
 

Stimulated Raman Adiabatic Passage in Optomechanics

Vitaly Fedoseev ,1,* Fernando Luna,2 Ian Hedgepeth,2 Wolfgang Löffler ,1 and Dirk Bouwmeester1,2
1Huygens-Kamerlingh Onnes Laboratorium, Leiden University, 2333 CA, Leiden, Netherlands

2Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 27 July 2020; accepted 12 February 2021; published 19 March 2021)

In multimode optomechanical systems, the mechanical modes can be coupled via the radiation pressure
of the common optical mode, but the fidelity of the state transfer is limited by the optical cavity decay. Here
we demonstrate stimulated Raman adiabatic passage (STIRAP) in optomechanics, where the optical mode
is not populated during the coherent state transfer between the mechanical modes avoiding this decay
channel. We show a state transfer of a coherent mechanical excitation between vibrational modes of a
membrane in a high-finesse optical cavity with a transfer efficiency of 86%. Combined with exceptionally
high mechanical quality factors, STIRAP between mechanical modes can enable generation, storage, and
manipulation of long-lived mechanical quantum states, which is important for quantum information science
and for the investigation of macroscopic quantum superpositions.
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Stimulated Raman adiabatic passage (STIRAP)
describes adiabatic population transfer between two
states coherently coupled via a mediating state that remains
unoccupied. This renders STIRAP robust against loss and
noise in the mediating state, leading to profound applica-
tions in atomic- and molecular-optics research [1,2],
trapped-ion physics [3], superconducting circuits [4], other
solid-state systems [5,6], optics [7], in entanglement gen-
eration [8,9] and qubit operations [10]. STIRAP in opto-
mechanics has been proposed for optical frequency
conversion with a mechanical mode being the mediating
state, where the fidelity of the state transfer is not
deteriorated by the residual thermal noise of the mechanical
mode [11,12] and for a mechanical state transfer through
the common optical mode [13].
State transfer between nondegenerate mechanical

modes was demonstrated in Refs. [14,15] where the beating
between two driving light fields bridges the frequency
difference of the modes. The motions of the modes
modulate the intracavity light fields creating motional
sidebands [16]. This transfer scheme relies on the matched
motional sidebands and requires the detuning of the driving
fields to be much higher than the mechanical frequencies
[17]. In this case the other unmatched motional sidebands
are of similar amplitudes as the matched ones and cause
incoherent driving or cooling of the mechanical modes,
limiting the state transfer fidelity. In optomechanical
STIRAP in the sideband-resolved regime the loss due to
the unmatched motional sidebands can be made negligibly
small by choosing the detuning of the two driving light
fields equal to the frequencies of the mechanical modes. In
this case the two matched sidebands at the cavity resonance
interfere destructively driving the state transfer and the
other motional sidebands have much smaller amplitudes.

This strongly decreases the unwanted effects of the
unmatched motional sidebands and allows the state transfer
fidelity to approach unity in the quantum regime.
Figure 1(a) shows the basic Λ-type arrangement of three

levels typical for STIRAP. In the triply rotating frame
at frequencies ωi ¼ Ei=ℏ for states ψ i, i ¼ 1, 2, 3, the
Hamiltonian is
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FIG. 1. STIRAP scheme in optomechanics. (a) Energy levels
diagram. (b) Coupling strengths of the pulse sequence for
the driving fields. (c) The resulting energy eigenvalues for the
instantaneous Hamiltonian eigenstates. STIRAP explores the
properties of Φ0ðtÞ given in Eq. (2). (d) The optomechanical
implementation contains a cavity mode at frequency ωcav, two
driving fields at ωL1 and ωL2 and eight motional sidebands due to
the mechanical modes at ω1 and ω2 on the driving fields, red bars
corresponding to the sidebands on ωL1 and blue bars correspond-
ing to the sidebands on ωL2. Two sidebands match ωcav. In the
case of Φ0ðtÞ the states ψ1 and ψ3 are out of phase leading to
destructive interference of the sidebands that overlap with ωcav.
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with Ω12 and Ω23 the Rabi frequencies resulting from two
driving fields at frequencies ðE2 − E1Þ=ℏ and ðE2 − E3Þ=ℏ.
One of the three instantaneous eigenstates has eigenvalue 0
and does only include states ψ1 and ψ3:

Φ0ðtÞ ¼ cos θðtÞψ1 − sin θðtÞψ3; ð2Þ

with tan θðtÞ ¼ Ω12ðtÞ=Ω23ðtÞ. The existence of this “dark”
state in optomechanics has been firstly demonstrated in
Ref. [18]. STIRAP is based on the adiabatic following of
Φ0ðtÞ by slowly varying θðtÞ from θð−∞Þ ¼ 0 to
θð∞Þ ¼ π=2. Thus, the system can be adiabatically trans-
ferred from ψ1 to ψ3 never occupying state ψ2. Figure 1(b)
shows a driving pulse sequence satisfying this requirement
and Fig. 1(c) shows the energy eigenvalues corresponding
to the three eigenstates ΦþðtÞ, Φ0ðtÞ, and Φ−ðtÞ. This
driving pulse sequence together with the adiabaticity
condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω12ðtÞ2 þ Ω23ðtÞ2

p
≫ _θ prevents the lossy

mediating state from being occupied throughout the trans-
fer process.
The Hamiltonian in Eq. (1) can be realized in multimode

optomechanics [11,12] where states 1 and 3 are mechanical
excitations with frequencies ω1 and ω2 and state 2 is an
optical cavity mode at ωcav, see Fig. 1(d). Two optical
driving fields at ωLi ¼ ωcav − ωi for i ¼ 1, 2 are introduced
in order to create the beam splitter interaction âb̂†i þ â†b̂i
that couples the mechanical modes to the cavity mode,
where âðâ†Þ and b̂iðb̂†i Þ are the photon and phonon
annihilation (creation) operators. The optical mode can
be represented by the operator â ¼ ᾱþ δâ, where ᾱ is the
average coherent amplitude due to the driving optical
fields and δâ is the fluctuating term [16]. Each mechanical
mode produces two sidebands on each optical field.
Because of resonance with the cavity, the two sidebands
with frequencies ωcav acquire much larger amplitudes
than the other sidebands. Taking into account only those
two sidebands and including mechanical and optical loss
rates, Γi and κ, the time evolution of the state vector ψðtÞ ¼
½b̂1ðtÞ; δâðtÞ; b̂2ðtÞ�T is given by

i
dψðtÞ
dt

¼

0
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2

1
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Here, the rotating wave approximation has been used and it
is valid in the linearized regime of cavity optomechanics
[16]. giðtÞ is the optomechanical multiphoton coupling for
mechanical modes i ¼ 1, 2, gi ¼ gi0ᾱi, where gi0 is single
photon coupling and ᾱi is the driving field at ωLi, see

Supplemental Material [19]. Equation (3) is valid in the
sideband resolved regime together with the requirement
jω1 − ω2j ≫ κ and is identical to Eq. (1) in the absence of
losses and with the Rabi frequencies Ω12 and Ω23 corre-
sponding to 2g1 and 2g2.
Experimentally we demonstrate the state transfer in the

membrane-in-the-middle (MIM) configuration [32], where
a membrane with low optical absorption is placed in the
center of a high-finesse optical cavity with κ=2π ¼ 54 kHz
(including membrane), see Fig. 2. A displacement of the
membrane along the optical axis leads to a shift in the
optical cavity transmission described by the interaction
Hamiltonian Ĥint ¼ −ℏg0â†âðb̂þ b̂†Þ, where g0 is the
single photon optomechanical coupling [16]. The mem-
brane is a highly stressed 25 nm thick SiN film litho-
graphically patterned with a phononic crystal with a defect
in its center suspended on a silicon frame [33]. There are
two types of mechanical modes: whole membrane drum-
head modes and modes localized near the phononic crystal
defect with frequencies in the phononic crystal band gap.
Vibrational energy of the drumhead modes is mainly lost in
the bending regions where the membrane is connected to
the frame [33,34]. The modes localized near the defect
possess enhanced quality factors by 1–2 orders of magni-
tude compared to the drumhead modes [33]. We demon-
strate STIRAP between the fundamental mode of the defect
with frequency ω1=2π ¼ 1.25 MHz and quality factorQ ¼
1.3 × 107 [mode 1, Fig. 2(b)], and the 3,3 drumhead mode
with ω2=2π ¼ 0.22 MHz and Q ¼ 1.2 × 106 [mode 2,
Fig. 2(c)]. The modes are coupled to the optical cavity
with single-photon couplings of g01=2π ¼ 1.5� 0.1 Hz
and g02=2π ¼ 1.0� 0.1 Hz, respectively. In addition to
these modes possessing relatively large single photon
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FIG. 2. Optomechanical setup. (a) A transparent dielectric
membrane patterned with a phononic crystal is placed in the
middle of a high-finesse optical cavity. Shift of the membrane
along the axis of the cavity changes the cavity resonance
frequency, causing coupling of light in the cavity to vibrational
modes of the membrane. (b) Simulated displacement of a
mechanical mode of the defect of the phononic crystal. The
mode is localized as its frequency lies in the band gap (mode 1,
initially excited). (c) Simulated displacement of the 3,3 drumhead
mode of the full membrane (mode 2). This second mode was
selected because it has an appropriate mechanical frequency and
quality factor and has a maximum amplitude at the center. This
allows both modes to be aligned for optimal coupling to the same
cavity mode.
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coupling, quality factors, and frequency separation, there
are no other mechanical modes in the range of ∼1=σ from
ω1 and ω2, where σ defines the width of the driving pulses.
The latter requirement guaranties that modes 1 and 2 are
not coupled to other modes during the transfer. STIRAP
is very sensitive to the double-photon detuning Δ2ph ¼
ðωL1 þ ω1Þ − ðωL2 þ ω2Þ [35], therefore the two optical
fields are created by amplitude modulation of light from a
single 1064 nm laser using an acousto-optic modulator
(AOM). As a result the laser phase noise does not limit
the transfer efficiency [36]. Because of the nonlinear
response of the AOM the detuning of this single laser
light tone is chosen such that harmonics of the ac voltage
sent to the AOM have a negligible effect on the transfer
efficiency (see Supplemental Material). The membrane is
in a vacuum chamber with pressure below 10−6 mbar at
room temperature.
STIRAP with parameters tuned for maximum phonon

number state transfer efficiency is shown in Fig. 3. The
measurement of a typical transfer process has the following
sequence: mode 1 is excited to an amplitude much higher
than its thermal occupation by applying an ac voltage
in resonance with the mechanical frequency to a needle
positioned close to the center of the membrane. During its
free decay the two optical pulses are sent which transfers
the excitation of mode 1 to mode 2. The transfer starts with
the beginning of pulse 1 (red) and finishes with the end of
pulse 2 (blue), these moments are denoted by dashed
vertical lines. The transfer efficiency is calculated as the
ratio of the number of phonons in mechanical mode 2 at the
end of the transfer to the number of phonons in mechanical
mode 1 at the beginning of the transfer (black stars). A
theoretical model without free fit parameters was developed
in the classical limit to simulate the transfer process taking
into account the corrections due to the other sidebands and
the measured profiles of the light pulses (see Supplemental
Material), and shows excellent agreement to the exper-
imental data in Fig. 3(a). Simulations show that the average
rate of loss through the optical mode is ∼1 Hz in the dark
state during the transfer. We observe small variations in the
frequencies of the mechanical modes with each STIRAP
sequence. To account for these variations, we measure the
mechanical frequencies in thermal motion and adjust the
values of the mechanical frequencies for the driving pulse
generation accordingly before each STIRAP sequence.
In our realization of STIRAP using coherent state

populations, i.e., in the classical regime, the phases of
the mechanical modes during the transfer can be contin-
uously monitored, see Fig. 3(b). There are four time
domains with distinct behavior of phases: in domain 1
g1ðtÞ ¼ 0 and the phase of mode 1 is defined by the
excitation used to drive it, while mode 2 is in its thermal
motion, thus the difference between the phases is random;
in domain 2 STIRAP starts and the phase of mode 2 adjusts
itself until the sidebands at ωcav become π out of phase; in

domain 3 the phase of the locked mechanical modes
changes due to the optomechanically induced frequency
shift from field ωL2 (unmatched sidebands); in domain 4
the read-out signal of mode 1 becomes much less than the
read-out noise.
Next we investigate the dependence of the transfer

efficiency on the parameters of the process. First the time
delay between the optical pulses Δt is varied, see Fig. 4.
The adiabaticity condition becomes more and more vio-
lated when the separation between the pulses is too small or
too large, leading to decreasing efficiency. Then the
duration of the pulses σ is varied while keeping the time
delay Δt optimal. The adiabaticity condition is satisfied
increasingly better with longer pulses such that for pulses
with σ ¼ 100 ms only 2% of the initial phonon population
in mode 1 is lost through the population and decay of the
optical mode. Nevertheless the efficiency starts to decrease
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FIG. 3. Experimental optomechanical STIRAP. (a) Left scale:
phonon number as a function of time, red dots correspond to
averaged measurements for mode 1 (ψ1), blue dots for mode 2
(ψ3). The prefactor 109 is a rough estimate. Light red and light
blue regions represent the phonon populations with statistical
uncertainties (1 standard deviation) obtained from simulations
without free fit parameters. Right scale: multiphoton optome-
chanical coupling strengths, calculated from measured pulse
intensities. The driving field pulses have a nearly Gaussian
profile with the standard deviation parameter σ and separation
Δt, but their beginning and ending are smoothly truncated to
zero. Black stars correspond to the phonon populations used to
calculate transfer efficiency (5% of the peak voltage sent to the
AOM). (b) Measured phases of mode 1 (red) and mode 2 (blue) in
the rotating frame.
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for σ ≳ 25 ms due to the mechanical decay of the modes,
setting the upper bound on the transfer efficiency. The solid
curves in Figs. 4(a) and 4(b) are numerical results and
Figs. 4(c) and 4(d) compare experiment and simulations for
varying Δt and σ. We observe an increasing discrepancy
between measured and simulated data for the state transfer
with σ ≳ 25 ms. This is caused by membrane heating from
the driving pulses and by the defect mode frequency
dependence on the amplitude of the full membrane 3,3
mode, see Supplemental Material.
A signature of STIRAP [35] is strong sensitivity of the

transfer efficiency to the two-photon detuning Δ2ph ¼
ðωL1 þ ω1Þ − ðωL2 þ ω2Þ given Δ1ph ¼ 0, compared to
the sensitivity to the single-photon detuning Δ1ph ¼ ωcav −
ðωL1 þ ω1Þ given Δ2ph ¼ 0, Figs. 4(e) and 4(f). The
frequency scale for the two-photon detuning is set by
the duration of the transfer process: Δ2ph ∼ π=Ttransfer,

implying that the sidebands at ωcav accumulate a phase
difference of π during the transfer and consequently no
longer interfere destructively. The frequency scale for Δ1ph
is set by the optical cavity linewidth κ: nonzero Δ1ph leads
to changes in the intracavity light fields intensities and in
the amplitudes of the sidebands.
The highest phonon number transfer efficiency we

observe in our system is 86%� 3%. The highest demon-
strated state transfer efficiencies in other systems are:
transmon qubit 83% [4]; Bose–Einstein condensate of
atoms 87% [37]; trapped ions 90% [3]; superconducting
Xmon qutrit 96% [38]; doped crystals 98%� 2% [39];
atom beams 98%� 2% [40]. In general, the STIRAP
scheme in optomechanics can result in transfer efficiencies
close to unity provided that the difference between the
frequencies of the mechanical modes is much larger than
the cavity linewidth, while being in the weak coupling
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FIG. 4. Transfer efficiencies under different parameters of the optical pulses. (a) The transfer efficiency as a function of the ratio of the
delay between the pulses Δt and the Gaussian pulse width σ. Positive values of Δt correspond to the case that the field at ωL2 is applied
before the field at ωL1. (b) Maximal transfer efficiencies as a function of σ. In (a) and (b) the red dots show measured efficiencies in
individual runs, black dots are the simulated efficiencies, and the black lines are guides to the eye. The increasing error bars for larger σ
in (b) are due to observed but not accounted for small nonlinear and heating effects, see Supplemental Material. (c) and (d) show the
experimental (c) and predicted (d) transfer efficiency as a function of the Gaussian parameter σ and separation Δt. The horizontal row of
dots in (c) and (d) correspond to the data shown in (a), while the vertical row of dots correspond to the data shown in (b). The transfer
process for the parameters corresponding to the open circle in (c) and (d) is shown in Fig. 3(e). (e) The efficiency as a function of the two-
photon detuning Δ2ph with zero single-photon detuning. (f) The efficiency as a function of the single-photon detuning Δ1ph with zero
two-photon detuning. In (e) and (f) the red circles are measured efficiencies in individual runs, and the shaded regions are simulated
efficiencies with statistical uncertainties. The simulated curve in (e) has a frequency correction of 4 Hz caused by small nonlinear and
heating effects, see Supplemental Material.
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regime, with peak multiphoton optomechanical couplings
being much larger than the inverse of the transfer duration,
and with slow enough mechanical decay. This allows us to
formulate the following requirements for optomechanical
STIRAP:

jω1 − ω2j ≫ κ ≫ max giðtÞ ≫ 2π=Ttransfer ≫ Γi. ð4Þ

This set of stringent requirements applies both to the
classical and the quantum regime of STIRAP in optome-
chanics. Other experimental challenges are the accurate
control of one- and two-photon detunings, circumventing
detrimental effects of the unmatched sidebands, and prov-
ing stable subwavelength positioning of the membrane to
maximize the coupling strength.
Further we show that state transfer via STIRAP of a

single-phonon Fock state can in principle be observed
experimentally with the same membranes in a cryogenic
setting, for details see Supplemental Material [19]. We
provide a full quantum treatment of the protocol for such a
state transfer including known sources of noise and
unwanted effects: thermalization to the environment, heat-
ing by the laser light fields, presence of other nearby
membrane modes, realistic overall detection efficiency, and
dark count rate of a single photon detector. We consider
STIRAP between two modes of the defect of the phononic
crystal in the membrane, with quality factors of 109 [41],
resulting in a thermal decoherence time [16] of approx-
imately 5 ms at 1 K. In laser cooling experiments [42,43]
the steady state temperature of similar membranes was
observed to be less than 0.5 K above the cryostat base
temperature when being sideband cooled, thus we adopt
1 K as a conservative estimate for the membrane temper-
ature due to laser heating.
The protocol consists of the following steps: both modes

are sideband cooled to an average phonon occupation
n̄ ¼ 0.1; detection of a Stokes photon from a short blue-
detuned pulse projects the state of mode 1 to a state close to
a single-phonon Fock state; the STIRAP pulse sequence is
sent; the state of the modes is read out by a short red-
detuned pulse through detection of anti-Stokes photons. It
is essential to filter out the strong pump light fields and to
send the scattered photons to a single photon detector with
high enough overall detection efficiency. Based on dem-
onstrated experimental parameters we calculate that a
single-phonon Fock state can be transferred with fidelity
of 60%.
In conclusion, in this Letter we have shown the first

optomechanical implementation of STIRAP and demon-
strated a maximum phonon number state transfer efficiency
of 86%� 3%. The efficiency is benchmarked against
variation in the STIRAP pulse duration and separation
as well as against the STIRAP single- and two-photon
detuning and is found to be in good agreement with theory.
Our quantum simulations show that STIRAP of a single

phonon Fock state is feasible to observe with the demon-
strated technology. Furthermore, modified versions of
STIRAP (fractional STIRAP [44], tripod STIRAP [45])
can be used to create and detect entangled mechanical
states. Therefore, STIRAP in optomehanics can play an
important role in quantum information protocols and in
generating macroscopic superposition states.
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