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Abstract

Prediction rule ensembles (PREs) are a relatively new statistical learning method,

which aim to strike a balance between predictive performance and interpretability. Starting

from a decision tree ensemble, like a boosted tree ensemble or a random forest, PREs retain

a small subset of tree nodes in the final predictive model. These nodes can be written as

simple rules of the form if [condition] then [prediction]. As a result, PREs are often much

less complex than full decision tree ensembles, while they have been found to provide similar

predictive performance in many situations. The current paper introduces the methodology

and shows how PREs can be fitted using the R package pre through several real-data

examples from psychological research. The examples also illustrate a number of features

of package pre that may be particularly useful for applications in psychology: support for

categorical, multivariate and count responses, application of (non-)negativity constraints,

inclusion of confirmatory rules and standardized variable importance measures.

Keywords: R, recursive partitioning, decision making, machine learning

Translational Abstract

This manuscript presents prediction rule ensemble (PRE) methodology. This is a rel-

atively new nonparametric exploratory regression method, which has been found to provide

predictive performance close to that of modern machine-learning algorithms like random

forests, while the fitted model consists of a small number of rules and predictor variables.

These rules are statements of the form if [condition] then [prediction], which are relatively

easy to interpret by human decision makers (e.g., psychologists, medical doctors). These

rules can be used for identifying persons or subgroups at higher or lower risk for a given

disorder, for example: if [gender = male & age > 55 & symptom A is present] then [log-odds

of having the disorder + 5]. The current paper introduces PRE methodology, shows how

PREs can be fitted using the R package pre and how the results can be interpreted. This is

shown through three real-data examples from psychological research: predicting chronic de-

pressive trajectories, predicting academic achievement among first-year psychology students



PREDICTION RULE ENSEMBLES 3

and predicting last-week substance use in a randomized clinical trial. The examples also

serve to illustrate features of package pre that may be particularly useful for applications in

psychology, for example its support for categorical, multivariate and count responses, and

the possibility of identifying high- or low-risk subgroups only.
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Introduction

Statistical prediction problems are ubiquitous in psychology and related disciplines

like sociology and medicine. In statistical prediction, a statistical model is fitted, in order to

obtain a rule for predicting the value of the response or criterion variable, for observations

for which only the values of the predictor variables are known. Such prediction problems

are encountered in a wide range of areas in psychology: published examples include the pre-

diction of children’s social adjustment (e.g., Crick, 1996), violent behavior (e.g., M. Yang,

Wong, & Coid, 2010), workplace behavior (e.g., Lee & Allen, 2002), drinking behavior (e.g.,

Larimer, Turner, Mallett, & Geisner, 2004), consumer attitudes (e.g., Maison, Greenwald,

& Bruin, 2004), personality and personality disorders (e.g., Kosinski, Wang, Lakkaraju,

& Leskovec, 2016; Zanarini, Frankenburg, Hennen, Reich, & Silk, 2006), mood and anxi-

ety disorders (e.g., de Graaf, Bijl, Smit, Vollebergh, & Spijker, 2002), university dropout

(Niessen, Meijer, & Tendeiro, 2016), cardiovascular risks (e.g., Hippisley-Cox et al., 2008)

and mortality (e.g., Chapman, Weiss, & Duberstein, 2016).

With the increasing availability and sizes of datasets, there is an increasing interest in

so-called statistical- or machine-learning methods, in which the central objective is to opti-

mize predictive performance on observations not used in training the model (e.g., Harlow &

Oswald, 2016; Hastie, Tibshirani, & Friedman, 2009). These methods have been contrasted

with - and advocated over - more traditional explanatory statistical methods, which aim

to develop a mechanistic model of the data-generating process that gave rise to the ob-

served data (e.g., Breiman, 2001b; Chapman et al., 2016; Yarkoni & Westfall, 2017). Often,

these explanatory methods assume a parametric model, involving assumptions like normally

distributed residuals or linear associations which may be unrealistic in real-world data prob-

lems. Furthermore, in fields like genetics, bioinformatics and neuroimaging, datasets where

the number of predictor variables far exceed the number of subjects are particularly com-

mon, but traditional parametric models are unable to deal with such data.
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Recursive Partitioning Methods

Recursive partitioning methods (RPMs) provide a class of statistical learning methods

that do not suffer from these disadvantages. RPMs like classification and regression trees,

random forests and boosted tree ensembles have gained much popularity in recent years

(e.g., Miller, Lubke, McArtor, & Bergeman, 2016; Strobl, Malley, & Tutz, 2009). These

methods involve few if any assumptions about the data distribution and are able to deal

with large numbers of potential predictor variables. RPMs recursively partition the space

spanned by the predictor variables into increasingly smaller rectangular areas, in which the

observations have increasingly similar response variable values. The resulting partition can

be visualized as a decision tree; RPMs are therefore also known as decision tree methods.

An example recursive partition or decision tree is depicted in Figure 1. The left panel

shows the partition as a decision tree, of which the terminal nodes provide predictions for

the value of the continuous response variable, based on the values of the predictor variables

(x1 and x2). For new observations, for which the value of the response variable is not

known but values of x1 and x2 are known, a prediction can be made by ’dropping’ the new

observations down the tree. The terminal node in which an observation ends up provides

the prediction of the response. The right panel of Figure 1 shows how the decision tree

separates the predictor variable space into rectangular areas, corresponding to the terminal

nodes of the decision tree.

Decision trees like the one in Figure 1 involve only a single binary decision at every

split to arrive at a final decision or prediction, which makes them relatively easy to interpret

and apply. However, single decision trees provide lower predictive performance than other

methods, and they can be unstable: small changes in the training data may yield large

changes in the fitted tree (e.g., Breiman, 1998). Ensemble techniques can improve on the

predictive performance of unstable fitting procedures like single decision trees (Breiman,

1996b). Techniques like bagging (Breiman, 1996a), boosting (Freund & Schapire, 1995)

and random forests (Breiman, 2001a) grow a large number of trees on random samples of

the data. Such tree ensemble methods have been shown to provide state-of-the-art predictive
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Figure 1. Example recursive partition defined by two predictor variables (x1 and x2). In the left

panel, the partition is depicted as a decision tree, with the node-specific means of the response

variable in the terminal nodes. In the right panel, the partition is depicted as a set of rectangular

areas, with the node-specific means of the response variable.

performance, exceeding that of any of the individual ensemble members (e.g., Rokach, 2010).

Introductions to tree ensemble methods specifically aimed at researchers in psychology can

be found in Strobl et al. (2009), which discusses bagging and random forests, and Miller et

al. (2016), which discusses boosted tree ensembles.

A disadvantage of tree ensembles is that the improved predictive performance comes

at the cost of reduced interpretability: instead of a single decision tree, the predictive model

now consists of a large number of trees, that can no longer be visually grasped. To aid in

interpretation of tree ensembles, variable importance measures have been developed, which

aim to quantify the influence of individual variables on the predictions of the ensemble (e.g.,

Breiman, 2001a; Friedman, 2001). However, these importance measures present with several

difficulties of their own, including a bias towards variables with a larger number of unique

values and inflation under multicollinearity (e.g., Altmann, Toloşi, Sander, & Lengauer,
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2010; Nicodemus, Malley, Strobl, & Ziegler, 2010; Strobl, Boulesteix, Kneib, Augustin, &

Zeileis, 2008; Strobl, Boulesteix, Zeileis, & Hothorn, 2007).

Prediction Rule Ensembles

To reconcile the aims of predictive performance and interpretability, several authors

have proposed prediction rule ensemble (PRE) methods (e.g., Dembczyński, Kot lowski, &

S lowiński, 2010; Friedman & Popescu, 2008; Meinshausen, 2010). PREs consist of a small

set of prediction rules: statements of the form if [condition] then [prediction]. In fact, the

regression tree in Figure 1 can also be written as a PRE, as shown in Table 1. The terminal

node in the middle of the tree in Figure 1 is taken as the reference category, so that the

intercept in Table 1 corresponds to the mean in this terminal node. The two rules code

membership of the remaining terminal nodes: the rules are 0-1 coded dummy variables,

taking a value of 1 is their conditions apply and 0 if not. Thus, membership of the left-most

node in Figure 1 is coded by the first rule in Table 1; the mean for that node is reproduced

by summing the intercept and the first rule’s coefficient (i.e., 5 − 3 = 2). Similarly, the

mean of the right-most terminal node is reproduced by summing the intercept and the

second rule’s coefficient (i.e., 5 + 4 = 9).

Table 1 also illustrates how a PRE for a continuous response is in fact a linear re-

gression model, where the predictors are rules instead of the original input variables. This

is an important characteristic of PREs, as it allows the methodology to be applied to any

Function Coefficient

Intercept 5

I(x1 ≤ 8 & x2 ≤ 10) -3

I(x1 > 8) 4

Table 1: The decision tree in Figure 1 written as a set of rules. I is a function denoting the truth of

its argument, taking a value of 1 if the conditions apply and a value of 0 if not.
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response variable type that can be modeled within the generalized linear model (GLM).

For example, we can employ a logistic regression model for a binary response, or a Poisson

regression model for a response reflecting a count of events.

It should be noted that we could have chosen any of the terminal nodes in Figure 1 as

the reference category. In Table 1 we chose the node with a mean close to the overall mean.

Instead, we could have chosen the left- or right-most terminal node as the reference category,

yielding the parameterizations in panels (a) and (b) of Table 2, respectively. Taking the left-

most terminal node in Figure 1 as the reference category yields a so-called non-negativity

constrained solution, where the intercept reflects the lowest possible predicted value and all

rules obtain positive coefficients (Table 2, panel A). Taking the right-most terminal node as

the reference category yields a negativity constrained solution, where the intercept reflects

the highest possible predicted value and all rules obtain negative coefficients (Table 2, panel

B). Such alternative parameterizations may be particularly helpful if we want to identify

subgroups with higher or lower values of the response variable only. For example, in many

applications we may be specifically interested in identifying groups at markedly higher or

lower risk for a certain disorder or outcome.

The different parameterizations are similar to the different contrasts for factors that

(a) Non-negativity constrained

Function Coefficient

Intercept 2

I(x1 ≤ 8 & x2 > 10) 3

I(x1 > 8) 7

(b) Negativity constrained

Function Coefficient

Intercept 9

I(x1 ≤ 8 & x2 ≤ 10) -7

I(x1 ≤ 8 & x2 > 10) -4

Table 2: Alternative parameterizations for writing the decision tree in Figure 1 as sets of rules. (a)

Parameterization with non-negativity constraint. (b) Parameterization with negativity constraint.
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can be used in ANOVAs and regression models, where changing the reference category does

not change the conclusions, but may facilitate interpretation. For example, when comparing

different treatments in an experimental design, taking the control condition as the reference

category simplifies interpretation, as the coefficient for each treatment condition will now

reflect the difference with the control condition.

Taking rules instead of the original predictors as inputs provides a number of potential

advantages: Firstly, flexibility, as the associations between predictor and response variables

need not be linear. Rules can approximate many types of associations, be it monotonically

increasing, U-shaped, or interaction effects. Secondly, rules directly identify subgroups

of observations with markedly higher or lower values of the response variable. This can

be particularly useful in psychological research, where there may be a specific interest in

identifying subgroups of persons at high or low risk. Thirdly, rules are easy to interpret and

apply. In fact, prediction rules can be seen as fast-and-frugal trees, one of the heuristics

postulated by decision scientist Gigerenzer, who found such heuristics closely correspond

to the decision-making process of experts, like doctors at emergency units (e.g., Fokkema,

Smits, Kelderman, & Penninx, 2015; Gigerenzer & Goldstein, 1996; Katsikopoulos, Pachur,

Machery, & Wallin, 2008; Luan, Schooler, & Gigerenzer, 2011).

As noted above, several methods for deriving PREs have been proposed up to date,

most exclusively aimed at classification (e.g., Cohen & Singer, 1999; Weiss & Indurkhya,

2000). Such methods may not be widely applicable in psychological research, where contin-

uous, count and other non-categorical response variable types are commonly encountered.

PRE methods that allow for the analysis of categorical as well as continuous outcomes

are RuleFit (Friedman & Popescu, 2008), ENDER (Dembczyński et al., 2010) and Node

Harvest (Meinshausen, 2010).

Aim of the Current Paper

In the current paper we will focus on the RuleFit algorithm of Friedman and Popescu

(2008), as it can be extended to allow for the analysis of a wide range of response variable

types and rule generation methods. Also, the RuleFit algorithm has been found to provide
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predictive performance competitive with state-of-the-art methods like boosted tree ensem-

bles and random forests (e.g., Fokkema, accepted; Friedman & Popescu, 2008; Joly, Schnit-

zler, Geurts, & Wehenkel, 2012; Shimokawa, Li, Yan, Kitamura, & Goto, 2014; W. Yang et

al., 2008). Specifically, the current paper will focus on R package pre (Fokkema, accepted),

which provides a flexible open-source implementation of the RuleFit algorithm and can be

applied to a wide range of prediction problems, including the examples mentioned at the

beginning of this paper.

Package pre offers several potential advantages over the original RuleFit implementa-

tion (Friedman & Popescu, 2012): For example, it supports continuous, categorical, count,

survival and multivariate responses; it uses unbiased rule induction algorithms; it is well

documented and provides a familiar interface for users familiar with R. An extensive de-

scription of the original RuleFit algorithm is provided in Friedman and Popescu (2008). The

functionality and implementation of pre has been described in technical detail in Fokkema

(accepted). The current paper aims to provide a less technical introduction and practical

tutorial to PREs, aimed at substantive researchers in psychology and related areas.

In the remainder of this paper, we will explain and illustrate PRE methodology

through several real-data examples from psychology: In the first example, we will ana-

lyze a dataset on the prediction of chronic depressive disorder among individuals with a

current depression. Through this example, we will explain and illustrate how PREs are

fitted, and how the results can be interpreted, for example using importance measures and

partial dependence plots. In the second example, we will analyze a dataset on academic

achievement among first-year psychology students. Through this example, we will illus-

trate the analysis of a multivariate response variable and the application of non-negativity

constraints. In the third example, we will predict the number of days of substance use in

the last week of a clinical trial of substance abuse treatments. Through this example, we

will illustrate how a response reflecting a count of events can be modeled, and how rules or

variables known a-priori to be predictive of the response (i.e., confirmatory rules) can be

included in fitting a PRE.
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As noted above, the aim of PRE methodology is to strike a balance between the

interpretability of single trees and the predictive performance of tree ensembles. Therefore,

in the section Predictive Performance, we compare the performance of the PREs fitted in

the examples with that of single trees, tree ensembles and penalized GLMs. Finally, in the

Discussion, we will focus on practical issues and questions that may be encountered in fitting

PREs, like sample size, computation time and how to optimally choose the model-fitting

parameters.

The examples in the current paper can be replicated using the Supplementary Ma-

terial, which provides and explains the R code used to obtain the results presented. In

addition, the Supplementary Material includes artificially generated datasets, which mimic

the datasets used in the examples. Because we do not have permission to redistribute the

datasets analyzed in the examples, we have created artificial datasets to allow readers to

replicate all analyses presented.

Due to the introductory nature of the current paper, in the examples we will focus

on the default settings employed by package pre. The Supplementary Material provides

instructions on how to adjust the default model-fitting parameters to optimize complexity

and predictive performance of the final ensemble. A more technical and detailed description

of possible parameter settings and their effects is provided in Fokkema (accepted).

Example 1: Predicting Chronic Depression

Dataset

In this example, we analyze a dataset from the Netherlands Study of Depression

and Anxiety (NESDA; Penninx et al., 2008). We use part of a dataset from the analyses

performed by Penninx et al. (2011), who aimed to predict chronic disorder trajectories

among respondents with a current depressive and/or anxiety disorder. Penninx et al. (2011)

operationalized a chronic trajectory as the presence of a disorder at two-year follow-up.

They determined predictors of chronicity using logistic regression analyses with 20 potential

predictor variables.
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We use the same set of potential predictor variables and analyze a subset of respon-

dents who met the criteria of a depressive disorder at baseline. We omitted 40 respondents

with one or more missing values from the dataset, as there are currently no methods to

account for missing values in fitting PREs1. This yielded a total sample size of N = 682.

Below, we provide a brief description of the variables; a more detailed explanation of the

variables is provided in Penninx et al. (2011).

Psychiatric diagnoses. All psychiatric diagnoses were assessed according to DSM-IV

criteria, by means of a semi-structured diagnostic interview. The response variable is the

presence of a depressive disorder at two-year follow-up; 50.59% of the observations had

a depressive disorder at follow-up. Among the potential predictor variables are disType,

which reflects baseline psychiatric status and distinguishes between two mutually exclusive

categories: pure depression, and comorbid depression and anxiety. TypeDep reflects the

type of depressive disorder at baseline and distinguishes between three mutually exclusive

categories: first episode major depressive disorder (MDD), recurrent MDD, and dysthymia.

Variables SocPhob, GAD, Panic, and Ago reflect the presence of anxiety disorders at base-

line: social phobia, generalized anxiety disorder, panic disorder and agoraphobia without

panic disorder, respectively. AO represents the age of onset of the index disorder.

Socio-demographic and self-report indicators. Sex (35.48% male), Age (range 18-64),

and edu years (range 5-18) reflect self-reported gender, age in years and years of completed

education, respectively. PsychTreat and ADuse are indicators for whether the respon-

dent was receiving psychological treatment and/or anti-depressant medication at baseline.

Variable pedigree is an indicator for whether the respondent reported having a first-degree

relative with anxiety or depressive disorder. Finally, sample is an indicator for whether

respondents were originally recruited from primary care, specialized mental health care, or

1Multiple imputation may provide a more appropriate way to deal with missing data (e.g., Graham,

2009). Every imputed dataset would however yield a (slightly) different PRE, thus yielding a (much) more

complex result. In light of the introductory nature of the current paper, we therefore analyzed complete

cases only.
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from the general population.

Symptom severity and duration. IDS is a psychological test score reflecting severity

of depressive symptoms. BAI and FQ are psychological test scores reflecting severity of

anxiety symptoms. LCImax reflects the proportion of time in which symptoms of anxiety or

depressive disorders were present in the four years prior to baseline. Because separate indi-

cators for anxiety and depressive symptoms were collected, LCImax reflects the maximum

value on both indicators for every respondent.

Deriving PREs: Rule Fitting

To derive an ensemble of prediction rules, the RuleFit algorithm first generates an

ensemble of decision trees using subsampling. Package pre takes the same approach: by

default, 500 subsamples of 50% of the original data are drawn. A decision tree is fitted

on each of these subsamples. For tree fitting, the original RuleFit algorithm employs the

classification and regression tree (CART) algorithm of Breiman, Friedman, Olshen, and

Stone (1984). However, CART presents with biased variable selection: Given two variables

equally predictive of the outcome, CART is more likely to select the variable with a larger

number of unique values for splitting (e.g., Loh & Shih, 1997; Hothorn, Hornik, & Zeileis,

2006). Therefore, pre by default employs the conditional inference tree (ctree) algorithm of

Hothorn et al. (2006), which implements an unbiased variable selection procedure.

To limit rule complexity, pre fits trees with a maximum depth of three, yielding rules

comprising at most three conditions, by default. Whereas the original RuleFit algorithm

randomly generates a maximum tree depth value for every tree from a pre-specified dis-

tribution, this appears not to improve sparsity or predictive performance of the resulting

ensemble (Fokkema, accepted).

The RuleFit algorithm generates trees sequentially: every tree is grown on a resid-

ualized version of the response variable. That is, the response variable is adjusted for the

predictions of earlier trees. This procedure is known as (gradient) boosting (Freund &

Schapire, 1995; Friedman, 2001). In boosting, the influence of earlier trees is controlled by
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the learning rate: a learning rate of 0 yields no influence of earlier trees, while a value of

1 maximizes the influence of earlier trees. Friedman and Popescu (2003) found small, non-

zero learning rates to perform best, which is reflected in both RuleFit’s and pre’s default

learning rate of .01.

Deriving PREs: Rule Selection

After the decision tree ensemble is generated, the RuleFit algorithm includes every

node from every tree as a rule in the initial rule ensemble. In addition, pre by default

retains only one rule from sets of perfectly positively or negatively correlated rules. This

does not affect predictive performance of the final model, but likely reduces complexity and

computation time.

As in the original RuleFit algorithm, pre includes all predictor variables as linear

terms in the initial ensemble, by default. This is because a large number of rules would

be required to approximate a purely linear function of a continuous predictor variables.

Thus, if the effect of a continuous predictor can be well approximated by a linear function,

the linear term can be selected instead of multiple rules. To reduce the effect of possible

outliers, predictor variables are winsorized prior to their inclusion as linear terms in the

initial ensemble. That is, all values below the 5th percentile are set to the value of the

5th percentile, and all values above the 95th percentile are set to the value of the 95th

percentile, by default.

The RuleFit algorithms selects the final ensemble through regressing the response

variable on all rules and/or linear terms in the initial ensemble. To obtain a sparse final

ensemble (i.e., an ensemble in which many rules and linear terms obtain an estimated

regression weight of 0), the RuleFit algorithm employs lasso regression. Similarly, package

pre employs lasso regression as implemented in the R package glmnet (Friedman, Hastie,

& Tibshirani, 2010; Simon, Friedman, Hastie, & Tibshirani, 2011), by default.

An extensive discussion of lasso regression is outside the scope of the current paper,

but an introduction aimed at researchers in psychology can be found in Chapman et al.

(2016). In short, in traditional regression models, coefficients are generally estimated by
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minimizing the loss function (e.g., residual sum of squares or negative log likelihood). In

lasso regression, a penalty term, which is a function of the sum of the estimated coefficients,

is added to the loss function. As a result, in order to minimize the loss function, the

estimated regression coefficients are shrunken towards zero, compared to the unpenalized

estimates. One of the advantages of penalizing the sum of the regression coefficients is that

unimportant or noisy predictors may obtain weights shrunken to exactly zero, removing

them from the model completely.

The amount of shrinkage applied is controlled by a penalty parameter λ, which takes

values between 0 and 1. A value of 0 yields an unpenalized solution, a value of 1 yields an

intercept-only solution. The optimal λ value for a given dataset is best determined through

cross-validation techniques.

The original RuleFit implementation (Friedman & Popescu, 2012) by default employs

the value of λ that minimizes prediction error as assessed by k-fold cross validation. Further-

more, it determines the number of folds (k) based on sample size, with k varying between

1 and 20 and higher sample sizes yielding a smaller number of folds. In contrast, pre by

default employs 10-fold cross validation, and the value of λ that yields a cross-validated

prediction error within one standard error above the minimum cross-validated prediction

error. This ’1-SE’ rule is a heuristic that selects the simplest model with predictive per-

formance comparable to that of the best model (Breiman et al., 1984, section 3.4.3). In

Fokkema (accepted), the 1-SE rule based on 10-fold cross validation was found to yield final

ensembles that are less complex, while yielding equal or better predictive performance.

Because the lasso penalizes predictors with smaller variance more heavily, both the

original RuleFit implementation and pre scale all linear terms to have a standard deviation

of 0.4 (i.e., the standard deviation of a typical rule), prior to estimation of the final ensemble.

Fitted Ensemble for Predicting Chronic Depression

The fitted PRE for predicting depression is presented in Table 3. Predictive per-

formance, assessed using cross validation and quantified by the area under the receiver

operating characteristic curve (AUC) was .641. This result will be discussed in more detail
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in the section Predictive Performance.

The coefficients reported in Table 3 are logistic regression coefficients: they represent

the expected increase in the log-odds of belonging to the target class (i.e., chronic depression

trajectory) for a unit increase in the predictor variable, while keeping all other predictors

constant. The value of the intercept thus indicates that observations that do not match the

conditions of any of the rules have a probability of e−0.218

1+e−0.218 = 0.446 of chronic depression.

The first rule (rule3 ) indicates that if respondents have an IDS value > 10 and had

symptoms of depression or anxiety for > 26.3% of the time, their odds of having a depression

after two years increase. The second and third rules indicate a very similar pattern. The

fourth rule (rule84 ) indicates that if respondents have an IDS value ≤ 16 and first met the

criteria of the index disorder at age > 17, their odds of having a depression in two years

time decrease.

Most rules in Table 3 involve the IDS and LCImax variables, indicating that these are

the most important predictors of having a depressive disorder in two years time. The fitted

PRE thus reveals a highly plausible pattern, where more severe depressive symptomatology

and longer symptom duration yield a higher predicted probability of a chronic trajectory.

Term Coefficient Description SD Importance

(Intercept) -0.218 1

rule3 0.246 IDS > 10 & LCImax > 0.263 0.494 0.121

rule27 0.152 IDS > 13 & LCImax > 0.362 0.477 0.073

rule67 0.140 IDS > 10 & LCImax > 0.328 0.500 0.070

rule84 -0.083 IDS ≤ 16 & AO > 17 0.489 0.041

rule51 0.016 LCImax > 0.260 & IDS > 9 0.487 0.008

rule24 -0.005 IDS ≤ 16 & GAD ∈ {Negative} 0.499 0.002

Table 3: Selected terms for predicting chronic depression with estimated coefficients, standard devi-

ations and importances.
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Generating Predictions

To generate predictions for new observations, the contributions of each rule and linear

term in the final ensemble need to be computed and summed. An example for two obser-

vations is provided in Table 4. In panel (a), the input variable values are presented. Only

the values for those variables appearing in the final ensemble are provided, because only

these are required for making a prediction. In panel (b), the coded rules are presented: they

take a value of 1 if the conditions of the rule apply and 0 if not. In panel (c), the rules are

multiplied by their respective coefficients. To obtain the predicted probability of a chronic

depressive trajectory, these values are summed and the logistic function is applied to this

sum, yielding the predicted probability of a chronic depressive trajectory.

Observation 48 has relatively low values of IDS and LCImax, and met the conditions of

both rules with negative coefficients, thus obtaining a lower predicted probability of a chronic

depressive trajectory. Observation 64 has relatively high values of IDS and LCImax, and

met the conditions of all rules with positive coefficients, thus obtaining a higher predicted

probability of a chronic depressive trajectory.

Interpreting PREs: Importance Measures

The effect of rules and linear terms on the ensemble’s predictions are quantified by

their estimated coefficients. However, the strength of the effect of a rule or linear term on the

ensemble’s prediction does not only depend on the estimated coefficient; it also depends on

how much the values of a predictor variable or membership of a rule vary over observations.

Variables that show more variation in the training data can be expected to have a stronger

effect on the ensemble’s predictions. Friedman and Popescu (2008) therefore defined several

importance measures, which quantify the relative contribution of rules, linear terms and

predictor variables to the predictions of the final ensemble.

Friedman and Popescu (2008) defined the importance of a rule or linear term as the

absolute value of the estimated regression coefficient, multiplied by its sample standard

deviation. Thus, these importances can take values ≥ 0, with higher values indicating a
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(a) Original variable values

IDS LCImax AO GAD

48 12 0.038 33 Negative

64 20 0.722 28 Positive

(b) Rules

rule3 rule24 rule27 rule51 rule67 rule84

48 0 1 0 0 0 1

64 1 0 1 1 1 0

(c) Contributions to the predicted values

(Intercept) rule3 rule24 rule27 rule51 rule67 rule84 sum p̂

48 -0.218 0.000 -0.005 0.000 0.000 0.000 -0.083 -0.306 0.424

64 -0.218 0.246 0.000 0.152 0.016 0.140 0.000 0.335 0.583

Table 4: (a) Original variable values, (b) rules, and (c) contributions to the predicted probability of

a chronic depressive trajectory for two observations (with identification numbers 48 and 64).

stronger effect on the ensemble’s predictions. The standard deviation of a rule is given by

the standard deviation of a binary variable; that is,
√
p(1− p), where p is the proportion

of training observations to which the rule applies. Thus, the importance of a rule increases

both with the absolute value of the estimated coefficient, as well as with the extent to

which rule membership varies among the training observations. Package pre computes these

importances in the same way, and the rule importances for predicting chronic depressive

trajectories are also presented in Table 3.

A single predictor variable may appear in the conditions of multiple rules and as

a linear term. Friedman and Popescu (2008) therefore defined the total importance of a

predictor variable as the sum of the importance of the linear term and the importance of

every rule in which the variable appears, divided by the total number of conditions in the

rule. Package pre computes these importances in the same way.
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Figure 2 depicts the individual variable importances for predicting chronic depres-

sion. The importances indicate that 4 variables are relevant for predicting depression; the

remaining potential predictor variables obtained importance values of 0 and are therefore

not included in the plot. As we already observed in Table 3, the IDS and LCImax vari-

ables are most important for predicting depression. Age of disorder onset and presence of

generalized anxiety disorder are also relevant for predicting chronic depression, but of lesser

importance.
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Figure 2. Variable importances for predicting chronic depression. Variables with importances equal

to 0 (i.e., variables that do not contribute to the predictions of the ensemble) are not plotted.

Interpreting PREs: Partial Dependence Plots

Partial dependence plots provide visual tools to assess the shape of the effect of one or

two predictor variables on the predictions of the ensemble. Partial dependence plots show

the conditional expectation of the response variable for a range of values of (pairs of) pre-

dictor variables, calculated over the marginal joint distribution of the remaining predictor

variables (Friedman, 2001; Friedman & Popescu, 2008). A word of caution is in order here:

Because the expectations are calculated over the marginal joint distribution of the remaining
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predictor variables, possible interactions will be averaged over. A univariate partial depen-

dence plot thus depicts the univariate effect of a predictor, which should be interpreted with

care in the presence of interactions. Similarly, a bivariate partial dependence plot can only

depict the bivariate effect of a pair of predictors, and should be interpreted with care in the

presence of interactions with the remaining predictor variables. The possible presence of

(higher-order) interactions in the fitted model can best be evaluated by inspecting rules in

the ensemble involving multiple predictor variables.

Like the original RuleFit implementation, package pre computes partial dependence

plots following the definition of Friedman and Popescu (2008). Figure 3 shows partial

dependence plots for a subset of variables relevant for predicting the presence of depressive

disorder. The plots reveal monotonically increasing effects of LCImax and IDS on the

predicted probability of chronic depression. Age of disorder onset (AO) has a monotonically

decreasing effect on the probability of having chronic depression, while the presence of a

generalized anxiety disorder slightly increases the probability.

Figure 4 shows the dependence of the probability of having a chronic depression on

both symptom severity (IDS ) and duration (LCImax ). The plot reveals a pattern where

the probability of a chronic trajectory increases with both increasing symptom severity and

symptom duration.
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Figure 3. Univariate partial dependence of the predicted probability of a depression diagnosis in

two years time on four of the predictor variables.
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Figure 4. Bivariate partial dependence of the predicted probability of chronic depression on de-

pressive symptom severity (IDS ) and symptom duration (LCImax ).

Example 2: Predicting Academic Achievement

In this second example, we focus on the prediction of a multivariate response and

on the application of non-negativity constraints. We will be using a dataset on academic

achievement, collected from first-year bachelor students in psychology at Groningen Uni-

versity (The Netherlands).

Dataset

The data are from a study by Niessen et al. (2016), where the variables are described

in more detail. Below, we provide a brief description of the variables used in our analyses.

The original dataset comprised 851 observations, after removing observations with one or

more missing values, we obtained a sample of N = 638 observations. We apply a non-
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negativity constraint, which will force the estimated coefficients of rules and linear terms

in the final PRE to values ≥ 0. Thus, the rules in the final ensemble will only identify

subgroups of students who are likely to perform better than other students. Note that

the application of (non-)negativity constraints is not limited to multivariate or continuous

responses, but can be applied with any response variable type.

Response variables. The response consists of two variables: MeanFYG, representing

the mean grade over all courses in the first year (range 1.0-9.4) and Credits, representing the

number of credits obtained in the first year (range 0-60). The sample correlation between

these two response variables was 0.82.

Socio-demographic variables. Potential socio-demographic predictor variables are

Gender (30.41% male), Age (range 17-42), Nationality (Dutch, German, other EU country,

or Non-EU country). Program represents an indicator for whether students participated in

the Dutch or English study program.

Admission tests. Before the start of their studies, prospective students completed

three admission tests, yielding three test scores: RawScore English, RawScore Math, and

RawScore Psychology. Online test represents an indicator for whether admission tests were

completed online or in person; Test Language represents an indicator for whether admission

tests were taken in English or in Dutch.

Fitted Ensemble for Predicting Academic Achievement

The fitted ensemble is presented in Table 5. Note that, with a multivariate response,

every rule (or linear term) obtains an estimated coefficient for each response variable. Be-

cause we applied a non-negativity constraint, all estimated coefficients are positive. As the

two response variables are strongly correlated, the estimated coefficients have a similar order

of magnitude for the two response variables. The ensemble’s coefficients of determination

(R2) for predicting the number of credits was 0.221, and 0.272 for predicting the mean

first-year grade, as assessed by cross validation. In the section Predictive Performance, this

result will be discussed in more detail.
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Term Credits MeanFYG Description

(Intercept) 30.425 5.384 1

rule21 5.124 0.317 RawScore Psychology > 24 & Nationality ∈ {Dutch, Ger-

man}

rule206 3.126 0.231 RawScore Psychology > 24 & RawScore Math > 12

rule442 2.113 0.108 Nationality ∈ {Dutch, German} & Gender ∈ {female}

rule316 1.371 0.107 RawScore Psychology > 24 & RawScore Math > 13

rule40 1.162 0.100 RawScore Psychology > 30

rule352 1.311 0.088 RawScore Psychology > 24 & RawScore Math > 10

rule444 1.569 0.086 Nationality ∈ {Dutch, German} & Gender ∈ {female} &

RawScore Psychology > 22

rule12 0.758 0.083 RawScore Psychology > 24 & Nationality ∈ {German}

rule150 0.645 0.059 RawScore Psychology > 24 & RawScore Psychology > 31

rule618 0.308 0.032 RawScore Math > 15 & RawScore Psychology > 28

RawScore Psychology 0.176 0.016 18 ≤ RawScore Psychology ≤ 38

rule258 0.133 0.011 RawScore Psychology > 18 & RawScore Math > 12 &

RawScore Psychology > 28

Table 5: Selected terms and estimated coefficients for predicting mean first-year grade and the

number of credits obtained.

The Psychology admission test score appears to be an important predictor for aca-

demic achievement: It appears in the conditions of almost every rule of the final en-

semble and also as a linear term. Note that the description for the linear term (i.e.,

RawScore Psychology in Table 5) also provides the winsorizing points for this variable.

That is, values of RawScore Psychology < 18 were set to 18 and values > 38 were set to 38,

to reduce the effect of possible outliers. The terms involving RawScore Psychology reveal

a highly plausible pattern, where higher values on the admission test are associated with

higher academic achievement.

Furthermore, the score on the Math admission test, nationality and gender also con-
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(a) Original variable values

RawScore Psychology Nationality RawScore Math Gender

31 16 German 8 male

387 38 German 16 female

(b) Rules

rule12 rule21 rule40 rule150 rule206 rule258 rule316 rule352 rule442 rule444 rule618

31 0 0 0 0 0 0 0 0 0 0 0

387 1 1 1 1 1 1 1 1 1 1 1

(c) Contributions to the predicted values of Credits and MeanFYG

(Intcpt) RSc Psy rule12 rule21 rule40 rule150 rule206 rule258 rule316 rule352 rule442 rule444 rule618 ŷ

31 30.425 3.162 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.587

387 30.425 6.674 0.758 5.124 1.162 0.645 3.126 0.133 1.371 1.311 2.113 1.569 0.308 54.720

(Intcpt) RSc Psy rule12 rule21 rule40 rule150 rule206 rule258 rule316 rule352 rule442 rule444 rule618 ŷ

31 5.384 0.290 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.674

387 5.384 0.611 0.083 0.317 0.100 0.059 0.231 0.011 0.107 0.088 0.108 0.086 0.032 7.218

Table 6: (a) Original variable values, (b) rules, and (c) their contributions to the predicted number

of credits and mean grade in the first year for two observations (with identification numbers 31 and

387).

tribute to the ensemble’s predictions. A possible explanation for the effect of nationality is

that Dutch and German students are more accustomed to the Dutch language and academic

environment, compared to students from other (EU and non-EU) countries.

Generating Predictions

Input variable values for two observations are presented in panel (a) of Table 6. In

panel (b), the rules are coded. In panel (c), the rules and linear term are multiplied by their

respective coefficients, and summed to obtain a prediction for each response variable.
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Observation 31, who is male and has relatively low values for RawScore Psychology

and RawScore Math, obtained a lower predicted number of credits and mean grade

for the first year. Observation 387, who is female and has relatively high values for

RawScore Psychology and RawScore Math, obtained a higher predicted number of credits

and mean grade for the first year.

Interpreting PREs: Standardized Importance Measures

To further interpret the fitted ensemble, we can inspect variable importances. Ear-

lier, we explained how importances of rules and linear terms are given by the estimated

coefficients, multiplied (i.e., standardized) by the sample standard deviations. To obtain a

measure of effect size that can be compared between different response variables, package

pre allows for further standardizing the importances, by dividing them by the standard

deviation of the response variable. These standardized importances can be interpreted as

standardized regression coefficients, taking values between 0 (no correlation), and 1 (perfect

correlation), which may further simplify interpretation. These standardized importances are

particularly useful when there are multiple response variables with different scales, as in the

current example.

In turn, the standardized importances of rules and linear terms can again be used

to compute standardized input variable importances. The standardized input variable im-

portances for predicting academic achievement are depicted in Figure 5. The importances

reveal a similar pattern for both response variables: The most important predictor variable

is the Psychology admission test score, followed by nationality, the Math admission test

score, and gender.
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Figure 5. Standardized variable importances for predicting mean grade and number of credits

obtained in the first year.

Example 3: Predicting Substance Use

In the third example, we focus on the prediction of a count response and on the

inclusion of a confirmatory rule. That is, a rule which is known a-priori to be predictive

of the response, for example from previous studies. By specifying a confirmatory rule in

fitting a PRE, no penalty will be applied to the estimated coefficient of this rule, and the

rule will thus receive an unbiased regression coefficient estimate.

Dataset

We analyze a dataset from a multi-site effectiveness trial on substance abuse treatment

from Campbell et al. (2012). The trial was conducted within the National Institute on Drug

Abuse (NIDA) Clinical Trials Network (CTN) and the data were obtained from NIDA’s data

share website on https://datashare.nida.nih.gov/. The study was a randomized trial,

comparing the use of a so-called Therapeutic Education System (TES) with Treatment

as Usual (TAU). TAU comprised standard treatment in an outpatient substance abuse

program, TES additionally comprised a computer-assisted intervention and contingency



PREDICTION RULE ENSEMBLES 28

management system.

In our analyses, we take the number of reported days of substance use (drugs or

alcohol) in the last week of treatment as the response variable. The number of days of

substance use reflects a count of events and we therefore model the response through a

Poisson regression.

Campbell et al. (2014) found that TES resulted in higher abstinence rates than TAU;

we therefore expect an effect of receiving TES and include it as a confirmatory rule in

fitting the ensemble. As a result, no penalty will be applied to the estimated coefficient of

the treatment indicator (trt), yielding an unbiased estimate of the effect of TES.

We included a total of 56 potential predictor variables in our analysis, which are

briefly described below. A total of 507 patients were randomized to treatment, originally.

We included observations with complete data only, yielding a total sample size of N = 478.

Socio-demographic variables. These included patients’ age in years (range 18-68),

gender (61.51% male), level of education, marital status, employment status, and living

arrangement.

Quality of life. Six self-reported quality of life indicators were included as potential

predictors: an overall quality of life rating (on a scale of 0-100), mobility problems, problems

with self-care, problems with daily activities, pain or discomfort, and feelings of anxiety or

depression.

Coping strategies. Coping strategies in dealing with drugs and alcohol were measured

with the 23-item Coping Strategies Scale (CSS; Litt, Kadden, Cooney, & Kabela, 2003).

All 23 item responses were included as individual potential predictor variables.

Mental health problems. Mental health problems were measured by the 18-item Brief

Symptom Inventory (BSI; Derogatis & Fitzpatrick, 2004). All 18 item responses were

included as individual potential predictor variables.
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Clinical characteristics. These included the type of substance primarily abused by

the patient, an indicator for treatment condition, and the number of days the patient used

drugs or alcohol in the first week of treatment.

Fitted Ensemble for Predicting Substance Use

We obtained a final ensemble consisting of five rules, which are presented in Ta-

ble 7. Note that the confirmatory rule (trt ∈ {TES}) did not receive a rule number, only

exploratory rules do. The (unpenalized) coefficient for the confirmatory rule is negative,

indicating that the new treatment appears effective: TES is associated with lower substance

use than TAU, as was expected.

All other terms in the ensemble involve variable week1, which represents the number

of days the patient used substances in the first week of treatment. The week1 linear term

(Table 7) has a positive coefficient, indicating a highly plausible positive association between

substance use in the first and last week of treatment. The remaining rules indicate a similar

effect for the week1 variable. Furthermore, BSNAUSE.T0 is an item of the BSI measuring

the extent to which the respondent experiences nausea; rule20 indicates that lower values

on this item, combined with no substance use in the first week of treatment, are associated

with lower substance use. CSCALM.T0 is an item of the CCS reflecting the extent to which

the respondent reports trying to calm down when feeling angry; rule16 indicates that higher

Term Coefficient Description

(Intercept) 0.559 1

rule20 -0.195 week1 ≤ 0 & BSNAUSE.T0 ≤ 2

trt ∈ {TES} -0.177 trt ∈ {TES}

rule16 -0.157 week1 ≤ 2 & CSCALM.T0 > 2

rule30 -0.120 week1 ≤ 0 & BSTENSE.T0 ≤ 3

week1 0.060 0 ≤ week1 ≤ 7

Table 7: Selected terms and estimated coefficients for predicting days of substance use in last week

of treatment.
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values on this item, combined with lower substance use in the first week of treatment, are

associated with lower substance use in the last week of treatment. BSTENSE.T0 is an item

of the BSI reflecting the extent to which the respondent reports feeling tense or keyed up;

rule30 indicates that lower values on this item, combined with no substance use in the first

week of treatment, are associated with lower substance use in the last week of treatment.

To interpret the coefficients in a Poisson regression, we have to exponentiate. For

example, the intercept reveals that patients who do not meet the conditions of any rule are

predicted to use substances e0.559 = 1.749 days in the last week of treatment. Similarly,

patients in the TES condition, that do not meet the conditions of any of the other rules in

the ensemble, are expected to use substances e0.559−0.177 = 1.466 days in the last week of

treatment.

The R2 value of the ensemble’s predictions, calculated using cross validation, was

0.097. This result will be discussed in more detail in the section Predictive Performance.

Generating Predictions

Input variable values for two observations are presented in panel (a) of Table 8. In

panel (b), the rules are coded, and in panel (c), the rules and linear term are multiplied

by their respective coefficients. These values are summed and exponentiated to obtain

a predicted value for the number of substance use days in the last week of treatment.

Observation 5 obtained a low predicted value, because of receiving TES, and reporting

no use of substances in the first week of treatment, low feelings of nausea and tenseness,

and staying calm when feeling angry. Observation 20 obtained a higher predicted value,

because of not receiving TES and reporting seven days of substance use in the first week of

treatment.
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(a) Original variable values

week1 trt BSNAUSE.T0 CSCALM.T0 BSTENSE.T0

5 0 TES 0 3 1

20 7 TAU 3 1 0

(b) Rules

trt ∈ {TES} rule16 rule20 rule30

5 1 1 1 1

20 0 0 0 0

(c) Contributions to the predicted values

(Intercept) week1 rule16 rule20 rule30 trt ∈ {TES} sum ŷ

5 0.559 0.000 -0.157 -0.195 -0.120 -0.177 -0.089 0.915

20 0.559 0.422 0.000 0.000 0.000 0.000 0.981 2.667

Table 8: (a) Original variable values, (b) rules, and (c) their contributions to the predicted number of

days of substance use in the last week of treatment for two observations (with identification numbers

5 and 20).

Variable Importances

The input variable importances are plotted in Figure 6. First-week substance use

appears to be a somewhat stronger predictor of last-week substance use than the treat-

ment indicator, even though the latter obtained an unpenalized coefficient. Also note that

variable importances quantify the contribution of individual variables to the predictions of

the ensemble. Thus, although the estimated coefficient of the treatment indicator was not

shrunken towards zero, the estimated coefficients and importances still provide an accurate

description of the fitted model and can be compared between predictor variables. Finally,

the variable importances in Figure 6 indicate that the BSI and CSS items have relatively

small effects on the predictions of last-week substance use.
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Variable importances
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Figure 6. Variable importances for predicting substance use days in the last week of treatment.

Predictive Performance

As noted in the Introduction, PREs aim to strike a balance between the predictive

performance of full decision tree ensembles and the interpretability of single decision trees.

The PREs fitted in the examples above are indeed less complex than random forests, which

generally consist of a large number of decision trees (e.g., 500) and tend to include all

predictor variables in the predictive model. Furthermore, we can expect that the fitted

PREs are somewhat more complex than single decision trees fitted on the same data would

be. In this section, we will compare the predictive performance of the PREs fitted in the

examples with that of random forests, single trees and lasso-penalized GLMs.

Method

All analyses were performed in R (R Core Team, 2019, version 3.6.1).

Random forests. Random forests were fitted using function cforest from package

partykit (Hothorn & Zeileis, 2015; version 1.2-5). Default settings were employed in all

analyses. That is, every random forest consisted of 500 trees, the number of randomly
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selected predictor variables for each split was set to
√
p (where p is the number of potential

predictor variables), each tree was grown on a random subsample of a fraction of .632 of

the original training observations, and splitting was continued as long as a node contained

≥ 20 observations and both resulting nodes contained ≥ 7 observations.

Prediction rule ensembles. PREs were fitted using function pre from package pre

(version 0.7.2). Default settings were employed. That is, no (non-)negativity constraints

and no confirmatory rules were applied in fitting PREs, as these can also not be applied in

fitting single decision trees and random forests.

GLM with lasso penalty. Logistic and linear regression models (GLMs) with a lasso

penalty were also fitted using function pre. Although function pre fits ensembles that may

include both rules and linear terms, it also allows for fitting ensembles composed of either

linear terms or rules. Except for the setting of linear terms only, default settings were

employed for fitting the GLMs. That is, outliers in the predictor variables were winsorized

to their 5th and 95th percentile, and estimation was performed using function cv.glmnet

from package glmnet (Friedman et al., 2010; version 3.0-1) with the ’1-SE’ rule used for

model selection.

Single decision trees. Single decision trees were fitted using function ctree (Hothorn

et al., 2006) from package partykit. Default settings were employed in all analyses. That is,

an α level of .05 was employed as the significance level for the variable selection test, which

determines whether a split will be made or not. Also, splits were made as long as a node

contained ≥ 20 observations and both resulting nodes contained ≥ 7 observations.

Assessment of predictive performance. Calculating predictive performance based on

the same data that was used to construct the model (i.e., training data) likely yields overly

optimistic estimates of predictive performance on future observations (e.g., Hastie et al.,

2009). Therefore, predictive performance was calculated based on 10-fold cross validation.

That is, the original training observations were randomly assigned to one of 10 (approxi-

mately equally-sized) folds. Each of these folds serves as a test dataset, for which predictions
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are generated using a model build on the observations in the remaining nine folds. This

procedure is repeated for each of the 10 folds, yielding a cross-validated prediction of the

response variable for each of the original training observations. These cross-validated pre-

dictions are then compared with the observed values of the response to assess predictive

performance. To reduce the dependence of the results on a single partition of the training

observations into folds, we repeated the 10-fold cross validation 10 times. This approach is

known as repeated cross validation and has been found to provide more reliable estimates

of predictive performance (Kim, 2009; Krstajic, Buturovic, Leahy, & Thomas, 2014).

For the dataset from Example 1 (chronic depression), the squared error loss (SEL)

was taken as the outcome. The SEL reflects the mean squared difference between the pre-

dicted probability of belonging to the target class and observed class membership, which is

sometimes also referred to as the Brier score. For the datasets from Example 2 (multivari-

ate academic performance) and Example 3 (substance use), mean squared error (MSE) was

taken as the outcome. The MSE reflects the mean squared difference between the predicted

and the observed value of the response variable(s). SEL and MSE were calculated for each

fold of each repetition, allowing for computing both the mean predictive performance and

its standard error (where SE = SD/
√

100, where 100 equals the number of folds times the

number of repetitions).

In addition, measures of effect size were calculated: the area under the receiver oper-

ating characteristic curve (AUC) for the depression example, and the coefficient of determi-

nation (R2) for the other two examples. For these measures, averages were calculated over

the 10 repeats of 10-fold cross validation.

To test the statistical significance of differences in SEL or MSE between the four meth-

ods, linear mixed-effects regression models were fitted using package lme4 (Bates, Mächler,

Bolker, & Walker, 2015; version 1.1-21). The estimates of predictive performance in each of

the folds of the repeated 10-fold cross validation represent a repeated-measures experimen-

tal design. To account for the dependence introduced by this repeated-measures design, a

random intercept was estimated with respect to every fold in every replication. Fixed effects
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were estimated to compare the performance of PREs with that of random forests and single

trees, respectively. Significance of the fixed effects was assessed using package lmerTest,

which allows for calculating p values for linear mixed-effect models using Satterthwaite’s

degrees of freedom method (Kuznetsova, Brockhoff, & Christensen, 2017; version 3.1-0).

Results

Figure 7 presents means and standard errors of the prediction error measures. In all

datasets, random forests rank highest in terms of predictive performance. Overall, PREs

rank highest after that, followed by the lasso GLMs, followed by the single trees.

In the dataset from Example 1 (chronic depression), prediction error of PREs was

significantly lower than that of single trees (p < .001) and the lasso GLMs (p < .001).

Prediction error of PREs was higher than that of random forests, but not significantly (p =

0.083). The AUC values (Table 9) indicate the same ordering of performance.

In the dataset from Example 2 (academic performance), prediction error of PREs

was significantly lower than that of single trees for both Credits (p < .001) and MeanFYG

(p < .001). Prediction error of PREs was also significantly higher than that of random

forests for both Credits (p < .001) and MeanFYG (p < .001). Prediction error of PREs

was significantly lower than that of the lasso GLMs for Credits (p < .001), but significantly

RF PRE lasso GLM tree

Chronic Depression (AUC) 0.651 0.641 0.637 0.582

Credits (R2) 0.249 0.221 0.190 0.179

Mean First-Year Grade (R2) 0.332 0.272 0.289 0.247

Substance Use (R2) 0.104 0.097 0.092 0.095

Table 9: Mean effect sizes for predictive accuracies of random forests, PREs and single decision trees

for the datasets from Example 1 (Chronic Depression), Example 2 (Credits and Mean First-Year

Grade) and Example 3 (Substance Use). Means are calculated over 10 replications of 10-fold cross

validation. RF = random forest; PRE = prediction rule ensemble; lasso GLM = lasso-penalized

generalized linear model.
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higher for MeanFYG (p = 0.008). The proportions of variance explained (Table 9) indicate

a medium to large effect for the performance of PREs.

In the dataset from Example 3 (substance use), prediction error of PREs was lower

than that of single trees and the lasso GLMs, but not significantly (p = 0.766, p = 0.511,

respectively). Prediction error of PREs was higher than that of random forests, but not

significantly (p = 0.362). The proportions of variance explained (Table 9) indicate a medium

effect for the performance of PREs.

In summary, the results indicate that in the examples presented here, PREs indeed

strike a balance between the predictive performance of random forests and single decision

trees, while at the same time performing better than lasso GLMs, on average.
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Figure 7. Predictive performance for random forests, PREs, lasso-penalized GLMs and single

decision trees for the datasets from Example 1 (Chronic Depression), Example 2 (Credits and Mean

First-Year Grade) and Example 3 (Substance Use). Circles depict the means and the error bars

depict ± 1 standard error, calculated over 10 replications of 10-fold cross validation. Note that these

standard errors do not account for the repeated-measures design of the experiment (as opposed to

the multilevel analyses reported in text). RF = random forest, PRE = prediction rule ensemble;

lasso GLM = lasso-penalized generalized linear model.
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Discussion

Summary

We introduced PRE methodology as a flexible regression method for psychological

research. Using R package pre, we fitted PREs for predicting chronic depression, academic

performance and substance use. These examples illustrated how rules in a PRE are derived

and selected, how predictor variables and different types of response variables should be

specified, how (non-)negativity constraints can be applied, and how rules that are known

a-priori to be predictive of the response can be included in the ensemble. The examples also

showed how the resulting PREs can be interpreted, for example using importance measures

and partial dependence plots.

We compared predictive performance of the fitted PREs with that of random forests

and single decision trees using cross-validation techniques. We found that PREs indeed

strike a balance between tree ensembles and single decision trees. This is in line with

earlier results on the RuleFit algorithm (Friedman & Popescu, 2008; Joly et al., 2012;

Shimokawa et al., 2014; W. Yang et al., 2008). We also found that PREs outperformed

lasso-penalized GLMS in three out of the four response variables, which is in line with the

findings of Fokkema (accepted), where pre provided lower complexity and higher predictive

performance than both lasso-penalized GLMs and the original RuleFit implementation.

We conclude that PREs may provide flexible, accurate and interpretable tools for

prediction problems in psychological research. PREs may be particularly useful for re-

searchers interested in subgroup detection, for example to decide which persons are at high

(or low) risk for adverse (or beneficial) outcomes. Whereas traditional GLMs identify which

variables are predictive of the outcome, for generating predictions they require the multi-

plication of predictor variables by their respective coefficients and summing the resulting

values. With an increasing number of predictor variables, this requires increasing amounts

of information, time and computation, which are generally scarce and costly in psychological

practice. Compared to traditional GLMs, the variable selection and subgroup identification

performed by PREs may thus be very practically useful. The rules in a PRE can be seen
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as fast-and-frugal decision trees and may provide easy-to-use heuristical tools for human

decision makers (e.g., Katsikopoulos et al., 2008; Gigerenzer & Goldstein, 1996; Luan et al.,

2011; Fokkema et al., 2015).

In the remainder of this section, we will discuss a number of practical issues and

questions that may be encountered in fitting PREs:

Sample Size

There are no minimum sample size requirements for fitting PREs; because PREs are

an exploratory regression method, there is no concept of statistical power. However, as with

all statistical methods, a trade-off between sample size and predictive performance applies,

in that larger samples will yield more accurate, generalizable, and stable models. Our results

indicate that with sample sizes ranging from about 450 to 650, predictive performance of

PREs already approximates that of random forests, which are a state-of-the-art predictive

method.

In addition, one of the advantages of PREs is that they can deal with datasets where

the number of potential predictor variables is (much) larger than the number of observations.

Note, however, that if the number of potential predictor variables becomes much larger, this

makes the prediction problem more complex.

Computation Time

As with most statistical methods, the computational burden of fitting PREs increases

with the number of observations and/or predictor variables. For (very) large datasets, the

default settings of pre may yield long computation times. Most of the computational burden

is due to the fitting of a large number (500, by default) of decision trees, in order to generate

the rules.

Computation time of function pre can be reduced in three main ways: Firstly, by

employing CART instead of conditional inference trees for rule generation. It should be

noted, however, that CART suffers from a variable selection bias towards predictors with a

larger number of unique values. This variable selection bias may also present in the fitted
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PRE and thus employing CART may only be recommended if all predictor variables are of

the same type. Variable selection bias in PREs has not been empirically studied yet, but

the results of Fokkema (accepted) suggest that the use of CART yields more complex and

often less accurate final ensembles.

Secondly, a random-forest instead of a boosting approach to rule induction can yield

shorter computation times. With package pre, a random-forest approach can be employed

by specification of the mtry argument, which will result in a random subsample of mtry

predictor variables being selected as potential candidates for every split in every tree. Fur-

thermore, setting the boosting parameter or learning rate to a value of 0 may yield a slight

decrease in computation time, as sequential updating of the response variable will then

no longer be performed. Adjusting these model-fitting parameters will yield different pre-

dictive performance and complexity of the final ensemble, but there is no general rule for

determining whether a random-forest or boosting approach will perform better.

Finally, computation time can be further reduced by employing the parallel compu-

tation option of pre for estimation of the final ensemble.

Optimizing Model-Fitting Parameter Settings

The default settings of pre represent the author’s choice of parameter settings, which

can be expected to perform relatively well for most datasets. The defaults were chosen so as

to yield ensembles with relatively low complexity and high predictive performance. These

defaults can be adjusted, based on the characteristics of a specific dataset, or the prefer-

ences or subject-matter expertise of the researcher. For example, the maximum number

of conditions in rules can be specified, based on the researcher’s prior expectation on the

order of interactions present in the data, or to obtain rules that are easier to interpret and

apply. Again, a trade-off between complexity and predictive performance may apply, where

increased predictive performance may come at the cost of increased complexity.

However, the association between complexity and predictive performance of the final

ensemble is generally non-linear and will depend on the data problem at hand. Thus, users

may often want to determine the optimal values of a set of model-fitting parameters for
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a specific data problem. R package caret (short for classification and regression training;

Kuhn, 2008) can be used to assess the effect of model-fitting parameter values on predictive

performance and complexity of a given algorithm by means cross validation. Package pre

allows for the use of caret to optimize the values of a the model-fitting parameters that

are most likely to affect predictive performance and complexity of the final PRE. The

Supplementary Material provides an example showing how the parameter settings of pre

can be tuned using caret.
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