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A B S T R A C T

Two new methods to generate structural system layouts for conceptual building spatial designs are presented.
The first method, the design response grammar, uses design rules—configurable by parameters—to develop a
structural system layout step by step as a function of a building spatial design's geometry and preliminary
assessments of the structural system under development. The second method, design via optimizer assignment,
uses an evolutionary algorithm to assign structural components to a building spatial design's geometry. In this
work, the methods are demonstrated for two objectives: minimal strain energy (a commonly used objective for
structural topology optimization) and minimal structural volume. In a first case study three building spatial
designs have been subjected to the methods: Design via optimizer assignment yields a uniformly distributed
Pareto front approximation, which incorporates the best performing layouts among both methods. On the other
hand, results of the design response grammar show that layouts that correspond to specific positions on the
Pareto front (e.g. layouts that perform well for strain energy), share the same parameter configurations among
the three different building spatial designs. By generalizing, specific points on the Pareto front approximation
have been expressed in terms of parameter configurations. A second case study addresses the use of a generic
material and generic dimensions in the assessment of structural system layouts. The study applies a technique
similar to topology optimization to optimize the material density distribution of each individual structural
component, which can be regarded as a part of determining materials and dimensions in more advanced stages
of the design of a system layout. This optimization approach is applied to the layouts that are part of the Pareto
front approximations as found by the evolutionary algorithm in the first case study, the study shows that—after
optimization—the fronts remain the same qualitatively, suggesting that the methods produce results that are also
useful in more advanced design stages. A final case study tests the generalization that is established in the first
case study by using the found configurations for the design response grammar, and it is shown that the generated
layouts indeed are positioned near the desired positions on the Pareto front approximation found by the evo-
lutionary algorithm. Although the evolutionary algorithm can find better performing solutions among a better
distributed Pareto front approximation, the design response grammar uses only a fraction of the computational
cost. As such it is concluded that the design response grammar is a promising support tool for the exploration and
structural assessment of conceptual building spatial designs. Future research should focus on more types of
structural elements; more objectives; new constraints to ensure feasible solutions, especially stress constraints;
and the application of state-of-the-art techniques like machine learning to find more generalizations.

1. Introduction

Building design has been an optimization task for centuries. During
the early days in the field of building design, the primary struggle was
to satisfy the basic objectives of a dry and warm shelter. Whereas
nowadays, advances in experience and technology have made it

possible to also include other objectives, e.g. aesthetics, comfort, ma-
terial usage, and/or energy performance. As a consequence, the built
environment has seen a sophisticated distribution into disciplines.
Today, engineers can reach the limits of optimality within the scope of
their discipline. However, trade-offs exist between disciplines.
Therefore engineers need to accept concessions on the optimality of
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their design. Unfortunately, many engineers do not have an influence
on some of the concessions that they must accept. This is because they
are only involved in one of the later stages of the building design
process, while the initial design stage contains the most critical design
choices for many disciplines [9, 52]. Even if engineers from all of the
required disciplines would be included in the initial design stage, the
challenging communication, the complex inter-disciplinary design re-
lations, and the complex trade-offs between disciplines would still
complicate the optimization process in building design [23].

Structural design is one of the two disciplines—together with archi-
tecture (aesthetics/spatial design)—that shapes building designs the most
during their early design stages. These two disciplines also interact
strongly: a spatial design can only exist or be experienced when it is
realized by a structure. On the other hand, the structure inevitably influ-
ences the spatial design, because it occupies some of its space and it also
affects the aesthetics of the building design [27]. Nonetheless, in practice,
the design process starts by only considering the building spatial design,
because many of the functional requirements in a design brief are defined
by the spatial design alone. Including structural design at the beginning of
the design process can, however, lead to savings in material use and lead
to structural design solutions that are aesthetically pleasing. To this aim,
methods can be developed that provide a conceptual spatial design with a
structural system layout, and this system layout can be assessed. As such,
the suitability of a conceptual spatial design can be determined with re-
spect to its structural potential, and the system layout itself may be a
candidate for further design developments. In this paper, two such
methods are presented and compared: (I) a design response grammar,
which uses design rules—configurable by parameters—to develop a
structural system layout step by step as a function of a building spatial
design's geometry and preliminary assessments of the structural system
under development; (II) design via optimizer assignment, which uses an
evolutionary algorithm to assign structural elements to a building spatial
design's geometry. Both methods generate structural system layouts for
conceptual building spatial designs, and inevitably need objectives to as-
sess these layouts. For demonstration purposes here minimal strain energy
(commonly used for structural topology optimization) and minimal
structural volume are used. Using an evolutionary algorithm, design via
optimizer assignment yields a Pareto front approximation, which contains
information regarding trade-offs between the objectives. Via a parameter
study, it is demonstrated that the parameters of the design response
grammar can be configured such that desirable positions on the Pareto
front (e.g. a layout that performs well for strain energy) can be found.
Using these configurations, specific sets of solutions can be generated
quickly, which is not possible with an evolutionary algorithm. The pre-
sented methods can be used to provide architects insight into the locations
within a conceptual building spatial design where placement of structural
elements is logical or expected. Moreover, they can serve comparative
assessment—from a structural engineering point of view—of conceptual
building spatial designs, without the need to define or assume detailed
design information. Additionally, they can support structural engineers in
their task to design, optimize, and decide on structural system layouts for
complex building spatial designs. Finally, the methods support multi-dis-
ciplinary building optimization, in which many conceptual spatial designs
have to be evaluated—within a limited amount of time—for their poten-
tial in structural performance [8].

This paper continues with an overview of the background, the re-
lated work, and a motivation for the presented work, in Section 2.
Following that, Section 3 presents the methodology that is used for the
two new methods. Then in Section 4, the two new methods are studied
in three cases studies. After a discussion in Section 5, in Section 6 the
conclusion and outlook of the presented work are given.

2. Background and related work

This section starts with discussing optimization in general. Next, it
elaborates on multi-disciplinary design (optimization) in the built

environment. Subsequently, literature on early-stage building design
support methods, and early-stage building design optimization are
discussed. Finally, the motivation for this work is presented.

2.1. Optimization

A generic mathematical formulation for optimization problems is
given in Eq. (1), in which there are ℓ objective functions fi(x). Here, a
possible solution is represented by x ∈ X, and X is the collection of all
possible solutions, the so-called search space. A possible solution x is
only considered if both all m inequality constraint functions gj(x), and
all n equality constraint functions hk(x) hold.

= …

= …
= = …

f x i

g x j m
h x k n

min: ( ), 1, 2, ,

subject to: ( ) 0, 0, 1, ,
( ) 0, 0, 1, ,

x i

j

k (1)

In the case of multiple objectives (ℓ>1), there is not a single op-
timal solution. In fact, with multi-objective optimization, a trade-off
between objective functions often occurs. The best solution for one
objective may not be good for the other objective(s). Optimality for
multiple objectives is therefore formulated in terms of non-dominance.
A solution x is dominated by solution x* if both conditions in Eq. (2) are
satisfied. Non-dominated solutions are those solutions that are not
dominated by any other solution. When a solution cannot be improved
for any objective, without getting worse for another objective, it is a
Pareto optimal solution. The set of all such solutions is called the Pareto
front. Note that if a solution is non-dominated with respect to a subset
of X, it is not necessarily part of the Pareto front. If only a subset of X is
evaluated then the known set of non-dominated solutions is called the
Pareto front approximation (PFA). For a more in-depth introduction to
multi-objective optimization, and an overview of recent developments,
the reader is referred to the work of Emmerich and Deutz [15].

<i f x f x i f x f x: ( ) ( ) : ( ) ( )i i i i (2)

2.2. Multi-disciplinary building design

Trade-offs between disciplines in the built environment have been
researched for several decades, an early example is the work by Gero
et al. [18]. With increasing demands for optimality in building design,
nowadays, multi-disciplinary research is receiving more and more at-
tention. Some research on multi-disciplinary design (optimization) fo-
cuses on obtaining performance measurements during the design pro-
cess, such that a designer can make informed design decisions. This is
carried out by Welle et al. [53] for example, who present a method to
assess Building Information Models (BIM) on their performance. It can,
however, be questioned how well designers can foresee the impact of
their design decisions. In recent years, research has shifted towards
providing designers with insights into the impact of the used design
parameters. For example, Schlueter and Geyer [42] aim to give de-
signers feedback on the effect of and the relations between design
parameters. Or, Hopfe et al. [25] present a multi-objective optimization
method to assess the impact of design parameters using Evolutionary
Algorithms (EAs) and statistical sensitivity analysis. Moreover, Geyer
and Schlueter [20] introduce a method to create surrogate models from
a BIM model to efficiently explore design parameters.

Research on multi-disciplinary building design is focused on more
than just parameter impact. Another aim within the field is to make
optimization methods more accessible to designers. This is the case in
the work of Geyer [19], where the quick exploration of the search space
for a few possible structural models for a building spatial design gives
an early insight into the structural performance. Other research sug-
gests the use of specialized equation-based models for the evaluation of
building performance [54]. Such models enable fast gradient-based
optimization which makes them useful for real-time design support.
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Also, the choice and the correct application of optimization algorithms
are of influence, as is illustrated by Hamdy et al. [22]. Tools that can
enable designers to create viable designs for disciplines outside of their
domains are developed as well. For example, a tool for the creation of a
structural design within an architectural design environment is pre-
sented by Steiner et al. [45]. Or by Beghini et al. [4], who integrated
different design domains by applying a structure optimization algo-
rithm (topology optimization) in their architectural design process.

Finally, other research on multi-disciplinary design investigates
changes in one discipline that affect the search space of another dis-
cipline. This phenomenon is called co-evolution, examples of such be-
havior and suggested methods to research these are presented by Maher
and Tang [32]. Research that takes into account co-evolution is not
widespread, however, examples can be found, e.g. Hofmeyer and Davila
Delgado [24] consider it for building spatial design versus building
structural design. They show that a simulation of a human co-evolu-
tionary design process of structural design and building spatial design
can quickly find solutions that are better than those found by an opti-
mization algorithm. This is because their method can handle search
spaces of arbitrary size, while that of an optimizer must be fixed and is
often limited to keep computational times acceptable.

2.3. Early stage building design

The performance of a design can be influenced the most during the
conceptual design stage. This statement is widely supported, for ex-
ample, Wang et al. [52] stress that the influence on the performance of
a design is large at the beginning of a design process, but decreases
rapidly as the design progresses. On the other hand, they conclude that
the available number of design tools at the beginning of a design pro-
cess is small, and only increases slowly. Design engineers therefore tend
to only optimize their designs during the later stages, a statement which
is also supported by Machairas et al. [30]. Although these optimization
approaches still improve a building's performance, there is a growing
desire for optimization at the conceptual design stage [12, 34, 35, 37,
47]. Therefore, Clevenger and Haymaker [11] and Basbagill et al. [3]
focus on ways to give designers feedback on the effectiveness of the
parameters and the design methods that they use. However, a more
fundamental approach is suggested by Chong et al. [10], who describe
the optimization of a conceptualized design. In their view, a designer
should focus on how to conceptualize designs and design relations,
instead of estimating the performance of sketch designs for decision
support.

The literature is not limited to stressing the importance of early-
stage design optimization, modeling support for conceptual building
spatial designs is researched as well. For example, shape grammars are
presented by Stiny [46] and Ruiz-Montiel et al. [41], to aid in modeling
the building spatial design in the conceptual design stage. Algorithms to
find the optimized layouts of a building spatial design have also been
introduced [29, 43, 44].

Common methods for early-stage design support are based on per-
formance computation. To give a number of examples, designs are
parameterized and optimized for simple objective functions by Gerber
and Lin [17]. Similarly, a simplified evaluation model for conceptual
designs is presented by Picco et al. [38]. Ritter et al. [40] simulate the
building physics of conceptual design models via a plugin in a CAD
environment, which provides users with design performances and
parameter impacts.

Another common method is the use of tools that generate (a part of)
a design during an early stage of the design process. This is particularly
common for structural design. An explanation for this could be the fact
that there is a high dependency between architectural and structural
design disciplines. Examples for structural design support during the
architectural design phase have been found [16, 33, 39].

Research on early-stage building design does not focus solely on the
performance of a conceptual design. For example, the work of Azzouz
et al. [2] applies life cycle analysis in a real-world case study to show
the effects of early-stage design optimization on a real world building.
Moreover, the available methods for early-stage design, as well as
methods to monitor them during their lifetime, are reviewed by Oh
et al. [36]. They try to make these methods more accessible for pol-
icymakers and engineers. Embodied and operational energy are con-
sidered in an extensive study for long-span structures by Brown and
Mueller [9]. Finally, Hopfe and Hensen [26] discuss uncertainties in the
performance of a building design regarding the determination of the
impact of parameters.

2.4. Motivation

The available support for multi-disciplinary building design opti-
mization in the conceptual design stage is still limited, while critical
design decisions are made at this stage. This has sparked research for
conceptual building design optimization, to which this paper con-
tributes. Within the wider scope of this research, a toolbox was devel-
oped, which enables performance assessment of conceptual building
spatial designs for their structural and building physics performances,
as well as the modification of such designs [8]. Some of the other work
within the same framework includes a study on a co-evolutionary ap-
proach for optimized building spatial and building structural design in
Ref. [24]. And, in Refs. [48-50] evolutionary algorithms are applied and
configured to building spatial design optimization. Furthermore, in
Ref. [7], a combination of co-evolutionary design simulations and
evolutionary algorithms is proposed to be able to effectively explore
and find optimal designs in large search spaces. In the aforementioned
research, structural performance evaluations of building spatial designs
were obtained from structural designs that were generated by algo-
rithms that operate on simple design rules, termed structural design
grammars. Such design grammars may place structure in places where
it is not logical nor expected, and thus they may not account for the full
potential of the structural performance of a given building spatial de-
sign. A logical placement of components within a structural system
layout can be formulated as a material optimization problem, i.e. ma-
terial should only be placed at locations where it is useful. The work in
this paper aims to develop methods that, for a given conceptual
building spatial design, can generate structural system layouts that
perform well structurally seen. To assess performance, inevitably ob-
jectives are required, for which in this paper—for demonstration pur-
poses—minimal strain energy and minimal structural volume are used.

When looking at the state-of-the-art, there appears to be a scarcity of
methods that can generate structural designs for conceptual building
spatial designs. Additionally, such methods usually require some form
of interaction from a designer to solve problems with the generated
design. This is not convenient when many possible solutions have to be
assessed, e.g. when exploring a large search space, quick evaluations
without human interaction are desirable. Additionally, a detailed model
for an extensive structural analysis is not necessary when only a quick
insight into the structurally relevant locations within a conceptual
building spatial design is desired. A structural design grammar is fast,
but it typically does not place structure logically from a structural en-
gineering point of view. The work in this paper therefore also aims to
develop a method that can quickly generate structural system layouts
that perform well for certain objectives. It should be stressed that, in
this work, a solution entails a structural system layout with generic
element dimensions and material properties, and so does not include
the final dimensions and materialization. A solution is thus not a final
stage structural design, and it is not intended to be, but instead it can
offer insight in a structural concept that is required to realize a con-
ceptual building spatial design. Nevertheless, the work in this paper
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also investigates if the proposed layouts are useful in a more advanced
stage of the design process.

3. Methodology

This section discusses the methodology that is used for the pre-
sented work. First, the relevant aspects of an existing toolbox for
building spatial design optimization are introduced. Thereafter, an ex-
isting structural design grammar that is directed by user input is in-
troduced and elaborated. The existing grammar contains details that
will support the introduction of two new methods to generate a struc-
tural system layout in the last two subsections of this section. The first
method, the design response grammar, can be calibrated by parameters
and uses design rules that operate on the geometry of a building spatial
design and an analysis of a preliminary structural model to develop a
structural system layout. The second method, called design via opti-
mizer assignment, uses an evolutionary algorithm to assign structure to
the geometry of a building spatial design.

3.1. Toolbox

As discussed in the motivation (Section 2.4), the presented work is
part of a broader research scope that focuses on building spatial design
optimization. In this context, a multipurpose toolbox to support
building spatial design optimization has been developed [8]. The
toolbox functions that are relevant to the scope of this paper are briefly
discussed in the following.

3.1.1. Spatial design
Optimization requires a formal representation of the design pro-

blem, and in the toolbox, building spatial designs are therefore for-
malized as follows. A building spatial design is defined by one or more
spaces that are each specified with six variables (not considering me-
tadata like an ID or other characteristics). Specifically, these are: the
location of a space (x-, y-, z-coordinates of the base); and, a space's
dimensions (width, depth, and height). A building spatial design in the
toolbox is therefore limited to cuboid spaces in an orthogonal grid. This
orthogonality is applied for the sake of clarity and simplicity, however,
the methods that are researched using the toolbox need not adhere to
this limitation in the later stages of their development. Additionally,
z=0 is set to represent the ground surface and values below zero
(z<0) are underground.

In the toolbox, two levels of building spatial design information are
identified: the geometry level and the building design level. On the
geometry level, a design is decomposed into the following geometry
entities: cuboids, rectangles, line segments, and vertices. This decom-
position is performed such that no intersections exist between any
geometry entities. On the building design level, a spatial design is de-
composed into the following building design entities: spaces, surfaces
of-, edges of-, and points of spaces. Such a distinction between geo-
metry and design is useful when a discipline-specific design needs to be
defined, for example, structural design components such as flat shells
are defined using geometry entities. This is to make sure that in a
structural model all nodes of adjoining structural components are co-
incident. However, the live loading on the structural model is defined
using building design entities. This is because live loading is defined per
space. The two levels of design and the given examples have been il-
lustrated in Fig. 1.

In the toolbox, the two levels of design come together in the so-
called building conformal model; Fig. 2 depicts the UML class diagram
of this model. The building conformal model links all the different
entities in each level of design with each other. For example, a surface is
realized by four edges and—together with five other surfaces—it rea-
lizes a space. At the same time, a surface can be associated with one or

more rectangles, whereas a rectangle can belong to one or two surfaces,
etc. This is useful, for example, when structural design components that
are defined by geometry entities have to be loaded with loads that are
defined by building design entities. For more information the reader is
referred to Ref. [8].

3.1.2. Structural analysis
Structural analysis is implemented in the toolbox to be able to

evaluate the structural models that are created. The analysis is per-
formed using the finite element method, for details on the im-
plementation the reader is referred to Ref. [8]. A structural model in the
toolbox can consist out of the following structural components: flat
shells, beams, trusses, loads, and constraints. Before analysis, each
component is meshed (divided) into nd elements, where n, the mesh
size, is the number of elements in each dimension and d is the dimen-
sional size of a component (e.g. a column is 1-dimensional and a flat
shell 2-dimensional). Finally, a numerical analysis (termed finite ele-
ment analysis) computes the deformations of the structure, which—-
together with the structural system—can be used to calculate other
design responses.

Structural design is a complex process and it is possible that a design
grammar generates a structurally unstable solution. Structural models
can, therefore, be subjected to a stability check, which is performed as
follows. First, to save computation time, the model is meshed without
its loads but with its constraints using a mesh size n=1. Accordingly, it
is checked whether the solver [the Simplicial-LLT solver of the Eigen
C++ library; 21] can successfully decompose the global stiffness ma-
trix of the finite element model. Here, the stiffness matrix is the nu-
merical system that represents the structural model (for more details on
the stiffness matrix see Ref. [8]). If the stiffness matrix of a model
cannot be decomposed, it is considered unstable, the performance of
such structural models can then be penalized, stabilized [56], or even
be disregarded altogether.

3.1.3. Clustering
Clustering can help select building spatial designs or parts of a

building spatial design based on similarities. For example, in the
toolbox, a building spatial design can be modified based on its perfor-
mance: spaces with poor performance are removed and spaces with
good performance are split into multiple new spaces. In such cases, it is
desirable that spaces with a similar performance are selected together
for modification. This prevents arbitrary phenomena like numerical
errors or the order in computer memory to play a role in the selection.
Moreover, using clustering, possible symmetries in a building spatial
design are preserved during the modification. K-means clustering, as
found in e.g. Ref. [31], has been implemented in the toolbox. Clustering
parameters that need to be specified are: the bounds for the cluster size
kmin and kmax ; and, the number of runs l per cluster size. This results in

+ ×k k l( 1)max min possible divisions in clusters, out of which only
one is selected as follows. The quality of a clustering is defined by the
sum of the variance within each cluster = =sum k i

k
i, 1 , where a lower

value indicates a clustering of higher quality. For each cluster size k
over all runs l, the clustering that has the lowest value for σsum,k is
stored. Accordingly, the second order change of σsum,k is computed for
each cluster size k, according to Eq. (3). Note that, in order to calculate
this value for kmin and kmax , two additional cluster sizes must be
computed: k 1min and +k 1max . The clustering size (k) with the largest
value for sum k, is then selected as the best performing clustering size.

=
= +

+

+

( ) ( )
2

sum k sum k sum k sum k sum k

sum k sum k sum k

, , 1 , , , 1

, 1 , 1 , (3)
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3.2. Design grammar directed by user input

Here, a design grammar is defined as a set of design rules that op-
erates on the building conformal model of a building spatial design in
order to generate a discipline-specific design. The grammar that is
presented in this section can create structural design models based on
user input. First, the procedure that the grammar follows is outlined,
then the processing of user input is discussed, and finally, an explana-
tion of how a structural model is generated is given. Note that the two
new methods to generate a structural model (to be introduced after
this) use many of the concepts explained in this section.

3.2.1. General procedure
As presented in the section on structural analysis in the toolbox, a

structural model consists of a combination of the following structural
components: flat shells, beams, trusses, loads, and constraints. To
generate these, two types of so-called rule sets are defined for the
grammar. One rule set that operates on the rectangles, and one that
operates on the line segments of a building conformal model. Note that
both rule types operate on geometry entities (Fig. 2). The rule sets first
check which type of structural component (flat shell, beam-, truss-, or
no component) should be generated. To that end, for each type of
structural component, the rules check the information that is contained
within the geometry entities and building design entities against the
information that is given in user-defined input files. When a check is
positive, a component is added to the structural model, otherwise,
nothing is added. After initializing a structural component it is checked
whether or not loads and/or constraints should be applied to that
component.

3.2.2. User input
A user of the toolbox can describe the structural design that is

created by the design grammar by specifying several options in input
files. First of all, a structural design settings file is required, in which the
structural loads, components (e.g. flat shells, beams or trusses), and
their properties are defined. Users can as such define all the building
blocks for the structural model that they intend to use for their struc-
tural design. Secondly, users can assign structural types to spaces and/
or surfaces in the building spatial design to specify what structure is
placed at the corresponding locations. However, at some locations, two
different types of structure may be assigned. Therefore, in a third input
file, users can specify the choice of structure when conflicting structures
would be placed at the same location.

3.2.3. Creation of a structural model
The core purpose of the grammar is the creation of a structural

model, how this is carried out is explained next. The grammar starts by

Fig. 1. The procedure through which a grammar assigns structural components to the geometric and building design entities of a building spatial design.
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Fig. 2. UML class diagram of the building conformal model.
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checking for each rectangle what type of structure should be generated
at its location. To that end, four structural types can be assigned to a
rectangle: a flat shell, beam, truss, or no structure. Fig. 3 de-
picts the structural components that are generated for each structural
type assignment. Note that adjoined rectangles with different structural
type assignments can create a conflict in the adjoined region. The
generation of structural components is therefore split into two parts:
first, a rectangle's area is evaluated with the so-called “rectangle rules”
and accordingly the rectangle's line segments are evaluated with the so-
called “line segment rules”.

3.2.3.1. Rectangle rules. The design grammar starts by applying a
rectangle rule set for each eligible rectangle before handling any line
segment rules. A rectangle is eligible for a rectangle rule set if it is
associated to one or two surfaces (within the context of a building
conformal model, Fig. 2). If it is eligible, then the rectangle rule set will
first classify the rectangle into a floor or a wall. This classification is
carried out by checking if the absolute value of the angle between the
rectangle's normal vector n and the unit vector k̂ ([0 0 1]⊤) is larger
than 45° ( >n k| ^| 45°). If this holds, then the rectangle is classified as
a floor, otherwise, it is classified as a wall. From the user input, it is then
determined which structural type applies to the rectangle. If the
structural type is flat shell, then a flat shell is initialized. If it is
truss, then two diagonal trusses are initialized. Finally, if any other
type is selected, nothing is initialized.

After generating a structural component for a rectangle it is checked
whether or not a surface load should be applied. In a structural design
settings file, a user can specify a load case, a direction, and a type for
each defined load. The possible load types are: wind pressure, wind
shear, wind suction, and live load (floor load). For a rectangle, wind
loading is only considered if it is associated to exactly one surface and if
the maximum z-coordinate of that rectangle is larger than zero. Or in
other words, when it has exactly one adjacent space and is located
above the ground surface (z ≥ 0). Wind loading is then applied ac-
cording to Table 1 and Eq. (4). Here αr is the angle (in the half open
interval: [0°, 360°)) between the unit vector ĵ ([0 1 0]⊤) and the xy-
plane projection of the rectangle's outward facing normal, αw is the
angle between ĵ and the wind direction vector (which is only defined in
the x- and y-directions). Live loading is applied whenever a rectangle is
specified as a floor, note that this will also lead to a live load on the roof

of a building.

=
if
otherwise

| |, | | 180
360 | |,

r w r w

r w (4)

When a surface load is assigned to a rectangle, it is possible that no
structure exists in the structural model to which that load can be ap-
plied. A low stiffness flat shell component will then be placed in the
structural model at the rectangle's location. A low stiffness will prevent
an influence on the overall stiffness of the structural model, while it can
still appropriately transfer the loads to the bearing components in the
model. This is analogous to a real-world scenario where there is no
structure behind a façade and wind loads are transferred to the struc-
ture via that façade, without the façade taking part in the building's
structural system. A convergence study has shown that a factor of 1e−6
is a sufficient reduction of the smallest elasticity modulus that is used
within the structural design model, without affecting the structure's
stiffness nor introducing numerical discrepancies to the model. The low
stiffness components are ignored in the final stages of the structural
analysis, i.e. when visualizing the structural design and when com-
puting the performance of a design.

3.2.3.2. Line segment rules. A line segment rule set is only applied to
those line segments that are associated with at least one rectangle for
which a rectangle ruleset was created. The rule set for a line segment
starts by iterating through each of its associated rectangles, rectangles
for which no rule set was created are skipped. Each iterated rectangle is
then checked for its structural type, i.e. flat shell, beam, truss, or
no structure. This type is also assigned to the considered line
segment. However, a ranking is applied in case of conflicting types
between the iterated rectangles: flat shell over beam, beam over
truss, and truss over no structure. Whenever a line segment is
assigned the structural type of a rectangle, the properties that are
associated with that rectangle and structural type are also applied. A
structural component is generated in the structural model at the
location of the line segment accordingly. When the conversion type is
beam or truss, then respectively a beam or truss is initialized. For
other types, nothing is initialized. Fig. 4 gives a demonstration (2D) of
the generated structural model after the assignment of structural types
to a building spatial design. The figure also illustrates the ranking that
is applied in case of conflicting structural types in adjoining regions,
e.g. no truss or beam components are present at the border of a flat
shell.

Constraints are applied in the last step of the line segment rules. If a
line segment belongs to a rectangle that has been classified as a floor
and the z-coordinates of its vertices are less than or equal to zero, a line
constraint is applied for each displacement degree of freedom (move-
ment in x-, y-, and z -directions). If the structural type specifies no
structure for the line segment between such vertices, only the structure
that coincides at these vertices is constrained at the coinciding vertices.

Fig. 3. The different structural types in the toolbox that can be assigned to a
rectangle. Note that boundary conditions are applied to the structure in a later
stage of the grammar.

Table 1
Table with conditions for wind load application.

Wind load type Condition

Pressure 90° < β1 ≤ 180°
Suction 0° ≤ β1 < 90°
Shear 90° ≤ β1 ≤ 180° or rectangle is floor

1 β is given by Eq. (4).
Fig. 4. Generated structure based on structural type assignments of rectangles,
also note type assignment at adjoining line segments in-between rectangles.
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3.3. Design response grammar

A grammar is convenient when many building spatial designs need
to be assessed for their structural response, which would be a slow
process if user interaction is required. Simple design rules can be used
to obtain a structural system layout, but such rule sets may place
structure at locations where it is not logical nor expected. Here the
design response grammar is proposed as a method that can quickly
develop layouts in which the structure is placed in sensible locations.
This grammar also uses design rules, but instead of solely operating on
the geometry of a building it also operates on a design response, which
is computed from a preliminary model of the layout that is under de-
velopment. The design response grammar can be configured by para-
meters that allow control over the different types of design response
and structure that will be considered by the grammar. Additionally, the
design response grammar can be configured such that a layout is de-
veloped in a step by step manner, in which at each step structure is
generated based on a design response obtained from the unfinished
model that has been created by the preceding steps so far. In doing so,
complex design rules are avoided, these would be necessary if struc-
turally sensible solutions would have to be generated solely based on
geometry. In this section, first the used design response grammar is
introduced, and then the algorithm and its parameters through which
the grammar creates a structural model are explained.

3.3.1. Design response
A building spatial design by itself does not have a structural re-

sponse. Therefore, a preliminary structural design model—termed
substitute model—is introduced, which can be analyzed to yield a de-
sign response. The substitute model is created by placing a so-called
substitute component at the location of each rectangle that is associated
with a surface in the building conformal model (see Fig. 2 for asso-
ciations in the building conformal model). In the grammar, substitute
components will be replaced by beams, trusses, flat shells, or nothing,
this replacement is based on their design response. The design response
that is used here is the strain energy of a substitute component. To be
able to use the substitute component in the existing structure of the
toolbox for design grammars, a new structural type is defined: sub-
stitute. The rectangle and line segment rules apply to substitute
in the same way as other types, it ranks last with the type assignment in
the line segment rules. A substitute component is similar to the low
stiffness flat shell components that are used for the application of sur-
face loads in the rectangle rule sets (Section 3.2.3). Also here, a low
stiffness enables the uncompleted structure to be analyzed without af-
fecting its structural behavior.

3.3.1.1. Separated strain energies. The four different structural types
(Fig. 3) can be used to replace a substitute component. From an
engineering point of view, each structural type is well-suited for a
certain type of loading, e.g. a truss layout is suitable for shear loading, a
portal frame of beams is suitable for in-plane normal loading, and a flat
shell is (among others) suitable for out-of-plane loading. To identify
which type of loading is predominant within a substitute component, its
stiffness term is separated into three terms: bending, normal, and shear.
In the toolbox, the out-of-plane behavior (bending) of the flat shell
element formulation is already derived separately. However, to obtain
the formulation for the two separate types of in-plane behavior, the
constitutive relation is split in two terms according to Eq. (5) (where ν is
the Poisson ratio and E the elasticity modulus [Nmm−2]). Using these
separated formulations, the strain energies of the elements are
computed for each type of loading: Usep (sep ∈{shear,norm,bend}). For
more information on the used element formulations and derivations of
these formulations, the reader is referred to Ref. [8].

= +E E E
1

1 0
1 0

0 0 1
2

1

1 0
1 0

0 0 0 1

0 0 0
0 0 0
0 0 1

2
2

total

2

normal

2

shear

(5)

3.3.2. Creation of a structural model
The design response grammar, see Algorithm 1, uses an iterative

process to generate the structural model. It starts by assigning the
substitute type to every rectangle that is associated with one or two
surfaces. Then, each iteration starts with the generation of a structural
design model using the rectangle and line rules (Section 3.2.3). After
initialization, the structural design model is meshed and analyzed.
Every ith iteration, each substitute rectangle j—i.e. each rectangle
that is assigned the substitute type—is subsequently clustered by its
total design response, which is the total strain energy =U Utot i j sep i j, , , ,
obtained from the structural analysis. A criterion to limit the number of
iterations is introduced in Eq. (6). Here, ηconv ∈ ℕ denotes the maximum
number of iterations, nsubs,0 the initial amount of substitute rec-
tangles, and nsubs,i the number of substitute rectangles at the ith

iteration. If this criterion is not satisfied then the rectangles in the
cluster with the highest mean compliance will be substituted (as de-
scribed in the next paragraph) and the cluster is then removed. This is
repeated until the convergence criterion is satisfied, the iteration is then
ended. The iterative process is repeated until there are no more sub-
stitute rectangles left in the structural design model. Note that the
substitution of rectangles of a large cluster may result in nsubs,i being so
small that the criterion in Eq. (6) is already satisfied before the next
iteration, in that case—in the implementation—the next iteration
(i+1) is skipped. Moreover, in the final iteration, clustering of the
substitute rectangles is superfluous and it is therefore—in the im-
plementation—skipped.

<n
n

i nsubs
subs

conv
subs i,0

,0
,

(6)

3.3.2.1. Substitution. When a substitute rectangle is selected to be
replaced by a new structural type, first all strain energies (Utot,i,j and
Usep,i,j) are computed. Following that, the strain energy of the
substitute rectangle Utot,i,j is compared to a fraction ηnoise of the
mean strain energy in the initial structural model Utot,mean,0, which can
be found according to Eq. (7). This check is introduced to avoid type
assignments based on numerical noise when the magnitude of the
design response is small. If it is lower, the rectangle is assigned the no
structure type. Otherwise, a new type will be assigned based on Eq.
(8), which consists of the ratio Usep/Utot, and a predefined threshold ηsep

∈ [0.0,1.0] ∈ ℝ. If Eq. (8) holds for bending strain energy, the rectangle
is assigned flat shell; if it holds for normal strain energy it is assigned
beam; if it holds for shear strain energy it is assigned truss. Note that
the order of these checks is important because the equation might hold
for multiple types of strain energy, but only one type of structural
element can be assigned. This is why each check is performed in a
predefined order, and as soon as one of them holds the others that
follow will no longer be evaluated. When none of the three hold, the
default type no structure is assigned to the rectangle. The checking
order is stored in the set c which can be any permutation of {1,2,3},
where 1 activates the check on shear strain energy, 2 the check on
bending strain energy, and finally 3 the check on normal strain energy.

= =U
U

ntot mean
i
n

tot i

subs
, ,0

0 ,0,

,0
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Algorithm 1. Iterative replacement of substitute components.

The process of the design response grammar is illustrated in Fig. 5
for an arbitrary building spatial design. In this example, a structure is
created in two iterations for a building with three spaces. For illus-
trative purposes, the remaining parameters of the grammar have been
selected for this example such that each structural type is assigned in
the final design at least once.

3.4. Structural design via optimizer assignment

This section presents an assignment function in the toolbox that an
optimizer can use to assign structural types in its search for optimal
structural system layouts for a given building spatial design. An opti-
mizer is applicable because a structural design in the toolbox is created
using a building conformal model, which has a fixed number of entities
that can be assigned a structural type (beam, truss, flat shell, or no
structure). If ordered in a string, the assigned types form a set of
parameters similar to genomes in the field of evolutionary optimization.

First the assignment and the genome are discussed, thereafter, a sui-
table optimizer is proposed, and finally, the objectives and constraints
are discussed.

3.4.1. Assignment function and genome
The assignment function operates as a black-box objective function

for the optimizer by taking a string of design variables as input and
returning the objective values as output. Each input variable represents
the choice of the structural type for one rectangle. As such, the genome
should contain the same number of variables as the number of rec-
tangles that are associated to one or two surfaces in the building con-
formal model. The set of valid variable values is {1,2,3,4}. Here “1”
assigns no structure to a rectangle, “2” assigns truss, “3” assigns
beam, and “4” assigns flat shell. The order in which the genome
assigns types to rectangles is determined by the order in which the
eligible rectangles are stored in the building conformal model. After the
assignment, the rectangle and line segment rules are applied to generate
the structural design model (Section 3.2.3), which is then evaluated to
obtain the objective values. Finally, the assignment function can return
any objective value that can be computed by the toolbox.

3.4.2. Choice of optimizer
The multi-objective mixed-integer evolution strategy

(MOMIES)—introduced in Ref. [51]—is used for the optimization
process. This algorithm generalizes the mixed-integer evolution

Fig. 5. Example of the iterative process of the design response grammar.
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strategy (MIES)—described by Ref. [28]—for multi-objective optimi-
zation by combining it with the multi-objective algorithm SMS-
EMOA [14]. Although in this study only categorical variables are con-
sidered, the (MO)MIES algorithm is able to optimize problems with
real, integer, and/or categorical variables. This makes it easy to extend
the study to include more variables (of different types) in the future.
Moreover, the algorithm employs different mutation mechanisms de-
pending on the variable type. In this manner, it is assured that each
variable type is handled appropriately.

The MOMIES algorithm is controlled by the population size μ, a
reference point, and the number of function evaluations. A larger po-
pulation makes it possible to maintain a more diverse set of solutions.
However, it can also impede progress towards the Pareto front since it
takes more time for all solutions to be updated. The reference point
serves to compute the hypervolume contribution of individual solu-
tions. The hypervolume (indicator) [55] is the Lebesgue measure of the
region covered by a set of solutions with respect to a user-defined re-
ference point. The reference point should be dominated by all points on
the Pareto front. Then, the hypervolume contribution indicates how
much an individual solution contributes to the hypervolume. By com-
paring the hypervolume contribution of different solutions it is possible
to retain the most valuable contributions. Since the reference point
influences the hypervolume (and the contribution), it should be chosen
carefully depending on the problem. Finally, the number of function
evaluations controls how long the algorithm runs before it stops the
search. A longer search may result in better solutions, but it also costs
more time. Furthermore, progress may stagnate once the algorithm gets
closer to the Pareto front, reducing the benefit of continuing the search
for better solutions.

3.4.3. Objectives and constraints
Any objective(s) that can be computed by the toolbox can be con-

sidered by the optimizer. However, the choice of objectives is problem-
specific, and it is therefore considered together with the case studies, in
Section 4.1. No constraints are placed on the search space, although if a
solution is structurally unstable, a penalty is applied to that solution.

4. Case studies

This section presents three case studies in which the newly devel-
oped methods are investigated. In the first subsection, the settings for
the methods that have been used for the case studies are presented and
motivated. Thereafter, the first case study is described, in which design
via optimizer assignment, and a full enumeration of the parameters of
the design response grammar are applied to three archetypal building
spatial designs. The performance of the design response grammar is
assessed by benchmarking the results against those of the design via
optimizer assignment method. Additionally, specific parameter config-
urations are found for which the generated layouts correspond to spe-
cific positions on the Pareto front, e.g. layouts with: minimal strain
energy, minimal volume, or a balanced trade-off between these objec-
tives (knee point). In the following subsection, the second case study is
presented, in which a so-called topology optimization algorithm is
modified in order to optimize the material density distribution between
the components of a structural system layout. This optimization is ap-
plied on the non-dominated solutions that were found by the evolu-
tionary algorithm in the first case study. The results show that the so-
lutions in the Pareto front approximation retain their non-dominance
(i.e. remain part of the Pareto front) after their material density dis-
tribution is optimized. If the optimization of the material density dis-
tribution (which relates to the stiffness) is regarded as a part of de-
termining materials and dimensions in more advanced stages of the
design of a system layout, this suggests that the methods produce re-
sults that are also useful in the more advanced design stages. Finally, in
the third case study, a portal shaped building spatial design is subjected
to design via optimizer assignment and to the configured design

response grammar using the parameter configurations that have been
established in the first case study. It is then verified whether the found
parameter configurations indeed lead to layouts that are located near
the desired positions on the Pareto front approximation of the evolu-
tionary algorithm.

4.1. General settings

The settings for the presented methods that are not varied in the
case studies are presented here. These settings entail the material
properties, dimensions, loads, and optimization objectives.
Materialization and dimensioning are not varied in the case studies,
because the current work focuses on finding structural system layouts
for conceptual building spatial designs. Considering such settings will
increase the level of detail of a solution, and increase the size and
complexity of the search space. A high level of detail in a structural
system layout solution is inconsistent with the level of detail of the
conceptual building spatial design for which the solution was found.
Besides, an increase in the size and complexity of the search space can
be handled by an evolutionary algorithm, but the parameter study for
the design response grammar can quickly become computationally too
expensive. Additionally, the design response grammar would require
extra settings and parameters to calibrate the design rules that de-
termine the material choice and dimensions. To that end, the presented
algorithm (Algorithm 1) should be extended with more rules and more
design responses, which is not carried out in the presented work. This,
because the focus is put on the generalizability of the solutions of the
design response grammar in order to be able to quickly find structural
system layouts that are sensible from a structural engineering point of
view.

In this paper, two commonly used objectives for structural and to-
pology optimization are used: (a) minimal total strain energy U [N
mm], which is the sum of strain energy over all elements and all load
cases in the structural model; (b) minimal total structural volume V
[m3], which is the sum of volumes of all elements in the structural
model. Minimal strain energy is the governing and by far most fre-
quently used objective in structural topology optimization, because it is
yields high stiffness designs, but partly also because optimizing a
system for equally distributed maximum stresses—which is more
practical—proves to be complex. The objective of minimal volume will
lead to material efficient structures. Other objectives, like monetary or
environmental costs, or buckling or stress constraints, could also be
used, but for such objectives and constraints more specific dimensions
and material selections should be included, and these are, as mentioned
earlier, not considered in this paper. Also, the second case study will
show that it is likely that the objectives used here are also valuable in
more advanced stages of the design process.

The structural properties for the components in the structural model
are all given the same generic material properties and dimensions. This
is to allow a fair comparison of the objectives between different
structural designs. The values of the structural properties that are used
for the case studies are given in Appendix A, Tables A.1–A.4. The mesh
size that is applied to the components in the structural model is n=3,
which has been determined based on a convergence study of some ty-
pical structural designs for the building spatial designs in this work.

Wind loading is applied in four directions, i.e. one wind load per-
pendicular to each orthogonal plane, where the magnitudes are sim-
plified values similar to those found in building codes and regulations.
One load case for the live load on the floors is defined, which is applied
to each horizontally oriented surface of a space. The values of these
loads are given in Appendix A, Table A.5.

4.2. Case study: performance and parameters

In this case study, the design response grammar and design via
optimizer assignment are applied to three different building spatial
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designs. The parameters in the design response grammar are varied
through a parameter study, which serves two goals. Firstly, to compare
the results of the design response grammar with the global search
performed by the optimizer. And secondly, to determine recommended
values, or ranges thereof, for the parameters in the design response
grammar.

Three building spatial designs, which are shown in Fig. 6, are
considered in this study. More details on the spatial layout and di-
mensioning of these designs are given in Appendix B, Figs. B.2–B.4. The
considered designs are designed according to the following archetypes:
a tall building with a central core, a low rise apartment building with
horizontal galleries, and a large hall with possibly large spans.

The general design settings apply to both the design response
grammar and design via optimizer assignment.

4.2.1. Design via optimizer assignment
In order to find a suitable reference point for the hypervolume

(Section 3.4.2) for each of the considered designs, a few trial runs have
been conducted. Based on this, reference points were chosen such that
they are dominated by any of the solutions observed for their corre-
sponding design. The following values for the structural strain energy
objective were determined: 2e11 Nm for design 1; 8e10 Nm for design
2; and 2e12 Nm for design 3. For structural volume, the following va-
lues were determined: 1200m3 for design 1; 700m3 for design 2; and
1800m3 for design 3. If a structural design solution is unstable, then
penalty values that are equal to values of the reference point are as-
signed to the performances of that solution. As is standard in the mixed-
integer evolution strategy, dominant crossover is used for the decision
variables, while intermediate crossover is used for the step size [28]. A
single step size is used for all decision variables, with an initial value of
1/nd. Here nd denotes the number of decision variables. Further, the
population size is set to μ=50 which should allow for sufficient di-
versity in the population considering the number of decision variables.
The number of decision variables for each design are as follows: design
1: 234; design 2: 168; and design 3: 106. The optimizer is given a
budget of 10,000 evaluations per run, and the experiments are repeated
five times. This allows it to explore a reasonable part of the search
space, without spending an excessive amount of time.

The results from the optimizer are shown in Fig. 7. On the left, for
each design, all results over all runs are plotted and the non-dominated

solutions of each run are highlighted. Note that solutions that are
outside of the 95th percentile are not shown in the figures to better
visualize the results. Recall that the set of mutually non-dominated
points is termed the Pareto front approximation (PFA). In the plots,
these fronts show a trade-off between the two objectives. It is expected
that the objective functions are conflicting since a structural design
with lower volume resembles a design with less bearing components,
which is less stiff, and thus results in a higher strain energy. Another
observation is made in the results of design 3, where a banded structure
can be observed, which could be explained by a lack of variation due to
a relatively short genome in combination with the categorical nature of
the design variables.

On the right of Fig. 7, for each design, a selection of design solutions
is depicted: a solution from the knee-point region, a well-performing
solution for each objective, and an arbitrarily selected poor-performing
solution. Where a poor-performing solution is selected visually from the
plots, from in-between 30% and 70% of their ranges. It is difficult to
notice regularity in the selected designs, however, it can be noticed that
for optimal stiffness in general more flat shells are assigned. For optimal
volume, predominately beams are assigned, and in the knee-point re-
gion, trusses are assigned more often.

4.2.2. Parameter study
In order to investigate if the design response grammar can find so-

lutions that are on or close to the Pareto front, and whether specific
parameter configurations correspond to certain Pareto front locations, a
parameter study is performed. The settings of the design response
grammar and its parameters are given first, then, in the rest of this
subsection the results are presented and discussed.

Clustering in the design response grammar is performed using a
minimum number of clusters =k 4min , a maximum number of clusters

=k 10max , and a number of runs per cluster size l=50. The other set-
tings used with the design response grammar are subject to the para-
meter study where the parameters are investigated as follows. The
thresholds for shear strain energy ηshear, bending strain energy ηbend, and
normal strain energy ηnorm are all varied from 0 to 1 with increments of
0.1 (including the boundary values 0 and 1). For the lower bound
threshold of the total strain energy of a substitute component ηnoise the
values 0.025, 0.05, and 0.075 are considered. Then the threshold to
control the number of iterations ηconv is varied from 1 to 4. Finally, all
permutations of {1,2,3} are tested for the checking order c. These
variations in the settings result in 95,832 different parameter config-
urations that are together totaling 383,328 finite element simulations.
Each configuration is evaluated for each design.

In Fig. 8, on the left, the results of the parameter study are given,
together with the overall Pareto front approximation that was obtained
from the optimizer. On a first note, it should be mentioned that not
every combination of parameters has resulted in a performance in these
plots, because unstable structural design models have been disregarded
for this study (on average 24.6% is disregarded). On a second note, the
dashed boxes around the PFAs are the selection of solutions that will be
used for an analysis of the parameter study which follows later. On a
third and final note, the axis for the strain energy has been scaled on a
log scale with the purpose to better visualize the results, unlike the plots
in Fig. 7. Compared to the results of the parameter study, the EA
achieves better coverage of the knee point region, whereas the design
response grammar found new non-dominated solutions in the extremal
regions. Nevertheless, the parameter study also found non-dominated
solutions close to the Pareto front approximation. Altogether, these
results show that the design response grammar can generate qualita-
tively good solutions.

On the right of Fig. 8, for each design, a selection of the solutions
found by the design response grammar are shown. This selection con-
tains a solution from the knee-point region, a well-performing solution
for each objective individually, and an arbitrarily selected poor-per-
forming solution. From this selection, it can be noticed that a design

Fig. 6. The designs for the performance case study.
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with many trusses will lead to a design in the knee-point region, a
design with many flat shells to a stiff design, and a design with many
beams to a material efficient design. It should be noted that flat shell
elements in the façade obstruct the view of possible internal structure,
different designs in Fig. 8 (i.e. 10 and 12) may for that reason appear
similar.

A recommendation of a parameter configuration that will yield so-
lutions that perform well for the objectives is essential for the design
response grammar to be useful. Because a full enumeration of para-
meters is too expensive to repeat with new design tasks, for that matter
using design via optimizer assignment would be a more fitting choice
because it uses fewer evaluations and achieves better coverage in the
knee-point area. In the next part, it is therefore studied if solutions of
the design response grammar at specific locations of the Pareto front

approximations can be expressed in terms of parameters configurations.
This is investigated here using parallel coordinate plots as depicted in
Fig. 9. In the parallel coordinate plots, each design that results from a
combination of parameters is represented by a polyline that is plotted
from axis to axis. The first two axes show the performances of the de-
signs, and the rest of the axes represent the parameters. Plotted in grey
are all considered solutions and plotted in each color is a different se-
lection of solutions, where the colored dashed line indicates the bounds
of this selection.

Looking at the plots, it can be observed from the blue lines (designs
within the blue dashed box in Fig. 8) that ηshear is always zero, but none
of the other parameters show a clear correlation. So also no clear re-
commendation can be given based on this selection alone. Reducing the
upper bound and the right bound of the box around the Pareto front
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approximation yields the designs highlighted in red (designs within the
red dashed box in Fig. 8). However, for the designs that remain, a
correlation between parameters can still not be observed. Therefore, the
selection is further reduced to show only designs that result from
checking orders of c = {2,3,1} and c = {3,2,1}. The rationale behind
this reduction is the fact that the threshold for shear strain energy
(check 1) is zero, and assessing this check first will thus always result in
an assignment of the truss type. Checking for shear strain energy
(check 1) last gives a chance for the other types of strain energy
(checked by check 2 and check 3) to be assigned. In the case studies,
however, it was not observed that these checks result in a type as-
signment. This can be explained from the fact that for the lines plotted
in red, the thresholds for checks 2 and 3 are high (0.9 and 1.0). With

regard to the convergence parameter ηconv, it is concluded that one
iteration is sufficient. A value of 2.5% is recommended for the noise
threshold based on the results of design 3. In summary, for each eval-
uated design the knee point solution can be generalized into the fol-
lowing parameter configuration: ηshear=0, ηnorm=1.0, ηbend=1.0,
ηconv=1, ηnoise=0.025, and finally c = {2,3,1} or c = {3,2,1}.

By interpreting this generalization of the parameters, it becomes
apparent that an all truss structural design will always be the result of
the design response grammar. This can be explained from the fact that a
combination of diagonal trusses is a well-known stabilization method
that does not require much material. Moreover, this may well be the
reason that not more than one iteration is required within the grammar.
In a similar fashion as described before, a different study using parallel

Fig. 8. Comparison plots of design via optimizer assignment and design response grammar.
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coordinate plots has been performed. For brevity, these plots are not
presented in this work, however, the found parameters and the search
methodology are presented in the following. The study has been per-
formed such that the higher strain energies that lie outside of the box
around the Pareto front approximation of Fig. 8 are considered as well.
The study shows that ηshear can then also hold values of 0.1 or 0.2. By
restricting the parallel coordinate plots to only these values for ηshear, it
has been concluded that the value for ηbend can be fixed at 1.0 and that
of ηnorm should now be set to zero. Values for ηconv are still re-
commended to be set to 1 iteration, and for ηnoise the recommendation is
still 0.025. Regarding the checking order, the check for bending strain
energy appears to be irrelevant, and the check for shear strain energy
should precede that of bending. A fitting checking order would then be
c = {1,2,3}. Using these parameter configurations, the beam type will
be assigned by the grammar more often.

It is desirable that the grammar can explore the complete Pareto
front, and as such would also be able to discover designs with flat
shell assignments. These assignments would provide more stiffness at
the cost of structural volume. However, similar studies like above, using
parallel coordinate plots, did not yield any parameter configuration for
solutions that have a low amount of strain energy and have the flat

shell type assigned more often. The cause may be observed in Fig. 8,
where large horizontal bands without results can be seen. From the
optimizer's results in Fig. 7 it is clear that solutions do exist within these
bands. It appears that these banded gaps are caused by the discretiza-
tion of ηshear and ηbend. A refinement of the discretization of parameters
may thus improve the results of the parameter study, and it cannot yet
be concluded that the design response grammar cannot explore the
complete Pareto front. Such a refinement in the parameter study is not
performed here, because the focus is put on the generalizability of the
results.

4.3. Case study: optimal material density distribution

In the presented work, generic materials and dimensions are as-
signed to the generated structural system layouts. Although this sim-
plifies the design problem as well as the generation and assessment of
layouts, the resulting layouts appear to be impractical regarding aspects
like dimension-to-span ratios or stress constraints. To investigate whe-
ther the generated structural system layouts are still useful in more
advanced stages of the design process, this second case study is pre-
sented. The study applies a technique similar to topology optimization

Fig. 9. Parallel coordinate plots of the performances and the parameters in the parameter study.
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to optimize the material density distribution of each individual struc-
tural component. By applying this optimization technique on structural
system layouts that are part of the Pareto front approximations as found
by the evolutionary algorithm in the first case study, it is shown
that—after optimization—the fronts remain the same qualitatively. In
other words, the performance trade off between two layouts, which can
be deduced from the Pareto front approximation, still holds after their
stiffness distribution is optimized. If optimization of the material den-
sity distribution (more or less equivalent to an optimization of the
stiffness distribution), is regarded as a part of determining materials
and dimensions in more advanced stages of the design of a system
layout, this suggests that the methods produce results that are also
useful in the more advanced design stages.

4.3.1. Algorithm
Optimization of the material density distribution is applied in

practice to find the stiffest structure within a continuum design domain,
given certain loading conditions and a material constraint, this is often
referred to as topology optimization [5]. In this subsection, modifica-
tions to a topology optimization algorithm are introduced, such that the
algorithm considers the densities of different element types separately,
with a single density for all elements within a structural component.

The problem formulation of the original topology optimization algo-
rithm [1] is given in Eq. (9). Here, x denotes the vector holding the
density xe of each element e, V0 is the sum of all element volumes:

= Ve
N

e1 0, , whereas V (x) is denoted as = x Ve
N

e e1 0, , the objective c is
called compliance, p is a penalty factor to push element densities more
towards either zero or one, N is the number of elements, f is the nodal
force vector of the FE model, K is the stiffness matirx of the FE model,
and u is the nodal displacement vector of the FE model. The element
densities modify the stiffness of the elements in the FE model, as such, a
redistribution of element densities signifies a redistribution of the ma-
terial and stiffness.
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The algorithm uses a gradient of the objective function with respect
to changes in element volume and changes in element density. The
gradient is filtered to make the solution less mesh dependent, this will,
for example, prevent checkerboard patterns. Finally, a bi-sectioning
algorithm is used to update the densities using the filtered gradient
while satisfying the volume and density constraints. This process is it-
erated until the greatest change in element densities is less than a set
threshold. More details on the implementation can be found in Ref. [1].

The above topology optimization algorithm does not distinguish in
element types, e.g. truss, beam, and flat shell. The algorithm could
therefore distribute (all) the density of one element type to elements of
other types. However, this is not desirable when the algorithm is used
to assess a structural system layout in which it is precisely the com-
position of different element types that is of importance. Therefore, a
modified volume fraction constraint is introduced in Eq. (10).

=V V fx( )/i i i,0 (10)

In the new problem formulation, i denotes the type of element (e.g.
truss, beam, or flat shell). Filtering of the gradient is then also per-
formed separately per element type to prevent an influence on the
density of one type of element by elements of a different type.
Moreover, the number of volume constraints has increased as a con-
sequence of the modified problem formulation. This also increases the
number of times the bi-sectioning algorithm should be executed, once
for each element type i.

Finally, the algorithm will in this work be used as a post-processing
step to find optimal stiffness distributions between structural compo-
nents. Stiffness variations within components are not considered,
therefore the densities are optimized component-wise rather than ele-
ment-wise. Note that no mesh dependency filter needs to be used when
the densities are varied component-wise, because the problem is no
longer mesh dependent.

4.3.2. Settings
Optimization of the material density distribution is performed for

each design with the following settings. The penalty factor is set to
p=3.0. Three different values for the volume fraction f are used: 0.2,
0.5, and 0.8. Therefore, three different runs of the material density
distribution optimization algorithm are carried out for each design. And
finally, the stopping criterion has been set to stop with absolute density
changes smaller than 0.01.

4.3.3. Results
For each building spatial design, the results are plotted in Fig. 10.

The Pareto front approximation, as found in Section 4.2 is plotted with
black circles, note that a volume fraction f=1.0 will lead to a solution
equivalent to the original, because no redistribution of material density
can take place. Plotted in color, are the different volume fractions used

Fig. 10. Results of topology optimization on non-dominated solutions from
Fig. 7.
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for the optimizations, circles represent solutions with a uniformly dis-
tributed material density (i.e. ∀e : xe= f) and crosses represent solu-
tions after their material density distribution has been optimized. Note
that for each design, the initial structural volume (V0) remains the
same, for different volume fractions a point representing a solution thus
only moves horizontally. When observing the plots regarding optim-
ality, it can be noticed that each set of optimized designs still forms a set
of non-dominated solutions.

4.4. Case study: comparison and validation

The case study in this section is intended to compare and validate
the pre-configured design response grammar against design via opti-
mizer assignment. For this purpose, a new building spatial design is
introduced, see Fig. 11, and for more details see Fig. B.5 in Appendix B.
Structural designs for this building spatial design have been created
using both methods. Settings for the optimizer are the same as pre-
sented in Section 4.1. For the design response grammar, the used
parameter configurations are summarized in Table 2. These are para-
meter configurations that have been found in the first case study
(Section 4.2.2), which are expected to yield structural system layouts
that are located near specific points on the Pareto front. Other settings
for the design response grammar are the same as the settings presented
in Section 4.1.

4.4.1. Results
Plotted together in Fig. 12 are the results from design via optimizer

assignment and the design response grammar. All solutions found by
design via optimizer assignment are plotted as black dots, and non-
dominated points that form the Pareto front approximation are high-
lighted with red circles. The Pareto front approximation dominates the
solutions found by the design response grammar, indicating design via
optimizer assignment finds better solutions than the design response
grammar. Moreover, the evolutionary algorithm found a more evenly
distributed Pareto front approximation, which can yield more in-
formation regarding trade-offs. Nevertheless, the design response
grammar resulted in solutions that are close to the desired points on the
Pareto front approximation: configuration 1 is located near the knee-
point, and configurations 2 and 3, respectively, are more optimal re-
garding the volume objective. This suggests that the results found by
the parameter study do generalize to other building spatial designs in
terms of parameter configurations.

Regarding computational cost, the three layouts found by the design
response grammar were found after six evaluations (two for each so-
lution, once the substitute model and once the final design). Whereas,
the Pareto front approximation was obtained after 50,000 evaluations.
The found generality thus allows the grammar to find solutions that
perform well in both objectives without repeating an extensive

parameter study, while having a much lower computational cost
(50,000 vs. 6 evaluations). However, based on the results of this case
study alone, no proof or guarantee regarding the extent to which the
results generalize—and thus the optimality of the found solutions—can
be given for the design response grammar.

Another aspect to consider in the comparison between the two
methodologies is the required input. Design by optimizer assignment
requires the user to define input that is related to structural design (e.g.
ranges of materials, dimensions, connections, and loads), but also set-
tings related to the optimizer like population size, reference point, and
an evaluation budget. Whereas the parameters of the design response
grammar are directly related to phenomena within the field of struc-
tural design. A structural design engineer is thus likely to have a better
understanding of the required input for the design response grammar,
which is in general considered desirable for the application of a
method.

Finally, the structural design solutions that were generated by the
design response grammar are depicted in Fig. 13. From the solutions, it
can be observed that parameter configuration 1 leads to a full truss
design. Whereas, the other two configurations, which were defined to
assign the beam type more often, indeed generate solutions with fewer
trusses at locations where they are not effective.

5. Discussion

In this paper, two newly developed design methods are presented.
The first, the design response grammar, uses design rules—configurable
by parameters—to develop a structural system layout step by step as a
function of a building spatial design's geometry and preliminary as-
sessments of the structural system under development. The second,
design via optimizer assignment, uses an evolutionary algorithm to find
a Pareto front approximation of structural system layouts for a con-
ceptual building spatial design. In this section, some critical remarks on
the developed methods and the presented work are given.

Firstly, the number of structural types that can be assigned to the
geometry of the building spatial design is limited. This prohibits the
design of more complex, but common, structural systems such as floor
slabs supported by beams. However, the presented method can be ex-
tended to support the assignment of more structural types to a greater
variety of geometries. In that case, the assignment criteria based on
design responses have to be reconsidered.

Moreover, the assignment of structural types based on a single type
of load within the design response may not be adequate. For example,
in this paper a flat shell is only assigned when out-of-plane strain en-
ergies are high, while it is also excellent in handling in-plane forces. In
that case, a structural type like a space truss might be more suitable
when only out-of-plane strain energy is present, and a flat shell when a

Fig. 11. Design 4, a portal shaped building.

Table 2
Parameter configurations for the design response grammar.

id ηshear ηnorm ηbend ηconv ηnoise c

1 0.0 1.0 1.0 1 0.025 {3,2,1}
2 0.1 0.0 1.0 1 0.025 {1,2,3}
3 0.2 0.0 1.0 1 0.025 {1,2,3}

Fig. 12. Performance plot of the structural design solutions for design 4.
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combination of out-of-plane and in-plane strain energies is present.
Solutions that perform well for the objectives in this work are most

often trussed designs. This can be due to the choice of objectives, i.e. a
design must be material-efficient (minimal volume) and it must be stiff
(minimal strain energy). Other objectives like cost, construct-ability,
and practicality have not yet been considered. Accounting for only two
objectives, the design response grammar—in its current form—may not
yet be suitable for its intended purposes within a framework of more
general building spatial design optimization. Moreover, with other
objectives, finding parameter configurations that correspond to certain
desirable locations on the Pareto front may be less straightforward, or
perhaps not even possible.

In practice, also constraints like a maximum allowable stress or
buckling avoidance determine the feasibility of a design. These con-
straints affect the search space, e.g. a maximum achievable span of a
structural type due to a polynomially increasing self-weight. To take
into account such constraints the considered solutions should have
realistic material properties and dimensions, which is not the case in
the presented work. Materialization and dimensioning are left out of
consideration in the presented work because the focus is put on the
quick generation of structural system layouts for conceptual building
spatial design. Introducing materials and dimensions as design vari-
ables would make the search space larger and the design response
grammar more complex. Moreover, it would introduce a discrepancy
between the level of detail of the building spatial design and the gen-
erated structural system layouts. Nevertheless, in future work, rules of
thumb that limit each type of structure to a certain span range (e.g. in
practice a common maximum span for a monolithic floor structure is
7m) could ensure the feasibility of the solutions that are found by the
presented methodologies. Specifically with respect to stress-based de-
sign, topology optimization is very complex, and no single robust
method for this is available yet. Promising is proportional topology
optimization [6]. However, this is not considered in the current work,
and the presented methods should thus be extended in this regard be-
fore being applied in practice.

The second case study has been used to predict that the layouts
found by the current methods and objectives are also useful in more
advanced stages of the design process. However, a next stage in the
design process could be to scale all material density distributions (more
or less equivalent to stiffness) uniformly up or down to achieve a certain
maximum allowable displacement or stress in the structural system
layout. As the required scale factor will be different for each layout, it
follows that each layout will acquire different new values for structural
volume and strain energy. So the qualitative character of the Pareto
front that remained the same after topology optimization, may not re-
main the same after the material density distributions are scaled for
displacements or stresses. A final answer to the importance of this issue

can only be given when element dimensions and materials are included
in the methods in a detailed fashion.

Finally, the parameters in the design response grammar have been
selected and configured through insight into the problem. The problem
is however complex, and other techniques to identify and configure
parameters may yield better results. For example, machine learning
may be used, where the substitute structural design model serves as
input, a structural design solution or a collection of non-dominated
structural design solutions are output, and non-dominated solutions are
used as training data. Also other data learning techniques—e.g. in-
novization [13]—can be applied to the optimization results to find re-
lationships between the features of a substitute model and the optimi-
zation results of an evolutionary algorithm. Additionally, in the
parameter study, the discretization of continuous parameters led to
large gaps in the non-linear relationships between parameters and the
objectives. Parameter tuning using, for instance, gradient-based tech-
niques will give more insight into these relationships. The latter may be
carried out with an optimizer, which may even reduce the computa-
tional cost of the parameter study as optimizers are designed to avoid
full enumeration.

The above remarks show that future work on the design response
grammar is required. However, this does not discount the potential of
the design response grammar that has already been observed. For the
common objectives of minimal strain energy and minimal structural
volume, and after the performed parameter study, it was possible to
find parameter configurations for the design response grammar that
yield structural system layouts that perform such that they are located
at desirable positions on the Pareto front found by an evolutionary al-
gorithm. It is very likely that, by generalizing these results for other
building spatial designs, specific points on the Pareto front approx-
imation can be expressed in terms of parameter configurations. In doing
so the grammar can accurately find near Pareto optimal design solu-
tions with considerably less effort than an optimization algorithm (6 vs
50,000 evaluations). A method that can quickly generate solutions that
perform well for the defined objectives for conceptual building spatial
designs is thus found to be a realistic goal.

6. Conclusions and outlook

Motivated by the application in (multi-disciplinary) building spatial
design optimization, an existing optimization toolbox has been ex-
tended with two new methods that can find structural system layouts
for a building spatial design which perform well for a given set of ob-
jectives. The first, the design response grammar, uses design ru-
les—configurable by parameters—to develop a structural system layout
step by step as a function of a building spatial design's geometry and
preliminary assessments of the structural system under development.

Fig. 13. Design response grammar solutions for design 4.
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The second, design via optimizer assignment, uses an optimizer to de-
termine the placement of structural components in structural models.

Both methods can find solutions that perform well for objectives
that are commonly used for structural and topology optimization:
minimal strain energy and minimal structural volume. The design via
optimizer assignment method yields evenly distributed Pareto front
approximations, from which insight into the trade-off between objec-
tives can be gained.

Through a parameter study, it has been demonstrated that specific
parameter configurations of the design response grammar lead to spe-
cific desirable locations on the Pareto front approximation that was
found by the optimizer. By generalizing, these specific points on the
Pareto front approximation can be expressed in terms of parameter
configurations. This reduces the computational cost significantly com-
pared to design via optimizer assignment, making the design response
grammar useful for cases where many different or rapidly evolving
building spatial designs should be assessed for their structural design
potential.

In the presented work, typical objectives for structural optimization
were used: minimal strain energy and minimal volume. These objec-
tives allow for leaving out detailed materialization and dimensioning,
which: (1) reduces the size and complexity of the search space; and (2)
avoids a discrepancy between the level of detail of a conceptual
building spatial design and the structural system layout. Naturally,
generic material properties and dimensions still need to be used, but as
a consequence, practical constraints like allowable stress, buckling, or
deformation are not useful to be checked.

This paper also presented an optimization technique similar to to-
pology optimization to optimize the material density distribution be-
tween structural components, which can be regarded as a part of de-
termining materials and dimensions in more advanced stages of the
design of a system layout. This technique has been applied to the lay-
outs that are part of the Pareto front approximations as found by the

evolutionary algorithm in the first case study. It has been shown
that—after optimization—the fronts remain the same qualitatively,
which suggests that the methods produce results that are also useful in
more advanced design stages.

Finally, critical remarks regarding the design variables, design re-
sponse, objectives, constraints, and parameter study have been made,
and it is clear that the design response grammar needs to be developed
and validated further. Future research should involve the development
of additional structural element types for the design response grammar
to increase the variety of possible solutions; the exploration of new
objectives and constraints to further increase the feasibility of the lay-
outs; the investigation of state-of-the art techniques like machine
learning in the assignment of structural types based on the mechanical
response to avoid complex assignment rules and to possibly improve the
results.
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Appendix A. Structural design grammar settings

This appendix lists the used settings for the design grammars that are presented in this work. In Table 1, the live load and the wind loads are
given. Thereafter, in Tables A.1–A.4 the structural properties of the components in the structural model are specified. Table A.1 specifies the flat shell
properties, Table A.2 the properties of beams, Table A.3 the properties of trusses, and finally Table A.4 gives the properties used for the substitute
components.

Table A.1
The structural properties that apply to components of type flat shell.

Property type Thickness Young's modulus Poisson's ratio
[−] t in [mm] E in [N mm−2] ν[−]

1 150 30,000 0.3

Table A.2
The structural properties that apply to components of type beam (with a square cross section).

Property type Width Height Young's modulus Poisson's ratio
[−] w in [mm] h in [mm] E in [N mm−2] ν[−]

1 150 150 30,000 0.3

Table A.3
The structural properties that apply to components of type truss.

Property type Cross sectional surface Young's modulus
[−] A in [mm2] E in [N mm−2]

1 22,500 30,000
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Table A.4
The structural properties that apply to components of type substitute.

Property type Thickness Young's modulus Poisson's ratio
[−] t in [mm] E in [N mm−2] ν[−]

1 150 0.03 0.3

Table A.5
The structural loads that will be applied by a structural design grammar.

Type Load case Magnitude αaz αalt

[−] [−] [N mm−2] [°] [°]

Live load 1 0.005 0 270
Wind pressure 2 0.001 0 0
Wind shear 2 0.0004 0 0
Wind suction 2 0.0008 0 0
Wind pressure 3 0.001 90 0
Wind shear 3 0.0004 90 0
Wind suction 3 0.0008 90 0
Wind pressure 4 0.001 180 0
Wind shear 4 0.0004 180 0
Wind suction 4 0.0008 180 0
Wind pressure 5 0.001 270 0
Wind shear 5 0.0004 270 0
Wind suction 5 0.0008 270 0

Appendix B. Building spatial designs

In this appendix, the details of the building spatial designs that are used in this work are presented. Figs. B.1–B.3 show the designs that are used in
the first case study of this work. Fig. B.1 shows the design of a tall building with a central core. In Fig. B.2, a typical design of an apartment building
with horizontal galleries is depicted. A large hall is shown in Fig. B.3, which is a common design for large industrial applications. Finally, Fig. B.4
presents the design of a portal shaped building which has been used for the second case study in this work.

Fig. B.1. Design 1, a tall building.

Fig. B.2. Design 2, an apartment building.
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Fig. B.3. Design 3, a large hall.

Fig. B.4. Design 4, a portal shaped building.
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