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Abstract

A sizeable dataset comprising millions of lithic artifacts sampling over two million

years of early paleolithic tool technology from Africa and Eurasia is now available. The

widespread presupposition of an exclusively cultural, that is, socially learned, nature of

early stone tools from at least Acheulean times onwards has been challenged by

researchers who hypothesize that these tools, a crucial element of early hominin sur-

vival strategies, may partly have been under genetic control, next to the effects of var-

ious other determinants. The discussion this hypothesis has sparked off in the present

journal is here explored somewhat further, focusing on the Baldwin effect.
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1 | INTRODUCTION

Partitioning the temporal, regional, inter-site and intra-site variability

in pre-Acheulean (Lomekwian, Oldowan) and Acheulean stone tech-

nology to its drivers has proven to be notoriously difficult. A number

of determinants on various scales of space and time are generally

acknowledged, but weighed differently by various authors. These

determinants include ecological circumstances, the fracture mechanics

and shapes of raw materials, functional and ergonomic constraints,

reduction and resharpening processes, various forms of learning, aes-

thetic preferences, and drift effects.

In 2017 Corbey et al.,1 focusing on Acheulean cutting tools in par-

ticular and in line with earlier suggestions,2,3 pleaded for more atten-

tion to a hitherto neglected additional driver of variability. Using bird

nest building, song and tool use, among other animal behaviors, as

heuristic models they argue that next to the abovementioned deter-

minants a role for genetic transmission should be considered more

seriously.

John McNabb,4 cf.5 elaborating on an earlier publication with

Robert Hosfield and James Cole,6 has expressed skepticism on the

genetic transmission hypothesis, as have others.7 In the following I

address the main doubts of this seasoned Acheulean specialist, with

special attention to the so-called Baldwin Effect as a possible addi-

tional determinant of early stone tool variability.

2 | FACTORING THE BALDWIN EFFECT IN

McNabb argues that any genetic component is unnecessary: cultural

transmission can explain it all. “At no point can a hominin's own under-

standing of a hand axe be parsed from its social context,” he writes, “…

[this] is not the fine social tuning overlying a genetic basis, this is the basic

social substrate of how and where hand axes were made.”4:6 McNabb

rejects dual inheritance (gene-culture co-evolution) arguments explicitly.

However, if phenotypically plastic individuals grow up time and

again, over hundreds if not thousands of generations, in a technological

niche while manipulating stone, and provided that the cost/benefit

ratio is right: would not selection in the long run favor features of the

organism befitting their technological capacities, so crucial for survival?

This is a Baldwin Effect, a progressive encoding in the genome of
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initially non-genetic, plastic responses, acquired by learning, to chang-

ing environmental conditions. In the long run, phenotypic plasticity for

a particular trait is reduced in favor of stereotyped, experience-inde-

pendent, innate routines which mimic the initial plastic response.8–10

McNabb renders Corbey et al. as arguing that “the foundations

upon which the social explanation of the Acheulean is built can in fact

be more simply explained by genetics.”4:11 This is not a correct read-

ing, for they explore “the possibility that the production of Acheulean

hand axes was under at least partial genetic control.”1:8 They write:

“The combination of genetic transmission and social learning is

predicted to produce uniformity of overall design (due to the fixed

component) and slight local variance (due to the process of socializa-

tion), which is the pattern observed with Acheulean hand axes”

(my italics; cf. Figure 1). Corbey et al. also point to the role of “niches

containing stimuli related to hand axe production … [which] would

have provided cues for individual learning.” This shows that their posi-

tion is, in fact, closer to McNabb's than he credits. There is a fair

amount of common ground with his position.

3 | PHENOTYPIC PLASTICITY

McNabb admits that certain features of early Acheulean tools “indi-

cate a cognitive evolution in Homo ergaster, which distinguishes them

from earlier hominins and their material culture.” This might imply a

Baldwinian change as just described, specifically regarding tool

manufacture, but in view of his stress on social learning McNabb attri-

butes such cognitive evolution to a general phenotypic plasticity, as

do most workers on early Homo.

Here the Baldwinian argument runs into a possible objection.

Phenotypic plasticity10,20 permits flexible reactions which facilitate

survival under conditions of considerable ecological and climatic varia-

tion, such as in Africa c.2.5–1.5 myr ago, along the routes when

Erectines spread into Eurasia, or when, much later, hand ax wielding

Heidelbergs lived in Pleistocene Europe.21 The objection is that under

such circumstances efficient plasticity would have prevented the

appearance of automatized, Baldwinian solutions which, inflexible as

they are, at first sight seem at odds with the malleability and learning

capacities required for coping with environmental novelty and con-

stantly moving targets.

That, in fact, is a sensible protest. But however drastic the ecolog-

ical variation, the challenges posed by manufacturing tools from vari-

ous types of stone are the same in all settings: the fine tuning of the

force and direction of blows, the weight balance between hammer

stone and core, short term planning, handling spatial proportions, and

so on. While generally speaking environmental variability on an eco-

logical timescale maintains plasticity and prevents genetic adaptation,

as far as this stable, predictable and reliable setting is concerned not

flexible but rigid solutions pay off.10,22

Possible benefits include less time and energy spent in learning to

knap quickly and effectively; less susceptibility to loss of traditional

skills through demographic bottle necks; less cognitive load; and less

F IGURE 1 Acheulean hand axes from various regions (to scale; biface 7 is 22.5 cm tall). Sites: (1) Boxgrove, England; (2) North of Bridge
Acheulean, near Gesher Benot Ya'aqov, Israel; (3) Erg Tihodaïne, Algeria; (4) Sterkfontein, South Africa; (5) Olduvai Gorge, Tanzania; (6) Bose,
China, (7) Isampur, India.12–18 The picture conveys the puzzling combination, over huge spans of space and time, of uniform basic shapes with
spatiotemporal variation. Acheulean cutting tools of the cleaver type are not included, but offer an analogous mixture of similarity and difference.
Figure by Shumon Hussain, from Corbey et al.1
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susceptibility to injury or failure to learn. It gives pause that it takes

both chimpanzees in the Taï Forest in Côte d'Ivoire and Mbendjele-

Yaka foragers in the Republic of Congo many years to learn how to

crack nuts with stone hammers, despite support by teachers in both

cases.11

Phenotypic plasticity allows organisms to search the space of

adaptive possibility until they hit upon viable solutions. “In constant

environments,” Avital & Jablonka summarize their detailed discus-

sion of the trade-off between learning and instinct, “genetic assimila-

tion of learned behavior may lead to behaviors becoming

increasingly less dependent on experience, and finally culminate in

the evolution of innate ‘instinctive’ behaviors. In frequently changing

environments, where genetic changes are not fast enough to track

recurring change, individual and social learning are more benefi-

cial.”22:346 In the latter case the Baldwin effect enhances the learning

capacity itself rather than “starting the individual off in a state closer

in learning space to the mature practice, so there's simply less to

learn.”23:74ff

Sterelny3:297-8 suggests that Avital & Jablonka's assimilate-and-

stretch scenario22:330-1 may be of interest in connection with the evo-

lution of technological capacity. If certain parts of a sequence of

behaviors become genetically assimilated it will take less time for

fledgling nest builders or flint knappers to acquire the sequence. This

creates room for the individual to play and try out, adding any benefi-

cial actions it discovers. If this happens time and again the behavioral

sequence is elaborated, stretched, by making parts of it automatic,

while it remains a mix of learned elements and automatized basic

skills. The learned elements may be imitated by others and become a

local tradition.

4 | WHAT FEATURES MAY HAVE BECOME
AUTOMATIZED?

As minimal features of early stone tool technology that may have

been targeted by Baldwin effects Corbey et al. proposed “probably …

not just a simple target form, but rather a predisposition toward the

basic behavioral routines involved, such as invasive bifacial reduction

while realizing cutting edges in the secant plane, working from the tip

down, and keeping symmetry. These routines would have operated in

combination with causal understanding, manipulative skill, and intui-

tive (‘folk’) physics.”1:14

Thomas Wynn and John Gowlett provide a cogent complemen-

tary suggestion, without realizing how well it combines with

Baldwinian selection: a constellation of six ergonomic constraints on

all handheld stone cutting tools. These constraints comprise: a center

of gravity of the hand ax which is positioned toward a base (butt) by

which the tool fits readily in the hand; forward extension, which gives

leverage and a longer cutting edge; some lateral extension in order to

provide stability; support for the cutting edge; thickness adjustment;

and a slightly skewed shape according to handedness. Together these

basic characteristics constitute “one solution to the need for a sturdy,

hand-held cutting tool whenever and wherever the basic technology

is that of knapped stone tools, hafting is unknown, and the available

raw material comes in large enough clasts.”7:7

This is a plausible characteristic of attractors in design space23—

or fitness peaks in a metaphorical adaptive landscape10—toward

which various shapes must have gravitated. The bone of contention

here is not the role of various restrictions providing direction during

that process, such as ecological circumstances, the affordances of the

technological niche, accumulated cultural experience, raw material

structure, resharpening processes, and drift effects. Nor is it the possi-

ble contributions of various forms of learning, although these factors

are weighed differently by various authors.

My disagreement concerns the assumption that, in McNabb's

words, “parsimony affirms a social basis for hand axes and does not

require a genetic predisposition,”4 or, as Wynn & Gowlett state in a

converging argument,7:21 that hand axes are “fully accountable in cul-

tural terms without recourse to genetic causation.” The latter think it

highly unlikely that hand ax making by foraging Erectines and

Heidelbergs “required other neural resources in support of production

routines than those mandated by the anthropoid object manipulation

network.”7:25

Paradoxically, Wynn & Gowlett in passing allude to “cognitive

developments, primarily the emergence of a true tool concept, and an

ability to coordinate spatial and shape information.” This renders their

culturalist arguments ambiguous, for it begs the question what may

have driven these evolutionary developments, which in their scenario

appear out of the blue? Baldwinized, stable solutions may provide an

answer, creating derived divergence in the hominin lineage from that

ancient, phylogenetically primitive, anthropoid object manipulation

network.

It is time now to heed recent research on the evolution of hom-

inin neural resources more seriously. Baldwin effects have in fact been

suggested regarding, among other features, neural tracts involved in

visuo-spatial and visuo-motor skills24 as well as self-action control in

stone knapping and copying others.19,25–27

However, these contributions stress skills for acquiring motor

repertoires, not the repertoires themselves, content wise, as possible

Baldwin effects. Under discussion here is that latter, more radical sug-

gestion. In a number of bird species cited by Corbey et al. like

Galápagos woodpecker finches (Camarhynchus pallidus), specific tool

use appears spontaneously in naïve, untutored individuals, which sug-

gests genetic assimilation into the genome of content, not (just) of

learning capacities. The same goes for at least the basics of nest build-

ing in many bird species (see below).

The limited physical cognition of other primates in particular sug-

gests dramatic derived developments in the hominin lineage, from rea-

soning in the earliest hominins based on what is observable, tangible,

spatiotemporally associated on to a proper understanding of causal

relationships in present-day humans.28 At the same time gradual

changes befitting stone knapping occurred in the functional morphol-

ogy of the hand and wrist while manual dexterity evolved in response

to tool use. Key & Lycett think that the evolutionary advantages pro-

vided by efficient stone tool use may have selected for anatomical

changes observed in the hand.29
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5 | CORES AND CLEAVERS

McNabb remarks that Corbey et al. give too much focus on bifacial

hand axes, neglecting other Acheulean products such as flake cleavers

and picks, as well as the related problem how diversity in core tech-

niques squares with basically uniform products.

The Baldwinian scenario suggests multiple attractors in design

space: pebble tool, flake cleaver, trihedral pick, bifacial hand ax. It also

implies that such solutions, once emerged under various constraints,

possibly more often, would be long-lasting when adaptively optimal.

The latter effect has often been described—or should we say:

misunderstood—as “stasis,” for example, “Acheulean stasis.”

McNabb4,5 cf.30 and Hosfield et al.6 are right to criticize Corbey

et al. when, as an argument for partial genetic control, the latter

assume that under a cultural transmission model copying errors

should have eroded Acheulean shapes at a rate that is not reflected in

the archeological record. Any such effect would indeed be masked by

constraints which force the products toward optimal shapes, apart

from the fact that the effect would be hard to ascertain arche-

ologically because of weak vertical resolution.

At least seven different techniques have been used to produce more

or less ready-made flake cleavers from large prepared cores (eg,

Figure 2). Such cores permitted the production of many large flake blanks

with a minimal investment of time and labor.31,32 The various core types

are astonishingly similar between sites spread over large parts of Africa

and Eurasia, as are the resulting cleaver types. Gonen Sharon postulates

“one lithic tradition” to account for what is, in his view, a cultural phe-

nomenon, comprising a “unique and highly sophisticated technology

designed to achieve maximum control of the resulting large flake.”31:353-4

But here too multiple, similar Baldwin effects on stone knapping, under

various similar constraints, in particular limited technical possibilities

(affordances), offer an alternative explanation which deserves further explo-

ration. The result may have been convergence between distant sites toward

a limited number of possible core types as attractors in design space.

6 | FLAKING AND SHAPING

Although hierarchically more complex than the preceding Oldowan,

the appearance of Acheulean cleavers made of flake blanks struck

F IGURE 2 The Victoria West core method, unique to South Central Africa. The core is shaped bifacially in such a manner that the flake
struck from it under a specific angle is a ready-made Acheulean cleaver. We see: Four views of a refitting of a core and a cleaver (a); three views
of the core, from Canteen Koppie, South Africa (b); three views of the cleaver, from Pniel, South Africa (c). This cleaver is in fact not the one
struck from the core, but is of the same type and size. The downwards directed tip of the unstruck core becomes the butt of the cleaver struck
from it.31,32 The procedure resembles the much later, Middle Paleolithic Levallois core technique. Illustration by Gonen Sharon, with permission
[Color figure can be viewed at wileyonlinelibrary.com]
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from large cores was not as “fundamentally different, innovative, and

sophisticated”31:335 as Sharon claims on the basis of his culturalist

assumptions, like many others.33

Both the core and to a lesser extent the flake blank, struck from

that core to serve as a cleaver, undergo an essentially similar stepwise

reduction. Whenever a flake is struck from a core there are always

two obvious options for further reduction: of the core, or of the flake.

Using either a reduced core or, alternatively, a more or less reduced

flake as a tool are always obvious possibilities, and switching from the

first to the latter action basically is not a large step, nor is the reverse.

Once the reducing of the—say, late Oldowan—core in order to serve

as a (pebble) tool had shifted to the reducing of flakes into tools, both

the cores which were subsequently discarded and the flake tools

would likely have become larger.cf.34

The same goes for the appearance of Levallois technology much

later, c.300 kyr ago, which—as has been hypothesized before—may

well have originated in the bifacial reduction of hand axes. Using not

the hand ax but a large flake obtained during the hand ax's production

as a tool was, at any point, a clear alternative. Once this started to be

done more often, the shape and size of the core probably quickly

changed from being suitable for use as a handheld tool to being suit-

able to produce one or more large flakes, and then discarded. This,

likely, happened multiple times, in various places.

In view of this possibility I am skeptical of the usual laudatory

accolades conferred on core preparation because of presumably intel-

ligent anticipation in terms of mental templates. I prefer a step-by-

step Baldwinian scenario in terms of gradual developments in flaking

and shaping which by their very nature—coincidence combined with

constraints and path dependency—may have permitted punctuated

shifts, such as the appearance of cleavers in the Acheulean, the Victo-

ria West core method (Figure 2),34:344-5 or the appearance of very reg-

ular, well finished hand axes at about 700 kyr.

7 | ANIMAL STRUCTURE BUILDING

Tool making is seen as a case of animal construction by specialists in

that field.35,36 This provides a heuristic for the study of early stone

technology. The admittedly still rather sparse available research on

nest building by birds, burrowing by rodents and dam building by bea-

vers shows that these behaviors are under substantial genetic

control—but also betray significant behavioral flexibility. They depend

considerably on individual learning as well as, often, some weak social

learning, within various constraints—ecological, functional, regarding

raw material, and so forth.

The genetic underpinnings of such behaviors in the wild have

hardly been studied directly, but a series of experiments with

burrowing Oldfield mice (Peromyscus polionotus) sheds some light in

this regard.37 This species, native to the south eastern United States,

builds burrows with an entrance tunnel, a lounge and an escape tun-

nel in the opposite direction ending just below the surface. Cross-

breeding with a closely related species with different burrows has

permitted the identification of various surprisingly small regions of the

genome, each controlling specific invariable parts and aspects of the

burrow.

Animal niche construction38 in general shows how sophisticated

emergent products usually result from a limited behavioral repertoire

consisting of simple, repetitive, standardized routines in response to

local stimuli. North American beavers (Castor canadensis, Figure 3), for

example, build dams from logs cut down off-site, branches and mud—

with a central living space, safe underwater entries, and refined air

and water engineering. They pick suitable trees, fell them by gnawing

a groove, transport them to the dam, and insert them into the dam

structure. This chaîne opératoire and the resulting complex architec-

ture are under genetic control while at the same time indicating much

learning, insight and decision making. A young rescue beaver in Louis-

ville Kentucky called JB (Justin Beaver) obsessively kept building dams

from all sorts of household items in his caretaker's house.39

In the course of many generations of selection on characteristics

befitting the construction behaviors of, for example, weaverbirds

(Ploceidae) or long-tailed tits (Aegithalos caudatus), the smoothness,

symmetry and regularity of their nests has increased continuously

toward higher functionality. Research on nest-building behaviors and

completed nest structures in several of over a hundred species of

weaverbirds shows experience-dependence, variability and conver-

gence on the individual, population and species levels.40–42 The same

goes for bower architecture within 20 species of bower birds

(Ptilonorhynchidae), which in particular show significant individual

variation.36:216ff

An analogous scenario can be considered, hypothetically, for the

intriguing mix of similarity and difference in Acheulean stone tool

manufacture. This research on bird nest building suggests how diffi-

cult it may be to disentangle the mix of learned elements, innate ele-

ments, and the effects of ecological, functional and other

constraints—a mix which includes aesthetic preferences7 as well as

F IGURE 3 Two beavers (Castor canadensis) plugging holes in their
dam with sticks and mud. This keeps the water level high. The
sophisticated technological behaviors of beavers are assumed to be
under genetic control while involving much learning and decision
making at the same time. Photograph by Robert McGouey, Alberta,
Canada, June 2013. Alamy Stock Photo [Color figure can be viewed at
wileyonlinelibrary.com]
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social-sexual signaling and sexual selection.43 Claiming an exclusively

cultural, learned character for early stone tool technology may well be

premature.

Across different bird species cerebellar foliation increases as the

complexity of the nest, manipulative skill and the amount of tool use

increase.41 An increase in foliation may also explain the positive corre-

lation between cerebellum volume, extractive foraging and tool use in

primates.44 Various researchers have criticized the stress on central

executive control as a distinct faculty, associated with the forebrain—

dramatically expanded in the course of human evolution, and tradi-

tionally seen as separate from sensory input and motoric output.44

The as dramatically expanded cerebellum—arguably under Baldwinian

selection—suggests the integrated character of distributed sensory-

motor brain mechanisms, enabling embodied, adaptive “control, orga-

nization and comprehension of complex sequences involved in both

technical and social intelligence.”44:2104

According to this line of argument there exists no “Cartesian,” dis-

embodied reasoning device handling mental templates in the sense of

McNabb's “capacity to hold ideas in the mind and act on them,”4:7 or

Wynn & Gowlett's cognitivist “true tool concept” which in Acheulean

times “fill[ed] the supposed gap between sensory reception and motor

output.”7:23

8 | SIMPLE BEGINNINGS

The Baldwinian scenario as developed here implies simple beginnings.

In an early phase of extractive foraging and occasional tool use a lucky

blow on a stone block may reward a phenotypically plastic individual

with a sharp edge, next there may be other rewards for accidental

blows under the right angle, etc. In the long run flaking develops into

shaping: patterned and hierarchical flaking occurs and directional

changes toward optimal points in design space set in. The entire pro-

cess is susceptible to Baldwin effects given the stable, predictable

character of stone.

Moore & Preston45;cf.46 show what this earliest phase of stone

manipulation may have looked like while throwing doubt upon extrap-

olations from experiments with modern stoneworkers to early hom-

inin design goals. In an ingenious series of experiments they disrupted

the modern stoneworkers' inclination to use higher-order reasoning to

guide the stone reduction, thus randomizing flake removal. When

multiple flakes were removed randomly from a stone core the geo-

metrical constraints of fracture mechanics alone, without any mental

templates, turned out to “give rise to what appear to be highly-

designed stone working products and techniques,” including hand ax-

like “protobifaces” and cores with apparently “predetermined” flake

removals.45

In a converging line of reasoning Tennie et al.47 criticized

alleged over-interpretations of both Oldowan and extant ape tool

making in terms of high fidelity (“strong”) social learning and cul-

tural traditions. They see the (pre-Acheulean) Oldowan as resulting

from individual learning steered by raw material affordances—

through trial and error, play, least effort strategies and the like—

combined with some low-fidelity (“weak”) social learning such as

stimulus enhancement.

However, why not consider a plausible next step in this line of

argument, I would like to ask Tennie et al. as well as Moore & Preston,

to wit selection in favor of initially plastic features contributing to the

effectiveness of stone technology? Tennie et al. claim that their parsi-

monious approach works better than strong social learning models in

view of frequent local extinction and repopulations, but the same

goes for genetic transmission.

The same question can be posed to Stout et al.,19:324-5 who, con-

trary to Tennie et al., see evidence of strong social learning skills in

differences between three 2.6 myr old Oldowan sites in Ethiopia, pos-

sibly resulting, they add, from Baldwinian selection. They dismiss the

possibility that “various different knapping possibilities already existed

as evolved tendencies in the motor repertoire,” content wise, rather

than being acquired by copying. They dismiss this because “it is diffi-

cult to see how multiple, highly specific yet functionally neutral, alter-

native behavioral programs could have been constructed by natural

selection in the earliest known Oldowan knappers.” But it is not that

difficult, as I have argued. Stout et al. specifically dismiss some form

of Baldwinian genetic assimilation of content (sic) because “this would

itself presuppose an earlier stage in which behaviors were learned

rather than innate.” Yes, it would—as argued.

9 | CONCLUSION

Recent work on animal construction rectifies a widespread assump-

tion that “nest building requires little or no cognitive ability.”40:157 It

suggest a considerable role for cognition (learning, insight, decision

making, planning) in behaviors which are under some degree of

genetic control. It is not a matter of either instinct or cognition—as

McNabb's stress on the imposition of conceptual preconceived forms

would seem to suggest. The good news is that the stress on learning

and other cognitive aspects in the still pervasively culturalist main-

stream research on early stone tool technology combines well with

possible Baldwin effects as explored here, as does its stress on eco-

logical and functional constraints on toolmaking.

Baldwinian selection as a biocultural co-evolutionary2,20 process

is an understudied, hypothetical (sic) driver of early lithic (in)variability,

next to various forms of learning which themselves were susceptible

to such selection. Any emergent Baldwinian selection on basic aspects

of stone tool making by definition was not species-wide, but may

have happened in various places and times, whenever inflexible solu-

tions paid off, regarding various types of tools and cores. This sug-

gests a new take on complex archeological macro-patterns, including

dispersals, grade shifts and convergences, and the degree to which

these patterns co-vary with taxonomic status.48

There is a huge amount of quantitative data regarding pre-

Acheulean and Acheulean tool technology out there waiting to be

revisited from this particular perspective, combined with niche con-

struction theory and inspired by the Extended Evolutionary Synthe-

sis.49 This paradigm gives more weight to “non-programmed
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components of environment, development and inheritance”50:14 than

the classic, mid-20th-century Evolutionary Synthesis which still forms

the mostly implicit background of much lithic analysis.

One of various problems to be addressed not mentioned in the

present, revisionist and out-of-the-box note is that of Acheulean end-

ings. Acheulean hand axes vanished when Middle Paleolithic and Mid-

dle Stone Age51 industries appeared with arguably different52 kinds of

bifaces and much more spatiotemporal variability,1:11-12 at smaller

scales. This may point to a reverse Baldwin Effect under relaxed selec-

tion pressures because learned behaviors had higher pay-

offs.22:327,26:328,53

A promising angle on genes and early stone tools, finally, is the

parallel with the evolution of language. Here too Baldwin Effects have

been invoked by which certain previously learned linguistic features

may in the long run have become innate through selection on linguis-

tic behavior.53,54:322-7 Manipulation and speech are both multilevel,

hierarchically nested, goal-oriented motor sequences, implemented by

neuronal circuitries which partially overlap and are under strong

genetic control.25
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