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Abstract RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell

proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the

intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we

show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the

intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal

stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and

decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation

during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-

dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the

effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results

reveal previously unrecognised cellular and molecular contexts where RAL GTPases become

essential mediators of adult tissue homeostasis and malignant transformation.

Introduction
The precise spatial and temporal regulation of signalling pathway activity is essential for organ

development and adult tissue homeostasis. The latter is particularly important in stem cell main-

tained self-renewing epithelia, such as that of the gastrointestinal tract (Richardson et al., 2014),

where cell loss needs to be counteracted by stem cell proliferation and differentiation while limiting

the potential for unwanted overgrowth (Radtke and Clevers, 2005). Progressive loss of control over

proliferative pathways either through loss of tumour suppressor genes or the activation of onco-

genes is associated with tumour development and progression (Hanahan and Weinberg, 2011).

Regulation of intestinal homeostasis involves the coordinated action of multiple evolutionarily

conserved signalling pathways, which relay environmental and niche-derived signals to stem cells to

ultimately determine their activity (Gehart and Clevers, 2019; Nászai et al., 2015; Scoville et al.,

2008). Increasing understanding of how these pathways are regulated not only provides insight into

basic stem cell biology, but also sheds light onto pathological conditions often associated with

uncontrolled stem cell proliferation, such as cancer (Biteau et al., 2011; Sell, 2010).

Epidermal growth factor receptor (EGFR, also known as ErbB1 or HER1) is a member of the ErbB

family of growth factor receptors, which play essential roles in regulating cell proliferation, differenti-

ation, and survival (Citri and Yarden, 2006; Wee and Wang, 2017). In the mammalian intestinal epi-

thelium, EGFR is highly expressed in intestinal stem cells (ISCs) and transit-amplifying cells

(Yang et al., 2017). EGFR ligands, such as EGF, are released by Paneth cells and the mesenchyme

and are required for the maintenance and proliferation of ISCs (Dvorák et al., 1994; Jardé et al.,
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2020; Poulsen et al., 1986). Ectopic activation of EGFR signalling in the intestine by luminal applica-

tion or genetic overexpression of pathway ligands (Bongers et al., 2012; Kitchen et al., 2005;

Marchbank et al., 1995), or deletion of the negative regulator leucine-rich repeats and immuno-

globulin-like domains protein 1 (Lrig1) (Powell et al., 2012; Wong et al., 2012), leads to elevated

ISC proliferation. On the other hand, loss of EGFR signalling induces quiescence of Lgr5 + ISCs in

vitro (Basak et al., 2017).

Gene amplification and activating point mutations of EGFR are highly prevalent in cancer

(Santarius et al., 2010; Yarden and Pines, 2012). Ectopic EGFR/Ras/MAPK signalling is thought to

be an early step in colorectal cancer (CRC) development (Calcagno et al., 2008). Hyperactivation of

the pathway accelerates intestinal tumourigenesis driven by Adenomatous polyposis coli loss (Apc-
min/+ mice) (Luo et al., 2009), while a genetic background of partial loss-of-function of EGFR

(Roberts et al., 2002) or small-molecule inhibitor treatment reduces cancer incidence

(Roberts et al., 2002; Torrance et al., 2000).

The Drosophila intestinal epithelium shares remarkable homology with its mammalian counter-

part. The tissue is maintained by ISCs that replenish the epithelium through progenitor cells called

enteroblasts (EBs), which differentiate into either secretory enteroendocrine (EE) cells or absorptive

enterocytes (ECs) (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). Importantly, sig-

nalling pathways governing intestinal proliferation and differentiation are highly conserved between

fruit flies and mammals (Nászai et al., 2015; Miguel-Aliaga et al., 2018). Activation of EGFR/Ras/

MAPK within ISCs by niche-derived EGF-like ligands is essential to sustain homeostatic and regener-

ative proliferation of the adult fly midgut, while constitutive pathway activation in ISCs is sufficient to

drive intestinal hyperplasia (Biteau and Jasper, 2011; Buchon et al., 2010; Jiang et al., 2011;

Xu et al., 2011).

Regulation of EGFR signalling activity is highly dependent on various modes of receptor traffick-

ing throughout the endocytic pathway. Indeed, abnormal trafficking of receptor tyrosine kinases is

linked to cancer (Lanzetti and Di Fiore, 2017; Mosesson et al., 2008). Following internalisation

through Clathrin-mediated (CME) or Clathrin-independent endocytosis (CIE) (Sorkin and Goh,

2009), EGF ligand/receptor complexes can either be targeted for recycling into the plasma mem-

brane (PM) or ubiquitinated and targeted to late endosomes for lysosomal degradation

(Sigismund et al., 2008; Sigismund et al., 2013). Most recently, autophagy has emerged as an

important mechanism implicated in the termination of EGFR/MAPK signalling in the intestine

(Zhang et al., 2019). While endocytosis is classically considered as a process to terminate pathway

activity (Tomas et al., 2014), significant evidence suggests that receptors retain their ability to relay

their signal even after internalisation, hence signalling is not limited to the PM (Sadowski et al.,

2009). The relative contribution of PM versus intracellular EGFR to downstream signalling in vivo

remains unclear (Sousa et al., 2012; Teis et al., 2006).

RAL small GTPases are best recognised for their role as effectors of Ras signalling, which has

attracted basic and translational research into their potential in cancer development and progression

(Moghadam et al., 2017). Mammalian RAL GTPases, RALA and RALB, have well-characterised roles

in membrane trafficking through their involvement in the exocyst complex (Bodemann and White,

2008; Chen et al., 2007; Chien et al., 2006) and in the regulation of Clathrin (Jullien-Flores et al.,

2000) and caveolar-dependent endocytosis (Jiang et al., 2016). RAL signalling is potentiated by

RALGEFs and negatively regulated by RALGAPs (Neel et al., 2011). RALGEF, such as RALGDS, can

be activated upon association with oncogenic RAS (Koyama and Kikuchi, 2001) and mediate Ras-

driven skin tumourigenesis (González-Garcı́a et al., 2005).

We recently identified a novel role of RAL GTPases in the regulation of Wnt signalling activity in

ISCs through the regulation of Wnt receptor trafficking into intracellular compartments

(Johansson et al., 2019). The relevance of RAL GTPases in intestinal tumourigenesis remained unad-

dressed as their function in the intestine became redundant upon loss of Apc, a key driver of CRC

(Johansson et al., 2019). Furthermore, whether RAL proteins (RALs) can impact intestinal biology

beyond Wnt signalling and through their classical role as Ras effectors is unclear.

Here, using the Drosophila intestine and human lung and breast cancer cell lines we uncover an

important role of RAL GTPases activating EGFR/MAPK signalling-driven cell proliferation through

induction of EGFR internalisation. Our results show that, while RAL inhibition is an efficient means of

attenuating intestinal hyperplasia caused by constitutively active forms of EGFR, the effect of onco-

genic Ras in the intestine is insensitive to attenuation of RAL function. Our findings support a
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positive role of receptor tyrosine kinase internalisation in signalling activation in vivo and identify

physiological and pathological settings highly sensitive to the presence of RAL proteins, which may

provide ideal platforms for the development of therapeutic approaches geared towards the modula-

tion of RAL function.

Results

RAL GTPases are necessary for EGFR/MAPK signalling activation
following damage to the intestinal epithelium
We have previously demonstrated that RalA, the single Ral gene in Drosophila, is required for Wnt

signalling activation in the developing Drosophila wing and adult midgut (Johansson et al., 2019).

A canonical role of RalA as RAS effector remained unaddressed.

EGFR/Ras signalling is an important determinant of wing tissue patterning (Wang et al., 2000;

Zecca and Struhl, 2002) and ISC proliferation in the adult Drosophila midgut (Biteau and Jasper,

2011; Buchon et al., 2010; Jiang et al., 2011; Xu et al., 2011). We observed that adult wings

resulting from RNAi-driven knockdown of RalA using the engrailed-gal4 driver (en>RalA RNAi)

showed a more severely dysmorphic phenotype than that caused by wingless knockdown (en>wg

RNAi) or EGFR knockdown (en>EGFR RNAi) only (Figure 1A, B). Instead, adult wings from en>RalA

RNAi animals displayed a dysmorphic phenotype more similar to that resulting from combined

knockdown of both wg and EGFR downregulation (en>wg RNAi+EGFR RNAi) (Figure 1A, B). These

results led us to hypothesise that RalA may regulate pathways other than Wnt signalling, including

EGFR/Ras signalling. To address this, we turned to the adult Drosophila midgut, a robust paradigm

for the study of signal transduction in adult tissue homeostasis, where RalA plays a pivotal role

(Johansson et al., 2019).

RalA is required within ISCs to induce adult midgut regeneration following damage by oral infec-

tion with Erwinia carotovora carotovora 15 (Ecc15) (Johansson et al., 2019). To achieve a global

view of intestinal pathways affected by RalA, we performed a transcriptomic analysis by RNAseq of

whole midguts from vehicle-treated (Mock) or damaged (Ecc15 fed) control animals or following

adult-restricted RalA knockdown in intestinal stem and progenitor cells using the escargot-gal4

driver (ISC/EB>) (Micchelli and Perrimon, 2006). Consistent with its effect on ISC proliferation

(Johansson et al., 2019), RalA knockdown significantly impaired damage-induced upregulation of

cell cycle genes in the midgut (Figure 1C). Additionally, levels of genes associated with the EGFR/

MAPK pathway, such as argos (aos), rhomboid (rho), Sox21a, and string (stg), appeared increased

following Ecc15 infection in control midguts in a RalA-dependent manner (Figure 1C). RT-qPCR con-

firmed RNAseq results on rho, a well-characterised activator of EGFR/MAPK signalling in ISCs

(Liang et al., 2017; Ngo et al., 2020), and two downstream targets of the pathway required for ISC

proliferation, Sox21a and stg (Jin et al., 2015; Meng and Biteau, 2015; Figure 1D). Furthermore,

immunofluorescence staining for the transcription factor Sox21a (Meng and Biteau, 2015) and the

activated form of the MAPK, phosphorylated ERK (pERK), in control animals and following RalA

knockdown from ISCs/EBs confirmed the need for RalA for upregulation of MAPK signalling and

downstream targets following damage to the midgut (Figure 1E–H and Figure 1—figure supple-

ment 1A–D). Together, these results suggest that RalA is necessary for damage-induced EGFR/

MAPK signalling activation in the Drosophila adult midgut.

Previously, we showed that the role of RAL proteins in Wnt signalling activation and intestinal

regeneration is conserved between Drosophila and mice (Johansson et al., 2019). The mouse intes-

tine has a robust capacity to regenerate following damage by gamma irradiation, as demonstrated

by an increase in the number of regenerating crypts 72 hr following irradiation (Cordero et al.,

2014; Johansson et al., 2019). We next assessed whether MAPK activation in the regenerating

mouse intestine required RAL GTPases. Single conditional knockout of either Rala (Ralafl/fl) or Ralb

(Ralbfl/fl) in the murine intestinal epithelium using the Villin-CreER driver impaired ERK activation in

regenerating intestines when compared to control (VillinCreER) (Figure 1I, J and Figure 1—figure

supplement 1E). Therefore, RAL GTPases’ requirement for EGFR/MAPK pathway activation in the

intestinal epithelia is evolutionarily conserved between fruit flies and mammals.
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Figure 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells (ISCs). (A) Adult Drosophila wings from

control animals and with posterior compartment knockdown of wg (wg-RNAi), Egfr (Egfr-RNAi), or RalA using one of two previously validated RNAi lines

(RalA-RNAi(1)) or combined wg and Egfr knockdown (wg-RNAi+Egfr RNAi). Scale bar = 500 mm. (B) Blind scoring of wing dysmorphia on a scale of 1–5.

Numbers inside bars represent the total number of wings scored. Kruskal–Wallis test followed by Dunn’s multiple comparisons test. (C) Heat map from

transcriptomic analysis of adult whole midguts from mock-treated and Ecc15-infected control animals (+) or following adult-restricted knockdown of

RalA (RalA-RNAi(1)) using the escargot-gal4, UAS-gfp driver (ISC/EB>). RNA was extracted from >25 whole midguts per replicate, and four biological

replicates per genotype/per condition were processed for sequencing. (D) RT-qPCR confirmation of genes associated with EGFR/MAPK signalling in

whole midguts from genotypes and conditions as in (C) expressed relative to rpl32 levels. n (number of biological replicates) = 4, each dot represents

an independent RNA sample from >25 midguts per sample. Two-way ANOVA followed by Sidak’s multiple comparisons test. (E) Representative

Figure 1 continued on next page
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RAL GTPases are sufficient for EGFR/MAPK signalling activation in the
Drosophila midgut
Ectopic expression of wild-type RalA in ISC/EB is sufficient to induce Wnt pathway activation and

intestinal proliferation in the Drosophila midgut (Johansson et al., 2019). To determine whether

RalA is also sufficient to induce EGFR/MAPK signalling, we assessed Sox21a (Figure 1K, L), pERK

(Figure 1M, N), and total ERK (Figure 1—figure supplement 1F, G) levels by immunostaining fol-

lowing RalA overexpression in midgut ISCs/EBs. While levels of Sox21a and pERK were increased in

RalA overexpressing midguts compared to wild-type control ones (Figure 1K–N), total levels of ERK

in the midgut remained unchanged across genotypes (Figure 1—figure supplement 1F, G). Immu-

nostaining results for ERK and pERK were confirmed by western blot (Figure 1—figure supplement

1H) and are consistent with ERK activation and not total protein levels being increased upon midgut

injury (Figure 1—figure supplement 1H–J). Altogether, our data suggest that RAL GTPases are nec-

essary and sufficient for EGFR/MAPK pathway activation within the intestinal epithelium.

RalA activation is necessary for ISC proliferation in Drosophila
Small GTPases cycle between two alternative conformations: inactive (GDP-bound) and active (GTP-

bound). The balance between these states is determined by the activity of guanine nucleotide

exchange factors (GEF) and GTPase activating proteins (GAP), which activate and inactivate

GTPases, respectively (Neel et al., 2011). There are seven Ral GEFs in the human genome, RALGDS,

RALGPS1-2, and RGL1-4, which are often found misregulated in cancer (González-Garcı́a et al.,

2005; Koyama and Kikuchi, 2001; Rodriguez-Viciana and McCormick, 2005) and are considered

emerging therapeutic targets (Neel et al., 2011; Vigil et al., 2010). However, the in vivo role of RAL

GEFs in the intestine remains unknown. Several Ral GEFs are conserved in Drosophila (Gentry et al.,

2014): Rgl, GEFmeso and CG5522 (RalGPS). Rgl is a close orthologue of mammalian RGL

(Mirey et al., 2003), GEFmeso was identified in a yeast two hybrid screen using active RalA as bait

(Blanke and Jäckle, 2006), while CG5522 was identified based on its close homology to mammalian

RalGPS1 (Hu et al., 2011).

We next tested the functional role of each of these Ral GEFs in the fly midgut though RNAi-driven

targeted knockdown and assessment of their impact on intestinal regeneration following oral infec-

tion with Ecc15 (Basset et al., 2000). The regenerative capacity of the adult posterior midgut (R4-

Figure 1 continued

confocal images of Sox21a immunofluorescence staining (red/grey) of adult posterior midguts from Mock-treated or Ecc15-infected wild-type control

animals or following knockdown of RalA (RalA-RNAi(1)) in stem/progenitor cells using escargot-gal4, UAS-gfp (ISC/EB>; green). (F) Quantification of

average Sox21a staining intensity within the nuclear compartment (DAPI positive) in midguts as in (E). Two-way ANOVA followed by Sidak’s multiple

comparisons test; n = number of z-stack confocal images quantified, each from an independent posterior midgut. (G) Representative confocal images

of pERK immunofluorescence staining (red/grey) of adult posterior midguts from Mock-treated or Ecc15-infected control animals or following

knockdown of RalA (RalA-RNAi(1)) within stem/progenitor cells (ISC/EB>; green). (H) Quantification of average pERK staining intensity within the ISC/EB

compartment (GFP positive) of midguts as in (G). Two-way ANOVA followed by Sidak’s multiple comparisons test; n = number of z-stack confocal

images quantified, each from an independent posterior midgut. (I) Immunohistochemistry images of total (bottom panels) and pERK (top panels) in

small intestinal regenerating crypts 3 days after whole-body irradiation of control mice (left panels) or mice following conditional intestinal epithelial

knockout of Rala or Ralb. Scale bar = 50 mm. (J) Quantification of the percentage of cells with pERK staining in regenerating small intestinal crypts as in

(I). n = number of mice, with >12 crypts quantified per animal, each dot represents the average percentage from a given mouse. One-way ANOVA

followed by Tukey’s multiple comparisons test. (K) Representative confocal images of Sox21a immunofluorescence staining (red/grey) of adult posterior

midguts from control animals or animals overexpressing wild-type Rala within stem/progenitor cells (ISC/EB>; green). Scale bar = 50 mm. (L)

Quantification of average Sox21a staining intensity within the nuclear compartment (DAPI positive; blue) of midguts as in (K). Student’s t-test;

n = number of z-stack confocal images quantified, each from an independent posterior midgut. (M) Representative confocal images of pERK

immunofluorescence staining (red/grey) in control animals or animals overexpressing wild-type Rala within stem/progenitor cells (ISC/EB>; green). (N)

Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) of midguts as in (M). Student’s t-test; n = number of

z-stack confocal images quantified, each from an independent posterior midgut. Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns:

not significant. All error bars represent SD. Scale bars = 20 mm, unless otherwise stated.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells.

Figure supplement 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells (ISCs).

Figure supplement 1—source data 1. Ral GTPases are necessary and sufficient to induce EGFR/MAPK signalling in intestinal stem cells.
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R5) was quantified as per the number of proliferating ISCs, identified by staining with phosphory-

lated histone H3 antibody (pH3). As expected, Ecc15 infection induced significant increase in ISC

proliferation relative to mock-treated control animals (Figure 2A–D). Knocking down either of the

three Ral GEFs of interest significantly impaired regenerative ISC proliferation in the midgut

(Figure 2A–D) to levels comparable to those observed upon RalA knockdown (Johansson et al.,

2019). Furthermore, Ral GEF knockdown led to a significant reduction in MAPK activation in the

midgut following damage (Figure 2E, F). These results provide evidence highlighting the impor-

tance of maintaining the active status of RalA for robust stem cell proliferation and MAPK activation

in the intestine.
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Figure 2. Ral GTPase activation is necessary for EGFR/MAPK signalling in regenerating intestinal stem cells/enteroblasts (ISCs/EBs). (A) Representative

confocal images of pH3 staining (red) within the ISC/EB compartment (green) in mock-treated or regenerating posterior midguts. Scale bar = 50 mm. (B)

Quantification of pH3-positive nuclei in control or GEFmeso-RNAi posterior midguts as in (A). Two-way ANOVA followed by Sidak’s multiple

comparisons test. n = number of midguts. (C) Quantification of pH3-positive nuclei in control or RalGPS-RNAi posterior midguts as in (A). Two-way

ANOVA followed by Sidak’s multiple comparisons test. n = number of midguts. (D) Quantification of pH3-positive nuclei in control or Rgl-RNAi

posterior midguts as in (A). Two-way ANOVA followed by Sidak’s multiple comparisons test. n = number of midguts. (E) Representative confocal

images of pERK staining (red/grey) in mock-treated or regenerating control animals or animals with knockdown of GEFmeso, RalGPS, or Rgl within the

ISC/EB compartment (green). Scale bar = 20 mm. (F) Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) as

in (E). Two-way ANOVA followed by Sidak’s multiple comparisons test; n = number of z-stack confocal images quantified, each from an independent

posterior midgut. Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not significant. All error bars represent SD. Scale bars = 20 mm,

unless otherwise stated.

The online version of this article includes the following source data for figure 2:

Source data 1. Ral GTPase activation is necessary for EGFR/MAPK signalling in regenerating ISCs/EBs.
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RalA regulates EGFR- but not oncogenic Ras-driven hyperplasia in the
intestine
During our initial assessment of genetic interactions between EGFR signalling and RalA in adult

wings, we observed that constitutive overexpression of EGFR under engrailed-gal4 (en>EGFRwt)

caused severe organismal lethality, which was greatly suppressed by concomitant knockdown of

RalA (Figure 3—figure supplement 1A). Wing vein patterning defects observed in rare en>EGFRwt

adult escapers was also suppressed by RalA knockdown (Figure 3—figure supplement 1B). These

results reinforced the importance of RalA as a broad mediator of EGFR signalling.

EGFR is overexpressed in ~20% of breast and ~80% of CRCs (Rimawi et al., 2010; Spano et al.,

2005), and activating mutations of Ras are one of the most common cancer-associated genetic alter-

ations (Prior et al., 2012). Activation of the EGFR/MAPK pathway in the adult Drosophila midgut by

ISC/EB-specific overexpression of wild-type EGFR (EGFRWT) or constitutively active Ras (RasV12) was

sufficient to induce intestinal hyperproliferation (Figure 3A, B; Jiang et al., 2011; Zhang et al.,

2019). Downregulation of RalA suppressed EGFRWT- but not RasV12-driven ISC hyperproliferation

(Figure 3A, B and Figure 3—figure supplement 1C, D). Consistently, RalA knockdown impaired

activation of ERK following EGFRwt, but not RasV12 overexpression (Figure 3C, D and Figure 3—fig-

ure supplement 1E, F).

RalA potentiates EGFR signalling activity downstream of ligand binding
Increasing the pool of receptors available for ligand binding, such as through recycling of intracellu-

lar receptor towards the PM or inhibition of receptor degradation, favours activation of receptor

tyrosine kinase signalling, including EGFR (von Zastrow and Sorkin, 2007; Zhang et al., 2019).

Therefore, one possible mechanism by which RAL proteins may potentiate EGFR signalling in the

intestine is by facilitating ligand/receptor interactions. In that case, ligand-independent, constitu-

tively active forms of EGFR, which are linked to cancer (Endres et al., 2014), should be insensitive to

RAL deficiency. To test this prediction, we co-expressed RalA-RNAi with two active mutant forms of

EGFR – EGFRltopand EGFRA887T – in Drosophila intestinal stem and progenitor cells (Figure 3E, F).

EGFRltop includes an extracellular dimerisation domain that causes receptor activation even in the

absence of ligand (Queenan et al., 1997), and EGFRA887T contains an activating point mutation in

the receptor kinase domain (Lesokhin et al., 1999). Importantly, overexpression of EGFRltop or

EGFRA887T led to ISC hyperproliferation levels comparable to those observed following RasV12 over-

expression (Figure 3E, F compare with Figure 3A, B and Figure 3—figure supplement 1C, D).

However, unlike in the case of RasV12, knocking down RalA significantly impaired EGFRltop- or

EGFRA887T-driven ISC proliferation (Figure 3E, F). Consistently, EGFRltop- or EGFRA887T-dependent

ERK activation was also suppressed by RalA-RNAi (Figure 3G, H). These results suggest that RalA

influences EGFR signalling activity downstream of ligand/receptor binding.

RAL GTPases are required for EGFR internalisation
RAL GTPases are key mediators of Ras-regulated membrane trafficking (Bodemann and White,

2008; Chen et al., 2007; Chien et al., 2006; Jiang et al., 2016; Jullien-Flores et al., 2000). We

next asked whether, as in the case of the Wnt receptor Frizzled (Johansson et al., 2019), RAL

GTPases may induce EGFR/MAPK signalling through regulation of EGFR cellular localisation in the

intestine. We used a well-established immunostaining approach (Cordero et al., 2014; Kim-Yip and

Nystul, 2018; Zhang et al., 2019) and a custom-developed macro to visualise EGFR cellular localisa-

tion in the adult Drosophila midgut (Figure 4—figure supplement 1). Firstly, we assessed EGFR

localisation in control adult Drosophila midguts or following genetic manipulation of RalA expres-

sion. Knocking down RalA in ISCs/EBs led to significantly increased levels of PM-associated EGFR

wild-type (Figure 4A, B) and A887T mutant (Figure 4C, D). Conversely, overexpression of wild-type

RalA decreased membrane localisation of EGFR (Figure 4E, F). We were unable to assess

the impact of knocking down RalA on EGFRltop localisation as our antibody, designed to bind the

extracellular domain of EGFR, failed to recognise this mutant version of the receptor. Consistent

with the role of RAL GTPases as effectors of Ras, knocking down endogenous Ras from ISCs/EBs

caused a similar effect on EGFR localisation than that observed upon RalA downregulation (Fig-

ure 4—figure supplement 2). Altogether, these results strongly suggest that activation of RalA

induces EGFR/MAPK signalling in the intestine by increasing the intracellular pool of EGFR.
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Consequently, oncogenic Ras, whose activation is independent of EGFR signalling, is refractory to

RalA function in the intestine (Figure 3A–D and Figure 3—figure supplement 1C, D).

Next, we used a surface biotinylation-based biochemical assay to directly quantify the rate of

EGFR internalisation in H1299, a human non-small cell lung cancer (NSCLC) cell line with intact EGFR

signalling (Amann et al., 2005). To obtain a measure of endocytosis that was not influenced by the

rate at which the receptor returns, or ‘recycles’, to the cell surface from endosomes, we performed

the surface biotinylation-based assay in the presence of the receptor recycling inhibitor, primaquine.

This clearly indicated that EGF-driven (but not EGF-independent) endocytosis of EGFR was signifi-

cantly reduced by combined knockdown of Rala and Ralb (Figure 4G and Figure 4—figure supple-

ment 3A, B). By contrast, integrin a5b1, transferrin (hTfnR), or ligand-induced c-Met receptor

internalisation were not affected by Rala/b knockdown (Figure 4—figure supplement 3C–F). These

0

20

40

60

80

0

20

40

60

80

ISC/EB>

ISC/EB>

C
o

n
tr

o
l

R
a

lA
-R

N
A

i

Control EGFRWT RasV12(2)

D
A

P
I 
IS

C
/E

B
 p

H
3

ISC/EB>

C
o

n
tr

o
l

R
a

lA
-R

N
A

i

Control EGFRλtop EGFRA887T

D
A

P
I 
IS

C
/E

B
 p

H
3

A

E

B

F

C

G

D

H

****

Control EGFRwt RasV12(2)

+

+ + +

+ +

RalA-RNAi(1)

n=

Control

p
H

3
+

 C
e

ll
s

 P
e

r 
P

o
s

te
ri

o
r 

M
id

g
u

t

14 12 23 23 23 22

0

1

2

3

4

p
E

R
K

 I
n

te
n

s
it

y

(r
e

la
ti

v
e
 t

o
 C

o
n

tr
o

l)
 

ISC/EB>

* *

Control EGFRλtop EGFRA887T

+
+ +

+ +

RalA-RNAi(1)

n=

Control

14 17 16 21 14

0

2

4

6

8

10

p
E

R
K

 I
n

te
n

s
it

y

(r
e

la
ti

v
e
 t

o
 C

o
n

tr
o

l)
 

ISC/EB>

****

Control EGFRWT RasV12(2)

+
+ +

+ +

RalA-RNAi(1)

n=

Control

20 11 9 15 17

ISC/EB>

**
****

Control EGFRλtop EGFRA887T

+
+ +

+ +

RalA-RNAi(1)

n=

Control

p
H

3
+

 C
e

ll
s

 P
e

r 
P

o
s

te
ri

o
r 

M
id

g
u

t

24 28 25 11 11

C
o

n
tr

o
l

R
a
lA
-R
N
A
i

Control EGFRλtop EGFRA887T

D
A

P
I 
IS

C
/E

B
 p

E
R

K

pERK pERK

ISC/EB>

C
o

n
tr

o
l

R
a
lA
-R
N
A
i

Control EGFRWT RasV12(2)

D
A

P
I 
IS

C
/E

B
 p

E
R

K

pERK pERK pERK

ISC/EB>

pERK

ns
ns

Figure 3. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras. (A) Representative confocal images of pH3 staining (red) within the

intestinal stem cell/enteroblast (ISC/EB) compartment (green) of control animals or animals overexpressing wild-type Egfr (EGFRWT) or one of two

constitutive Ras constructs used in this paper (RasV12(2)) with or without RalA knockdown within stem/progenitor cells (ISC/EB>; green). Scale bar = 50

mm. (B) Quantification of pH3-positive nuclei in posterior midguts as in (A). Two-way ANOVA followed by Sidak’s multiple comparisons test. n = number

of midguts. (C) Representative confocal images of pERK staining (red/grey) of control animals or animals overexpressing wild-type Egfr (EGFRWT) or one

of two constitutive Ras constructs used in this paper (RasV12(2)) with or without RalA knockdown within stem/progenitor cells (ISC/EB>; green). (D)

Quantification of average pERK staining intensity as seen in (C) within the ISC/EB compartment (GFP positive). Two-way ANOVA followed by Sidak’s

multiple comparisons test; n = number of z-stack confocal images quantified, each from an independent posterior midgut. (E) Representative confocal

images of pH3 staining (red) within the ISC/EB compartment (green) of control animals or animals overexpressing two types of constitutively active Egfr

constructs (EGFRltop or EGFRA887T) with or without RalA knockdown within stem/progenitor cells (ISC/EB>; green). Scale bar = 50 mm. (F) Quantification

of pH3-positive nuclei in posterior midguts as in (E). Two-way ANOVA followed by Sidak’s multiple comparisons test. Error bars represent SEM.

n = number of midguts. (G) Representative confocal images of pERK staining (red/grey) within the ISC/EB compartment (green) of control animals or

animals overexpressing two types of constitutively active Egfr constructs (EGFRltop or EGFRA887T) with or without RalA knockdown within stem/

progenitor cells (ISC/EB>; green). (H) Quantification of average pERK staining intensity as in (G) within the ISC/EB compartment (GFP positive). Two-

way ANOVA followed by Sidak’s multiple comparisons test; n = number of z-stack confocal images quantified, each from an independent posterior

midgut. Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not significant. All error bars represent SD. Scale bars = 20 mm, unless

otherwise stated.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras.

Figure supplement 1. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras.

Figure supplement 1—source data 1. Ral GTPases are required for EGFR/MAPK signalling upstream of Ras.
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Figure 4. Ral GTPases are required for EGFR internalisation. (A) Representative images of wild-type EGFR staining

(red/turbo colour map) in adult Drosophila midgut stem/progenitor cells (intestinal stem cell/enteroblast [ISC/

EB>]; green) without (Control) or with RalA knockdown (RalA-RNAi). (B) Quantification of EGFR plasma membrane

staining localisation in midguts as in (A) relative to the cytoplasm. Data is presented as Tukey’s box and whiskers

Figure 4 continued on next page
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results suggest that the effect of RAL GTPases on EGFR cellular localisation is conserved between

Drosophila and mammals, and that RAL proteins function in a context-dependent manner, as

opposed to being generally required for transmembrane or tyrosine kinase receptor trafficking

dynamics.

RAL proteins are necessary for EGFR-dependent tumorigenesis
Given that intestinal hyperplasia caused by hyperactivation of b-catenin or oncogenic RAS is inde-

pendent of RAL proteins (Johansson et al., 2019; Figure 3A, B and Figure 3—figure supplement

1C, D), the importance of RAL GTPases in intestinal malignancy remains unaddressed. The effect of

RalA knockdown on intestinal hyperproliferation caused by overexpression of wild-type or constitu-

tively active mutants of EGFR in the intestine (Figure 3) suggests that other pathological settings

driven by exacerbated EGFR activity might also be sensitive to RAL function.

c-Src is a conserved non-receptor tyrosine kinase whose expression is necessary and sufficient to

drive regeneration and tumourigenesis of both the Drosophila and mouse intestine through EGFR/

MAPK activation (Cordero et al., 2014; Kohlmaier et al., 2015; Figure 5A, B). Consistently, Src

overexpression in ISCs/EBs (esgts>Src64wt)-induced expression of the MAPK pathway transcriptional

target Sox21a (Figure 5C, D) and pERK levels (Figure 5E, F; Cordero et al., 2014;

Kohlmaier et al., 2015). Importantly, knocking down RalA (ISC/EB>Src64wt; RalA-RNAi) suppressed

Src-driven ISC hyperproliferation and MAPK signalling activation in the Drosophila

midgut (Figure 5A-F), which correlated with an increase in membrane versus intracellular levels of

EGFR in ISC/EB>Src64wt; RalA-RNAi midguts when compared to ISC/wt>Src64wt counterparts

(Figure 5G, H).

As a proof of principle in an orthogonal mammalian system dependent on EGFR for morphogene-

sis, we employed the human breast tumour cell line HMT3522 T4-2 (henceforth referred to as ‘T4-2’)

as a paradigm to test the role of mammalian RAL GTPases in malignant growth. T4-2 is a subline

obtained after spontaneous malignant transformation of the benign breast tumour cell line

HMT3522 S1 (henceforth ‘S1’). Compared to the S1 predecessor, T4-2 cells grow as disorganised

aggregates of cells when cultured in 3D extracellular matrix gels such as Matrigel. This growth and

morphogenesis in 3D of T4-2 cells is EGFR-dependent: T4-2 show robustly upregulated EGFR levels

and activation, their growth is independent of exogenous EGF, and they are acutely sensitive to

Figure 4 continued

plot. Data were analysed by Student’s t-test. n = number of z-stack confocal images quantified, each from an

independent posterior midgut. (C) Representative images of EGFRA887T staining (red/turbo colour map) in adult

Drosophila midgut stem/progenitor cells (ISC/EB>; green) without (Control) or with RalA knockdown (RalA-RNAi).

(D) Quantification of EGFRA887Tplasma membrane staining localisation as in (C) relative to the cytoplasm

presented as Tukey’s box and whiskers plot. Student’s t-test. n = number of z-stack confocal images quantified,

each from an independent posterior midgut. (E) Representative images of EGFR staining in (red/turbo colour map)

in adult Drosophila midgut stem/progenitor cells (ISC/EB>; green) without (Control) or with wild-type RalA

overexpression (RalAwt). (F) Quantification of EGFR plasma membrane staining localisation in midguts as in (E)

relative to the cytoplasm. Data is presented as Tukey’s box and whiskers plot. Student’s t-test. n = number of

z-stack confocal images quantified, each from an independent posterior midgut. (G) Internalisation of EGFR over

time determined by a surface biotinylation ELISA-based assay in H1299 human non-small cell lung cancer cells

transfected with a non-targeting (Control) or combined Rala and Ralb knockdown constructs (siRala +b) and

incubated in the presence or absence of EGF ligand. Data from one experiment with three technical replicates

and representative of three independently performed experiments is presented. Two-way ANOVA followed by

Bonferroni’s multiple comparisons test. Error bars represent SEM. Where indicated: *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001. All error bars represent SD. Scale bars = 20 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Ral GTPases are required for EGFR internalisation.

Figure supplement 1. Demonstration of method used to quantify EGFR cellular localisation.

Figure supplement 2. Ras is required for EGFR internalisation.

Figure supplement 2—source data 1. Rasis required for EGFR internalisation.

Figure supplement 3. RAL GTPases are required for EGFR internalisation.

Figure supplement 3—source data 1. RAL GTPases are required for EGFR internalisation.
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Figure 5. Ral GTPases mediate malignant transformation of the intestinal and mammary epithelium. (A) Representative confocal images of pH3 staining

(red/grey) in midguts overexpressing Src-kinase (Src64wt) with or without Rala knockdown (RalA-RNAi(2)) in stem/progenitor cells (intestinal stem cell/

enteroblast [ISC/EB>]; green). White arrows indicate pH3-positive nuclei. (B) Quantification of pH3-positive nuclei in posterior midguts as in (A). Data

were analysed by Student’s t-test. n = number of midguts. (C) Representative confocal images of Sox21a staining (red/grey) in midguts overexpressing

Src-kinase (Src64wt) with or without Rala knockdown (RalA-RNAi(2)) in stem/progenitor cells (ISC/EB>; green). Scale bar = 50 mm. (D) Quantification of

average Sox21a staining intensity within the nuclear compartment (DAPI positive) as in (C). Two-way ANOVA followed by Sidak’s multiple comparisons

test; n = number of z-stack confocal images quantified, each from an independent posterior midgut. (E) Representative confocal images of pERK

staining (red/grey) in midguts overexpressing Src-kinase (Src64wt) with or without Rala knockdown (RalA-RNAi(2)) in stem/progenitor cells (ISC/EB>;

green). (F) Quantification of average pERK staining intensity within the ISC/EB compartment (GFP positive) as in (E). Two-way ANOVA followed by

Sidak’s multiple comparisons test; n = number of z-stack confocal images quantified, each from an independent posterior midgut. Error bars represent

SD. (G) Representative images of EGFR staining (red/grey) in midguts overexpressing Src-kinase (Src64wt) and EGFRwt with or without Rala knockdown

Figure 5 continued on next page
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EGFR inhibitors (Madsen et al., 1992; Wang et al., 1998). Thus, we hypothesised that T4-2 growth

would be dependent on RAL function.

Consistent with previous reports (Madsen et al., 1992; Wang et al., 1998), treating T4-2 cells

with two structurally independent EGFR inhibitors, tyrphostin (AG1478) and erlotinib, resulted in

defective growth as determined by a reduction in 3D acinus size (Figure 5I, J). Importantly, stable

depletion of Rala or Ralb in T4-2 by shRNA (Figure 5K, L and Figure 5—figure supplement 1A, B)

phenocopied EGFR inhibition, as determined by a significant reduction in 3D acinus size

(Figure 5K, L). Therefore, RALA/B function is similarly required for a mammalian morphogenetic

function that is dependent on EGFR. Altogether, our results uncover a conserved role of RAL

GTPases mediating EGFR/MAPK-dependent tissue homeostasis and transformation.

Discussion
Spatial and temporal regulation of signal transduction by the endocytic pathway plays a key role in

health and pathophysiology (Casaletto and McClatchey, 2012; von Zastrow and Sorkin, 2007).

The impact of this process in adult stem cells and tissue homeostasis is only recently becoming evi-

dent from reports on the effect of endocytosis and autophagy on ISC proliferation through modula-

tion of Wnt/b-catenin and EGFR/MAPK activity, respectively (Johansson et al., 2019; Zhang et al.,

2019).

In this study, we identify a role for the Ras-related protein RAL in the activation of EGFR/MAPK

signalling activity through regulation of EGFR internalisation (Figure 6). Preventing RAL function in

Drosophila intestinal stem/progenitor cells reduces the intracellular pool of EGFR, leading to

decreased MAPK activation and downstream signalling. This role of RAL proteins impacts stem cell

proliferation and regeneration of the intestinal epithelium and has implications in pathological set-

tings that depend on active EGFR signalling, including intestinal hyperplasia and breast cancer cell

growth. However, oncogenic Ras expression in the intestine escapes the antiproliferative effect of

Ral knockdown.

RAL GTPases as regulators of signal transduction
While internalisation is recognised as the initial means to attenuate signal transduction through

reduction of PM receptors available for activation by extracellular ligands (Goh et al., 2010;

Sousa et al., 2012; Vieira et al., 1996; von Zastrow, 2003), the subsequent outcome of endocyto-

sis on signalling is dependent on the trafficking pathway followed by internalised receptors. Internal-

isation of membrane EGFR through Clathrin-mediated endocytosis results in prolonged EGFR

signalling by favouring receptor recycling back to the PM, while Clathrin-independent endocytosis

leads to EGFR degradation and signalling attenuation (Sigismund et al., 2008). The differential

effect of endocytic trafficking on EGFR has therapeutic implications as Clathrin inhibition can divert a

tyrosine kinase inhibitor (TKI)-resistant form of EGFR from Clathrin-mediated endocytosis and recy-

cling to pinocytosis and degradation in non-small cell lung carcinoma (Ménard et al., 2018).

Figure 5 continued

(RalA-RNAi(2)) in stem/progenitor cells (ISC/EB>; green). (H) Quantification of EGFR plasma membrane staining localisation relative to the cytoplasm as

in (G) presented as Tukey’s box and whiskers plot. Data were analysed by Student’s t-test. n = number of z-stack confocal images quantified, each from

an independent posterior midgut. (I) Confocal fluorescence microscopy images of HMT3522 T4-2 3D cultures, treated with EGFR inhibitors (tyrphostin

AG1478 and erlotinib) or corresponding vehicle controls (ethanol and DMSO, respectively) followed by fixation after 5 days and staining for F-actin

(yellow) and nuclei (blue, Hoechst). Scale bar = 40 mm. (J) Quantification of area of 5 days T4-2 cysts treated as in (I). n � 1214 cysts assessed from four

wells/condition/experiment, two independent experiments. One-way ANOVA, Tukey’s multiple comparisons test. (K) Confocal fluorescence microscopy

images of HMT3522 T4-2 cysts of 5 days expressing either scramble, RalA or RalB shRNA. Cysts were fixed and stained for F-actin (yellow) and nuclei

(blue, Hoechst). Scale bar = 40 mm. (L) Quantification of 5 days T4-2 cysts as in (K). n � 468 cysts assessed from four wells/condition/experiment, three

independent experiments. One-way ANOVA, Tukey’s multiple comparisons test. Where indicated: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not

significant. All error bars represent SD. Scale bars = 20 mm, unless otherwise stated.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Ral GTPases mediate malignant transformation of the intestinal and mammary epithelium.

Figure supplement 1. Ral knockdown in human mammary cell lines.

Figure supplement 1—source data 1. Ralknockdown in human mammary cell lines.
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Figure 6. Working model depicting the role of RAL GTPases in EGFR/MAPK signalling. (A) Experimental contexts used. Most results were acquired

from Drosophila intestinal epithelial stem progenitor cells. Key findings were confirmed using mammalian intestine and human lung and breast cancer

cell lines. (B) RalA is necessary for EGFR internalisation and MAPK activation, leading to mitogenic signalling.

Nászai et al. eLife 2021;10:e63807. DOI: https://doi.org/10.7554/eLife.63807 13 of 33

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.63807


Here, we provide robust evidence of physiological and pathological contexts in the intestine

where the internalisation of EGFR mediated by RAL GTPases directly correlates with potentiation of

downstream MAPK signalling (Figure 6). We recently reported a similar effect of RAL proteins on

the seven transmembrane class receptor, Frizzled, leading to high threshold of Wnt signalling activity

(Johansson et al., 2019). In both cases, the ultimate outcome of RAL action is an efficient acute pro-

liferative response of intestinal stem cells during tissue regeneration following damage. Therefore,

RAL GTPases are effectors of two pivotal signal transduction pathways within the intestinal epithe-

lium (Biteau and Jasper, 2011; Buchon et al., 2010; Jardé et al., 2020; Jiang et al., 2011;

Perochon et al., 2018; Sato et al., 2009; Xu et al., 2011). The effect of knocking down RalA in the

Drosophila midgut is, however, milder than that observed upon individual or combined impairment

of Wnt/b-catenin and EGFR/MAPK signalling reception in ISCs (Xu et al., 2011). This suggests that

RalA is only partly responsible for the activation of these signalling pathways and its effect is only

evident in the regenerative response to damage, which requires high thresholds of signalling activity

to allow acute stem cell proliferation for tissue regeneration. The scenario is different in the mamma-

lian intestine, where combined knockout of Rala and Ralb leads to complete disruption of intestinal

epithelial homeostasis (Johansson et al., 2019). This may relate to inherent differences in the signal-

ling activity levels needed to maintain homeostatic ISC proliferation in the fly midgut versus the

mouse intestine. Compared to its murine counterpart, basal proliferation in the adult fly midgut is

relatively low and there is no transit-amplifying proliferative zone (Micchelli and Perrimon, 2006;

Ohlstein and Spradling, 2006). Alternatively, the difference could lie in the different experimental

approaches taken, namely the use of gene knockout in the mouse versus partial knockdown in the

fly. Our efforts to generate FRT-mediated Rala knockout clones in the adult Drosophila midgut were

unsuccessful (data not shown), and full mutant animals are not viable. Therefore, any potential resid-

ual activity due to incomplete knockdown could lead to milder Drosophila phenotypes.

RAL GTPases have been linked to Clathrin-mediated endocytosis via interaction of their effector

protein, RAL binding protein (RALBP1), with the Clathrin adaptor AP2 (Jullien-Flores et al., 2000).

More recently, RAL proteins have also been shown to engage in Caveolin-mediated endocytosis

(Jiang et al., 2016). While the potentiating effect of RALs on EGFR signalling activity would favour a

role of the small GTPases in Clathrin-mediated endocytosis in the system, this needs to be directly

assessed. Experiments to functionally connect RalA with specific endocytic trafficking pathways using

Drosophila genetics have been unsuccessful as, consistent with recently published work

(Zhang et al., 2019), global perturbation of the trafficking machinery within ISCs leads to very

severe disruption of intestinal homeostasis (data not shown), precluding the establishment of mean-

ingful genetic interactions.

Future research will need to be done to better elucidate the place of action of RAL GTPases

within the endocytic trafficking pathway and its connection with EGF and Wnt receptors in the intes-

tine. The use of fluorescently tagged endocytic proteins (Dunst et al., 2015) combined with recently

developed live imaging approaches in the adult Drosophila intestine (Koyama et al., 2020;

Martin et al., 2018) offers a clear opportunity to visualise spatial and temporal receptor/endosome

interactions in vivo.

RAL GTPases as potential therapeutic targets in cancer
EGFR function is frequently altered in cancer (Santarius et al., 2010; Yarden and Pines, 2012).

Excessive protein levels due to gene amplification or increased-transcription are the most common

EGFR perturbations found in gastrointestinal and lung adenocarcinoma as well as in cholangiocarci-

noma (Birkman et al., 2016; Jung et al., 2017; Li et al., 2008). On the other hand, EGFR kinase

domain activating point mutations are associated with non-small cell lung carcinoma and glioblas-

toma, but are rarely seen in other types of cancer (Li et al., 2008; Siegelin and Borczuk, 2014;

Zhang et al., 2016). Extracellular domain truncating mutations yielding to constitutively active

receptor through ligand-independent dimerisation have also been observed in glioblastomas

(Furnari et al., 2015; Guo et al., 2015; Huang et al., 1997). We have utilised Drosophila genetic

constructs that mimic all three main classes of EGFR common to human cancers and which lead to

intestinal hyperplasia when overexpressed in intestinal stem/progenitor cells (Figure 3). Genetic inhi-

bition of Ral GTPase activity consistently prevented hyperproliferation in these models, suggesting

that targeting RAL function could be a potentially effective therapeutic approach in the treatment of

multiple highly aggressive cancer types.
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Current EGFR-targeted therapies include small-molecule TKIs and monoclonal antibodies (mAbs)

against the extracellular domain of the receptor (Xu et al., 2017). A number of resistance mecha-

nisms arise secondary to treatment. Specific kinase domain mutations desensitise cells against TKI

(Sequist et al., 2011; Yu et al., 2015), while alterations of the antibody binding site are observed in

CRC (Arena et al., 2015). There is also a tendency for downstream mutations (Raf, Ras, MAPK,

MET) to uncouple pathway activity from the receptor (Camidge et al., 2014; Mancini and Yarden,

2016). The most common form of resistance to EGFR-targeted therapies is believed to be innate

rather than adaptive (Parseghian et al., 2019). Indeed, about 80% of CRCs are refractive to EGFR

therapy (Bardelli and Siena, 2010). Several reports highlight how cancer cells co-opt the endocytic

pathway for growth and survival benefits (Mosesson et al., 2008). In fact, these have been proposed

as a potential venue for drug development (Mellman and Yarden, 2013). However, based on the

current evidence, we propose that targeting RAL function versus a broader component of the endo-

cytic machinery may prove a more refined approach, leading to lower toxic effects (Zhang et al.,

2019).

RAL effector proteins, including RALGEFs and RALBP1, have emerged as important mediators of

malignant growth in pancreatic, colorectal, prostate, bladder, and other tumour cell lines character-

ised by the presence of oncogenic RAS mutations (Neel et al., 2011). Furthermore, genetic knock-

out of the RALGEF, RALGDS, ameliorates tumour growth in a mouse model of Ras-driven skin

tumourigenesis (González-Garcı́a et al., 2005). Unexpectedly, our results show that, at least in the

intestine, oncogenic mutations in Ras are refractory to Ral GTPase inhibition. These apparently dis-

crepant results could be due to context-dependent requirements for RAL function in malignancy, dif-

ferences between in vitro and in vivo experimental settings, and/or a potential promiscuous role of

RAL effectors on small GTPase signalling.

Previously, we have shown that fly and murine intestines bearing loss of Apc, a key initiating event

in up to 80% of human CRC, also overcome the need for RAL GTPases to proliferate

(Johansson et al., 2019). Taken together, our results argue against an effective role of anti-RAL

therapies to treat CRCs carrying Apc loss-of-function and/or hyperactivating Ras mutations. On the

other hand, tumours with overexpression or activating mutations in EGFR, such as carcinomas of the

upper gastrointestinal tract, lung and mammary tissue, or glioblastomas (Birkman et al., 2016;

Furnari et al., 2015; Guo et al., 2015; Huang et al., 1997; Li et al., 2008; Siegelin and Borczuk,

2014; Zhang et al., 2016), might be responsive to impairment of RAL function. Ultimately, taking

into consideration the genetic composition of the tumour is of outmost importance when consider-

ing the use of RAL inhibition as a therapeutic approach.

Materials and methods
Key resources table is included as Appendix 1.

Experimental models and organisms
Species used
Drosophila melanogaster and Mus musculus.

Only mated females were used for Drosophila experiments.

Cell lines
HMT3522 T4-2 (human breast cancer derived; from Valerie Weaver), NCI-H1299 (human lung cancer

derived; from ATCC), HEK293-FT (human kidney derived; from Thermo Fisher Scientific). All cell lines

used in this study were authenticated through STR profiling using Promega Geneprint 10 Kit. Gene

fragment analysis was performed on a 3130xl Genetic Analyser, and Genemapper v5 was used for

analysis. Cell lines were confirmed negative for mycoplasma.

Drosophila breeding and maintenance
Flies were maintained in humidity and temperature-controlled incubators with a 12–12 hr light-dark

cycle. Crosses were kept at 18˚C. F1s of the desired genotype were collected 2–3 days after adult

eclosion and aged at 29˚C for the time needed to allow for transgene activation. Only female
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midguts were used. Standard rearing medium used 10 g agar, 15 g sucrose, 30 g glucose, 15 g

maize meal, 10 g wheat germ, 30 g treacle, and 10 g soya flour per litre of distilled water.

Exact genotypes for all figure panels are listed in Supplementary file 1.

Mouse work
Mouse experiments were performed as described in Johansson et al., 2019 according to the UK

Home Office regulations and designed in accordance with the ARRIVE guidelines. Animals were fed

on standard diet and water ad libitum, and under non-barrier conditions. Genotypes used are indi-

cated in the Key resources table. Vil1CreER recombinase was induced using 80 mg/kg Tamoxifen

(Sigma) IP. Regeneration was induced using caesium-137 g-radiation sources delivering 0.423 Gy

min�1 to a total of 10 Gy. Mice were sampled 3 days following irradiation damage. No distinction

was made between males and females in the mouse experiments. All animals used in experiments

were above 20 g of weight. Experiments were performed on a C57BL/6 background and using a

minimum of three mice per condition/genotype.

IHC of mouse tissue
Formalin-fixed paraffin-embedded (FFPE) tissues were cut into 4 mm sections and mounted onto

adhesive slides, followed by a 2-hr-long oven-incubation step at 60˚C. Samples were dewaxed in

xylene for 5 min before rehydration through serial washes in decreasing concentrations of alcohol

followed by washing with H2O for 5 min. For heat-induced epitope, retrieval sections were heated

for 20 min at 97˚C in sodium citrate pH6 retrieval buffer (Thermo, TA-250-PM1X) before cooling to

65˚C. This was followed by washing in Tris Buffered Saline with Tween (TBT) (Thermo, TA-999-TT).

Sections were loaded onto the Dako autostainer link48 platform, washed with TBT, then peroxidase

blocking solution (Agilent, S2023) for 5 min. Sections were washed with TBT, then appropriate anti-

body was applied to specific slides. Phospho-p44/42 MAPK (Erk1/2) (Cell Signalling, 9101) was

applied at 1/400 dilution, and p44/42 MAPK (Erk1/2) (Cell Signalling 9102) was applied at 1/40 dilu-

tion for 30 min. After another TBT wash, secondary antibody (Rabbit Envision, Agilent, K4003) was

applied for 30 min before washing with TBT again. 3,30 diaminobenzidine (Agilent, K3468) was then

applied for 10 min before washing in H2O to terminate the reaction. Finally, slides were counter-

stained with haematoxylin and dehydrated in increasing concentrations of alcohol, then taken

through three changes of xylene prior to sealing with glass coverslips using DPX mounting media for

microscopy.

Quantification of pERK and total ERK staining in mouse tissues
A minimum of 12 and up to 30 randomly selected crypts per animal from at least three mice per

genotype, per condition were quantified. Data are expressed as the percentage of crypt cells posi-

tively stained for a marker of interest per crypt. Finally, the percentage of positively stained cells was

averaged for each animal.

Brightfield microscopy and scoring of adult wing patterning
Drosophila wings were mounted onto glass slides (VWR) with 13 mm � 0.12 mm spacers (Electron

Microscopy Science). Images were obtained on the ZEISS Axio Observer system. Images were focus

stacked using the ZEN 2 software (ZEISS). Wing dysmorphia was blindly scored on a scale from 1 to

5 using a previously developed macro https://github.com/emltwc/TracheaProject/blob/master/

Blind_scoring.ijm (copy archived at swh:1:rev:

2ef7574e3c9bbb7ef852655511a86ef7531d35bb); Naszai, 2021a, where 1 is a normal, wild-type

wing and 5 refers to the most severely disrupted adult wings.

Immunofluorescence of Drosophila tissues
Immunofluorescent staining was performed as described in Johansson et al., 2019. Briefly, tissues

were dissected in PBS and immediately fixed in 4% paraformaldehyde (PFA; Polysciences Inc) at

room temperature for a minimum of 30 min. Once fixed, 20-min-long washes in PBS + 0.2% Triton

X-100 (PBST) were repeated three times, followed by overnight incubation at 4˚C with primary anti-

bodies in PBST + 0.5% bovine serum albumin (BSA) (PBT). Prior to applying the secondary
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antibodies, tissues were washed in PBST three times 20 min and then incubated with the appropriate

antibodies in PBT for 3 hr at room temperature, followed by washing and mounting.

Midguts stained for pERK and tERK included a methanol fixation step between PFA fixation and

PBST washing steps of the standard protocol. Following PFA, fixation methanol was added dropwise

to the solution, with the tissues in it until the volume of the liquid is at least double. Tissues were

transferred into 100% methanol for minimum 1 min. PBS was added to the methanol dropwise to

rehydrate the tissues after which the samples were subjected to the standard staining protocol.

All samples were mounted onto glass slides (VWR) with 13 mm � 0.12 mm spacers (Electron

Microscopy Science) and VECTASHIELD antifade mounting medium containing DAPI (Vector Labora-

tories, Inc). Confocal images were obtained on a ZEISS LSM 780 and processed in the ZEISS ZEN

software.

Antibody concentrations used were as follows: anti-GFP (1:2000), anti-pERK (1:100), anti-tERK

(1:100), anti-EGFR (1:50), anti-Sox21a (1:2000), and anti-pH3S10 (1:100). Secondary antibodies were

used as follows: anti-chicken-IgY-488 (1:200), anti-rabbit-IgG-594 (1:100), and anti-mouse-IgG-594

(1:100).

Drosophila midgut regeneration assay
Drosophila intestinal regeneration was induced through oral infection using Erwinia carotovora

subsp. carotovora 15 (Ecc15) (Basset et al., 2000), as described in Neyen et al., 2014. Briefly, bac-

teria were cultured overnight in LB medium in an orbital shaker incubator at 29˚C, 200 rpm. Samples

were pelleted (Beckman Coulter JS-4.2 rotor, 10 min @3000 rpm) and adjusted to OD600 = 200. Flies

used for regeneration experiments were starved in empty vials for 2 hr prior to infection to synchro-

nise feeding. Animals were moved into vials containing filter paper (Whatman) soaked into vehicle

control, 5% sucrose solution (Mock), or the prepared bacterial solution mixed with 5% sucrose 1:1.

Flies were dissected 12–16 hr after infection.

Staining quantification
pERK and tERK intensity were quantified in 16-bit z-stack confocal images as the average staining

intensity within the GFP-positive compartment. Sox21a staining was quantified in 16-bit z-stack con-

focal images as the average staining intensity within the entire DAPI-positive compartment. pERK,

tERK, and Sox21a were quantified using the custom ImageJ macro: BatchQuantify (https://github.

com/emltwc/2018-Cell-Stem-Cell, copy archived at swh:1:rev:

e45f961ed6217ecc0bece566a76a633fd2b47ec0), Naszai, 2021b. EGFR membrane/cytoplasmic

staining was quantified in 16-bit z-stack confocal images using the custom ImageJ macro: EGFR_-

quant (https://github.com/emltwc/EGFRProject, (copy archived at swh:1:rev:

4888f27a6766694b33a8b25bcb42a078fa786f8d)).

Survival quantification
Relative survival was calculated by counting the proportion of adult flies emerging from crosses,

which carried the desired experimental genotypes, as per the expected Mendelian ratio. When the

proportion of animals of a given genotype emerged at the expected Mendelian ratio, this genotype

was deemed to be 100% viable.

Drosophila RNA extraction, RNA-sequencing, and RT-qPCR
Total RNA from a minimum of 25 midguts was extracted using QIAGEN RNAeasy kit, following the

manufacturer’s instructions, including the on-column DNase digestion step. For RNA-seq, an RNA

integrity score was determined (average = 9.4, SD = 0.6, lowest score used = 8.2; Agilent Technolo-

gies 2200 Tapestation, RNA Screen Tape). Libraries for cluster generation and DNA sequencing

were prepared following Fisher et al., 2011 using Illumina TruSeq RNA library Preparation Kit v2.

Libraries were run on the Next Seq 500 platform (Illumina) using the High Output 75 cycles kit (2 �

36 cycles, paired end reads, single index).

For RT-qPCR, RNA was quantified using a NanoDrop 2000c Spectrophotometer. cDNA was syn-

thesised using the High-Capacity cDNA reverse transcription kit (Applied Biosystems) according to

the manufacturer’s recommendations using a maximum of 2 mg RNA per 20 mL final volume. Quanta

SYBR Green Master Mix (Low ROX, Fermentas) was used following the manufacturer’s instructions.
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Data were obtained and analysed using the Applied Biosystems 7500 software. Results represent

four independent replicates ± SEM. Expression of target genes was measured and normalised to

rpl32 using standard curves.

Western blot
Protein was extracted from 12 adult female Drosophila midguts dissected in ice-cold PBS. The tis-

sues were lysed in 20 mL RIPA buffer (Sigma) using a microcentrifuge pestle. Samples were spun

down at 13,000 rpm for 10 min at 4˚C and the supernatant was collected. Protein concentration was

determined using Bradford reaction (Abcam) following the manufacturer’s recommendations. 40 mg

of total protein was loaded onto NuPAGE 10% Bis-Tris gel (Thermo Fisher Scientific) and run using

NuPAGE MOPS buffer (Thermo Fisher Scientific). Protein was transferred to a membrane (Bio-Rad)

using the Trans-Blot Turbo system (Bio-Rad) following the manufacturer’s instructions. Membranes

were blocked overnight at 4˚C in 5% BSA (Sigma), then probed using pERK and tERK antibodies

(Cell Signalling) at 1:1000 concentration. Antibody signal was detected using the SuperSignal West

Pico Chemiluminescent Substrate (Thermo Fisher Scientific) system.

Cell culture
HMT3522 T4-2 (V. Weaver, UCSF) cells were cultured in precoated collagen plates using DMEM/

Ham’s F12 (1:1) medium supplemented with 2 mM glutamine (Life Technologies), 250 ng/mL insulin

solution from bovine pancreas (Sigma-Aldrich), 10 mg/mL transferrin (Sigma-Aldrich), 2.6 ng/mL

sodium selenite (Sigma-Aldrich), 10�10 M 17 b-estradiol (Sigma-Aldrich), 1.4 � 10�6 M hydrocorti-

sone (Sigma-Aldrich), and 10 ng/mL human prolactin (Miltenyi Biotec).

3D acini were grown as follows: single-cell suspensions (1.5 � 104 cells per mL) were plated in the

appropriate medium supplemented with 2% Growth Factor Reduced Matrigel (GFRM; BD Bioscien-

ces). 100 mL of this mix were added per well in a 96-well ImageLock plate (Essen Biosciences) pre-

coated with 10 mL of pure GFRM for 15 min at 37˚C. Cells were incubated at 37˚C for 5 days,

changing the media every two days, before IF.

For inhibitor studies, cells were treated from the time of plating with Tyrphostin-AG1478 (80 nM

in ethanol, Sigma-Aldrich), erlotinib (100 nM in DMSO), and ethanol or DMSO as appropriate con-

trols, respectively.

HEK293-FT (Thermo Fisher Scientific) were cultured in DMEM supplemented with 10% FBS, 6 mM

L-glutamine, and 0.1 mM non-essential amino acids (NEAA) (all reagents from Life Technologies/

Thermo Fisher).

Generation of stable cell lines
Stable cell lines were performed by co-transfecting HEK293-FT packaging cells with a pLKO.1-puro-

mycin shRNA plasmid with VSVG and SPAX2 lentiviral packaging vectors using Lipofectamine 2000

according to the manufacturer’s instructions (Invitrogen). Viral supernatants were collected, filtered

using PES 0.45 mm syringe filters (Starlab), and concentrated using Lenti-X Concentrator (Clontech)

as per the manufacturer’s instructions. Cells were then transduced with the lentivirus for 3 days

before selection with 1 mg/mL puromycin (Thermo Fisher Scientific). shRNA target sequences: non-

targeting control shScr (50CCGCAGGTATGCACGCGT30), shRalA (50GGAGGAAGTCCAGATCGATA

T30), and shRalB (50CAAGGTGTTCTTTGACCTAAT30). To knockdown RAL protein expression in

H1229 cells, cells were transfected with Dharmacon ON-TARGETplus siRNAs using the Amaxa

Nucleofector system (Lonza).

RNA extraction and RT-qPCR in cell culture samples
RT-qPCR on human samples was performed following the same protocol used for Drosophila sam-

ples, except using human b-actin or GAPDH to normalise transcript levels using the delta-delta-CT

method.

Cyst growth assay
Acini labelling was adapted from previously described protocols. Briefly, cultures were fixed in 4%

PFA (Affymetrix) for 10 min at room temperature (RT), washed twice in PBS, blocked for 1 hr in PFS

buffer (PBS, 0.7% w/v fish skin gelatin; Sigma-Aldrich), 0.5% saponin (Sigma-Aldrich), and incubated
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with primary antibodies diluted in PFS at 4˚C overnight with gentle rocking. Then, cyst cultures were

washed three times with PFS and incubated with secondary antibodies diluted in PFS for 1 hr at RT,

followed by washing twice in PFS and twice in PBS. Labelling was performed using Phalloidin (1:200)

(Invitrogen) and Hoechst to label nuclei (10 mg/mL).

Acquisition of confocal images was performed using Opera Phenix Z9501 high-content imaging

system (PerkinElmer), imaging at least 10 optical sections every 2 mM, imaging 25 fields at 20�.

Images were analysed using Harmony imaging analysis software (PerkinElmer).

Internalisation assay
Internalisation assays were performed as described in Roberts et al., 2001. Briefly, cells were sur-

face labelled at 4˚C with 0.13 mg/mL NHS-SS-biotin (Pierce) in PBS for 30 min. Following surface

labelling, cells were transferred to complete medium at 37˚C to allow internalisation in the presence

of 0.6 mM primaquine for the indicated times. Biotin was then removed from the cell surface by

treatment with the cell-impermeable-reducing agent MesNa. Cells were then lysed and the quantity

of biotinylated receptors determined using a capture-ELISA. The following antibodies were used for

capture-ELISA: clone VC5 (BDPharmingen, Cat# 555651) for a5b1, anti-CD71 (BDPharmingen, Cat#

555534) for the TfnR, anti-HGFR (R&D Systems, Cat# AF276), and anti-EGFR1 (BDPharmingen, Cat#

555996).

Statistical analysis
GraphPad Prism 8 software was used for statistical analyses. Information on sample size and statisti-

cal tests used for each experiment is indicated in the figure legends.

Acknowledgements
We would like to thank Björn Kruspig, Sergi Marco, Martha Maria Zarou, Gaiti Hasan, Valerie

Weaver, and Benoit Biteau for reagents and cell lines, Ann Hedley (CRUK Beatson) for help with bio-

informatic analysis of the RNAseq data, and William Clark and Jillian Murray (CRUK Beartson) for cell

line authentication and mycoplasma testing, respectively. We thank the Vienna Drosophila RNAi

Center, the Bloomington Drosophila Stock Center, and the Developmental Studies Hybridoma Bank

for providing Drosophila lines and reagents. MN was supported by a Leadership Fellowship from the

University of Glasgow to (JBC). YY was supported by CRUK core funding to the CRUK Beatson Insti-

tute (A17196). The work from the Norman laboratory was funded by CRUK core funding for his labo-

ratory (A18277), and JCN acknowledges the CRUK Glasgow Centre (C596/A18076). JJ, ADC, and

OJS are funded by CRUK core funding for OJS laboratory (A21139). DMB, ARF, and ES are sup-

ported by the University of Glasgow and CRUK core funding (A17196). JBC is a Sir Henry Dale Fel-

low jointly funded by the Wellcome Trust and the Royal Society (grant number 104103/Z/14/Z).

Additional information

Competing interests

Owen J Sansom: O.J.S. has received funding from Novartis to examine RAL and RAL GEFs in malig-

nancy. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Wellcome Trust 104103/Z/14/Z Julia B Cordero

Cancer Research UK A17196 Yachuan Yu
Alvaro Román-Fernández
Emma Sandilands
David M Bryant

Cancer Research UK A18277 Jim C Norman

Cancer Research UK C596/A18076 Jim C Norman

Nászai et al. eLife 2021;10:e63807. DOI: https://doi.org/10.7554/eLife.63807 19 of 33

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.63807


Cancer Research UK A21139 Joel Johansson
Andrew D Campbell
Owen J Sansom

University of Glasgow Leadership Fellowship Máté Nászai
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Appendix 1

Appendix 1—key resources table

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Mus
musculus)

VillinCreER el Marjou et al.,
2004
10.1002/gene.20042

NA

Strain, strain
background
(Mus
musculus)

Ralafl/fl Peschard et al.,
2012
10.1016/j.cub.2012.
09.013

RRID:MGI:
5505291

Strain, strain
background
(Mus
musculus)

Ralbfl/fl Peschard et al.,
2012
10.1016/j.cub.2012.
09.013

RRID:MGI:
5505291

Strain, strain
background
(Erwinia
carotovora
carotovora 15)

Ecc15 B. Lemaitre;
(Basset et al., 2000)
10.1073/pnas.97.7.
3376

NA

Genetic
reagent
(Drosophila
melanogaster)

en> BDSC RRID:BDSC_
30564

y1 w*; P{w+mW.hs=en2.4 GAL4}e16E

Genetic
reagent
(Drosophila
melanogaster)

ISC/EB> S. Hayashi; Goto and
Hayashi, 1999
PMID:10393119

NA yw;esg-Gal4NP5130,UAS-GFP,UAS
-GFPnLacZ/Cyo;tub-Gal80ts/Tm6B

Genetic
reagent
(Drosophila
melanogaster)

Control R. Cagan NA w[1118]

Genetic
reagent
(Drosophila
melanogaster)

RalA-RNAi(1) VDRC RRID:FlyBase_
FBst0477124

P{KK108989}VIE-260B

Genetic
reagent
(Drosophila
melanogaster)

RalA-RNAi(2) BDSC RRID:BDSC_
29580

y1 v1; P{y+t7.7v+t1.8=TRiP.
JF03259}attP2

Genetic
reagent
(Drosophila
melanogaster)

wg-RNAi VDRC RRID:FlyBase_
FBst0476437

P{KK108857}VIE-260B

Genetic
reagent
(Drosophila
melanogaster)

wg-RNAi VDRC RRID:FlyBase_
FBst0450965

P{GD5007}v13351

Genetic
reagent
(Drosophila
melanogaster)

EGFR-RNAi VDRC RRID:FlyBase_
FBst0478953

P{KK100051}VIE-260B
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Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(Drosophila
melanogaster)

RalAwt G. Hasan;
(Richhariya et al.,
2017)
; 10.1038/srep42586

NA P{UAS-RalA}3

Genetic
reagent
(Drosophila
melanogaster)

GEFmeso-RNAi BDSC RRID:BDSC_
42545

y1 v1; P{y[+t7.7]
v[+t1.8]=TRiP.HMJ02116}attP40

Genetic
reagent
(Drosophila
melanogaster)

RalGPS-RNAi VDRC RRID:FlyBase_
FBst0463650

w[1118]; P{GD11683}v40596/TM3

Genetic
reagent
(Drosophila
melanogaster)

Rgl-RNAi BDSC RRID:BDSC_
28938

y1 v1; P{y[+t7.7] v[+t1.8]=TRiP.
HM05149}attP2

Genetic
reagent
(Drosophila
melanogaster)

EGFRwt BDSC RRID:BDSC_
5368

y1 w[*];
P{w[+mc]=UAS Egfr.B}32-26-1

Genetic
reagent
(Drosophila
melanogaster)

EGFRA887T BDSC RRID:BDSC_
9533

w[*]; P{w[+mC]=Egfr0.2.A887T.UAS}
8-2

Genetic
reagent
(Drosophila
melanogaster)

EGFRltop BDSC RRID:BDSC_
59843

w[*]; P{w[+mC]=UAS Egfr.
lambdatop}3/TM6C,
Sb1

Genetic
reagent
(Drosophila
melanogaster)

RasV12(1) BDSC RRID:BDSC_
64196

w[*]; P{w[+mC]=UAS-Ras85D.V12}2

Genetic
reagent
(Drosophila
melanogaster)

RasV12(2) BDSC RRID:BDSC_
64195

w[*]; P{w[+mC]=UAS-Ras85D.V12}TL1

Genetic
reagent
(Drosophila
melanogaster)

Ras-RNAi VDRC RRID:FlyBase_
FBst0478466

P{KK108029}VIE-260B

Genetic
reagent
(Drosophila
melanogaster)

Src64wt BDSC RRID:BDSC_
8477

w[*]; P{w[+mC]=UAS-Src64B.C}2

Cell line
(Homo
sapiens)

H1299 ATCC CRL-5803 RRID:CVCL_0060 Authenticated through STR profiling
Mycoplasma negative

Cell line
(Homo
sapiens)

HMT3522 T4-2 V. Weaver, UCSF RRID:CVCL_2501 Authenticated through STR profiling
Mycoplasma negative

Cell line
(Homo
sapiens)

HEK293-FT Thermo Fisher
Scientific

RRID:CVCL_6911 Authenticated through STR profiling
Mycoplasma negative

Antibody Anti-GFP (Chicken
polyclonal)

Abcam RRID:AB_300798 Drosophila IF (1:2000)

Continued on next page

Nászai et al. eLife 2021;10:e63807. DOI: https://doi.org/10.7554/eLife.63807 28 of 33

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://dx.doi.org/10.1038/srep42586
https://scicrunch.org/resolver/BDSC_42545
https://scicrunch.org/resolver/BDSC_42545
https://scicrunch.org/resolver/FlyBase_FBst0463650
https://scicrunch.org/resolver/FlyBase_FBst0463650
https://scicrunch.org/resolver/BDSC_28938
https://scicrunch.org/resolver/BDSC_28938
https://scicrunch.org/resolver/BDSC_5368
https://scicrunch.org/resolver/BDSC_5368
https://scicrunch.org/resolver/BDSC_9533
https://scicrunch.org/resolver/BDSC_9533
https://scicrunch.org/resolver/BDSC_59843
https://scicrunch.org/resolver/BDSC_59843
https://scicrunch.org/resolver/BDSC_64196
https://scicrunch.org/resolver/BDSC_64196
https://scicrunch.org/resolver/BDSC_64195
https://scicrunch.org/resolver/BDSC_64195
https://scicrunch.org/resolver/FlyBase_FBst0478466
https://scicrunch.org/resolver/FlyBase_FBst0478466
https://scicrunch.org/resolver/BDSC_8477
https://scicrunch.org/resolver/BDSC_8477
https://scicrunch.org/resolver/CVCL_0060
https://scicrunch.org/resolver/CVCL_2501
https://scicrunch.org/resolver/CVCL_6911
https://scicrunch.org/resolver/AB_300798
https://doi.org/10.7554/eLife.63807


Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Antibody Anti-Sox21a
(Rabbit polyclonal)

B. Biteau;
(Meng and Biteau,
2015) 10.1016/j.
celrep.2015.09.061

NA Drosophila IF (1:2000)

Antibody Anti-pERK (Rabbit
polyclonal)

Cell Signalling
Technology

RRID:AB_331646 Drosophila IF (1:100); mouse
IHC (1:400); western blot (1:1000)

Antibody Anti-ERK (Rabbit
polyclonal)

Cell Signalling
Technology

RRID:AB_390779 Drosophila IF (1:100);
western blot (1:1000)

Antibody Anti-ERK (Rabbit
polyclonal)

Cell Signalling
Technology

RRID:AB_330744 Mouse IHC (1:40)

Antibody Anti-rabbit IgG
HRP-linked
antibody (Goat
polyclonal)

Cell Signalling
Technology

RRID:AB_
2099233

Western blot (1:10,000)

Antibody Anti-Phospho-
Histone 3 Ser
10 (Rabbit
polyclonal)

Cell Signalling
Technology

RRID:AB_331535 Drosophila IF (1:100)

Antibody Anti-EGFR
extracellular
domain
(Mouse
monoclonal)

Sigma-Aldrich RRID:AB_609900 Drosophila IF (1:50)

Antibody Anti-EGFR1
(Mouse
monoclonal)

BDPharmingen RRID:AB_
2096589

Capture-ELISA (5 mg/mL)

Antibody Anti-c-MET (Goat
polyclonal)

R&D Systems RRID:AB_355289 Capture-ELISA
anti-HGFR (5 mg/mL)

Antibody Anti-Alpha5 beta1
integrin
(Mouse
monoclonal, Clone
V5)

BDPharmingen RRID:AB_396007 Capture-ELISA
Anti-CD49e (5 mg/mL)

Antibody Anti-Transferrin
receptor
(Human
monoclonal)

BDPharmingen RRID:AB_395918 Capture-ELISA
CD71 antibody (5 mg/mL)

Antibody Alexa Fluor 488
anti-chicken-IgY
(H + L) (Goat
polyclonal
secondary
antibody)

Invitrogen Cat#A-11039
RRID:AB_142924

Drosophila IF (1:100)

Antibody Alexa Fluor 594
anti-rabbit-IgG
(H + L) (Goat
polyclonal
secondary
antibody)

Invitrogen Cat#A-11037
RRID:AB_
2534095

Drosophila IF (1:100)

Antibody Alexa Fluor 594
anti-mouse-IgG
(H + L) (Goat
polyclonal
secondary
antibody)

Molecular Probes RRID:AB_141672 Drosophila IF (1:100)

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Antibody Alexa Fluor 594
anti-mouse-IgG
(H + L) (Goat
polyclonal
secondary
antibody)

Invitrogen RRID:AB_
2534091

Drosophila IF (1:100)

Recombinant
DNA
reagent

pLKO.1-puromycin Moffat et al. Cell.
2006
Mar 24. 124(6):1283–
98

RRID:Addgene_
10878

Recombinant
DNA
reagent

VSVG Trono lab,
unpublished,
donated to
Addgene

RRID:Addgene_
12259

Recombinant
DNA
reagent

SPAX2 Trono lab,
unpublished,
donated to
Addgene

RRID:Addgene_
12260

Sequence-
based
reagent

Rho_Fwd This paper NA TTGTCATCTTTGTCTCCTGCGA

Sequence-
based
reagent

Rho_Rev This paper NA GTCAGGTGGGCAATGTACGA

Sequence-
based
reagent

Stg_Fwd This paper NA CAGTAATAACACCAGCAGTTCGAG

Sequence-
based
reagent

Stg_Rev This paper NA GTAGAACGACAGCTCCTCCT

Sequence-
based
reagent

Sox21a_Fwd This paper NA AGACAATTAATACAGAGCTCGAGG

Sequence-
based
reagent

Sox21a_Rev This paper NA GAGATGCTCGTCATGATGCC

Sequence-
based
reagent

Rpl32_Fwd This paper NA AGGCCCAAGATCGTGAAGAA

Sequence-
based
reagent

Rpl32_Rev This paper NA TGTGCACCAGGAACTTCTTGAA

Sequence-
based
reagent

Rala_Fwd PrimerBank ID#324072795 c2 GCAGACAGCTATCGGAAGAAG

Sequence-
based
reagent

Rala_Rev PrimerBank ID#324072795 c2 TCTCTAATTGCAGCGTAGTCCT

Sequence-
based
reagent

Ralb_Fwd PrimerBank ID#48762927 c1 AGCCCTGACGCTTCAGTTC

Sequence-
based
reagent

Ralb_Rev PrimerBank ID#48762927 c1 AGCGGTGTCCAGAATATCTATCT

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Sequence-
based
reagent

ActB_Fwd Liu et al., 2015
10.1371/journal.
pone.0117058

NA TGACGTGGACATCCGCAAAG

Sequence-
based
reagent

ActB_Rev Liu et al., 2015
10.1371/journal.
pone.0117058

NA CTGGAAGGTGGACAGCGAGG

Sequence-
based
reagent

shScr This paper NA CCGCAGGTATGCACGCGT

Sequence-
based
reagent

shRala This paper NA GGAGGAAGTCCAGATCGATAT

Sequence-
based
reagent

shRalb This paper NA CAAGGTGTTCTTTGACCTAAT

Sequence-
based
reagent

siRNA Rala
(human)

Dharmacon ONTARGETplus
– Cat#
L-009235-00-
0005

Sequence-
based
reagent

siRNA Ralb
(human)

Dharmacon ONTARGETplus
– Cat#
L-008403-00-
0005

Peptide,
recombinant
protein

EGF Sigma Cat#
11376454001

Peptide,
recombinant
protein

HGF Sigma Cat# H9661

Commercial
assay or kit

High Capacity
cDNA Reverse
Transcription Kit

Applied Biosystems Cat# 4368813

Commercial
assay or kit

PerfeCTa SYBR
Green
FastMix (Low ROX)

Quanta Bio Cat# 95074–012

Commercial
assay or kit

VECTASHIELD
Mounting
Medium with DAPI

Vector Laboratories,
Inc

RRID:AB_
2336790

Commercial
assay or kit

SuperSignal West
Pico
Chemiluminescent
Substrate

Thermo Fisher
Scientific

Cat# 34077

Commercial
assay or kit

RNAeasy Mini Kit
(50)

QIAGEN Cat# 74104

Commercial
assay or kit

Growth Factor
Reduced
Matrigel

BD Biosciences 354230

Commercial
assay or kit

Lipofectamine
2000

Thermo Fisher
Scientific

Cat# 11668027

Commercial
assay or kit

Lenti-X
Concentrator

Clontech

Chemical
compound,
drug

Glutamine Thermo Fisher
Scientific

25030081
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Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Chemical
compound,
drug

DMEM Thermo Fisher
Scientific

12491015

Chemical
compound,
drug

FBS Thermo Fisher
Scientific

26140079

Chemical
compound,
drug

L-Glutamine Thermo Fisher
Scientific

25030081

Chemical
compound,
drug

Non-essential
amino acids

Thermo Fisher
Scientific

11140050

Chemical
compound,
drug

Insulin Sigma-Aldrich I0516 Insulin solution from bovine
pancreas, 10 mg/mL insulin in
25 mm HEPES, pH 8.2, BioReagent,
sterile-filtered, suitable for cell
culture

Chemical
compound,
drug

Transferrin Sigma-Aldrich T2252

Chemical
compound,
drug

Sodium selenite Sigma-Aldrich S5261

Chemical
compound,
drug

b-Estradiol Sigma-Aldrich E2758

Chemical
compound,
drug

Hydrocortisone Sigma-Aldrich H0888

Chemical
compound,
drug

Prolactin Miltenyi Biotech 130-093-985

Chemical
compound,
drug

Tyrphostin-AG1478 Sigma-Aldrich T4182

Chemical
compound,
drug

Erlotinib, HCL Sigma-Aldrich SML2156

Chemical
compound,
drug

Puromycin Thermo Fisher
Scientific

A1113803

Chemical
compound,
drug

Phalloidin Invitrogen A12380, A22287

Chemical
compound,
drug

Hoechst H21486

Chemical
compound,
drug

RIPA buffer Sigma R0278

Chemical
compound,
drug

Bradford reagent Abcam AB119216
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Appendix 1—key resources table continued

Reagent type
(species)

or
resource Designation Source or reference Identifiers Additional information

Chemical
compound,
drug

NuPAGE 10% Bis-
Tris gel

Thermo Fisher
Scientific

NP0301BOX

Chemical
compound,
drug

NuPAGE MOPS
SDS
running buffer

Chemical
compound,
drug

Trans-Blot Turbo
PVDF membrane

Bio-Rad 1704157

Chemical
compound,
drug

BSA Sigma A3294

Chemical
compound,
drug

Super Signal West
Pico
Chemiluminescent
Substrate

Thermo Fisher
Scientific

34077

Software,
algorithm

Fiji NIH 1.51n; https://fiji.sc/

Software,
algorithm

GraphPad Prism 6 GraphPad RRID:SCR_
002798

Software,
algorithm

ZEN 2 lite ZEISS RRID:SCR_
013672

Software,
algorithm

7500 Real-Time
PCR Software

Applied Biosystems RRID:SCR_
014596

Software,
algorithm

Harmony PerkinElmer

Software,
algorithm

BatchQuantify (Johansson et al.,
2019)
10.1016/j.stem.2019.
02.002

NA https://github.com/emltwc/
2018-Cell-Stem-Cell

Software,
algorithm

EGFR_quant This paper NA https://github.com/emltwc/
EGFRProject

Software,
algorithm

Blind scoring (Perochon et al.,
2021)
https://doi.org/10.
1038/s41556-
021-00676-z

NA https://github.com/emltwc/Trachea
Project/blob/master/Blind_scoring.
ijm

Other Axio Observer ZEISS

Other LSM780
microscope

ZEISS

Other BX51 microscope Olympus

Other Opera Phenix
Z9501

PerkinElmer

Other 7500 Fast Real-
Time
PCR System

Applied Biosystems

Other Trans-Blot Turbo
system

Bio-Rad 1704150

Other HiSeq 2000 Illumina

Other ImageLock plate Essen Biosciences
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