design problem under such a formulation, it is unable to 

challenge an algorithm’s ability to handle a difficult problem with massive 

constraints (like the two-objective constrained formulation given in Section 

6.3.2). 

If the problem is formulated in a similar way to that described in this chapter, the 

computational budget is around 0.5 million NFEs and fewer than 5 runs are 
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used, as shown in Table 6.8. Therefore, a uniform budget equal to 1 million 

NFEs is adopted for each algorithm and 10 independent runs are implemented 

to alleviate the impact of randomness. Moreover, the initial population for each 

run is generated in advance and used to initiate each algorithm, which 

guarantees that they start search from the same location. Hopefully, this can 

facilitate a better comparison of these algorithms for such a complicated design 

problems. 

Table 6.8 Computational effort spent on the Anytown rehabilitation problem 

Papers 
Computational Budget 

NFEs Population Size Runs
(Murphy et al. 1994) N/A N/A N/A
(Walters et al. 1999) 50,000 N/A 3
(Farmani et al. 2005b) 500,000 100 N/A
(Vamvakeridou-Lyroudia et al. 
2005) 

150,000-
5,000,000

30-100 N/A

(Farmani et al. 2006) 500,000 100 N/A
(Vamvakeridou-Lyroudia et al. 
2006) 

2,000,000 50 N/A

(Prasad and Tanyimboh 2008) 
200,000-

1,500,000
100-300 N/A

(Olsson et al. 2009) 200,000 200-2,000 5
(Fu et al. 2012a) 1,000,000 *adaptive 10
(Wang et al. 2014b) 500,000 100 10

Note: * -NSGA-II employed in Fu et al. (2012a) allowed the population size to 

adapt in search according to the number of best solutions found so far in the 

archive. N/A indicates that the relevant information cannot be found in the 

corresponding papers. 

Admittedly, the computational budget adopted herein may not be sufficient to 

guarantee that all the MOEAs considered converge well at the end of search, 

which in turn may affect the conclusions drawn from the results. However, when 

dealing with a real-world design problem, it is a desired feature of an algorithm 

to quickly identify solutions of high quality with a low computational budget. 

Thus, the comparison of various algorithms under the selected computational 

budget is still meaningful from a practical perspective. 
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6.4.3. Algorithmic Setup 

The same strategy of specifying the algorithmic parameters as mentioned in 

Chapter 5 is implemented. In particular, a unified population size equal to 100 is 

adopted for each MOEA for the Anytown problem. The individual parameters of 

each MOEA follow the settings presented in Table 5.2 in Chapter 5. 

Additionally, for the  -dominance based MOEAs, it is required to determine the 

appropriate   precision for each objective. Therefore, a series of trial runs (10 

for each pair of   setting) were conducted using the Borg algorithm given 

different combinations of   precision. More specifically, six different pairs of   

were considered, that is, (
nIt  ,cos )=(0.1, 0.01), (0.01, 0.001), (0.001, 0.0001), 

(0.001, 0.001), (0.0001, 0.0001) and (0.00001, 0.00001). It was found that Borg 

with (
nIt  ,cos )=(0.001, 0.001) generally outperformed those with the other 

settings by obtaining a series of relatively consistent Pareto fronts in the 

objective space. Therefore, this setting was applied to both Borg and  -MOEA. 

It is worth emphasising that it is impossible to estimate the number of solutions 

found in the archive beforehand. Using a larger   precision (coarse cells in the 

objective space) returns fewer solutions, and using a smaller   precision results 

in more solutions in the archive. In the trial runs, the Borg always reported 

solutions fewer than the population capacity even using the smallest   values 

(i.e., both equal to 0.00001). 

On the other hand, the   precision cannot only affect the distribution of the 

approximation set but also the convergence of the approximation set towards 

the Pareto-optimal front. For example, using smaller   precision seemed to 

improve the convergence dramatically for some runs. However, an opposite 

effect could also be observed, thus leading to inconsistent approximation fronts. 

6.5. Results and Discussion 

In this section, a comparison between GALAXY and the other MOEAs in terms 

of ultimate performance is presented. The dynamic performances of these 

MOEAs are not taken into consideration due to the lack of a reference set of the 
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best-known Pareto front. In addition, the dynamic variations of search operators 

of hybrid MOEAs are also analysed to reveal their internal performances for the 

Anytown problem. 

Since there is no guarantee that the MOEAs can converge given 1 million NFEs 

for such a highly constrained design problem, the solutions found by each 

method are carefully checked. More specifically, only feasible solutions are 

eligible for comparison purposes, and the dominated solutions which are not in 

the first front for the Pareto-dominance based MOEAs are removed from the 

approximation set. 

6.5.1. Ultimate Performance 

The binary coverage indicator (see Section 6.4.1) is used to provide a 

quantitative comparison between GALAXY and its competitors. The results of IC 

for 10 individual runs are presented in Table 6.9. It is clear that GALAXY 

convincingly outperformed the  -dominance based MOEAs by weakly 

dominating majority of the solutions obtained by those MOEAs. However, there 

is a tie between GALAXY and the other Pareto-dominance based MOEAs. It 

scores less IC compared with AMALGAM and NSGA-II on average, but note 

that this interpretation can be very sensitive to the shape and cardinality of 

approximation fronts in the objective space. 

Table 6.10 shows the interpretations from the viewpoint of the relationship of 

approximation fronts (see Table 6.7) for a single run. The fronts obtained by 

GALAXY dominated those by AMALGAM for 3 runs (run 1, 4, and 10) out of 10, 

but was dominated by AMALGAM for 2 runs (run 2 and 6). For 3 runs, the fronts 

reported by both algorithms were incomparable. In addition, they both 

dominated a subset of solutions by its counterpart once out of 10 runs. 

In comparison between GALAXY and NSGA-II, the fronts obtained by the latter 

dominated those obtained by the former for 4 runs (run 2, 3, 6 and 9), and the 

former only dominated the front by the latter for 1 run (run 4). For 4 runs, the 

fronts reported by both algorithms were incomparable. In addition, GALAXY 

dominated a subset of solutions by the NSGA-II once at run 5. 
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Table 6.9 Comparison of binary IC in percentage between GALAXY and the 

other MOEAs 

Algorithm 
IC (%) 

Run No. 
Mean

A B 1 2 3 4 5 6 7 8 9 10 

GALAXY 

AMALGAM 
100 0 10 100 39 0 1 0 25 100 37.5

0 100 77 0 0 100 36 85 8 0 40.6

Borg 
100 100 88 100 100 14 100 36 0 100 73.8

0 0 8 0 0 72 0 85 31 0 19.5

NSGA-II 
60 0 0 100 96 0 40 16 0 44 35.6

2 100 100 0 0 100 15 80 100 2 49.8

 -MOEA 
100 100 100 100 100 100 0 100 100 100 90.0

0 0 0 0 0 0 10 0 0 0 1.0

Note: For each comparison between algorithm A and B, both ),( BAIC  and 

),( ABIC  were calculated and shown in the top and bottom cells of each run, 

respectively. 

Table 6.10 Comparison of approximation sets in terms of dominance 

relationship 

Algorithm No. of Occurrences in 10 runs 
A B BA AB  BA || )(BsubsetA   )( AsubsetB 

GALAXY 

AMALGAM 3 2 3 1 1
Borg 6 0 3 0 1
NSGA-II 1 4 4 1 0
 -MOEA 9 0 0 0 1

Note: )(BsubsetA   means that every solution b in a subset of B is weakly 

dominated by at least one solution a in A, and every solution a in A is not 

dominated by any solution b in B. 

Figure 6.3 illustrates the approximation fronts obtained by all the MOEAs for 

each run. Note that all the sub-figures were adjusted to reside in the same 

range of the objective space. It can be seen from these sub-figures that the 

performance of each MOEA was not as consistent as it was for solving the 

benchmark problems presented in Chapter 5. This again implies that the 

Anytown problem still represents a very challenging multi-objective design 

problem in the community. In most runs, the approximation fronts obtained by 
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all the MOEAs resided in the range of the total cost (in M$) between (12, 18) 

and the network resilience between (0.12, 0.18). Surprisingly, GALAXY 

successfully reported a number of solutions with the network resilience greater 

than 0.18 at run 5, in which it convincingly dominated the fronts (or a subset of 

the front) obtained by the other MOEAs. In addition, the fronts obtained by 

GALAXY generally demonstrated a well-distributed feature compared with those 

by its competitors. 

 



Chapter 6 - Anytown Rehabilitation Problem 

 

 
183 
 

 

(a) Run 01 (b) Run 02 (c) Run 03 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
12

13

14

15

16

17

18

19

20

21

22

23

Network Resilience(-)

T
ot

al
 C

os
t(

M
$)

 

 

GALAXY
AMALGAM
Borg
NSGA-II
-MOEA

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
12

13

14

15

16

17

18

19

20

21

22

23

Network Resilience(-)
T

ot
al

 C
os

t(
M

$)
 

 

GALAXY
AMALGAM
Borg
NSGA-II
-MOEA

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
12

13

14

15

16

17

18

19

20

21

22

23

Network Resilience(-)

T
ot

al
 C

os
t(

M
$)

 

 

GALAXY
AMALGAM
Borg
NSGA-II
-MOEA



Chapter 6 - Anytown Rehabilitation Problem 

 

 
184 
 

 

(d) Run 04 (e) Run 05 (f) Run 06 
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(g) Run 07 (h) Run 08 (i) Run 09 
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(j) Run 10   

Figure 6.3 Comparison of the approximation front obtained by each MOEA for each run 
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6.5.2. Dynamic Variations of Search Operators 

Figure 6.4 provides a comparison of the dynamic variation of search operators 

of hybrid algorithms. For GALAXY, each operator was utilised consistently 

throughout the search. However, this variation did not show similar patterns as 

seen for the benchmark design problems presented in Chapter 5. In other 

words, the operators with better leaping ability in the global sense (e.g., TF, DE) 

did not lead the population effectively at the initial stage. On the contrary, the 

operators with better leaping ability in the local sense (e.g., UM, GM and DC) 

consistently outperformed the others throughout the search. This implies that for 

such a highly constrained problem, local search was more likely to steer the 

population towards the feasible region and eventually result in a better 

approximation front. 

For AMALGAM, AMS turned out to be the most suitable operator compared with 

the other ones. GA was the dominant operator at the beginning of search; 

however its contribution to the population was gradually overtaken by AMS after 

about 2,000 generations. DE and PSO did not perform very well compared with 

GA and AMS. This variation was very similar to the patterns when AMALGAM 

was applied to solve the benchmark problems with the number of pipes 

between 30 and 58. One probable reason is that AMS was particularly useful for 

solving the small to intermediate sized problems (normally less than 100 

decision variables). 

For Borg, it is relatively hard to summarise a clear pattern of six operators 

throughout the search. Generally speaking, SBX, PSX, SPX and UM were more 

frequently employed compared to DE and UNDX. This may be attributed to the 

fact that their performances were relatively sensitive to the quality of initial 

population, which differed from the operators within GALAXY and AMALGAM. 
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(a) GALAXY 

 

(b) AMALGAM 

 

(c) Borg 

Figure 6.4 Dynamic variations of search operators of hybrid algorithms for the 

ATN problem 
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6.5.3. Impact of the Quality of the Initial Population 

It was observed that for the  -dominance based MOEAs, in most of 

computational times, they suffered from the failure to find feasible solutions. For 

example, Borg did not report any feasible solution at the end of run 1. In 

contrast, the Pareto-dominance based MOEAs were able to jump out of the 

infeasible region effectively at the initial stage of search, which in turn ensured 

that better solutions could be found in the subsequent search. The poor 

performance of the  -dominance based MOEAs for the Anytown problem may 

be attributed to the steady-state algorithmic structure which restricted the 

population to efficiently get rid of infeasible solutions. 

On the other hand, since the initial population was unified for each MOEA in the 

experiment, it is interesting to investigate the impact of the quality of the initial 

population on the performance of these MOEAs. To this end, the initial 

populations were analysed in terms of constraint violations. Because the 

majority of solutions in the initial population had constraint violations on the 

order of magnitude of 108
 to 109, the quality of the top five individuals as well as 

all the individuals on average are shown in Table 6.11. It can be seen from the 

table below that run 5 and run 8 had better quality initial populations compared 

to the other runs, and run 4 had the worst quality across 10 runs. Therefore, 

MOEAs were expected to obtain better results in these two runs. This 

anticipation may be true if comparing the approximation fronts by various 

MOEAs in run 4 and run 5. Results obtained in run 5 were indeed better than 

those obtained in run 4 except for the Borg algorithm. However, it is not always 

the case if ten runs are considered together. This fact suggests that the quality 

of initial population did not have a substantial impact on the final achievement of 

MOEAs for the Anytown problems. 
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Table 6.11 Quality of initial population in terms of constraint violations 

Runs Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 
Mean Value 

Top Five All 
Run01 -4.9E+03 -8.9E+03 -6.9E+08 -1.1E+09 -1.1E+09 -5.8E+08 -5.0E+09
Run02 -2.8E+04 -9.9E+08 -1.1E+09 -1.1E+09 -1.1E+09 -8.5E+08 -5.1E+09
Run03 -3.5E+03 -7.8E+03 -3.2E+04 -8.9E+08 -9.9E+08 -3.8E+08 -4.9E+09
Run04 -1.1E+09 -1.1E+09 -1.2E+09 -1.2E+09 -1.3E+09 -1.2E+09 -5.2E+09
Run05 -2.2E+03 -2.7E+03 -3.8E+03 -1.7E+04 -9.9E+08 -2.0E+08 -4.5E+09
Run06 -4.1E+03 -6.9E+08 -9.9E+08 -9.9E+08 -1.2E+09 -7.7E+08 -4.8E+09
Run07 -5.8E+02 -6.9E+08 -9.9E+08 -1.1E+09 -1.2E+09 -7.9E+08 -4.7E+09
Run08 -6.1E+02 -7.7E+02 -5.1E+03 -2.0E+04 -8.9E+08 -1.8E+08 -4.8E+09
Run09 -3.8E+03 -6.9E+08 -1.1E+09 -1.1E+09 -1.1E+09 -7.9E+08 -5.0E+09
Run10 -1.3E+03 -8.9E+08 -1.1E+09 -1.2E+09 -1.2E+09 -8.7E+08 -4.9E+09

Note: The minimum constraint violations in each column is shown in bold. 

6.6. Summary and Conclusions 

This chapter applied the GALAXY method and its competitors to solve the 

Anytown rehabilitation problem, which represents one of challenging design 

cases in the water community for taking the operation of pumps and tanks into 

consideration. Firstly, the Anytown network was described from a historical 

viewpoint followed by a mathematical optimisation problem formulation. Then, 

due to the lack of a reference set for this design problem, the binary coverage 

indicator was introduced to provide a quantitative way for comparing the 

approximation fronts obtained by different algorithms. In addition, the 

computational budget and algorithmic setup were justified. Finally, GALAXY 

was compared with the other MOEAs considered from the viewpoint of ultimate 

performance using the binary coverage indicator as well as in the objective 

space. For hybrid algorithms, the dynamic variations of search operators were 

also taken into account and discussed. Moreover, the impact of the quality of 

initial population on the performances of various MOEAs for such a highly 

constrained design problem was also investigated. 

The main conclusions drawn from this chapter are as follows: 

 Generally speaking, the Pareto-dominance based MOEAs (i.e., 

AMALGAM and NSGA-II) and GALAXY outperformed the  -dominance 
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based approaches for dealing with the Anytown rehabilitation problem. 

There was a tie between GALAXY and the Pareto-dominance based 

MOEAs. In other words, no one method was consistently better than the 

others and their performances were sensitive to the quality of initial 

population and random seed. 

 From the viewpoint of dynamic variations of search operators, GALAXY 

demonstrated a different pattern from those for solving the benchmark 

design problems as shown in Chapter 5. In particular, the operators with 

better leaping ability in the global sense did not lead the search at the 

initial stage. On the contrary, the operators which are good at leaping in 

the local sense consistently made major contributions to the population, 

which may account for the fact that it was not superior to the other 

MOEAs. It also implies that the search space of the Anytown problem 

was probably far more complex than those of benchmark design 

problems. 

 The failure of Borg and  -MOEA can be attributed to the use of the  -

dominance concept, which was not practical in solving the Anytown 

rehabilitation problem. It might cause ‘genetic drift’ during search, which 

resulted in solutions that were concentrated in a small area of search 

space (i.e., poor performance in terms of diversity and spread). On the 

other hand, one advantage of using the  -dominance concept is to 

provide an effective way to control the precision of results. For the total 

cost objective, it may be true to specify such an   precision according to 

the preference of decision makers as the range of this objective is 

relatively easy to estimate. However, for the network resilience, it is 

impossible to know the rough range a priori. In this situation, an arbitrary 

setting of   precision may lead to an unsatisfactory Pareto front or even 

failure. Furthermore, the time spent on selecting the best   precision for 

a more complex design problem is probably unacceptable in practice. In 

contrast, GALAXY and the traditional Pareto-dominance based MOEAs 

do not require the specification of   precision and are more suitable for 

solving the discrete design problems. 
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 Finally, the quality of the initial population can greatly affect the 

performances of various MOEAs for the Anytown problem. However, this 

point does not mean that better initial populations will necessarily lead to 

a better approximation front at the end of the search. 
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7. SUMMARY, CONCLUSIONS AND FUTURE WORK 

RECOMMENDATIONS 

7.1. Summary 

7.1.1. Summary of the Thesis 

The main objective of this thesis is to develop the theoretical basis and 

implement an enhanced hybrid framework for the two-objective design or 

extended design of WDSs. Its performance is verified and compared with state-

of-the-art MOEAs for a wide range of benchmark problems in terms of ultimate 

and dynamic performance. 

A novel hybrid algorithm, termed GALAXY, has been developed and presented 

in this thesis. Its main features are summarised as follows: 

1. It is based on the generational MOEA algorithmic framework, in which 

the population gets updated after the offspring are created. 

2. It combines the traditional Pareto-dominance concept and the  -

dominance concept for population replacement. 

3. It adopts the integer coding scheme, which supports a straightforward 

representation of decision variables for discrete design problems. 

4. It employs six search operators organised in a high-level teamwork 

hybrid structure for generating the offspring, including turbulence factor, 

differential evolution, simulated binary crossover for integers, uniform 

mutation, Gaussian mutation and dither creeping. 

5. Multiple search operators are applied simultaneously and the number of 

individuals that each operator is allowed to produce is determined 

according to its contribution to the current population. 

6. Duplicate solutions are checked and removed from the population after 

the offspring and current population are merged. 

7. It eliminates the need for fine-tuning of individual parameters, which is 

time-consuming and often results in suboptimal performance. 
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An archive of benchmark design or extended design problems of WDSs is 

established, termed WDSBA. Optimal design is formulated as a constrained 

two-objective optimisation problem, minimising the total capital cost and 

maximising the network resilience, which is a compact and surrogate measure 

of network reliability. WDSBA encompasses twelve benchmark problems 

collected from the literature that are categorised into four groups, i.e., small, 

medium, intermediate and large, according to the search space sizes. 

The proposed GALAXY method is verified and compared to four state-of-the-art 

MOEAs, including two hybrid algorithms (i.e., Borg and AMALGAM) and two 

baseline algorithms (i.e., NSGA-II and  -MOEA), for solving the benchmark 

problems in the WDSBA. To obtain the best-known Pareto front of each 

benchmark problem as a reference set, these MOEAs were implemented given 

an extensive computational budget. Both ultimate and dynamic performances of 

these algorithms are considered by means of four numerical indicators and the 

EAF based graphical tool. For hybrid algorithms, the dynamic variations of 

search operators are also illustrated and compared. 

In addition, GALAXY and other MOEAs are applied to solve the challenging 

Anytown rehabilitation problem. The rehabilitation problem is formulated in the 

similar way as the benchmark problems in the WDSBA, but considering design 

and operations of the system simultaneously. The performances of these 

MOEAs are analysed and compared by plotting the approximation fronts in the 

objective space and by using the binary coverage indicator. 

7.1.2. Summary of the Contributions 

The main contributions of this thesis regarding the hybrid optimisation 

framework are summarised as follows: 

1. A novel hybrid framework for solving the discrete two-objective design or 

extended design of WDSs. 

2. A novel perspective of selecting search operators for the hybrid 

framework according to their leaping abilities in the decision variable 

space. 
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3. Six modified search operators dedicated for the discrete design problems 

of WDSs that eliminate the need for fine-tuning of majority of individual 

parameters. 

4. A new, specific way of handling duplicate solutions that significantly 

improves the performance of MOEAs in terms of  -performance. 

5. A new, hybrid usage of the traditional Pareto-dominance and the  -

dominance concepts for achieving a better balance between 

convergence and diversity. 

The main contributions of this thesis regarding the benchmark problems are 

summarised as follows: 

1. Creation of an archive of benchmark problems related to the design or 

extended design of WDSs, including twelve cases ranging from small to 

large sized optimisation problems. 

2. The best-known Pareto front for each benchmark problem, which can 

influence the future work of others in water research community. 

The main contributions of this thesis regarding the performance assessment are 

summarised as follows: 

1. A comprehensive use of a number of numerical indicators for evaluating 

particular aspects of multi-objective optimisation (i.e., convergence, 

diversity and consistency) when a reference set is available for a specific 

benchmark problem. 

2. Consideration of both ultimate and dynamic performances of MOEAs for 

the benchmark problems which enables an in-depth analysis and avoids 

bias effectively. 

3. A novel use of the EAF graphical tool to facilitate the direct comparison 

of the approximation fronts obtained by GALAXY and other MOEAs. 

4. A novel combined use of the binary coverage indicator and 

approximation front plots (in the objective space) to compare MOEAs 

quantitatively and intuitively for the Anytown rehabilitation problem, for 

which the reference set is difficult to obtain beforehand. 
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7.2. Main Conclusions 

The main conclusions regarding the hybrid algorithm for solving the two-

objective design of WDSs are summarised as follows: 

1. A novel hybrid algorithm, termed GALAXY, has been developed in this 

thesis, featuring a generational framework, a hybrid usage of Pareto-

dominance and  -dominance concepts, an integer coding scheme, six 

search operators deployed based on their leaping abilities in the search 

space and utilised in a high-level teamwork hybrid manner. GALAXY is 

actually a hybrid framework, rather than an algorithm, which can be 

further extended (or improved) by incorporating new search operators 

and strategies. This algorithm was shown to be superior to the state-of-

the-art MOEAs for the majority of benchmark problems, according to the 

numerical indicators and the EAF tool. 

2. GALAXY is a dedicated optimiser for solving the two-objective design of 

WDSs, and only involves two general parameters which are common to 

the majority of MOEAs, that is the population size and the number of 

function evaluations. In other words, there is no individual parameter 

required for fine-tuning before its application. GALAXY was 

demonstrated to be a very effective and efficient tool for dealing with 

real-world cases. This characteristic is achieved by deploying search 

operators which are tailored for discrete design problems. 

3. The essential criterion of selecting multiple search operators according to 

their leaping ability in the decision variable space for hybridisation is 

important to GALAXY, because it effectively leads to a near-optimal 

search process in terms of exploration and exploitation. In particular, the 

operators which are good at leaping in the global sense are mainly 

employed at the initial stage of search, driving the population towards the 

near-optimal region; whereas the operators which are good at leaping in 

the local sense are mainly used in the subsequent generations, refining 

the current solutions to approach the Pareto-optimal front. 

4. Several strategies inside the GALAXY method ensure its performance in 

terms of convergence, diversity and consistency on a wide range of 
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benchmark problems. In particular, the strategy that avoids duplicates 

and the new hybrid replacement procedure effectively accommodate and 

maintain current best solutions and increase the chance for exploring 

potential solutions in search space. They are of great importance for 

solving discrete design problems and resulted in a much better 

achievement of GALAXY in terms of  -performance. Note that these 

strategies are not limited to GALAXY and can be implemented in other 

MOEAs to further enhance their performances. 

The main conclusions regarding the comparison of GALAXY with other MOEAs 

for solving the benchmark problems in WDSBA are summarised as follows: 

1. Generally speaking, GALAXY was superior to other state-of-the-art 

MOEAs considered in this thesis in terms of both ultimate and dynamic 

performances for majority of benchmark problems. This was 

demonstrated via several numerical indicators as well as the EAF 

graphical tool. It effectively captured boundary solutions (in both low and 

high cost regions) and consistently maintained a wide spread of solutions 

in the objective space. In addition, the behaviour of search operators 

within GALAXY were as expected, that is, the TF, DE, and SBXI 

contributed more individuals during the exploration phase, whereas the 

UM, GM and DC were the dominant operators during the exploitation 

phase. 

2. GALAXY was convincingly outperformed by the Borg and AMALGAM for 

the EXN problem which was probably attributed to its weakness of 

dealing with infeasible solutions. However, note that none of the 

algorithms fully converged for the comparison, which implies that 

GALAXY still has a chance to perform better than these MOEAs provided 

that a greater computational budget is allocated. 

3. The combination of many numerical indicators and the EAF graphical 

tool provided a better way to evaluate the performances of MOEAs from 

different perspectives comprehensively. 
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The main conclusions regarding the comparison of GALAXY with other MOEAS 

solving the Anytown rehabilitation problem are summarised as follows: 

1. GALAXY and the Pareto-dominance based MOEAs (i.e., AMALGAM and 

NSGA-II) generally outperformed the  -dominance based approaches 

for the Anytown rehabilitation problem. However, there was a tie between 

GALAXY and the Pareto-dominance based MOEAs and their 

performances were sensitive to the quality of the initial population and 

the random seeds used. 

2. GALAXY demonstrated a different pattern of search operator dynamics 

compared to those shown for the benchmark problems. More specifically, 

TF, DE and SBXI did not lead the search at the initial stage. Rather, UM, 

GM and DC, which are good at leaping in the local sense, consistently 

dominated the other operators by contributing majority of offspring. This 

implied that the operators with good capability of leaping in the global 

sense were not suitable for such a highly-constrained problem, and it 

also partially explained why GALAXY cannot exceed the other MOEAs 

on the Anytown problem. 

3. The failure of Borg and  -MOEA on this problem can be partially 

attributed to the usage of the  -dominance concept, which may cause 

‘genetic drift’ during search, leading to the loss of boundary solutions. 

However, a proper setting of   precision for certain objective (e.g., the 

network resilience considered in this thesis) is probably unrealistic, which 

in turn may result in an unsatisfactory Pareto front or even a failure (i.e., 

no feasible solution found at the end of search). Furthermore, the time 

spent on determining the suitable   setting is probably unacceptable for 

large and/or complex cases (e.g., the Anytown problem); in contrast, 

GALAXY, which does not rely on the   precision, is more practical (i.e., 

saving time and maintaining the diversity of solutions) in such a situation. 

4. The quality of the initial population in terms of constraint violation can 

greatly affect the performances of various MOEAs; however, this does 

not mean that better initial population can necessarily lead to better 

approximation front at the end of search. 
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7.3. Recommendations for Future Research 

Regarding hybrid frameworks for solving the multi-objective design of WDSs, 

recommendations for future research work are summarised as follows: 

1. To establish a quantitative analysis framework which can evaluate the 

capability of a given search operator in terms of exploration and 

exploitation. 

2. To incorporate more efficient search operators, for instance the multi-

parent operators (PCX, SPX and UNDX) as used in Borg, into the 

framework of GALAXY. 

3. To extend the current GALAXY method to deal with many-objective 

design of WDSs (Fu et al. 2012a) by involving more advanced 

dominance concept, like grid-dominance concept (Yang et al. 2013), for 

Selection and Replacement. 

4. To develop a novel constraint handling strategy that can improve the 

performance of GALAXY in the region of low cost, where the Pareto-

optimal solutions usually lie on the boundary between the feasible and 

infeasible regions. 

Regarding the benchmark problems which can be included in the WDSBA, 

recommendations for future research work are summarised as follows: 

1. To generate and archive more benchmark networks, especially those 

derived from real-world WDSs, such as the D-Town network used in the 

Battle of the Water Networks II (Marchi et al. 2013), into the WDSBA to 

benefit the comparative studies in the future. 

2. To optimise for objective functions other than the ones used in the thesis 

leading to more realistic engineering problems being solved. 

3. To increase the dimensionality of benchmark problems in terms of 

number of objectives, i.e., to move from the multi-objective (two to three) 

to many-objective (more than three) benchmark optimisation problems. 

Regarding solving more complex design problems which are highly constrained, 

recommendations for future research work are summarised as follows: 
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1. To develop an effective approach which can generate a high quality 

initial population in terms of constraint violations for complex design 

problems. 

2. To reduce the size of search space for those problems which have a 

large number of decision variables via special techniques, such as the 

global sensitivity analysis (Fu et al. 2012b) or graph theory (Zheng et al. 

2013a). 
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APPENDIX A MAXIMUM PRESSURE HEAD 

REQUIREMENT AT EACH NODE OF MOD 

Table A.1 Maximum pressure head requirement at each node of MOD 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

NI 
Hmax 
(m) 

1 35.007 47 40.820 93 38.571 139 40.375 185 42.155 231 38.816
2 34.875 48 40.794 94 36.861 140 35.150 186 41.674 232 39.110
3 35.797 49 42.823 95 37.332 141 35.396 187 40.806 233 39.612
4 37.254 50 41.155 96 37.395 142 34.659 188 41.325 234 39.642
5 38.235 51 41.668 97 37.529 143 34.659 189 41.271 235 39.505
6 38.545 52 41.722 98 37.503 144 35.051 190 41.157 236 41.959
7 38.545 53 35.224 99 37.761 145 34.795 191 40.728 237 40.087
8 38.413 54 37.377 100 39.724 146 36.549 192 40.732 238 38.343
9 36.321 55 38.016 101 40.243 147 36.890 193 42.296 239 39.195

10 37.497 56 38.084 102 40.840 148 36.549 194 40.095 240 39.329
11 38.000 57 38.365 103 40.716 149 38.814 195 41.111 241 41.582
12 37.112 58 38.451 104 40.754 150 39.183 196 40.155 242 41.434
13 36.426 59 37.735 105 41.123 151 38.690 197 39.473 243 42.590
14 37.481 60 39.016 106 39.650 152 38.688 198 40.061 244 42.498
15 33.243 61 39.451 107 40.227 153 38.481 199 39.966 245 42.452
16 35.150 62 39.395 108 40.203 154 36.246 200 39.565 246 42.446
17 34.971 63 36.549 109 40.546 155 36.996 201 39.796 247 43.795
18 37.906 64 36.058 110 40.580 156 36.964 202 37.800 248 43.168
19 37.739 65 36.693 111 42.183 157 37.421 203 38.297 249 38.204
20 36.785 66 36.282 112 39.742 158 37.745 204 39.469 250 38.669
21 37.188 67 35.773 113 40.287 159 38.615 205 37.735 251 37.555
22 36.877 68 35.547 114 39.576 160 38.732 206 38.303 252 36.487
23 37.513 69 34.799 115 38.544 161 39.796 207 36.621 253 37.850
24 39.295 70 33.911 116 43.811 162 39.131 208 36.465 254 37.595
25 39.387 71 33.688 117 43.905 163 39.507 209 37.637 255 37.727
26 39.846 72 33.436 118 43.769 164 38.573 210 37.262 256 43.003
27 40.175 73 33.047 119 43.797 165 38.235 211 37.842 257 35.849
28 38.355 74 32.670 120 43.480 166 41.833 212 38.010 258 34.957
29 38.204 75 33.065 121 43.468 167 41.746 213 37.200 259 34.919
30 38.403 76 33.408 122 42.755 168 41.616 214 34.201 260 34.919
31 38.361 77 33.757 123 42.500 169 40.415 215 34.651 261 33.949
32 38.700 78 35.895 124 42.452 170 38.407 216 33.502 262 33.714
33 41.239 79 37.585 125 42.402 171 38.451 217 33.340 263 33.546
34 41.163 80 37.751 126 40.740 172 38.459 218 39.451 264 36.745
35 40.987 81 37.687 127 42.229 173 38.483 219 40.580 265 38.537
36 41.800 82 37.455 128 42.640 174 42.743 220 42.356 266 37.691
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37 41.853 83 38.617 129 42.083 175 42.590 221 40.333 267 38.289
38 41.935 84 38.046 130 41.498 176 42.701 222 39.403 268 38.888
39 40.935 85 38.339 131 40.874 177 43.017 223 42.951 - -
40 42.905 86 39.509 132 38.134 178 43.384 224 42.755 - -
41 43.119 87 38.888 133 38.806 179 43.404 225 42.434 - -
42 41.833 88 39.608 134 38.976 180 43.306 226 42.556 - -
43 41.001 89 38.914 135 38.940 181 44.108 227 42.843 - -
44 40.929 90 38.800 136 38.583 182 43.953 228 43.460 - -
45 40.726 91 39.305 137 39.133 183 43.366 229 43.450 - -
46 40.363 92 38.860 138 39.443 184 42.690 230 36.008 - -
Note: NI - node index which is a consecutive number starting from one to the 

total number of nodes in the network; Hmax - maximum pressure head 

requirement. 
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APPENDIX B MATLAB EXECUTABLE FUNCTION (MEX-

FUNCTION) 

Matlab EXecutable Functions enable the invocation of subroutines created in C, 

C++, or Fortran from the MATLAB command line as built-in functions. These 

programs, known as binary MEX-files, are dynamically linked with the MATLAB 

interpreter. Using the MEX function can take advantages of both languages. In 

particular, the performance-critical routines which are time-consuming are 

implemented via the MEX interface, and the other routines are efficiently 

constructed within the MATLAB environment, which is highly productive by 

eliminating the need for most low-level programming. 

By analysing the time spent on solving a typical multi-objective optimal design 

problem of Water Distribution Systems, it is found that the hydraulic simulation 

accounts for the majority of the time elapsed. Therefore, the computational 

overhead when dealing with such kind of problems especially for large problems 

can be effectively reduced by calling the MEX functions, which encapsulate 

objective functions involving hydraulic simulations written in C language. 

Consequently, the computational costs in terms of running time using the 

GALAXY and AMALGAM methods, which are implemented in MATLAB, are 

comparable to those required by other C language based algorithms. Figure B.1 

illustrates the general framework of using the MEX function for the multi-

objective design of Water Distribution Systems. 

 

Figure B.1 Framework of solving multi-objective design of WDSs via MEX 

function 
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An example of such MEX function for solving the TLN problem is presented in 

Figure B.2, which includes the MEX function interface as well as part of the 

problem definition. 

 

Figure B.2 Sample code of MEX function used for this thesis 
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APPENDIX C VERIFICATION OF COMPUTATIONAL 

BUDGET USING THE NSGA-II FOR BENCHMARK 

PROBLEMS 

C.1 Sensitivity analysis on the indices of SBX and PM 

Table C.1 Sensitivity analysis for the BAK problem 

Pop=100; Gen=2000; PSBX=0.9; PPM=1/ND 
Indices=1 IGD IHV I  IEP 

Avg: 0.9999 0.9991 0.9982 0.5871 
Max: 1.0000 0.9998 0.9988 0.6259 
Min: 0.9998 0.9929 0.9973 0.5324 
Std: 0.0000 0.0020 0.0004 0.0239 

Indices=5 IGD IHV I  IEP 
Avg: 0.9999 0.9993 0.9983 0.5811 
Max: 1.0000 0.9998 0.9988 0.6187 
Min: 0.9999 0.9930 0.9973 0.5324 
Std: 0.0000 0.0017 0.0004 0.0208 

Indices=10 IGD IHV I  IEP 
Avg: 0.9999 0.9990 0.9982 0.5736 
Max: 1.0000 0.9998 0.9989 0.6115 
Min: 0.9999 0.9929 0.9973 0.5324 
Std: 0.0000 0.0020 0.0004 0.0215 

Indices=15 IGD IHV I  IEP 
Avg: 0.9999 0.9995 0.9983 0.5664 
Max: 1.0000 0.9998 0.9988 0.6331 
Min: 0.9999 0.9930 0.9973 0.5252 
Std: 0.0000 0.0012 0.0003 0.0281 

Indices=20 IGD IHV I  IEP 
Avg: 0.9999 0.9988 0.9981 0.5640 
Max: 1.0000 0.9998 0.9988 0.6187 
Min: 0.9999 0.9929 0.9970 0.5036 
Std: 0.0000 0.0023 0.0005 0.0330 

Note: The best value on average according to each performance indicator is 

shown in bold. Pop denotes population size. Gen denotes number of 

generations. PSBX denotes probability of Simulated Binary Crossover. PPM 

denotes probability of Polynomial Mutation. ND denotes number of decision 

variables. 
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Table C.2 Sensitivity analysis for the GOY problem 

Pop=100; Gen=2000; PSBX=0.9; PPM=1/ND 
Indices=1 IGD IHV I  IEP 

Avg: 0.9974 0.9659 0.9612 0.1614 
Max: 0.9992 0.9845 0.9802 0.2658 
Min: 0.9940 0.9468 0.9443 0.0900 
Std: 0.0011 0.0098 0.0096 0.0449 

Indices=5 IGD IHV I  IEP 
Avg: 0.9971 0.9630 0.9587 0.1530 
Max: 0.9988 0.9843 0.9803 0.2434 
Min: 0.9927 0.9391 0.9379 0.0879 
Std: 0.0015 0.0102 0.0097 0.0401 

Indices=10 IGD IHV I  IEP 
Avg: 0.9973 0.9582 0.9543 0.1570 
Max: 0.9990 0.9804 0.9760 0.2311 
Min: 0.9951 0.9393 0.9382 0.0798 
Std: 0.0010 0.0108 0.0097 0.0435 

Indices=15 IGD IHV I  IEP 
Avg: 0.9969 0.9605 0.9566 0.1630 
Max: 0.9993 0.9830 0.9779 0.2352 
Min: 0.9915 0.9419 0.9402 0.0838 
Std: 0.0016 0.0105 0.0100 0.0377 

Indices=20 IGD IHV I  IEP 
Avg: 0.9974 0.9590 0.9548 0.1673 
Max: 0.9991 0.9811 0.9755 0.2556 
Min: 0.9930 0.9429 0.9410 0.0920 
Std: 0.0015 0.0088 0.0080 0.0435 
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Table C.3 Sensitivity analysis for the PES problem 

Pop=100; Gen=2000; PSBX=0.9; PPM=1/ND 
Indices=1 IGD IHV I  IEP 

Avg: 0.9900 0.9412 0.9253 0.0000 
Max: 0.9939 0.9647 0.9524 0.0000 
Min: 0.9841 0.9240 0.9054 0.0000 
Std: 0.0023 0.0095 0.0113 0.0000 

Indices=5 IGD IHV I  IEP 
Avg: 0.9933 0.9391 0.9206 0.0000 
Max: 0.9960 0.9583 0.9436 0.0000 
Min: 0.9897 0.9181 0.8978 0.0000 
Std: 0.0017 0.0102 0.0116 0.0000 

Indices=10 IGD IHV I  IEP 
Avg: 0.9942 0.9367 0.9177 0.0001 
Max: 0.9971 0.9550 0.9386 0.0026 
Min: 0.9914 0.9283 0.9092 0.0000 
Std: 0.0017 0.0063 0.0071 0.0005 

Indices=15 IGD IHV I  IEP 
Avg: 0.9935 0.9320 0.9134 0.0000 
Max: 0.9962 0.9477 0.9326 0.0000 
Min: 0.9894 0.9128 0.8924 0.0000 
Std: 0.0019 0.0087 0.0099 0.0000 

Indices=20 IGD IHV I  IEP 
Avg: 0.9927 0.9296 0.9126 0.0000 
Max: 0.9963 0.9441 0.9283 0.0000 
Min: 0.9884 0.9145 0.8946 0.0000 
Std: 0.0021 0.0082 0.0095 0.0000 

  



Appendix C 

 

 
208 
 

C.2 Dynamic performance of the NSGA-II for the BAK and GOY 

problems 

(a) IGD Indicator (b) IHV Indicator (c) I  Indicator 

Figure C.1 Dynamic performance of the NSGA-II for the BAK problem 

(a) IGD Indicator (b) IHV Indicator (c) I  Indicator 

Figure C.2 Dynamic performance of the NSGA-II for the GOY problem 
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APPENDIX D COMPARISON BETWEEN GALAXY AND 

THE OTHER MOEAS FOR THE OTHER BENCHMARK 

PROBLEMS 

D.1 Ultimate Performance 

Table D.1 Ultimate performance of various MOEAs for the TRN problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 1.0000 0.9998 0.9999 0.9998 0.9999 
Max. 1.0000 0.9999 1.0000 0.9999 1.0000 
Min. 0.9999 0.9996 0.9996 0.9996 0.9995 
Std. 0.0000 0.0001 0.0001 0.0001 0.0001 

IHV 

Avg. 0.9996 0.9991 0.9987 0.9989 0.9984 
Max. 0.9997 0.9993 0.9999 0.9993 0.9999 
Min. 0.9995 0.9987 0.9958 0.9969 0.9943 
Std. 0.0001 0.0002 0.0010 0.0005 0.0016 

I  

Avg. 0.9963 0.9946 0.9962 0.9943 0.9958 
Max. 0.9967 0.9963 0.9982 0.9956 0.9988 
Min. 0.9962 0.9908 0.9908 0.9925 0.9889 
Std. 0.0002 0.0011 0.0016 0.0009 0.0024 

IEP 

Avg. 0.7828 0.6391 0.7276 0.5721 0.7211 
Max. 0.7969 0.6797 0.7578 0.6328 0.7578 
Min. 0.7656 0.5703 0.6953 0.5234 0.6797 
Std. 0.0090 0.0235 0.0180 0.0232 0.0227 
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Figure D.1 Comparison of GALAXY with the other MOEAs for the TRN problem 

using the EAF tool 

Table D.2 Ultimate performance of various MOEAs for the TLN problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9997 0.9998 0.9998 0.9989 0.9977 
Max. 1.0000 0.9999 1.0000 0.9998 0.9991 
Min. 0.9984 0.9994 0.9990 0.9961 0.9882 
Std. 0.0004 0.0001 0.0002 0.0009 0.0020 

IHV 

Avg. 0.9987 0.9974 0.9971 0.9921 0.9791 
Max. 0.9999 0.9979 0.9981 0.9987 0.9898 
Min. 0.9980 0.9960 0.9944 0.9773 0.9477 
Std. 0.0007 0.0006 0.0008 0.0052 0.0091 

I  

Avg. 0.9953 0.9939 0.9930 0.9784 0.9613 
Max. 0.9977 0.9948 0.9948 0.9925 0.9834 
Min. 0.9901 0.9907 0.9891 0.9573 0.9314 
Std. 0.0016 0.0013 0.0019 0.0094 0.0118 

IEP 

Avg. 0.8254 0.6196 0.5848 0.5289 0.4137 
Max. 0.8684 0.6491 0.6140 0.6228 0.4825 
Min. 0.7719 0.5526 0.5351 0.4386 0.3070 
Std. 0.0251 0.0248 0.0180 0.0455 0.0411 
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Figure D.2 Comparison of GALAXY with the other MOEAs for the TLN problem 

using the EAF tool 

Table D.3 Ultimate performance of various MOEAs for the NYT problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9931 0.9970 0.9905 0.9983 0.9995 
Max. 0.9986 0.9991 0.9919 0.9993 0.9999 
Min. 0.9808 0.9871 0.9891 0.9929 0.9983 
Std. 0.0044 0.0023 0.0008 0.0012 0.0004 

IHV 

Avg. 0.9740 0.9744 0.9371 0.9766 0.9492 
Max. 0.9889 0.9907 0.9676 0.9914 0.9699 
Min. 0.9423 0.9341 0.9190 0.9528 0.9283 
Std. 0.0114 0.0137 0.0125 0.0114 0.0111 

I  

Avg. 0.9745 0.9726 0.9528 0.9772 0.9571 
Max. 0.9902 0.9901 0.9726 0.9922 0.9708 
Min. 0.9476 0.9269 0.9421 0.9560 0.9365 
Std. 0.0126 0.0167 0.0081 0.0118 0.0069 

IEP 

Avg. 0.0655 0.0855 0.0190 0.1308 0.2375 
Max. 0.1356 0.1691 0.0415 0.1802 0.2695 
Min. 0.0000 0.0239 0.0064 0.0303 0.1738 
Std. 0.0430 0.0367 0.0084 0.0312 0.0231 
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Figure D.3 Comparison of GALAXY with the other MOEAs for the NYT problem 

using the EAF tool 

Table D.4 Ultimate performance of various MOEAs for the BLA problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9982 0.9962 0.9941 0.9964 0.9969 
Max. 0.9993 0.9988 0.9982 0.9979 0.9986 
Min. 0.9964 0.9894 0.9883 0.9939 0.9938 
Std. 0.0007 0.0018 0.0025 0.0011 0.0012 

IHV 

Avg. 0.9921 0.9828 0.9731 0.9869 0.9744 
Max. 0.9958 0.9924 0.9810 0.9912 0.9831 
Min. 0.9879 0.9718 0.9633 0.9821 0.9577 
Std. 0.0019 0.0050 0.0048 0.0023 0.0063 

I  

Avg. 0.9927 0.9846 0.9787 0.9883 0.9770 
Max. 0.9956 0.9927 0.9880 0.9927 0.9858 
Min. 0.9882 0.9727 0.9681 0.9828 0.9575 
Std. 0.0019 0.0046 0.0055 0.0026 0.0068 

IEP 

Avg. 0.0396 0.0144 0.0049 0.0036 0.0152 
Max. 0.0788 0.0721 0.0522 0.0466 0.1110 
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 
Std. 0.0158 0.0196 0.0117 0.0088 0.0237 
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Figure D.4 Comparison of GALAXY with the other MOEAs for the BLA problem 

using the EAF tool 

Table D.5 Ultimate performance of various MOEAs for the GOY problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9983 0.9983 0.9969 0.9964 0.9955 
Max. 0.9989 0.9988 0.9987 0.9990 0.9988 
Min. 0.9974 0.9977 0.9937 0.9926 0.9905 
Std. 0.0004 0.0002 0.0011 0.0018 0.0019 

IHV 

Avg. 0.9932 0.9941 0.9615 0.9588 0.9366 
Max. 0.9951 0.9955 0.9910 0.9784 0.9581 
Min. 0.9898 0.9924 0.9430 0.9397 0.9031 
Std. 0.0013 0.0007 0.0135 0.0092 0.0115 

I  

Avg. 0.9904 0.9916 0.9623 0.9560 0.9437 
Max. 0.9933 0.9941 0.9944 0.9770 0.9657 
Min. 0.9856 0.9899 0.9449 0.9385 0.9158 
Std. 0.0022 0.0010 0.0140 0.0094 0.0101 

IEP 

Avg. 0.1243 0.1123 0.0255 0.1352 0.0342 
Max. 0.1697 0.1431 0.0654 0.2127 0.0859 
Min. 0.1002 0.0736 0.0000 0.0818 0.0061 
Std. 0.0167 0.0176 0.0175 0.0296 0.0197 
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Figure D.5 Comparison of GALAXY with the other MOEAs for the GOY problem 

using the EAF tool 

Table D.6 Ultimate performance of various MOEAs for the FOS problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9945 0.9619 0.9908 0.9923 0.9955 
Max. 0.9958 0.9754 0.9962 0.9961 0.9983 
Min. 0.9900 0.9500 0.9866 0.9823 0.9870 
Std. 0.0013 0.0062 0.0021 0.0029 0.0024 

IHV 

Avg. 0.9849 0.9552 0.8883 0.9100 0.8767 
Max. 0.9870 0.9699 0.9128 0.9337 0.9150 
Min. 0.9813 0.9409 0.8615 0.8806 0.8528 
Std. 0.0014 0.0074 0.0128 0.0110 0.0132 

I  

Avg. 0.9526 0.9499 0.8871 0.9053 0.8724 
Max. 0.9694 0.9651 0.9124 0.9317 0.9143 
Min. 0.9407 0.9336 0.8582 0.8762 0.8466 
Std. 0.0065 0.0081 0.0140 0.0117 0.0141 

IEP 

Avg. 0.1592 0.0390 0.0000 0.0000 0.0000 
Max. 0.1747 0.0390 0.0000 0.0000 0.0000 
Min. 0.1171 0.0390 0.0000 0.0000 0.0000 
Std. 0.0116 0.0000 0.0000 0.0000 0.0000 
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Figure D.6 Comparison of GALAXY with the other MOEAs for the FOS problem 

using the EAF tool 

Table D.7 Ultimate performance of various MOEAs for the MOD problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9883 0.9813 0.9693 0.9857 0.9878 
Max. 0.9902 0.9859 0.9739 0.9894 0.9914 
Min. 0.9863 0.9605 0.9635 0.9809 0.9841 
Std. 0.0011 0.0046 0.0028 0.0024 0.0019 

IHV 

Avg. 0.9498 0.9220 0.8904 0.9192 0.9076 
Max. 0.9648 0.9334 0.9073 0.9338 0.9171 
Min. 0.9405 0.9108 0.8756 0.9013 0.9001 
Std. 0.0054 0.0059 0.0075 0.0073 0.0052 

I  

Avg. 0.9392 0.9142 0.8957 0.9083 0.9002 
Max. 0.9562 0.9474 0.9138 0.9254 0.9108 
Min. 0.9280 0.9006 0.8808 0.8897 0.8929 
Std. 0.0062 0.0086 0.0076 0.0081 0.0055 

IEP 

Avg. 0.0000 0.0000 0.0000 0.0000 0.0000 
Max. 0.0000 0.0000 0.0000 0.0000 0.0000 
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 
Std. 0.0000 0.0000 0.0000 0.0000 0.0000 

 

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

AMALGAM

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

Borg

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

NSGA-II

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.55 0.7 0.8 0.9 1
Network Resilience(-)

0
0.

5
1

1.
5

epsilon-MOEA



Appendix D 

 

 
216 
 

Figure D.7 Comparison of GALAXY with the other MOEAs for the MOD problem 

using the EAF tool 

Table D.8 Ultimate performance of various MOEAs for the BIN problem 

Indicators GALAXY AMALGAM Borg NSGA-II  -MOEA 

IGD 

Avg. 0.9775 0.9651 0.9833 0.9821 0.9860 
Max. 0.9805 0.9711 0.9890 0.9853 0.9905 
Min. 0.9752 0.9581 0.9793 0.9790 0.9795 
Std. 0.0012 0.0036 0.0022 0.0018 0.0029 

IHV 

Avg. 0.9470 0.9117 0.8518 0.9058 0.8797 
Max. 0.9530 0.9262 0.8676 0.9159 0.8934 
Min. 0.9409 0.8916 0.8246 0.8925 0.8665 
Std. 0.0026 0.0080 0.0090 0.0063 0.0077 

I  

Avg. 0.9572 0.9374 0.8517 0.8986 0.8746 
Max. 0.9623 0.9501 0.8707 0.9103 0.8889 
Min. 0.9526 0.9206 0.8240 0.8871 0.8607 
Std. 0.0024 0.0078 0.0089 0.0065 0.0078 

IEP 

Avg. 0.0001 0.0000 0.0000 0.0000 0.0000 
Max. 0.0016 0.0000 0.0000 0.0000 0.0000 
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 
Std. 0.0003 0.0000 0.0000 0.0000 0.0000 

 

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

5
10

15
20

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

5
10

15
20

AMALGAM

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

Borg

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

NSGA-II

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

T
ot

al
 C

os
t(

M
€)

GALAXY

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.35 0.5 0.65 0.8 0.95
Network Resilience(-)

3
4

5
6

7
8

epsilon-MOEA



Appendix D 

 

 
217 
 

Figure D.8 Comparison of GALAXY with the other MOEAs for the BIN problem 

using the EAF tool 
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D.2 Dynamic Performance 
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 -MOEA 

 

Figure D.9 Dynamic performances of various MOEAs for the TRN problem 
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Figure D.10 Dynamic performances of various MOEAs for the TLN problem 
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Figure D.11 Dynamic performances of various MOEAs for the NYT problem 
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Figure D.12 Dynamic performances of various MOEAs for the BLA problem 
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Figure D.13 Dynamic performances of various MOEAs for the GOY problem 
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Figure D.14 Dynamic performances of various MOEAs for the FOS problem 
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Figure D.15 Dynamic performances of various MOEAs for the MOD problem 
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Figure D.16 Dynamic performances of various MOEAs for the BIN problem 
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D.3 Dynamic Variations of Search Operators 

 

(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.17 Dynamic performances of search operators of hybrid algorithms for the TRN problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.18 Dynamic performances of search operators of hybrid algorithms for the TLN problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.19 Dynamic performances of search operators of hybrid algorithms for the NYT problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.20 Dynamic performances of search operators of hybrid algorithms for the BLA problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.21 Dynamic performances of search operators of hybrid algorithms for the GOY problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.22 Dynamic performances of search operators of hybrid algorithms for the FOS problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.23 Dynamic performances of search operators of hybrid algorithms for the MOD problem 
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(a) GALAXY (b) AMALGAM (c) Borg 

Figure D.24 Dynamic performances of search operators of hybrid algorithms for the BIN problem 
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