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ABSTRACT  

The topic of badgers in the UK is often a contentious one, dividing opinions and 

sparking political debate. On one hand, badgers represent an important part of 

the British ecosystem but on the other a wildlife reservoir of disease implicated 

in the transmission of bovine tuberculosis (TB) to livestock in the UK. This has 

prompted strong interest in their population dynamics and epidemiology. Using 

data from a long-term study of a naturally infected badger population in 

Woodchester Park, Gloucestershire, this thesis explores a range of capture-

mark-recapture (CMR) models to further understand disease and demographic 

processes. The first section examines long term population dynamics, 

simultaneously estimating demographic rates alongside their drivers using 

integrated population models (IPMs). The findings provide new insight into 

badger demography, highlighting density-dependent mechanisms, 

vulnerabilities to changing climate and disease prevalence and subsequently   

how multi-factorial analyses are required to explain fluctuating badger 

populations. The following sections use multistate models to answer pertinent 

questions regarding individual disease dynamics, revealing rates of TB 

infection, progression and disease-induced mortality. A key finding was sex-

differences in disease response, with males more susceptible to TB infection. 

After applying a survival trajectory analysis we suggest sex differences are due 

to male immune defence deficiencies. A comparative analysis demonstrated 

similarities between epidemiological processes at Woodchester Park to an 

unconnected population of badgers from a vaccine study, supporting its 

continued use as a model population. The final study in this thesis constructs an 

IPM to estimate disease and population dynamics and in doing so uncovers 

disease-state recruitment allocation rates, demographic and population 

estimates of badgers in varying health-states and predicts future dynamics. This 

model aims to encapsulate the more commonly held notion of populations as 

dynamic entities with numerous co-occurring processes, opening up avenues 

for future analyses within both the badger-TB system and possible extensions 

to other wildlife reservoir populations. 
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CHAPTER 1 

General Introduction 

Host ecology and epidemiology 

Diseases capable of crossing species barriers are among the most threatening 

to wildlife populations and problematic to manage. Wildlife populations tolerant 

of infection can survive for prolonged periods, forming reservoirs of disease 

which can have disastrous consequences for sensitive hosts for whom infection 

has serious fitness costs. Wildlife reservoirs are responsible for the majority of 

emerging zoonotic diseases globally and of substantial concern when infection 

spills-over into domestic animals, wildlife of conservation concern and/or 

humans, presenting a challenge to managers, to policy-makers and to the 

public alike. In these scenarios management often focuses on the wildlife 

reservoir. But the outcome of control options is complicated by disease-specific 

parameters and/or by ecological influences, promoting in depth investigation 

into the epidemiology and ecology of these disease-host interactions.  

To further our understanding, long-term data sets of disease and hosts in their 

natural setting are invaluable, allowing researchers to tease apart underlying 

regulatory factors. In this thesis I investigate what processes regulate a 

chronically infected Eurasian badger (Meles meles) population, reservoir hosts 

of bovine tuberculosis (TB caused by Mycobacterium bovis). Two broad 

objectives form the crux of this work.  

(1) The estimation of fundamental rates influencing wildlife populations forms 

the foundation of reservoir-host ecology. I focus on the inference of robust 

disease-specific and demographic estimates and improving analytical methods 

where possible.  

(2) An understanding of the processes that underlie the patterns observed can 

be applied to create a more complete and adaptive management approach as 
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well as contributing to fundamental ecology by highlighting life history strategies 

and evolutionary processes. This thesis focuses on identifying mechanisms 

driving individual-level disease impacts, badger demography, and long-term 

badger population dynamics.  

Overall, I move between individual- and population-level impacts, from disease 

to demography, to explain underlying processes in a badger-TB system.  

Badgers and tuberculosis 

Bovine tuberculosis is a global concern. The zoonotic nature of Mycobacterium 

bovis had a significant impact on human health in the UK in the early 1900s with 

many deaths attributed to TB. However the advent of milk pasteurisation 

diminished the human health impact which is now considered only minor 

contributor to TB in humans (EFSA & ECDC, 2012), with Mycobacterium 

tuberculosis the main infective agent of humans. Presently the principal impacts 

of M. bovis are both economic, reducing domestic livestock profitability, and 

ecological, affecting species of conservation value. The generalist nature of TB 

and its wide host range promotes the creation of wildlife reservoirs (Coleman et 

al., 2006; Michel et al., 2006; Naranjo et al., 2008; Schmitt et al., 1997). These 

wildlife hosts sustain TB in the environment, increasing opportunities for 

interspecies transmission and generating spill over effects in, either ecologically 

vulnerable or economically important, species. Here I focus on TB infected 

badgers which form disease reservoirs of severe consequence to the health of 

livestock and profitability of pastoral farming in the UK and Ireland. 

Tuberculosis is the most pressing animal health concern in the UK today 

(DEFRA, 2011). Attempts to reduce TB infection in cattle require substantial 

financial investment of tax payers’ money, in addition to considerable emotional 

and financial losses to individual farmers. Costs contribute to routine herd 

surveillance including regular TB testing, slaughter of positive reactors and 

imposing movement restrictions in breakdown herds. Despite enforced testing 

regimes, TB in cattle is increasing in incidence and geographical distribution 
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(Abernethy et al., 2013). Reservoirs of TB in the environment may be 

responsible for dampening or even negating the positive impact of herd 

management by re-infecting livestock. Badgers are considered the main source 

of infection, with cattle farming providing favourable resources for badgers 

(Kruuk et al., 1979), and surrounding woodland providing the ideal habitat to 

construct their complex underground infrastructures. Living in close proximity 

and sharing foraging areas with cattle increases transmission opportunities with 

badgers directly involved in the transmission of TB to livestock (Donnelly et al., 

2006). This has created a highly complex and emotive problem, with policies 

hotly debated due to the implications for livestock and the considered control 

strategies for badgers.  

Control strategies 

Bovine tuberculosis was discovered in badgers in England in 1971 (Murhead & 

Burns, 1974). Initially various culling methods formed the basis of control (Krebs 

et al., 1997). However the number of TB infected cattle continued to rise, 

bringing about an extensive review on the effectiveness of culling and the 

development of a large-scale field trial, the randomised badger culling trial 

(RBCT (Krebs et al., 1997)). The RBCT compared the effect of proactive, 

reactive and no culling strategies. Badger culling was found to have adverse 

effects; increasing herd breakdowns within reactive trial areas and in farms 

bordering proactively culled areas. Therefore despite an observable decrease in 

herd-breakdowns within proactive areas increased TB in farms surrounding the 

area reduced the overall benefit (Donnelly et al., 2006). Additionally, TB 

reductions within trial areas were not sustained in the years following the cull 

(Jenkins et al., 2010). These counterintuitive effects can be explained by an 

event termed ‘social perturbation’, whereby disruption to the typically discrete, 

stable social structure of badger populations leads to a behavioural change in 

those remaining (Carter et al., 2007; Pope et al., 2007). Specifically, disruption 

of territories results in increased ranging behaviour (Tuyttens et al., 2000; 

Woodroffe et al., 2006a) and mixing of social groups expanding the spatial 

spread of M. bovis (Jenkins et al., 2007) and ultimately increasing disease 



 18 

 

prevalence in badgers (Woodroffe et al., 2009a) and livestock (Donnelly et al., 

2007; Donnelly et al., 2006; Donnelly et al., 2003). Effective control is not as 

straightforward as simply reducing the number of hosts. Instead, current 

rationale suggests management strategies that minimise social perturbation of 

network structures would be the most effective.  

Vaccination is less disruptive than culling and benefits badgers by slowing TB 

progression (Chambers et al., 2011) and providing an indirect protective effect 

in unvaccinated cubs (Carter et al., 2012). It is currently implemented at small 

scales whereby BCG is deployed via intramuscular injection. However trap and 

release strategies are too labour intensive and costly for large–scale 

applications and current development of vaccine delivery by oral baits for mass 

usage is complicated by technical and regulatory problems (Bourne, 2007). 

Biosecurity is another viable control option to reduce opportunities for 

transmission between wildlife reservoirs and cattle by restricting badger access 

to cattle barns, drinking troughs and cattle feed, and excluding cattle from areas 

of high badger activity. However, biosecurity measures require financial 

investment which farmers may not consider justifiable given that they may 

reduce the problem but are unlikely to resolve it alone. Currently, pilot culling 

has been implemented in England, sparking considerable debate and 

opposition. Concerns regarding the implementation and scientific merit of 

current culling procedures remain to be verified as evidence and further 

discussion emerge in the years to come. However, what is apparent is the 

intricate nature of this problem, due to both the complexities of the host and the 

polarized opinions regarding management. Further insights into the ecology and 

epidemiology of these hosts can only be of benefit to aid future management 

decisions of what is currently a highly convoluted problem with a very uncertain 

future. 

Predictive models 

Faced with significant contrasting views regarding management options, and 

ethical difficulties manipulating disease-host systems, predictive models provide 
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a useful tool to explore alternative options. In the absence of field data 

extensive mathematical models, ranging in complexity, endeavour to replicate 

the infection process and population dynamics of badgers (Bentil & Murray, 

1993; Cox et al., 2005; Ruxton, 1996; Shirley et al., 2003; Smith et al., 1997; 

Smith et al., 2007; Smith & Cheeseman, 2002; Smith et al., 2001a; Smith et al., 

2001b; White & Harris, 1995; White et al., 1997; Wilkinson et al., 2009; 

Wilkinson et al., 2004). These models have enabled major advances in our 

understanding of the disease, predicting the efficacy of control strategies, 

providing cost-benefit analyses, highlighting key processes that drive dynamics 

and contributing to the policy making process. However models have 

limitations: first, they often require the imputation of unknown parameters; 

second, being simplifications of reality, they risk ignoring key processes entirely, 

due to the lack of available information regarding epidemiological and 

demographic rates. This further highlights the need for improved analytical 

solutions to obtain updated parameter values directly from field data.  

Ecology and epidemiology 

Population dynamics 

Individual-level infection processes including disease-transmission, disease-

progression and disease-induced–mortality, operate simultaneously alongside 

other demographic mechanisms to regulate populations. Identifying key 

demographic traits and how they regulate and respond to environmental 

pressures, disease perturbation and anthropogenic change not only aids our 

understanding of wildlife populations but helps to predict future dynamics, 

identify evolutionary processes, and highlight the effectiveness of possible 

control strategies. Badgers have highly variable population densities both 

across their geographic range (reviewed in Roper (2010)) and within 

populations through time caused by fluctuations in demographic rates 

(Anderson & Trewhella, 1985; Cresswell et al., 1992). The question of what 

causes noisy dynamics requires consideration of the processes driving badger 
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demography. Focussing on temporal variation, this thesis attempts to answer 

this question (Chapter 2). 

Population regulation is often framed in terms of density dependent and density 

independent processes. Density-dependent regulation is ubiquitous throughout 

wildlife systems (Brook & Bradshaw, 2006). High densities provide a negative 

feedback via demographic rates halting population growth (Lebreton et al., 

1992). This mechanism of population limitation is classically thought to be due 

to resource limitation, with the feedback realised through competition for food 

via direct exploitation competition and interference competition caused by 

increased aggressive encounters at high densities. Also, disease and predation 

are more likely to operate at high densities, resulting in individuals competing 

for space to evade these threats, which are capable of amplifying any 

deleterious effects from poor nutrition that may also occur at high densities. 

Understanding mechanisms of density-dependence can answer ecological 

questions, revealing life-history strategies, but also has management 

applications, guiding predictive models. Density-dependence can influence the 

favourability of differing management options when modelled contrasting ways. 

For example, culling is deemed more favourable if density dependence acts on 

mortality (Barlow, 1996) and not when it acts on other processes such as 

fecundity or movement which may stabilize against the negative effect of culling 

due to reduced density-dependent pressure increasing birth rates and/or 

movement. Models of DFTD (devil facial tumour disease) in infected Tasmanian 

devils found that culling in the presence of density-dependent fecundity 

increased the proportion of susceptible individuals and in turn disease 

prevalence (Beeton & McCallum, 2011). Therefore, knowledge of compensatory 

mechanisms and at what intensity culling would need to be implemented to be 

of benefit, i.e. additive to natural mortality, is necessary to make informed 

predictions (Harrison et al., 2010). Badger TB models differ in their description 

of density-dependence (Bentil & Murray, 1993; Smith et al., 2001a; White & 

Harris, 1995) with further clarity required for effective modelling and to uncover 

other demographic drivers. 
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Alongside density dependence, extrinsic stochastic processes also drive 

populations such as weather and anthropogenic perturbations. Climatic 

conditions commonly act indirectly impacting resource availability, with 

changeable resources a determinant of reproductive success (Dasilva et al., 

1993) and survival (Macdonald et al., 2010) in badger societies. Environmental 

heterogeneity arising from temporal weather variations are not included in any 

TB model predictions, and may be compensated or exacerbated by density-

dependence, with parameter knowledge sparse regarding the interplay between 

these two processes. Additionally, disease itself may perturb populations. 

Currently disease is not thought to impact upon population dynamics (Wilkinson 

et al., 2000), however the impact of disease in the context of environmental 

drivers and density dependent processes is unknown. Understanding the force 

and relative impact of environmental, density-dependent and disease factors as 

drivers of badger abundance will reveal key regulating processes (Chapter 2).  

Epidemiology 

Animal populations respond to both density-dependent and -independent 

pressures, but alongside these large-scale processes individual-level disease 

effects can also change wildlife population dynamics. Epidemiological rates, 

including disease transmission, disease progression and disease-induced 

mortality, determine disease dynamics and the outcome of management 

strategies. Transmission routes of TB in badger populations can be airborne, 

through bite wounding, or ingestion of contaminated material. Opportunities for 

direct transmission within badger communities are high, differing considerably 

from between species transmission which is more likely to be indirect (Drewe et 

al., 2013). Tuberculosis affects most organs but emerges most commonly in 

badgers as a respiratory disease, infecting lung and thoracic lymph nodes 

(Gallagher & Clifton-Hadley, 2000; Gallagher et al., 1998). Excretion by 

respiratory routes likely exceeds that of other routes. Social grooming, group 

sleeping and a subterranean existence provide ideal conditions for disease 

spread and maintenance via airborne transmission, in addition to between 
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group territorial behaviour and within group competition which creates 

favourable circumstances for disease spread via bite wounding. 

Once infected, the spectrum of individual responses varies widely, from latent, 

contained disease to a highly infectious, advanced stage with the formation and 

dissemination of lesions (Fig.1.1). Primary latent infection is generally 

asymptomatic, with many infected individuals never progressing to a severe 

disease state (Gallagher & Clifton-Hadley, 2000). As the disease advances 

internal lesions develop where bacteria have localized. These expel M. bovis 

which can spread to other parts of the body and be released into the 

environment such that the badger becomes infectious. The locations of the 

lesions determine the route of bacterial excretion. Respiratory lesions are the 

most common capable of transmitting TB directly via aerosol and bite wounding, 

as well as indirectly whereby swallowed tubercles are excreted in faeces. Other 

routes include; renal lesions prompting excretion via urine, and infected bite 

wounds generating wound exudates. Factors that trigger clinical disease are 

largely unknown, but stress due to nutritional depletion, territorial pressure, 

lactation and dominance have been suggested (Gallagher & Clifton-Hadley, 

2000). The complex pathogenesis leaves many questions yet unanswered 

regarding the underlying cause of heterogeneity in infected states.  

Defining heterogeneous disease states is valuable with variability in individual 

infectiousness an important determinant of disease persistence (Kramer-Schadt 

et al., 2009; Shirley et al., 2003), models accounting for heterogeneity in 

infectivity are vastly different from those that assume an average infection level 

(Lloyd-Smith et al., 2005). Complexity arises due to difficulties determining 

disease states of wild individuals. A wide spectrum of infected conditions and 

the absence of post-mortems leaves epidemiologists with diagnostic tests that 

have far from perfect detection (Drewe et al., 2010). Despite these difficulties, a 

higher infectious state has been included in numerous badger-TB models 

(Fig.1.1) (Shirley et al., 2003; Smith et al., 1997; Smith et al., 2001a; Smith et 

al., 2001b; Wilkinson et al., 2004). Current infectious states in badgers are 

defined by culture tests detecting active excretion of M. bovis. These infectious 
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badgers are divided into two categories, excretors and super-excretors, based 

on the number of culture positives detected. However with poor culture test 

sensitivity and intermittent bacterial excretion, infectious badgers are inclined to 

test positive sporadically with multiple positives not necessarily pointing to an 

increased severity of the disease. The work described in Chapters 3-4 expands 

upon current disease-state categorisation to estimate disease-specific 

parameters in badgers. 

 

Figure 1.1 A diagram highlighting health-states occurring in an infected 

population of badgers. Infection processes are shown by a solid arrow and 

disease progression with a dashed arrow. 

A defining characteristic of badgers is the formation of discrete social groups 

(Delahay et al., 2000; Rogers et al., 1997). Living within close proximity and 

sharing communal underground dens called setts provides the optimum 

environment for the spread and maintenance of infection within the group. 

Badgers spend up to 70% of their time in their setts (Roper, 2010) and maintain 

discrete territories mapped out by latrines on territory peripheries. This social 

spacing out mechanism (Kruuk, 1978) creates differential contact rates between 

individuals in separate groups ultimately leading to variation in opportunities for 

disease transmission, and uneven spread and clustering of TB within 

populations (Delahay et al., 2000). Although this thesis does not directly 

consider contact networks (other recent studies consider this aspect (Böhm et 

al., 2009; Weber et al., 2013)), we do consider the social grouping element to 

account for variability in transmission rates within and amongst groups. Social 
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organisation is a key determinant of TB distribution and spread, therefore its 

inclusion in analyses and/or modelling approaches may be influential. We 

incorporate indices of social structure to help absorb any social non-

independence of badgers in our analytical models (Chapter 4). 

Understanding factors that predispose individuals to become infected and 

advance from one TB state to another, particularly what makes a badger 

become infectious, could be important in predictive modelling, identifying areas 

at high risk of future herd breakdowns and aid the development of improved 

strategies for controlling TB. Current research shows that male badgers are 

more likely to become infected and die from infection (Wilkinson et al., 2000). 

Differential sex bias in both epidemiological and demographic traits are 

commonly observed in other species (Guerra-Silveira & Abad-Franch, 2013); 

however there are numerous possible causes. Explanations may be biological 

due to sex-hormones, with increased stress and testosterone in males linked to 

immunosuppression, increasing susceptibility to infection (Zuk & McKean, 1996) 

and reducing immune defences. But, social factors are also suggested to play a 

role. Male badgers generally exhibit more risk-taking behaviour, such as 

increased ranging and territorial behaviour and experience more aggressive 

encounters and bite wounds (Delahay et al., 2006; MacDonald et al., 2004). 

These behaviours may simultaneously increase exposure to infection whilst 

coincidentally predisposing males to unrelated mortality. Therefore both 

biological and cultural transmitted influences may exert different pressures on 

mortality rates between sexes. Understanding real mechanisms underlying 

disease patterns can be used to guide management, by promoting or 

discouraging targeted control. If immunosuppression is the underlying cause of 

sexual differentiation then, targeting males during management campaigns is 

likely to have the most impact on disease prevalence. Alternatively if males are 

more likely to experience a particular behaviour that coincidently predisposes 

them to infection then focussing on those that display this ‘risky’ behaviour may 

be a more appropriate course of action. Looking at the problem in 

immunological, behavioural and ecological contexts is an area of future 

discovery (Chapter 5). 
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Longitudinal studies 

High quality individual-based data-sets provide invaluable information to help 

reveal population patterns and processes unobtainable by any other means. To 

answer ecological and epidemiological questions this thesis utilises data from a 

long-term capture-mark-recapture study of badgers in Woodchester Park, 

Gloucestershire, naturally infected with TB. Badgers of Woodchester Park have 

been studied intensively since 1975. The population is composed of over 20 

social groups in an area 11km2. It is the longest running badger survey in the 

UK consisting of naturally infected individuals, providing the most detailed 

information on any mammalian reservoir host. Unsurprisingly a large amount of 

research stems from this population which has allowed considerable advances 

in our understanding of badger ecology and epidemiology with details 

transferred to predictive models (Shirley et al., 2003; Smith & Cheeseman, 

2002; Smith et al., 2001a). An ongoing concern is that Woodchester is an 

atypical population due to its undisturbed nature. No other long-term badger 

studies collect TB diagnostic data, therefore there is little opportunity to judge 

whether epidemiological parameters from Woodchester are representative of 

other populations. Such multiple population comparisons are rare due to 

difficulties gaining adequate data. Therefore, with arguments that single location 

data may not provide representative data for the species, any opportunity for 

comparison and validation should be applied (Chapter 6). 

Although improvements in our understanding of badgers and TB have occurred 

in recent decades, there are still gaps and uncertainties in our knowledge. 

Consideration of the complete system, incorporating both ecological and 

epidemiological complexities of badgers, will provide detailed information aiding 

disease management decisions, predictive modelling and improve our 

comprehension of underlying mechanisms driving population dynamics in a 

disease-host. This thesis focuses on answering key epidemiological and 

ecological questions which require exploration of various analytical approaches 

to obtain further insight into badgers and TB.  
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Analysis of field data 

Capture-Mark-Recapture procedures  

Ecological systems vary over space, through time and among individuals, and 

are typically described incompletely by means of samples comprised of a 

fraction of the population. Development of techniques to extract demographic 

information from such data has allowed enormous advances in our 

understanding of wildlife ecology. In particular, long term monitoring of wildlife 

populations which track individuals over time provides data capable of mapping 

both individual- and population-level processes. However, only a portion of the 

population can be captured, motivating the development of capture-mark-

recapture (CMR) models in the 1960s which accounted for detection bias, 

enabling robust estimates of survival, recruitment and population growth to be 

derived from longitudinal studies.  

Initial consideration of survival and recruitment were as nuisance parameters in 

models developed to estimate population abundance from capture-recapture 

experiments (Jolly-Seber models; (Jolly, 1965; Seber, 1965)). Alongside these 

developments Cormack developed an approach to estimate survival of marked 

individuals (Cormack, 1964). The combined outcome was the Cormack-Jolly-

Seber (CJS) model capable of estimating time-dependent survival and 

recapture probabilities. Over time, generalizations of this model were 

developed; incorporating age-dependency (Pollock, 1981) and inclusion of 

environmental and individual covariates. Additionally the model framework itself 

has evolved from CJS models (Lebreton et al., 1992), advancing to estimate 

recruitment and population growth (Pradel models (Pradel, 1996); Chapter 2), 

estimation of population abundance (POPAN models; (Schwarz & Arnason, 

1996); Chapter 2), incorporation of multiple states and sites (multistate models; 

Chapter 3-4) and to estimate emigration (Robust design models (Pollock, 

1982)).   



 27 

 

Over the years CMR models have uncovered a host of regulatory processes 

and demographic trends occurring in multiple taxa. Their versatility allows 

discoveries regarding population regulation and limitation (Chapter 2) including 

but not exclusive to effects of climate change, impact of perturbation events and 

uncovering life-history strategies. Also the ability to not only map population 

processes but also individual variation through time allows transition models to 

follow individuals progressing through multiple states and/or sites. The 

application of these models to diseased individuals allows researchers to map 

the probability of infection, derive disease-specific survival estimates and even 

disease progression and recovery rates given the availability of data (Chapter 3-

4).   

This thesis explores a variety of different models using 3 different forms of 

statistical philosophy: (i) classical hypothetico-deductive tests of significance; (ii) 

frequentist approaches using information theoretic methods to compare 

likelihoods among models; (iii) Bayesian approaches to (a) determine the 

probability of truth of continua of parameter estimates, and (b) allow the 

construction of hierarchical state-space models with various mixed probability 

distribution functions. 

Classical likelihood and program MARK vs. Bayesian and WinBUGS 

Statistical analyses of survey data are used to estimate unknown population 

parameters (θ). Bayesians and frequentists take differing stances on how they 

view these parameters. Frequentist approaches regard them as discrete fixed 

values. Statistics associated with these estimates tell us how often we would 

observe these values if the experiment was repeated a large number of times. 

Proponents of Bayesian approaches argue it is more appropriate to express 

uncertainty in terms of the parameter values themselves opposed to replicate 

data sets. As such a Bayesian analysis focuses on the distribution of the 

calculated parameters and provides posterior distributions of the estimates 

thereby allowing probability calculations regarding the values position. This is 

the difference between the statements; “if this experiment were repeated the 
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parameter will lie within the confidence interval in 95% of the cases” using 

classical confidence intervals where the data is considered uncertain, and 

“there’s a 95% probability that the parameter lies between these values” using 

Bayesian credible intervals where the parameter is the uncertain factor. A 

further fundamental difference is the incorporation of prior information with a 

Bayesian approach. Initial beliefs are specified before the data is observed, 

perhaps based on previous experiments, these combine with the likelihood of 

the data to provide the posterior distribution. Alternatively, vague prior 

distributions are often chosen to reflect limited parameter knowledge in an 

attempt to be non-informative when combined with the information from the 

data.  

Comparing the analytical differences between these approaches, the likelihood 

function forms part of both Bayesian and frequentist inference. The likelihood is 

denoted  L( | )x  meaning the likelihood of the parameters (θ) given the data (x) 

and is considered proportional to the probability of the observed data (x) 

conditional on the parameter valuesp(x | ) . In a classical approach this 

likelihood plays a central role for inference by estimating parameters (θ) which 

maximize the likelihood of obtaining the observed data (x). This allows 

researchers to determine the best-fitting values (maximum likelihood estimates) 

that maximise the likelihood of the capture histories we observe. That is, it finds 

the parameter values such that the probability of the observed data is the 

highest. The likelihood function is not a density, therefore does not allow 

probability statements. Instead, Akaike weights are commonly used to represent 

the relative likelihood of obtaining the data given the hypothesis. This is 

generally done for a range of different models and models are compared in 

terms of their information criterion. Usually a single best model that describes 

the data is chosen. A problem with this approach is models with less support 

are often overlooked, and limited attention is given to the size of effects 

estimated. Additionally although a single best model that best reflects the data 

is chosen out of numerous candidate models it is unable to describe any degree 

of certitude (Ellison, 1996).   
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The aim of a Bayesian analysis is to estimate the joint posterior distribution of 

all model parameters p( | x) and calculate the probability of the parameters 

given the observed data. This is achieved by means of a simple relationship 

known as Bayes theorem.  

p(x | ) ( )
p( | x)

p( )

p

x

 
   

Again this theorem incorporates a form of the likelihood p(x | )  representing 

the probability of the data given the parameters, however additionally prior 

information p(θ) is incorporated, and the denominator p(x) which acts as a 

scaling constant. This ensures the end result integrates to one and can be 

interpreted as a probability. As the denominator is only a function of the data (x) 

and not of the parameters Bayes theorem if often expressed as; 

p( | y) (x | ) ( )p p    

Utilising the likelihood and prior information the posterior distribution is 

calculated, which forms the basis for all Bayesian inference. However the 

posterior distribution is often complex and difficult to analyse. The development 

of Markov Chain Monte Carlo (MCMC) methods provided a solution to engage 

these high-dimensional integrations which were often analytically intractable. 

The aim of MCMC is to generate samples from the posterior distribution using 

Monte Carlo methods and construct Markov chains which upon reaching a 

stationary state and convergence (when multiple chains are run) can be 

considered independent from the starting distribution and an approximation of 

true posterior density. Researchers can sample from these posterior parameter 

distributions to answer various ecological questions. The width, peak and 

distribution of the posterior parameter distributions all provide useful information 

and allows for uncertainty in their interpretation. Therefore Bayesian posteriors 

may be more transferable to a management forum, whereby uncertainty can be 

considered in the decision making process e.g. “There’s a 99% probability that 

a decrease in density will result in increased fecundity”. 



 30 

 

The development of specialised computer software for both methodological 

approaches enabled these complex calculations to be accessible to ecologists. 

Program MARK (White & Burnham, 1999) is a reliable software package with 

more than 20 classical likelihood models, all of which can be adapted to include 

fixed time effects, time dependency as a function of external variables, and 

individual covariates. It provides a robust analysis incorporating numerous 

goodness-of-fit testing procedures, and is constantly developing to incorporate 

new approaches. However, this framework has its limitations, with difficulties 

implementing mixed-effects models, and is currently unable to incorporate time-

dependent individual effects, which may lead an ecologist to seek a more 

flexible approach. 

The use of Bayesian models for ecologists has been greatly assisted by the 

development of MCMC algorithms incorporated into flexible software. Here we 

focus on the program WinBUGS (Lunn et al., 2000) which can implement 

complex algorithms and provides an adaptable framework which readily deals 

with models of increasing complexity. Individual and temporal characteristics 

can be incorporated using a structure similar to generalized linear models 

therefore moving from fixed effects models to mixed models is straightforward 

within WinBUGS (Royle, 2008). Additionally, missing data and small datasets 

can be handled easier than classical approaches. With its adaptability 

WinBUGS has made a whole host of complex models accessible to ecologists, 

one such analysis which builds upon earlier CMR models is an integrated 

population model (IPM). 

Integrated Population Models 

IPMs are a powerful statistical tool allowing different sets of data to be 

combined, to create a single unified analysis. This statistical development can 

estimate previously unidentifiable parameters (Besbeas et al., 2002; Besbeas et 

al., 2003). Its improved framework for analysing sparse data-sets has great 

potential to aid conservation biology when data acquisition is often limited 
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(Schaub et al., 2007), and also improves parameter precision (Brooks et al., 

2004) which will benefit management decisions generally.  

The ‘integrated’ part of IPMs refers to the linking of 2 models. Firstly, a state-

space model is used to analyse count data via a state equation which describes 

population change as a consequence of demographic parameters. Specifically, 

using an observation process to account for observation error, population 

counts are linked to demographic rates via a population projection matrix model. 

A simple single-sex example of a lifecycle graph used to map population size is 

shown in figure 1.2. However, this can be developed further to constrain 

parameters across numerous classes such as incorporating two sexes, 

additional age-classes, life-stages and disease states.  

 

Figure 1.2. Example of a single-sex lifecycle graph used to map population counts 

as part of the state-space model. The nodes show age classes and the arrows show 

transitions including adult survival (Φad), cub survival (Φcub) and productivity 

assuming an even sex ratio at birth (f/2). 

Secondly, a CMR model is used, the most common being a CJS model, to 

analyse capture data to obtain estimates of other demographic parameters. 

These models are then combined to form a joint likelihood with each model 

fragment borrowing information from other model fragments (Fig. 1.3), resulting 

in higher precision parameter estimates (Schaub & Abadi, 2011).  
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Figure 1.3. Example acyclic graph of an IPM using count data (y) modelled by a 

state-space model and CMR data (m) analysed using CJS model. Model 

fragments borrow from each other to identify parameters previously 

unidentifiable and improve precision of parameters, which are shown in circles, 

including adult survival (Φad), cub survival (Φcub), productivity (f) and observation 

error (σ2). Individual and/or temporal covariates can be naturally incorporated 

into this analyse to act on demographic components. 

Integrated population models therefore force us to consider wildlife populations 

in their entirety, allowing any inconsistencies that might emerge from the 

disparate analyses to be resolved (Hoyle & Maunder, 2004). Additionally, these 

models allow for demographic and environmental stochasticity and take into 

account uncertainty in the data collection. This improves our ability to detect 

driving mechanisms, and map temporal synchrony between demographic 

parameters to density-dependent (Abadi et al., 2012; Peron et al., 2012), 

environmental or other driving covariates. The core output will also be beneficial 

as a management tool to forecast population dynamics and make management 
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predictions whilst accounting for uncertainty. Overall the benefits of IPMs should 

advance our understanding of population processes and allow researchers to 

consider more detailed ecological questions.  

I explore IPMs and consider the importance of differing sources of variation and 

their individual and population level impacts to provide further insight into the 

ecology and epidemiology of badger populations. Utilising a combination of 

models I develop a CJS/state-space IPM (Chapter 2) and build up to a multi-

state/state-space IPM to incorporate population dynamics along with individual 

level disease processes (Chapter 7).  

Aims and structure of thesis 

Using a combination of analytical techniques this thesis explores both disease 

and demographic traits of a badger population looking at both individual-level 

and population-level scales. 

Chapter 2 investigates the key regulators of badger population dynamics. Using 

both a traditional and Bayesian IPM approach I assess how demographic rates 

respond to disease and density pressures, then build in weather variables to 

assess mechanisms by which badgers respond to changing climate.  

Chapter 3 focuses on the individual consequence of disease using a multistate 

analysis. Disease transmission, progression and survival of TB infected badgers 

are estimated and disease states are reclassified. Building upon these results 

Chapter 4 moves from a likelihood framework to a Bayesian approach whereby 

social group is also considered as a random effect influencing these individual 

level disease processes.  

In Chapter 5 I move from pattern to process. Previous chapters identified male-

female differentiation in survival and transition rates, utilising a novel method to 

create survival trajectories of badgers in differing disease states, the possible 
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mechanisms resulting in male-female variation in infection response are 

considered. 

Using data from a contrasting study site, chapter 6 provides the first 

comparative analysis of disease parameters between two naturally infected 

badger populations. 

Chapter 7 integrates multi-state models explored in earlier chapters with 

demographic count data to create a state-space/multi-state IPM.  

Finally, Chapter 8 presents a synthesis of results and implications for future 

work. 

 

 

 

 

 

 

 

Throughout the following analytical chapters the term ”we” is used per 

publication standard and for consistency, it by no measure means that 

any part of this thesis is not my own work.  
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CHAPTER 2 

 

 

The methods used in this thesis represent my progression through numerous 

analytical techniques. Although the first empirical chapter presented here, 

Chapter 2 adopts an innovative integrated population model approach, that 

wasn’t implemented until the final year of my PhD. With this chapter I aim to 

introduce the Woodchester Park badger system by providing an overview of its 

population dynamics and demographic drivers.  

Wildlife populations experience a heterogeneous world, with intrinsic and 

extrinsic pressures generating their population dynamics. Unfortunately the 

emerging literature on badger population dynamics lacks the coherence needed 

to determine the relative importance of driving parameters. This chapter is split 

into 2 sections. Chapter 2.1 explores the impact of disease and density on 

demographic rates and subsequent population dynamics, followed by Chapter 

2.2 which builds in weather variables to provide a comprehensive appraisal of 

abiotic and biotic drivers of badger population dynamics. 
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Density, disease and weather influence demographic dynamics 

of a chronically diseased badger population  

2.1: Density and disease 

Summary 

A quantitative understanding of multiple demographic drivers of wild reservoir 

hosts provides important information; identifying the relative importance of 

regulating processes, highlighting life history strategies, revealing mechanisms 

that drive changes in population abundance, and guiding control decisions. 

Applying a Bayesian integrated population model (IPM) to 23 years of capture-

mark-recapture data and population counts taken from a population of naturally 

infected badgers, an important reservoir of bovine tuberculosis (TB), we 

simultaneously; (1) estimate survival and recruitment parameters; (2) determine 

whether density and/or disease drive changes in these demographic rates; and 

(3) calculate the amount of variation explained by these processes. Temporal 

variation was much greater in recruitment than in survival, with negative 

density-dependence explaining over 50% of inter-annual variation. Survival, 

whilst contributing more to population growth, was resistant to density pressures 

and demonstrated low levels of temporal variability, supporting the consensus 

that badgers are “slow” life history strategists. Disease prevalence negatively 

impacted survival with sex differences in the proportion of temporal variation 

explained, indicating increased vulnerability in female badgers during the 

overwinter period. Recruitment’s resilience to disease and its strong density-

dependent mechanism promotes continued birth of cubs, both restricting the 

magnitude of disease prevalence and compensating for the loss of any infected 

individuals, favouring the persistence of chronically infected badger populations. 

This density-dependent mechanism also has relevance for future management 

decisions. We illustrate how IPMs can be used by researchers to assess a 

range of processes within a single modelling framework, which we suggest will 

generate more detailed ecological insights in future studies. 
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Introduction 

Badgers in the UK rank high among the most important mammalian reservoirs 

of zoonotic disease (DEFRA, 2011), harbouring bovine tuberculosis (TB). For 

this reason badgers have been subject to intensive ecological and 

epidemiological research. Remarkably, however, to date there has been no 

comprehensive appraisal of the relative and combined influence of disease 

prevalence and density-dependence as drivers of badger population dynamics. 

This is unusual not just because an improved understanding of the drivers of 

badger demography could help to recommend evidence-based management 

strategies for the control of bovine tuberculosis, but also because long-term 

surveys of badgers and TB prevalence present a rare opportunity to understand 

the fundamental drivers of population dynamics in a diseased population of wild 

mammals. 

Wildlife hosts are responsible for the majority of emerging zoonotic diseases, 

worldwide (Jones et al., 2008). The substantial economic costs they inflict, 

including impacts on human and livestock health, can alter the status of wild 

mammals from being of conservation concern to being serious pests. The 

transmission of TB between badgers and cattle (Donnelly et al., 2006; Jenkins 

et al., 2008b) in the UK and Ireland is of serious economic consequence for 

both farmers and other tax-payers. Despite enforced cattle restrictions the 

problem is not improving and initiatives targeting the wildlife reservoir are now 

central to current control strategies. Areas where badgers live at high densities 

pose the most threat to livestock (Krebs et al., 1997) emphasizing the applied 

value of furthering our understanding of the processes causing density changes 

within badger populations. Mammalian hosts of zoonotic disease can be long-

lived with overlapping generations therefore our understanding of their 

population dynamics requires a consideration of age- and sex-dependent 

survival and reproduction, recognition of how density influences these 

demographic rates, and an appreciation of disease impacts. Empirical studies of 

badger demography to date have focused on individual drivers (Macdonald et 

al., 2010; Macdonald et al., 2002)  and have ignored the interplay between 

dynamic components. We focus on temporal changes in survival and fecundity, 
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the principal demographic processes that yield badger population dynamics 

(Macdonald et al., 2009), in order to tease apart the underlying mechanisms 

generating fluctuations in population growth.  

Mammals lie on a life-history axis known as the slow-fast continuum (Gaillard et 

al., 1989; Promislow & Harvey, 1990), which largely dictates the determinants of 

patterns of variation in demographic rates. Life-history buffering (or 

environmental canalization) is a corollary of this continuum (Gaillard & Yoccoz, 

2003) which predicts lower temporal variance in vital rates that contribute most 

to population growth (Pfister, 1998). Broadly speaking, fast-living mammals 

buffer their reproductive effort against environmental fluctuations but suffer 

fluctuations in survival (Korpimaki et al., 2004; Luis et al., 2010) compared to 

slow-living species which buffer their survival and suffer fluctuations in 

recruitment (Gaillard et al., 1998; Gaillard et al., 2000). Consequently, there is a 

tendency to find density-dependent impacts on recruitment rates in populations 

of slow living species (Coulson et al., 2000; Hernandez-Pacheco et al., 2013) 

and often density-dependent survival in populations of fast living species (Kneip 

et al., 2011; Rodel et al., 2004). Most research on density-dependence in 

badgers has focused on the impact of intraspecific competition on body mass of 

adults and, despite links to fecundity (Anderson & Trewhella, 1985; Cresswell et 

al., 1992; Macdonald et al., 2002; Rogers et al., 1997), no empirical analysis 

combining the relative impact of density-dependence on demographic drivers 

has taken place. We expect that these medium sized mammals with small 

litters, high survival and relatively long-life spans will display lower variance in 

survival, with density pressures more likely to impact upon recruitment rates.  

Several lines of evidence offer conflicting predictions regarding the importance 

of disease processes for inter-annual growth and decline of badger populations. 

Tuberculosis is a fatal disease of badgers in advanced stages (Graham et al., 

2013), and might therefore be expected to drive fluctuations in their rates of 

survival. Direct population level responses to disease impacts are observed in 

other infectious disease systems including substantial population declines in 

Tasmanian devil populations due to devil facial tumour disease (DFTD) which 

brings about immediate population responses even at low prevalence (Lachish 
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et al., 2007), and cyclical dynamics in grouse (Redpath et al., 2006), partridge 

(Rosà et al., 2011) and Soay sheep (Gulland, 1992) caused by parasitic 

infections. Disease can also cause more subtle reductions in population growth, 

as observed in deer populations infected with chronic wasting disease 

(Dulberger et al., 2010). In contrast, the impact of TB infection on demographic 

rates in populations of brushtail possums, buffalo and bison do not propagate 

through to a population impact (Arthur et al., 2004; Cross et al., 2009; Jolles et 

al., 2005; Joly & Messier, 2005). This may be due to the typically low 

prevalence of endemic TB infection, whereby individual impacts of chronic TB 

infection are only observed at a population scale at high prevalence (Cross et 

al., 2009). Additionally, disease effects may be difficult to detect if compensated 

for by recruitment or improved survival of uninfected animals (Arthur et al., 

2004; Muths et al., 2011).   

Here we use a Bayesian approach to implement an integrated analysis of mark-

recapture and census data from a long-term study of a chronically-infected 

badger population at Woodchester Park, Glos., UK. This method moves away 

from the commonly implemented approach whereby a range of capture-mark-

recapture (CMR) models are used to estimate different demographic processes, 

such as CJS models for survival and reverse-time models for population growth 

(Lachish et al., 2007). Instead we advance from performing numerous discrete 

capture-mark-recapture (CMR) models (Lebreton et al., 1992; Pradel, 1996) to 

a Bayesian integrated population model (IPM (Besbeas et al., 2002)), creating a 

unified assessment of badger population dynamics. This integrated approach is 

of significant benefit to ecological analysis as it is able to simultaneously 

estimate population growth rate, survival and recruitment, whilst directly 

assessing the impact of individual and temporal covariates (Abadi et al., 2010a). 

Integrating data provides higher precision estimates (Johnson et al., 2010) and 

accounts for observation error deriving unbiased estimates, ensuring temporal 

fluctuations are truly reflective of population processes. Our goal is to use an 

IPM to tease apart the drivers of survival and recruitment, and therefore of net 

population dynamics, in this population. This represents a rare analysis of the 

impacts of chronic disease on wild mammal demography.  
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Using long-term CMR data from a naturally infected population of badgers this 

study addresses three major questions. (1) What is the impact and relative 

importance of disease and density on population dynamics of a wild reservoir of 

zoonotic disease? (2) Do these processes influence population dynamics via 

their influence on survival or recruitment rates? (3) How important is the 

contribution of these processes to overall temporal variation in demography? 

We use state-of-the-art Bayesian analyses to provide the most in-depth 

assessment of badger population dynamics to date, presenting additional 

insight into the main drivers, and discussion of the likely ecological processes, 

occurring in an important wildlife-disease system. 

Methods 

Study site and data characteristics 

Data was collected from a long-term CMR study of a naturally infected badger 

population based at Woodchester Park, Gloucestershire (Cheeseman et al., 

1987), from 1984 to 2005. Trapped badgers were anaesthetized and each given 

a unique identifying tattoo on their first capture occasion. At every capture event 

the location of capture, sex and age class (cub or adult) were recorded (for 

detailed methods see Delahay et al. (2000)). Infection status was determined by 

bacterial culture of M. bovis (Gallagher & Horwill, 1977) using samples of 

faeces, urine, sputum and pus from abscesses and/or bite wounds. The culture 

test was used as a proxy for infection due to its high specificity (Drewe et al., 

2010), reducing the likelihood of incorporating uninfected individuals and, 

despite its low sensitivity, provides a useful index of infection (Delahay et al., 

2013). Annual capture histories were created for each individual badger. Only 

20 core social groups that were trapped consistently were included, therefore 

the terms density and population size are interchangeable. 

Covariates 

Prior to analysis annual population size was estimated, using the POPAN 

formulation (Schwarz & Arnason, 1996) of Jolly-Seber models in the program 
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MARK (White & Burnham, 1999). Models were fit using the log link function for 

population size and tested and adjusted for overdispersion using the program 

RELEASE.   

The number of infectious badgers was calculated applying the same approach 

used to calculate total population size. These were then transformed into a 

proportion of infected individuals in the total population in a given year to 

provide a disease prevalence estimate.  

We applied a comparable scale across covariates to emphasize the relative 

strength of the regression coefficients. Covariates were standardised to have a 

mean of 0 and a standard deviation of 1 using the following equation.  
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tX  is the annual standardised variable and tx  is the true annual variable 

Bayesian integrated population model 

We built an IPM to evaluate the ‘best’ formulation of disease and density 

demographic impacts, thereby creating a single unified analysis able to estimate 

all demographic quantities simultaneously. More specifically, integrated models 

combine CMR data and population counts into a single model to calculate 

survival, recruitment rates and population change. We derive both count data 

and CMR data from the Woodchester study site. We used a pre-breeding 

census, of counts of unique badgers more than 1 year old caught annually. 

Capture histories were divided into males and females, and those first caught 

as adults and those first caught as cubs. Models were specified within R (R 

Development Core Team, 2013), using the package R2WinBUGS (Sturtz et al., 

2005) to call WinBUGS (Lunn et al., 2000) within which the models were run 

and then results exported back to R. 
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Population model component 

The core of the IPM is a population projection model which maps various 

demographic rates for different age classes. Most demographic models include 

only one sex, assuming that males and females have identical vital rates and 

population dynamics can be determined from one sex alone. However, badgers 

are amongst the many species that exhibit sex differences in mortality rates, 

with male mortality exceeding females (Graham et al., 2013). We use a 2 sex, 2 

age structured population projection matrix with an annual time step (Fig. 2.1). 

The model assumes individuals start to reproduce at the age of 1 with an even 

sex ratio at the time of birth. For simplicity we assumed that the annual 

fecundity of both yearlings and adults were the same, thus our fecundity rate is 

per capita of the total population of males and females 1 year and older, 

creating a rate analogous to recruitment rates, i.e. a per capita rate of growth, 

which can be directly compared relative to survival in its contribution to 

population growth. The fecundity rate, also termed recruitment, used throughout 

this paper is an integrated measure of reproduction and early cub survival.  
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Figure 2.1. The life-cycle graph of a badger population, showing 2 age classes 

and sex-specific survival rates. N1 represents the number of adults 1 year old, 

and Nad the number of individuals older than 1 year. The solid arrows show the 

demographic processes that make up this population. Cub survival (ϕcubs) is the 

probability of a cub (a badger under 1 year) born in year t surviving to year t+1. 

Survival probability of adults (ϕadults) is the probability an adult badger (1+ year) 

surviving from year t to year t+1. The dashed lines represent the contribution of 

different sex- and age-specific stages to total population size, to calculate per 

capita fecundity (f). Fecundity (f) is the number of offspring (of both sexes) per 

individual (of both sexes) that are born and survive to emerge in the spring also 

termed recruitment. 

Covariate structure 

We tested assumptions regarding differential survival between ages (cub and 

adult) and between sexes, and whether covariates affect these cohorts equally 

(i.e. have additive effects) or differently (i.e. have interaction effect). We 

evaluated the best model structure using DIC values (Spiegelhalter et al., 

2002). 
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We modelled the log of fecundity (f) parameters and the logit of survival (Φ) 

parameters as a linear function of covariates using the following linear 

relationships. 
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Where xj, t are the values of the standardised jth covariate over time t,  s are the 

regression coefficients for each covariate and   is the residual temporal 

variation providing estimates of remaining variance ( 2

Model ). We also fit a model 

without covariate effects to gain an estimate of total temporal variance ( 2

Total ). 

The proportion of variance explained by the covariate effects is then identifiable 

using the following calculation 2 2 2( ) /Total Model Total   . 

Vague N(0,104) priors truncated to lie in the interval (-5,5) were used for the 

unknown regression parameters (β). Uniform normal priors were used for mean 

survival U(0.4,0.95), vague N(0,104) prior for the logit of fecundity. Uniform 

U(0,10) priors were used for the variance parameters on the standard deviation 

scale. 

The likelihoods and joint likelihood 

An IPM constructs likelihoods for the two separate data sets (count data and 

CMR data) which are then combined to maximize the likelihood. Firstly, a state-

space model and secondly a CMR model, the most common used being a 

Cormack-Jolly-Seber (CJS) model.  

The state-space model analyses the count data (y), which is determined by the 

state process and the observation process. The state process describes the 

true but unknown population trajectory under the population model defined 

earlier (Fig. 2.1). Demographic stochasticity is included by modelling the 
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number of 1 year old badgers using a Poisson distribution and the number of 

adults using a binomial distribution. The observation process allows for 

observation error linking the observed census data (y) to the true population 

size: a Poisson distribution was used to account for observation error. The 

likelihood of the state space model is a product of the observation and process 

equations. This component of the IPM estimates total population size, survival 

of each age class (a), fecundity and observation error (N, Φa, f, σ
2
y). 

The CMR data (m) was analysed via a CJS model which uses m-array 

formulations following a multinomial distribution including those badgers first 

caught as adults, and cubs of both sexes. It estimates survival parameters for 

both sexes (s) and age classes (Φs,a) and recapture probability (p). Combining 

these likelihoods formulates the joint likelihood of the IPM (Fig. 2.2). 

 
2 2

, ,( , | , , , , ) ( | , , , ) L ( | , )IPM a s y SS a y CJS a sL y m N f p L y N f m p         

 

Figure 2.2. Graphical representation of the integrated population model. 

Squares represent the data and circles the parameters. Large squares 

represent the 2 different sub-models.  
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Model fitting and assumptions 

Convergence of the chains was assessed by visually checking mixing of the 

chains and more formally using the Brooks-Gelman-Rubin criterion ( r̂  (Brooks 

& Gelman, 1998)) Initial trials with 3 independent chains found that 

convergence ( r̂ <1.02) was reached after 3000 iterations. Following the initial 

trial 3 chains of 10,000 with a burn-in of 3000 was run for each analysis and 

thinned such that every 10th value was retained, thus giving a sample size of 

2100 iterations. As there is no established goodness of fit test for integrated 

population model we tested the fit of the CMR model component in program 

MARK, which was not overdispersed ( ĉ < 1.9; appendix 2.1).  

An assumption of IPMs is that demographic data and population counts are 

independent. Unfortunately due to the method of data collection we were unable 

to use independent data sets for census and capture history data. It has been 

suggested that non-independent datasets are unlikely to lead to biased 

estimates but might overestimate their precision (Schaub & Abadi, 2011), and a 

simulation study has shown that violating the independence assumption has 

almost no effect on parameter accuracy (Abadi et al., 2010a). However, we 

replicate the best model using a MARK analysis adjusted for GOF (Appendix 

2.1) to provide an additional check for significance of effects. 

Results 

In the following results text, we refer to IPM results in which rates of survival (S) 

and recruitment (R) are subscripted by the covariates used in each model. 

Subscripts include the influence of the previous year’s disease prevalence (D) 

and previous year’s badger density (N).  

Initial evaluation of IPMs found most support for sex-specific survival 

parameters but less support for incorporating differential cub and adult survival 

(ΔDIC > 23), in agreement with a prior survival analysis (Graham et al., 2013). 
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Overall population dynamics 

Our best model structure when applied to an IPM provided estimates of 

population dynamics. Mean population growth over the duration of the study 

was, remarkably, exactly 1 (95% credible interval 0.988-1.013), However, yearly 

growth rates fluctuated between 0.84 and 1.3 (Fig. 2.3), coinciding with variable 

population estimate which can be considered an index of population size due to 

the tendency of CMR models to right censor and underestimate population size. 

The closeness of population estimates to population counts highlights a small 

observation error. This is perhaps unsurprising given the method of data 

collection, whereby counts are obtained from trapped badgers (Fig. 2.3).  

 

Figure 2.3. Observed counts and estimated population size, alongside between 

year population growth rates. Shaded regions represent 95% credible intervals 

(CRI) of estimates. 
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Creating the IPM: Density and disease 

Density and disease effects on both survival and recruitment were explored 

using an IPM (SD+N,RD+N). The posterior regression coefficients provide a 

measure of strength (i.e. how far the value is from 0) and an estimate of 

certainty (the posterior probability that the estimated effect is different from 

zero). The certainty of negative density-dependence was high for recruitment 

(0.98), and low for survival (0.47). Thus density dependent regulation appears 

to act mainly via recruitment, not survival. Conversely, the certainty of negative 

impacts of disease prevalence was low for recruitment (0.71) and high for 

survival (0.98). After standardising the covariates to have zero mean and unit 

variance, density and disease were found to have contrasting effects on survival 

and recruitment. Survival declined with increasing disease prevalence (posterior 

mean slope βD = -0.149, Fig. 2.4) but was not affected by density (βN = 0.007, 

Fig. 2.4). Recruitment declined with increasing density (βN = -0.233, Fig.2.4) but 

not with disease prevalence (βD = 0.057, Fig.2.4).  
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Figure 2.4. i-iv) The influence of densityt-1 and disease t-1 on survival and 

recruitment rates in a badger population, showing the predicted relationship and 

the corresponding posterior means and 95% CRI from an IPM. v) Regression 

slopes describing the relationship between demographic rates; recruitment (R) 

and survival (S), and covariate effects; disease (D) and density (N). The 

posterior mean is displayed alongside the corresponding 95% credible intervals. 

Dropping the uninformative density effects on survival, and disease prevalence 

on recruitment, was favoured by DIC selection (ΔDIC>8) and increased the 

strength of the informative covariates. 

We used the IPM describing density-dependent recruitment and disease-

dependent survival, to investigate the influence of demographic rates and 

covariates on population growth. 

i) ii) 

iii) iv) 

v) 
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Demographic posteriors 

Female badgers are more likely to survive the year than males (posterior mean 

female survival = 0.73, 95% CRI 0.70-0.77; posterior mean male survival = 

0.67, 95% CRI 0.63-0.72). Mean annual per capita recruitment is 0.42 (95% 

CRI 0.37-0.48). Survival rates were higher therefore contributing more to 

population growth than recruitment. 

Components of Variation in Recruitment and Survival 

In order to calculate how much among-year variation in recruitment and survival 

is explained by density and disease, we fitted an IPM without any covariates, 

yielding residual temporal variance (σ2
S and σ2

R). 

The IPM including density explained 59% between year variance in recruitment. 

Male and female badgers have similar levels of temporal variation in survival, 

but the sexes differed in the relative contribution of disease variables. 2% 

between year variance in male survival and 33% in female survival was 

explained by disease prevalence. We note that these discrepancies do not 

imply differential impacts of disease on males and females: models including 

interactions between disease prevalence and badger sex were not well 

supported by DIC values (ΔDIC>8) and did not result in any substantial change 

in the slope parameters (Appendix 2.2).  

Correlations 

Female survival and recruitment correlated most strongly with the population 

fluctuating growth rate (r=0.69 and r=0.63 respectively, Fig. 2.5). Male survival 

had the lowest correlation (r=0.58, Fig. 2.5). The coefficient of variation (CV) 

was calculated for all demographic rates revealing little year to year variation in 

male and female survival (CV < 10%) compared to recruitment (CV > 20%). 

Focussing on the main covariate effects; density and disease, density displayed 

the strongest negative correlation to population growth (r=-0.57, Fig.2.5), 

followed by disease prevalence (r=-0.50, Fig.2.5). 
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Figure 2.5. Estimates of annual demographic rates (i-ii) and main demographic 

drivers (iii-iv) plotted against population growth, including the posterior means 

and 95% CRI. The correlation coefficients (r) are shown along with their 95% 

CRI. Note from x-axis scaling that variation in recruitment is much greater than 

variation in survival. 

Discussion 

There are numerous statistical approaches available to obtain demographic 

rates from wild populations, but few capable of estimating individual and 

population processes simultaneously. In this study we demonstrate the 

capability of a Bayesian integrated population model to calculate key 

demographic quantities in a single framework, providing further insight into 

badger demography. Focussing on a high density population situated in a TB 

hotspot, we find overall population stability (mean λ= 1), but significant inter-

annual changes. Key demographic characteristics including high survival rates 

i) ii) 

iii) iv) 
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and low variable recruitment rates indicate badgers have evolved a relatively 

slow-life history strategy. Density-dependence had the greatest effect, acting via 

recruitment rates. Survival remained resilient to density pressures but was 

susceptible to TB prevalence. Better understanding of the complexities of 

reservoir host dynamics not only uncovers their underlying life history strategies 

but also reveals key population mechanisms which should contribute to 

evidence-based management strategies designed to reduce the prevalence of 

TB among badgers. 

The demographic patterns reported here demonstrate how survival is the most 

influential component of badger population growth rate, as well as the most 

stable. In contrast to temporal variability in recruitment which is invariably 

higher, similar to life-history strategies of other slow-living mammals (Gaillard et 

al., 1998; Gaillard et al., 2000). Badgers adjust these recruitment rates under 

density pressures, which accounts for over half of all temporal variation. How 

could negative density-dependence act on badger recruitment rates? Numerous 

pressures are associated with life at high density including resource competition 

and increased aggressive encounters (Cresswell et al., 1992; Roper, 2010). 

These have associated fitness costs which can cause reductions in badger 

body condition (Anderson & Trewhella, 1985; Macdonald et al., 2002; 

Woodroffe & Macdonald, 1995). Resource limitation prevents organisms 

simultaneously maximising their own survival and their reproductive output, 

often resulting in inverse relationship between fitness components. In 

accordance with this we find badgers do not jeopardize their survival under 

density pressures, instead regulating their recruitment either limiting the ability 

of female badgers to successfully fulfil pregnancy (Anderson & Trewhella, 1985) 

or reducing pre-emergent cub survival  Given survival’s greater influence on 

population growth, its resistance to density pressures is advantageous, (Gaillard 

et al., 2000; Pfister, 1998), assisting the stability of badger populations (Saether 

et al., 2013). Survival’s stability also provides more weight to the theory of 

environmental canalization as observed in other long-lived species (Gaillard & 

Yoccoz, 2003; Nevoux et al., 2010), whereby fitness components to which 

population growth is most sensitive are buffered against environmental 

variability (Gaillard & Yoccoz, 2003). 
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Survival, although unaffected by density, has a strong negative association with 

disease prevalence. We find sex bias in the amount of variation in survival 

explained by disease effects: 33% in females compared to just 2% in males. 

This result is surprising as males are known to be more vulnerable to infection 

(Graham et al., 2013; Wilkinson et al., 2000). However, investment in 

pregnancy may decrease tolerance of disease, with seasonal drops in female 

immunity over-winter known to occur in other mammals (Altizer et al., 2006). 

We speculate this result is an artefact of the between-year time-scale used 

which focuses on a period of vulnerability in female badgers, as opposed to 

males which are likely to be susceptible to disease effects year round. Further 

analysis into seasonal effects of TB prevalence may provide further illumination. 

Although our analysis suggests that population growth rate may be reduced as 

a consequence of TB infection in badgers, we find population persistence and 

stability despite infection. Low disease prevalence likely prevents any large-

scale population declines, and its lack of influence on recruitment rates 

promotes continued birth of uninfected cubs, restricting TB prevalence from 

escalating. Given that female reproductive success is not depressed by TB 

infection (Tomlinson et al., 2013), any loss of infected individuals is also likely 

compensated by density-dependent reproductive success, with density-

dependence a stronger driver of population change than disease prevalence. 

Density-dependent compensation is likely to not only assist population 

persistence of infected hosts but also has implications for management. Density 

dependence may have a compensatory effect on culled populations with 

increased numbers of new-borns stabilizing perturbed populations. In certain 

scenarios success may still be achieved despite compensatory recruitment by 

reducing disease prevalence by dilution. However under density dependent 

transmission, culling may increase disease transmission opportunities if survival 

of cubs exceeds removal of adults (Potapov et al., 2012). Therefore neglecting 

density-dependent recruitment from the decision making process will result in 

exaggerated effects of culling on population size being predicted and in turn 

may underestimate levels of resulting disease prevalence. 
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The challenges involved in measuring population dynamics from longitudinal 

studies of animals in the wild are numerous, often requiring various single-

process analyses to obtain all desired parameter estimates. In this paper we 

build upon traditional CMR models and develop a Bayesian IPM able to 

simultaneously estimate survival, recruitment and population growth along with 

individual-, temporal-, fixed- and random-effects. Comparison of these 

contrasting approaches illustrated that violating the assumption of 

independence in the IPM did not alter the core results. We suggest developing 

and utilising IPMs to answer ecological questions will be of immense benefit to 

understand other wildlife systems, due to the increased flexibility within the 

modelling framework, improved parameter precision and its capacity to account 

for both temporal stochasticity and observation error. Efforts to integrate 

analyses will be particularly relevant for populations of conservation or 

management concern.  

Conclusion 

Badgers lie on the slow side of the slow-fast life history spectrum: recruitment is 

highly variable, regulated primarily by density, while rates of survival contributed 

more to population growth whilst remaining relatively stable among years and 

was not affected by density. Disease prevalence influenced rates of survival 

and impacted on population dynamics, but was compensated for by density 

dependent recruitment. Our findings substantially improve our understanding of 

badger population dynamics, quantitatively describing the impact of disease and 

density as demographic drivers. Armed with a more precise understanding of 

the links between density and population growth we may be able to refine 

population models, allowing practitioners to improve strategies for the control of 

bovine tuberculosis. These results will be of interest both as an investigation 

into the regulators of badger population dynamics and to highlight the 

advantages of IPMs as an analytical tool to pose hypotheses in other study 

systems. 
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2.2: Incorporating weather in a density and disease IPM 

Summary 

The longevity of chronically infected populations permits numerous abiotic and 

biotic factors to act both additively and/or interactively to exert pressure on 

demographic rates. We build upon prior population analyses of the Eurasian 

badger to provide a comprehensive appraisal of the demographic 

consequences of weather in the presence of TB prevalence and density drivers. 

We apply weather variables considered important in a frequentist framework to 

an IPM to uncover their relative importance and reveal mechanisms to which 

badgers may respond to climate change. We find density-dependent 

recruitment remained a key regulating influence, with conditions over-winter and 

in spring further influencing cub-emergence rates. Autumn temperature 

negatively impacted annual survival rates and further interacted with disease. 

That is, disease prevalence had a strong negative effect at high temperatures. 

Our results highlight multiple mechanisms through which climate can impact 

badger demographic rates, including altering activity, limiting resource 

availability and increasing susceptibility to disease. In terms of climate change, 

the reduced capacity of badgers to adapt to varying autumn conditions, due to a 

physiological adaptations to gain weight during this period, may be a key 

mechanism through which climate change could influence a seasonally driven 

mammal. The addition of weather to our IPM provided insight into mechanisms 

by which a mammalian host population may respond to weather changes, and 

combined with density and disease pressures uncovered additional 

demographic intricacies. 

Introduction 

A review of the literature generally reveals two approaches to population 

analysis of reservoir hosts. Firstly, analyses which focus on the impact of 

disease itself on host population dynamics (Jolles et al., 2005; Joly & Messier, 

2005; Lachish et al., 2007; Muths et al., 2011). Secondly, many demographic 

analyses of long-term hosts, including badger populations, disregard the impact 
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of disease and instead focus on density and/or weather processes as drivers of 

mammalian population dynamics (Frick et al., 2010; Luis et al., 2010; 

Macdonald et al., 2010). The first, disease focussed, approach may be relevant 

in studies of virulent pathogens which immediately propel populations to 

decline, or when parasites overtly drive cyclic dynamics, however is arguably 

inappropriate for long-term chronic conditions in long-lived hosts such as TB 

infected badgers. By the very nature of their longevity following the introduction 

of infection, badger populations will be subject to numerous co-occurring 

demographic processes. There are a number of reasons why we may be 

interested in multiple demographic drivers including, but not limited to, 

improving our understanding of complex interactions between environmental 

change and disease susceptibility, identifying compensatory processes that 

may buffer wild populations from demographic perturbations, revealing life-

history strategies, and highlighting mechanisms by which populations will 

respond to climate change, all of which have relevance to predicting future 

population change for both management of pest species and to aid species of 

conservation concern. 

Given that we know the importance of density-dependence and disease 

prevalence on badger demography (Chapter 2.1), our objective is to uncover 

what happens when we incorporate weather variables into these models. We 

build upon a prior Bayesian integrated population model (IPM) to provide a 

comprehensive appraisal of weather drivers. Studies from badgers at Wytham 

Woods have shown badger population dynamics to be sensitive to certain 

weather variables (autumn, winter and spring temperatures and rainfall 

(Macdonald et al., 2010; Nouvellet et al., 2013)), but there is little consensus 

regarding which environmental parameters have the greatest positive or 

negative impact on rates of survival and recruitment, or how they vary in the 

context of, and/or interact with, disease and density. Our objective is to assess 

the relative importance of weather changes in combination with known density 

and disease impacts on badger demographic dynamics. 
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Methods 

Using the same dataset and integrated modelling approach from the preceding 

section (Chapter 2.1), we build upon the disease and density only IPM to create 

a model incorporating weather covariates present in the ‘best’ candidate model 

set indicated by a MARK analysis (see Appendix 2.3 for top models), 

Climatic data was obtained from 5 x 5 km gridded observation data sets 

provided by the Met Office 

(http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/) for the 

time period 1984-2006 (mean annual temperature 9.6°C; mean annual 

precipitation 841.5mm). Priori hypotheses were made based on previous work 

to obtain meaningful candidate variables, avoiding the risk of over fitting (Knape 

& de Valpine, 2011). Autumn and spring are key seasons related to periods of 

high energy investment, with climatic conditions affecting badger survival 

(Macdonald et al., 2010). We also considered the winter period during which 

conditions have been suggested to alter the activity levels of badgers 

(Macdonald et al., 2010) perhaps having an adverse impact on fitness. We 

subsequently incorporated weather variables from spring (March-May), autumn 

(September – November) and winter (December-February). Mean temperature 

and summed precipitation are key weather features (Macdonald et al., 2010) 

and were tested for the time intervals of interest. Additionally the number of 

days of ground frost were included which we hypothesised may influence 

demographic rates of this ground-foraging and partly subterranean mammal. 

These covariates were standardised to have a mean 0 and standard deviation 

of 1. 

As with the previous disease and density IPM, following checks for 

convergence, we ran 3 chains of 10,000 with a burn-in of 3000 and thinned 

such that every 10th value was retained, 
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Results 

In the following results text, we refer to IPM results in which rates of survival (S) 

and recruitment (R) are subscripted by the covariates used in each model. 

Subscripts include the influence of the previous year’s disease prevalence (D), 

previous year’s badger density (N), autumn temperature (AT), autumn rainfall 

(AR), frost-days in January (FJ) and spring temperatures (ST). Similar codes 

and subscripts are used to refer to MARK analyses (Appendix 2.3).  

Weather drivers 

We used the IPM describing density-dependent recruitment and disease-

dependent survival, to investigate the influence of weather on these 

demographic parameters. Exploratory analysis using program MARK 

highlighted key climatic conditions effecting demographic rates. Autumn 

temperature and autumn rainfall were in the top candidate models influencing 

survival probability, along with an interactive effect between disease and 

autumn temperature. Key drivers of recruitment were January frost and spring 

temperatures but these only became important after accounting for density-

dependence (Appendix 2.3). We analysed the full model using an IPM; SD+AT+AR 

+ (D: AT); RN+FJ+ST.  

Overall dynamics 

We find population dynamics similar to Chapter 2.1. The mean population 

growth rate over the duration of the study is 1 (95% CRI 0.989-1.013), with 

yearly growth rates fluctuating between 0.77, and up to 1.42.  

Survival posteriors 

Female badgers are more likely to survive the year than males (posterior mean 

female survival = 0.74, 95% CRI 0.71-0.77; posterior mean male survival = 

0.68, 95% CRI 0.64-0.72). Autumn temperature had the strongest influence on 

survival (βAT = -0.169, Fig.2. 6) with a high posterior probability that survival 
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declined with increasing temperature (99% of slopes were negative). Inclusion 

of this temperature effect reduced the impact of disease prevalence on survival 

(βD changed from -0.149 to -0.038), and the posterior probability of negative 

disease-dependence reduced from 0.98 to 0.71 (Fig 2.6). This may be 

explained by the interactive effect of autumn temperature and disease 

prevalence (βD*AT = -0.131, posterior probability of negative slope = 0.91), 

whereby under average conditions disease prevalence is limited in its effect on 

survival, but with increased autumn temperatures the negative effect of disease 

prevalence on survival rates also increases (Fig.2. 6). Autumn rainfall had a 

relatively weaker impact upon survival (βAR = -0.067, posterior probability of 

negative slope = 0.86; Fig.2.6). 
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Figure 2.6. i-iv) The effect of covariates; autumn temperature (AT), autumn 

rainfall (AR) and disease (D), on survival rates as predicted by the IPM, iii-iv 

demonstrate how the effect of  disease prevalence on survival is weak under low 

autumn temperatures but intensified at high autumn temperatures due to an 

interactive effect between disease and autumn temperature (AT x D). v) 

Followed by regression slopes describing the relationship between survival (S) 

and covariate effects. The posterior means are displayed alongside 95% credible 

intervals, on a logit scale.  

Recruitment posteriors 

Mean annual per capita recruitment is 0.41 (95% CRI 0.35-0.47). Rates of 

recruitment increased with increasing numbers of January frost days (βFJ = 

0.218, posterior probability 0.95; Fig.2.7). Recruitment increased with warmer 

i) ii) 

iii) iv) 

v) 
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spring temperatures (βST = 0.199, Fig.2.7) but the posterior probability of this 

effect was 0.94. Even with the inclusion of these weather drivers, recruitment 

remained powerfully density-dependent (βN = -0.239, posterior probability = 

0.99; Fig.2.7). In models that ignored density-dependent recruitment, spring 

temperature effects were not identifiably different from zero.   

 

Figure 2.7. i) Regression slopes describing the relationship between recruitment (R) 

and covariate effects; density (N), frost days in January (FJ) and spring temperature 

(ST). The posterior mean is displayed alongside their 95% credible intervals on a log 

scale. ii-iv) Followed by their effects on recruitment rates predicted from an IPM.  

iv) iii) 

ii) i) 
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Components of variation in recruitment and survival 

The IPM including density, spring temperature and January frost days, 

explained 50% between year variance in recruitment. Models without density 

explained just 6% of variation in recruitment.  

Male and female badgers have similar levels of temporal variation in survival, 

but the sexes differed in the relative contribution of disease and climatic 

variables. 38% between year variance in male survival and 47% in female 

survival was explained by autumn temperature, disease and autumn rainfall 

covariates. This contrast appears due to the effect of disease prevalence with 

disease only models accounting for more variation in female survival than 

variation in male survival (Chapter 2.1).  

Correlations 

Recruitment correlated most strongly with the population fluctuating growth rate 

(r=0.75, Fig. 2.8). Male survival had the lowest correlation (r=0.58, Fig. 2.9) 

marginally less than female survival (r=0.61, Fig. 2.9). The coefficient of 

variation (CV) was calculated for all demographic rates revealing little year to 

year variation in male and female survival (CV < 10%) compared to recruitment 

(CV>30%).  

Focussing on the covariate effects; density displayed the strongest negative 

correlation to population growth (r=-0.51, Fig. 2.8) and frost days in January 

displayed the strongest positive correlation (r=0.55, Fig. 2.8), compared to 

spring temperature which was not identifiably correlated to population growth 

(r=-0.05, Fig. 2.8). Focussing on survival covariates disease prevalence had a 

negative correlation (r=-0.38, Fig. 2.9), slightly stronger than autumn 

temperature (r=-0.32, Fig. 2.9), followed by a weaker negative correlation with 

autumn rainfall (r=-0.28, Fig. 2.9). 



 63 

 

 

Figure 2.8. i) Estimates of annual recruitment rates ii-iv) and its drivers, plotted 

against population growth, including the posterior means and 95% CRI. The 

correlation coefficients (r) are shown along with their 95% CRI. 

iv) iii) ii) 

i) 
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Figure 2.9. i) Estimates of annual survival rates ii-iv) and its drivers plotted 

against population growth, including the posterior means and 95% CRI. The 

correlation coefficients (r) are shown along with their 95% CRI. 

Discussion 

Studies able to disentangle the effects of weather changes on vital rates of wild 

populations provide important insights in to mechanisms that determine how 

populations will respond to climate change. In this paper we demonstrate how 

key demographic quantities and weather effects can be calculated using a 

Bayesian IPM. After accounting for disease and density, this study quantified 

how weather changes impact the vital rates of a long-lived reservoir host, 

supporting the hypothesis that badger populations are sensitive to weather 

conditions. We highlight that following density, overwinter frost and spring 

temperatures also drive recruitment rates. Fluctuations in survival were largely 

i) 

iv) iii) ii) 
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driven by autumn temperature, followed by its interactive effect with disease 

prevalence. The effect of disease is intensified during years with high autumn 

temperatures, showing how weather interactions may facilitate disease-

mediated mortality.   

Effects on survival 

Autumn temperature was the best predictor of badger survival rates. Autumn is 

a crucial time of fat deposition in badgers. The significant negative relationship 

between increased autumn temperature and badger survival is likely due to 

temperature shifts affecting foraging conditions, limiting resources required for 

badgers to obtain the weight they require to survive overwinter (Macdonald et 

al., 2010; Roper, 2010). Badgers have a wide and varied diet with weather 

effects capable of affecting multiple resources. Firstly, warmer temperatures 

may change the optimum microclimate for earthworm emergence. Alternatively 

increased temperatures may influence availability of plant material by delaying 

fruiting, mast seeding and windfalls, which badgers rely on more so when insect 

availability diminishes in the autumn (Roper, 2010). In contrast to previous 

analysis we find a weak negative association between autumn rainfall and 

survival, however a positive effect was demonstrated in other badger systems in 

an area where annual rainfall is lower (~200mm less per annum; (Macdonald et 

al., 2010; Nouvellet et al., 2013)) and more likely to be a limiting factor. From 

this result we can deduce that the effect of weather changes across different 

badger populations is likely to generate a range of population responses 

dependent upon local conditions, but periods of vulnerability remain similar 

across areas. 

Inclusion of autumn temperature reduced the predicted negative impact of 

disease and revealed an interaction between temperature and disease 

prevalence. That is, the impact of disease prevalence on survival is negligible 

during average conditions, but the strength of the negative effect intensifies at 

high temperatures. Although the posterior probability of an interactive effect 

(91%) may remain unconvincing statistically, it may be biologically important if 

environmental processes that alter food sources increase badger susceptibility 

to disease, due to the nutritional costs of immune system functioning 
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(Lochmiller & Deerenberg, 2000; Plowright et al., 2008). This result adds to an 

increasing amount of evidence that climate change is an important driver of 

infectious disease (reviewed in Altizer et al. (2013)), due to harsh weather and 

poor nutrition weakening immune system functioning. Further investigation to 

uncover the direct causation of this relationship will require consideration of 

both within host disease effects along with large scale population processes. 

Effects on recruitment 

Density dependent recruitment is important in the regulation of badger 

populations. Adding environmental covariates to the model did not alter the 

pattern or strength of density-dependence. Relative to density, the strength of 

weather effects on recruitment rates are weaker but still deemed influential in 

our model estimates. Firstly, conditions in January were important for our 

measure of recruitment and correlated with population growth rates. That is, 

decreased ground frost during this overwinter period reduced reproductive 

success, with less cubs emerging in the spring. Milder overwinter conditions are 

linked to increased activity levels in badgers (Kowalczyk et al., 2003; 

Macdonald et al., 2010), contrary to their natural adaptation to remain dormant 

overwinter to conserve energy and sustain fat stores when resources are 

scarce (Fowler & Racey, 1988). We postulate that years with reduced frost may 

incite increased energy expenditure (Woodroffe & Macdonald, 1995) and have 

associated reproductive consequences (Bevanger & Broseth, 1998) either 

causing abortion or impairing parental care of new born cubs; we cannot 

establish whether this mechanism acts on pre- or post-natal losses due to the 

unknown time of parturition.  

Secondly, cub emergence rates were susceptible to spring temperatures. Cubs 

favoured warmer conditions. The influence of spring conditions on cub 

emergence rates was only detectable after accounting for density dependence 

and not directly correlated to population growth rates, therefore its effect 

appears to dampen and elevate the consequences of changing densities, 

suggesting its main mechanism may be linked to resource availability and 

improvement of foraging conditions. Alternatively, warmer conditions may act 

directly decreasing the cost of thermoregulation, which has energetic 
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consequences in other mammals (Coulson et al., 2001; Rodel et al., 2004). 

These findings also show assumptions that weather effects can be detected 

independently are erroneous with true environmental stressors obscured by the 

lack of density in badger models. These results agree with the notion that fitting 

models with fewer parameters might restrict the ability to uncover ecological 

mechanisms occurring within populations, and a full model may be more 

equipped to capture population processes (Benton et al., 2006). 

General implications 

Although we are unable to predict long-term demographic patterns driven by 

climate change, by decomposing the effects of these small changes in weather 

on vital rates, we gain insight into the mechanisms determining population 

responses to climate. In general population dynamics of long-lived species, like 

badgers, are highly reactive to variations in factors regulating survival. In 

accordance with the environmental canalization hypothesis (Gaillard & Yoccoz, 

2003), we would predict increased resilience in survival rates to environmental 

variation. Despite, survivals stability under density pressure and overwinter 

weather effects, it appears that badgers are compromised by their reduced 

capacity to adapt to changes in autumn conditions. A physiological adaptation 

to gain weight during autumn (Roper, 2010) increases their susceptibility to 

climatic perturbations during this essential time of fat deposition, which in turn is 

suggested to increase their vulnerability to infection. This highlights a 

mechanism through which climate change could influence a seasonally driven 

mammal, such as badgers, which have little adaptability to changing conditions 

during their annual periods of weight gain. Longer term consequences will 

depend on whether warmer autumns become more frequent which may delimit 

badgers seasonal physiological cycles, and be of negative consequence to their 

population growth.  

Conclusion 

Our findings substantially improve our understanding of badger population 

dynamics, quantitatively describing the impact of weather changes on 

demographic drivers. Weather fluctuations influence badger populations 
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through various mechanisms; impacting food availability, activity levels and 

even shown to intensify the negative impact of disease prevalence. Badgers 

have little adaptability to changes in autumn temperature and are likely to be 

most vulnerable to seasonal changes during this period. These results also 

confirm the importance of density-dependent recruitment in moderating badger 

abundance, which likely buffers against the negative influences on survival. The 

use of IPMs to uncover complex interactions between demographic and 

environmental components is becoming increasingly established especially with 

regard to avian populations (reviewed in Schaub and Abadi (2011)). We show 

how they provide insight into mechanisms by which a mammalian host 

population may respond to climate change, and uncover complex interactions 

between environmental change and infectious diseases. We encourage their 

use to uncover further complexities in both the badger-TB system and to pose 

hypotheses in similar study populations.  
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CHAPTER 3 

 

 

The previous chapter took a scaled back look at the processes governing long-

term badger population dynamics. In the following chapters I move away from 

population dynamics to focus on individual-level effects of disease. Exploration 

of various techniques to extract key information is a key theme throughout this 

thesis. This chapter introduces disease states of badgers and using a multistate 

model obtains rates of disease-induced mortality, disease transmission and 

progression, and forms the first published paper of this thesis*. 

 

 

 

 

 

 

 

*Graham, J., Smith, G. C., Delahay, R. J., Bailey, T., McDonald, R. A., & 

Hodgson, D. (2013). Multi-state modelling reveals sex-dependent transmission, 

progression and severity of tuberculosis in wild badgers. Epidemiology and 

infection, 141(07), 1429-1436. 
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Multistate modelling reveals sex-dependent transmission, 

progression and severity of tuberculosis in wild badgers 

Summary 

Statistical models of epidemiology in wildlife populations usually consider 

diseased individuals as a single class, despite knowledge that infections 

progress through states of severity. Bovine tuberculosis (bTB) is a serious 

zoonotic disease threatening the UK livestock industry, but we have limited 

understanding of key epidemiological processes in its wildlife reservoirs. We 

estimated differential survival, force of infection and progression among disease 

states in a population of Eurasian badgers (Meles meles), naturally infected with 

bTB. Our state-dependent models overturn prevailing categorisations of badger 

disease-states, and find novel evidence for early onset of disease-induced 

mortality among male but not female badgers. Males also have higher risk of 

infection and more rapid disease progression which, coupled with state-

dependent increases in mortality, could promote sex-biases in the risk of 

transmission to cattle. Our results reveal hidden complexities in wildlife disease 

epidemiology, with implications for the management of TB and other zoonotic 

diseases.  

Introduction 

Many of the world’s important diseases of humans and livestock are zoonotic, 

being harboured by and transmitted from wildlife reservoirs (Jones et al., 2008). 

Management of these diseases requires detailed understanding not just of their 

clinical epidemiology, but also the demographic processes of disease 

transmission, and of progression and disease-induced mortality, which may 

themselves vary among disease states, sexes or ages of hosts. Disease 

progression is commonly estimated and modelled in human-epidemiological 

studies (e.g. (Chen et al., 1996; Dasbach et al., 2006)). Few models of wildlife 

epidemiology consider disease states beyond the standard SIR/SEIR 

categories of classical models and we are not aware of any capture-mark-

recapture (CMR) multi-state analysis that directly addresses parameterisation of 
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disease progression through intermediate disease states in wildlife populations. 

Predictions of effective disease management strategies, based on mathematical 

models, tend to be highly sensitive to transmission, progression and mortality 

parameters (Anderson & Trewhella, 1985; Kramer-Schadt et al., 2009; Shirley 

et al., 2003; Smith et al., 2001a). Therefore, better understanding of state-

dependent epidemiology should improve management strategies, providing 

benefits to human wellbeing or the economic viability and health and welfare 

standards of livestock farming. Here we use state-dependent statistical models 

to reveal complexities in the ecological epidemiology of an important zoonotic 

disease: bovine tuberculosis in wild badgers. 

Bovine tuberculosis (TB caused by Mycobacterium bovis) has severe 

consequences for the livestock industry in the UK. TB prevalence in cattle has 

increased in recent decades (Bourne, 2007; Gilbert et al., 2005), with 

substantial costs for farmers and other taxpayers. Badgers are a wildlife 

reservoir of TB in the UK and the Republic of Ireland and are strongly implicated 

in the transmission of M. bovis to cattle (Donnelly et al., 2006; Griffin et al., 

2005). In addition to cattle control measures, badger culling has been used 

intermittently as a disease control option in the UK and Republic of Ireland 

(Gortazar et al., 2012). Additional strategies include enhanced bio-security 

measures and vaccination (Chambers et al., 2011; Judge et al., 2011). 

Over the past 25 years, several models have been used to simulate the 

dynamics of TB in badger populations. In early susceptible-exposed-infectious 

models (Anderson & Trewhella, 1985; Bentil & Murray, 1993), badgers were 

considered to become infectious upon detection of M. bovis bacilli excreted 

from lesions. Estimates of disease-induced mortality in infectious badgers 

ranged from 0% (Bentil & Murray, 1993) to 100% (Anderson & Trewhella, 

1985). Another long-standing categorisation of badgers divides the infectious 

category into “excretors” (badgers that are found to shed TB bacilli 

intermittently) and “super-excretors” which are assumed to be more consistently 

infectious (Shirley et al., 2003; Smith et al., 2001a). Super-excreting badgers 

have been modelled as experiencing enhanced disease-induced mortality 

ranging between 22.4-60% (Smith et al., 2001a; Smith et al., 1995). Parameter 



 72 

 

estimates of transmission, disease progression and disease-induced mortality 

are pre-requisites for the prediction of TB prevalence in host populations 

(Anderson & Trewhella, 1985; Shirley et al., 2003). These parameters are 

drivers of disease incidence in the established badger-TB model (Smith et al., 

2012) and rank among the key determinants of the rate of cattle herd incidence. 

Therefore, uncertainty in their magnitude and complexity needs to be reduced. 

A key question is whether the categorisation of TB infection in badgers, 

according to stages based on diagnostic test outcomes, reflects biologically 

relevant and discernible categories of host survival and disease progression. 

Detecting population-level impacts of pathogens requires long-term studies of 

the host and infective agent in their natural environment. At Woodchester Park, 

Gloucestershire, UK, a population of naturally TB-infected badgers have been 

studied since 1976 (Cheeseman et al., 1987). Two main diagnostic approaches 

have allowed assessment of the TB status of each badger over most of this 

period. The Brock ELISA (Enzyme-linked immunosorbent assay (Goodger et 

al., 1994)) test detects M. bovis antibodies in blood serum. The second 

diagnostic test cultures M. bovis from sputum, faeces, urine, or swabs of 

wounds and abscesses (Clifton-Hadley et al., 1993). Although a relatively 

insensitive diagnostic approach (Drewe et al., 2010), positive culture gives an 

unequivocal indication of active excretion of M. bovis and hence an infectious 

state.  

Only one previous study has attempted to parameterise badger mortality using 

demographic data from Woodchester Park (Wilkinson et al., 2000). The authors 

classified badgers as uninfected, Brock ELISA positive, single culture positive, 

and super-excreting. However, the definition of a super-excretor was a badger 

with more than one culture-positive result, from any sample. The inherent 

weakness in this approach is that it classified an animal which was excreting 

only intermittently from the same source, as a super-excretor, even if the 

disease had not progressed. As no alternative categorisations were considered 

the authors may have overlooked disease states of intermediate severity. In 

other host species, TB infection exhibits a wide spectrum of pathology (Blower 

et al., 1995; Thorns et al., 1982) and so exploration of disease-state-specific 
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mortality is likely to be productive in the badger-TB system. As TB infection in 

badgers progresses the number of sites of excretion increases (Corner et al., 

2011; Gallagher et al., 1998), hence the existence of multiple excretion sources 

seems an obvious candidate proxy for disease severity. 

Here we use state-dependent statistical modelling of the capture-mark-

recapture histories of a marked population of wild badgers to assess sources of 

variation in class-specific epidemiological parameters, focusing on survival and 

disease progression (transition between disease states). We present a new 

classification of badgers based on disease severity, and provide estimates of 

mortality, force of infection and rate of disease progression.  Our analyses 

improve upon previous estimates of TB-induced mortality in badgers, and more 

significantly will allow better evaluation of management strategies and improve 

our understanding of the outcomes of generalised or targeted management 

approaches to wildlife disease.  

Methods 

Recapture data 

We used live capture data collected at Woodchester Park from 1984 to 2005 

inclusive, as this period used consistent protocols consisting of quarterly 

trapping events at each social group’s sett. Trapped badgers were 

anaesthetized and tattooed with an individual ID upon first capture. At every 

capture event the location, sex  and age-class were recorded (for detailed 

methods see Delahay et al. (2000)). Blood samples were tested for antibodies 

to M. bovis using the Brock ELISA test (Goodger et al., 1994). Samples of 

faeces, urine, sputum and pus from abscesses and/or bite wounds were taken 

for culture of M. bovis (Clifton-Hadley et al., 1993).  

Capture histories of 88 encounters (22 years x 4 trapping periods/year) were 

created for each badger. We considered a badger to be in one of four states on 

each encounter, classified according to the results of the diagnostic tests. A 

badger with no positive ELISA results and no positive culture results was 

classed as “test-negative” (N), while positive ELISA test result without positive 
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culture was classified as “ELISA positive” (P). Accurate diagnosis of TB in live 

badgers is difficult due to limitations in the performance of the diagnostic tests 

(Clifton-Hadley et al., 1995). To control for a specificity of 89-94% (Clifton-

Hadley et al., 1995; Greenwald et al., 2003) of the ELISA test we considered 

badgers with only one ELISA positive result, followed by entirely negative 

results thereafter, to be false positives (Forrester et al., 2001), reducing the 

likelihood of misdiagnosis of infection. A positive culture result from a sample 

from one body site resulted in classification as a “one site excretor” (X) and if 

bacteria were isolated from more than one body site then the animal was 

classed as a “multiple site excretor” (XX). These categories (Fig. 3.1a) 

recognise that the number of excretory sites increases as TB infection 

progresses in badgers, indicating the spread of lesions or an increase in their 

severity (Corner et al., 2011; Gallagher et al., 1998).  Models were also run 

using the standard definitions of “test negative”, “ELISA positive”, “excretor” and 

“super-excretor” (Wilkinson et al., 2000), to compare model fit with our proposed 

categorisation. The key difference is that the prevailing ‘super-excretor’ badger 

has multiple positive culture samples inclusive of culture positives from the 

same site, while our ‘multi-site excretor’ badger only includes multiple positives 

from different body sites. Additionally, to evaluate whether inclusion of multiple 

disease states provides important information, we compared standard 

susceptible-infected (SI) models with our proposed categorisation. 

State-dependent statistical modelling framework 

Data was analysed using multi-state models in the program MARK (White & 

Burnham, 1999) via the R interface (R Development Core Team, 2013) and the 

package RMark (Laake, 2011). Multi-state models (Lebreton et al., 2009) were 

used to analyse time-, age class (cub and adult)- , sex- and disease-state-

specific variation in quarterly rates of survival, recapture and transition between 

disease states. We compared the performance of state-dependent models that 

included the established and the novel classifications of disease state. Models 

were assessed using Akaike Information Criteria (AIC) adjusted for 

overdispersion (QAIC) (Burnham & Anderson, 2002). ‘Better’ candidate models 

were indicated by their lower AIC values. Substantial support for the best model 
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alone is indicated when rival models all have QAIC > 2 units larger (Burnham & 

Anderson, 2002). We tested for overdispersion of models using the ‘median c-

hat’ method as implemented in Program MARK (White & Burnham, 1999). We 

applied the highest estimate of overdispersion (1.28) to the results, which did 

not qualitatively change the findings but means that the significance of 

differences between parameter estimates is conservative. Significant 

differences among survival estimates of male and female badgers in different 

disease states were tested using z-scores with false discovery rate adjustment 

for multiple testing. Adjusted p-values less than 0.05 were considered 

significant. 

Results 

During the period 1984-2005 1640 badgers were trapped (674 males, 786 

females). These individuals contributed 7699 capture events comprising 6739 

uninfected occasions, 515 ELISA positive occasions, 285 one-site excretor 

occasions and 160 multi-site excretor occasions. 

Best models 

The best models indicated that survival (Φ) probabilities varied according to sex 

and disease status (Table 3.1). There was no evidence of age-specific mortality 

(Table 3.1). Recapture probabilities varied considerably over the 22 year period 

with apparent seasonality. Males had a consistently higher probability of 

recapture than females throughout all trapping sessions. Quarterly recaptures 

varied from 0.15±0.03 to 0.73±0.03 for females and 0.20±0.03 to 0.78 ±0.03 for 

males. Transition (Ψ) probabilities among states depended on sex and disease 

status (Table 3.1), but not age or time. The new categorisation of disease states 

improved model fit dramatically when compared to the previous categorisation 

of uninfected, ELISA positive, excretor and super-excretor (Wilkinson et al., 

2000) (Table 3.1). There was also more support for the inclusion of multiple 

disease states (N, P, X and XX) than the standard, binary susceptible-infected 

(SI) epidemiological models (Table 3.1). 
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Table 3.1. Candidate multistate models of badgers categorised by disease 

state. Columns 1-3 describe the additive (+) or interactive (*) effects of sex, age 

and disease state on survival, transition and recapture probabilities. The ‘best’ 

two models classified badgers as negative (N), ELISA positive (P), one-site 

excretor (X) and multi-site excretor (XX). Competing models included: previous 

infectivity categorisation of uninfected, ELISA positive, excretor and super 

excretor; simplified categorisation of uninfected and infected; inclusion of age 

effects. Competing candidate models had zero model likelihood therefore only 

relevant examples are provided. 

New Categorisation 

Survival Transition Recapture QAIC Number 

Parameters 

QAIC 

Weight 

Model 

Likelihood 

disease * sex disease + sex time + sex 20143.25 103 0.742 1 

disease + sex disease + sex time + sex 20145.37 100 0.257 0.35 

disease*sex*age disease + sex time + sex 20957.96 111 0 0 

age*sex disease + sex time + sex 20181.86 99 0 0 

sex+age disease + sex time + sex 20179.91 98 0 0 

Prior Categorisation: 

disease * sex disease + sex time + sex 20624.15 109 0 0 

Uninfected/Infected (SI) Categorisation 

disease*sex disease + sex time + sex 20166.88 99 0.00001 0 
 

 

Survival 

The severity of TB, as indicated by diagnostic test results, influenced quarterly 

survival probabilities in badgers. After adjustment for multiple comparisons, for 

both males and females the lowest survival probability occurred in multi-site 



 77 

 

excretors (Figs. 3.1b, 3.1c, 3. 2). Quarterly survival probabilities of males in 

every infected state were significantly lower compared to uninfected male 

badgers (90.6% survival probability) and decreased from  ELISA positive 

(86.7%, Z= -1.81, p = 0.035), to one site excretor (83%, Z= -2.59, p = 0.005) 

and finally to multi-site excretor (60.7%, Z= -6.06, p < 0.001). Female survival 

probability  did not vary among uninfected and initial stages of disease 

progression (uninfected 92.6%, ELISA positive 92.4%, one-site excretor 

92.8%),  but a significant decrease in survival was observed between 

uninfected badgers (92.6%) and multi-site excretors (78.9%, Z= -5.36, p < 

0.001).  

 

Figure 3.1. (a) Depiction of the multi-state model used for analyses. Transitions 

could only occur in the direction of the arrows. Quarterly estimates of state-

transition rates and their standard errors for (b) female and (c) male badgers 

are provided, for surviving individuals.  
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Figure 3.2. Quarterly survival estimates of female and male badgers when 

classed as: negative (N), ELISA positive (P), one-site excretor (X) and multi-site 

excretor (XX). In each case the parameter estimate is shown ± s.e. 

Male badgers had significantly lower survival probability than females across all 

states (Fig. 3.2): uninfected state (Z=-2.54, p=0.005), ELISA positive state (Z= -

2.14, p= 0.016), one-site excretor state (Z=-2.63, p=0.004) and multi- site 

excretor state (Z= -2.377, p = 0.034). 

These results correspond to the following annual survival estimates, exclusive 

of cub-adult age classes, for males; uninfected 67.4%, ELISA positive 56.5%, 

one-site excretor 47.5% and multi-site excretor 13.4%, and females; uninfected 

73.5%, ELISA positive 72.9%, one-site excretor 74.2% and multi-site excretor 

38.7%. 

Transition between disease states 

Transition rates from multi-state models provide a measure of the probability of 

an individual becoming infected and also of the disease progressing. The best 
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supported models in the candidate set showed that transitions depended on the 

sex and disease state of the individual badger (Table 3.1).  

The force of infection, i.e. the probability of moving from an uninfected to an 

infected state, was higher for males than females (Figs 3.1b and 3.1c). Hence, 

2.2% of males became infected in any quarterly period compared to 1.4% of 

females. Males had a higher probability of disease progression than females: 

7.1% of ELISA positive males progressed to be detected as a one site excretor 

in a quarterly period compared to 4.7% of females. Males were also more likely 

to become multi-site excretors with 10.7% of males in the one site excretor 

category progressing to this stage quarterly, compared to just 7.1% of females 

(Figs 3.1b and 3.1c).  

Discussion 

Studies of the epidemiology of zoonotic diseases have traditionally viewed the 

wildlife reservoir as a homogeneous population, with limited appreciation of 

variation in transmission, progression and mortality among demographic 

classes or disease states. In systems where stage-specific demographic 

information is available, state-dependent statistical modelling can reveal 

epidemiological complexities that could in turn be key drivers of disease 

persistence, and transmission between wildlife hosts and livestock or humans. 

Better understanding of these complexities should influence the assessment of 

disease management strategies. The badger-TB interaction exemplifies this 

argument: we have shown that key epidemiological parameters, to which 

current predictions of management options are highly sensitive (Smith et al., 

2012), vary among disease states, and are sex-specific but not age-specific.  

These parameters will be incorporated into future TB models for improved 

evaluation of management strategies. 

Male badgers suffer increased mortality during intermediate stages of disease 

progression, while females do not. Incorporating disease states of varying 

severity uncovered this additional variation and provides a better explanation of 

survival than a more traditional susceptible-infected approach. We have 

confirmed (Cheeseman et al., 1987; Wilkinson et al., 2000) that survival rates of 
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uninfected male badgers are lower than in females. We have also confirmed 

that survival rates of both sexes are significantly lower in multi-site excretors 

than in uninfected badgers (Wilkinson et al., 2000), and shown that multi-site 

excretor males suffered 29.9% additional mortality per quarter, double the 

additional mortality seen in females in the same state.  Our results challenge 

the prevailing wisdom that cub survival rates are lower than those of adults 

(Anderson & Trewhella, 1985), although mark-recapture data cannot inform on 

mortality of offspring prior to emergence from natal setts. 

This is the first study to provide empirical estimates of the force of infection, and 

rate of progression, of TB among badgers. Males were more likely to become 

test positive, suggesting that males are more liable to acquire infection. Further 

work is required to determine whether this force of infection is density- or 

frequency-dependent, sensu the transmission parameters of classic 

epidemiological models (McCallum et al., 2001). We also found that males 

progress through disease states more rapidly than females. Both behavioural 

and immunological mechanisms may cause the observation of higher infection 

risk and faster disease progression in male badgers. Males tend to range 

further than females (Delahay et al., 2006), perhaps increasing their risk of 

exposure to sources of TB. Males are more territorial (Delahay et al., 2006): 

associated incidence of bite wounds exposes them to a different route of 

infection compared to females, resulting in different patterns of disease 

progression (Cheeseman et al., 1988). Alternatively males may have weaker, or 

compromised, immune responses, which would increase all three 

epidemiological parameters. Teasing apart behavioural and immunological 

mechanisms will require detailed assay of infection and disease progression in 

individual badgers, and the answer could determine the efficacy of the various 

TB management strategies for badgers.  It remains unclear whether males or 

females are most responsible for transmission of TB to other badgers or to 

cattle: males progress to infectious states more rapidly but are more likely to 

die; females spend more time in infectious states and might transmit infection to 

offspring; males might cause more transmission due to their wider-ranging 

movement. A complete demographic consideration of TB epidemiology will 
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require us to model state-dependent fecundity, recruitment and dispersal 

parameters. 

Current tactical models that help inform UK policy related to bovine TB control 

have found that both disease prevalence and cattle herd breakdown rates are 

sensitive to badger TB transmission rates, mortality rates and disease 

progression (Smith et al., 2012). Our study contributes a significant revision of 

these key parameters, and yields novel demographic insight into the sex- and 

state-dependent epidemiology of TB in a wildlife reservoir. We recommend the 

use of this revised disease categorisation, and improved epidemiological 

parameters, to increase the predictive power of strategic models for control of 

bovine TB. Disease-transmission and disease-induced mortality are critical 

parameters in any infectious disease model, therefore we recommend 

multistate modelling for the study of the ecological epidemiology of wildlife 

reservoirs of any diseases that transmit to humans or livestock. 
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CHAPTER 4 

 

 

This chapter follows an analytical progression towards a Bayesian philosophy. 

Performing the same multistate analysis in an alternative framework I explore 

the capabilities of Bayesian posteriors to provide additional conclusions. I also 

consider the possibilities of incorporating social structuring within these models 

due to the increased modelling flexibility. 
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Uncovering epidemiological heterogeneity using Bayesian 

multistate models 

Summary 

Obtaining epidemiological and demographic information from longitudinal field 

studies is integral to understanding disease spread and persistence within wild 

populations, but is often problematic with numerous spatial and temporal 

complexities. In Great Britain bovine tuberculosis (TB) persists in wildlife 

reservoirs, principally the Eurasian badger Meles meles. We apply capture-

mark-recapture data to a Bayesian multistate model to estimate disease-state 

specific survival and transmission rates of badgers. Building in spatial 

complexities we attempt to account for heterogeneous associations between 

individuals which may have consequences for transmission dynamics. We first 

illustrate the similarities between frequentist and Bayesian models and confirm 

sex differences in epidemiological rates. We find high probabilities (>0.97) that 

males are more likely to become infected, infectious, and have reduced survival 

than females in all health states. Second, controlling for individual variation, we 

show disease-induced mortality impacts are intensified, reinforcing previous 

results that TB infection reduces badger survival in males during all infected 

states and in females in an advanced disease state. More than a fifth of 

variation in transmission rates was explained by social group. Sex differences 

remained, with males twice as likely to become infected compared to females. 

Overall, this study extends a Bayesian model to control for non-independence 

within badger populations, providing further corroboration that sex is an 

important determinant of disease susceptibility and social group associations 

affect infection risk.  

Introduction 

A major challenge in analysing time-series data is incorporating individual, 

temporal and spatial complexities, and deciphering the impact these have 

(Bjørnstad & Grenfell, 2001). This becomes critical when studying host-
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pathogen interactions which can be highly heterogeneous, with infection risk 

and susceptibility often dependent upon, but not limited to, age, life-stage, sex, 

location, and social structuring. These factors can influence inherent 

immunology, incite specific behaviours from individuals, along with altering 

ecological conditions, all of which can bring about inequality in infection risk 

within populations. Using data from a longitudinal study of naturally infected 

badgers we explore this concept in a badger-TB system. Applying a Bayesian 

multistate analysis we consider epidemiological heterogeneity due to sex, as 

well as the impact of social grouping which may generate non-independence in 

infection risk among individuals.  

Badgers are reservoir hosts of bovine tuberculosis and drivers of TB outbreaks 

in cattle in the UK and Ireland. Heterogeneities in disease susceptibility can 

significantly affect infection dynamics (Lloyd-Smith et al., 2005). Previous 

multistate analysis, using a classical maximum-likelihood approach (Chapter 3), 

uncovered sex-differences with male badgers experiencing elevated mortality 

rates and increased disease risk. Epidemiological differences between sexes 

are an important consideration that can be directly taken forward to guide 

management strategies. We add to this work and consider an additional 

possible source of bias in infection risk; social structure. A defining 

characteristic of badgers is their social living and use of shared underground 

dens called setts. Badgers form discrete social groups consisting of 2 -27 

individuals (Rogers et al., 1997; Roper, 2010; Woodroffe et al., 2009b), with up 

to 70% of their time spent below ground sharing communal space (Roper, 

2010). Social organisation can promote skewed contact rates with high levels of 

contact within groups and reduced direct contact between social groups. Across 

animal systems social behaviours have been linked to transmission (Rushmore 

et al., 2013; Wendland et al., 2010) driving spatial aggregation of disease 

across host populations (Blanchong et al., 2007; Joly et al., 2006). This 

represents a general movement away from the traditional view of randomly 

mixing homogeneous populations towards an acceptance that host association 

patterns may be heterogeneous. Variability in social structuring across a 

landscape may be responsible for the observed spatially patchy distribution of 
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TB (Delahay et al., 2000) and spatial clustering of strains of M. bovis (Kelly et 

al., 2010) across badger populations.  

Tuberculosis infection can occur indirectly through contact with M. bovis in the 

environment, but direct transmission via contact with infectious individuals is 

suggested to be the dominant mechanism with the majority of lesion 

development consistent with aerosol transmission or bite wounding (Jenkins et 

al., 2008a). Therefore, accounting for social cohesion in disease analyses is 

likely to be particularly important if estimates of state-transitions, i.e. infection 

risk, are directly related to patterns of high within group social contact, with 

infection probabilities higher for individuals living in groups with TB already 

present (Vicente et al., 2007). White nosed syndrome in bats is found to be 

driven by similar social behaviour with clustering in hibernacula facilitating 

transmission rates (Langwig et al., 2012). However the impact of social 

structure on transmission will reduce the more individuals move between 

groups. Badgers although living in these discrete well-defined groups are 

suggested to move more than previously thought from trapping data alone with 

extra-group matings accounting for almost half of all paternity (Carpenter et al., 

2005; Dugdale et al., 2007) and anecdotal evidence that more aggressive 

encounters occur between groups than within group (Roper, 2010). Additionally 

recent evidence suggests infected badgers may have a disproportionate 

contribution to infection between groups, due to their network position (Weber et 

al., 2013). If extra-group encounters are linked to transmission events then 

social partitioning may be trivial with regards to driving infection risk.  

Despite a general consensus in the literature suggesting social structure is an 

important determinant of disease spread, there is a limited understanding on 

just how much social living contributes to disease dynamics. In the absence of 

detailed contact network analyses, accounting for non-independence amongst 

individuals within an analytical framework will be an essential step to uncover 

how much variation social structure accounts for in badger disease ecology. 

The incorporation of social group variation is an intractable parameter when 

using the prior traditional MARK approaches (Chapter 3). This is due to 
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analytical difficulties when incorporating it as a fixed effect due to data 

saturation at the social group level, and difficulties implementing individual 

covariates as random effects within this point-and-click program. We introduce 

a new approach using a Bayesian multistate model within program WinBUGS. 

Bayesian approaches are more flexible in their model set up, with mixed effect 

models coded similar to that of generalised linear mixed models. Creating a 

hierarchical model to account for multiple processes including social group as a 

random effect influencing TB transmission is unproblematic. Also, the resulting 

Bayesian inferences that can be made using the posterior values explicitly 

recognise parameter uncertainty, providing the probability of a given hypothesis, 

arguably improving interpretability of the results. 

We apply a Bayesian multistate model to a population of naturally infected 

badgers. We first, compare results to prior classical approaches (Chapter 3) 

and second incorporate social group and individual variation as random effects 

to assess the amount of variation social non-independence explains in infection 

risk within badger populations. 

Methods 

Study population 

The study population is the Woodchester badger society. We utilised the same 

subset of data (1984-2005), disease categorisation (N, P, X and XX) and 

quarterly capture histories used in the prior MARK analysis (for full details refer 

to Chapter 3). This consisted of 1640 badgers (674 males and 786 females). In 

addition to accounting for sex-related and disease-state differences we apply 

indices of social group to account for spatial heterogeneity between badgers in 

separate groups. The majority of badgers are only caught in one social group 

over their lifetime (82.5%), and the chance of permanent movement is generally 

considered small (Macdonald et al., 2008; Roper, 2010), therefore we assign 

group of first capture to each badger to provide an approximate index of social 

non-independence.  
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Multistate models  

Multistate models build upon basic Cormack-Jolly-Seber (CJS) models which 

estimate survival and recapture probabilities, to also estimate transition 

probabilities allowing individuals to move among states or geographic locations. 

These models have numerous caveats assuming;  i) individuals are subject to 

same capture probability; ii) marking doesn’t affect survival, recapture or 

transitions; iii) marks are not lost; iv) the fate of each individual is independent. 

By applying this analysis to an infected badger population, this enables 

inclusion of time-varying discrete covariates specifying the disease state of the 

individual badger, estimating survival of badgers in progressive health states as 

well as infection and disease progression probabilities. We build upon the 

previous frequentist analysis implemented within the program MARK (Chapter 

3) and utilise a Bayesian framework. 

Bayesian approach 

A Bayesian approach shifts the focus from estimating the best model whereby 

parameters are fixed and unknown quantities (Chapter 3), to providing 

probability distributions for the parameters themselves. Models were 

implemented using WinBUGS software (Lunn et al., 2000) via the R2Winbugs 

package (Sturtz et al., 2005) in program R (R Development Core Team, 2013). 

By providing a data-set, a statistical model and initial values in BUGS language 

WinBUGS provides the MCMC component of the analysis. The output is a long 

list of numbers for parameters of interest which, if convergence has occurred 

appropriately, represent the posterior distribution from which posterior 

summaries can be obtained. Specifically, with regards to this analysis we can 

use the posteriors to calculate the probability of survival rates differing between 

sexes and between progressive disease states. For the random effects model 

we can also use the posteriors to calculate the proportion of variation explained 

by social group. 
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Data 

Male and female badgers were analysed separately due to known 

epidemiological differences between the sexes, additionally this helped reduce 

computation time. Input data for the model included; 

 Individual capture histories with information regarding the health state of 

each badger on each capture occasion. This consisted of 4 states (N, P, 

X, XX) represented numerically as states 1 to 4. 

 Vector with occasion of first capture 

 Number of individuals 

 Number of capture occasions 

 Additional covariates: Vector of social group of first capture represented 

numerically 1:20 in conjunction with 20 different social groups. 

Parameters 

 The model estimates 3 main parameters: 

 Φi,t= Probability that a badger in state i will survival time period t 

 Pt,i= Probability that a badger in state i  will be captured within time 

period t 

 Ψt,i-j = Probability that a badger in state i will move to state j within time 

period t 
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Model 

Likelihood 

The probability of capture history data (x) is equal to the joint probability of state 

process (z) and observation process (w). 

Process model 

We define 5 true states: alive test negative (N), alive ELISA positive (P), alive 

one-site excretor (X), alive multi-site excretor (XX) and dead. 

The state equation describes the true development of states i.e. the state of an 

individual at time t+1, given its state at time t (Table 4.1). This is defined by a 

categorical distribution whereby state at Zi,t conditional upon state at Zi,t-1. 

Table 4.1. State transition matrix 

 True state at Time t + 1 

True 

state at 

time t 

 N P X XX Dead 

N ϕNψN-N ϕNψN-P ϕNψN-X ϕNψN-XX 1-ϕN 

P 0 ΦPψP-P ΦPψP-X ΦPψP-XX 1-ϕP 

X 0 0 ΦXψX-X ΦXψX-XX 1-ϕX 

XX 0 0 0 ΦXX 1-ϕXX 

Dead 0 0 0 0 1 
 

The process matrix (Table 4.1) represents the probability of an individual in 

state S at time t depends on the combined probability of survival and transition 

at time t-1. The zeroes in the matrix denote that once a badger is infected and 

advancing through disease states it cannot recover and once dead it remains 

dead. 
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Observation model 

The observation equation (Table 4.2) links the true state matrix (Table 4.1) with 

the observed state. We assumed homogeneous recapture across states in 

accordance with prior analyses (Chapter 3). 

Table 4.2. Observation matrix 

 Observation at time t 

True 

state at 

time t 

 N P X XX Dead 

N P 0 0 0 1-p 

P 0 P 0 0 1-p 

X 0 0 P 0 1-p 

XX 0 0 0 P 1-p 

Dead 0 0 0 0 1 
 

Priors 

Bayesian inference requires the allocation of priors. Incorporating individual 

random effects meant survival was modelled on a logit scale to ensure realized 

individual specific survival was bound between 0 and 1. Priors for the back-

transformed mean survival were modelled on a uniform distribution to lie 

between 0.5 and 1 (dunif~0.5, 1), this improved mixing of the chains, but still 

encompassed the broad range of survival parameters found previously (Chapter 

3).  

We use a multinomial logit link function for transition probabilities. For n-1 

transitions we specified a normal dnorm(0,0.001) prior distribution 

corresponding to transition probabilities on a logit scale. Thus ensuring following 

back transformation their sum is less than 1 and allowing the calculation of the 

remaining transition parameter via 1 minus the sum of those already calculated. 
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Covariates 

Transition probabilities between disease states incorporate both social group 

and individual variation as a random effect. Random effects were modelled with 

a standard deviation following a uniform distribution between 0 and 5, on a logit 

scale (σ~dunif(0,5)). Random effects were restricted to one type of transition, 

the probability of infection and assumed to be equivalent within these transitions 

(Fig. 4.1). 

 

Figure 4.1. Schematic of possible transitions along with their composite 

equations used in the model, infection probabilities are shown via a solid line 

and progression probabilities via a dashed line. Transition probabilities (Ψ) are 

composed of the mean value for each transition (μ) plus variation caused by 

social group (S) acting on infection risk (Si) and individual variation influencing 

infection risk (εi). The probability of badgers remaining the same state is not 

shown here, but was estimated within the model by subtracting all other 

possible transitions from 1. 

Survival was modelled on a logit scale with individual variation absorbed as a 

random effect using the following equations. The effects of individual variation 

on survival were assumed to be uniform across disease states. 
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Assessment of model’s performance 

Before obtaining model results there are a few pre-requisites that need to be 

satisfied. Firstly models need to have converged and an appropriate burn-in 

period needs to be selected to ensure the posterior distribution used for 

summary statistics is from the converged chain only. A failure to do this would 

result in the posteriors including the first part of the Markov chain and due to the 

autocorrelation in this process it will still have the impact of the arbitrary 

allocated starting values. We run more than 1 chain to check convergence both 

informally by looking at a time series plot of the sampled values to visually 

check chains converge and formally using the Brooks-Gelman-Rubin diagnostic 

which provides a value termed  ̂ which when equal to 1 indicates convergence 

has been reached, if  ̂ is high then chains need to be run for longer (Brooks & 

Gelman, 1998). Once convergence has been reached thinning can be used to 

reduce autocorrelation and save computer space whereby if data is thinned by k 

every kth sample is saved. After preliminary analysis we found convergence for 

the models minus random effects were reached after 10000 iterations and 

subsequently ran 3 chains of length=30000, burn-in=10000 and thinning = 100, 

all posterior values had converged ( ̂<1.01). The full model, with social group 

and individual variation incorporated as random effects, required longer 

convergence times, we ran 2 chains of length=60000 and burn-in=30000.  

Once the model converged and an appropriate burn-in period utilised then 

summary statistics can be used. A problem with a Bayesian approach is the 

lack of test for overdispersion and model fit. We utilised the MARK analysis 

whereby the median c-hat overdispersion parameter <2 indicating the model 

was not substantially overdispersed (Chapter 3). Although, not accounting for 

overdispersion may result in variances too narrow, it has been suggested that 

incorporating individual variation in Bayesian models is analogous to using a 

variance inflation factor in frequentist approaches (Kéry & Schaub, 2012). We 

used deviance information criterion (DIC (Spiegelhalter et al., 2002)) to aid in 

model selection between models with and without random effects, however the 

value WinBUGS computes is suggested to be problematic in hierarchical 
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models and mixed effects models. Therefore although we utilise DIC values as 

a guide we additionally calculate the amount of variation in infection risk 

explained by social group.  

Results 

Constant model: comparison of methodological approaches 

Our Bayesian model performed well in terms of precision and accuracy when 

compared to parameter estimation using a frequentist approach. Comparing the 

‘best’ model highlighted from the prior MARK analysis (Chapter 3) with the 

equivalent Bayesian model we found almost identical results with less than 1% 

difference between mean quarterly survival values for all point estimates (mean 

difference= 0.3%). 

Female badgers had similar probabilities of quarterly survival in uninfected and 

early disease stages (P & X) with probabilities of a decrease: rise in survival 

during these early stages nearer 50:50 than any notable direction of change. 

Once in an advanced disease state (XX) female survival had a 100% posterior 

probability of declining (mean survival; 0.93 (N), 0.92 (P) & 0.93 (X), 0.78 (XX); 

Fig. 4.2).  

In comparison, we find survival rates in males had a 97.5% posterior probability 

of declining at early onset of infection (P & X). Similar to females, survival 

declined further during the final disease state with a 99.7% probability of male 

badgers experiencing reduced survival in the XX state (mean survival; 0.91 (N), 

0.87 (P), 0.83 (X), 0.61 (XX); Fig. 4.2). 

Comparing survival posteriors between sexes, males have lower survival than 

females in all disease states (posterior probability of reduced survival in males; 

N 100%; P 99.7%; X 100% & XX 99.5%). 
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Figure 4.2. Mean quarterly survival estimates of i) female and ii) male badgers 

in disease states of increasing severity. Values shown are posterior probabilities 

that as disease states advance in severity that survival rates reduce. *indicate 

high probability (>0.95) of survival differences between states. 

Comparing male and female quarterly infection rates, males are 98.5% more 

likely to have a higher rate of infection to an exposed class (N-P). They are 

99.5% more likely to have a higher rate of infection to an early infectious class 

(N-X) and 96% more likely to go straight to a highly infectious class (N-XX). 

Combining all possibilities of infection males are 98% more likely to have a 

higher rate of infection than females. These infection probabilities are 

analogous to estimates found previously (Chapter 3), with 2.3% of males and 

1.3% females becoming infected in any quarterly period. 

Accounting for random effects 

Incorporating social group and individual variation was favoured by DIC 

selection procedures (Δ DIC: males > 59; females > 1). 21.2% (95% CRI; 5, 46) 

variation in female infection risk and 24.4% (11, 42) variation in male infection 

risk was explained by social group (Fig. 4.3). After accounting for social group 

i) ii) 
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and individual variation estimates of infection risk declined compared to 

constant models but still remained strongly sex dependent with 1.2% males 

(95% CRI 0.7, 1.8) and 0.5% females (0, 1) becoming infected in any given 3 

month period. 

 

Figure 4.3. i-ii) Social group and individual variation in infection risk for (i) male 

and (ii) female badgers, iii) followed by proportion of variation explained by 

social group. 

Incorporating individual variation in the model framework, along with social 

group as a random effect, did not alter mortality patterns with sex-differences in 

epidemiological traits remaining (Fig. 4.4). However it further exacerbated the 

impact of infection on badgers. Survival rates for uninfected badgers, remained 

unchanged, along with estimates of survival in female badgers during early 

infection states (P & X). However, where we previously found disease-induced 

mortality (XX females, P males, X males and XX males), the impact of disease 

i) ii) iii) 
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appears more severe (mean survival: female: 0.92 (N), 0.91 (P), 0.92 (X), 0.69 

(XX); male: 0.91 (N), 0.83 (P), 0.77 (X), 0.58 (XX); Fig. 4.4). 

Figure 4.4. Quarterly survival estimates (± sd) of badgers from constant model 

and random effects model. Note the further reduction in survival estimates for 

female XX badgers and male P, X and XX badgers. 

Discussion 

We have explored one way in which non-independence between badger social 

groups can be incorporated in an epidemiological analysis, illustrating the 

importance of considering this alongside sex when estimating disease 

processes. Moving to a Bayesian analysis corroborated parameter estimates 

generated in previous studies (Chapter 3) and provided additional inference 

regarding sex-differences in epidemiological traits. By incorporating social 

structure in a relatively straightforward way we controlled for spatial 

heterogeneity in infection risk along with individual variation. Analyses showed 

sex remained an important determinant of disease processes, in addition to 
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social group which explained over a fifth of variation in infection risk in both 

sexes. Parameters generated from the mixed effects models varied slightly with 

reduced infection rates after controlling for non-independence, and 

intensification of disease-induced mortality estimates, increasing the estimated 

impact of TB on badger survival. This is an intriguing observation with the 

expected relationship between TB infection and survival perhaps more severe 

than previously thought.  

Moving to a Bayesian framework provided similar survival and transition rates to 

a frequentist approach (Chapter 3). A notable difference is the ability to now 

assign measures of certainty, with high probabilities (>0.97) that males are 

more likely to become infected, infectious, and have reduced survival than 

females in all health states. In the absence of detailed contact data we explored 

one approach to control for non-independence in infection risk, incorporating 

social group as an index of spatial heterogeneity, alongside controlling for 

individual variation. Survival estimates in the mixed effects models intensified 

the impact of disease on badger survival. In previous analysis early disease 

stages reduced male survival by a few percent we now find a 7% reduction in 

male survival following infection increasing to a 33% reduction in advanced 

disease stages. Equally we find female mortality patterns similar to previous 

studies, that is survival rates remain unaffected and equivalent to estimates 

from constant models during early infection stages, however controlling for 

individual variation we find they too have intensified disease-induced mortality 

rates, albeit not until the advanced disease state, reducing their survival by 23% 

(equating to an additional 9% reduction when compared to the constant model).   

Social organisation directly influences disease persistence and spread across 

wild animal populations (Altizer et al., 2003). Badgers conform to this ecological 

principle with social grouping explaining 21-24% of variation of TB infection risk. 

Social structuring likely impacts host association patterns and host proximity by 

driving high within group contacts and low between group contacts. A 

mechanism suggested to have evolved to reduce the spread of disease 

throughout socially partitioned populations (Loehle, 1995). In the light of this, 
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within group dynamics may be important in driving epidemiology and more 

appropriate than mass action models which are likely a crude approximation of 

infection processes. Yet, before making definitive predictions about how social 

structuring affects epidemiological processes we must understand how contact 

mechanisms translate to transmission events, requiring more behavioural 

studies. 

Along with social group structure, movement between groups has also been 

associated with a rise in TB incident cases (Rogers et al., 1998; Vicente et al., 

2007). Inclusion of individual time-varying random effects can be incorporated 

within this Bayesian framework and was explored prior to this study, but 

allowing social group to change over time for each individual resulted in lengthy 

model runs impractical to implement as part of this project. Given adequate 

computational power these models may be worth considering in future 

analyses. An additional factor to take into account in a multi-host system, where 

pathogens infect more than one host, is interspecies transmission. Proximity 

logger data has suggested that badgers may experience more interspecies 

contact than between social group contact (Böhm et al., 2009). Therefore social 

structuring may not only impact intra-species contact patterns but also badger-

cattle contact events. Our approach of incorporating an index of social group 

may absorb some of this variation if badgers living in close proximity to cattle 

are more likely to become infected.  

Moving to a Bayesian philosophy corroborated with previous studies 

highlighting sex-differences as an important driver of heterogeneity in disease 

susceptibility. In the absence of contact data capture-mark-recapture can 

provide information regarding location of captures which can be used to account 

for spatial heterogeneity providing robust epidemiological estimates. It appears 

that badger social group accounts for more than a fifth of variation in 

transmission rates. However, a greater understanding of interactions between 

these variation patterns and empirical contact data will provide further insight 

into observed epidemiological patterns and the social implications of disease 

dynamics. 
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CHAPTER 5 

 

 

The previous chapters have obtained key epidemiological parameters. These 

rates can be a vital tool used to guide future management decisions. However, 

management arguably also requires knowledge of the underpinning 

mechanisms. Having identified sex as an important determinant of disease 

induced mortality, disease transmission and disease progression, I use a novel 

technique to turn these discrete rates into trajectories and investigate the 

underlying cause of sex-related differences in disease response, a general 

move from identifying patterns to uncovering processes.  

This chapter is split into 2 sections. Chapter 5.1 focuses on uninfected and 

infected  categories of male and female badgers, and forms the second 

manuscript of this thesis which is currently in submission*. Chapter 5.2 

provides further detail focusing on specific disease states, and despite being 

second in this chapter line-up was actually the first survival trajectory analysis 

implemented.  

 

 

*A version of this chapter is now in print: 

McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J., & Hodgson, D. 

(2014). Mortality trajectory analysis reveals the drivers of sex-specific 

epidemiology in natural wildlife–disease interactions. Proceedings of the Royal 

Society B: Biological Sciences, 281(1790), 20140526.   
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5.1: Mortality trajectory analysis reveals the drivers of sex-

specific epidemiology in natural wildlife-disease interactions 

Summary  

In animal populations, males are commonly more susceptible to disease-

induced mortality than females. However, three competing mechanisms can 

cause this sex-bias: weak males may simultaneously be more prone to 

exposure to infection, and mortality; being “male” may be an imperfect proxy for 

the underlying driver of disease-induced mortality; or, males may experience 

more progressive disease than females. Here we infer the drivers of sex-

specific epidemiology by decomposing fixed mortality rates into mortality 

trajectories and comparing their parameters. We applied Bayesian survival 

trajectory analysis to a 22-year longitudinal study of a population of badgers 

(Meles meles) naturally infected with bovine tuberculosis. At the estimated point 

of infection, infected male and female badgers have equal mortality risk, refuting 

the hypothesis that acquisition of infection occurs in males with coincidentally 

high mortality risk. Males and females harboured similar levels of heterogeneity 

in mortality risk, refuting the hypothesis that being male is only a proxy for 

disease susceptibility. Instead, sex-differences were caused by a more rapid 

increase in male mortality rates following infection. Males are indeed more 

susceptible to bovine tuberculosis, probably due to immunological differences 

between the sexes. We recommend this mortality trajectory approach for the 

study of zoonoses in wild animal populations. 

Introduction 

There is increasing epidemiological evidence of sex-related differences in host-

pathogen interactions in animal populations. Males are usually more likely than 

females to acquire infection, and die from disease once infected (Guerra-

Silveira & Abad-Franch, 2013). However, the mechanisms that drive these sex 

biases remain poorly understood. By changing our view of mortality parameters, 

from fixed rates in discrete stage classes to mortality trajectories, we aim to 
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deconstruct the mortality process in infected males and females, uncovering 

when in the infection process sex-differences arise, and helping to identify the 

mechanisms that generate such variation. 

The most obvious driver of sex-differences in infectious disease-induced 

mortality is that disease affects males more than it does females, due to 

weaker, or simply different, physiologies (Zuk & McKean, 1996). Genetic 

differences between sexes may directly impact disease susceptibility, with X-

linked genes a determinant of immune functioning (Markle & Fish, 2013). Sex-

hormones have also been linked to male-biased mortality due to their role in 

determining immunocompetence (Schuurs & Verheul, 1990). Androgens, in 

particular testosterone, are known to regulate male reproductive trade-offs 

(Bouman et al., 2005; Klein, 2000) suppressing disease defences (Folstad & 

Karter, 1992; Zuk & Stoehr, 2002). Indirect mechanisms of sex-differences 

include the possibility that infection itself causes sex-biased changes in 

behaviour, for example increased fighting or ranging, exposing males and 

females to differential risk of mortality as infections progress. 

Alternatively, behavioural and ecological differences between the sexes might 

indirectly make males simultaneously more likely to acquire infection and die 

from other causes. In many species, including humans (Byrnes et al., 1999), 

males are more likely to engage in risk-taking behaviours increasing their 

disease exposure. Risky behaviours such as higher levels of aggression 

(Delahay et al., 2006) and wider ranging movements (Delahay et al., 2006; 

Macdonald et al., 2008) may simultaneously raise male mortality and increase 

infection risk, giving rise to a correlation between infection risk and increased 

mortality but no direct causality.  

A third potential driver of sex differences is that infection may have 

disproportionate effects on substandard males that are already in poor body 

condition, resulting in observable differences in heterogeneity in response to 

infection, between sexes. In this case, maleness is simply a proxy for 
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susceptibility to disease: the true driver is poor body condition, but more males 

than females tend to be in this state.  

Classical statistical approaches, to demographic or epidemiological analysis of 

surveys of wild animal populations, tend to estimate fixed mortality parameters 

for pre-defined classes of population members (e.g. male vs female; age 

classes). Fixed mortality parameters assume that infected individuals 

experience an exponential decay in survival over the infection period, and thus 

fail to consider infection as a dynamic process, and fail to reveal immunological 

or behavioural causes. In reality, mortality trajectories will be more complicated 

than the exponential process, and differences in the parameters of survival 

curves, among classes of individuals, can reveal important epidemiological 

processes. If males are coincidentally more likely to develop disease and die of 

other causes, we predict elevated male mortality at the point of infection. If 

males are more susceptible to disease because the male class harbours the 

greater share of substandard individuals, we predict less heterogeneity in 

disease-induced mortality among males than among females. Finally, if males 

are genuinely more susceptible to disease progression, we predict that the rate 

of increase in mortality, post-infection, will be greater in males than in females.   

One reason for the paucity of time-varying mortality trajectories of infected 

hosts, in wild populations, is that individuals cannot be monitored continuously 

from time of infection to death. However, age-specific mortality functions are 

commonly used in human and wildlife demographic analyses, and a recently 

developed method can estimate age-specific mortality trajectories whilst 

accommodating uncertainty in dates of birth and death (Colchero & Clark, 

2012). For the first time, we employ this Bayesian trajectory framework (BaSTA; 

(Colchero et al., 2012)) to describe disease-induced mortality trajectories, 

accounting for uncertainty in date of infection, and apply this method to obtain 

mortality patterns for different health states in a population of wild badgers 

(Meles meles) naturally infected with Mycobacterium bovis, the causative agent 

of bovine tuberculosis (bTB).   
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Sex-differences in epidemiological traits have been observed in bTB-infected 

badgers, with males suffering increased mortality during early disease stages 

and faster progression into advanced diseased states  (Graham et al., 2013) 

where they experience double the rate of disease-induced mortality , when 

compared to females (Graham et al., 2013; Wilkinson et al., 2000). We test 

contrasting hypotheses and describe sex-related differences in the mortality 

trajectories of badgers. Given the economic importance and high public profile 

of badgers as a reservoir of bTB (Donnelly et al., 2006), it is critical that we 

better understand the epidemiology of this disease. Teasing apart the 

behavioural, ecological and physiological drivers that divide the wildlife 

population into categories of susceptibility to disease may promote improved, 

targeted strategies to reduce rates of transmission to livestock (Woolhouse et 

al., 1997).  

In summary, we have applied a new methodology for analysing longitudinal 

demographic data which provides mortality trajectories rather than discrete 

rates of mortality during different stages of disease progression. We suggest 

this methodology can be used to obtain mortality trajectories that depend on 

infection duration, rather than age per se. We show that bTB infection alters 

mortality trajectories of badgers. We describe differences in mortality 

trajectories between uninfected and infected states and by focusing attention on 

variation over time, the role of sex in shaping heterogeneity in disease 

response. The ability of BaSTA to account for unknown date of infection 

provides opportunities to explore disease-specific mortality trajectories in this 

and other wild mammal populations, paving the way for a better understanding 

of the role of sex in epidemiological processes. 

Methods 

Ecological data 

We used capture-recapture data collected from an intensively studied natural 

population of badgers in Woodchester Park, Gloucestershire for the period 1984 
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to 2005. Twenty social groups that were trapped consistently throughout the 

study period were incorporated in this analysis. Badgers were trapped 

approximately quarterly. They were anaesthetized and each was given a unique 

identifying tattoo on its first capture (for detailed methods see Delahay et al. 

(2000)). Blood samples were taken and tested for antibodies to M. bovis using 

an enzyme-linked immunosorbent assay (the Brock ELISA (Goodger et al., 

1994)). Samples of faeces, urine, sputum and pus from abscesses and/or bite 

wounds (where relevant) were taken for bacterial culture of M. bovis (Clifton-

Hadley et al., 1993; Gallagher & Horwill, 1977). Badgers were categorised 

according to these diagnostic test results as either uninfected (U) defined as a 

test-negative badger and infected (I) including badgers that test positive to the 

ELISA test and/or culture. In our categorisation we made two assumptions. 

First, as TB is a progressive disease in badger populations, once classified as 

infected we assumed that a badger did not recover (in accordance with previous 

studies (Delahay et al., 2000; Vicente et al., 2007)). Second, we assumed 

accuracy of diagnostic tests. Accurate diagnosis in live badgers is difficult due 

to limitations in the performance of the ELISA test which has a specificity of 89–

94% (Clifton-Hadley et al., 1995; Greenwald et al., 2003), and culture which 

despite high specificity has low sensitivity (Drewe et al., 2010). Violation of 

these assumptions due to error ascribing infection status would only act to 

weaken the signal of mortality effects in infected badgers, thus making our 

results conservative. Individual quarterly capture histories were created for 

uninfected and infected badgers with sex incorporated as a covariate, totalling 

7957 capture occasions across 1460 individual capture histories for 786 

females (125 of which were ‘infected’) and 674 males (124 of which were 

‘infected’). Survival analysis was then applied to the separate data sets. 

Modelling Framework 

To account for uncertainty in infection date, we fitted a Bayesian survival 

trajectory analysis (BaSTA) (Colchero et al., 2012) to capture data for infected 

badgers, using the software R (R Development Core Team, 2013). BaSTA 

utilises a CMR approach incorporating recapture probabilities less than one, 
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thereby providing a powerful analysis that can account for variable recapture 

rates. Recapture probability was kept fully time-dependent throughout the 

analysis accounting for any temporal recapture bias.  

BaSTA models “birth” years (in this case year of infection) and death years as 

latent variables, drawing inference on age- or time-since-infection-specific 

mortality despite missing data. For the uninfected badgers analysed, prior 

information on the year of birth was obtainable when badgers were first caught 

as cubs or yearlings, therefore under such circumstances birth dates were 

incorporated, consisting of 1011 known birth dates. With regard to the infected 

badgers we cannot be certain when an individual entered a disease state, 

therefore no date was included.  Dates of death were recorded when badgers 

were found dead: time of death was known for 214 uninfected badgers and 48 

infected badgers. 

Four mortality functions, each able to describe different trends in mortality, were 

compared (Colchero et al., 2012) :  

Exponential. The simplest trajectory models consist of a single constant 

mortality parameter that assumes mortality is independent of the duration of 

infection, equivalent to the fixed discrete rates we commonly see in wildlife 

disease analyses. 

Gompertz. These models consist of two parameters; an initial mortality and an 

exponential increase in mortality parameter (Colchero et al., 2012). 

Weibull. This model has two parameters, a shape and a scale (Colchero et al., 

2012; McDonald et al., 1996). The versatility of the model means it can show 

accelerating increase, decelerating increase, decreasing or constant mortality. 

Logistic. This model has three parameters (Colchero et al., 2012). It is similar to 

a Gompertz model with an additional deceleration parameter whereby mortality 

levels off over time. In terms of mortality trajectories of an infected population 
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this levelling off could represent a reduction in mortality at advanced duration of 

infection i.e. an improvement in survival, or (more likely) heterogeneity in 

disease response (Vaupel et al., 1979). 

To ensure model convergence, initial trials of four Markov Chain Monte Carlo 

(MCMC) iterated samplings (chains) were run for each model, followed by 

100,000 iterations on four chains, with a burn-in of 20,000 for each analysis. 

Convergence was assessed both visually ensuring mixing of the chains and 

formally within the model calculating the potential scale reduction ( ̂ (Colchero 

et al., 2012)). When  ̂ is close to 1 we can be confident that convergence has 

been reached, the burn-in period was determined when  ̂ <1.01. We also 

tested mortality parameters for prior sensitivity, running the model for both 

uninfected and infected badgers under four different prior structures. The choice 

of prior did not influence the identification  of mortality parameters or differences 

among them. The deviance information criterion (DIC) (Spiegelhalter et al., 

2002) was used to assess model fit.  Additionally BaSTA provides a diagnostic 

tool based on Kullback–Leibler discrepancies (Kullback & Leibler, 1951) 

calibrated to reduce asymmetry (KLDC), which provides an assessment of the 

extent of overlap of posterior distributions of parameter estimates for categorical 

variables. This is a value between 0.5 and 1: a value of 0.5 indicates identical 

distributions, and 1 that there is no overlap between them (Colchero et al., 

2012).  This allows us to determine the magnitude of the effect of sex on the 

parameters of mortality trajectories. 

Predictions 

Using a logistic model to represent mortality trajectories following infection (Fig. 

5.1), we formulated hypotheses regarding the cause of the established sexual 

dimorphism in infection response among badgers. The logistic model relates 

mortality rates ( )  to time-since-infection ( )x , 
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in which b0 represents mortality at the point of infection, b1 describes the rate of 

mortality increase post-infection and b2 highlights deceleration in mortality rates.  

Hypothesis 1: If sex-differences in mortality are caused by a coincidental 

predisposition to die and to also become infected, we would expect to find 

differences in mortality at the point of infection (b0; Fig.5.1).  

Hypothesis 2: If sex-differences are caused directly by disease, we would 

expect similar intercept values (b0) but sex-related differences in the 

subsequent rate of increase in mortality post infection (b1; Fig.5.1).  

Hypothesis 3: If maleness is a proxy for infection susceptibility to disease with 

the male sex harbouring a greater proportion of substandard individuals, we 

would expect reduced heterogeneity in response, indicated by a reduction in the 

deceleration parameter (b2; Fig.5.1). It should also be noted that if the male sex 

tends to harbour weaker individuals, we might also observe higher male 

mortality at the point of infection (hypothesis not graphed). 
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Figure 5.1. Hypothetical, sex-specific, logistic mortality trajectories driven by 

different mechanisms.  Hypothesis 1: The sexes are differentiated by rates of 

mortality at the point of infection (b0). Hypothesis 2: Sexes are differentiated by 

the rate of increase in mortality post-infection (b2). Hypothesis 3: Sexes are 

differentiated by their degree of deceleration post infection, an artefact of 

heterogeneity in disease response. 

Results 

The Gompertz model was most supported for uninfected badgers (Table 5.1, 

Fig. 5.2), consisting of just two parameters: initial mortality at the point of birth 

(b0) and the rate of mortality increase (b1). Once infected, the logistic mortality 

function was most supported, consisting of an additional deceleration parameter 

(b2; Table 5.1, Fig. 5.3). As the use of DIC values has been considered 

controversial (Celeux et al., 2006; Colchero & Clark, 2012) further support for a 

logistic trajectory in infected badgers is provided in Table 5.2, wherein b2 is 

identifiably different from zero, upholding the rejection of the simple Gompertz 

model. These results were robust under four different prior structures 

(Gompertz priors b0, b1: (3, 0.01), (-3, 1), (-2, 1), (-2, 0.01); Logistic priors b0, b1, 

b2: (-3, 0.01, 0), (-3, 1, 0.01), (-3, 1, 1), (-2, 1, 0.01)). 
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Table 5.1. Candidate mortality functions for survival trajectories of male and 

female badgers in two health states (infected and uninfected), and their 

corresponding differences in deviance information criterion (∆DIC). Substantial 

support for the ‘best’ model alone is indicated when rival models all have ∆DIC 

> 3 (Spiegelhalter et al., 2002).  **the most supported model 

mortality function Uninfected infected 

Exponential 9.1 26.7 

Gompertz 0** 49.4 

Logistic 21.5 0** 

Weibull 29.4 6.7 
 

 

Table 5.2. Posterior means and 95% credible intervals of mortality trajectory 

parameters for uninfected and infected badgers, including intercept (b0), 

increase mortality rate (b1) and for infected badgers a deceleration parameter 

(b2). 

  
uninfected infected 

  
mean lower 

95% 

upper 

95% 

mean lower 

95% 

upper 

95% 
b0 male -2.426 -2.56 -2.297 -3.538 -4.464 -2.721 

 

female -2.635 -2.762 -2.507 -3.231 -4.064 -2.477 

b1 male 0.006 -0.003 0.015 0.847 0.513 1.238 

 

female 0.002 -0.005 0.01 0.481 0.202 0.768 

b2 male - - - 2.833 1.682 4.147 

 

female - - - 2.626 1.122 4.104 

Inferred life expectancies decreased once badgers became infected. Life 

expectancies were consistently shorter in males than in females. To the nearest 

month, male average life expectancies were estimated to be 32 months for 

uninfected badgers and 22 months for infected badgers. Female average life 
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expectancies were found to be 40 months for uninfected badgers and 35 

months for infected badgers. When they are uninfected, this equates to males 

having on average a 20% lower life expectancy compared to females, with the 

acquisition of infection increasing this difference to 37%.  

Sex-related differences amongst uninfected badgers were due to higher initial 

mortality parameter values in males, suggesting that they are predisposed at 

birth to have a higher initial mortality than females (KLDC; 1, Fig. 5.2, Table 

5.2). Their subsequent life-time rate of mortality increase was similar to that of 

females, with a high degree of overlap between posteriors (KLDC; 0.68, Fig. 

5.2, Table 5.2). 

 

 

Figure 5.2. Age-dependent survival and mortality trajectories of uninfected male 

and female badgers. Initial mortality values (b0) at point of birth were higher for 

males than females, but the rate of mortality increase (b1) was similar between 

the sexes. Uninfected mortality trajectories were best described by Gompertz 

functions. 
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Infection alters mortality patterns in badgers, with trajectories of infected 

animals supported by a logistic framework, consisting of an additional 

deceleration parameter (b2). At the point of infection, there is no identifiable 

difference in mortality between the sexes, with significant posterior overlap 

(KLDC; 0.62, Fig. 5.3, Table 5.2), suggesting that infected males do not 

represent a biased subset of more susceptible individuals in the population. 

Following infection, the mortality rate in males increases substantially faster 

than in females (KLDC; 0.96, Fig. 5.3, Table 5.2). The degree of deceleration or 

heterogeneity was similar in males and females once infected (KLDC; 0.54, Fig. 

5.3, Table 5.2) indicating a similar spectrum of responses to disease in both 

sexes. The absence of the deceleration parameter (b2) in the trajectories of 

uninfected individuals suggests that infection promotes an increase in 

heterogeneity in mortality amongst badgers, i.e. a wider spectrum of mortality 

responses. These results support our hypothesis 2, that differences between 

male and female infected badgers are due to a substantial difference in the 

post-infection rate of increase of mortality (b1). 
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Figure 5.3. Logistic survival and mortality trajectories of badgers following 

infection. At the point of infection there is no discernible difference between 

sexes (b0), however males have elevated rates of increase in mortality following 

infection (b1), and males and females display similar levels of heterogeneity (b2) 

in disease responses. 

Discussion 

While increased mortality due to bTB infection is already known to occur in male 

badgers (Graham et al., 2013; Wilkinson et al., 2000) we have now located 

where in the infection process these sex-related differences arise, and can 

begin to infer the mechanisms that might generate this variation.  Mortality rates 

at the point of infection are very similar between the sexes, suggesting that 

elevated mortality in infected males is not due to the coincidental risks of natural 

mortality and infection. We also found no evidence that infected male and 

female badgers differ in the degree of heterogeneity among individuals in their 

responses to infection. Instead, the distinction we see between the sexes is that 

males experience a faster rate of increase in mortality with increasing time-

since-infection. This suggests a difference in immunological or other 

physiological response to bTB infection between males and females, and/or that 
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infection itself might cause male badgers to behave in ways that increase their 

risk of death.  

Uninfected badgers do demonstrate sex-based differences in mortality and 

senescence-related mortality. However, the increase in mortality with age in the 

best supported Gompertz framework is not substantial compared to other 

mammals (Colchero & Clark, 2012), i.e. evidence of senescence is weak 

amongst uninfected wild badgers. Uninfected males are predisposed to higher 

mortality from the time of birth,  resulting in a 20% shorter life expectancy, 

possibly due to increased competitive encounters and bite wounding among 

males, a phenomenon also found in other mammals (Clutton-Brock & Isvaran, 

2007). Uninfected badgers have very different mortality trajectories to infected 

badgers, characterised by substantially lower mortality rates. Infection with bTB 

clearly alters prognoses of life expectancy and exaggerates sex differences in 

survival rates.  

Mortality trajectories of infected badgers were best described by logistic curves, 

whereby after an increase in mortality the trajectory decelerates and reaches a 

plateau. Although this pattern implies that susceptibility to disease progression 

declines with duration of infection in all infected badgers, a rival and more 

biologically plausible explanation is heterogeneity in individual response to 

infection (Vaupel et al., 1979), whereby the most susceptible individuals die 

early on in the infection process, leaving the more resilient to die later. Male and 

female badgers show similar levels of heterogeneity in mortality rates. This 

indicates a comparable spectrum of immune responses, and suggests that a 

broad array of individuals of both sexes become infected rather  than just a 

biased sample of males that are already predisposed to high mortality rates.  

We suggest that sex-related variation in immunocompetence is likely to be the 

main mechanism for observed differences between the epidemiology of bTB in 

males and females. Mortality patterns highlight raised mortality in males 

following infection but otherwise comparable trajectories, suggesting weaker 

immunological defences. This is consistent with results of prior studies that 
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showed males suffering rapid disease progression (Graham et al., 2013) and 

substantial weight loss (Tomlinson et al., 2013) following infection. 

Immunological defences are costly and can trade off with other physiological 

processes (Graham et al., 2013; Lochmiller & Deerenberg, 2000; Sheldon & 

Verhulst, 1996) perhaps resulting in differential investment between the sexes. 

Although, chromosomal differences, and other physiological processes cannot 

be discounted sex-hormones are suggested to be strong determinants of 

immune response to mycobacterial infection across study species (Markle & 

Fish, 2013). Male immune suppression is commonly found in other mammals 

(Mills et al., 2010; Moore & Wilson, 2002), whereby the cost of allocating 

resources to reproductive activity (e.g. male ornamentation (Verhulst et al., 

1999), singing (Saino et al., 1997), territorial behaviour (Svensson et al., 2001) 

and aggressive encounters (Cavigelli & Pereira, 2000)) suppresses immune 

defences.  Such a trade-off, also known as the immunocompetence handicap 

(Folstad & Karter, 1992), may explain why male badgers are more likely to 

become infected and die from bTB (Graham et al., 2013; Wilkinson et al., 2000). 

The investment in reproductive effort in male badgers is not expressed as 

extravagant ornamentation as in some species (Folstad & Karter, 1992) but 

more likely by competitive and/or aggressive behaviour (Delahay et al., 2006), 

maintaining territories, ranging behaviour (Vicente et al., 2007) and the 

associated investment in a larger body size compared to females (Rogers et al., 

1997). Speculatively, investment in growth and reproduction in male badgers 

may contribute more to fitness than investment in immunological defence 

against diseases such as bTB.  

An intriguing additional, and not exclusive, explanation for higher rates of 

increase in mortality risk in male badgers is the possibility that infection itself 

causes changes in behaviour that increase the likelihood of death. Pathogens 

can manipulate host behaviour (Klein, 2003; Vyas et al., 2007) increasing risk-

taking behaviours such as aggression in order to increase physical contact and 

transmission opportunities between individuals. The possibility that infection 

drives behavioural changes in male badgers cannot be discounted, with 

increased aggression one suggested mechanism explaining why infectious 
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male badgers are more likely to be bitten (Jenkins et al., 2012) reducing their 

survival. However, determining the causality is problematic as higher 

prevalence of bite wounds may also be due to disease-driven reductions in 

body condition impacting the social status (Delahay et al., 2006) and 

competitive ability (Jenkins et al., 2012) of infected males.  

We uncover the counter-intuitive result that males have similar mortality to 

females upon becoming infected, despite having higher natural mortality. This 

may be due to earlier onset of infection in males. That is, increased probabilities 

of infection in males (Graham et al., 2013) may incite infection at a younger age 

when their background age-dependent survival will be naturally lower. An 

alternative explanation may be that females with high mortality, due to other 

mortality pressures, have increased infection risk. Generally females have 

reduced susceptibility to disease therefore those under additional pressures or 

comorbidities, for example due to nutritional stress and/or reproduction-

mediated drops in immunity (Altizer et al., 2006), may be at higher risk of 

infection. Given that multiple mechanisms may drive similar patterns, an 

individual-level disease analysis may be useful to observe drivers of bTB in 

female badgers. Unfortunately, there is no current means to incorporate time-

varying individual covariates within the BaSTA framework, but such a 

development would allow variation in body condition and reproductive status to 

change over time addressing these questions.   

Understanding how the risk of mortality changes, as infection progresses, 

provides a key to explaining and predicting the population dynamics of infected 

hosts, and ultimately informs the development of better intervention strategies 

for disease control. We demonstrate the utility of a Bayesian modelling 

framework, developed specifically for age-related survival analysis, but 

translated here for the analysis of disease-induced mortality trajectories in 

wildlife populations. Trajectories, as opposed to discrete rates of mortality, can 

highlight heterogeneity in disease response, stages of maximum vulnerability, 

and allow comparison of mortality trends between cohorts and classes of 

infected hosts. Trajectory analysis has revealed key sex-related differences in 
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bTB epidemiology in badgers, and we recommend its application to surveys of 

disease-induced mortality in other populations and species. 
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5.2: Extending BaSTA into discrete infected states reveals 

further deviance in sex-specific mortality trajectories 

Methods 

Adopting an identical BaSTA modelling framework (Colchero et al., 2012) 

described in the preceding section (Chapter 5.1) we delve further into the 

complexity of disease state specific analysis and advance from an uninfected-

infected comparison to compare sex-specific survival trajectories in three 

contrasting infected states. Infected badgers were categorised according to 

diagnostic test results as ELISA positive (P), one-site excretor (X) and multi-site 

excretor (XX) (see Table 5.3 for full definitions (Graham et al., 2013)). Once a 

badger tested positive (P, X or XX) they were included in the analysis for the 

corresponding health-state.  

Table 5.3. Definitions of infected states based on diagnostic test results in order 

1:3 based on levels of disease severity 

disease state diagnostic meaning 

1. ELISA positive (P) Positive ELISA and negative culture 

2. One-site excretor (X) Positive culture from one body site 

3. Multi-site excretor (XX) 
Positive culture from more than one body 

site 
 

Once categorised in to the 3 progressive diseased states quarterly capture 

histories were created for each state with sex incorporated as a covariate. Only 

badgers that did not progress into a more severe state were included totalling; 

118 ELISA positive; 68 one-site excretors; 63 multi-site excretors. We cannot be 

certain when an individual enters a disease state therefore no date of infection 

was included. When death dates were known they were included, consisting of 

20 ELISA positive; 17 one-site and 11 multi-site individuals with known deaths. 

Results 

The logistic mortality function (Colchero et al., 2012) was the most supported 

mortality function for badgers in all infected states (Table 5.4, Figs 5.4, 5.5 & 
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5.6), in agreement with the ‘best fit’ mortality pattern for the grouped infected 

category (Chapter 5.1). 

Table 5.4. Candidate mortality functions for badgers in various health states and 

their corresponding ∆DIC values 

mortality function P X XX 

Logistic 0** 0** 0** 

Weibull 4.9 3.0 11.4 

Exponential 9.0 3.4 23.6 

Gompertz 22.8 11.5 8.06 
 

Inferred life expectancies decreased during disease progression however there 

was no recognizable difference between life expectancies during early and 

intermediate disease states (P and X). Male life expectancies were consistently 

shorter than females. Male average life expectancies through progressive 

disease states were estimated to be 18 months (P), 18 months (X) and 11 

months (XX). Female average life expectancies were found to be 27 months 

(P), 27 months (X) and 16 months (XX). Therefore despite no detectable 

difference between intermediary disease states, once in an advanced disease 

state both sexes encountered a ~40% decrease in life expectancy. 
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Figure 5.4. Survival and mortality trajectories of badgers during early infection 

(P) stages. Initial mortality (b0) and rate of deceleration (b2) parameters did not 

differ however rate of mortality increase (b1) was higher in males. 

 

Figure 5.5. Survival and mortality trajectories of badgers during intermediary 

infection (X) stages. Initial mortality (b0) and rate of deceleration (b2) 

parameters did not differ however rate of mortality increase (b1) was higher in 

males. 
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Figure 5.6. Survival and mortality trajectories of badgers in health state XX. 

Initial mortality (b0) and rate of deceleration (b2) was lower in males and rate of 

mortality increase (b1) was higher in males. 

The logistic model consists of 3 parameters which represent initial mortality 

(b0), an initial exponential increase in mortality (b1) and a deceleration 

(heterogeneity) parameter (b2). In concurrence with the previous section, the 

initial mortality values (b0) at point of infection i.e. when badgers enter early 

disease states did not differ substantially between sexes (Fig. 5.4, KLDC; 

P=0.53). Males had consistently higher mortality rates (b1) than females 

throughout the 3 infected states (Fig. 5.7, KLDC values; P=0.86, X=0.88, 

XX=0.86), coinciding with rapid increase in disease-induced mortality rates in 

males. 



 123 

 

 

Figure 5.7. Rate of mortality increase (b1) parameter ± standard errors in male 

and female badgers during progressive infected states. *indicates substantial 

differences in mortality rates between sexes inferred from KLDC value >0.8. 

The degree of deceleration or heterogeneity (b2) males and females 

experienced were similar during early and intermediary disease stages (KLDC; 

P=0.55, X=0.54), ruling out hypothesis 3, however subdividing badgers into 

various disease states has uncovered additional complexity with males in a 

more severe disease state demonstrating a substantial reduction in their 

deceleration parameter, in other words reduced heterogeneity (Fig. 5.6 & 5.8, 

KLDC; XX=0.84). 
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Figure 5.8. Degree of deceleration or heterogeneity (b2) parameter ± standard 

errors in male and female badgers during progressive stages of disease 

severity. *indicates substantial differences between sexes inferred from KLDC 

value >0.8, which were only observable in advanced (XX) state. 

Discussion 

In this sub-chapter we demonstrate how quantities describing disease-state 

specific mortality trajectories can be calculated using a novel BaSTA 

framework.  Previous work suggested that sex biases in survival are 

exacerbated by the infection process most likely due to immunological 

differences (Chapter 5.1).  Dividing the infected class into multiple disease 

states provided an opportunity to compare mortality processes in early, 

intermediary and advanced disease states.  

During early and intermediary disease states initial mortality values were not 

substantially different. This result illustrates that male and females are not under 

any differential mortality pressure at the point of infection, therefore male 

susceptibility to infection does not appear to be coincidentally linked to a 

mortality-inducing behaviour e.g. risk taking behaviours. Instead the distinction 

we see between males and females is due to a higher rate of mortality increase 

in males following infection. Raised male mortality rates were found across 

disease states, indicative of immune deficiencies. Mortality trajectories of 
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badgers in all infected states were most supported by a logistic pattern whereby 

after an initial increase in mortality the trajectory decelerates and plateaus. The 

degree of deceleration provides an indication of heterogeneity to infection 

(Vaupel et al., 1979). Males and females show similar levels of heterogeneity 

during early infection stages suggesting a comparable spectrum of immune 

responses between sexes with a broad array of both males and females 

becoming infected and not just a bias sample of ‘weak’ males already 

predisposed to high mortality values.  

The results so far further corroborate with the preceding section (5.1). However 

by separating badgers into numerous disease states we uncovered an 

additional mortality difference; male mortality rates are more homogeneous 

during advanced disease stages. In other words, males with advanced disease 

all have high frailty and poor disease defences to the extent that their average 

life expectancy is less than a year. Comparatively, females in the same 

advanced state still display a variety of responses to advanced infection. We 

suggest this sex-difference provides further evidence for inferior male 

immunocompetence as the main mechanism for sex differences in TB 

epidemiology whereby androgen-mediated investment into reproductive 

behaviours or other physiological processes reduce immune system functioning 

(Klein, 2000; Schuurs & Verheul, 1990). This hypothesis coincides with raised 

mortality in males following infection but otherwise comparable mortality 

patterns between sexes during intermediary stages and high frailty in males 

during advanced states.  

There is a caveat worthy of discussion. For badgers in intermediary disease 

states (P and X) only those that did not progress into a more severe state were 

incorporated thus ensuring disease progression and survival were not 

confounded. As a result only those that died in the state were included, 

consequently this may create artificially higher mortality rates. Despite this 

possible skew our mortality trajectories do represent the majority of badgers 

which due to the chronic nature of infection never advance into an infectious 

state. Of those that become clinically infectious less than 15% of males and 9% 
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of females progress to the more advanced multi-state stage in any given year 

(Graham et al., 2013), thus minimising the likely bias.  

We provide empirical evidence suggesting sex differences in immune defences 

yields the observed sex differences in mortality rates in TB infected badgers. 

Our results agree with infected-uninfected analysis (Chapter 5.1) by 

demonstrating male and females differ greatly in their rate of mortality increase 

but otherwise follow similar mortality patterns during early and intermediary 

disease states. However by accounting for disease states of varying severity we 

find that males become more homogeneous in their disease response during 

severe disease states. That is, all infected individuals are at high risk compared 

to females that still display a variety of responses. These results point to 

deficiencies in male immune defence as the most probable mechanism 

responsible for sex biases in survival in TB infected badgers. 
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CHAPTER 6 

 

 

Exploring patterns of disease dynamics naturally led to questions regarding the 

applicability of Woodchester-specific parameters to populations occurring 

elsewhere. Replicated experimentation of longitudinal survey data is not 

feasible and can question the atypical nature of single location studies such as 

the Woodchester population. The provision of an additional dataset of badgers 

caught as part of a badger vaccination study provided an opportunity for me to 

compare epidemiological processes between populations.  
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A comparison of demography and epidemiology between two 

badger populations 

Summary 

Long-term surveys of reservoir hosts in their natural setting play a critical role in 

disease ecology, revealing epidemiological processes that would otherwise be 

unknowable. The relevance of extrapolating from such single studies to make 

broad inferences regarding populations can be a concern but is often 

unavoidable when few opportunities exist for comparison. We address the 

question; what is the applicability of epidemiological rates, estimated for the 

Woodchester badger population, to other study areas? Using a Bayesian 

multistate model we estimate and compare epidemiological parameters from 

the intensively studied Woodchester badger society, with epidemiological traits 

of an unconnected study population taken from a badger vaccine study (BVS). 

Survival, infection rates and disease progression were estimated for each site 

and sex, and post-hoc calculations provided probabilities of differences between 

sites in addition to calculating Kullback-Leibler divergence (KLD) to formally 

measure the difference between distributions. We show that posterior infection 

rates and disease progression probabilities were similar across studies, with 

probabilities of posterior differences between all analogous parameters less 

than 85% and KLD values ranging between 0.02-0.49. These similarities in key 

parameters highlight the applicability of Woodchester Park as a model system. 

Survival parameters also overlapped between survey sites but were less similar 

(KLD 0.2-0.9), with the exception of infectious badgers which displayed 

similarities in their distribution (KLD; males; 0.02, females; 0.08). Ecological, 

social and landscape factors will also influence survival rates, and weren't 

accounted for in this study. Future use of parameters originating from 

Woodchester Park badgers, for example to inform landscape models of badger-

TB-livestock management strategies, is supported by results from this study. 
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Introduction 

Gaining reliable estimates of epidemiological parameters requires long term 

monitoring of infected populations in their natural setting. These individual-

based surveys provide unique insight into population processes, but are 

logistically challenging to implement and require considerable funding to set up 

and maintain long-term (Clutton-Brock & Sheldon, 2010). Therefore, it is 

unsurprising that when such studies do occur and epidemiological traits are 

inferred, replication and validation of parameters are rarely possible. A lack of 

experimental replication can propagate scepticism of single location data, 

especially within controversial disease-host systems, questioning the 

applicability of scaling up from a single study to make generalizations across 

populations. Although this doubt is invariably unavoidable and great value can 

be taken from longitudinal individual-based studies, opportunities for 

corroboration should also be taken whenever possible.   

When infected wildlife populations threaten human health and/or livestock 

health, management commonly focuses on the wildlife reservoir, hence 

demanding research into the ecology of these infected hosts. The Eurasian 

badger (Meles meles) is one example which has been the target of intense 

scientific activity and political debate due to the close relationship between 

badgers, cattle and the pathogen Mycobacterium bovis, the causative agent of 

bovine tuberculosis (TB). Infection of cattle by badgers (Donnelly et al., 2006) 

contributes to the persistence of TB in cattle, reducing the success of current 

cattle test and slaughter programs which, to date, have failed to control the 

problem. Much attention has been paid to uncovering epidemiological 

information in badgers with the goal to reduce between-species transmission. A 

long-term badger study at Woodchester Park, Gloucestershire (Rogers et al., 

1997; Rogers et al., 1998) was initiated in 1975 with the objective to provide a 

detailed resource to understand epidemiological processes. These in turn can 

feed into models to explore management strategies and guide TB policy. It is 

the longest running badger survey in the UK, consisting of naturally infected 

individuals and providing arguably the most detailed information on any 

mammalian reservoir of disease. A considerable amount of our current 
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knowledge regarding TB in badgers originates from this population. However 

opportunities for comparison between other sites are minimal, with few 

individual-based longitudinal studies contributing to badger ecology (but see 

Macdonald and Newman (2002)) and no current studies obtaining long-term 

epidemiological data. We aim to appraise the representativeness of 

Woodchester Park as a study population. 

The Woodchester Park study collects both ecological and epidemiological data. 

This involves monitoring individual badgers across their lifetime by capture-

mark-recapture (CMR) methods and collecting information including 

demographic traits, location data and their TB status using clinical sampling 

(Delahay et al., 2000). This information has generated much knowledge of both 

individual- and population-level processes, leading research in badger 

epidemiology. It has been the subject of more than 100 publications, with top 

papers in this field cited extensively throughout the literature (e.g. (Rogers et al., 

1997)). Epidemiological parameters occurring within this population are used to 

predict population and disease dynamics under a variety of management 

scenarios (Smith et al., 2001a; Smith et al., 2001b; Wilkinson et al., 2004) and 

in turn have the potential to inform policy changes. However, badgers at 

Woodchester could be considered an atypical population due to its unmanaged, 

high-density nature, casting doubt on the whether epidemiological processes 

underlying disease dynamics represent what’s occurring within other badger 

societies. We pose a key question: what is the applicability of epidemiological 

rates from Woodchester to other study areas? We attempt to answer this 

question by extending this single study system to a paired population study. 

With such longitudinal data, replicated experimentation is unfeasible and robust 

comparisons of epidemiological rates with other badger populations have so far 

been impossible with no other long-term badger study collecting TB diagnostic 

data. Our alternate population therefore consists of a subset of badgers from a 

badger vaccine study (BVS) set up for the different purpose of investigating the 

effect of vaccination on TB transmission and progression (Chambers et al., 

2011). The BVS is a 4 year monitoring programme, comparing vaccinated and 

unvaccinated (control) badgers. We use data from the control badgers to form a 
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comparable (un-manipulated) population to the Woodchester Park badgers. 

Despite the smaller scale of this study it provides a unique opportunity for 

comparative analysis, with similar trapping methods and diagnostic regimes 

used across both study sites.  

Using a state-dependent Bayesian model we analyse data taken from two 

unconnected populations to extract comparable epidemiological parameters. A 

Bayesian approach is favourable to frequentist methods due to improved 

analytical ability to cope with the sparse data of the BVS, whilst also allowing 

probabilistic statements. Specifically we apply post-hoc calculations using the 

posterior samples of state-dependent survival, disease transmission and 

progression to compare epidemiological processes across sites.  

Methods 

Study sites 

Both studies collected data from marked individuals, whereby badgers were 

trapped and given a unique identifying tattoo on their first capture occasion. 

Individual information including, but not limited to, sex and disease status was 

collected on every occasion. Both sites are situated in independent locations in 

Gloucestershire, England.  

The BVS study site is located in a 55km2 area of a mixture of agricultural and 

mixed woodland. Trapping commenced over a period of 4 years (2006-2009) 

totalling 8 capture occasions (full details see (Chambers et al., 2011)). Only 

unvaccinated badgers from the study’s control group were included in this 

analysis, consisting of 150 males and 170 females. 

The Woodchester study site is an area 7km2 consisting of pasture and mixed 

woodland. Data was taken from 2006 to 2011 to include comparable diagnostic 

test data, consisting of 6 years of trapping information (for detailed methods see 

(Delahay et al., 2000)). This incorporated 207 male and 243 female badgers. 
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TB is endemic at both study sites, allowing clinical samples to be taken and 

individual TB statuses to be recorded at every capture event. Badgers are 

classified according to the results from 2 diagnostic tests: Brock Stat-Pak, and 

microbial culture. Stat-Pak detects TB antibodies (Carter et al., 2012; Chambers 

et al., 2009). Badgers testing positive for TB antibodies were classified as Stat-

Pak positive (P). Culture tests detect active excretion of the bacterium, 

indicating an advanced infectious disease state. Badgers can be classified as 

either one-site (X) or multi-site (XX) excretors according to whether their culture 

positive results reside from single (X) or multiple (XX) body sites (Chapter 3). 

Due to the short duration of the study, sample sizes for progressed disease 

states were insufficient to analyse separately therefore culture positive states 

we grouped to form one infectious class (X/XX). Badgers neither Stat-Pak 

positive nor culture positive were classified as test negative (N) (Fig 6.1).  

 

Figure 6.1. Disease states and transitions incorporated in the state-dependent 

model. 

Multistate mark-recapture model 

Multistate models estimate state-dependent survival and transition probabilities 

of survivors between multiple disease states. Bayesian inference using Markov 

chain Monte Carlo procedures within the program WinBUGS (Lunn et al., 2000) 

was used to analyse multistate CMR data (for full details on the Bayesian 

multistate framework see Chapter 4). WinBUGS was called via an R interface 
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(R Development Core Team, 2013) allowing post hoc comparison of 

epidemiological rates across the two unconnected geographic locations. Males 

and females were analysed separately due to known epidemiological 

differences between the sexes (Graham et al., 2013) which was also beneficial 

for reducing computation time.  

Badgers were caught at regular intervals at Woodchester Park. Annual capture 

histories were used to obtain yearly parameter estimates. Capture occasions in 

the BVS study were unevenly distributed (Fig.6.2). Consequently, we adjusted 

for unequal time-steps to estimate the probability of surviving 12 months ( 12 ), 

using the following equation 

 
12

12
u

u    

In words; the survival estimate for the time interval U (U ) is raised to the 

exponent of 12 divided by the length of the unequal time interval (which varied 

between 3-12 months, Fig.6.2).  

 

Figure 6.2. Schematic of the time-intervals occurring between capture 

occasions implemented in the BVS study. 

Applying a correction is inappropriate for estimating transition parameters as it 

is unable to account for all possible transitions (see Fig 6.1 for transitions). To 

estimate movement between states we used grouped yearly capture histories, 

resulting in sparser data but not in violation of any assumptions. 
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Model specification 

Due to difficulties testing for goodness-of-fit with Bayesian models, we 

recreated the models within the program MARK (White & Burnham, 1999) and 

found the data was not overdispersed for either the BVS or the Woodchester 

Park data (variation inflation factor  ̂ < 1.3).  

Initial model runs suggest convergence was reached after 15000 iterations. We 

therefore ran 60000 iterations with a burn-in of 15000 for each model. To work 

out the probability of dissimilar epidemiological rates occurring between the two 

populations, we calculated post-hoc differences between posterior samples of 

corresponding parameters taken from each study site. In addition to this 

probability we technically measure the discrepancy using Kullback-Leibler 

divergence (KLD (Kullback & Leibler, 1951)). A high KLD would indicate 

substantial divergence between 2 distributions, whereby 0 indicates identical 

distributions and the KLD value increases with the discrepancy between the 

distributions.   

Results 

Posterior differences between parameters (θ) at contrasting study sites were 

calculated ( )WP BVS  . That is, the proportion of values above zero provide the 

probability of parameters being higher for Woodchester badgers compared to 

BVS badgers and vice versa for proportion of values that lie below zero. Broadly 

we find the calculated posterior differences between BVS and WP badgers all 

overlapped zero (Figs 6.3-6.6).  

Survival 

Survival posterior across study sites overlapped (Fig. 6.3, 6.4). Focussing on 

the posterior differences between parameters, for badgers in infectious states 

(X/XX) the certainty that survival probabilities differed between sites was below 

0.73, i.e. fewer than 73% of values lay either side of zero and below the 

classical 0.95 one-sided significance threshold, corresponding with relatively 

low KLD values (KLD X/XX; males; 0.02; females; 0.08, Figs 6.3 & 6.4).  
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Uninfected females and Stat-Pak positive males and females were the most 

divergent groups when comparing between sites with more than 95% values 

lying above zero, suggesting Woodchester Park badgers have higher survival 

than their BVS counterparts.  Uninfected female badgers in the BVS study have 

on average a 17% decrease in annual survival compared to Woodchester 

badgers, with posterior distributions considerably different (KLD; 0.9). Mean 

posterior differences between stat-Pak positive females found a similar 18% 

decrease in survival of badgers situated in the BVS study site compared to 

females at Woodchester Park, (KLD; 0.5, Fig 6.3).  
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Figure 6.3. Comparison of posterior female annual survival estimates in 

progressive disease states between 2 sites with mean survival estimates shown 

by dashed lines. Showing overlaps of posterior densities, and histograms of 

differences between survival rates along with mean and proportion of values 

greater than zero. ** highlights probabilities more than 95% which coincides 

with KLD values greater than 0.5  

Male posterior annual survival rates between sites all broadly overlapped when 

comparing between sites, with near identical estimates for uninfected badgers 

(mean values; 0.68 (WP), 0.64 (BVS)) and infectious badgers (mean values; 

0.47 (WP), 0.44 (BVS)). However, Stat-Pak positive male survival was on 

average 20% lower at the BVS study site compared to the Woodchester Park 

males, similar to the difference found in Stat-PAK positive females, with similar 

discrepancies between distributions (KLD; 0.67, Fig 6.4). 
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Figure 6.4. Comparison of annual survival posteriors in male badgers in 

differing health states between study sites. Showing overlaps of posterior 

densities, and histograms of differences between survival rates along with mean 

and proportion of values greater than zero. ** highlights probabilities more than 

95% which coincides with KLD values greater than 0.5 

Transition 

The probability of becoming infected (N-P & N-X/XX) and disease progression 

(P-X/XX) is comparable between study sites, with no inferable differences 

between posteriors (Fig 6.5, 6.6). Focussing on the posterior differences 

between both male and female transition parameters, the certainty that 

transition probabilities differed between sites was below 0.85 for all transitions. 

Similarly KLD values were relatively low (Females; N-P 0.05, N-X/XX 0.16, P-
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X/XX 0.06; Males; N-P 0.07, N-X/XX 0.02, P-X/XX 0.49), with the obvious 

exception of male P-X/XX transitions, wherein the posterior for BVS badgers 

was only weakly identifiable. 

 

Figure 6.5. Comparison of infection and disease progression probabilities of 

female badgers between 2 sites. Showing overlaps of posterior densities, and 

histograms of differences between transition rates along with mean difference 

and proportion of values greater than zero.  
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Figure 6.6. Comparison of infection and disease progression probabilities of 

male badgers between 2 sites. Showing overlaps of posterior densities, and 

histograms of differences between transition rates along with mean difference 

and proportion of values greater than zero. 

Discussion 

The Woodchester Park badger survey is a unique data-set, containing the TB 

statuses of individual badgers across numerous generations, and uncovering 

key epidemiological processes that might otherwise be inestimable. This 

detailed information has come at substantial financial cost, fraught with logistical 

challenges; consequently replication of the survey on a similar scale is 

infeasible. The BVS provided a unique, albeit limited, opportunity to compare 

epidemiological parameters between two independent badger populations. 
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Applying a Bayesian multistate analysis we estimated and compared 

epidemiological parameters from CMR data taken from two sites over a 

comparable time period with identical diagnostic test procedures. We uncover 

similarities between epidemiological processes across populations. 

Infection rates and progression probabilities to infectious stages are of high 

importance in terms of predicting and modelling viable control strategies 

(Shirley et al., 2003; Smith et al., 2001a). Disease transmission and progression 

were not unique to a particular location, with similar estimates found in both 

study areas. This transferability of key epidemiological parameters between 

populations confirms the applicability of using disease rates obtained from 

Woodchester Park to make generalizations regarding TB epidemiology across 

populations.  

Survival estimates showed the most variation between sites, most notably 

occurring between Stat-Pak positive badgers. During this early infection state 

BVS badgers had lower mean survival estimates than their WP counterparts. 

One factor that may explain the observable heterogeneity between early 

infection survival estimates is the impact of differing trapping effort and study 

duration on disease detection. Woodchester Park is a longer term study with 

increased annual trapping events, thus greater opportunities for detection of 

infected badgers. This is most relevant for detection of advanced infectious 

badgers (X/XX), as culture tests have notably poor probability of detection due 

to its low sensitivity (8% (Drewe et al., 2010)). Consequently, there is a real 

possibility that badgers that advance into infectious stages are not detected as 

effectively in the BVS study and are included in our early infection (P) survival 

estimates, bringing about an observable reduction in survival of Stat-Pak 

positive badgers in the BVS study. However, if this were the case we would 

arguably expect the effect be more pronounced in males than females with 

males more vulnerable to infection with higher mortality occurring earlier on in 

the infection process (Chapter 3). Additionally a multitude of factors, other than 

disease, will also impact survival rates with ecological, social, and habitat 

features not accounted for in this present study. Therefore with numerous 

additional extrinsic influences acting on survival, it is unsurprising that we find 
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differences in survival rates among populations. Contrastingly we find infectious 

badgers have similar survival rates and distributions across study systems. 

Speculatively this may be due to the overriding effect of infection in advanced 

disease states. That is, badgers in this advanced state remain unaffected by 

alternative mortality pressures that uninfected badgers and early disease stage 

badgers may experience. We suggest this may be an additional explanation for 

the observed similarities during advanced but not early disease stages.   

Here, we have compared two high density badger populations which occur at 

densities much higher than populations occurring elsewhere in the species’ 

geographic range. This undoubtedly fuels concerns regarding whether these 

populations provide exemplars of a typical badger population. However, their 

densities are not atypically high for regions in which TB is now a major problem, 

i.e. much of western Britain (Roper, 2010). Therefore, both populations can be 

considered credible model populations in terms of identifying those present in 

areas where TB is endemic and badgers present a legitimate risk to cattle.  

Our results further confirmed the accuracy of epidemiological rates of badger 

populations that pose the greatest threat to cattle and those that should be 

considered when planning future control strategies. Despite largely concluding a 

lack of detectable difference between study sites, we are unable to give clear 

parameter values for either site due to the sparse data and short time period 

used. Therefore further comparisons would be beneficial. Overall, our approach 

supports conclusions that Woodchester badgers have similar epidemiological 

traits to badgers occurring outside the study region.  
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CHAPTER 7 

 

 

Having utilised methods to investigate both population dynamics using IPMs 

and disease processes using multistate models I wished to integrate these 

analyses to answer further ecological queries. To do this I nudge IPMs into the 

novel realms of disease dynamics, replacing the usual demographic CJS 

model, with a multistate model. Although advances in computation power 

support these more complex analyses running this analysis on the full badger 

dataset was beyond the time constraints of this thesis. Instead I use simulated 

data which provides not only a smaller sample size and more manageable 

analysis but also allows assessment of the reliability of the technique to 

estimate disease and population processes, identify productivity parameters 

and finally its ability to forecast dynamics into future years. 
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A novel framework for estimating and predicting disease and 

population dynamics  

Summary 

The dynamics of natural pathogen-host systems are complex and problematic 

to disentangle due to multiple demographic and epidemiological processes 

occurring simultaneously. This study links disease and population ecology into a 

single integrated statistical framework. We advance integrated population 

models (IPMs) into an epidemiological context, by combining multistate capture-

recapture data with multistate population counts. Using a simulated data set, 

motivated by the study of Eurasian badgers (Meles meles), we draw inferences 

about demographic and epidemiological parameters, along with population 

abundance. We show how even under various prior structures, previously 

unidentifiable disease-specific productivity parameters can be inferred. We 

further highlight the extension of these models as a predictive tool to estimate 

disease and population dynamics in future years. We suggest the IPM 

presented here should be used to pose further hypotheses in the badger-TB 

system. This approach also has the potential to shed light on disease and 

population dynamics in other study systems with structural flexibility enabling 

researchers to tailor IPMs to their specific disease-host scenario.  

Introduction 

Quantifying rates of disease spread and associated population dynamics of 

hosts is integral to conservation and management but remains a great 

challenge in field ecology. Demographic models have moved away from 

exclusively estimating population size to pay attention to underlying causes of 

population dynamics and the deeper mechanisms, reflecting a move in 

ecological studies from pattern to process. This coincides with the 

methodological advancement of capture-mark-recapture (CMR) models which 

now incorporate a wide and varied range of frameworks providing the tools to 

address a range of ecological questions directly from samples of wild 
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populations. Multistate models are an example of how methods have developed 

to answer increasingly complex ecological questions by exploring site-specific 

variability (Arnason, 1973; Lebreton & Cefe, 2002; Schwarz et al., 1993). State-

dependent models simultaneously estimate state-specific survival and recapture 

rates, along with transition probabilities of survivors between states. The state 

variable in these models is largely interchangeable and easily adapted to study 

geographic site- , breeding state-, and disease state-specific systems. Their 

application in an epidemiological context reveals rates of disease-induced 

mortality, infection and progression in a wildlife-host system (Chapters 3-5). 

The logical tendency to focus on a single-process model inevitably leads 

researchers to overlook the reality that individual processes, such as 

epidemiological rates, are just one component of a much larger interacting 

system. CMR models can quantify key processes and reveal patterns of 

causation but they are unable to account for processes occurring in parallel 

within the system which is problematic when population and disease 

parameters co-vary. Environmentally driven fluctuations in population growth 

may be mediated via disease dynamics: for example declines in amphibian 

populations are linked to climate change which acts by generating increased 

disease outbreaks (Pounds et al., 2006), and seasonal weather changes can 

drive population abundance indirectly due to its direct effects on host-pathogen 

interactions (Altizer et al., 2006). Equally, studies focusing on the individual 

impact of infection on survival and fecundity rates may not directly translate to 

population level effects, due to compensatory population responses (Muths et 

al., 2011) or the intensification of disease impacts by environmental stressors. 

Improvements in computational power and development of new methodologies 

now provide solutions to quantify a combination of demographic traits, and 

despite analytical models only ever providing a caricature of wildlife population 

dynamics, a combined approach will minimize discrepancies that may arise 

from analyses focussing on single processes. Here we move away from 

quantifying disease effects as an exclusive process. Instead we consolidate 

previous discrete analyses into a common hierarchical framework to identify 
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both demographic and epidemiological rates, capturing the key dynamics of 

wildlife-reservoir populations.   

Integrated population models (IPM) analyse demographic and census data in a 

single model, providing precision estimates of demographic parameters and 

population abundance, free from observation error.  The most common 

approach applies Cormack-Jolly-Seber (CJS) models to analyse demographic 

data and a state-space model to gain population estimates from census data. 

However, a shortfall of this approach is the inability of the CJS model 

component to account for individual infection processes (Chapter 2) preventing 

consideration of the full demographic mechanisms of reservoir host populations. 

We expand upon existing IPM research replacing the CJS model component, 

which only considers a single state, with a multistate model. This adaptation 

allows individuals to move through different disease states, whilst 

simultaneously accounting for population level dynamics provided via the 

census data. Previous studies have merged these models (Péron et al., 2010) 

however we extend these into a Bayesian framework and apply it for the first 

time to multiple disease states opposed to geographic sites or breeding states 

(Borysiewicz et al., 2009; McCrea et al., 2010). Being able to investigate 

individual disease processes alongside population dynamics is a useful step, 

bridging the gap between population and disease ecology.  

Integrating data provides meaningful estimates of previously unidentifiable 

parameters such as, but not limited to, immigration (Abadi et al., 2010b) and 

productivity (Besbeas et al., 2002). We apply this to a naturally infected badger 

population to explore productivity, specifically the disease-state into which 

offspring born are recruited, a quantity termed ‘reproductive allocation’ in other 

study systems (Coulson et al., 2010). Badgers give birth below ground so, in the 

absence of genetic studies, pedigree is unidentifiable and shared communal 

setts provide opportunities for disease transmission throughout the social group 

preventing clear knowledge of the disease state of parents. In the absence of 

allocated parentage we focus on a per- capita reproductive rate, analogous to 

recruitment rates, i.e. a per capita rate of growth, that is subsequently 
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partitioned to represent the proportion of cubs entering each discrete disease 

state.  

At the core of an IPM is a population model which, combined with the multistate 

model, provides the natural framework for estimating the state-based 

parameters of population projection models. This built-in projection model can 

utilise the estimated state-dependent demographic rates and any uncertainty 

attached to them, to project population dynamics into future years. Thus avoids 

the necessity for any post-hoc population modelling and allows noise in the 

system to be propagated naturally into forecasts. In these scenarios IPMs can 

be used as a decisive tool to aid practitioners and conservationists by providing 

probabilistic statements regarding future changes in population abundance and 

disease prevalence. We will draw on the IPM results in our example to 

demonstrate how they can be interpreted to make predictions regarding 

reservoir host population dynamics.  

The construction of models to estimate both disease and population aspects of 

reservoir-host systems will provide further understanding of wild host-pathogen 

dynamics. A simulated data set approximating a naturally infected badger 

population is used to demonstrate how an IPM, composed of multiple state 

CMR data and census data, can be analysed and adapted to a specific study 

system to obtain robust epidemiological and demographic parameter estimates 

and predict future dynamics. To summarise, our aims are three-fold. First, we 

seek to build a model which considers multiple interacting processes that occur 

within badger populations by simultaneously estimating individual disease and 

population level parameters. Second, we are interested in whether per-capita 

reproductive allocation rates are identifiable and consistent under different prior 

structures. Finally we introduce the predictive capability of IPMs. 
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Methods 

Integrated Population model 

Integrated population models analyse two or more different data types, 

obtaining parameter estimates that maximize the joint likelihood of the models. 

We use state-dependent census data (yearly post-breeding counts of the 

number of individual badgers caught in different disease states) and multi-state 

CMR data, tracking an individual’s TB status over time, analysed using a state-

space model and multistate model respectively. Multistate models are 

structured models which categorise individuals into discrete classes. Four 

health states are considered based on categories established in prior studies 

(Graham et al., 2013; Wilkinson et al., 2000). These include; negative (N), 

ELISA positive (P), one-site excretor (X) and multi-site excretor (XX). Badgers 

are able to progress into more severe disease states, but we assume once 

infected a badger does not recover (for all possible transitions see Fig. 7.1).  

By integrating a state-space model and a multistate model the IPM calculates 

total population size (Ntot), abundance of badgers occupying each ith health 

state (Ni), productivity rates (fi), disease-specific survival (Φi), and transition 

between health states (Ψi-i). Sex was incorporated as a covariate in the model 

structure for survival, transition and recapture estimates. Due to the anonymity 

of parentage and evidence suggesting infection does not affect fecundity 

(Chapter 2) (Tomlinson et al., 2013), we calculate a per capita productivity rate 

whereby individuals in all health-states (Ntot) are equally capable of producing 

young. This was then subdivided to reflect the allocation of cubs to each 

disease state upon entering the population generating estimates of per capita 

reproductive allocation (fi) to each disease state (Fig. 7.1), as our measure of 

productivity.  
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Figure 7.1. Graphical representation of the core population model used to map 

the number of badgers in each disease state. The nodes show 4 disease 

classes and the arrows transition probabilities between infected states along 

with an index of productivity (f) to estimate the number of cubs entering each 

disease class wherein all badgers (Ntot) contribute to productivity. 

Multistate model 

We used the state-space formulation of a multistate model, consisting of a state 

process and observation process. The state equation uses state-dependent 

survival (Φ) and transition (Ψ) probabilities to describe the true progression 

through states. We constrain the state matrix to only allow biological reasonable 

transitions between disease states (Fig. 7.1 shows possible transitions). 

However the system description is inaccurate as badgers have variable 

recapture probabilities less than 1. The observation process therefore links the 

true state process with the states observed in the environment, by taking into 

account recapture probabilities (p). The likelihood uses a categorical distribution 
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to estimate the likelihood of capture history data (x) which is equal to the joint 

probability of state process (z) and observation process (w). 

LMS(x| Φ, ψ, p) = L(z| Φ, ψ) x L(w| p) 

State-space formulation 

State-space models are also hierarchical models consisting of an observed time 

series of counts which is broken down into process variation (what is actually 

happening in the environment) and observation error. The change in population 

size over time is a Markovian process with each year dependent on population 

size the previous year. This approach provides unbiased population estimates 

or population indices if detection probability is less than 1. The process 

equations are analogous to a population projection model (Caswell, 2001), 

describing the true but unknown population trajectory of badgers in various 

health states by linking changes in population size with demographic rates. 

Demographic and environmental stochasticity are taken into account within the 

process equations by relating the population sizes of infected individuals 

between years using a Poisson distribution.  

Not only do these models account for demographic stochasticity, they also allow 

for uncertainty in the data collection. We use an observation process to link the 

observed counts of individuals to the true population sizes which is achieved by 

allowing for observation error. The choice of the observation model often has no 

strong effect on the parameter estimates (Kéry & Schaub, 2012). We assume 

the counts (y) of badgers in disease state i over time t follows a Poisson 

distribution, yi,t ~ Po (Ni,t). The likelihood of the state-space model is the product 

of the observation and state process, calculating population estimates (N), 

indices of productivity (f) and survival probabilities (Φ). 

LSS(y | N, Φ, f) = LO(y | N)  X  LS(N | Φ, f) 
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Combined likelihood 

The likelihood of these two separate analyses share common parameters. Thus 

the joint likelihood of the IPM is obtained as the product from the 2 data sources 

(Fig. 7.2). 

LIPM (x, y | Ψ, p, N, Φ, f) = LMS(x | Φ, Ψ, p) X LSS (y | N, Φ, f) 

 

Figure 7.2. Structure of the integrated population model combining a multistate 

model and a state space model. 

Simulation study 

A simulated data set was used to test this model. Data were simulated, using 

functions adapted from Kéry and Schaub (2012), to replicate realistic values of 

a naturally occurring infected badger population (for full R code see appendix 

7.1). 200 simulated badgers consisting of 100 females and 100 males were 

marked and data for this population was simulated for a six year period. 

Badgers were able to be in 1 of any 4 discrete disease states (N, P, X, XX) on 
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each capture occasion. The probability of badgers surviving and moving 

between disease states were incorporated using parameter values based on 

prior analyses in order to reflect biological reasonable estimates. In accordance 

with earlier studies (Chapters 2, 3) survival probabilities were assumed to vary 

according to sex and disease state, but were not time- or age-dependent. Male 

survival was simulated to be lower than female survival in all disease states, 

with male survival gradually decreasing during disease progression and female 

survival remaining constant until the final disease state (Table 7.1). Recapture 

was sex-dependent but not state- or time-dependent. 

Census data was simulated for each disease state over a 6 year period, with 

initial population sizes simulated to reflect the proportion of badgers caught in 

each health state. 78% of badgers were counted in state N (NN,1=96)  and the 

number of badgers in the infected states decreased with advancing disease 

similar to that observed in the Woodchester park study. 13% of total population 

counts were made up of badges in state P (NP,1=17), 5% in state X (NX,1=6) and 

4 % in state N XX (NXX,1=5). Population growth was set to 1 with temporal 

variation incorporated as 0.02 resembling rates obtained in a prior population 

analysis (Chapter 2). 

Parameter estimation and sensitivity analysis 

In Bayesian analyses a parameter is considered identifiable if its distribution 

differs from the prior specified for it. We asked the question; are reproductive 

allocation rates identifiable under different prior structures? If per capita 

reproduction is deducible we would expect priors to have a limited impact upon 

its posterior distribution. We specified three different prior distributions (two with 

a uniform distribution; between 0 and 3 (U(0,3)), and 0 and 1 (U(0,1)); and one 

with a normal distribution with a mean 0 and variance 0.25, truncated to lie 

between 0 and 3 (N(0,0.25) I(0,3)). The uniform prior assumes that fecundity is 

equally likely throughout the range of the prior, with U(0,3) the most 

uninformative prior. In contrast the normal prior is our most informative, 

assuming that low fecundity is more likely than high fecundity. We adopted non-
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informative priors for the remaining parameter estimates, with the exception of 

starting densities.  

Bayesian analyses can efficiently cope with unknown parameters therefore by 

placing unknown quantities following the raw data we extend the model to 

forecast population size over future years. We specify 2 additional years in the 

data following the observations to predict future dynamics. For more information 

on data simulation, IPM model structure and prior choice refer to the R script in 

appendix 7.1. 

Model Implementation 

Models were implemented using Bayesian MCMC methods within program 

WinBUGS called via an R interface. Convergence was reached following 1000 

iterations as indicated by the visible mixing of posterior chains and r-hat < 1.1. 

For the main model we ran two MCMC chains of 10000 and discarded the first 

1000 thinning every 5 samples, such that we retained 1800 samples from each 

chain (a total of 3600 samples). These chains took 4 days to run. 

Results 

Parameter estimation 

By combining both counts and multistate CMR data, key epidemiological and 

demographic parameters were estimated simultaneously. The 95% CRI 

parameter estimates encompassed the true simulated estimates in all cases 

(estimates shown in Table 7.1).  
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Table 7.1.  Simulated CMR survival estimates and IPM estimates with 

corresponding 95% CRI 

 Female Male 

Parameter Parameter 

used in 

simulated 

CMR data 

IPM estimate  

(95% CRI) 

Parameter 

used in 

simulated 

CMR data 

IPM estimate  

(95% CRI) 

ΦN 0.73 0.769 (0.695, 0.837) 0.67 0.689 (0.611, 0.762) 

ΦP 0.73 0.673 (0.457, 0.86) 0.57 0.662 (0.48, 0.831) 

ΦX, 0.73 0.81 (0.555, 0.945) 0.47 0.414 (0.153, 0.723) 

ΦXX 0.37 0.452 (0.168, 0.783) 0.14 0.311 (0.105, 0.75) 

ΨN-N 0.945 0.951 (0.908, 0.981) 0.914 0.915 (0.856, 0.96) 

ΨN-P 0.035 0.033 (0.01, 0.07) 0.055 0.069 (0.029, 0.125) 

ΨN-X, 0.016 0.012 (0.002, 0.032) 0.023 0.015 (0.001, 0.044) 

ΨN-XX 0.004 0.004 (0, 0.015) 0.008 0.001 (0, 0.008) 

ΨP-P 0.77 0.861 (0.641, 0.981) 0.67 0.773 (0.569, 0.928) 

ΨP-X, 0.175 0.104 (0.014, 0.277) 0.25 0.185 (0.053, 0.372) 

ΨP-XX 0.055 0.035 (0.001, 0.121) 0.08 0.042 (0.001, 0.134) 

ΨX-X 0.689 0.579 (0.503, 0.732) 0.636 0.718 (0.513, 0.945) 

ΨX-XX 0.311 0.421 (0.268, 0.497) 0.364 0.282 (0.055, 0.487) 
 

Disease-specific reproductive allocation rates 

The multi-state model alone was able to estimate all survival and transition 

probabilities, but when combined with census data was also able to identify per 

capita reproductive values, a parameter not directly simulated, but identifiable 

through an integrated analysis. The estimated per capita reproductive rate 

allocated per disease state was; 0.368 (95% CRI; 0.244, 0.51) for negative 

badgers, 0.061 (95% CRI; 0.009, 0.135) for P badgers, 0.026 (95% CRI; 0.001, 

0.072) for X badgers and 0.044 (95% CRI 0.002, 0.154). This means for every 

member of the population in year t, 0.368 of the population were recruited as 

cubs into the uninfected state at t+1. The choice of prior had minimal impact on 

our reproductive allocation rates with the posterior means and CRI were the 

same under different priors (Fig. 7.3). Therefore reproductive allocation is an 

identifiable parameter despite the lack of explicit productivity data.  



 155 

 

 

Figure 7.3. Posteriors of per capita reproductive rates under different prior 

structures, subdivided according to allocation of cubs to specific health states; i) 

N; ii) P; iii) X & iv) XX. 

Predictive capabilities 

The mean population growth for this population was estimated to be 1.02. The 

model performed well at predicting future dynamics (Fig. 7.4). The mean 

predicted growth for future years was 0.95, however this methodological 

approach not only provides a mean, but also a measure of certainty. Using data 

from the simulated data set we find a 69.5% probability of population decline 

between years 6 and 7, and a 63.6% chance of decline between years 7 and 8. 

This is calculated by the proportion of posteriors that lie below 1 (the probability 

i ) ii) 

iii ) iv ) 
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of negative growth) and above 1 (the probability of positive growth), and can be 

visualised in figure 7.4. 

 

Figure 7.4.i) Estimated and simulated (years 1-6) and predicted (years 7-8) total 

population size and abundance of badgers occupying each health state. ii-iii) 

Posteriors of predicted between year population growth between years ii) 6 and 

7 and iii) 7 and 8, Mean population growth is indicated by dashed line, the 

stable population growth (PG=1) is shown by a solid line and can be used as a 

reference point to predict probabilities of populations undergoing an increase or 

decrease in population size.  

In addition to predicting population size, the number of infected badgers can be 

predicted into forth coming years (Fig.7.4), along with disease prevalence and 

ii) iii) 

i) 
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corresponding probabilities of growth/decline in the number of infected badgers 

(Fig. 7.5).  

 

Figure 7.5. i) Estimated disease prevalence in years 1-6 and predicted 

prevalence for years 7 to 8. Posteriors of predicted population growth of 

infected badgers between years ii) 6 and 7 and iii) 7 and 8   

Ignoring for now that this is a simulation study, we can now make statements 

regarding the population’s previous and future, disease and population 

dynamics:  

‘This badger population has remained relatively stable with an overall 

population growth of 1.02 and a corresponding growth of infected badgers of 

1.03 (Fig. 7.4). Consequently, disease prevalence has remained stable (μ= 

0.24, 95% CRI 0.15, 0.38).  

i ) 

ii ) iii ) 
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The predicted population growth rate over the next two years is 0.95, with a 

69% chance of population decline next year and 63% probability of a decline 

the following year. Disease prevalence is predicted to remain stable (μ=0.25, 

95% CRI 0.14, 0.39), with a (57:43 chance of a rise: fall in disease prevalence). 

There is no evidence to suggest the number of infected individuals will increase 

(overall predicted population growth of infected badgers = 1.006, Fig. 7.5).’  

Discussion 

Integrated population models are developing as a promising tool in ecological 

research. Their flexibility and accessibility open up a host of complex analyses 

to ecologists. This work extends current IPM research and describes one way a 

demographic and disease model can be derived and parameterised to allow 

coherent estimation of population dynamics alongside epidemiological 

processes. This study has only touched the surface with regard to the 

possibilities and adaptabilities of this framework, but has hopefully highlighted 

the potential of IPMs to capture dynamics in other study systems. We discuss 

results from this study and how IPMs can be developed to incorporate further 

ecological complexities. 

Parameter estimation 

A key advantage of IPMs is their ability to estimate parameters for which data 

has not been specifically collected. Estimating productivity is often problematic, 

however due to the integrated nature of the analysis estimates can be 

calculated without explicit fecundity data. Measures of productivity are user-

driven within the model and could be comfortably altered to provide alternate 

indices. In this study we estimate per capita reproductive rates partitioned 

relative to the proportion of cubs entering each disease state, which are 

identifiable under numerous prior structures. Future analyses can build upon 

these to model reproductive allocation as a function of environmental and/or 

individual covariates, revealing whether any correlations exist between 

variations in the number of infected cubs and environmental or intrinsic 
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processes. From a management perspective this approach could identify 

possible cues indicative of infection in cubs.  

What is particularly illuminating is the ease in which these models can be 

tailored to the study organisms’ specific population processes as well as the 

ecologists’ particular research question. Here we’ve focused on adaptations in a 

badger-context however this methodological approach can be tweaked to be of 

immense benefit to other ecological systems. The state-space component can 

be adapted to model alternative forms of productivity and incorporate additional 

disease states and age or life-stages allowing researchers to address questions 

specific to their animal system. For example, we may be able to make 

assumptions regarding parentage such that only infectious adults produce 

infected juveniles and incorporate not just reproductive allocation but also state-

specific fertility. This can be implemented by revising the state-process equation 

of the state-space model. The number of disease states and feasible transitions 

between them can be altered in the state-process of the multi-state model for 

example; including a recovered class, allowing infected individuals to revert 

back to an uninfected class or reducing the number of health states to a 

standard susceptible-infected categorisation (Faustino et al., 2004; Lachish et 

al., 2007), these adaptations may be relevant in other wildlife-pathogen 

systems. The capabilities of these models are extensive and can be built upon 

through stages to answer ecological questions of increasing complexity 

unidentifiable from previous analysis. 

Hypothesis testing 

These models are the ideal framework to pose ecological hypotheses. Although 

not covered here IPMs have improved precision compared to individual CMR 

models, with improved power to detect covariate effects (Schaub & Abadi, 

2011). We have developed a model to estimate disease and population 

dynamics of an infected wildlife reservoir, with only sex incorporated as a 

covariate due to known epidemiological differences between male and female 

badgers. However, a range of statistical models can be fit to these demographic 
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characters within the prior structure to include fixed and random effects. As with 

survival and productivity in standard IPMs (Chapter 2), probability of infection 

and reproductive allocation can now also be studied as a function of density, 

time, individual effects and environmental covariates. A range of hypotheses 

can now be addressed to disentangle multiple drivers of population dynamics. 

For example, determining drivers of infection risk and susceptibility to disease in 

cubs and adults and how they translate to population dynamics will unravel 

likely co-varying mechanisms, such as interactions between weather and 

disease processes (Chapter 2.2).  

Along with improving our understanding of pest species, these models can be 

applied to species of conservation concern when pathogens pose an immediate 

threat to biodiversity, such as the well documented decline of Tasmanian devils 

due to infectious facial tumours (McCallum et al., 2007), and global declines in 

amphibian populations due to chytridiomycosis (Schloegel et al., 2006). 

Pathogens can interact with other driving factors, facilitating disease-mediated 

extinction risk in species of conservation concern (Kriger et al., 2007). 

Exploratory questions can be posed within our model framework, explicitly 

modelling transmission and survival rates of those infected as a function of 

plausible drivers of infection risk, alongside population dynamics will provide a 

quantitative understanding of how environmental change influences disease 

emergence and susceptibility and is worth consideration for the study of species 

of conservation concern (Smith et al., 2009). 

 How can IPMS help practitioners? 

Infection can spark a multitude of population changes in their host, from 

immediate population declines to apparent population stability. Understanding 

the impact of disease on population dynamics is vital for populations of 

conservation or management concern. One appealing trait of an IPM is its 

ingrained ability to predict population and disease dynamics into future unknown 

years, equipping researchers with the means to answer concerns with 

probabilistic statements such as; ‘there is a 68% probability that this population 
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is going to decline next year’. This study showcases the ability of IPMs to not 

only predict total population size, but also the number of infected individuals and 

subsequently disease prevalence. We find linking disease with population level 

dynamics as part of the estimating procedure provides the ideal structure to 

forecast into future years. Population projection models usually fulfil this 

predictive role, but their fixed transition rates prevent any degree of uncertainty 

in their predictions. However IPMs provide a measure of uncertainty within the 

posteriors of state-based parameters, which can be propagated through into 

predictions of future dynamics.  

When more than just predictions of population abundance and disease 

prevalence are required, IPM posterior estimates and their inherent uncertainty 

can be transferred into external models. Uncertainty in population responses to 

disease prompts indecision in management strategies, with predictive models 

highly sensitive to changes in disease-induced demographic characters and 

heterogeneity in parameter estimates greatly altering the predicted success of 

modelled control options (Smith et al., 2012). Consequently, uncertainty in 

commonly used fixed estimates reduces our ability to accurately and confidently 

model infected populations. However, incorporating uncertainty in demographic 

characters within the model will account for any doubt surrounding parameter 

estimates and assign quantities of certitude to predictions. This information 

would be more intuitive to assist management decisions, after all although we 

can never be certain in our model predictions this approach can at least assign 

a measure of how confident we are.  

Conclusion 

IPMs benefit from being intuitive and tractable, and equipped with an 

understanding of a basic IPM available from concise literature (Kéry & Schaub, 

2012; Schaub & Abadi, 2011) researchers can tailor models to their specific 

study system. We advance IPMs into an epidemiological framework. These 

early results suggest that these models can accurately assess disease 

dynamics along with population processes including productivity rates, and 
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there is no reason why these models cannot be extended further to include 

immigration, and other modelling frameworks. Additionally and perhaps the 

most appealing aspect of IPMs are their predictive capabilities, and the 

transference of doubt in parameter estimates to provide posteriors of future 

dynamics. Future use of these models can be extended into other animal 

systems and to pose a range of hypotheses regarding disease and population 

dynamics of badger populations. 
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CHAPTER 8 

Discussion 

Overview 

Capture-mark recapture (CMR) models are a central tool in ecology, used 

widely to uncover and understand key ecological processes of wild populations. 

This thesis has presented a variety of CMR methods to quantify and understand 

processes underpinning disease and demography of Eurasian badgers (Meles 

meles). First, using an integrated population model (IPM), I provided an 

overview of badger population dynamics, revealing intrinsic and extrinsic drivers 

of demographic change (Chapter 2). Adopting a state-structured framework, I 

moved to individual effects of TB infection and quantified disease-specific 

mortality rates, infection risk and disease progression probabilities in males and 

females, highlighting sex-differences in TB epidemiology (Chapter 3 & 4). 

Progressing into a Bayesian framework can help researchers build more 

complex mixed-effects models. I used this improved flexibility to account for 

social structuring of badger populations in the multistate analysis (Chapter 4). A 

key finding throughout these chapters was sex-differences in infection 

response. However, discrete survival parameters, despite highlighting sex-

differences in TB epidemiology, were unable to explain the underlying causality. 

I have shown how generating survival trajectories of infected badgers can infer 

the mechanism underpinning sex differences in disease susceptibility (Chapter 

5). A separate badger population provided an opportunity to assess the 

transferability of epidemiological rates obtained from the Woodchester 

population, supporting its continued use as a model population (Chapter 6). 

Finally, I provide a method that links disease and population ecology, estimating 

disease dynamics and demographic processes, uncovering previously 

unidentifiable productivity rates and predicting future population dynamics 

(Chapter 7).  
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Epidemiology 

Epidemiological studies traditionally view wildlife reservoirs as homogeneous 

populations, with infection imposing a fixed effect across individuals, as 

illustrated by the standard susceptible-infected paradigm. Due to detailed 

longitudinal data and multiple diagnostic test procedures, badgers form one of 

the few wild population studies in which multiple disease states have been 

described (Wilkinson et al., 2000). I presented a new classification of badgers 

consisting of four health states using diagnostic results from ELISA and culture 

tests; negative (N), ELISA positive (P), one-site excretor (X) and multi-site 

excretor (XX). State-dependent statistical models revealed further 

epidemiological complexities. Epidemiological parameters vary among disease-

states and are highly sex-specific. By obtaining empirical estimates of the force 

of infection and TB progression I not only found males to have a high likelihood 

(0.99) of suffering from raised mortality rates than females throughout the 

infection process, whereby male survival rates reduced by 2%, 6%, 10%, 18% 

compared to female survival for N, P, X & XX health states respectively, but 

they also have a high likelihood (>0.96) of increased infection rates and 

progression rates (Chapters 3 & 4). 

Sex-related differences are an important contributor to TB disease dynamics 

(Chapter 3, Chapter 4 & Chapter 5). Dissimilarities in infection response 

between sexes is a generally accepted phenomenon across mammal species 

(Guerra-Silveira & Abad-Franch, 2013; Hazel et al., 2000), however the 

underlying cause is often poorly understood. Understanding the mechanism 

driving epidemiological heterogeneity may prove imperative for management 

considerations for example, targeting specific cohorts that contribute 

proportionally more to disease transmission, or individuals that exhibit certain 

behaviours that coincidentally predispose them to infection risk. 

Determining a causative link between sex-differences and possible 

immunological, behavioural and ecological traits is a perplexing problem with 

limited solutions. Manipulating this scenario experimentally is logistically 

challenging and achieving it in a laboratory setting is infeasible given the nature 
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of our hypotheses which require individuals to behave naturally. Obtaining 

information directly from natural populations would appear a logical approach 

but requires exploration of analytical tools. I have shown Bayesian survival 

trajectory analysis (BaSTA (Colchero et al., 2012)) to be useful in comparative 

analyses of males and females using data direct from a wild population. By 

decomposing fixed mortality rates into trajectories and comparing parameters of 

male and female infected badgers I find mortality patterns suggestive of male 

immunological defects as opposed to any behavioural or ecological 

predisposition to die (Chapter 5). Diminished immune system functioning in 

males is likely mediated by androgens, particularly testosterone, although 

behavioural changes driven by infection cannot be discounted. BaSTA could be 

used to elucidate the causes of sex-related heterogeneity in other field systems, 

with male-biased responses to disease occurring across many wildlife 

populations (Guerra-Silveira & Abad-Franch, 2013). Additional exploration of 

trajectory parameters can highlight heterogeneity in disease response, stages 

of maximum vulnerability, and be developed to compare mortality trends 

between alternative cohorts of infected hosts. 

Despite the universal acceptance that long-term studies are vital to uncover 

ecological and epidemiological processes, longitudinal field projects are limited 

in their funding opportunities (Clutton-Brock & Sheldon, 2010). An inability to 

replicate field surveys commonly breeds scepticism of results from single 

population studies. Much of our current knowledge regarding TB infection in 

badgers stems from the Woodchester badger society. A comparative analysis 

(Chapter 6) of Woodchester Park badgers and control badgers captured as part 

of a vaccination trial in an unconnected region in Gloucestershire highlighted 

consistencies among epidemiological processes, especially disease 

transmission and progression rates, instilling confidence in Woodchester Park 

as a model population. Unfortunately as both populations were in regions of 

high density I am unable to infer whether these rates are relevant to populations 

living at lower density. However, low density badger populations are not 

typically associated with areas posing the highest risk to livestock (Roper, 2010)  

therefore in terms of using model parameters to assess disease prevention 
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measures the evidence points to Woodchester Park as a typical population. Of 

course this result is just a snap shot of badger society with comparisons limited 

to a short time period and to specific diagnostic tests, therefore further 

opportunities for comparison will be valuable. 

Population dynamics 

Despite decades of research, a comprehensive appraisal of demographic 

drivers of badger population dynamics had not been implemented. I built on 

previous studies (Macdonald et al., 2010) to provide a more complete 

understanding of causes underpinning fluctuating badger abundance, capturing 

a significant amount of variation in key demographic rates (Chapter 2). 

Considering disease, weather and density as long-term drivers of badger 

population dynamics I demonstrated how explanations of population dynamics 

must be based on a multi-factorial analysis, with low-powered statistical 

approaches unable to encompass the interactions between demographic 

drivers. Badgers conform as slow life-history strategists, regulating their 

recruitment, but not survival, under environmental pressures. Density-

dependent constraints acted upon recruitment, explaining a large proportion of 

demographic variability, and its inclusion uncovered influential climatic 

conditions; over-wintering and spring conditions influenced the number of cubs 

emerging from setts in the spring. Survival appeared resilient to density 

changes, showing reduced variability compared to recruitment. Survival 

contributes proportionally more to population growth, making its reduced 

temporal variance advantageous due its greater potential to influence fitness 

(Gaillard et al., 2000; Pfister, 1998) and likely contributes to their observed 

population stability as a long-lived species (Saether et al., 2013). However, I did 

uncover a chink in the badgers’ evolutionary armour: autumnal conditions. 

Survival, although resilient to the onslaught of the majority of environmental and 

density changes, was affected by changes in autumn conditions, indicating an 

adaptation to gain weight during this period increases their vulnerability to 

environmental changes. Although these results highlight the sensitivities of 

badger populations to weather changes, the mechanisms that these act on 
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remain unclear, some such as autumn conditions seem intuitive due to the 

known importance of autumn conditions to weight gain (Roper, 2010). But more 

sophisticated mechanisms are also likely to be at play including changes in 

activity levels, and covariance between disease and weather effects.  

In accordance with studies of TB in other long-lived species (Arthur et al., 2004; 

Cross et al., 2009; Jolles et al., 2005; Joly & Messier, 2005), disease 

prevalence had only a limited effect on population dynamics. Recruitment rates 

were completely unaffected by changes in disease prevalence therefore 

promoting continued birth of cubs which may in turn restrict levels of disease 

prevalence from escalating. Although survival appeared strongly disease-

dependent, the inclusion of autumnal conditions in the model dampened the 

effect such that its influence was only felt during periods of unfavourable 

autumn temperatures. In vertebrates, immune system functioning not only 

varies between individuals, but also due to a number of factors including, but 

not limited to, nutritional stress, severe weather, and seasonally with changes in 

reproductive activity and human disturbance. This study highlights an 

interaction between disease and weather conditions, suggesting that disease 

effects are intensified during periods of nutritional stress. However, the direct 

causality of this influence was undetectable within this analysis. Consideration 

of individual-level disease processes and weather interactions as well as these 

large-scale dynamics are required to unravel this interaction and shed further 

light on the cause of disease-weather complexities.  

One solution would be to analyse individual disease processes alongside 

population dynamics. I demonstrated such an analysis within an IPM, merging 

individual multistate data and population counts (Chapter 7). Using simulated 

data I demonstrated how a demographic and disease model can be derived and 

parameterised to allow simultaneous estimation of disease processes alongside 

population dynamics. This model should be taken forward to analyse badger 

population dynamics and pose further hypotheses, perhaps disentangling any 

co-variation between environmental and disease processes. 
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Management 

The cost of TB to the farmer and other taxpayers is escalating, yet the 

complexity of the problem has to date prevented control initiatives succeeding, 

with TB prevalence in cattle increasing and TB hotspots spreading 

geographically. To combat diseases that affect multiple hosts, management will 

likely require both cattle and badger focussed interventions. Ideally, any 

management initiatives would not take place until the host community is fully 

understood, however the practicalities of obtaining such detailed knowledge 

make this goal unrealistic and managers need to act despite limited and often 

polarized information. Although studies in this thesis are unable to devise a 

clear route for management, all scientific evidence, particularly parameter 

estimates, are easily transferable into predictive models for future design of 

management strategies. Having quantified both disease and population 

processes, to which current predictions of management are highly sensitive 

(Smith et al., 2012) these can now be applied in a predictive context. 

I have identified numerous mechanisms that may be used to guide 

management including seasonality in disease effects, sex-differences in TB 

epidemiology and density-dependent compensation. Here I suggest how these 

could be viewed from a management perspective. 

This thesis highlighted that autumn conditions may exacerbate the impact of 

TB. While exact connections between disease and seasonal patterns are 

largely unknown, if seasonal drivers of TB do exist this could guide intervention 

strategies with control targeting infection peaks (Altizer et al., 2006; Joseph et 

al., 2013). BCG vaccination has a largely unknown duration of effect, and it is 

not certain how much protection occurs over time following vaccination (Brown 

et al., 2013). However, if there is a peak level of protection this may be used to 

time vaccination. For example, vaccinations could be timed to occur prior to the 

onset of regular outbreaks (Altizer et al., 2006). TB vaccination is suggested to 

slow the progression of disease (Chambers et al., 2011) therefore, 
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speculatively, vaccinating before autumn may prevent disease progression to 

infectious stages even when individuals are subjected to nutritional stress. 

Additionally, I identified increased susceptibility to TB in male badgers. That is, 

males are more likely to become infectious once they have been infected. 

Individuals that account for a large proportion of transmission are often termed 

super-spreaders (Lloyd-Smith et al., 2005), with targeted vaccination of these 

individuals likely to reduce disease spread more effectively than population wide 

strategies. However this requires an understanding of factors that drive 

infectiousness. I uncovered maleness as a predictive correlate of higher 

infectiousness, but also found results suggesting this is due to immunological 

mechanisms, and not an observable behavioural or ecological difference. 

Therefore, pinpointing identifiable traits in these individuals is problematic. 

Recent analysis has highlighted further complexities with TB positive badgers 

likely to be more socially isolated from their social group (Weber et al., 2013) 

consequently they may contribute to between-group transmission proportionally 

more than within-group. Therefore, badgers don’t appear to conform to the 

archetype of a super-spreader. Difficulties pinpointing high-risk individuals, 

along with this social complexity, indicate population-wide vaccination may be 

the more effective strategy, as well as preventing perturbation of the intricate 

badger social systems. 

Density-dependence is an important consideration both for supporting 

populations of conservation concern (Carrete et al., 2006), when density-

dependent constraints may restrict population growth despite conservation 

initiatives, and for pest populations with compensatory density-dependence 

alleviating the negative consequences of management strategies (Beeton & 

McCallum, 2011). Previous studies of badger populations have highlighted how 

perturbation can induce dispersal patterns (Woodroffe et al., 2006b), which can 

be considered a density-dependent change in social behaviour. Our results 

further highlight density-dependent compensation, such that culling may release 

populations from density-dependent pressure increasing birth and survival rates 

of cubs. This can have implications for population size; stabilizing perturbed 
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populations and possibly even increasing disease transmission (Potapov et al., 

2012). Overcoming these perturbation effects would require marked eradication 

of badger populations to reduce the viable breeding population along with 

dispersal opportunities. Arguably this would be both unethical and infeasible 

logistically given recent failures: a recent culling operation in Gloucestershire 

was unsuccessful at reaching its target of a 70% reduction in population size 

(Independent Expert Panel, 2014). Although formulating precise control 

outcomes is beyond the scope of this thesis, I propose that density-dependent 

mechanisms will play a pivotal role in determining the success of modelled 

control strategies and due to its compensatory impact its exclusion may result in 

exaggerated effects of culling being estimated. Again in this scenario the limited 

impact of vaccination on population dynamics may be more favourable, 

avoiding any compensatory effects.   

Predictive models were only touched upon in this thesis, but I highly advocate 

applying the uncertainty expressed in Bayesian posteriors to future predictive 

models. Although by their very nature predictions are uncertain, more 

reasonable assertions can be made by assigning a measure of doubt to them. I 

glimpsed at one way this can be achieved in Chapter 7 where an IPM was used 

to forecast over future years, providing both mean estimates and a posterior 

summary. These models can express a ‘best’ and ‘worse’ scenario i.e. the 

probability of population rise or fall, or probability of an increase or decrease in 

disease prevalence. In this context the IPM took into account uncertainty in the 

parameters of epidemiological processes, differences between sexes and 

disease-specific reproductive allocation rates which were then used to predict 

not only the population size but also the number of badgers in each disease 

state. This can be used as a tool not only for reservoir host management, but 

also conservation initiatives where data may be sparse, or to assess whether a 

management intervention is required. This is a novel opportunity to make 

predictions of future population size with full propagation of parameter 

uncertainty and an important next step should focus on ways to utilise these 

parameters to consider uncertainty when assessing the benefits of proposed 

management strategies. 
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Method development 

Using analytical approaches that are able to reveal underlying mechanisms 

direct from wildlife populations is a worthwhile venture providing more ‘realistic’ 

answers to ecological questions than can be achieved by any other means. The 

work presented here applies new CMR modelling approaches to generate 

updated robust estimates of processes underlying an infected badger 

population. The natural progression of analyses led to a move from a frequentist 

to Bayesian philosophy and through single state to multiple states to integrated 

models.  

A general benefit of Bayesian analyses is the ease to which individual and time-

varying covariates, both fixed and random, can naturally be incorporated in a 

style analogous to coding generalised linear mixed models. This modelling 

flexibility increased the inferential capability of both the multistate and IPM 

models. Although novel in the context of badger studies, multistate models have 

been used across wildlife systems (Faustino et al., 2004), however I expand 

them to estimate force of infection and disease progression across multiple 

health states. An area for future development within the multistate framework 

would be to account for imperfect diagnostic tests by incorporating sensitivity 

and specificity of the diagnostic tests that guide state assignment. Current 

research on state uncertainty in multistate models is based on incomplete 

records (Conn & Cooch, 2009) or uncertainty in detection probability (Jennelle 

et al., 2007), with diagnostic uncertainty a relatively recent consideration 

(McClintock et al., 2010).  

Moving on to using IPMs for population analyses had numerous advantages, 

including the acceptance and incorporation of observation error and stochastic 

variation in population dynamics into the model framework. In this thesis I 

applied two forms of IPMs to the badger data, first using a standard CJS and 

state space model to investigate broad population dynamics and detect 

temporal drivers of fluctuations in badger abundance. This IPM explained a 

considerable amount of variation in population fluctuations but was unable to 
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firmly describe, and therefore disentangle, a causative link with disease 

dynamics. Second, I developed a multistate and state space model to account 

for epidemiological processes alongside population dynamics. The state matrix 

in the multistate framework was altered to reasonably represent the infection 

process in badgers. The state process in the state-space component was 

altered to estimate abundance of badgers in each health state and provide 

indices of productivity. Creating a state-structured IPM provided estimates of 

disease dynamics, alongside population processes, directly linking population 

ecology (Chapter 2) with disease ecology (Chapters 3 & 4). This model can now 

be used to pose hypotheses in a badger-TB system to uncover individual and 

temporal complexities and provide a direct link between disease-dynamics and 

population change.  

New developments in the field of IPMs, including those in this thesis, should 

help broaden the use of these models in understanding other disease-host 

systems. With a basic understanding IPMs can easily be adapted, for example 

by providing alternate indices of fecundity, different disease states and 

incorporating immigration rates (Abadi et al., 2010b). There would be significant 

merit in applying IPMs to other disease systems: their ability to predict alone is 

a novel component. I have also shown how a multistate model can replace a 

CJS model in an IPM, therefore combining additional models such as ring 

recovery models, and robust design models which are able to separate survival 

and emigration estimates may be more appropriate and/or advantageous in 

other animal systems.  

There are challenges that lie ahead with methodological development. Although 

evidence points to IPMs as a very promising tool for ecological studies there are 

currently no appropriate goodness-of-fit testing procedures which may restrict 

its mass usage. In this thesis the addition of a likelihood framework using 

program MARK provided validation of modelling results, however this feels 

rather counterintuitive and statistical advancement in this area is likely required 

before these models are commonplace. Additionally, I found that convergence 

was slow in individual multistate studies taking from weeks up to months to run, 



 173 

 

especially when random effects were incorporated which required a large 

number of samples before converging. This may dictate whether a model is 

practical to run or not. Therefore further tuning of the parameters may optimise 

the convergence rate. Alternatively, modelling outside a WinBUGS framework 

may improve computation time with MCMC methods running quicker in different 

programing languages. This would reduce the problem of long convergence 

times but requires direct coding of the ‘black box’ MCMC algorithm that 

WinBUGS provides.  

Conclusion 

The work presented here has improved our understanding of disease and 

demography in a badger society. I have emphasized the importance of sex-

specific epidemiology and provided inference regarding the causation of these 

patterns. I also have a more complete understanding of the drivers of large-

scale population dynamics and developed a more intricate modelling framework 

which will hopefully shed light on some mechanisms that still remain uncertain. 

Capture-mark-recapture analysis is a constantly developing field providing a 

broad range of tools to answer our ever growing list of ecological questions. The 

methods in this thesis to some extent display the statistical evolution occurring 

within CMR analyses, progressing from long-established CJS models to highly 

computational IPMs. I suggest that pursuing IPMs will yield major advances in 

ecology as they increasingly become part of the population ecologists’ toolbox. 

Results presented in this thesis have unravelled demographic and disease 

mechanisms and hopefully highlighted the potential for these to be carried 

forward to aid management decisions along with answering key ecological and 

epidemiological questions. 
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APPENDICES 

Appendix 2.1 MARK: measuring survival and recruitment 

Survival was modelled using the Cormack-Jolly-Seber model (Lebreton et al., 

1992) in the program MARK (White & Burnham, 1999) using the logit link 

function. Recruitment was analysed in a Pradel model (Pradel, 1996) using the 

log link function. These models were used to recreate the IPM model to test for 

goodness of fit, and the significance of disease and density. Disease and 

density were incorporated by altering the design matrix 

The disease model for survival was recreated in a CJS model. After adjusting 

for overdispersion (c-hat=1.9), disease coefficient parameters are similar to 

those obtained within the IPM (βD=0.145 (95% CI -0.24 to -0.04))) with disease 

explaining a significant amount of variation in the survival model (χ2
1= 8.58, 

p=0.003).  

Pradel models were used to recreate the effect of density on recruitment. After 

adjusting for overdispersion (1.9) density was still found to be an important 

regulatory factor influencing recruitment (βN = -0.18 (95% CI -0.26 to -0.09), 

explaining a significant amount of variation (χ2
1= 12.89, p<0.001).  
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Appendix 2.2 Sex differentiated covariates 

 

Figure A2.1. Sex-specific effect of disease (D) on survival rates modelled 

separately for male and female badgers, displayed using posterior means and 

95% CRI.  

Appendix 2.3 MARK: measuring effect of weather on survival and 

recruitment 

Survival was modelled using the Cormack-Jolly-Seber model (Lebreton et al., 

1992) in the program MARK (White & Burnham, 1999) using the logit link 

function. Recruitment was analysed in a Pradel model (Pradel, 1996) using the 

log link function. These models were used to analyse time-, sex-, weather- 

disease prevalence- and density-specific variation in survival and recruitment 

probabilities. Covariates were incorporated by altering the design matrix. 

Models were assessed using Akaike Information Criteria (AIC) adjusted for 

overdispersion (QAIC). ‘Better’ candidate models were indicated by their lower 

QAIC values. QAIC weights were used to select the best model (Burnham & 

Anderson, 2002). Where the difference between the QAIC values for best 
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approximating model and the next most competitive model was greater than 2, 

this indicates substantial support for the first model alone (Burnham & 

Anderson, 2002). In this situation, parameter estimates were derived solely from 

this most supported model and covariates were taken forward into the IPM.  

When the difference in QAIC was less than 2 model covariates from the top 

candidate model set were considered and taken forward into the IPM. 

RESULTS  

Survival was tested for against different climatic factors, disease prevalence, 

sex and density in a CJS model. The minimum adequate model found that 

survival is influenced by autumn temperature (βAT=-0.19 (95% CI -0.33 to -

0.07)), disease (βD=- -0.04 (95% CI -0.16 to 0.07)) and sex (Table A2.1), with 

an interaction between disease and autumn temperature (βAT x D=-0.14 (95% CI 

-0.31 to 0.02)).  Autumn temperature was in all the top models. Autumn rainfall 

appeared in the candidate model set (ΔQAIC<1) but were not as well supported 

with beta parameters spanning zero (βAR=-0.066 (95% CI -0.19 to 0.05)).  

Table A2.1. Summary of the top survival models. Models are ranked by 

ascending QAICc.  

Model (Φ) Delta 

QAICc 

AICc 

Weights 

Num. 

Par 

QDeviance 

S+D+AT+(D:AT) 0 0.31969 7 1096.8883 

S+AR+D+AT+(D:AT) 0.948 0.19901 8 1095.8283 

S+D+AT 0.9589 0.19793 6 1099.8541 

S+D+AR+AT 2.3606 0.0982 7 1099.2488 

S+D 6.7753 0.0108 5 1107.6766 

S+D+AR 7.6202 0.00708 6 1106.5154 

S+D+(S:D) 8.0362 0.00575 6 1106.9315 
 

 

Pradel models were used to determine the effect of weather variables upon 

recruitment in a model with density dependence. After adjusting for 

overdispersion (1.9) the most parsimonious model indicated that density is an 

important regulatory factor influencing recruitment (βN = -0.18 ±0.04), present in 

all of the top models with a combined weighting of 99.8% (Table A2.2). By 
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accounting for density dependence spring temperature and January frost days 

were found to have a positive effect on recruitment (βST = 0.145 ± 0.06; βFJ = 

0.139 ± 0.06). Spring temperature and January frost days were in the top 

candidate model with density, however they did not explain a significant amount 

of variation in models without density dependence (χ2
2= 3.46, p= 0.18).   

Table A2.2. Best models of recruitment (f). Survival and recapture remained the 

same for all the models (Survival Sex, Recapture Sex)  

Model (f) Delta QAICc AICc 

Weights 

Num. Par QDeviance 

N + ST + FJ 0 0.4928 8 1191.9236 

N + FJ 1.4917 0.23375 7 1195.4234 

N 2.3376 0.15313 6 1198.2759 

N + ST 2.8654 0.11761 7 1196.7969 

FJ 11.8765 0.0013 6 1207.8146 

. 13.2254 0.00066 5 1211.1695 

ST + FJ 13.7785 0.0005 7 1207.7099 

ST 15.1986 0.00025 6 1211.1367 
 

 

Appendix 7.1. RCODE for simulating data and analysing within IPM 

Detailed information for simulating multi-state CMR and census data and 
their subsequent analysis using an IPM combining a multi-state model 
and census data. 
 
The following presents the code to simulate multistate capture recapture data 
Simul.ms is the function to simulate multistate capture-recapture data and was taken 

directly Kéry and Schaub (2012) 

# Define mean survival (phi), transitions (psi) and recapture (p) per disease state (a, b, c, 

d, analogous to N, P, X, XX health states) 
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# Estimates specified for males 

phiA<-0.67 

phiB<-0.57 

phiC<-0.47 

phiD<-0.14 

psiAA<-0.914 

psiAB<-0.055 

psiAC<-0.023 

psiAD<-0.008 

psiBB<-0.67 

psiBC<-0.25 

psiBD<-0.08 

psiCC<-0.636 

psiCD<-0.364 

p<-0.93 

# Estimates specified for females 

phiA<-0.73 

phiB<-0.73 

phiC<-0.73 

phiD<-0.37 

psiAA<-0.945 

psiAB<-0.035 

psiAC<-0.016 

psiAD<-0.004 

psiBB<-0.77 

psiBC<-0.175 

psiBD<-0.055 

psiCC<-0.689 

psiCD<-0.311 

p<-0.88 

 

#Define number of occasions (years =6), number of states (a, b, c, d, dead), number of 

possible observations and number of individuals released into each state on each occasion 

n.occasions<-6 

n.states<-5 

n.obs<-5 

marked<-matrix(NA,ncol=n.states,nrow=n.occasions) 

marked[,1]<-rep(17,n.occasions)#number released each state 

marked[,2]<-rep(2,n.occasions) 

marked[,3]<-rep(1,n.occasions) 

marked[,4]<-rep(0,n.occasions) 

marked[,5]<-rep(0,n.occasions) 

##Define matrices with survival, transition and recapture probabilities 

#These are 4-dimensional matrices, with  

#Dimension 1: state of departure 

#Dimension 2: state of arrival 

#Dimension 3: individual 

#Dimension 4: time 

#1. Define state process matrix- adapted to allow transitions observed in badger 

#populations 

totrel<-sum(marked)*(n.occasions-1) 

PSI.STATE<-array(NA,dim=c(n.states,n.states,totrel,n.occasions-1)) 

for(i in 1:totrel) { 

for (t in 1:(n.occasions-1)) { 

PSI.STATE[,,i,t]<-matrix(c( 

phiA*psiAA, phiA*psiAB, phiA*psiAC, phiA*psiAD, 1-phiA, 

0,  phiB*psiBB, phiB*psiBC, phiB*psiBD, 1-phiB, 

0,  0,  phiC*psiCC, phiC*psiCD, 1-phiC, 

0,  0,  0,  phiD,  1-phiD, 

0,  0,  0,  0,  1), 

nrow=n.states,byrow=TRUE) 

} #t 
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}#i 

#2. Observation process matrix 

PSI.OBS<-array(NA,dim=c(n.states,n.obs,totrel,n.occasions-1)) 

for(i in 1:totrel) { 

for (t in 1:(n.occasions-1)) { 

PSI.OBS[,,i,t]<-matrix(c( 

p,0,0,0,1-p, 

0,p,0,0,1-p, 

0,0,p,0,1-p, 

0,0,0,p,1-p, 

0,0,0,0,1),nrow=n.states,byrow=TRUE) 

} #t 

}#i 

##Execute simulation function for males and females 

sim<-simul.ms(PSI.STATE,PSI.OBS,marked) 

FCH<-sim$CH 

MCH<-sim$CH 

badg<-rbind(FCH,MCH) 

#Replace zeroes with 5 

badg[badg==0]<-5 

 

#The following presents the code to simulate census data  

# specify number of years 

n.years<-6  

# specify mean annual population growth rate 

mean.lambda<-1  

# specify process (temporal) variation of the growth rate 

sigma2.lambda<-0.02  

# specify variance of the observation error 

sigma2.y<-0   

#Specify initial population size of uninfected badgers, simulate population size in future 

#years, generate observed data conditional on true population size in this scenario there 

#observation error=0 so no difference 

NA1<-96  

yA<-Na<-numeric(n.years) 

Na[1]<-NA1 

lambda<-rnorm(n.years-1,mean.lambda,sqrt(sigma2.lambda)) 

for (t in 1: (n.years-1)){ 

Na[t+1]<-Na[t]*lambda[t] 

} 

for(t in 1:n.years) { 

yA[t]<-rnorm(1,Na[t],sqrt(sigma2.y)) 

} 

# Repeat previous steps for badgers in each disease state 

NB1<-17  

yB<-NB<-numeric(n.years) 

NB[1]<-NB1 
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for (t in 1: (n.years-1)){ 

NB[t+1]<-NB[t]*lambda[t] 

}# Simulate population sizes 

for(t in 1:n.years) { 

yB[t]<-rnorm(1,NB[t],sqrt(sigma2.y)) 

} 

NC1<-6  

yC<-NC<-numeric(n.years) 

NC[1]<-NC1 

for (t in 1: (n.years-1)){ 

NC[t+1]<-NC[t]*lambda[t] 

} 

for(t in 1:n.years) { 

yC[t]<-rnorm(1,NC[t],sqrt(sigma2.y)) 

} 

ND1<-5  

yD<-ND<-numeric(n.years) 

ND[1]<-ND1 

for (t in 1: (n.years-1)){ 

ND[t+1]<-ND[t]*lambda[t] 

}# Simulate population sizes 

for(t in 1:n.years) { 

yD[t]<-rnorm(1,ND[t],sqrt(sigma2.y)) 

} 

The following presents the code to run the model in R 

Step 1. Prepare data and covariates  

# Compute vector with occasions of first capture 

get.first <- function(x) min(which(x!=5)) 

f <- apply(badg, 1, get.first) 

#load library 

library(R2WinBUGS) 

#specify directory containing winbugs program 

bugs.dir<-"//isad.isadroot.ex.ac.uk/UOE/User/Desktop/WinBUGS14/" 

#Create indices of sex (1=female, 2=male) called ‘group’ to incorporate as covariate 

fe<-c(rep(1,100)) 

m<-c(rep(2,100)) 

group<-(c(fe,m)) 

#For predicting create a vector of length 2 corresponding to the number of years to 

#predict containing NA (NA, NA) and add to end of census data 

pyears<-2 

yA2<-c(yA,rep(NA,pyears)) 

yB2<-c(yB,rep(NA,pyears)) 

yC2<-c(yC,rep(NA,pyears)) 

yD2<-c(yD,rep(NA,pyears)) 

 

#Create a 2 x 200 matrix of NAs and bind to individual badger capture histories 

B = matrix(rep(NA,400), nrow=200, ncol=2) 
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badg2<-cbind(badg,B) 

# Function to create known latent states z taken  

known.state.ms <- function(ms, notseen){ 

   # notseen: label for ‘not seen’ 

   state <- ms 

   state[state==notseen] <- NA 

   for (i in 1:dim(ms)[1]){ 

   m <- min(which(!is.na(state[i,]))) 

   state[i,m] <- NA 

     } 

   return(state) 

   } 

 

# Function to create initial values for unknown z 

ms.init.z <- function(ch, f){ 

 for (i in 1:dim(ch)[1]){ch[i,1:f[i]] <- NA} 

 states <- max(ch, na.rm = TRUE) 

 known.states <- 1:(states-1) 

 v <- which(ch==states) 

 ch[-v] <- NA 

 ch[v] <- sample(known.states, length(v), replace = TRUE) 

   return(ch) 

   } 

# Step 2. Specify model- Including priors, state-space model and multistate model 

sink("IPM-MS4.bug") 

cat(" 

model { 

 

#PRIORS AND CONSTRAINTS 

# Initial population sizes 

Na[1] ~ dnorm(30, 0.0001)I(0,)     #Negative 

NB[1] ~ dnorm(10, 0.0001)I(0,)    # P 

NC[1] ~ dnorm(7, 0.0001)I(0,)    # X 

ND[1] ~ dnorm(5, 0.0001)I(0,) # XX 

Ntot[1] ~ dnorm(50, 0.0001)I(0,) 

#Transition probabilities and survival probabilites 

for (i in 1: nind){ 

for (t in 1:(n.occasions-1)){ 

 

psiAA[i,t] <- exp(lpsiAA[t,group[i]]) / (1 + exp(lpsiAA[t,group[i]]) + 

exp(lpsiAB[t,group[i]])+ exp(lpsiAC[t,group[i]])) 

psiAB[i,t] <- exp(lpsiAB[t,group[i]]) / (1 + exp(lpsiAA[t,group[i]]) + 

exp(lpsiAB[t,group[i]])+ exp(lpsiAC[t,group[i]])) 

psiAC[i,t] <- exp(lpsiAC[t,group[i]]) / (1 + exp(lpsiAA[t,group[i]]) + 

exp(lpsiAB[t,group[i]])+ exp(lpsiAC[t,group[i]])) 

psiBB[i,t] <- exp(lpsiBB[t,group[i]]) / (1 + exp(lpsiBB[t,group[i]])+ 

exp(lpsiBC[t,group[i]])) 
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psiBC[i,t] <- exp(lpsiBC[t,group[i]]) / (1 + exp(lpsiBB[t,group[i]])+ 

exp(lpsiBC[t,group[i]])) 

psiAD[i,t]<-1-(psiAA[i,t]+psiAB[i,t]+psiAC[i,t]) 

psiBD[i,t]<- 1-(psiBB[i,t]+psiBC[i,t]) 

 

logit(phiA[i,t]) <-eta.phiA[t,group[i]]   

logit(phiB[i,t]) <-eta.phiB[t,group[i]] 

logit(phiC[i,t]) <-eta.phiC[t,group[i]] 

logit(phiD[i,t]) <-eta.phiD[t,group[i]] 

logit(psiCC[i,t])<-eta.psiCC[t,group[i]] 

}} 

#Recapture probabilities 

for (i in 1: nind){ 

logit(p[i]) <- mu[group[i]] 

} 

 

for (u in 1:g) { 

for (t in 1:(n.occasions-1)){ 

eta.phiA[t,u]<-mu.phiA[u] 

eta.phiB[t,u]<-mu.phiB[u] 

eta.phiC[t,u]<-mu.phiC[u] 

eta.phiD[t,u]<-mu.phiD[u] 

eta.psiCC[t,u]<-mu.psiCC[u] 

lpsiAA[t,u] <-mu.psiAA[u] 

lpsiAB[t,u] <-mu.psiAB[u] 

lpsiAC[t,u] <-mu.psiAC[u] 

lpsiBB[t,u] <-mu.psiBB[u] 

lpsiBC[t,u] <-mu.psiBC[u] 

} 

mean.psiCC[u]~ dunif(0.5,0.99) 

mu.psiCC[u] <- log(mean.psiCC[u]/(1-mean.psiCC[u])) 

mean.psiCD[u]<-1-mean.psiCC[u] 

mean.phiA[u] ~ dunif(0.1,0.95) # Priors for mean state-spec. survival (at A) 

mean.phiB[u]  ~ dunif(0.1,0.95)# Priors for mean state-spec. survival (at B) 

mean.phiC[u]  ~ dunif(0.1,0.95)# Priors for mean state-spec. survival (at C) 

mean.phiD[u]  ~ dunif(0.1,0.95)# Priors for mean state-spec. survival (at D) 

mu.phiA[u]  <- log(mean.phiA[u] /(1-mean.phiA[u] )) 

mu.phiB[u] <- log(mean.phiB[u] /(1-mean.phiB[u] )) 

mu.phiC[u] <- log(mean.phiC[u] /(1-mean.phiC[u] )) 

mu.phiD[u] <- log(mean.phiD[u] /(1-mean.phiD[u] )) 

 mu.psiAA[u] ~ dunif(0,10) 

 mu.psiAB[u] ~ dunif(0,10) 

 mu.psiAC[u] ~ dunif(0,10) 

mu.psiBB[u] ~ dunif(0,10) 

mu.psiBC[u] ~ dunif(0,10) 

mean.psiAA[u] <- exp(mu.psiAA[u]) / (1 + exp(mu.psiAA[u]) + 

exp(mu.psiAB[u])+ exp(mu.psiAC[u])) 
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mean.psiAB[u] <- exp(mu.psiAB[u]) / (1 + exp(mu.psiAA[u]) + 

exp(mu.psiAB[u])+ exp(mu.psiAC[u])) 

mean.psiAC[u] <- exp(mu.psiAC[u]) / (1 + exp(mu.psiAA[u]) + 

exp(mu.psiAB[u])+ exp(mu.psiAC[u])) 

mean.psiBB[u] <- exp(mu.psiBB[u]) / (1 + exp(mu.psiBB[u])+ exp(mu.psiBC[u])) 

mean.psiBC[u] <- exp(mu.psiBC[u]) / (1 + exp(mu.psiBB[u])+ exp(mu.psiBC[u])) 

mean.psiAD[u]<-1-(mean.psiAA[u]+mean.psiAB[u]+mean.psiAC[u]) 

mean.psiBD[u]<- 1-(mean.psiBB[u]+mean.psiBC[u]) 

mu[u]<-log(mean.p[u]/(1-mean.p[u])) 

mean.p[u] ~ dunif(0.4, 0.96) 

}#g 

for (t in 2:(nyears)){ 

fa[t]<-mean.fa 

fb[t]<-mean.fb 

fc[t]<-mean.fc 

fd[t]<-mean.fd 

} 

#use different states to look at recruitment, fecundity per disease state 

mean.fa~dunif(0,3) 

mean.fb~dunif(0,3) 

mean.fc~dunif(0,3) 

mean.fd~dunif(0,3) 

 

#Specify likelihood for population count data: the state-space model 

 # System process specifying the true state can be adapted to include alternate indices 

   for (t in 2:nyears){ 

   for (i in 1:nind){ 

   mean1A[i,t] <- (fa[t]*Ntot[t-1]*phiA[i,t-1]) + (phiA[i,t-1]* Na[t-1]*psiAA[i,t-1]) 

  mean1B[i,t] <- (fb[t]*Ntot[t-1]*phiB[i,t-1])+(phiB[i,t-1]*NB[t-1]*psiBB[i,t- 

1])+(Na[t-1]*phiA[i,t-1]*psiAB[i,t-1]) 

      mean1C[i,t] <- (fc[t]*Ntot[t-1]*phiC[i,t-1])+(phiC[i,t-1]*NC[t-1]*psiCC[i,t-

1])+(phiA[i,t-1]*Na[t-1]*psiAC[i,t-1])+(phiB[i,t-1]*NB[t-1]*psiBC[i,t-1]) 

      mean1D[i,t] <- (fd[t]*Ntot[t-1]*phiD[i,t-1])+(phiD[i,t-1]*ND[t-1])+(phiC[i,t-

1]*NC[t-1]*(1-psiCC[i,t-1]))+(phiA[i,t-1]*Na[t-1]*psiAD[i,t-1])+(phiB[i,t-1]*NB[t-

1]*psiBD[i,t-1]) 

                } 

} 

#Include stochasticity 

for (t in 2:nyears){ 

N1A[t]<-mean(mean1A[,t]) 

N1B[t]<-mean(mean1B[,t]) 

N1C[t]<-mean(mean1C[,t]) 

N1D[t]<-mean(mean1D[,t]) 

Na[t] ~ dpois(N1A[t]) 

NB[t] ~ dpois(N1B[t]) 

NC[t] ~ dpois(N1C[t]) 

ND[t] ~ dpois(N1D[t]) 
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Ntot[t] <- Na[t]+NB[t]+NC[t]+ND[t] 

} 

# Observation process 

for (t in 1:nyears){ 

yA[t] ~ dpois(Na[t]) 

yB[t] ~ dpois(NB[t]) 

yC[t] ~ dpois(NC[t]) 

yD[t] ~ dpois(ND[t]) 

      }   

 

#Specify likelihood for multistate capture data 

# Define state-transition matrices   

for (i in 1:nind){ 

  for (t in f[i]:(n.occasions-1)){ 

 

# Define probabilities of state S(t+1) given S(t) 

      ps[1,i,t,1] <- phiA[i,t] * psiAA[i,t] 

      ps[1,i,t,2] <- phiA[i,t] * psiAB[i,t] 

      ps[1,i,t,3] <- phiA[i,t] * psiAC[i,t] 

     ps[1,i,t,4] <- phiA[i,t] * (1-psiAA[i,t]-psiAB[i,t]-psiAC[i,t]) 

      ps[1,i,t,5] <- 1-phiA[i,t] 

      ps[2,i,t,1] <- 0 

      ps[2,i,t,2] <- phiB[i,t] * psiBB[i,t] 

      ps[2,i,t,3] <- phiB[i,t] * psiBC[i,t] 

      ps[2,i,t,4] <- phiB[i,t] * (1- psiBB[i,t]-psiBC[i,t]) 

      ps[2,i,t,5] <- 1-phiB[i,t] 

      ps[3,i,t,1] <- 0 

      ps[3,i,t,2] <- 0 

      ps[3,i,t,3] <- phiC[i,t] * psiCC[i,t] 

      ps[3,i,t,4] <- phiC[i,t] * (1-psiCC[i,t]) 

      ps[3,i,t,5] <- 1-phiC[i,t] 

      ps[4,i,t,1] <- 0 

      ps[4,i,t,2] <- 0 

      ps[4,i,t,3] <- 0 

      ps[4,i,t,4] <- phiD[i,t] 

      ps[4,i,t,5] <- 1-phiD[i,t] 

      ps[5,i,t,1] <- 0 

      ps[5,i,t,2] <- 0 

      ps[5,i,t,3] <- 0 

      ps[5,i,t,4] <- 0 

      ps[5,i,t,5] <- 1 

 

# Define observation matrix, the probabilities of O(t) given S(t) 

      po[1,i,t,1] <- p[i] 

      po[1,i,t,2] <- 0 

      po[1,i,t,3] <- 0 

      po[1,i,t,4] <- 0 
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      po[1,i,t,5] <- 1-p[i] 

      po[2,i,t,1] <- 0 

      po[2,i,t,2] <- p[i] 

      po[2,i,t,3] <- 0 

      po[2,i,t,4] <- 0 

      po[2,i,t,5] <- 1-p[i] 

      po[3,i,t,1] <- 0 

      po[3,i,t,2] <- 0 

      po[3,i,t,3] <- p[i] 

      po[3,i,t,4] <- 0 

      po[3,i,t,5] <- 1-p[i] 

      po[4,i,t,1] <- 0 

      po[4,i,t,2] <- 0 

      po[4,i,t,3] <- 0 

      po[4,i,t,4] <- p[i] 

      po[4,i,t,5] <- 1-p[i] 

      po[5,i,t,1] <- 0 

      po[5,i,t,2] <- 0 

      po[5,i,t,3] <- 0 

      po[5,i,t,4] <- 0 

      po[5,i,t,5] <- 1 

      } #t 

   } #i 

# Likelihood  

for (i in 1:nind){ 

# Define latent state at first capture    

z[i,f[i]] <- q[i,f[i]] 

 for (t in (f[i]+1):n.occasions){ 

# State process: draw S(t) given S(t-1) 

z[i,t] ~ dcat(ps[z[i,t-1], i, t-1,]) 

# Observation process: draw O(t) given S(t) 

 q[i,t] ~ dcat(po[z[i,t], i, t-1,]) 

 } #t 

 } #i 

} 

",fill = TRUE) 

sink() 

#END OF MODEL 

# Step 3. Bundle data, specify parameters to be monitored, initial values and MCMC settings 

# Bundle data 

bugs.data <- list(nyears=8, q = badg2, group=group, g=length(unique(group)), 

yA=yA2, yB=yB2, yC=yC2, yD=yD2,  f = f, n.occasions = dim(badg2)[2], nind = 

dim(badg2)[1], z = known.state.ms(badg2, 5)) 

#specifiy initial values 

inits <- function ( ) { list(z = ms.init.z(badg2, f),  Na = rpois(dim(badg2)[2],15), 

NB = rpois(dim(badg2)[2],8), NC = rpois(dim(badg2)[2],5), ND = 

rpois(dim(badg2)[2],5)) 
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# Parameters monitored 

parameters <- c("mean.phiA", ”mean.phiB", ”mean.phiC", "mean.phiD", "mean.fa", 

"mean.fb", "mean.fc", "mean.fd", "mean.psiAA", "mean.psiAB", "mean.psiAC", 

"mean.psiAD", "mean.psiBB", "mean.psiBC", "mean.psiBD", "mean.psiCC", 

"mean.psiCD", "Na", "NB", "NC", "ND", "Ntot", "mean.p") 

# MCMC settings 

#specify number of iterations 

ni <- 10000 

#specify thinning rate 

nt <- 5 

#specify burn-in 

nb <- 1000 

#specify number of chains 

nc <- 2 

# Step 4. Call WinBUGS from R 

ms42 <- bugs(bugs.data, inits, parameters, "IPM-MS4.bug", n.chains = nc, n.thin = 

nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, 

working.directory = getwd()) 

#Following model run, visually check for convergence of chains and then print summary 

to get your posteriors 

print(ms42, digits = 3) 
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