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Transport experiments in twisted bilayer graphene have 
revealed multiple superconducting domes separated by cor-
related insulating states1–5. These properties are generally 
associated with strongly correlated states in a flat mini-band 
of the hexagonal moiré superlattice as was predicted by band 
structure calculations6–8. Evidence for the existence of a flat 
band comes from local tunnelling spectroscopy9–13 and elec-
tronic compressibility measurements14, which report two or 
more sharp peaks in the density of states that may be asso-
ciated with closely spaced Van Hove singularities. However, 
direct momentum-resolved measurements have proved to be 
challenging15. Here, we combine different imaging techniques 
and angle-resolved photoemission with simultaneous real- and 
momentum-space resolution (nano-ARPES) to directly map 
the band dispersion in twisted bilayer graphene devices near 
charge neutrality. Our experiments reveal large areas with a 
homogeneous twist angle that support a flat band with a spec-
tral weight that is highly localized in momentum space. The flat 
band is separated from the dispersive Dirac bands, which show 
multiple moiré hybridization gaps. These data establish the 
salient features of the twisted bilayer graphene band structure.

The small rotational misalignment of the sheets in twisted bilayer 
graphene (TBG) results in a long-range moiré superstructure with 
a unit cell that contains several thousand atoms. Moiré mini-bands, 
which lead to physical properties that deviate strongly from those 
of aligned bilayer graphene, can form in structurally highly per-
fect devices in which electronic states are coherent over multiple 
moiré unit cells and therefore over a great number of atomic sites. 
The formation of mini-bands further requires a finite overlap of 
the low-energy orbitals between neighbouring moiré sites, which 
in turn suggests the presence of extended wave functions with a 
weak on-site Coulomb repulsion. Nevertheless, near the magic twist 
angle of approximately 1.1°, TBG shows hallmarks of electron–elec-
tron correlations such as metal–insulator transitions, magnetism3,4, 
superconductivity2,3,5 and departures from Fermi liquid behav-
iour in the metallic state16 that are more commonly observed in 
three-dimensional transition metal oxides with on-site interaction 
strengths of several eV.

This dichotomy can be reconciled if there is a marked flatten-
ing of the dispersion in the moiré mini-bands, as predicted by band 
structure calculations. It is theoretically demanding to describe the 
electronic structure and related many-body physics of TBG given the 
size of its unit cell. Therefore, it is important to test key predictions 
of band structure calculations experimentally. However, this proved 
to be challenging, and direct electronic structure measurements by 
ARPES thus far have been largely limited to macroscopic samples of 
epitaxially grown bilayers with large and uncontrolled twist angles. 
Such measurements have shown signatures of the superlattice peri-
odicity17 and flat bands deep in the occupied states18, but have not 
shown evidence for the predicted partially filled flat band that is 
believed to be responsible for the correlated behaviour of TBG 
near the magic angle. Evidence for the latter has been reported in a 
very recent room-temperature study on a device made from exfoli-
ated graphene that was strongly influenced by an additional moiré 
superlattice that arose from a small twist angle with the hexagonal 
boron nitride (hBN) substrate15.

Here, we provide direct evidence for the existence of flat bands in 
TBG near the magic angle. This is achieved by the combination of 
low-energy electron microscopy (LEEM) and scanning tunnelling 
microscopy (STM) with nano-ARPES, a technique that can image 
the photocurrent with submicron spatial resolution and provide 
simultaneous and fully independent momentum-space resolution.

Multiple TBG devices were fabricated by the tear-and-stack 
method (see Supplementary Information, section A). The two 
graphene monolayers are supported by an hBN flake that isolates 
the structure from a graphite electrode (Fig. 1a). The latter is con-
nected to a prepatterned Au contact on an Si/SiO2 substrate. A 
graphite stripe is used to connect the TBG to the second electrode. 
Both the TBG and graphite bottom electrode were grounded for all 
experiments.

The key difference to TBG devices used for transport experi-
ments is the absence of an hBN flake that encapsulates the structure. 
This allows unimpeded access for surface techniques but poses a 
challenge for device fabrication. In particular, it has not been pos-
sible to make such open TBG devices with a twist angle homoge-
neity that rivals that of encapsulated devices3,19. In addition, the 
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actual twist angle of such devices has not been determined from 
gate-dependent transport experiments. This is a serious obstacle for 
nano-ARPES experiments, as the twist angle of devices frequently 
changes during fabrication and therefore cannot be predicted reli-
ably. Finally, the electronic properties of open devices are more 
susceptible to the degrading effect of polymer residues and hydro-
carbon contamination of the surface. Therefore, a thorough charac-
terization of the twist angle and cleanliness of the devices prior to 
ARPES experiments is essential.

This is achieved here by the combination of LEEM and STM. We 
use bright-field LEEM for a large-scale characterization of the area 
in which the two twisted graphene monolayers overlap (Fig. 2b). 
This shows a large area free of folds and bubbles of gases trapped 
between the layers, but with several round features with lateral 
dimensions of typically 2 μm, which we associate with agglomerates 
of polymer residues.

Contrast differences between areas are attributed to differ-
ent local lattice stackings20. By combining this information from 
bright-field LEEM with the dark-field LEEM overview in Fig. 2c, 
we use this stacking contrast to classify areas. As dark-field imag-
ing shows a strong contrast between AB and BA stacked Bernal 
graphene, we can identify unambiguously the large, homogeneous, 
intermediate intensity area in Fig. 2c as TBG, which corresponds 
to a slightly lower intensity in Fig. 2b. It is separated by small folds, 
visible as dark straight lines, from areas that have reconstructed into 
Bernal stacking. Some of these areas exhibit alternating AB and BA 
stacked triangles and can be identified as TBG with a very small 
twist angle21. The smallest of such structures that we can resolve 
have a line pitch of 25 nm, which corresponds to a twist angle of 
0.55°. As no such structures can be observed in the homogeneous 
TBG area, the moiré period must be smaller there; that is, below the 

resolution of these measurements. This implies that the twist angle 
in the homogeneous TBG area is larger than 0.55°. Furthermore, 
in microscopic low-energy electron diffraction, no moiré satellite 
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Fig. 1 | Device layout. a, Sketch of the van der Waals stack with TBG on top of hBN and a bottom graphite electrode. The TBG is contacted by a graphite 
stripe. Note that the twist angle of 1.34° of the actual device is exaggerated for graphical clarity. This results in a smaller moiré unit cell in the schematic 
(white hexagon) than in the actual device. b, Optical micrograph of the device with boundaries of the different layers outlined in different colours as guides 
to the eye. Details of the device fabrication are given in the Methods and Supplementary Information, section A.
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Fig. 2 | Device characterization. a, Intensity map of the ArPES signal 
integrated over 3.3 eV from the chemical potential along a k-space cut that 
crosses the K-point of one of the graphene layers in TBG. b, Bright-field 
LEEM image at a landing energy of 0.2 eV of the area indicated in a. 
Boundaries between different stacking contrasts are indicated with dashed 
lines as guides to the eye. c, Dark-field image at a landing energy of 28.0 eV 
for the area indicated by the white box in b. Triangular reconstruction of 
low twist angle is visible on the right. d, STM topography acquired with a 
set-up voltage and current of V = −250 mV and I = 100 pA, respectively. 
Inset, Fourier transform of a larger area used for the determination of the 
twist angle, as described in Methods. q0 is a reciprocal lattice vector of the 
moiré superlattice. e, ArPES measurements at the positions indicated with 
red dots in c, which show a high level of homogeneity in the sample.
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peaks are observed for the TBG area, which indicates that the sepa-
ration between the peaks there is smaller than the resolution that 
is achieved in these experiments. From this, we obtain an upper 
bound of 2° for the twist angle. The same microscopic low-energy 
electron diffraction patterns confirm an angle of 29 ± 1° between 
TBG and hBN. We have deliberately chosen such a large angle to 
reveal the intrinsic electronic structure of TBG by the minimization 
of competing moiré effects from the interaction with hBN.

For a more precise determination of the twist angle in bilayer 
graphene, we use STM topographic images of the moiré superlat-
tice acquired on the same device (Fig. 2d). From Fourier transforms 
of large images (Supplementary Fig. 3), we find periodicities of  
10.3 nm to 10.8 nm, which correspond to a variation of the twist 
angles between 1.31° and 1.37° over a distance of approximately 
1 μm that is probed by these experiments. Further evidence 
for a good level of homogeneity of the TBG areas comes from 
position-dependent nano-ARPES experiments. Two representative 
dispersion plots acquired at different positions on the same TBG 
area are shown in Fig. 2e and show excellent reproducibility. None 
of the main features change noticeably between these two spots. 
This is a prerequisite for the reliable acquisition of the detailed 
three-dimensional ARPES data sets, which we discuss below.

The application of the concept of band structures is not straight-
forward for TBG. TBG is translationally invariant and therefore a 
crystal that supports Bloch states in a strict sense8,22 for only a dis-
crete set of twist angles. In the general incommensurate structure, 
the spectrum of eigenvalues is dense at every momentum, which is 
fundamentally different from the continuous E(k) dispersion rela-
tion that is typical of electrons in simple crystals. Yet, experiments 
on TBG show clear evidence for band-like transport at any twist 
angle, irrespective of whether the structure is commensurate or 
not2,3,16. This can be understood by supposing the formation of a 
quasi band structure from the non-uniform distribution of spectral 
weights over the complex eigenvalue spectrum, as was proposed for 
incommensurate density wave systems23. ARPES directly measures 
these spectral weights23,24. Indeed, we find that the photoemission 
intensity at the Fermi level is highly localized near the K1 and K2 
points of the two twisted monolayers from where it disperses away 

with increasing energy (Fig. 3a). The spectral weight thus singles 
out a small subset of all possible low-energy eigenvalues. This pro-
vides direct support for the emergence of Bloch-like bands out of 
the complex spectrum of eigenvalues in a moiré structure, and thus 
for the applicability of the widely used continuum models of the 
band structure.

The effect of the twist angle on the details of the band structure 
is profound. In Fig. 3, we show a series of constant energy cuts and 
compare them to band structure calculations of the spectral weight 
for an isolated TBG layer with a twist angle of 1.34°. As our focus 
here is on the identification of the salient features of the TBG band 
structure rather than on a quantitative comparison of different the-
oretical approaches, we perform all calculations in the widely used 
continuum model of freestanding TBG with parameters from the 
literature (see Supplementary Information, section D). Therefore, 
fully quantitative agreement with the data is not expected. At all 
energies, we find a far more complex electronic structure than in 
Bernal bilayer graphene, in which constant energy contours are 
simple concentric circles with small trigonal warping. The elec-
tronic structure observed in this experiment is also fundamentally 
different from that of bilayer graphene with a large twist angle in 
which constant energy contours are well described by two weakly 
hybridized circles centred at K1 and K2 (ref. 25). Instead, on TBG 
we find a complex spectral weight texture with multiple contours 
that appear to be centred at the Γ points of the four mini-Brillouin 
zones that surround K1,2. This is particularly evident in the calcu-
lation at −0.2 eV, but similar features can be recognized at higher 
energy levels, as well as in the data. We interpret these Γ-centred 
constant energy contours as the result of hybridization of Dirac 
cones at all K-points of the moiré mini-Brillouin zone. This natu-
rally results in band extrema at Γ rather than at K1,2, as observed 
for large twist angles. Our observation of such structures therefore 
provides direct evidence for the strong interlayer coupling and the 
formation of moiré mini-bands that is predicted for small-angle 
TBG6–8,22. We note that some Fermi surfaces appear to be broken 
into arc-like structures that seemingly end at arbitrary momenta. 
However, these structures probably do not represent genuine Fermi 
arcs, such as those observed in Weyl semimetals26 and possibly in 
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Fig. 3 | ARPES spectral weight distribution. a, Spectral weight at the Fermi level over the full Brillouin zones of the two graphene monolayers (red, green). 
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cuprates27. Instead, a detailed inspection of the calculations suggests 
that they emerge from a multitude of very small but closed surfaces 
whose spectral weight decays away from K1,2 but remains finite (see 
Supplementary Fig. 3).

We now focus on the E(k) dispersion relation of the quasi-Bloch 
bands of TBG. The overview of cuts perpendicular to the K1–K2 line 
(Fig. 4a) already reveals a dichotomy of the electronic states with two 
distinct subsystems, as predicted. Most importantly, the raw data 
directly show a flat band with a spectral weight localized near the 
K1,2 points that is separated from the dispersive bands. The disper-
sive bands can, at first approximation, be attributed to the K1 and K2 
Dirac cones split by approximately 4 u′ along this k-space direction, 
where u′ is the interlayer coupling (see Supplementary Information, 
section D). The detailed comparison of selected cuts with calcula-
tions of the spectral weight distribution reveals additional features 
(Fig. 4c–e). First, we find clear evidence for hybridization gaps in 
the dispersive bands that reflect the moiré superlattice potential  
(Fig. 4d). The dominant gaps have magnitudes of up to approxi-
mately 100 meV and are therefore comparable to u′. We note that 

the calculations further predict a multitude of smaller gaps that 
arise from a confluence of both hybridization and higher-order 
Umklapps. These cannot be resolved in our data, which have an 
energy resolution of 45 ± 5 meV (see Methods).

The spectral weight at the Fermi level corresponds to a flat band, 
as shown in Fig. 4c–e. The localization of its spectral weight in 
k-space reflects directly the extended nature of the wave functions 
in real space22. It is difficult to quantify the width of the flat band 
from fits to our experimental data because fitting results are model 
dependent, especially with regard to the treatment of the dispersive 
states, sample imperfections and resolution. From the scatter of dif-
ferent fits, we estimate a 30 ± 15 meV band width, in fair agreement 
with our calculations that predict a 46 meV occupied band width, 
but we cannot exclude an even larger systematic error. More pre-
cise measurements of the mini-band width for different twist angles 
might become possible in future nano-ARPES experiments with 
improved resolution that follow the procedures outlined here. We 
note that the flat band is clearly separated from the Dirac bands for 
most of its extension in k-space. For certain cuts, however, it appears 
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to almost touch the Dirac bands within the resolution of the experi-
ments. From this, we estimate an upper limit of the gap between 
these two subsystems of approximately 50 meV, which is consistent 
with calculations that incorporate the effect of structural relaxation 
in the bilayer28–30. The presence of such a gap effectively decouples 
the flat band from the weakly correlated dispersive states, which is 
essential for the physics of TBG.
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Methods
Fabrication. A schematic of the fabrication processes is shown in Supplementary 
Fig. 1. First, hBN flakes were exfoliated onto a PDMS stamp. Then two graphene 
flakes on a SiO2/Si substrate were picked up sequentially with hBN on PDMS. The 
two pieces of graphene came from a single graphene flake that was pre-cut with an 
atomic force microscopy tip and were manually twisted by 1.3°. To ensure that the 
hBN flake picked up graphene instead of dropping down on the SiO2/Si substrate, 
the hBN flake was always kept in partial contact with the substrate during the 
pick-up process (Supplementary Fig. 1b,c). Subsequently, the TBG–hBN structure 
was flipped over and picked up with a second PDMS stamp and then transferred 
onto a graphite flake that was pre-transferred onto the SiO2/Si substrate and 
connected with an Au electrode as a gate. Finally, a second piece of graphite was 
placed between the TBG and a second prepatterned Au electrode as a contact.

Prior to the measurements shown here, samples were annealed at ~350 °C in 
ultrahigh vacuum for several hours.

Nano-ARPES. Experiments were performed at the SpectroMicroscopy beamline 
of the Elettra light source31. This instrument uses multilayer, coated Schwartzschild 
objectives with a numerical aperture of 0.2 to de-magnify a pinhole located at an 
intermediate focus on the sample and achieves a spatial resolution of ~600 nm. 
All of the experiments were performed at T = 85 K with a photon energy of 27 eV 
and p-polarized light with a fixed incidence angle of 45°. k-space mappings were 
performed by the rotation of an imaging hemispherical analyser mounted on a 
five-axis goniometer (instrument built by Elettra). The combined energy and 
momentum resolution of the experiments was ~45 meV, 0.005 Å−1.

LEEM. Before photoemission electron microscopy and LEEM imaging, samples 
were annealed at 350 °C, as measured by a pyrometer. Imaging was performed 
at the same temperature to prevent beam contamination. Images were recorded 
in high-dynamic-range mode and corrected for detector artefacts, as described 
in ref. 32. Photoemission electron microscopy imaging was performed using an 
unfiltered mercury short-arc lamp with its main emission at a photon energy of 
~6 eV. Dark-field imaging was performed under tilted illumination, as described 
in detail in ref. 33. Furthermore, overviews were stitched together using a 
cross-correlation-based method and intensity matched globally.

STM measurements. The devices were inserted in our home-built, 
low-temperature (4.2 K), ultrahigh-vacuum (< 3.0 × 10−10 mbar) set-up, which 
features a commercial STM head (RHK Technology) and a cryostat (CryoVac). 
The devices were then annealed to 350 °C for approximately 10 h before insertion 
into the STM head. To land the STM tip on the TBG sample, we used the capacitive 
navigation method described in ref. 34. Our Si/SiO2 chip contained a patterned 
gold contact, on which we applied an AC voltage of Vpp = 1 V at 5 kHz with respect 
to ground. The same signal, but rotated 180° out of phase, was applied to the Si 
chip. We then used the coarse motor to move the tip laterally at a distance of a 
few micrometres above the sample, and used the strength of the capacitive signal 
to guide the movement with respect to the gold pattern. Once the TBG flake 
was located, we approached the tip to perform the STM measurements. All STM 
measurements were performed with mechanically polished PtIr tips (Unisoku).

Extraction of the twist angle. To determine the twist angle, we Fourier 
transformed topographic images of 113 × 113 nm2 and measured the distance 
|q0| in q space to each moiré peak (Supplementary Fig. 2). The wavelength λM of 
the moiré lattice was then determined by the calculation of the moiré wavelength 
λM ¼ 4πffiffi

3
p

jq0 j
I

. Finally, the twist angle θ was obtained using the formula λM ¼ a
2 sinθ2

I

, 
where a = 0.246 nm is the graphene lattice constant.

Calculations. To compute the theoretical ARPES intensity, we used a 
nearest-neighbour tight-binding model to model each layer and the standard 
twisted continuum theory to model the interlayer coupling. The ARPES intensity 
was obtained by the projection of the electron wave functions for twist angle 
θ = 1.34° onto the first mini-Brillouin zone (for details, see Supplementary 
Information, section D).

Data availability
Supporting data are available for this paper in ref. 35. All other data that support 
the plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.
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