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Summary
Background Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically 
transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and 
meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to 
investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 
pandemic.

Methods In this prospective analysis of surveillance data, laboratories in 26 countries and territories across 
six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis 
from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. 
Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive 
disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for 
comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 
Government Response Tracker. Changes in population movements were assessed using Google COVID-19 
Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive 
disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures 
were imposed.

Findings 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae 
(62 434 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 
21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had 
experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and 
N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment 
measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were 
observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 
control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate 
ratio 0·32 [95% CI 0·27–0·37]) and 82% at 8 weeks (0·18 [0·14–0·23]) following the week in which significant 
changes in population movements were recorded.

Interpretation The introduction of COVID-19 containment policies and public information campaigns likely reduced 
transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening 
invasive diseases in many countries worldwide.
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Introduction
Invasive bacterial diseases, particularly bacteraemic 
pneumonia, meningitis, and sepsis, are leading causes of 
global morbidity and mortality among all age groups, 
especially among young children (aged <5 years), 
adolescents, and older adults (aged >65 years). The most 
common causes of these life-threatening diseases are 
Streptococcus pneumoniae (pneumococcus), Haemophilus 
influenzae, and Neisseria meningitidis (meningococcus), 
which normally reside in the nasopharynx or throat of 
healthy individuals and are transmitted person-to-person 
via the respiratory route.1–4

In 2016, there were 336 million episodes of lower 
respiratory infections worldwide, leading to 2·4 million 
deaths.5 Respiratory infections were the sixth leading 

cause of death among all ages and the most common 
cause of death in children younger than 5 years.5 
S pneumoniae was estimated to have caused 197 million 
episodes of pneumonia, which led to more than 
1·1 million deaths worldwide—more deaths than the 
combined total number of pneumonia deaths due to 
H influenzae serotype b, influenza, or respiratory syncytial 
virus.5 Globally, the number of deaths due to meningitis 
among all ages was around 300 000 in 2016, from an 
estimated 2·8 million meningitis episodes.6 Meningitis 
outbreaks due to these three bacteria (N meningitidis in 
particular) have occurred worldwide.5,6

SARS-CoV-2 is a novel coronavirus that was first 
recognised as a cause of respiratory infection in early 2020 
and causes COVID-19 in humans. 83·6 million cases of 

Research in context

Evidence before this study
We searched PubMed, bioRxiv, and medRxiv for articles 
published in English from database inception up to 
Dec 31, 2019, before the COVID-19 pandemic, using search 
terms “pandemic” AND “microbial transmission” OR 
“transmission” AND “containment”. 262 papers were identified, 
none of which met our inclusion criteria (ie, a study that 
described large-scale containment measures implemented 
during a pandemic). Although strategies for containment and 
reducing transmission of an epidemic or pandemic pathogen 
have been well described in the literature, there is currently an 
evidence gap regarding the extent to which large-scale 
containment measures implemented during a pandemic reduce 
the burden of infectious diseases due to pathogens other than 
the one causing the pandemic.

Added value of this study
We used existing laboratory data to address the effect of 
COVID-19 and associated containment measures on the 
incidence of invasive diseases caused by Streptococcus 
pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, 
which are all transmitted via the respiratory route, with 
Streptococcus agalactiae as a non-respiratory comparator micro-
organism. We rapidly established an international network of 
laboratories in 26 countries and territories, compiled a large 
invasive disease dataset of more than 80 700 case records, 
analysed data for national policy decisions and containment 
measures in each country using the Oxford COVID-19 

Government Response Tracker, and examined the movements 
of people during the early months of the COVID-19 pandemic 
using Google COVID-19 Community Mobility Reports. Our 
study showed that the incidence of invasive disease due to 
S pneumoniae, H influenzae, and N meningitidis declined sharply 
in all participating countries following the introduction of 
COVID-19 containment measures in early 2020, whereas the 
incidence of invasive disease due to S agalactiae did not. 
The decreases in incidence of these invasive diseases were 
largely consistent across countries, despite variation in the 
stringency of containment measures adopted in the early 
stages of the COVID-19 pandemic.

Implications of all the available evidence
High-quality, prospective microbiological disease surveillance is 
crucial to global health. COVID-19 containment measures 
reduce the transmission of respiratory pathogens and associated 
diseases, but they also impose a heavy burden on society that 
must be carefully considered. Invasive diseases due to 
S pneumoniae, H influenzae, and N meningitidis are among the 
leading causes of death and disability worldwide. Safe and 
effective vaccines for all three pathogens are used in many, 
but not all, countries and should be implemented more widely. 
Finally, the invasive disease burden is likely to increase as 
COVID-19 containment measures are relaxed. Therefore, 
ongoing microbiological surveillance, such as that shown in this 
study, is essential.
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Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland 
(Switzerland), and French Public Health Agency (France).
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COVID-19 and 1·8 million COVID-19-related deaths have 
been reported worldwide as of Dec 31, 2020.7 Viral 
respiratory infections are associated with an increased risk 
of subsequent bacterial infections, especially invasive 
diseases and pneumonia. For example, the high mortality 
of the 1918 influenza pandemic was strongly associated 
with post-viral pneumonia caused by S pneumoniae in the 
absence of antimicrobials to treat bacterial pneumonia.8–12 
Therefore, there is potential for increased rates of invasive 
bacterial diseases subsequent to SARS-CoV-2 infection. 
Alternatively, containment measures initiated in many 
countries to reduce viral transmission could result in 
decreased invasive disease due to a concomitant reduction 
in transmission of respiratory-associated bacteria.

Given the severity of the diseases they cause, invasive 
infections (eg, meningitis and sepsis) are medical 
emergencies that are treated in hospital without delay. 
Clinical microbiology laboratories in many countries are 
required to report invasive infections due to S pneumoniae, 
H influenzae, and N meningitidis to national health 
authorities, and many also request referral of any isolates 
to reference laboratories for surveillance purposes. We 
established the Invasive Respiratory Infection Surveillance 
(IRIS) Initiative with a network of reference laboratories 
in 26 countries and territories to rapidly analyse laboratory-
confirmed invasive bacterial infection data during the 
COVID-19 pandemic. We compared the incidence of 
invasive bacterial infection with S pneumoniae, 
H influenzae, and N meningitidis during the COVID-19 
pandemic with rates in previous years.

Methods
Study design and participants
We approached microbiology laboratories with established 
invasive disease surveillance systems to join the IRIS 
network between April 30 and June 10, 2020. All IRIS 
laboratories were national reference laboratories except 
for the laboratories in Spain (representing the territory 
of Catalonia) and China (representing one institute in 
Beijing). Confirmed cases of invasive disease due to 
S pneumoniae, H influenzae, or N meningitidis (detected 
from a normally sterile site or from a patient with invasive 
disease) plus the sampling date were collected. All 
26 countries or territories submitted data for S pneumoniae, 
and most countries or territories submitted data for 
H influenzae (24 laboratories) and N meningitidis 
(21 laboratories; appendix pp 2–3). Nine laboratories also 
submitted data for Streptococcus agalactiae (Lancefield 
group B streptococcus) as a control, non-respiratory 
pathogen. S agalactiae is often found in the healthy 
gastrointestinal and lower genital tract and is a risk factor 
for invasive disease in pregnant women and neonates 
(due to vertical transmission during childbirth);13 however, 
invasive disease due to S agalactiae is increasing among 
adults who are not pregnant, although the route of 
transmission is unclear.14 S agalactiae was used as the 
control because it is a non-respiratory pathogen and a 

notifiable invasive disease. Moreover, there were nine 
laboratories in IRIS that routinely collected data for 
S agalactiae, meaning this pathogen could be used as an 
indicator for whether surveillance was affected by the 
pandemic (eg, whether laboratories were not receiving 
specimens as expected because of disruptions caused by 
the pandemic).

Data collection
No patient-identifiable data were collected. A private 
IRIS dataview was set up as part of the PubMLST 
suite of databases and IRIS participants were able to 
upload and view study data.15 A subset of the French 
N meningitidis dataset was published previously.16 Cases 
of S pneumoniae, H influenzae, N meningitidis, and 
S agalactiae diagnosed between Jan 1, 2018, and 
May 31, 2020, were analysed. Case counts were summed 
by the International Organization for Standardization 
(ISO) week.

The Oxford COVID-19 Government Response Tracker 
(OxCGRT) collects information on policies and inter
ventions that governments have implemented during the 
COVID-19 pandemic.17 Data were collected from more 
than 180 countries for 18 different indicators, which were 
combined into composite indices that measured the 
magnitude of government responses. The stringency 
index provided a combined estimate of the stringency 
of public information campaigns plus containment 
measures, including school closures, workplace closures, 
cancellation of public events, restrictions on gatherings, 
closures of public transport, stay at home requirements, 
restrictions on internal population movement (eg, 
recommendations not to travel between regions or 
cities), and international travel controls. The OxCGRT 
dataset was downloaded on Oct 5, 2020, and the daily 
stringency index data were converted to a mean ISO 
week value and merged with the IRIS case data, with 
zero indicating least stringent and 100 indicating most 
stringent.

The Google COVID-19 Community Mobility Reports 
provide anonymised, aggregated within-country data for 
the movement of people by capturing mobile device 
location history data from Google users in six categories 
(ie, grocery and pharmacy, parks, transit stations, retail and 
recreation, residential, and workplaces). Data that could 
identify individuals are not available from Google CCMR. 
Daily mobility data were calculated as a percentage 
change from the Google CCMR baseline day, which 
was the median value from the 5-week period from 
Jan 3 to Feb 6, 2020. Google COVID-19 Community 
Mobility Reports will potentially underestimate mobility 
changes for countries that experienced widespread 
COVID-19 disruption during the baseline period; however, 
we expect that only East Asian countries and territories 
would be affected (ie, China, Hong Kong, and South Korea). 
Google COVID-19 Community Mobility Reports data were 
downloaded on Oct 5, 2020.

https://www.google.com/covid19/mobility/
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Statistical analysis
Statistical evidence for the effect of COVID-19 contain
ment measures on the weekly number of cases for each 
infection studied was assessed using generalised linear 
models. Analyses evaluated evidence for both step and 
linear slope changes in the levels of each infection 
(measured as cases per week) following the 
implementation of COVID-19 containment measures. 
These analyses were undertaken using combined data 
across countries and territories for S pneumoniae, 
H influenzae, and N meningitidis, limited to those 
countries and territories with data for all three pathogens. 
For S pneumoniae, in which numbers of cases were 
higher than for the other two pathogens, analyses used 
country-level data, with both country-specific analyses 
showing the pattern of effects across countries and 
combined analyses to evaluate the effect of interventions 
varying across countries in their intensity and timing (ie, 
school closures).

For S pneumoniae, models were first individually fitted to 
the dataset for each country using a Poisson distribution, 
which included a scaling factor to correct for overdispersion, 
and results summarised by meta-analysis. Second, models 
were fitted as a single mixed-effects negative binomial 
model. Country-specific interruption timepoints were 
based on Google COVID-19 Community Mobility Reports 
data for workplace mobility, selecting the week containing 
the midpoint of the decline in work-associated mobility 
(ie, the week containing the day halfway from baseline 
[maximum] to the new lower [minimum] value). No 
Google COVID-19 Community Mobility Reports data were 
available for Iceland or China. Therefore, we assigned 
Iceland the modal week of other European countries and 
we based China’s interruption point (set at week 5) on 
news reports of policy decisions (appendix p 4).

To adjust for underlying secular trends and seasonality 
in each country, a linear term for long-term trends and 
Fourier series with two terms, allowing country-specific 
cyclical seasonal variations, were fitted to the model for 
each country with a regression equation (appendix p 5). 
Analyses produced incidence rate ratios, SEs, and 
95% CIs for each country for the step change following 
the interruption point: the ratio of cases per week after 
the interruption point compared with the number of 
cases that occurred before interruption, and slope change 
for further ongoing decline from this timepoint.

For S pneumoniae, a meta-analysis of the estimates for 
each country was done to generate pooled effect sizes, 
using the inverse-variant fixed-effects and restricted 
maximum likelihood random-effects method. This meta-
analysis assessed the effect of the step, the slope, and 
linear combinations of these, to estimate the change 
from expected numbers of S pneumoniae cases over 
4-week and 8-week periods following the interruption 
timepoint.

A negative binomial-distribution mixed-effects model 
was used to evaluate evidence for the effects of specific 

interventions on weekly counts. This model included 
one sine and cosine term for seasonality (a second term 
was unsupported), a linear effect in time, and a step and 
slope for country-specific interruption time in the fixed-
effects part of the model. Week numbers were edited for 
countries in the southern hemisphere (ie, running from 
weeks 27 to 52 and then weeks 1 to 26) to allow joint 
modelling of seasonality. Random effects were included 
for seasonality, step, and slope variables. Widespread 
school closures (ie, OxCGRT level 2 or 3) were used to 
model the effects of specific policy changes alongside 
general changes in behaviours indexed by the Google 
COVID-19 Community Mobility Reports workplace 
mobility data. A further country-specific interruption 
was modelled using the date of school closures and 
allowing both a step and slope change from that date. 
Models were individually checked for assumption 
violation. Sensitivity testing was done to assess whether 
a lag produced a better model fit.

Analyses were also run on the combined weekly count 
data for each of the four pathogens. These analyses 
included only countries and territories that had 
submitted data for all of S pneumoniae, H influenzae, 
and N meningitidis to allow comparability. A common 
interruption week (ie, week 11, when the COVID-19 
pandemic was declared by WHO) was applied and step 
and slope parameters were estimated. A counterfactual 
estimate was calculated for the expectation of cases in 
the absence of an interruption to the time series. 
Statistical analyses were done in Stata version 16.1 and 
R version 3.6.1.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
37 laboratories from 26 countries submitted invasive 
disease data to IRIS for one or more pathogens: 
S pneumoniae (62 434 cases from 26 countries); 
H influenzae (7796 cases from 24 countries); and 
N meningitidis (5877 cases from 21 countries) between 
Jan 1, 2018, and May 31, 2020. There was a substantial 
and sustained reduction in the number of invasive cases 
of S pneumoniae, H influenzae, and N meningitidis 
diagnosed between March and May, 2020, versus the 
previous 2 years (figure 1). This finding was in clear 
contrast to numbers in 2018 and 2019, when the overall 
numbers of S pneumoniae and H influenzae cases were 
very similar. A similar reduction was observed for 
N meningitidis in 2020, although the number of cases 
varied between 2018 (2700 cases) and 2019 (2457 cases). 
The reductions in the weeks following the interruption to 
the expected time series were strongly supported from 
likelihood ratio tests of models with and without 
parameters for the reduction (p<0·0001; appendix p 6).
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One explanation for the reduction in numbers of invasive 
cases of S pneumoniae, H influenzae, and N meningitidis 
was that routine invasive disease surveillance was 
disrupted while countries were responding to COVID-19; 
however, IRIS laboratories did not observe significant 
disruptions in routine submissions of S pneumoniae, 
H influenzae, N meningitidis, or S agalactiae to the reference 
laboratories. To investigate the plausibility of this idea, we 
analysed 4272 cases of S agalactiae submitted over the 
same time period from nine IRIS laboratories in the same 
surveillance areas as for S pneumoniae, H influenzae, and 
N meningitidis. We found no evidence of any change in 
S agalactiae submissions in 2020 versus 2018 and 2019, 
supporting the view that the reductions in S pneumoniae, 
H influenzae, and N meningitidis cases in 2020 were 
consistent with decreases in disease incidence and not a 
consequence of disruptions in routine case reporting or 
isolate referral (figure 1).

To assess the effect of COVID-19 containment 
measures on the reduction in invasive S pneumoniae, 
H influenzae, and N meningitidis infections, the weekly 
bacterial case submission data were compared with the 
OxCGRT stringency index calculated for each country. 
WHO officially declared the COVID-19 pandemic in 
week 11 of 2020, by which point all countries and 
territories represented in IRIS had initiated some 
COVID-19 containment measures, ranging from 11 to 81 
on the stringency index scale (figure 2). By week 15, all 
countries had rapidly increased containment measures 
and public information campaigns: 15 countries and 
territories had a stringency index score of 80 or more, 
eight (Brazil, Canada, China, Czech Republic, Denmark, 
Germany, Hong Kong, and Switzerland) had scores 
between 60 and 80, and three (Finland, Iceland, and 
Sweden) had scores between 45 and 60. China initiated 
stringent containment measures and public information 
campaigns in week 4, then reduced the measures slightly, 
and by week 20 increased to high stringency measures. 

Although the stringency of the imposed containment 
measures varied by country, there was a pronounced 
reduction in notifications of invasive disease due to 
S pneumoniae among all participating countries and this 
reduction was sustained up to the end of May, 2020. 
Similar trends were observed for H influenzae and 
N meningitidis, but not for S agalactiae (appendix pp 7–9).

To assess the extent to which societal choices also 
influenced the reductions in invasive disease, we 
compared the movement of people within each country 
using Google COVID-19 Community Mobility Reports 
data (appendix p 10). All 26 countries and territories, 
regardless of the stringency of the containment 
measures imposed by their governments, experienced a 
decrease in workplace visits and an increase in time 
spent in residential areas. The largest changes in 
movement (compared with baseline) occurred at the 
time WHO declared the COVID-19 pandemic and 
shortly thereafter. Countries that implemented the most 
stringent COVID-19 containment measures also had 
the largest changes in movements around workplaces 
and residences, but even countries with moderate 
containment measures (ie, Finland, Iceland, and 
Sweden) experienced large changes in population 
movements in the same direction as other countries. 
Changes in the movement of people within Hong Kong 
and South Korea were less variable and occurred earlier. 
Countries in the southern hemisphere (ie, Brazil, New 
Zealand, and South Africa) had different patterns of 
movement in the early weeks of 2020, in part because of 
summer holidays. By the end of May, 2020, the mobility 
data in many countries were shifting back to baseline 
levels and movements around workplaces were 
beginning to increase above baseline in several 
countries; however, Brazil, Canada, Ireland, South 
Africa, Spain, and the UK had not yet reverted back to 
baseline levels of movement for either workplaces or 
residences.

Figure 1: Cumulative number of invasive disease cases collected by Invasive Respiratory Infection Surveillance laboratories each week from 
Jan 1, 2018, to May 31, 2020
Data for Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis were obtained from Belgium, Brazil, Canada (S pneumoniae only), China 
(S pneumoniae and H influenzae only), Czech Republic, Denmark, England, Finland, France, Germany, Hong Kong, Iceland, Ireland, Israel (S pneumoniae and H influenzae 
only), Luxembourg, the Netherlands, New Zealand, Northern Ireland, Poland, Scotland, South Africa, South Korea (S pneumoniae and H influenzae only), Spain 
(S pneumoniae and N meningitidis only), Sweden, Switzerland (S pneumoniae and H influenzae only), and Wales. Data for Streptococcus agalactiae were obtained from 
Denmark, England, Finland, Germany, Iceland, Ireland, Israel, the Netherlands, and Poland. The grey dotted line (on week 11) shows when WHO officially declared the 
COVID-19 pandemic. ISO=International Organization for Standardization.
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Figure 2: Annual invasive Streptococcus pneumoniae cases submitted to Invasive Respiratory Infection Surveillance laboratories in 26 countries and territories from Jan 1, 2018, to May 31, 2020
Coloured bars represent the mean weekly Oxford COVID-19 Government Response Tracker (OxCGRT) stringency index values on a scale from 0 to 100, with larger (darker) values indicating that higher 
stringency measures were enacted within a country. Data for South Korea were submitted from two surveillance networks, one of which started invasive disease surveillance in September, 2018, so data 
presented here for that hospital are only from September, 2018, onwards, whereas the data from the other hospital are from January, 2018, onwards. ISO=International Organization for Standardization.
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62 434 cases of S pneumoniae were reported between 
Jan 1, 2018, and May 31, 2020 (ie, week 22 in 2020). Our 
models estimated that social changes caused by the 
COVID-19 pandemic led to a 38% decrease in the 
incidence of reported S pneumoniae invasive infections 
(incidence rate ratio [IRR] 0·62 [95% CI 0·54–0·70]) 
immediately following the interruption timepoint 
(measured by the step change parameter) followed by 
an additional 13% average weekly reduction up to the 
end of the study period (May 31, 2020; 0·87 [0·85–0·90]). 
Similar results were obtained from the combined 
model analysis for both step change (0·56 [0·49–0·64]) 
and slope (0·87 [0·84–0·90]) parameters and there was 
no strong evidence to favour a lag between movement 
changes and effects on infection rates. Although there 
was some variation among countries, the effect sizes 
were largely similar (figure 3). The deviation from 
expected numbers of invasive infections in the northern 
hemisphere versus the southern hemisphere did not 
follow an obvious pattern. That is, there was no 
evidence that latitude had a crucial role in the impact of 
COVID-19 and COVID-19 containment measures on 
the incidence of invasive infections.

Compared with expectations based on the time series 
for 2018 and 2019, these reductions translated into a 
decrease in the incidence of reported S pneumoniae 
infections of 68% at 4 weeks (IRR 0·32 [95% CI 
0·27–0·37]) and 82% at 8 weeks (0·18 [0·14–0·23]) 
following the week when movement changes were 
noted. Adding country-specific terms for school 
closures into the combined model analysis did not 
substantially improve fit (p=0·09) with strong support 
remaining for a decrease following reduced mobility 
(as indexed by Google COVID-19 Community Mobility 
Reports data) and little evidence for additional effects 
linked specifically to school closures.

Discussion
The IRIS Initiative rapidly established a peer-to-peer 
international network of laboratories to monitor changes 
in invasive bacterial diseases. We showed that in early 
2020, the incidence of invasive disease due to 
S pneumoniae, H influenzae, and N meningitidis declined 
sharply in every country in the IRIS network, relative to 
rates in 2018 and 2019. These decreases corresponded 
with the timing of government responses to COVID-19, 
as measured by the OxCGRT, and changes in the 
movement of people, as measured by Google COVID-19 
Community Mobility Reports.17 By contrast, the incidence 
of invasive disease due to S agalactiae (which is not 
transmitted by the respiratory route) in nine IRIS 
laboratories in 2020 did not differ significantly from the 
2 previous years.

These IRIS data showed a significant reduction in 
invasive diseases caused by three bacterial pathogens that 
are, like SARS-CoV-2, transmitted via the respiratory 
route. The most plausible explanation for this observed 

reduction was the interruption of person-to-person 
bacterial respiratory transmission. Despite wide variations 
in the stringency of containment measures, the timing of 
these measures in all countries represented here coincided 
with a rapid reduction in the incidence of these invasive 
diseases. Mobility data suggest that people also voluntarily 
reduced their personal risks during the early stages of the 
pandemic. There might have also been a reduction in 
post-viral invasive bacterial diseases as a consequence 
of reductions in transmission of, and disease due to, 
respiratory viruses other than SARS-CoV-2.18,19 We, 
therefore, contend that the IRIS data were a proxy for the 
effectiveness of public health measures undertaken to 
reduce the transmission of respiratory pathogens. The 
effect on bacterial transmission cannot be assumed to be 
identical to that on SARS-CoV-2, but it is likely to have 
followed a similar trajectory.

As the ecological niche of S pneumoniae is typically the 
nasopharynx of children, we also assessed the extent to 
which school closures explained the significant reduction 
in invasive diseases caused by S pneumoniae. Adding 
parameters based on the week of enforced school closure 
did not significantly improve fit over the model with 
parameters for workplace mobility data as a general 
measure of changed behaviours. Therefore, although 
school closures would have contributed to the observed 
reductions in movement of people and reduced 
transmission of S pneumoniae, in addition to physical 
distancing and other measures, closing schools was not 
associated with a detectable additional reduction in 
invasive pneumococcal disease. It is also possible that 
shielding of older adults, regardless of school closures, 
could have reduced bacterial transmission.20–22

Globally, morbidity and mortality rates associated with 
S pneumoniae, H influenzae, and N meningitidis are high. 
Safe and effective vaccines are available, and although 
these vaccines do not protect against all serotypes of each 
pathogen, they have been successfully implemented in 
childhood immunisation programmes in many countries. 
Nevertheless, vaccination is far from comprehensive and 
public health efforts must remain focused on these three 
pathogens.23–26 Any disruptions to existing vaccination 
programmes as a result of the pandemic also need to be 
urgently addressed.27,28 Furthermore, in the context of 
preventing transmission, the current S pneumoniae, 
H influenzae serotype b, and N meningitidis conjugate-
polysaccharide vaccines are successful in large part 
because they induce herd immunity by reducing bacterial 
colonisation and thereby interrupt transmission. These 
IRIS data underline the importance of reducing person-
to-person transmission of respiratory pathogens.29

Our study highlights the crucial importance of active 
microbiological surveillance for public health and the 
fundamental role of reference laboratories. Surveillance 
is most effective when it is done consistently, provides 
high-quality data, and continues uninterrupted for many 
years so that emerging trends can be detected with 
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Figure 3: Estimated country-specific incidence rate ratios for invasive disease due to Streptococcus pneumoniae following interruptions in population mobility during the COVID-19 pandemic
Estimated country-specific incidence rate ratios calculated using an interrupted time series model that allows for a step (A) or slope (B) reduction in invasive disease. Estimated country-specific 
incidence rate ratios after 4 weeks (C) or 8 weeks (D) from the point at which national mobility was significantly interrupted (appendix p 4).
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confidence. Here, we have compared data for 2020 with 
data for 2018 and 2019 because the rates of disease were 
markedly altered in 2020, but most IRIS laboratories 
have been undertaking high-quality surveillance for 
many years, or even several decades.

The strengths of the IRIS Initiative included the 
formation of a network of well established and expe
rienced national laboratory and surveillance programmes, 
which rapidly provided high-quality invasive bacterial 
disease data. The IRIS laboratories are leading compre
hensive and sustained surveillance programmes that have 
been systematically collecting and testing microbiological 
data and samples for many years. The IRIS network 
includes 26 countries and territories across six continents 
and a large overall dataset. The consistency in the trends 
observed across all individual datasets provided confidence 
in our interpretations. The IRIS Initiative was established 
through existing international public health and academic 
networks in response to COVID-19, and the network of 
collaborators and the data produced will be an invaluable 
resource to observe and investigate future changes. 
Additional disease perturbations are to be expected as 
COVID-19-related containment measures are modified, 
which will allow greater insight into the effects of specific 
public health interventions. The IRIS laboratories will 
have a central role in rapidly detecting further invasive 
disease perturbations in their respective countries and 
territories.

Uniquely, we analysed invasive bacterial disease data, 
OxCGRT indices, and Google COVID-19 Community 
Mobility Reports data per country, which provided the 
means to assess the associations between country-specific 
containment measures, changes in the movements of 
human populations, and the corresponding reductions in 
the incidence of invasive diseases.

Potential limitations in these analyses include the 
incompleteness of the submissions to individual labora
tories, which would mitigate the observed reduction in 
invasive diseases. However, in most participating 
countries, invasive diseases due to these pathogens are 
legally notifiable and submissions are made routinely by 
well established systems, often to guide diagnosis or 
public health action, all of which continued throughout 
this period. Importantly, numbers of submissions of 
invasive S agalactiae cases over the same period were as 
expected. Furthermore, although we could not completely 
exclude the possibility that people with these invasive 
diseases were less likely to seek health care because of the 
pandemic, given that invasive disease is a medical 
emergency and the data presented here were based on 
bacteria detected from clinical specimens taken in 
hospital (eg, blood and cerebrospinal fluid), the significant 
and sustained reductions in bacterial invasive disease 
reported in every country were unlikely to be due to 
reduced hospital admissions. Invasive meningococcal 
isolates were reported to be variably affected by COVID-19 
lockdown measures in France, depending on their 

phenotypes and genotypes.16 These data suggest that 
highly invasive and highly transmitted meningococci 
were affected by lockdown to a greater extent than other 
meningococci. These French data therefore also support 
the hypothesis that reduced transmission rates were due 
to COVID-19 containment measures and not under
reporting, which would be expected to affect all isolates in 
a similar manner.

Another potential limitation of our study is that the 
countries participating in IRIS are high-income and 
middle-income countries, which might reduce the 
generalisability of our results; however, a key message 
from these data is that reducing respiratory transmission 
of bacteria will reduce the incidence of invasive disease, 
which will be beneficial in any country. Low-income 
countries have the highest global burden of invasive 
diseases and the benefits of reducing transmission might 
therefore be even greater than for middle-income and 
high-income countries. Lastly, some changes that could 
reduce microbial transmission are less easily measured 
and could, therefore, not be accounted for, such as 
parents keeping their children out of school because of 
fear of infection before schools were officially closed. 
These difficult-to-measure factors could have led to an 
underestimation of the effect of containment measures 
on reductions in disease transmission.

SARS-CoV-2 has provided a stark reminder that 
infectious diseases are a major threat to the lives and 
livelihoods of people worldwide. Although the COVID-19 
pandemic has resulted in drastic containment measures 
in many countries, highly restrictive measures are 
unsustainable in the longer term. However, straight
forward measures (eg, frequent handwashing) should be 
routine behaviour within every population to reduce 
pathogen transmission. The prevention of disease 
through vaccination is also crucial. The COVID-19 
pandemic has revealed opportunities to accelerate public 
health advances in medicine and technology. Although 
COVID-19 is the most prominent current infectious 
disease challenge, others remain and other pathogens 
will emerge in the future. This study provides an example 
of how the international public health and scientific 
community can collaborate to apply knowledge, 
experience, and data analyses to improve global health.
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