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A B S T R A C T   

The global popularity of green roofs (GRs) rises as urban runoff becomes a primary environmental concern in 
both developed and developing countries. Although a growing number of studies have measured the runoff 
retention (RR) performance of GRs and investigated the underpinning factors, a systematic and quantitative 
understanding is lacking. This study applies a statistical approach on a dataset of 2375 original experimental 
samples associated with the RR performance of GRs observed across 21 countries, consolidated from 75 inter-
nationally peer-reviewed studies published in 2005–2020. The results show that the sampled RR rates (i.e., the 
proportion of rainfall retained on a per-event basis) range widely (0–100%), with an average of 62%. Rainfall 
intensity, substrate depth, GR surface coverage, climate type, vegetation type, and season type partially explain 
the variances in retention performance. Moreover, the effects of some factors (e.g., rainfall intensity) are not 
isolated but contingent on other factors (e.g., vegetative cover). This global synthesis shows few samples emanate 
from Africa, Central America, and Central Asia, highlighting the need of more GR research and applications in 
these regions. The average GR RR rate appears lower than some specified in green building standards, which 
implies the need to further improve the RR performance of GRs or combine GRs with other RR measures. 
Contingent effects of GR RR incluencing factors demonstrate the need to leverage design parameters and to 
account for local weather and climate characteristics in the optimization of GR performance.   

1. Introduction 

The world has observed rapid urbanization over the past decades, 
with increased construction to accommodate the shift in population 
from rural to urban areas (Zhou et al., 2020). Currently, almost half of 
the world population lives in cities, with up to 67% living in cities by 
2050 (United Nations, 2019). Despite socioeconomic benefits, urbani-
zation leads to numerous environmental problems, such as urban floods 
and urban heat island (UHI) effects, where urban areas generally exhibit 
higher temperatures than surrounding rural areas due mainly to modi-
fications of land surfaces (Manoli et al., 2019; Miller and Hutchins, 
2017). Climate change further aggravates these problems by increasing 
both the frequency and intensity of climatic extremes (Avashia and 
Garg, 2020; Mishra et al., 2019; Leandro et al., 2020; Martel et al., 
2020). As highlighted in the Sustainable Development Goals (SDGs), 

environmentally sustainable construction upgrades of current and new 
urban infrastructure are paramount to enhance urban health and to 
adapt to climate change (i.e., SDG 11 sustainable cities and commu-
nities, and SDG 13 climate change). 

Given that buildings can occupy 50% or more of a city’s surface area 
(Dunnett and Kingsbury, 2008), green roofs (GRs) have a high exploit-
ative potential (Kelly et al., 2020) to tackle the multiple threats imposed 
by urbanization and climate change (Akther et al., 2018) and also fulfill 
the SDGs. GRs are an extension of an existing roof that allows for the 
propagation of rooftop vegetation (the vegetation layer) on top of a 
growing media (the substrate layer) over a waterproofing membrane 
(Vijayaraghavan, 2016). In contrast to a conventional roof where the 
vast majority of rainfall flows off, rainwater landing on GRs enters a 
complex hydrological system (Lambrinos, 2015). The system retains 
water in vegetation, substrate and layered materials, thus providing 
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runoff retention (RR) capacity for stormwater management (Mentens 
et al., 2006; Kasmin and Musa, 2012). Moreover, water leaving the GR 
systems through evapotranspiration contributes to a cooling effect and 
can help mitigate the urban heat island (UHI) effect (Sanchez and 
Reames, 2019) and help adjust the indoor thermal environment (Coma 
et al., 2016). As such, GRs are considered a multipurpose green infra-
structure that alleviates multiple urban problems and strengthens urban 
resilience, especially in the face of climate change (Loiola et al., 2019). 
Further, GRs are a low-impact development (LID) measure that mimics 
natural processes to manage stormwater without occupying any addi-
tional urban land (Zhang et al., 2015; Buccola and Spolek, 2011). 

Despite the sizable potential benefits (Berardi et al., 2014), adoption 
of GRs has been slow primarily due to high costs associated with design, 
construction, and maintenance coupled with the ambiguity of potential 
urban service provision (Sproul et al., 2014). In particular, although the 
RR performance of GRs (i.e., the proportion of rainfall that is retained, 
either on an annual or per event basis (Stovin et al., 2017)) has been 
assessed via experimental case-study and model simulation since 1960 
(Shafique et al., 2018), the results exhibit large variations and discrep-
ancies, likely owing to variable locations, design and construction fac-
tors, and operation scenarios (Czemiel Berndtsson, 2010). Such 
uncertainty at a high cost discourages new GR implementation now and 
into the future. A more comprehensive understanding of how well GRs 
function and how the RR performance associated with various design 
parameters and local climates is vital to optimize the RR performance, to 
determine if GRs are an appropriate choice for stormwater runoff miti-
gation in a given urban area and if they can meet relevant green building 
performance requirements and regulations. Normalized knowledge is 
also needed to set plausible GR and green infrastructure performance 
guidelines or standards since severe inconsistencies remain for current 

urban ecosystem service expectations (Calvert et al., 2018). 
Our study seeks to identify and quantify predictable patterns de-

tailing GR RR in relation to varying design and climate characteristics. 
We consolidate experimental measurements of the RR performances 
from 75 peer-reviewed publications published between 2005 and 2020. 
The dataset we developed covers 21 countries and includes 2375 orig-
inal measurements. Using a statistical approach (i.e., multiple regression 
analysis), we then identify factors contributing to different conclusions 
of the effects of GRs on RR and conducted stepwise meta-regression 
analysis. To the best of our knowledge, this analysis constitutes the 
first global synthesis and attempt to find and quantify predictable pat-
terns of the RR performance of GRs with regard to heterogeneous fac-
tors. The findings suggest global parameters for the macro-simulation of 
GRs performance at the city level, and the quantitative insights describe 
GR performance in a broader context such that together these findings 
can help policymakers, urban designers, and contractors make better 
decisions about urban planning and GR design regarding runoff 
mitigation. 

2. Materials and methods 

2.1. Literature search and selection criteria 

The workflow of the literature search and screening is illustrated in 
Fig. 1. We located 7127 peer-reviewed research papers published be-
tween January 1950 and June 2020 from the Web of Science database 
with any of the four keywords – green roof, low-impact development, 
sponge city, and ecological roof – in the abstract or title. The peer-review 
process serves to some extent as a reasonable filter for rigorous scientific 
work. Based on abstracts and titles, we first eliminated duplicates and 

Fig. 1. Flowchart of literature selection and sample data collection. N represents the number of studies (articles).  
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non-English articles, which left us with 5780 papers. Then abstract- 
based relevance screening was applied to identify studies that 

i) addressed RR performance of GRs, thus excluding those that inves-
tigated non-building surface greening measures (such as park land-
scaping), focused on other influences of GRs (such as mitigating UHI 
effect);  

ii) provided primary data obtained from experiments and monitoring, 
thus excluding summaries, reviews, and modeling studies using 
secondary data. 

The criteria left us with 84 studies. We further addressed the whole 
document and extracted experimental data from the primary studies. 
Studies lacking enough information for our regression models, including 
those that provide little information on influencing factors or mea-
surements of direct RR effect as well as those that processed and pre-
sented experimental data only in graphs such that underlying data was 
undiscernable, were excluded. 

After the literature screening, we obtained 75 studies published be-
tween 2005 and 2020 (see the full list in the supplementary information 
Table S1) and extracted 2375 samples for the following regression 
analysis. Among these 75 studies, 73 of them estimated RR effect with 
1948 samples (Table S2), and 19 studies estimated peak runoff retention 
(PRR) effect with 427 samples (Table S3). 

2.2. Estimators and modeling 

2.2.1. GR RR effect metrics 
RR rates and PRR rates specified in Eqs. (1) and (2) are two of the 

most commonly used metrics to measure the RR effect of stormwater 
management approaches, including GRs (Hakimdavar et al., 2014). 

RR = (P − R)/R × 100% (1)  

PRR =
(
I − Gp

)/
I × 100% (2) 

Where P is rainfall intensity measured as precipitation depth per rain 
event (mm/rain event), R is the total runoff drained from GRs during the 
rain event (mm/rain event), I is the maximum rainfall intensity during 
the rain event (mm/min), and Gp measures the peak discharge from the 
GR (mm/min). 

2.2.2. Factors contributing to variations in GR RR effect 
A variety of factors have been reported to influence GR RR perfor-

mance, although a consistent, quantitative estimate and comparison of 
the performances do not exist. The factors can be classified into two 
categories. One category is climate-related variables, such as climate 
types, rainfall intensity, seasons, and antecedent dry weather period 
(ADWP) (Voyde et al., 2010; Berghage et al., 2009; Versini et al., 2016). 
Climate types and seasons influence GR RR performance by the vari-
ances in humidity, temperature, and precipitation (Loiola et al., 2019; 
Brandão et al., 2017). For example, Viola et al. (2017) reported that the 
RR performance of GRs increases when rainfall and potential evapo-
traspiration exhibit the same seasonality (such as in humid subtropical 
climates) while decreases when they are in counter-phase (such as in a 
Mediterranean climate). Schroll et al. (2011) indicated that cool wet 
season climates (e.g., the Pacific Northwest) and winter are challenging 
for GR RR performance. It is widely acknowledged that the RR has a 
negative correlation with rainfall intensity (Lee et al., 2015; Zhang et al., 
2015; Carter and Rasmussen, 2006) and a positive correlation with 
ADWP (Li et al., 2019; Lee et al., 2015), though exceptions sometimes 
exist (Stovin et al., 2012). 

The other category is GR design-related variables, including GR 
vegetation types, geometrical properties (i.e., GR surface coverage area 
and slope), GR substrate characteristics (i.e., type, depth, porosity, and 
density), and GR drainage layer characteristics (i.e., type and depth) 

(Barnhart et al., 2021; Talebi et al., 2019; Afizah Asman et al., 2017). 
Vegetation species, growth status (plant height and vegetation 
coverage), and structure significantly influence the amount of water 
runoff (Soulis et al., 2017a; Gong et al., 2021). The most widely used 
vegetation in GRs are the Crassulacean Acid Metabolism (CAM) plants, 
such as Sedum (Gong et al., 2021; Li et al., 2018; Butler and Orians, 
2011). The maintainance cost of such vegetation is much lower than 
other vetegation types since it is resistant to drought, temperature and 
wind, and requires little artificial irrigation (Dvorak and Volder, 2010). 
However, in most of the study cases, the RR of CAM vegetation is less 
effective than other vegetation types, such as grass (Nagase and Dun-
nett, 2012b; Whittinghill et al., 2015) and C3 vegetation (Cristiano 
et al., 2020). Moreover, some studies show that a combination of plant 
species increases the retention performance (Brandão et al., 2017), 
while others found no such evidence (Nagase and Dunnett, 2012b). 
Besides, the geometrical properties of GRs, including slope and coverage 
area, also affect runoff dynamics (Czemiel Berndtsson, 2010). While 
some studies found little influence of GR coverage area and GR slope on 
RR capacity, others reported that the retention performance of GRs in-
crease with the GR coverage area and decreasing slope (Gong et al., 
2019). Additional key drivers of GR retention performance are substrate 
physical properties, such as substrate material, depth, porosity and 
density (Liu et al., 2019; VanWoert et al., 2005). It is widely recognized 
that deeper substrates present more advantages over shallow ones in RR, 
while the latter fits building retrofitation better due to its light weight 
and less load on the existing roof structure (Castiglia Feitosa and Wil-
kinson, 2016). The hydrologic attributes of substrate materials, such as 
wet weight, retentive capacity, hydraulic conductivity, also determine 
the retention performance (Bollman et al., 2019; Liu and Fassman-Beck, 
2018). GRs with more permeable substrates show lower retention rates 
because of lower maximum storage capacity (Stovin et al., 2015). 
Similar to substrate characteristics, the characteristics of drainage layer, 
such as material and depth, influence the water storage capacity and 
thus the RR capacity of GRs as well (Baryla et al., 2018). 

We included seven variables that have most commonly been 
considered by prior studies in our regression analysis. Three of them are 
climate-related variables (climate type, rainfall intensity, and season), 
and four are design-related variables (GR vegetation type, substrate 
depth, substrate type and GR coverage area). We were able to extract 
information on climate type, rainfall intensity, vegetation type, and 
substrate depth in all experiments presented in the sampled literature; 
information for substrate type, area of GR surface coverage, and season 
type are specified in more than 90% of the studies (Table 1). Aside from 
the seven variables, the literature also indicated the GR RR effects of 
other factors, such as the GR slope, drainage layer type, drainage layer 
depth, and substrate density, as well as the length of antecedent dry 
weather period (ADWP). However, information for those variables is 
relatively less-well specified, available in only 80% of the sampled 
studies or less. In order to obtain more accurate statistical estimates, we 
used the large data sample made up of the seven variables in the 
benchmark model. Moreover, noticing that the substrate type data is 
highly skewed, we removed it from the benchmark model. 

2.2.3. Multiple regression analysis: the benchmark models 
The relationships between GR RR performance and the main de-

terminants identified in the sampled literature were then explored using 
multivariate statistical techniques. Another explanatory variable, the 
year of publication (y), was included in the regression models according 
to the stepwise multiple regression method. It captures the variances of 
influencing factors other than climate conditions and GR design pa-
rameters, such as the evolving technology levels over time. Moreover, 
the stepwise method supports a non-linear relationship between some of 
the explanatory variables and the RR rate, which is consistent with prior 
studies (Yio et al., 2013; Mentens et al., 2006). The model specification 
and selection were based on Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). 
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The benchmark regression models explaining GR RR performance 
are: 

RRi = α3 + β2PP2
i + βPPi + βDDi + β2AA2

i + βAAi + βCCi + βSSi + βV Vi

+ βyyi + ε3i (3)  

PRRi = α4 + γ2PP2
i + γPPi + γDDi + γAAi + γCCi + γSSi + γV Vi + γyyi + ε4i

(4) 

The dependent variable Ri is either the RR or PRR rate of sample i. 
The six explanatory variables of interest (P, D, A, C, S, V), as defined in 
Table 2, are specified on the right side of the equation. P, D, A are 
continuous variables, whilst C, S and V are dummy variables repre-
senting categorical data. Natural log transformations were performed on 
the continuous explanatory variables to reduce or remove the skewness 
of the original data and boost the validity of the statistical analyses. α is 
the constant term. 

β2P, βP, βD, βA, β2A, βC, βS and βV are the coefficients of the 
explanatory variables in Eq. (3) and γ2P, γP, γD, γA, γC, γS and γV are the 
coefficients of the explanatory variables in Eq. (4). In particular, β2P 
(γ2P) and βP (γP) specify the non-linear relationship between (P)RRi and 
rainfall intensity (Pi) and β2A and βA specify the non-linear relationship 
between RRi and the area of GR surface coverage (Ai). A positive 
(negative) coefficient for the quadratic term indicates a U-shaped 
(inverted U-shape) relationship. Due to the natural log transformation, 
βD measures the changes in (P)RR rates of GRs for every 1% increase in 

Table 1 
Data availability of potential explanatory variables.  

Explanatory 
variables 

Examples of 
references 

Number 
of 
studies 
(N) 

% of 
studies 

Number 
of 
samples 
(n) 

% of 
samples 

Climate type Voyde et al., 
2010, Brandão 
et al., 2017;  
Loiola et al., 
2019; Viola 
et al., 2017 

75 100% 2375 100% 

Rainfall 
intensity 

Versini et al., 
2016, Lee et al., 
2015; Zhang 
et al., 2015;  
Carter and 
Rasmussen, 
2006) 

75 100% 2375 100% 

GR 
vegetation 
type 

Talebi et al., 
2019,  
Tafazzoli, 
2018; Nagase 
and Dunnett, 
2012a;  
Whittinghill 
et al., 2015;  
Cristiano et al., 
2020; Brandão 
et al., 2017 

75 100% 2375 100% 

GR substrate 
Depth 

Liu et al., 2019, 
VanWoert 
et al., 2005 

75 100% 2375 100% 

GR substrate 
type 

Liu et al., 2019, 
Bollman et al., 
2019; Liu and 
Fassman-Beck, 
2018 

74 99% 2359 99% 

GR surface 
coverage 
area 

Barnhart et al., 
2021, Czemiel 
Berndtsson, 
2010; Gong 
et al., 2019 

73 97% 2284 96% 

Season Berghage et al., 
2009, Schroll 
et al., 2011 

69 92% 2162 91% 

GR slope Czemiel 
Berndtsson, 
2010, Gong 
et al., 2019 

53 71% 1931 81% 

GR drainage 
layer type 

Afizah Asman 
et al., 2017,  
Baryla et al., 
2018 

49 65% 1722 73% 

GR drainage 
layer depth 

Baryla et al., 
2018 

37 49% 1152 49% 

ADWP Elliott et al., 
2016, Li et al., 
2019; Lee et al., 
2015; Stovin 
et al., 2012 

28 37% 916 39% 

GR substrate 
porosity 

Liu et al., 2019, 
Liu and 
Fassman-Beck, 
2018; Stovin 
et al., 2015 

27 36% 680 29% 

GR substrate 
density 

Liu et al., 2019, 
Stovin et al., 
2015 

25 33% 748 31% 

Notes: N represents the number of individual studies and n represents the 
number of individual experimental samples. 

Table 2 
Definition of the explanatory variables in the regression equations.  

Explanatory 
variables 

Definition Values & units 

Rainfall intensity 
(Pi)

Observed precipitation depth 
per rain event for sample i  

Range from 0.2 mm to 265.5 
mm of precipitation per rain 
event. 

Substrate depth 
(Di)

GR substrate depth of sample i  Range from 1 cm to 35 cm. 

GR surface 
coverage area 
(Ai)

The surface coverage of GR of 
sample i  

Range from 0.2 m2 to 1190 
m2. 

Climate type (Ci)  Based on the Köppen climate 
classification, which divides 
climate into five main groups: 
tropical, dry, temperate, 
continental and polar (Tang 
and Hossain, 2012) 

Categorical variable: 
temperate; continental; dry; 
tropical. Note: the fifth 
group, polar climate, is not 
covered in the sampled 
studies. 

Season (Si) A division of the year marked 
by changes in weather, 
ecology, and the amount of 
daylight 

Categorical variable: winter 
(December – February); 
spring (March – May); 
summer (June – August); 
autumn (September – 
November); more than one 
season or not specified. Note: 
the season are reversed for 
regions in the southern 
hemisphere. 

Vegetation type 
(Vi)

The type of vegetation 
planted on GRs for sample i 

Categorical variable: without 
vegetative cover; sedum; 
grass; mixed-species 
vegetation; other vegetation 
types. 

Additional specifications for the extended model (Eqs. (5)-(7)) 
Presence of 

vegetative 
cover (vi) 

Whether vegetation is planted 
on GRs 

Categorical variable: without 
vegetative cover; with 
vegetative cover 

Rainfall 
magnitude (pi) 

The overall intensity level of 
the rain event for sample i 

Categorical variable: light to 
small rain (Pi≤25 mm/rain 
event); large rain (Pi>25 
mm/rain event)  

Substrate 
magnitude (di)

The level of substrate depth of 
sample i 

Categorical variable: 
extensive GRs (Di<12.5 cm); 
intensive GRs (Di≥12.5 cm)   
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substrate depth (Di). βC, βS, βV represent the changes of (P)RR rates of 
GRs due to different climates, different seasons, and different vegetation 
types, respectively. We include yi, a dummy variable of publication year, 
to represent the time effect (e.g., evolving technologies). 

The error terms, ε, include the effects of other variables on (P)RR. 
They are not specified separately in the equations due to limitations in 
the current understanding of potential determinants or limited avail-
ability of sample data. Examples of the latter include the length of 
proceeding dry periods and GR substrate porosity and slope. Prior 
research indicate they can affect GR RR (Czemiel Berndtsson, 2010; 
Soulis et al., 2017b; Loiola et al., 2019), but available quantitative es-
timates in the sampled literature are too few for statistical analyses. It is 
worth noting that we initially included a dummy variable for Organi-
zation for Economic Co-operation and Development (OECD) countries in 
order to distinguish the economic development level of the GR sites. 
OECD countries are usually considered more affluent and equipped with 
more advanced technologies than non-OECD countries. Yet, the effect of 
the dummy variable appeared not statistically significant when the 
above-mentioned explanatory variables were controlled for and were 
thus excluded from the model. 

A few residual diagnostics were performed to validate the statistical 
models. The AIC and BIC tests were used to assess the relative quality of 
potential model specifications (Supplementary Table S4-S5). The VIF 
(variance inflation factor) was calculated to diagnose multicollinearity 
(Supplementary Table S4-S5). The general rule of thumb is that VIFs 
exceeding 10 signify serious multicollinearity that requires correction. 
Since the mean VIF value of all models is less than 10 with most VIFs 
below 4, we can presume that there are some albeit insignificant cor-
relations between explanatory variables. Furthermore, residual plots 
and results from the ‘White general test for heteroskedasticity’ (White, 
1980) indicate the presence of heteroscedasticity on the residual errors. 
As such, robust standard errors were estimated to obtain reasonably 
accurate p values, which indicate whether the statistical relationships 
are significant or not. 

2.2.4. Extended models with interaction terms 
Moreover, we included models that incorporate first-order in-

teractions between the explanatory variables. Eqs. (5)-(7) examine if an 
explanatory variable has a different effect on the outcome variable (i.e., 
RR and PRR) depending on the values of another explanatory variable, i. 
e., the contingent effects. 

RRi = α5 + θPPi + θDDi + θAAi + θCCi + θSSi + θV Vi + θyyi + ηPvPivi + ε5i

(5)  

RRi = α6 + ξPPi + ξDDi + ξAAi + ξCCi + ξSSi + ξV Vi + ξyyi + ηpDpiDi + ε6i

(6)  

RRi = α7 + φPPi + φDDi + φAAi + φCCi + φSSi + φV Vi + φyyi + ηdPdiPi

+ ε7i

(7) 

Specifically, Eq. (5) includes the interaction term of rainfall intensity 
(P) and presence of vegetative cover (v), the coefficient of which (ηPv) 
measures the differences in the elasticity of RR rates to rainfall intensity 
between non-vegetated GRs (vi = 0) and vegetated GRs (vi = 1). The 
interaction effects of rainfall magnitude (p) and substrate depth (D) were 
captured in Eq. (6), in which ηpD measures how the elasticity of (P)RR 
rates to substrate depth differ between ‘light to small’ rain events (pi =0) 
and ‘large’ rain events (pi =1). The interaction coefficient of substrate 
magnitude (d) and rainfall intensity (P) was captured in Eq. (7), in which 
ηdP measures how the elasticity of RR rates to rainfall intensity varies 
when it is changed from an extensive GR with a low level of substrate 
depth (di =0) to an intensive GR with a high level of substrate depth (di 

=1). The effects of other interaction terms were also examined but 
excluded in the models according to the results of AIC and BIC tests. 

3. Results 

3.1. Spatial, temporal, and topical distributions of the GR runoff 
mitigation studies and experimental measurements 

The samples from the existing studies are unevenly distributed across 
the world (Fig. 2) with most samples obtained from developed coun-
tries. Of the 75 studies (N = 75) and the 2375 experimental samples (n =
2375) investigating the runoff mitigation relationships of GRs, OECD 
countries comprised more than 70% of the data (N = 56, n = 1661). 31 
studies and 1028 samples were obtained from OECD-Europe while 25 
studies and 633 samples were from non-European OECD countries, of 
which the majority came from the United States (N = 14, n = 230). 16 
studies and 574 samples were conducted in developing countries in Asia, 
predominantly China (N = 13, n = 481). Only three studies and 142 
samples were collected from South America, and all from a single 
country, Brazil. No data in our data set comes from Africa, Central 
America, or Central Asia. The scarcity of GR RR samples in these regions 
highlights the need for additional research and sampling, especially 
since urbanization in developing regions is anticipated to progress most 
rapidly (Shen et al., 2017) and thus benefit the most from the integration 
of green infrastructures into urban planning. 

Globally, GR runoff mitigation studies increased rapidly from 2016 
to 2019 with the increase predominantly in Asia and OECD-Europe 
(Fig. 3). Such growth is likely owing to the recent policy interests in 
green infrastructures and sustainable urban development (Liu and Jen-
sen, 2018; Marsalek et al., 2008). Note that by focusing on publications 
written in English, we excluded peer-reviewed studies that were written 
in other languages and contributed scientific understanding around this 
topic. Thus, our estimates of the growths of the research field and 
research interests should be considered conservative. 

Although intensive GRs (GRs with substrate depth >15 cm) are 
known to enable higher runoff mitigation (Yilmaz et al., 2016), the 
majority of the studies focused on extensive GRs (relatively shallow GRs 
with substrates <15 cm), regardless of region or year. Intensive GRs 
were only investigated in one-quarter of the reviewed studies. Prior 
studies pointed out that the heavyweight and the high maintenance and 
upfront construction costs limit the applicability of intensive GRs for 
large-scale projects (Soulis et al., 2017b) such that extensive GRs are 
more common for large-scale projects. 

When assessing RR performance, a measurement of peak discharge is 
only possible with continuous monitoring and hydrologic modeling. As 
such, it is not surprising that most studies solely rely on RR rates and 
neglect PRR rates in their assessment of GR RR effects (nRR=1948; 
nPRR=427). However, PRR rates are an important indicator in evaluating 
GR function since sewer overflows in a rainfall event and the maximum 
erosion damage are usually associated with peak flow (Li and Babcock 
Jr, 2014). Therefore, to obtain a more comprehensive evaluation of GR 
performance, we include the samples of PRR rates in our analysis despite 
the relatively small sample size. 

Our results also reveal that most studies considered multiple factors 
in GR runoff performance. However, few examined the contingent ef-
fects of these variables. Such nuances are crucial for optimizing GR 
designs and implementations in heterogeneous situations. Only eight 
(10.7%) of the 75 studies considered and examined how two factors 
jointly affected GR RR performance. As an example, Loiola et al. (2019) 
revealed that the influence of soil moisture on the RR rates is contingent 
on vegetative cover; RR rates are more sensitive to changes in soil 
moisture when GRs are covered with vegetation. 

3.2. Globally observed RR performance of GRs 

The mathematical mean of GR RR rate of sampled studies (n = 1948) 
is 62.2% (Table 3) compared with the PRR rate mean of 69.3% (n =
427). The mean RR rate appears to be consistent with findings in an 
earlier analysis, which reports average retention of 56% for the 
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effectiveness of extensive GRs on RR performance (Gregoire and Clau-
sen, 2011). The larger mean value of our result is probably because we 
include both intensive and extensive GRs in the samples and intensive 
GRs usually have better retention performance than extensive ones 
(Razzaghmanesh and Beecham, 2014). The RR rate and PRR rate range 
from 0 to 100% for RR rates and from 0.4% to 100% for PRR rates. The 
wider coverage of our data results in ranges larger than those identified 
in previous reviews, e.g., (Shafique et al., 2018; Mentens et al., 2006, Li 
and Babcock Jr, 2014), suggesting the heterogeneity in the empirical RR 
measurements are more substantial than previously known. The wide 
range could result from the variances in climate conditions, GR design, 
antecedent dry days, and rainfall intensity (Gregoire and Clausen, 
2011). Intuitively, when rainfall intensity is especially low, there is 
almost no runoff, so the retention rate is 100% (Fioretti et al., 2010). 
When the rainfall is extremely high or the length of proceeding dry 
period is short, which increases the initial soil moisture and eliminates 
the soil retention capacity, GRs are not able to store water and retain the 
stormwater runoff, resulting in a zero value of the retention rate (Fior-
etti et al., 2010). 

3.3. Six main determinants of GR RR performance: quantitative estimates 
and relative importance 

As mentioned previously, the most studied factors affecting storm-
water RR effects of GRs are climate type, rainfall intensity, vegetation 
type, substrate depth, season and GR coverage area. Our regression re-
sults indicate that all six factors are statistically significant predictors of 
GR RR effects (p<0.1). 

3.3.1. Effects of rainfall intensity (Pi) 
While holding other explanatory variables constant, our regression 

analyses, consistent with previous findings (Carter and Rasmussen, 
2006; Zhang, 2018; Dai et al., 2016), indicate that rainfall intensity is 
negatively correlated with the RR and PRR rates of GRs. Using a linear 
model, we found that with every 1% increase of rainfall intensity in a 
given rain event, the RR rate decreases by 0.14% (Column 2 in Table 4) 
and PRR rate decreases by 0.08% (Column 5 in Table 4). Moreover, for 
the RR rates, non-linear models with the quadratic factor of rainfall 
intensity (Column 3 in Table 4) shows a minor advantage in predictable 
power over the linear model (Column 2 in Table 4), with the explana-
tory power increasing by 1%. The non-linear model also illustrates 
poorer water retention performance under higher rainfall intensity, 
while the decreasing rate grows with the rainfall intensity. Such a 

Fig. 2. Geographic distribution of the GR-RR studies and samples reviewed in this analysis. Each circle denotes the location where studies were conducted, the 
size of the circle denotes the number of samples reported in that location, and the circle color represents the type of the GRs: extensive & vegetated (yellow), 
extensive & non-vegetated (pink), intensive & vegetated (blue), and intensive & non-vegetated (green). 

Fig. 3. A timeline overview of the growths of GR runoff mitigation 
studies. Each circle represents one study. The color of the circle illustrates the 
spatial or topical focus of the study. 
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Table 3 
A statistical summary of the RR rates and PRR rates of the consolidated GR dataset.  

Notes: Circles underlying each boxplot represent the distribution of RR or PRR rates associated with an individual sample, ranging from 0 to 100%. The percentages in 
the parentheses for three factors – vegetation type, climate type and season type – represent the proportion in the data sample. 

Table 4 
Estimates of the GR-RR effects based on the benchmark model.    

Runoff retention effect Peak runoff retention effect   
(1) (2) (3) (4) (5) (6) 

Rainfall intensity (P) ln(P) − 0.101*** − 0.142*** − 0.0777*** − 0.0836*** − 0.0827*** 0.0384  
ln(P)2   − 0.0123***   − 0.0246*** 

Substrate depth (D) ln(D) 0.0607*** 0.0856*** 0.0993*** 0.0696*** 0.0547 0.0519 
GR surface coverage area (A) ln(A) − 0.00857** 0.0124*** 0.0323*** 0.0500*** 0.0445*** 0.0417***  

ln(A)2   − 0.00400**    
Climate type (C) Continental 0.0152 0.0403* 0.0498** 0.201*** 0.189*** 0.183***  

Dry − 0.0604** − 0.0628** − 0.0439     
Tropical 0.0583 0.145*** 0.165***    

Vegetation type (V) Sedum − 0.03 0.000121 − 0.00261 − 0.0731* − 0.0588 − 0.0843*  
Grass − 0.0771** − 0.00272 0.0151 − 0.022 − 0.0782 − 0.109**  
Mixed-species − 0.0187 0.112*** 0.0989** − 0.0323 − 0.0448 − 0.0763  
Others − 0.0579 − 0.0804* − 0.0963** − 0.00483 − 0.0981 − 0.105 

Season (S) Spring 0.0216 0.0548*** 0.0571*** 0.0658 0.0923** 0.0852**  
Summer 0.00627 0.123*** 0.126*** 0.0993*** 0.141*** 0.140***  
Autumn − 0.0968*** 0.019 0.0237 − 0.0099 0.0179 0.0292  
Unspecified − 0.00506 0.0666** 0.0898*** − 0.0349 0.0319 0.0322 

Sample size  1726 1726 1726 333 333 333 
Time effect  No Yes Yes No Yes Yes 
Adj. R2  0.201 0.470 0.478 0.368 0.449 0.469 
AIC  499.2 − 194.5 − 218.7 − 101.8 − 141.6 − 153 
BIC  581.1 − 30.87 − 44.2 − 52.34 − 69.28 − 76.8 

Notes: numeric values in the tables are the estimated coefficients of the explanatory variables *** p<0.01 ** p<0.05, * p<0.1. 
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non-linear correlation was also found for PRR performance. 
The negative correlation between RR performance and rainfall in-

tensity is explainable. In general, a runoff will only occur when rainfall 
exceeds the maximum RR capacity of a GR (Palla et al., 2009; She and 
Pang, 2010). When rainfall intensity is small, rainfall will be largely 
absorbed by the GR, with little to no runoff discharged from the GR. 
When rainfall exceeds the GR maximum RR capacity, subsequent runoff 
occurs. In more intense storms, there is less time for substrate and plants 
to absorb moisture, resulting in decreased retention capacity and 
increased elasticity to rainfall intensity. 

3.3.2. Effects of substrate depth (Di) 
Our regression results show substrate depth is positively correlated 

with RR rate, which agrees with findings that intensive GRs outperform 
extensive GRs in stormwater RR (Mentens et al., 2006; Monterusso et al., 
2002; Soulis et al., 2017a). Our quantitative estimates further refine 
existing knowledge. For every 1% increase in substrate depth, our an-
alyses indicate RR rate increases by 0.1% (Column 3 in Table 4). This is 
consistent with the fact that thicker substrate layers contain more meso‑ 
and micro-pores for long-term moisture storage, essentially providing 
more storage capacity than a shallower substrate layer (Soulis et al., 
2017a; VanWoert et al., 2005). In terms of PRR rate, the influence of 
substrate depth is not robustly significant, especially after controlling for 
the time effect (Column 5–6 in Table 4). The non-significance is prob-
ably because the sample size for the PRR rate is limited (n = 333) and the 
consideration of the time effect leads to a large loss of degrees of 
freedom. 

3.3.3. Effects of GR coverage area (Ai) 
RR has a non-linear correlation with GR coverage area. Based on our 

sample, the correlations are positive when the roof area is lower than 57 
m2 and the correlations are reverse when the roof area exceeds 57 m2 

(Column 3 in Table 4). The positive correlation between RR rates and 
the GR coverage area is explainable. When the substrate is dry, the gap 
between the substrate and the inner wall of the small module was pro-
portionally larger than in the larger modules. Rainfall may directly flow 
out of the module through the gaps, resulting in a lower rate of RR 
(Gong et al., 2019). However, the non-linear correlations between RR 
rates and GR coverage area are seldom reported in previous literature. 
The mechanism for the negative correlations between RR rates and GR 
coverage area when the area is larger than a threshold is elusive. 
Moreover, the non-linear correlations are not significant for PRR rates. 
The PRR effect displays strong linear correlations with the GR coverage 
area, which is consistent with previous findings (Hakimdavar et al., 
2014; Gong et al., 2019). Specifically, for every 1% increase in the GR 
coverage area, the PRR increases by 0.04% (Column 6 in Table 4). 

3.3.4. Effects of climate type (Ci) 
Among the samples we collected, 77% of the observations were 

recorded in temperate climates (n = 1829 out of 2375). Observations for 
the other three types of climates, i.e., continental, dry and tropical, only 
accounts for 12%, 8%, and 3%, respectively. Our statistical analysis 
reveals that GRs in tropical climates, characterized by hot temperature 
and abundant rainfall distributed throughout the year or seasonally, 
outperform GRs located in dry, temperate, or continental climates as far 
as the RR rates are concerned (Column 3 in Table 4). However, keeping 
in mind that the observations for tropical climates are comparatively 
few, we are conservatively optimistic about the positive effect of tropical 
climates on GR’s RR performance. The increased water stress (too much 
and too little water), as well as high temperatures in tropical climates, 
impart great challenges for GR design, such as plant selection and 
maintenance (Simmons, 2015). 

Regarding the PRR rates, we found that GRs in continental climates, 
which often have a significant annual variation in temperature (i.e., hot 
summers and cold winters), outperform those in temperate climates 
(Column 5–7 in Table 4). GRs in continental climates have PRR rates 

35% higher than those in temperate climates. The high performance of 
continental climate GRs may be attributable to the relatively high 
evaporation rates associated with the overall high radiation throughout 
the year combined with wet summers and dry winters. High evaporation 
helps to facilitate the hydraulic performance of the GRs. 

3.3.5. Effects of vegetation types (Vi) 
Out statistical analyses reveal some different or contrasting findings 

regarding the effects of vegetation on GRs’ RR performance. Unlike the 
prior understanding that vegetated GRs typically have greater RR ca-
pacity than non-vegetated ones (Stovin et al., 2015; Kemp et al., 2019), 
our results indicate only minor advantages of vegetation. As shown in 
Column 3 of Table 4, RR rates of vegetated GRs planted with Sedum and 
grass are not significantly higher than those of the non-vegetated GRs. 
Only the vegetated GRs covered with mixed-species plantings retain 
significantly more rainfall than bare substrate at the 95% confidential 
level. As for the PRR rates, the advantages of vegetated GRs over 
non-vegetated ones show the opposite trend. GRs covered with Sedum 
and grass show lower PRR rates than those with a bare substrate. The 
PRR rates of the GRs covered with mixed-species plants and other types 
of vegetation show no significant difference from the PRR rates of 
non-vegetated GRs. The divergence of our findings from previous ones 
may result from the variances of the substrate conditions between 
vegetated and non-vegetated GRs. The substrate in vegetated GRs can 
have higher moisture content since the presence of vegetation requires 
irrigation in routine maintenance, which, however, leads to less water 
retention capacity. Such counterintuitive patterns deserve further 
investigation by future research. 

Moreover, consistent with previous findings (Lundholm et al., 2010), 
our statistical results show that GRs planted with mixed-species vege-
tation exhibit greater RR and PRR rates than those planted with 
monocultures. The (P)RR rates of GRs with mix-species vegetative cover 
are approximately 10% higher than the (P)RR rates of GRs planted with 
monocultures of Sedum or grass (Column 3 & 6 in Table 4). A potential 
explanation is that multiple life forms contribute to temporal comple-
mentarity of growth phenology and water uptake, resulting in higher RR 
capacity than monocultures (Wolf and Lundholm, 2008). 

3.3.6. Effects of season types (Si) 
The seasonal variations, i.e., the intra-annual variations, of GR RR 

performance were statistically significant. The RR rates and the PRR 
rates increase by 13% (Column 3 in Table 4) and 14% (Column 6 in 
Table 4) respectively in summer compared to winter, and by 6% and 9% 
respectively in spring compared to winter. This is supported by higher 
evapotranspiration in spring and summer months, which facilitates re-
covery of GR retention capacity (Mentens et al., 2006; Villarreal et al., 
2004). When subsequent rain falls, the dry soil can then absorb more 
rainfall and retain runoff better. The variations of the length of pro-
ceeding dry period in different seasons may also explain the results. In 
summer, the longer dry period after last rainfall and drier climate can 
jointly enhance the retention efficiency of GRs (Stovin et al., 2012). 
However, the dry season limits the availability of water, which requires 
supplemental irrigation of vegetated GRs (MacIvor et al., 2013). In such 
cases, the carrying capacity and the evaporation effect of GRs are limited 
since the irrigation keep the substrate moist. 

3.4. The contingent effects between variables 

The GR RR effects of some variables are contingent on the status of 
other factors. Such contingent effects are found between a number of 
roof design parameters and natural environment conditions, as shown in 
Table 5. 

Notably, the elasticity of rainfall intensity to RR rates depends on 
whether the GRs are planted with vegetative cover. The negative effect 
that rainfall intensity exerts on the RR rates of GRs (− 0.247) will be 
mitigated in the case of vegetated GRs (− 0.247+0.108 = − 0.139). In 
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other words, for GRs with a bare substrate, every 1% increase in rainfall 
intensity is associated with 0.25% of RR rate decrease; for vegetated 
GRs, every 1% increase in rainfall intensity is associated with 0.14% of 
RR rate decrease (Eq. (5) in Table 5). The variance is probably because 
evapotranspiration and water-holding capacity of plants enable vege-
tated GRs to be less elastic to rainfall intensity increase. 

The RR effects of GRs are more elastic to the increase in substrate 
depth when in regard to mild rainfall events (Eq. (6) in Table 5). Spe-
cifically, for small and medium rainfall events (≤25 mm per rain event), 
the elasticity of RR rate to substrate depth is 0.111, meaning that every 
1% increase in substrate depth is associated with 0.11% of the increase 
in RR rate. For large storms (>25 mm), the elasticity is only 0.042 
(0.111–0.069 = 0.042), meaning that every 1% increase in substrate 
depth is associated with 0.04% of the increase in RR rate (Eq. (6) in 
Table 5). This is likely because the water-holding capacity of the soil is 
limited in large storm events, thereby shrinking the differences in the RR 
capacity between shallow and deep substrates. Thus, increasing GR 
substrate depth is a more effective measure towards managing small to 
medium rain events than for large rain events. 

The RR effects of GRs are more elastic to rainfall intensity increase in 
intensive GRs compared to those in extensive GRs. As shown in Eq. (7) in 
Table 5, every 1% increase of rainfall intensity in extensive GRs is 
associated with 0.13% of the increase in RR rates and the same magni-
tude of rainfall intensity increase in intensive GRs is associated with 
0.17% of the increase in RR rates. However, the mechanism explaining 
this finding warrants further investigation. 

4. Discussion 

Compiling existing experimental samples across the world, our 
analysis systematically and quantitatively analyzes the effects of GRs on 
RR. The study focuses on the effects of six factors that have been widely 
analyzed in the literature - rainfall intensity, depth of substrate layer, GR 
coverage area, climate type, season and vegetation type - on RR and PRR 

rates. The findings provide empirical parameters for macro-simulation 
and develop several implications for urban planning. Our review also 
indicates that GRs need to be further studied in Africa, Central America, 
and Central Asia, where fast urbanization is anticipated and thus could 
benefit greatly from the integration of green infrastructures into 
planning. 

In our sample, the average value of the RR effect is 62.2%, lower than 
some countries’ best practice guidelines issued in their national stan-
dards for green buildings. For example, according to China’s “Assess-
ment Standard for Green Building GB/T50378–2019′′ (MOHURD, 
2019), the best practice guideline for green buildings’ RR rate is more 
than 70%. Developing best practices and optimizing the design param-
eters may improve the RR performance of GRs. For example, increasing 
substrate depth in the reasonable range which the building and the 
maintenance cost can afford, as well as adapting the design parameters 
to local conditions, will facilitate the RR effect. Moreover, combining 
GRs with other green infrastructure alternatives is another avenue to 
improve the overall rain storm management performance (Cascone 
et al., 2019; Li et al., 2018). There have been some attempts at 
combining permeable pavement (Palermo et al., 2020), vegetative 
swales, and bio-retention cells (Joksimovic and Alam, 2014) with GRs, 
which significantly improve the RR performance. 

Another key insight revealed by our analysis is that the determining 
factors of GR RR may interact with each other. The contingent effects 
identified in this study would provide further insight into the complexity 
of the realistic performance of GRs. Specifically, RR effects of non- 
vegetated GRs and intensive GRs are found to be more elastic to rain-
fall intensity increases than vegetated GRs and extensive GRs. RR effects 
of GRs are more elastic to substrate depth in small rain compared to 
those in large rain. These contingent effects warrant further investiga-
tion to develop design specifications according to local natural 
environments. 

Also, it is worth noting that the findings of the statistical analyses on 
GRs’ RR performance should be interpreted carefully. For example, it is 
found that bare substrates retain similar or even more rainfall than GRs 
vegetated with some species. This finding implies that the vegetation 
treatment for GRs may not bring additional retention capacity when 
measured by the RR rates. But it does not mean vegetation is valueless – 
prior studies indicate vegetation in GRs can offer multiple ecological 
benefits, such as mitigating the UHI effects and adjusting micro-climates 
(Oberndorfer et al., 2007; Manoli et al., 2019; Miller and Hutchins, 
2017). 

A limitation of this meta-analysis is that it focuses on the six key 
factors that have been widely studied and measured as determinants of 
GR RR performances in the existing literature. Some other factors, such 
as the length of antecedent dry weather period (ADWP) and GR age, are 
not examined in the main statistical analysis mainly because of the small 
sample size of the quantitative estimates available. Despite the limita-
tions, this meta-analysis provides parameters and references for macro- 
level modeling of GR installation and performance. Different from pre-
vious case studies that focus on a single area, this study provides a 
worldwide quantitative synthesis of the experimental data and identifies 
predictable patterns of GRs’ effect on RR. Future macro-simulations 
based on these generalized parameters can facilitate policy decisions 
related to climate change adaptation and mitigation in terms of the 
rainstorm and urban flood management. 

5. Conclusion 

This study constitutes the first, to the best of our knowledge, global 
synthesis that quantifies predictable patterns of the RR performance of 
GRs with regard to heterogeneous factors. A dataset of 2375 original 
experimental measurements of the RR of GRs in 21 countries was 
consolidated from 75 internationally peer-reviewed studies published in 
2005–2020. The global dataset show that few samples are avaibale from 
South America, Africa, Central America or Central Asia, which 

Table 5 
Estimated contingent effects of two parameters on the RR rates of GRs.  

Eq. (5) Coefficient of 
P 

Conditional on v =

Rainfall intensity (P) − 0.247***  
Rainfall intensity # Vegetation 

cover (P#v) 
ref b non-vegetated  

0.108** vegetated    

Eq. (6) Coefficient of 
D 

Conditional on p =

Substrate depth (D) 0.111***  
Substrate depth # Rainfall 

magnitue (D#p) 
refb light to small rain (≤25 mm/ 

rain event)  
− 0.069*** large rain (>25 mm/rain 

event)    

Eq. (7) Coefficient of 
P 

Conditional on d =

Rainfall intensity (P) − 0.128***  
Rainfall intensity # Substrate 

magnitude (P#d) 
refb extensive GRs (substrate 

depth<12.5 cm)  
− 0.046*** intensive GRs (substrate 

depth≥12.5 cm) 

Notes: 
a. contingent effects on the PRR rates using the models above were not signifi-
cant. 
b. One of the categories is treated as the reference, i.e., samples with the cate-
gorical value (e.g., non-vegetated) form the reference group whose coefficient is 
not explicitly estimated and equivalent to zero. The coefficient estimated for 
other categorical values (e.g., vegetated) indicates how that category compares 
to the reference category. 
c. statistical significance indicated by the p values *** p<0.01 ** p<0.05, * 
p<0.1. 
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highlights the need for additional research and sampling in these re-
gions. Besides, RR rate of GRs in a single rain event is found to be 62% on 
average, which cannot meet some countries’ green building re-
quirements (e.g., the best practice guideline for green buildings in 
China, titled “Assessment Standard for Green Building GB/ 
T50378–2019′′, requires at least 70% of RR rate). This indicates the need 
to further improve the RR performance of GRs or combine GRs with 
other RR measures for green buildings. Applying a statistical approach 
on the dataset, we systematically and consistently quantify the GR RR 
effect of main factors identified in prior studies: rainfall intensity, GR 
substrate depth, GR surface coverage, climate type, GR vegetation types 
and season types on RR performance. We reveal a non-linear negative 
correlation between RR and rainfall intensity, a linear positive correla-
tion between RR and substrate depth, and an inversed U-shape corre-
lation between RR and GR surface coverage area. Crucially, the 
influences of some of the factors are not isolated but contingent on the 
other factors. For example, the influences of rainfall intensity on the RR 
rates depends on the vegetative cover of GRs and the substrate depth 
magnitude. The influence of substrate depth on GR RR rates depends on 
rainfall magnitude as well. The contingent effects underscore a need of 
GRs optimization by not only leveraging the design parameters but also 
considering the local circumstances of weather and climate. 
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Manoli, G., Fatichi, S., Schläpfer, M., et al., 2019. Magnitude of urban heat islands largely 
explained by climate and population. Nature 573, 55–60. https://doi.org/10.1038/ 
s41586-019-1512-9. 

Marsalek, J., Cisneros, B.J., Karamouz, M., et al., 2008. Urban Water Cycle Processes and 
interactions: Urban Water Series-UNESCO-IHP. CRC Press. 

Martel, J.-.L., Mailhot, A., Brissette, F., 2020. Global and regional projected changes in 
100-yr subdaily, daily, and multiday precipitation extremes estimated from three 
large ensembles of climate simulations. J. Clim. 33, 1089–1103. https://doi.org/ 
10.1175/JCLI-D-18-0764.1. 

Mentens, J., Raes, D., Hermy, M., 2006. Green roofs as a tool for solving the rainwater 
runoff problem in the urbanized 21st century? Landsc. Urban Plan. 77, 217–226. 
https://doi.org/10.1016/j.landurbplan.2005.02.010. 

Miller, J.D., Hutchins, M., 2017. The impacts of urbanisation and climate change on 
urban flooding and urban water quality: a review of the evidence concerning the 
United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362. https://doi.org/10.1016/j. 
ejrh.2017.06.006. 

Mishra, A.K., Nagaraju, V., Rafiq, M., et al., 2019. Evidence of links between regional 
climate change and precipitation extremes over India. Weather 74, 218–221. 
https://doi.org/10.1002/wea.3259. 

MOHURD, China. Assessment Standard for Green Building GB/T 50378-2019. 2019. 
Available at http://www.mohurd.gov.cn/wjfb/201905/t20190530_240717.html (in 
Chinese). 

Monterusso, M., Rowe, D., Rugh, C., et al., 2002. Runoff water quantity and quality from 
green roof systems. In: Proceedings of the XXVI International Horticultural Congress: 
Expanding Roles for Horticulture in Improving Human Well-Being and Life Quality, 
639, pp. 369–376. https://doi.org/10.17660/ActaHortic.2004.639.49. 

Nagase, A., Dunnett, N., 2012a. Amount of water runoff from different vegetation types 
on extensive green roofs: effects of plant species, diversity and plant structure. 
Landsc. Urban Plan. 104, 356–363. https://doi.org/10.1016/j. 
landurbplan.2011.11.001. 

Nagase, A., Dunnett, N., 2012b. Amount of water runoff from different vegetation types 
on extensive green roofs: effects of plant species, diversity and plant structure. 
Landsc. Urban Plan. 104, 356–363. https://doi.org/10.1016/j. 
landurbplan.2011.11.001. 

Oberndorfer, E., Lundholm, J., Bass, B., et al., 2007. Green roofs as urban ecosystems: 
ecological structures, functions, and services. Bioscience 57, 823–833. https://doi. 
org/10.1641/B571005. 

Palermo, S., Talarico, V., Turco, M., 2020. On the LID systems effectiveness for urban 
stormwater management: case study in Southern Italy. In: Proceedings of the IOP 
Conference Series: Earth and Environmental Science. IOP Publishing, 012012. 
https://doi.org/10.1088/1755-1315/410/1/012012. 

Palla, A., Gnecco, I., Lanza, L.G., 2009. Unsaturated 2D modelling of subsurface water 
flow in the coarse-grained porous matrix of a green roof. J. Hydrol. Amst. 379, 
193–204. https://doi.org/10.1016/j.jhydrol.2009.10.008. 

Razzaghmanesh, M., Beecham, S., 2014. The hydrological behaviour of extensive and 
intensive green roofs in a dry climate. Sci. Total Environ. 499, 284–296. https://doi. 
org/10.1016/j.scitotenv.2014.08.046. 

Sanchez, L., Reames, T.G., 2019. Cooling Detroit: a socio-spatial analysis of equity in 
green roofs as an urban heat island mitigation strategy. Urban For. Urban Green. 44, 
126331 https://doi.org/10.1016/j.ufug.2019.04.014. 

Schroll, E., Lambrinos, J., Righetti, T., et al., 2011. The role of vegetation in regulating 
stormwater runoff from green roofs in a winter rainfall climate. Ecol. Eng. 37, 
595–600. https://doi.org/10.1016/j.ecoleng.2010.12.020. 

Shafique, M., Kim, R., Rafiq, M., 2018. Green roof benefits, opportunities and 
challenges–a review. Renew. Sustain. Energy Rev. 90, 757–773. https://doi.org/ 
10.1016/j.rser.2018.04.006. 

She, N., Pang, J., 2010. Physically based green roof model. J. Hydrol. Eng. 15, 458–464. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000138. 

Shen, L., Shuai, C., Jiao, L., et al., 2017. Dynamic sustainability performance during 
urbanization process between BRICS countries. Habitat Int. 60, 19–33. https://doi. 
org/10.1016/j.habitatint.2016.12.004. 

Simmons, M.T., 2015. Climates and microclimates: challenges for extensive green roof 
design in hot climates. Green Roof Ecosystems. Springer. https://doi.org/10.1007/ 
978-3-319-14983-7_3. 

Soulis, K.X., Ntoulas, N., Nektarios, P.A., et al., 2017a. Runoff reduction from extensive 
green roofs having different substrate depth and plant cover. Ecol. Eng. 102, 80–89. 
https://doi.org/10.1016/j.ecoleng.2017.01.031. 

Soulis, K.X., Valiantzas, J.D., Ntoulas, N., et al., 2017b. Simulation of green roof runoff 
under different substrate depths and vegetation covers by coupling a simple 
conceptual and a physically based hydrological model. J. Environ. Manag. 200, 
434–445. https://doi.org/10.1016/j.jenvman.2017.06.012S. 

Sproul, J., Wan, M.P., Mandel, B.H., et al., 2014. Economic comparison of white, green, 
and black flat roofs in the United States. Energy Build. 71, 20–27. https://doi.org/ 
10.1016/j.enbuild.2013.11.058. 

Stovin, V., Poë, S., De-Ville, S., et al., 2015. The influence of substrate and vegetation 
configuration on green roof hydrological performance. Ecol. Eng. 85, 159–172. 
https://doi.org/10.1016/j.ecoleng.2015.09.076. 

Stovin, V., Vesuviano, G., De-Ville, S., 2017. Defining green roof detention performance. 
Urban Water J. 14, 574–588. https://doi.org/10.1080/1573062X.2015.1049279. 

Stovin, V., Vesuviano, G., Kasmin, H., 2012. The hydrological performance of a green 
roof test bed under UK climatic conditions. J. Hydrol. Amst. 414, 148–161. https:// 
doi.org/10.1016/j.jhydrol.2011.10.022. 

Tafazzoli, M., 2018. Investigating the impacts of green roofs’ vegetation properties on 
their function in controlling urban runoffs. In: Proceedings of the International Low 
Impact Development Conference: Getting In Tune With Green Infrastructure. 
American Society of Civil Engineers Reston, VA, pp. 176–183. 

Talebi, A., Bagg, S., Sleep, B.E., et al., 2019. Water retention performance of green roof 
technology: a comparison of Canadian climates. Ecol. Eng. 126, 1–15. https://doi. 
org/10.1016/j.ecoleng.2018.10.006. 

Tang, L., Hossain, F., 2012. Investigating the similarity of satellite rainfall error metrics 
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