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Abstract

Motivation: To address the limits of facility- or study-based estimates, multiple indepen-

dent parameter estimates may need to be combined. Specific examples include (i) adjust-

ing an incidence rate for healthcare utilisation, (ii) deriving a disease prevalence from a

conditional prevalence and the prevalence of the underlying condition, (iii) adjusting a se-

roprevalence for test sensitivity and specificity. Calculating combined parameter estimates

is generally straightforward, but deriving corresponding confidence intervals often is not.

bootComb is an R package using parametric bootstrap sampling to derive such intervals.

Implementation: bootComb is a package for the statistical computation environment R.

General features: Apart from a function returning confidence intervals for parameters com-

bined from several independent estimates, bootComb provides auxiliary functions for 6

common distributions (beta, normal, exponential, gamma, Poisson and negative binomial)

to derive best-fit distributions for parameters given their reported confidence intervals.

Availability: bootComb is available from the Comprehensive R Archive Network (https://

CRAN.R-project.org/package¼bootComb).
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Introduction

Motivation

In epidemiological research, the need to combine several

estimated parameters is not unusual. The impact of study

or facility-based limitations on parameter estimates is

well-known1 and common adjustment factors include the

probability of seeking healthcare or of receiving a

diagnostic test (both in the case of facility-based esti-

mates), the incidence or prevalence of a related condition

(in the case of a conditional disease prevalence/incidence),

or the operational characteristics of the diagnostic test (in

the case of imperfect diagnostic tests). A recent example

includes the estimation of typhoid incidence1 where a

Bayesian model was used to derive adjustment factors.

While usually easy to combine point estimates, it is often
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difficult to obtain a valid confidence interval (CI) for the

combined parameter.

The development of bootComb was motivated by two

real-world examples:

i. Obtaining a 95% CI for hepatitis D virus (HDV) preva-

lence from the reported estimates and 95% CIs for the

conditional prevalence of hepatitis D among hepatitis B

surface antigen (HBsAg) positive patients and the prev-

alence of HBsAg.2

ii. Adjusting the seroprevalence estimate obtained from a

novel antibody test for SARS-CoV-2 for the estimated

sensitivity and specificity of this test.3

In both applications, the parameter of interest was the

unconditional (HDV example) or the adjusted (SARS-

CoV-2 example) prevalence, not the raw, directly mea-

sured estimate and in each case, multiple independently es-

timated parameters had to be combined via a known

mathematical function. However, it was not evident how

to derive a corresponding CI.

In public health applications, CIs are as important for

policy makers than the central point estimates. CIs are

needed for the adjusted incidence or prevalence parame-

ters, not for the raw, unadjusted estimates. Given recent

guidelines4 for nuanced discussion of the full range of val-

ues within estimated CIs rather than just a focus on point

estimates and p-values, there is a large need for CIs with

correct coverage and this is where bootComb provides a

simple-to-use tool to propagate uncertainty from all

estimates.

While in both examples above all parameters are proba-

bility parameters, the algorithm is general: it can be used

for arbitrarily complex functions to combine an arbitrary

number of parameters, each with an arbitrary distribution

(provided it can be sampled from).

Context relative to previously existing software

For some situations, e.g. the sum of two normally distrib-

uted, exact solutions exist. There are software

implementations for the example of adjusting a prevalence

estimate for the sensitivity and specificity of the diagnostic

test (e.g. Reiczigel et al5, or https://larremorelab.github.io/

covid-calculator26). The former of these assumes that sen-

sitivity and specificity are known exactly. For specific

applications, a Bayesian model6 or non-parametric boot-

strapping7 will propagate uncertainty from all parameters

but implementation of such approaches requires substan-

tial statistical programming expertise.

Crucially, all of the above are for specific applications

and the author is not aware of a software implementation

for the general problem of deriving CIs for arbitrary func-

tions of an arbitrary number of parameter estimates each

with an arbitrary probability distribution.

Implementation

bootComb is a package for the statistical computation envi-

ronment R8 and its source code is written in R. bootComb

is available from the Comprehensive R Archive Network

(https://CRAN.R-project.org/package¼bootComb) and can

be installed within R by typing the following at the R con-

sole: install.packages(‘bootComb’). Source code

and the latest development version are available from

GitHub (https://github.com/gitMarcH/bootComb). To com-

pute highest density intervals bootComb makes use of the R

package HDInterval9. If this is not installed, bootComb falls

back on the percentile method.

The algorithm

Assume that a parameter of interest / is computed from

k ¼ 2;3; :: parameters h ¼ ðh1; . . . ; hkÞ using a function g:

/ ¼ gðh1; . . . ; hkÞ. Assume that for each parameter hj,

j ¼ 1; . . . ;k, an estimate ĥj with an ð1� aÞ � 100% CI

½ĥl;j; ĥu;j� is reported.

An estimate for / is obtained by computing

/̂ ¼ g ĥ1; . . . ; ĥk

� �
, but it is less obvious how to derive a CI

for /̂ with correct coverage ð1� aÞ � 100%. For example,

for independent parameter estimates, the naively computed

Key Features

• bootComb derives confidence intervals with the required coverage for parameters that are computed from

independent parameter estimates for which confidence intervals are reported.

• Includes auxilliary functions for 6 common distributions (beta, normal, exponential, gamma, Poisson and negative binomial)

to derive best-fit distributions (and their sampling functions) for parameters given their reported confidence intervals.

• R package: open-source, easy-to-use, platform independent.

• Stable version hosted on CRAN: https://CRAN.R-project.org/package¼bootComb

• Latest development version available from GitHub: https://github.com/gitMarcH/bootComb
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interval g ĥl;1; . . . ; ĥl;kÞ; gðĥu;1; . . . ; ĥu;k

� �h i
will be too

wide.

Writing Hj for the estimator for hj, and assuming

Hj � Fj, where Fj is some parametric distribution, for each

parameter estimate ĥj; j ¼ 1; . . . ;k, we can estimate a prob-

ability distribution F̂ j from the reported CI ½ĥl;j; ĥu;j� and

then use parametric bootstrap sampling to obtain an ap-

proximate CI for /̂ with the required coverage.

The general algorithm is given below:

i. For j ¼ 1; . . . ;k, estimate a distribution function F̂ j for

the estimate Hj from ½ĥl;j; ĥu;j�.
ii. Assuming that the parameters h1; . . . ; hk (and their esti-

mates ĥ1; . . . ; ĥk) are independent, obtain B bootstrap

samples ĥ
ðbÞ

, b ¼ 1; . . . ;B, for ĥ ¼ ðĥ1; . . . ; ĥkÞ by sam-

pling ĥ
ðbÞ
j � F̂ j, j ¼ 1; . . . ; k independently.

iii. For each bootstrap sample b, compute

/̂
ðbÞ ¼ g ĥ

ðbÞ
1 ; . . . ; ĥ

ðbÞ
k

� �
, b ¼ 1; . . . ;B.

iv. Obtain a ð1� aÞ � 100% CI ½/̂l; /̂u�, using either the per-

centile9 or the highest density interval10 methods on the em-

pirical distribution for /̂ given by the sample /̂
ðbÞ

n o
b¼1;...;B

.

Method for deriving CIs from a sample

As an alternative to the common percentile method10, the

highest density interval (HDI)11 can be used to derive the re-

quired CI. The advantage is that this is the narrowest interval

with the desired coverage and that the probability density es-

timated from the bootstrap sample is always higher or equal

inside the interval compared to outside it. One caveat is that

the HDI may not be a single interval but a set of intervals if

the density is multimodal. In this case the single interval

returned by bootComb may be too wide and users need to

inspect histograms of the sampled combined parameter

to check for multimodality when using bootComb with

method¼’hdi’. The default is method¼’quantile’
which implements the percentile method.

Use

This section contains worked examples for the two applica-

tions from the Introduction section. The main computational

routine, bootComb(), is general and not limited to probabil-

ity parameters as is the case here where the beta distribution, a

natural candidate for probability parameters, was used.

Hepatitis D virus prevalence in the general population

A pre-condition for hepatitis D virus (HDV) infection is

hepatitis B virus (HBV) infection. To assess HBV preva-

lence, study participants can be tested for the presence of

surface antigen of the hepatitis B virus (HBsAg). To assess

HDV prevalence, one can test for the presence HDV-

specific immunoglobulin G antibodies (anti-HDV).

HDV is rare and, since it is conditional on HBV, most stud-

ies report the prevalence of anti-HDV among HBsAg-positive

patients. Stockdale et al2 conducted a systematic review to

estimate the global conditional prevalence p̂aHDVjHBsAg and,

using estimates of HBsAg prevalence p̂HBsAg reported by the

World Health Organization (WHO), to derive p̂aHDV :

p̂aHDV ¼ p̂aHDVjHBsAg � p̂HBsAg. The CI for p̂aHDV for the

global population, reported in Table 2 in Stockdale et al2

was derived using the bootComb algorithm:

• p̂HBsAg ¼ 3:5% with 95% CI ð2:7%; 5:0%Þ.
• p̂aHDVjHBsAg ¼ 4:5% with 95% CI ð3:6%;5:7%Þ.

library(bootComb)

# find best-fit beta distribution for the reported CIs

dist1<-getBetaFromCI(qLow¼0.027,qUpp¼0.050,alpha¼
0.05) # p_HBsAg

dist2<-getBetaFromCI(qLow¼0.036,qUpp¼0.057,alpha¼
0.05) # p_aHDVjHBsAg

distList<-list(dist1$r,dist2$r)

# combination function

combFun<-function(pars)fpars[[1]]*pars[[2]]g

# point estimate of the combined parameter

p_aHDV<-combFun(c(0.035,0.045))

print(p_aHDV)

## [1] 0.001575

# 95% CI

ci<-bootComb(distList¼distList,combFun¼combFun)

$conf.int

print(ci)

## 2.5% 97.5%

## 0.001144280 0.002468875

We obtain the estimate p̂aHDV ¼ 0:16% with 95% CI

ð0:11%; 0:25%Þ.1

The estimated beta distributions for the two prevalences

in this example have parameters a ¼ 39:62;b ¼ 1012:19

and a ¼ 69:60;b ¼ 1445:16. These prevalences can be

interpreted as having been estimated from samples of

sizes approximately 40 þ 1012 ¼ 1052 and

70 þ 1445 ¼ 1515, respectively. This can be used to

check, via simulation, the coverage of the CI. Using

the bootComb function simScenProductTwoPrevs by

running simScenProductTwoPrevs(B¼1000,
p1¼0.035, p2¼0.045, nExp1¼1052,
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nExp2¼1515, alpha¼0.05) shows that the 95% CI

has 95.1% coverage, with a 95% CI of (93.6%,96.4%)

from N¼ 1000 simulations.

Sars-CoV-2 seroprevalence adjusted for test

sensitivity and specificity

Chibwana et al3 report the surprisingly high SARS-CoV-2

seroprevalence and associated low morbidity in health

workers in Blantyre, Malawi. Writing p for the seropreva-

lence of SARS-CoV-2, out of 500 study participants, 84

tested positive for SARS-CoV-2 antibodies: p̂raw ¼ 16:8%

with exact binomial 95% CI ð13:6%;20:4%Þ.
The immunological assay used in the study was novel

and had been assessed in a limited number of samples as

follows3,12:

• sensitivity: 238 of 270 known positive samples tested

positive p̂sens ¼ 88:1%, 95% CI ð83:7%; 91:8%Þ;
• specificity: 82 of 88 known negative samples tested nega-

tive p̂spec ¼ 93:2%, 95% CI ð85:7%;97:5%Þ.

Given that the test has sensitivity and specificity below

100%, and the substantial uncertainty of both estimates, it

is important to adjust seroprevalences estimated using this

test. This is a common situation, e.g. molecular tests are in-

creasingly developed to replace culture-based assays.

Writing psens ¼ PðTjDÞ and pspec ¼ PðT jDÞ where T is

the event of testing positive, D is the event of being sero-

positive, and T ;D are the complements of T;D, the mea-

sured seroprevalence p̂raw is related to the estimate of the

actual seroprevalence p̂:

p̂raw ¼ p̂ � PðTjDÞ þ ð1� p̂Þ � PðTjDÞ

We can derive an equation to adjust the measured sero-

prevalence for the assay’s sensitivity and specificity:

p̂ ¼ p̂raw � PðTjDÞ
PðTjDÞ � PðTjDÞ

¼
p̂raw þ p̂spec � 1

p̂sens þ p̂spec � 1

where we have substituted the estimated sensitivity and

specificity in the expression on the right-hand side.

To summarize, we have three parameter estimates

(p̂raw; p̂sens; p̂spec), their 95% CIs and a functional form to

derive the actual parameter of interest (p̂). With this we

can use bootComb, which includes a dedicated function,

adjPrevSensSpecCI, for this problem:

library(bootComb)

adjPrevSensSpecCI(

prevCI¼binom.test(x¼84,n¼500)$conf.int,

# 95% CI observed prevalence

sensCI¼binom.test(x¼238,n¼270)$conf.int,

# 95% CI observed sensitivity

Figure 1 (a) Best-fit beta distributions for the unadjusted seroprevalence, sensitivity and specificity from their 95% CIs. (b) Histogram of the adjusted

prevalence values obtained from the bootstrapped values for prevalence, sensitivity and specificity
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specCI¼binom.test(x¼82,n¼88)$conf.int,

# 95% CI observed specificity

method¼’hdi’,

prev¼84/500,# observed prevalence

sens¼238/270, # observed sensitivity

spec¼82/88) # observed specificity

## $estimate

## [1] 0.1227324

##

## $conf.int

## lower upper

## 0.03926495 0.19013038

## attr(‘credMass’)

## [1] 0.95.

This yields the estimate p̂ ¼ 12:3% with 95% CI

ð3:9%;19:0%Þ. Had the uncertainty in the sensitivity and

specificity been ignored, the 95% CI would have been

ð8:4%;16:7%Þ. Figure 1 illustrates this example. The

bootComb package provides a function,

simScenPrevSensSpec, for running simulations for this par-

ticular application which allows estimation of the actual cover-

age of the CIs: simScenPrevSensSpec(p¼0.1227,
sens¼0.881, spec¼0.932, nExp¼500,
nExpSens¼270, nExpSpec¼88, B¼1000). The

bootComb 95% CI has estimated 95.3% coverage, with 95%

CI (93.8%, 96.5%), whereas ignoring the uncertainty in sensi-

tivity and specificity yields only 75.7% coverage, 95% CI

(72.9%, 78.3%) (both from N¼ 1000 simulations; bootComb

computes coverage for the latter interval if the argument

assumeSensSpecExact¼TRUE is passed to the function

simScenPrevSensSpec).

Discussion

This paper presents bootComb, an R package to derive CIs

for arbitrary functions of an arbitrary number of estimated

parameters, where each parameter estimate follows an ar-

bitrary distribution function. bootComb samples from the

empirical distributions of the input parameter estimates

and uses either the percentile or high density interval

(HDI) method to obtain a CI for the parameter of interest.

The applicability of this R package is wide but has one

important limitation: in its current version, bootComb

assumes all parameter estimates to be independent. Where

this is not the case, the CIs computed by bootComb could

have incorrect coverage. In the adjusted seroprevalence ex-

ample, the three parameters are not independent, even

though they were estimated from independent samples.

This is apparent in a small number of adjusted prevalences

p̂ < 0 that were obtained. In most applications, especially

for large sample sizes, this error is negligible; in the sero-

prevalence example this is confirmed by the correct

coverage of the CI. In cases where independence is not

met, bootComb will err on the side of being too conserva-

tive, resulting in overly wide CIs. This is preferable to not

correctly propagating uncertainty and reporting CIs with

coverage below the targeted level. For many, if not most,

situations, the independence assumption will hold (when

parameters are obtained from independent studies without

direct dependence between the combined parameters) or

its violation will only negligibly affect the coverage of the

resulting CIs (as in the adjusted seroprevalence example).

Nevertheless, future versions of the package will aim to

support a limited number of joint distributions. For more

complicated dependence situations, custom modelling

approaches will be needed.

bootComb provides an easy-to-use tool to the applied

epidemiologist faced with the need to combine several in-

dependent parameter estimates. At the time of publication,

the most recent version of bootComb was 1.0.1. R version

4.0.2 and HDInterval version 0.2.2 were used for compu-

tations in this paper.

The data underlying this article are available in the arti-

cle and in its online Supplementary material.

Supplementary data

Supplementary data are available at IJE online.

Funding

This work was supported by a Wellcome Trust Strategic Award

to Malawi—Liverpool—Wellcome Trust Clinical Research

Programme [grant: 206545/Z/17/Z].

Acknowledgements
The author wishes to thank his co-authors from Stockdale et al2 and

Chibwana et al3 to permit the use of examples from these works.

Conflict of interest: None declared.

References

1. Phillips MT, Meiring JE, Voysey M et al. A Bayesian approach

for estimating typhoid fever incidence from large-scale facility-

based passive surveillance data. medRxiv 2020, 6 October. doi:

10.1101/2020.10.05.20206938. Preprint: not peer reviewed.

2. Stockdale AJ, Kreuels B, Henrion MYR et al. The global preva-

lence of hepatitis D virus infection: Systematic review and meta-

analysis. J Hepatol 2020;73:523–32.

3. Chibwana MG, Jere KC, Kamng’ona R et al. High SARS-CoV-2

seroprevalence in health care workers but relatively low numbers

of deaths in urban Malawi. Wellcome Open Res 2020;5:199.

4. Wasserstein RL, Schirm AL, Lazar NA. Moving to a world be-

yond “p<0.05”. Am Stat 2019;73(Suppl 1):1–19.

International Journal of Epidemiology, 2021, Vol. 00, No. 00 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab049/6278063 by guest on 19 M

ay 2021

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab049#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab049#supplementary-data


5. Reiczigel J, Földi J, Ózsvári L. Exact confidence limits for preva-

lence of a disease with an imperfect diagnostic test. Epidemiol

Infect 2010;138:1674–78.

6. Stringhini S, Wisniak A, Piumatti G et al. Seroprevalence of

anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland

(SEROCoV-POP): a population-based study. Lancet 2020;396:

313–19.

7. Havers FP, Reed C, Lim T et al. Seroprevalence of antibodies to

SARS-CoV-2 in 10 sites in the United States, March 23-May 12,

2020. JAMA Intern Med 2020;180:1576–86.

8. R Core Team. R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing, 2020.

9. Meredith M, Kruschke J. HDInterval: Highest (Posterior)

Density Intervals. 2020. https://CRAN.R-project.org/package¼
HDInterval (8 March 2021, date last accessed).

10. Davison AC, Hinkley DV, Bootstrap Methods and Their

Application. 1st edn. Cambridge, UK: Cambridge University

Press, 1997.

11. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin

DB, Bayesian Data Analysis. 3rd edn. Boca Raton, FL: CRC

Press, 2014.

12. Adams ER, Augustin Y, Byrne RL, et al. Rapid development of

COVID-19 rapid diagnostics for low resource settings: accelerat-

ing delivery through transparency, responsiveness, and open col-

laboration. medRxiv 2020, 5 May. doi: 10.1101/2020.04.29.

20082099. Preprint: not peer reviewed.

13. Larremore DB, Fosdick BK, Zhang S, Grad YH. Jointly model-

ing prevalence, sensitivity and specificity for optimal sample allo-

cation. bioRxiv 2020, 26 May. doi: 10.1101/2020.05.23.11264.

Preprint: not peer reviewed.

6 International Journal of Epidemiology, 2021, Vol. 00, No. 00

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab049/6278063 by guest on 19 M

ay 2021

https://CRAN.R-project.org/package=HDInterval
https://CRAN.R-project.org/package=HDInterval



