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Abstract— The longstanding theory of “parallel processing”
predicts that, except for a sign reversal, ON and OFF cells are
driven by a similar pre-synaptic circuit and have similar visual
field coverage, direction/orientation selectivity, visual acuity
and other functional properties. However, recent experimental
data challenges this view. Here we present an information
theory based receptive field (RF) estimation method - quadratic
mutual information (QMI) - applied to multi-electrode array
electrophysiological recordings from the mouse dorsal lateral
geniculate nucleus (dLGN). This estimation method provides
more accurate RF estimates than the commonly used Spike-
Triggered Average (STA) method, particularly in the presence
of spatially correlated inputs. This improved efficiency allowed
a larger number of RFs (285 vs 189 cells) to be extracted
from a previously published dataset. Fitting a spatial-temporal
Difference-of-Gaussians (ST-DoG) model to the RFs revealed
that while the structural RF properties of ON and OFF cells
are largely symmetric, there were some asymmetries apparent
in the functional properties of ON and OFF visual processing
streams - with OFF cells preferring higher spatial and temporal
frequencies on average, and showing a greater degree of
orientation selectivity.

I. INTRODUCTION

Consider two image patches of identical size but opposite
contrast. A light patch on a dark background is perceived
differently to a dark patch on a light background: Helmholtz
termed this illusion the ”irradiation illusion” [1]. It arises
partly because of the scattering effects of light, however
Galilei suggested that this may also indicate a difference in
spatial resolution [2]. Schiller and colleagues [3] found that
2-amino-4-phosphonobutyrate (APB) abolishes ON response
in retinal ganglion cells (RGCs), the LGN and visual cortex,
but has no effect on the center surround antagonism of
OFF cells or the orientation and direction selectivity in the
cortex. These and related findings suggest that the ON and
OFF pathways remain largely separate though the LGN and
cortex [4], opening up the potential for the separate pathways
to be differently adapted to specific information processing
demands.

Asymmetry between ON and OFF blue sensitivity-cones
of retina was observed as early as in the 70s by de Monasterio
[5]. Other asymmetric properties such as the size of the
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receptive field of ON and OFF visual pathway have been
observed in drosophila [6], rodents [7], tree shrews [8], lep-
orids [9], cats [10] and primates [11], either in retina or visual
cortex. The fact that this feature commonly existed among
a diverse variety of species illustrates it may carry great
importance in the functional role as a result of early develop-
ment in the evolution [12]. In addition, the asymmetry in ON
and OFF visual pathway has been linked with their physical
properties, functions and information processing capabilities,
this includes quantity [13], morphology & receptive field size
[14], contrast sensitivity [15], direction tuning [9], motion
detection [6], depth perception [4] and velocity estimation
[16].

Teasing apart potential information processing asymme-
tries between ON and OFF receptive fields requires, as a first
step, accurate estimation of RF structure. In many previous
studies, spike-triggered average (STA) estimates have typi-
cally been used. In many cases, the statistical inefficiency of
this approach has required averaging across time to produce a
purely spatial RF; as well as resulting in a decreased number
of apparently responsive units (in cases where there are
temporally separated ON and OFF components that nearly
average out over time), it can disguise ON-OFF asymmetries.
There is thus the need for improved RF estimators. For a
linear RF model with Gaussian noise, minimising the mean
squared error corresponds to a maximum likelihood estima-
tion (MLE) or a maximum a posterior estimation (MAP)
with uniform prior. If in addition, the stimulus is spatial-
temporally decorrelated with zero mean, then this estimation
is precisely equivalent to the STA method. However, for non-
Gaussian noise or spatial-temporally correlated input, STA
provides biased and inaccurate estimates of RF structure.
Here, following [17], we estimate RFs by minimising the
quadratic approximation to the mutual information (QMI),
without the Gaussian assumption, to provide a more accurate
estimation of the mean of the receptive field parameters.

To the resulting RF estimates we further fitted a spatial-
temporal Difference-of-Gaussian (ST-DoG) model to the
receptive fields estimated from QMI method. This process
reduced the dimension of the receptive field parameters down
to several spatial-temporal Gaussian components, for further
analysis. Observing a bimodal distribution of an ON-OFF
index parameter, we classified neurons into two ON and OFF
classes, based on this property. This procedure revealed an
asymmetries in several properties between the ON and OFF
visual pathways.
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II. MATERIALS AND METHODS

A. Experimental Methods

Experimental methods are described in detail in [18].
Briefly, mice (2-4 month old C57BL/6) were sedated with
0.5 mg/kg chlorprothixene and anaesthetised using 1-1.5%
isoflurane in O2. Multi-electrode arrays (MEAs, Neuronexus
A1x16-Poly2-5mm-50s-177-A1) were vertically inserted into
the brain until robust visual responses to gratings or
white/black squares at a depth of 2500-3200 µm below
the pial surface indicated that the dLGN had been found.
Electrodes were coated in DiI (20 mg in 300 µl DMSO) and
recording locations verified with post-hoc histology. Visual
stimuli were presented using custom-modified MATLAB
scripts based on Psychtoolbox [19] for MATLAB (Math-
Works). Several types of visual stimuli were presented, as
described in [18]: contrast-modulated noise movies for RF
mapping [20], as well as drifting grating stimuli of varying
spatial frequency, temporal frequency, contrast and direction.
Spike sorting was performed; basic analyses of this dataset
are described in [18].

B. Quadratic Mutual Information

The idea of determining the receptive field by maximising
the mutual information between stimulus and response (spike
train) was popularised by Sharpee [21], as this allows the
receptive field to be estimated using a spatially and/or tem-
porally correlated stimulus. Quadratic Mutual Information
(QMI) was proposed by Kapur as an alternative to the
full mutual information measure [22]. The use of QMI for
dimensionality reduction was proposed by Torkkola et al.
[23], as this is computationally cheaper to use as the gain
(or inverse cost) function. These two ideas were recently
combined for receptive field extraction [17]. The mutual
information between two continuous random variables S and
R can be written as

I(S;R) =

∫∫
p(s, r) log

p(s, r)

p(s)p(r)
dr ds , (1)

where, for instance, S might describe the visual stimulus,
and R the neural response. In practice, as the stimulus space
is extremely large, we might replace S by some transformed
variable Y . The mutual information can be approximated by
the quadratic form of mutual information [22] as

Iquad(Y,R) =

∫∫
(p(y, r)− p(y)p(r))2 dr dy (2)

=

∫∫
p(y, r)2 + p(y)2p(r)2

− 2p(y, r)p(y)p(r) dr dy (3)

This latter quantity is much easier for calculation when
the probability distributions are constructed from the data
using kernel density estimation and the Gaussian kernel,
because the integrals can be calculated in analytical form.
The optimisation process:

W = argmaxW[Iquad(Y,R)] , Y = WTX (4)

is unaffected, since the objective is to find the transformation
W such that the mutual information between transformed
inputs Y and weighted class labels R is maximised. For
example the video input (S) is transformed into abstract
lower dimensional feature (Y) and the quadratic mutual
information between feature (Y) and cell spiking (R) is
maximised.

Spike trains were binned by stimulus frames, with a
duration of 50 ms (effective frame rate 20 Hz, although the
monitor refresh rate was 120 Hz). The number of spikes
within each frame bin is denoted by {rt}t=1:T . We extracted
the aligned stimulus window s(t−τ :t) for each bin, up to
a total window length of τ frames. The filtered signal
{yt := 〈W, s(t−τ :t)〉}t=1:T is used to calculate the QMI with
{rt}t=1:T , where W is the linear receptive field vector of the
cell, and 〈., .〉 is the inner product.

The original quadratic mutual information method was
implemented by Katz et al. [17] for CPU in Matlab, but
takes a long time to run (30-45 minutes per cell on our
computer). We thus modified the method to incorporate GPU
acceleration (with CUDA support), significantly reducing
the computation time per cell (to 30-45 seconds per cell).
Because the QMI method involves the manual setting of a
bandwidth parameter b , Katz et al iteratively searched by
first increasing then decreasing the bandwidth to find the
suitable bandwidth value. In addition, they used the Matlab
function fminsearch to find the optimal step-wise learning
rate γ and then used this learning rate to update the receptive
field vector W for each bandwidth chosen. The pseudo-
code for the algorithm is shown below. We instead used
fminucn with default quasi-newton optimization, finding a
slight speed improvement. As bandwidth selection for kernel
density estimation is an extensive research topic on its own,
we do not go into detail here. Pseudocode for the algorithm
is shown in Algorithm 1.

Algorithm 1: Pseudocode for the quadratic mutual
information algorithm

for each cell do
b← b0;
W ←W0;
Iold ← −1e30;
while I has not converged do

dI
dW ← calculate the derivative of
Iquad(W,S,R, b) w.r.t. W ;
γ ←
fminsearchγ(−Iquad(W + γ dI

dW , S,R, b));
W ←W + γ dI

dW ;
Iold ← I;
I ← Iquad(W,S,R, b);
if I > Iold then

b← 2b;
else

b← b/2;



C. RF analysis with the Spatial-temporal Difference of
Gaussians model

We fit a spatial 2-dimensional and temporal 1-dimensional
difference of Gaussians model to all receptive field vectors
W to reduce the number of parameters and make easier
further clustering and analysis.

The original Difference-of-Gaussian (DoG) model consists
of two spherical spatial Gaussian components with identical
center position, whereas the amplitude of the two spatial
Gaussian components follows reversal exponential. However,
we found that the standard model cannot capture all spa-
tiotemporal properties of the receptive field vectors we ob-
tained from recordings from the mouse dLGN. In particular,
many receptive fields estimated have a non-spherical shape,
i.e. a non-diagonal sigma for spatial Gaussian components.
In addition, two spatial Gaussian components often do not
have the same peak center in our dataset. Finally, the model
needed to be modified to allow for a larger magnitude (up
to complete) temporal reversal in amplitude.

We have thus loosened the assumption and allowed the
center and surround Gaussian component to have different
peak position. The Gaussian component has also been mod-
ified to allow an elliptic spatial shape. In addition, instead of
a weak reversal, we assumed a difference of two Gaussians
for each amplitude in the temporal domain. The new model
with 16 parameters, which we term the Spatial-Temporal
Difference of Gaussians model (ST-DoG), is defined in full
in the Appendix.

D. ON-OFF Classification

To classify cells into ON and OFF classes, we used the
amplitudes of the ON and OFF components from the ST-
DoG model fit, we define the ON-OFF index as:

cON−OFF =
|A+| − |A−|
|A+|+ |A−|

(5)

where A+ is the ON and A− the OFF component amplitude
parameter respectively. A value of cON−OFF = 1 of this
index corresponds to an ON-only cell, and cON−OFF = −1
corresponds to an OFF-only cell; cells with values lying in
between these values possess both ON and OFF components.
We use the value 0 as the decision boundary, i.e. if the ON-
OFF index is less than 0, the cell is classified as an OFF cell.
For example, in Fig 1 the A+ is the amplitude/peak of the
yellow ST-Gaussian component, and similarly for A− with
blue ST-Gaussian component, for detail of those parameters,
please refer to Appendix A.

III. RESULTS

First we analysed the performance of the QMI algorithm
for mapping receptive fields on synthetic data, generated
by simulating spike trains using a linear-nonlinear Poisson
model, with linear filters derived from actual RFs observed
in the dataset. An example is shown in Fig. 5a, depicting a
”ground truth” RF over five 50 ms frames prior to spiking
(spike occurrence in time at right of figure). In this example
it is apparent that STA (Fig. 5b) somewhat over-estimates

Fig. 1. Comparison of STA and QMI reconstructions for a simulated
receptive field (RF). (a) ”Ground truth” receptive field (constructed by us,
but based on one of the cells in the dataset) used to simulate spike trains
using a linear-nonlinear-Poisson neuron model. 50 ms frames shown across
horizontally, of size 105 × 65 degrees. (b) Spike-triggered average (STA)
reconstruction of the RF for 6000 frames. (c) QMI reconstruction of the RF
for 6000 frames. (d) RMS error for increasing number of spikes used in the
estimation (averaged over 10 different receptive fields) for STA and QMI
RF estimates, 12 by 12 visual degree around the center of the RF was been
used for calculation.

the size of the RF, which we assume is due to the biasing
effect of spatial correlations in the contrast-modulated noise
movie stimulus. In contrast, QMI obtains a much more
accurate estimation of the receptive field (Fig. 5c), although
apparently with the penalty of slightly more ripple in the
baseline. This is an insubstantial issue, however, as the noise
floor below a threshold can be trivially set to zero. QMI
performance exceeds that of STA for datasets comprising
300 or more stimulus frames (Fig. 5d), or 15 seconds of
data. For comparison, many minutes of data are normally
collected in order to map RFs. In the original analysis of
[18], 189 cells were assessed as both having good quality
spike sorting and an adequate receptive field. By using QMI
RF mapping, we were able to increase this to 285. We believe
that the reason for this is primarily that in [18] STA was used
for RF mapping, with the consequence that it was necessary
due to sampling limitations to average the RFs across time,
i.e. no attempt was made to extract the temporal component
of the RF. While this produces an adequate spatial RF for
cells that are strongly dominated by ON or OFF components,
or whose ON and OFF components are largely spatially non-
overlapping, it appears that there are a significant proportion
of cells in the mouse dLGN with spatially overlapping ON
and OFF components that come close to cancelling out if
integrated over time to produce a single spatial RF. Several
examples can be seen in Fig. 2. Of these cells, 133 were
classified as ON cells and 152 as OFF cells, resulting in an
overall ratio of ON to OFF cells of 46.6 to 53.4%. Principal
Component Analysis (Fig. 3) supported our conclusion that
there were two broad categories of cells with differing
properties, with nevertheless a region of parameter space
where the two categories meet and are not (apart from the



Fig. 2. Example RFs obtained by QMI optimization. Each square shows
a 20 × 20 degree area centred around the RF; 5 temporal frames of the RF
are shown, with the far right being the first prior to spike onset. At right
are shown the spatial (SF) and temporal frequency (TF) tuning curves (fit
as in [18]) for each of the 20 cells. SFs range logarithmically from 0.01 to
0.96 cyc/deg, and TFs from 0.1 to 9.6 cyc/sec.

sign of the ON-OFF index) distinguishable. We observed
a clear bi-modal distribution of ON-OFF indices (Fig. 4a),
despite the clearly continuous distribution ranging between
-1 and 1.

We were able to extract numerous structural and functional
properties of the RFs from the ST-DoG model. The effective
RF radius, defined as the square root of the sum of the
two “variances” of the Gaussian components

√
σ2
+ + σ2

−
(see Appendix) did not differ substantially between ON and
OFF cells (Fig. 4b). The ST-DoG model yields additional
structural parameters, including the orientation of ON and
OFF components of the receptive fields, shown for ON cells
in Fig. 4c and OFF cells in Fig. 4d. There was no obvious
asymmetry in these orientation parameters. Similarly, no
difference between ON and OFF cells was apparent in the
horizontal (h+−h−) or vertical (v+−v−) offset between the
ON and OFF components of the ST-DoG model (Fig. 4e and
f). An additional temporal structural parameter is the reversal
time, or the time between the two temporal Gaussian peaks,
τ+−τ− for ON cells and τ−−τ+ for OFF cells(mean 43.768

Fig. 3. Principal Component Analysis (PCA) of receptive field struc-
ture. PCA was performed to reduce the dimensionality of the description of
the RF structure extracted from the ST-DoG model from 16 to 2 parameters
for each cell. Numbers reflect cells shown in Fig. 2.

± 4.662 for OFF cells versus 33.415 ± 5.727 for ON cells;
p=0.159, two-sided t-test, n=133 ON and 152 OFF cells).
ON cells showed on average a slightly (but not significantly)
shorter latency, defined as min{τ+, τ−}, the time to reach
the first peak of either component, than OFF cells (mean
0.169 ± 0.215 (s.e.m.), p=0.182, two-sided t-test, n=133 ON
and 152 OFF cells).

We were also able to relate the ST-DoG parameters to
functional measurements obtained from tuning curve map-
ping experiments using drifting gratings. The Direction Se-
lectivity Index (see [18], measured by

∑
F (θ)e2iθ/

∑
F (θ)

where F (θ) gives the direction tuning curve) was similar
for both ON and OFF cells (p=0.681, two-sided t-test, n=95
and 98 respectively), Fig. 4i. This was not surprising given
the relatively low representation of direction selective cells
within this dataset. OFF cells, however, were significantly
more orientation sensitive (Orientation Selectivity Index
given by

∑
F (θ)eiθ/

∑
F (θ); mean 0.1099 ± 0.00882 for

OFF cells versus 0.0783 ± 0.00583 for ON cells; p=0.0036,
two-sided t-test, n=95 and 98). OFF cells were similarly on
average selective for higher spatial frequencies (mean 0.0978
± 0.0107 for OFF cells versus 0.0653 ± 0.0094 for ON
cells; p=0.0256, two-sided t-test, n=142 OFF cells and 130
ON cells). OFF cells were also sensitive to slightly higher
temporal frequencies (mean 3.683 ± 0.1389 for OFF cells
versus 3.342 ± 0.110 for ON cells; p=0.0644, two-sided
t-test, n=140 OFF cells and 124 ON cells). Sample sizes
differ in the above analyses because of the presence of low-
pass tuned cells for whom a preferred spatial or temporal
frequency was not defined.

IV. DISCUSSION

We used quadratic mutual information to map receptive
fields in the mouse dLGN. This yielded accurate, minimally
biased estimates of RFs with substantially fewer samples
than required by the method in most common use, the



Fig. 4. Analysis of the functional properties of dLGN ON and OFF
receptive fields (a) The distribution of ON-OFF indices for all 285 cells.
(b) Effective radius for ON (red) and OFF (blue) cells. (c) Orientation
(from −π/2 to π/2) of the ON component (red) and OFF component
(blue) of the RF, for ON cells only. (d) As in (c), but for OFF cells. (e,f)
Horizontal and vertical offset of ON and OFF RF components respectively,
for ON cells (red) and OFF cells (blue). (g, h) Reversal time and latency
for ON (red) and OFF cells (blue). (i) Direction selectivity Index (DSI).
(j) Orientation Selectivity Index (OSI). (k) Preferred spatial frequency. (l)
Preferred temporal frequency.

spike-triggered average. While it is well appreciated that
the use of natural movie stimuli for receptive field mapping
using spike-triggered approaches will result in biased RF
estimates without the application of a correction procedure
[24], such corrections can amplify noise and thus have
adverse effects [25]. Information maximisation methods [21],
[26] provide a much better approach for real-world stimuli,
however the Kullback-Leibler mutual information is difficult
to calculate and optimise, particularly for limited samples,
meaning that approximations must usually be made. One
such approximation, used in [21], is the use of the first order
approximation to the information per spike [27]; this assumes
independence of spikes, which is valid for e.g. the Poisson
simulation we have used for validation, but does not hold
for real world spike trains. An alternative approach, which
we use here, is to use the Quadratic Mutual Information
approximation [22]. As well as being easy to compute,
this is differentiable, making it amenable to gradient-based
optimization. In addition to advantages with respect to bias,
QMI mapping of RFs is substantially more statistically
efficient than STA mapping, requiring less recording duration
to obtain RF structure.

QMI RF mapping yielded substantially more information
about RF structure on an existing dataset [18], allowing
the RFs of more cells to be obtained (285 as opposed to

189), and providing space-time RFs rather than purely spatial
RFs that averaged over time. This allowed additional insight
to be gained, and the enhanced dataset, while essentially
yielding a picture of structural symmetry between ON and
OFF receptive fields, did reveal asymmetries in a number of
functional properties between the ON and OFF pathways
in the mouse dLGN, including the orientation selectivity
index and preferred spatial frequency (with a weaker effect
apparent for the preferred temporal frequency). This implies
some degree of functional specialisation of the ON and OFF
pathways. While the role of this pathway splitting remains
speculative (see [28] for a general discussion), one reason
may relate to differences in uncertainty in dark versus well-
illuminated areas of a visual scene.

One limitation of the dataset analysed was the use of a 20
Hz refresh rate for updating frames. This limited the temporal
fidelity with which temporal aspects of RF structure can be
extracted. Given that the QMI method enables statistically
efficient extraction of spatiotemporal RF structure with high
temporal fidelity, it will be of interest to collect additional
experimental data with higher stimulus refresh rates. Analy-
sis of finer temporal structure of the spatiotemporal RFs of
dLGN neurons may reveal additional diversity in information
processing functionality [29]. In addition, further analysis
can be done by comparing this with other methods such as
variants of spike-triggered covariance for highly correlated
stimulus. However, we do note the high dimensional visual
stimulus can make the covariance calculation computational
expensive.

We finally remark that, although here, the QMI receptive
field mapping method has been applied to an electrophys-
iological dataset, it is likely to have wider application. In
particular, we expect it to find use in mapping sensory
receptive fields through technology such as multiphoton
calcium [30], [31] or voltage [32] imaging, and in additional
characterisation domains such as mapping selectivity func-
tions in spatial memory [33]. As well as for other mammals
with higher visual acuity.
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APPENDIX

A. Spatial-temporal Difference of Gaussian (ST-DoG)

We define our new model with the following parame-
ters: h+ - the horizontal position of the positive Gaus-
sian components, v+ - the vertical position of the positive
Gaussian components, h− - the horizontal position of the
negative Gaussian components, v− - the vertical position
of the negative Gaussian components, σh+,σv+,θ+ - eclipse
radius and angle of the positive spatial Gaussian component,
σh−,σv−,θ− - eclipse radius and angle of the negative spatial
Gaussian component, A+, τ+, σ+ - the temporal positive
Gaussian component, A−, τ−, σ− - the temporal negative
Gaussian component. We first define:

µ+ =

(
h+
v+

)
p =

(
h
v

)
(6)

Σ+ =

(
cos θ+ − sin θ+
sin θ+ cos θ+

)(
σh+ 0

0 σv+

)
(7)

And similarly for µ− and Σ−. The receptive field is then
defined with those parameters by:

W (h, v, τ) =AON (τ) exp[−1

2
(p− µ+)Σ+(p− µ+)] (8)

−AOFF (τ) exp[−1

2
(p− µ−)Σ−(p− µ−)] (9)

Amplitude for ON components (similar for OFF):

AON (τ) = A+ exp[− (τ − τ+)2

2σ2
+

] (10)

Note we restricted A+ and A− to be positive and |τ+−τ−| >
25 ms so that they will not cancel out in temporal domain to
cancel each other out, causing overfitting. We used a global
optimisation algorithm (adaptive mesh search) to find the
optimal parameters, which is implemented in Matlab as the
function fmincon.

Fig. 5. Comparison of ST-DoG and standard model from [34]. Paired
total squared error difference has been plotted.


