
Journal of Artificial Intelligence for Medical Sciences
In Press, Corrected Proof

DOI: https://doi.org/10.2991/jaims.d.210225.001; eISSN: 2666-1470
https://www.atlantis-press.com/journals/jaims/

Machine Learning for Violence Risk Assessment Using
Dutch Clinical Notes

Pablo Mosteiro1,*, , Emil Rijcken2,1, Kalliopi Zervanou2, , Uzay Kaymak2, , Floortje Scheepers3, Marco Spruit1,4,5,

1Utrecht University, Utrecht, The Netherlands
2Eindhoven University of Technology, Eindhoven, The Netherlands
3University Medical Center Utrecht, Utrecht, The Netherlands
4Leiden University Medical Center, Leiden, The Netherlands
5Leiden Institute of Advanced Computer Science, Leiden, The Netherlands

ART I C L E I N FO
Article History

Received 22 Feb 2021
Accepted 25 Feb 2021

Keywords

Natural language processing
Topic modeling
Electronic health records
BERT
Evaluation metrics
Interpretability
Document classification
LDA
Random forests

ABSTRACT
Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by
practitioners and available in electronic health records are valuable resources capturing unique information, but are seldom
used to their full potential. We explore conventional and deep machine learning methods to assess violence risk in psychiatric
patients using practitioner notes. The performance of our best models is comparable to the currently used questionnaire-based
method, with an area under the Receiver Operating Characteristic curve of approximately 0.8. We find that the deep-learning
model BERTje performs worse than conventional machine learning methods. We also evaluate our data and our classifiers to
understand the performance of our models better. This is particularly important for the applicability of evaluated classifiers to
new data, and is also of great interest to practitioners, due to the increased availability of new data in electronic format.
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1. INTRODUCTION

Two-thirds of mental health professionals working in Dutch clin-
ical psychiatry institutions report having been a victim of at least
one incident of physical violence in their careers [1]. These inci-
dents can have a strong psychological effect on practitioners [2], as
well as economic consequences for health institutions [3]. Multiple
Violence Risk Assessment (VRA) approaches have been proposed
to predict and avoid violence incidents, with some adoption in prac-
tice [4]. Traditionally, a common approach is the Brøset Violence
Checklist (BVC) [5], a questionnaire used by nurses and psychia-
trists to evaluate the likelihood for a patient to become involved in
a violence incident. Filling out the form is a time-consuming and
highly subjective process.

Machine learning methods might help improve this process by sav-
ing time and making predictions more accurate. Electronic Health
Records (EHR) are a rich source of information containing both
structured fields as well as written notes. EHR notes coupled with
violence incident reports can be used to train machine learning
models to classify notes as describing potentially violent patients.

*Corresponding author. Email: p.mosteiro@uu.nl

Indeed, machine learning approaches trained on English-language
psychiatric notes have shown promising results with values of the
Receiver Operating Characteristic (ROC) Area Under the Curve
(AUC) of 0.85 and higher [6–10].

Nevertheless, violence prediction based on Dutch written notes
appears to be a challenging endeavor as no efforts have shown sat-
isfying results, with the AUC stagnating below 0.8 [11–13]. In those
papers, various machine learning methods were applied, includ-
ing bag-of-words, document embeddings, and topic modeling to
generate numerical representations of texts; and support vector
machines (SVM) and random forests for classification. In this work,
we explore a new approach to VRA with Dutch clinical notes using
the deep-learning language model Bidirectional Encoder Represen-
tations from Transformers (BERT) [14], which has proven to deliver
very good results in multiple languages and domains [15,16]. To the
best of our knowledge, BERT has not been used for VRA in Dutch
before.

The paper is organized as follows. Section 2 is a review of the related
work in text analysis for VRA. Sections 3 and 4 describe our dataset
and methodology, respectively. Afterwards, we present our results
in Section 5, and we discuss our findings in Section 6. Finally, we
present some conclusions in Section 7.
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2. TEXT ANALYSIS FOR VRA

The analysis of free text in EHR combined with structured
data using machine learning approaches is gaining interest as
anonymized EHR data become available for research [7,17,18].
However, the analysis of clinical free-text data presents numerous
challenges due to (i) highly imbalanced data with respect to the
class of interest [19]; (ii) lack of publicly available datasets, limiting
research on private institutional data [20] and (iii) relatively small
data sizes compared to the amounts of data currently used in text
processing research.

In the psychiatric domain, structured data such as symptom codes
and medication history have been used to predict admissions
[21,22]. In combination with structured EHR variables, free text has
been used in suicide prediction [23]; depression diagnosis [24]; and
harm risk in an inpatient forensic psychiatry setting [25].

To our knowledge, there are few research approaches focusing on
predicting violence in mental healthcare based on Dutch-language
text from EHRs. Menger et al. [12] use Dutch clinical text to predict
violence incidents from patients in treatment facilities. In Mosteiro
et al. [13] we compared several classical machine learning methods
for VRA of EHR notes, including Latent Dirichlet Allocation (LDA)
for topic modeling, and we discussed the agreement between some
of those classifiers. In this work we extend on that approach, intro-
ducing the BVC as a baseline and employing BERT for document
classification.

The general pipeline for violence prediction using Natural Lan-
guage Processing (NLP) is similar in all approaches. Firstly, the
notes are represented in a numerical way. Secondly, the numer-
ical representation is the input to a machine learning algorithm
that is trained to perform predictions. Van Le et al. [25] use the
presence/absence of predefined words as features to feed to sev-
eral machine learning algorithms. Menger et al. [11] experiment
with different representations such as bag-of-words, word2vec [26],
and paragraph2vec [27]. Bag-of-words represents documents as
vectors with a size equal to the dataset vocabulary length, encod-
ing the presence/absence of a word. The bag-of-words representa-
tion is a sparse matrix disregarding word order and meaning. The
word2vec algorithm learns word embeddings as dense vectors in
high-dimensional space and takes the contexts of words into con-
sideration during training, thus mitigating some of the limitations
of the bag-of-words representations. Yet word vectors in word2vec
are context-independent, meaning that there is only one vector rep-
resentation for each word, not taking into account homonyms. The
paragraph2vec algorithm is an extension of word2vec that produces
a vector representation for an entire paragraph.

In contrast to word2vec and paragraph2vec, BERT produces a vec-
tor representation for each word, taking context into account with
higher granularity. By doing so, BERT has improved the state-of-
the-art for many NLP tasks [14].

Another method for representing documents is based on topic
modeling. Topic modeling assumes that a corpus consists of a col-
lection of topics and that each topic consists of a collection of
words. After choosing the number of topics to retrieve, the algo-
rithm finds words that contribute most to each topic. A doc-
ument can then be expressed as a vector, indicating to which
extent each topic is represented in that document. A study in the

psychiatry domain [28] shows promising results when representing
documents using topic models through LDA. A potential advantage
of using topic modeling is that the different topics may help explain
how the classification model makes its decisions. In this paper, we
experiment with a model based on LDA topic modeling.

When comparing different models and ranking them, the selec-
tion of evaluation metric plays a significant role. One of the most
commonly used scalars for ranking model performance is the area
under the ROC curve, typically referred to as AUC [29]. Different
points on the ROC correspond to different operating points of a
classifier obtained by thresholding an underlying continuous out-
put that the classifier computes, leading to different false-positive
and true-positive rates. AUC, a scalar measure that takes multiple
thresholds into account, is better than accuracy for evaluating the
overall classifier performance and discriminating an optimal solu-
tion [30]. AUC is independent of class priors and it ignores misclas-
sification costs. In our domain, misclassification costs can be asym-
metric, as an unnecessary intervention might be less problematic
than an unforeseen violence incident. Hence, it is useful to consider
also other performance metrics.

In this paper, we evaluate two alternative metrics: Area Under the
Precision-Recall Curve (AUPRC) and Area Under the Kappa curve
( AUK). The AUPRC is similar to the AUC, but the axes are preci-
sion and recall, which are metrics used more commonly in text clas-
sification. AUPRC ignores true negatives, which is desirable when
evaluating models on datasets where positives are the minority class
and predicting positives correctly is the priority [31]. The AUK [32]
is based upon Cohen’s Kappa [33]. AUK corrects the accuracy of a
model for chance agreements, and it is a nonlinear transformation
of the difference between a model’s AUC value and the AUC of a
random model. The main difference between the AUC and AUK is
that AUK accounts for class skewness, while AUC does not. There-
fore, the AUK has desirable properties when there is considerable
class skew.

3. DATA

The data used in this study consists of clinical notes written in
Dutch by nurses and physicians during visits with patients from the
psychiatry ward of the University Medical Center (UMC) Utrecht
between 2012-08-01 and 2020-03-01. The 835k notes available are
anonymized for patient privacy using DEDUCE [34]. The study was
reviewed and approved by the UMC ethics committee.

A patient can be admitted to the psychiatry ward multiple times.
Additionally, an admitted patient can spend time in various sub-
wards of psychiatry. The time the patient spends in each of the sub-
wards is called an admission period. In the present study, our data
points are admission periods. All notes collected between 28 days
before and 1 day after the beginning of the admission period are
concatenated and considered a single period note for each admission
period.1 If a patient is involved in a violence incident between 1 and
28 days after the beginning of the admission period, the outcome is

1Notes are available from before the beginning of the admission period
for patients that have spent time in other wards or sub-wards, or other
institutions. For patients transferred within the past 5 days, only notes
from 7 or fewer days before the beginning of the admission period are
included.
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recorded as violent (positive). Otherwise, it is recorded as nonviolent
(negative). Admission periods having period notes with fewer than
100 words are discarded as in previous work [12,28].

In addition to the notes, we employ structured variables collected
by the hospital and related to:

• admission periods (e.g., start date and time);

• notes (e.g., date and time of first and last notes in the period);

• patient (e.g., gender, age at the beginning of the admission
period);

• medications (e.g., numbers prescribed and administered);

• diagnoses (e.g., presence or absence).

These variables are included to establish whether they correlate with
violence incidents.

The resulting dataset consists of 4280 admission periods, corre-
sponding to 2892 unique patients. The dataset is highly imbalanced,
as a mere 425 admission periods have a violent outcome.

4. METHODOLOGY

In this work, we address the problem of VRA as a document clas-
sification task, where EHR document features are combined with
additional structured data, as explained in Section 3. Section 4.1
describes our baseline, the BVC. In Sections 4.2 and 4.3 we outline
our conventional machine learning and BERT approaches to VRA,
respectively. We report all our results in three performance metrics:
AUPRC, AUC, and AUK as explained in Section 2. We use AUPRC
during development for hyperparameter tuning, while we calculate
all three metrics to report the final results.

4.1. Brøset Violence Checklist

At the UMC Utrecht, where our data were collected, VRA is cur-
rently done using the BVC [5], a questionnaire that patients answer
at the time of admission and approximately every 1-2 weeks during
the remainder of the admission. The checklist provides a score from
0 to 6 that estimates the patient’s propensity of becoming involved
in a violence incident within the next 24 hours.

We use the performance of the BVC as a baseline to compare our
machine learning models. The questionnaire was not filled out for
all admission periods in our dataset. Therefore, we cross-referenced
all the BVC scores in the psychiatry dataset with the violence dataset
by patient ID, and took each BVC score as a data point. The result-
ing dataset has 11799 data points. The independent variable is the
BVC score, and the target variable is the presence or absence of a
violence incident within 27 days after the BVC was answered. This
mimics the situation in our main analysis, where we consider vio-
lence incidents happening between 1 and 28 days after the begin-
ning of the admission period. However, we do not know the time at
which the BVC was filled out. Therefore, we run the analysis twice,
once assuming it was filled at 0:00 hours, and another assuming it
was filled at the end of the day, at 23:59.

Note that the BVC dataset is larger than the one we used in our
machine learning VRA analyzes, and its class imbalance is different,

with about 1 positive for every 4 negatives (as compared to about
1/10 in the VRA dataset). The implications this has on the interpre-
tation of our results is discussed in Section 5.1.

4.2. Machine Learning Analysis

Text preparationAll notes are preprocessed by applying the follow-
ing normalization steps:

• converting all period notes to lowercase;

• removing special characters (e.g., ë → e);

• removing non-alphanumeric characters;

• tokenizing the texts using the NLTK Dutch word tokenizer [35];

• removing stopwords using the default NLTK Dutch stopwords
list;

• stemming using the NLTK Dutch Snowball stemmer;

• removing full stops (“.”).

Text representations The language used in clinical text is domain-
specific, and the notes are rich in technical terms and spelling
errors. Pretrained paragraph embedding models, trained on out-
of-domain data, do not necessarily yield useful representations. For
this reason, we use our dataset to produce numeric representations
for our notes. We use the entire set of 835k anonymized clinical
notes to train both the paragraph embedding and topic models.
Only notes with at least 10 words are used in order to increase the
likelihood that each note contains valuable information.

Paragraph embeddings—We use Doc2Vec to convert texts to para-
graph embeddings.2 The Doc2Vec training parameters are set to
the default Gensim 3.8.1 values [36], except for four parameters: we
increase “epochs” from 5 to 20 to improve the probability of conver-
gence; we increase “min_count”—the minimum number of times
a word has to appear in the corpus to be considered—from 5 to 20
to avoid including repeated misspellings of words [12]; we increase
“vector_size” from 100 to 300 to enrich the vectors while keeping
the training time acceptable; and we decrease “window”—the size
of the context window—from 5 to 1 to mitigate the effects of the
lack of structure often present in EHR texts.

Topic modeling—We use the LdaMallet [36] implementation of
LDA to train a topic model. To determine the optimal number of
topics, we use the coherence model implemented in Gensim to
compute the coherence metric [37]. We find that using 25 top-
ics maximizes coherence. We use default values for the LdaMal-
let training parameters. Using the trained LDA topic model we
compute, for each of the 4280 period notes in our dataset, a 25-
dimensional vector of weights, where each dimension represents
a topic and the value represents the degree to which this topic is
expressed in the note.

Classification methods We use two classification methods:
SVM [38] and random forest classifiers [39]. For trained random
forests, scikit-learn outputs a list of the most relevant classification
features. This list can help us distinguish which features are most
correlated with violence.

2Doc2Vec is the name of the Gensim implementation of paragraph2vec.
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We use two loops of 5-fold cross-validation for the estimation of
uncertainty and hyperparameter tuning, as shown on Figure 1. In
each iteration of the outer loop, the admission periods correspond-
ing to 20% of the patients are kept as test data. The admission
periods corresponding to the remaining 80% are the development
set. We then perform 5-fold cross-validation on the development
set for hyperparameter tuning; in each iteration, 20% of patients
become the validation set, with the remaining 80% as the training
set. The combination of hyperparameters that maximizes the aver-
age AUPRC on the validation sets in the inner loop is kept. The
model is then retrained on the entire development set using the
hyperparameters found in the inner loop. Lastly, the classifier from
each iteration of the outer loop is applied to the corresponding test
set; we report the average and standard deviation across the outer
loop for our three classification metrics.

For SVM, we employ the support-vector classifier provided by
scikit-learn, with default parameters except for the following:

• “class_weight” is set to “balanced”, which uses the truth labels
to adjust weights inversely proportional to class frequencies, to
account for our imbalanced dataset;

• “probability” is True to enable probability estimates of
performance;

• the cost parameter “C” and the kernel coefficient “gamma” are
determined by cross-validation.

The ranges of values used are “C” = {10–1, 100, 101} and “gamma”
= {10–5, 10–4, 10–3, 102, 10–1, 100}, as motivated in a previous study
[12].

For the random forest classifier, we use the scikit-learn implemen-
tation, with default values for all the parameters except for the
following:

• “n_estimators” is increased to 500 to prevent overfitting;

• “class_weight” is set to “balanced”, which uses the truth labels
to adjust weights inversely proportional to class frequencies, to
account for our imbalanced dataset;

• “min_samples_leaf ”, “max_features” and “criterion” are
determined by cross-validation.

The ranges of values used for the parameters determined by cross-
validation are reported on Table 1. Values for “min_samples_leaf ”
are greater than the default value of 1, to prevent overfitting; we
consider the default value of “auto” for “max_features”, which sets
the maximum number of features per split to the square root of the
number of features, and two smaller values, again to prevent over-
fitting; both split criteria available in scikit-learn are considered.

4.3. BERT Analysis

We use the implementation of BERT for sequence classifica-
tion included in Huggingface Transformers [40], which includes
various choices of pretrained models. We explored Multilingual
BERT [41], from Google Research, as well as BERTje [42].3 Dur-
ing an exploratory analysis of the 110kDBRD Dutch book-review
dataset [43], where we attempted to predict the sentiment of book
reviews, BERTje outperformed Multilingual BERT. Therefore, we
decided to continue using BERTje.

We tokenize all texts using the pretrained BERTje tokenizer pro-
vided by Huggingface Transformers. For classification, a linear layer
is added to the BERTje language model. The optimizer used is
AdamW, which is recommended by the BERT developers [14]. We
use a scheduler that increases the learning rate linearly from 0 to
the value set in the optimizer during a warm-up period, and then
decreases linearly back to 0. The warm-up period consists of 10%
of the training set. To choose this number, we ran an exploratory
analysis on a dataset of Dutch-language tweets [44]. We experi-
mented with warm-up periods of 5%, 10%, and 20%, and found
the best results for 10%. Furthermore, we found that a good choice
for the learning rate value set in the optimizer was 2 × 10–5. We use
the Transformers default dropout probability of 0.1. Finally, we set
the “epsilon” parameter in the AdamW optimizer to 10–8.

As BERTje can only handle up to 512 tokens in a sequence, we
experiment with two shortening strategies to shorten our texts:

1 keeping the last 512 tokens in each period note (truncate);

2 summarizing texts using Gensim TextRank (summarize).

3In Huggingface Transformers, BERTje is called BERT-base-Dutch-
cased.

Figure 1 Schematic representation of the data processing pipeline for
hyperparameter tuning and statistical uncertainty estimation.
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Because tokenization in BERTje splits words into its component
morphemes, texts have more tokens than words. Thus, when sum-
marizing texts with Gensim, we choose the summarized length to
be shorter than 512 words, so that the tokenized texts have lengths
shorter than 512 tokens.

We use two loops of 5-fold cross-validation, as explained in
Section 4.2 and Figure 1, for uncertainty estimation and to tune the
batch size; we explore batch sizes of 16, 32, 64, 128, and 256. The
optimal number of epochs is chosen as the number of epochs after
which the validation loss increases while the training loss decreases;
we run all training for a maximum of 4 epochs.

Finally, because Transformers uses the cross-entropy loss function,
which is symmetric to positive and negative samples, we rebalance
the training and validation sets before training the model and com-
puting the loss. The performance metrics are computed based on
the original (imbalanced) dataset.

5. EXPERIMENTAL RESULTS

5.1. Brøset Violence Checklist

The predictive power of the BVC for VRA within 27 days of collect-
ing the questionnaire is shown on Figure 2 and Table 2. Because the

Table 1 Random forest training parameters. Parameters with
multiple values are optimized through cross-validation. Parameters
not shown are set to default scikit-learn values.
Parameter Value/s Method
min_samples_leaf {3, 5, 10} Cross-validation
max_features {5.2, 8.7, ‘auto’} Cross-validation
criterion {‘gini’, ‘entropy’} Cross-validation
n_estimators 500 Fixed
class_weight ‘balanced’ Fixed

BVC returns integer predictions from 0 to 6, the ROC, the precision-
recall curve, and the kappa curve all have a very small number of
points. Thus, the areas under the curves depend heavily on the inte-
gration method. We report our central values with integration fol-
lowing the trapezoidal rule. We used the left- and right-hand rules
to estimate the uncertainty due to the choice of the integration
method.

Note that among the three metrics used, only the AUC can be used
for comparison between the BVC and the machine learning mod-
els, as the class imbalance of the BVC dataset differs from the dis-
tribution of the data based on which the machine learning models
are trained (see Section 6 for discussion).

5.2. Classifier Performance

Table 3 reports the results of the machine learning models not using
BERTje. All configurations gave results consistent with each other,
as well as with previous work on a smaller dataset [12], and with the
BVC. These metrics show modest performance, and they indicate
that further work is needed to extract all the meaningful informa-
tion contained in the clinical notes.

The results of the BERTje analysis are shown on Table 4. The opti-
mal number of epochs was 1 for all configurations. After that, the
validation loss increased quickly, while the training loss continued
to decrease. This is a sign of overfitting, and we will discuss it fur-
ther in Section 6. For comparison, we also trained the models for a
second epoch and computed the test metrics again.

Table 2 Predictive power of the Brøset Violence Checklist (BVC). The
uncertainty is given by the choice of the integration method.

Assumed
Filled Hour

AUC AUPRC AUK

00:00 0.761 ± 0.100 0.510 ± 0.050 0.207 ± 0.090
23:59 0.725 ± 0.107 0.391 ± 0.041 0.166 ± 0.069

Figure 2 Receiver Operating Characteristic (ROC) of the Brøset Violence
Checklist (BVC) to predict violence incidents within 27 days after filling out the
BVC questionnaire. The orange line assumes the BVC was filled out at the
beginning of the day; the blue line assumes the BVC was filled out at the end of
the day. The dotted green line corresponds to random guessing.
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Table 3 Classification metrics for various training configurations. The statistical
uncertainties were estimated via 5-fold cross-validation.
Text Representation Classifier AUC AUPRC AUK
doc2vec SVM 0.792 ± 0.034 0.315 ± 0.075 0.136 ± 0.023
doc2vec RF 0.782 ± 0.030 0.287 ± 0.061 0.130 ± 0.020
doc2vec + struct RF 0.777 ± 0.026 0.292 ± 0.053 0.129 ± 0.017
LDA + struct RF 0.785 ± 0.038 0.303 ± 0.079 0.133 ± 0.025
doc2vec + LDA + struct RF 0.792 ± 0.035 0.298 ± 0.066 0.136 ± 0.022

Table 4 Results of the Violence Risk Assessment (VRA) analysis using BERTje. The
statistical uncertainties were estimated via 5-fold cross-validation.
Shortening Strategy Trained Epochs AUC AUPRC AUK
Summarize 1 0.664 ± 0.029 0.182 ± 0.049 0.071 ± 0.019
Summarize 2 0.658 ± 0.033 0.184 ± 0.051 0.069 ± 0.019
Truncate 1 0.667 ± 0.027 0.195 ± 0.041 0.074 ± 0.017
Truncate 2 0.657 ± 0.039 0.187 ± 0.045 0.070 ± 0.023

6. DISCUSSION

In this work we analyzed how conventional machine learning meth-
ods and BERTje performed on VRA. Although, typically, BERT-
like models show high performance on similar tasks, we did not
find this to be the case with our dataset. BERTje performed signifi-
cantly worse than the other machine learning models. None of our
models reached performance levels similar to the literature based
on English notes. This is a surprising finding, given that we have
used more advanced techniques.

In this section we investigate our results further. Firstly, we com-
pare results from the different performance metrics. Secondly, we
dive deeper into the dataset by studying the type-token ratio (TTR).
Next, we examine some problems with our dataset. Finally, we study
the feature importance in the random forest classifiers. We end this
section with a discussion of the limitations of our work.

6.1. Performance Metrics

In this work, we have used three different performance metrics:
AUC, AUPRC, and AUK. The AUC is the most widely used met-
ric; since it is invariant under a change in the class imbalance, it
gives an idea of the classifier performance regardless of the pre-
cise dataset used. However, when choosing among multiple models
applied on the same dataset, it is a poor metric because it does not
account for the possibility that positive- and negative misclassifica-
tion might have different costs. The AUPRC and AUK attempt to
account for this; the former does so by ignoring true negatives, the
latter by accounting for chance agreements between the classifier
and the truth labels.

Looking at Tables 3 and 4, we can see that all models within each
table performed consistently with each other in all metrics. The rel-
ative uncertainty is smallest for AUC.

An advantage of the AUK is that the kappa curve not only pro-
vides a performance metric but also suggests an optimal operating
point. Figure 3 shows the kappa curve for one of the iterations of the
SVM classifier. Because the curve is concave down, we can choose
the operating threshold that maximizes Cohen’s kappa—and thus
the performance after accounting for chance agreements—versus

the false-positive rate. In the figure we can see that there is a wide
domain of false-positive rates that give values of Cohen’s kappa
close to the maximum. In practice, psychiatrists would also inform
the choice of what the operating threshold should be, based on the
costs of misclassifying positives and negatives.

6.2. Type-Token Ratio

As mentioned in Section 5.2, there is evidence that the BERTje
models overfit the training data after 2 or more training epochs. To
explore why our data might be prone to overfitting, we looked at
the TTR for this dataset and compared it to that of the 110kDBRD
dataset [43], consisting of book reviews written in Dutch (see
Section 4.3). The TTR is the ratio of the number of distinct words
(types) in a corpus to the total number of words (tokens). The
higher the TTR, the more varied the vocabulary. A varied vocabu-
lary could be associated with overfitting, as the models can exploit
individual rare words to differentiate period notes from each other.
We computed the TTR both on the words and on the tokens. Tok-
enization was done by the pretrained BERTje tokenizer used in
Section 4.3.

The results are shown on Table 5. The raw texts from our VRA
dataset seem to have a less rich vocabulary than the 110kDBRD
dataset; however, after summarization the vocabulary is more var-
ied than before. This could mean that the summarization algorithm
picks the most distinctive words and removes very repetitive words.
More interestingly, after tokenization both the full texts and the
summarized texts from the VRA dataset have similar TTRs, while
the 110kDBRD data has a much lower TTR. It is expected that tok-
enization will reduce the TTR, because the tokenizer merges sev-
eral forms of the same word into its root morphemes. But the effect
on the VRA dataset is smaller than on the 110kDBRD dataset. The
BERTje tokenizer often splits unknown words into component let-
ters that can have morphemic meaning under some contexts. If our
dataset contains more idiosyncratic words that the tokenizer does
not know about, it might split them into multiple morphemes that
are not really what the word is made up of. This would then lead to
classification errors, as the text is interpreted to mean something it
does not.
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Figure 3 Kappa curve for one of the iterations of the outer cross-validation
loop of our support vector machines (SVM) classifier. The maximum value in
this graph can be interpreted as the optimal operating point of the classifier.
Random guessing results in Cohen’s kappa equal to 0 for all false-positive rates.

Table 5 The Type-Token Ratio (TTR) for our dataset, compared to the book-review
dataset 110kDBRD. When tokenizing, only the first 512 tokens were considered. The
five most common tokens are also reported.
Dataset TTR (Raw) TTR (Tokenized) Most Common Tokens
VRA (Summarized) 0.045 0.0069 [PAD], ‘.’, ‘, ’, [UNK], en
VRA (Full) 0.025 0.0076 ‘.’, [UNK], ‘, ’, ‘-’, en
110kDBRD 0.052 0.0033 [PAD], ‘.’, de, ‘, ’, het

On Table 5 we see that a large number of raw words in our VRA
dataset are interpreted as the [UNK] (unknown) token. Some such
words were <, >, cq, # and +. This could mean that a lot of words are
either missed by the tokenizer (incorrectly classified as unknown,
with their meaning getting lost), or included unnecessarily (< and
> are used at the beginning and end of anonymized institution and
person names but carry no meaning). This could contribute to the
bad performance of the classifier.

Upon inspecting the cross-validation loss, we found that, after two
epochs of training, overfitting was apparent and yet the perfor-
mance metrics did not significantly worsen. Thus, although over-
fitting can be a problem with our dataset, it cannot be the reason
why our BERTje results are worse than those obtained using sim-
pler machine learning methods.

6.3. Data Problems

While exploring our data further, we found that some violence
incidents described in practitioner notes were not reported in the
violence incidents dataset. To assess the significance of this, we
examined all practitioner notes collected between 1 and 28 days
after the beginning of every admission period. We curated a list of
words related to violence incidents.4 We visually examined some
sentences from negative admission periods containing at least one
mention of a word from the list and found that other important

4An expert psychiatrist curated this list.

Table 6 Numbers of negative admission periods for which at
least one practitioner note collected between 1 and 27 days
after the first day of admission contains a keyword associated
with violence incidents.
Word English Exact Admission Periods
trap kick no 472
geslagen hit (participle) yes 415
slaat hits (3rd person) yes 415
slaan hit (infinitive) yes 414
sloeg hit (past) yes 408
duw push no 343
schop kick no 299
bijt bite no 240

words had to be added to the list. The final list of keywords chosen
is shown in Table 6.

Simply searching for a keyword can lead to too many false posi-
tives, because some words have multiple meanings. This is espe-
cially true in Dutch, where certain phrasal verbs have completely
different meanings than their root verbs (e.g., slaan (hit) vs omslaan
(change)). Hence, we created a list of exceptions. If the word was
part of a larger expression in the list of exceptions, we removed it
from the list of candidate unreported incidents. We also removed
unrelated longer words that contain our keywords (e.g., weduwe
(widow) contains duw, but is unrelated to the word duw (push)).
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The keywords “slaat,” “slaan,” “geslagen,”and “sloeg” are all variants
of the verb “slaan” (to hit). They are kept separate because the com-
mon string “sl” is too short and using it as a keyword would lead
to too many false positives. Since we already include them in our
search, these inflections are required to match full words in the data
(not parts of words).

Table 6 shows, for each keyword, how many negative admission
periods in our dataset correspond to patients for whom a practi-
tioner note containing that keyword was collected within that same
27-day frame (after exclusion of exceptions). These are candidate
admission periods that were labeled as negative but are positive. The
total number of such admission periods for all keywords is 1663 (the
numbers on the table do not add up to 1663 because some notes
contain multiple keywords). This represents 43% of our 3855 neg-
ative admission periods (see Section 3).

Upon visual inspection of some of the notes, we found that the large
majority of them did not report violence incidents. A lot of them
described hitting objects without causing any harm5; some of them
described past events; others talked about hypothetical incidents.
However, some cases were very clearly unreported violence inci-
dents. Part of the challenge in selecting relevant notes is that what
constitutes a violence incident is not well defined, as different prac-
titioners have different standards. Therefore, an objective definition
of what behavior constitutes violence is needed.

In this paper, we have assumed that the number of unreported
violence incidents is small. Researchers and practitioners at UMC
Utrecht make use of the violence incident reports frequently, and
if the number of unreported incidents were large, they would have
encountered problems before. However, further work needs to be
done to mitigate this problem carefully.

5Incidentally, this might explain the high correlation between violence
incidents and the word deur (door) found in [12].

6.4. Feature Importance

When using the random forest classifier, we stored the ten most
important features according to the best fit in the inner cross-
validation loop for each iteration in the outer cross-validation loop.
Gathering the most important features together, we then studied
both the ten most repeated features and the ten features with the
highest total feature importance; these lists were reassuringly simi-
lar. The most repeated features were the age at the beginning of the
admission period and the number of words in the period note. The
frequency distributions of these variables are shown, for both posi-
tive and negative samples, in Figure 4.

As can be seen in the figures, the admission periods with a vio-
lent outcome correspond to younger patients on the average, and
the average period note with a violent outcome is longer than the
average period note with a nonviolent outcome. The fact that only
two of the structured variables included in our study resulted in sig-
nificant discrimination between the positive and negative classes
further stresses that novel, sophisticated methods are required,
where more careful feature engineering could lead to better
discrimination.

6.5. Limitations

In this work, we used the results from the BVC as a benchmark to
the predictions of our machine learning models, because the BVC
is currently used for VRA at the UMC Utrecht. We found that the
performance of some of our models was consistent with that of
the BVC, but it should be noted that we computed the AUC for the
BVC using violence incidents from the 27 days after the first day of
admission. Therefore, our analysis does not compare with the stan-
dard use of the BVC, which is meant to predict violence within 24
hours. Additionally, both datasets seem to be drawn from different
distributions, as the class imbalances differ from each other signif-
icantly. Efforts to align both datasets were out of the scope of this
work. Furthermore, in our analysis we found indications that the
dataset used for the machine learning models has some cases that

Figure 4 Histograms of number of words per period note (top) and age at
the beginning of the admission period (bottom) for positive/violent (left/red)
and negative/nonviolent (right/blue) admission periods.
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were not reported as violent, while the associated texts seem to indi-
cate that a violence incident did occur. We do not know the rate
of unreported cases, and future work should explore this problem
further. Lastly, in this work we used BERTje to perform classifica-
tion on the clinical notes. BERTje is not suited to perform classifi-
cation on long texts, like clinical notes. Therefore, we experimented
with two shortening strategies to fit the requirements of the model:
summarization and truncation of texts. Each shortening strategy
imposes information loss as not all the original text is used to train
the BERTje model. This loss is likely to contribute to the relatively
low performance of the model. Recently, a new BERT-like mode,
called SMITH [45], has been released that is designed to analyze
longer texts. Therefore, an implementation of SMITH for VRA can
potentially improve the predictions.

7. CONCLUSIONS

We applied conventional and deep machine learning methods
to the problem of VRA, using Dutch-language clinical notes
from the psychiatry ward of the UMC in Utrecht, the Nether-
lands. Our results, reported on Tables 3 and 4, were compet-
itive with a study based on structured variables that obtained
AUC = 0.7801 [46], and with the BVC, currently used at the UMC,
which gave AUC=0.761±0.100 when predicting violence incidents
within 27 days after a questionnaire was filled out. These metrics
show modest performance, and they indicate that further work is
needed to extract all the meaningful information in the clinical
notes.

We have applied a BERT-like model to VRA using clinical notes in
Dutch. We found no improvement from using BERTje as opposed
to conventional machine learning methods; indeed, the results from
BERTje were worse, with AUC≈0.66. Yet we know that our dataset
is small and may not be sufficient to fine-tune the large number
of parameters present in BERTje. A larger dataset would be highly
beneficial but is not trivial to accomplish.

To enlarge the dataset, data from multiple institutions can be aggre-
gated via federated learning, whereby different institutions train the
same central model without sharing the data with each other; this
is very important, considering privacy restrictions. Additionally, it
would be very beneficial to pre-train a “medical-BERTje” model,
using Dutch clinical notes from various medical domains.

Finally, a key assumption in our work was that the number of unre-
ported violence incidents was small. The validity of this assump-
tion needs to be scrutinized. Further work is needed to refine the
process of selecting unreported incidents from practitioner notes.
If the number is small, the data points could be removed from the
dataset. This could also inform a re-evaluation of the violence inci-
dent reporting in practice. We have seen that practitioners can be
very subjective in reporting violence incidents. A unified strategy
for incident reporting informed by machine learning could signifi-
cantly improve data quality.
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