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Abstract

The aim of this thesis is to provide techniques for the abstraction of floating-point expres-
sions into the polyhedra domain as well as into the finite powerset of polyhedra domain.
Moreover, this thesis aims at presenting a forward and a backward analysis for the detec-
tion and inference of floating-point errors such as overflow and division by zero. These
techniques are based on abstract interpretation, which is a theory for the sound approx-
imation of the semantics of programs. These abstractions and analyses have important
applications for instance in engineering, mechanics and computer aided graphics design.

The abstraction of floating-point expressions into polyhedra includes two stages. In
the first, we present an approximation of floating-point expression by a polynomial with
interval coefficients that includes the possible floating-point errors. In the second stage
we present techniques for abstracting polynomials with interval coefficients into polyhedra
and polyhedra powersets. Moreover, we present a technique for abstracting expressions
in which a division by zero may occur.

A forward analysis for the detection of overflow and division by zero is then presented.
This analysis is particular in that it always reaches the output of a programs. This is
an important requirement since the backward analysis needs information on the output
to infer which input to a program could cause an overflow or a division by zero. Such
analyses are important especially in the design of systems with high contents of nonlinear
floating-point expressions. Experimental results show the usability of these analyses.
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“And now tell me” — in the end I could not restrain myself — “ how did you manage to know ? ”

“My good Adso,” my master said, “during our whole journey I have been teaching you to

recognize the evidence through which the world speaks to us like a great book. Alanus de Insulis

said that

omnis mundi creatura

quasi liber et pictura

nobis est in speculum

and he was thinking of the endless array of symbols with which God, through His creatures,

speaks to us of the eternal life. But the universe is even more talkative than Alanus thought, and

it speaks not only of the ultimate things (which it does always in an obscure fashion) but also of

closer things, and then it speaks quite clearly.”
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Umberto Eco
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Chapter 1

Introduction

1.1 The Cost of Finiteness

Computer systems are more than ever omnipresent in our daily lives without even noticing
it: air traffic control systems, on-board avionics systems, microprocessors, stock market
systems, traffic lights systems, train and underground systems. Due to the increasing so-
phistication of systems, verification of software has become paramount. Numerical errors,
for instance, may compromise safety of lives, lead to drastic financial consequences or even
endanger the military security. In 1982, the Vancouver stock exchange introduced an in-
dex with a nominal value of 1, 000, 000 1 [MV99]. After almost two years of recomputing
the index and truncating it to 3 decimal digits at each exchange, the index had a value of
524, 881, whereas its true value should have been 1, 009, 811.

Another case is the well-known Patriot missile error in the Gulf War (1991) [Ske92,
Off92]. The Patriot missile system radar failed to track and intercept an incoming Scud
missile leading to loss of lives. This problem originated from the tracking frequency in
the radar. Radar pulse bounces were measured in intervals of 0.1 seconds, which had
an inaccurate representation in the floating point system employed. After 100 hours of
operation, the accumulated error due to the inaccurate representation caused the system to
lose track of its target. An automated compile-time verification of the numerical properties
of the system software could have prevented this error.

Large economic and infrastructural losses are included amongst the consequences of
numerical errors. A famous case is that of Ariane launching. On June 4th 1996, the

1News reported both in The Toronto Star, November 19, 1983; and in The Wall Street Journal, page
37, November 8, 1983.
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Chapter 1 Introduction

Ariane 501 launching [Age96] failed after 37 seconds of the start of the flight sequence,
at an altitude of 3700 meters, due to an overflow in a register: the horizontal bias of
the flight was measured in a 64 bit floating point register, which was cast to a 16 bit
integer. The overflow was not caught and the exception handler concluded an impossible
situation, which resulted in the rocket veering abruptly and self-destroying. Though, the
real trajectory was as expected. The cost of software development was estimated in 7
billion dollars, and hardware components, including the rocket, in 500 million dollars.

Security may be also imperilled. In 1998, a crew member of the guided-missile cruiser
USS Yorktown mistakenly entered a zero for a data value. This resulted in a division by
zero: such an error propagated and eventually shut down the ship’s propulsion system.
The ship was out of operation for several hours 2. It seems clear that the software was
not protected against division by zero; namely, no conditions were included to prevent the
input of values that could cause a division by zero in the system.

Thus, tools for detecting and preventing numerical errors in software can be of great
utility.

1.2 Motivation

Consider the problem of specifying and then verifying embedded systems, where external
elements in the physical world interact with program interfaces. This has been referred by
Patrick Cousot as the Grand Challenge [Cou05]. Cousot advocates that a full abstraction of
both the program and a reactive (physical) environment is possible despite the dichotomy
between continuous domains, used for the abstraction of physical systems, and discrete
domains, used in the implementations. This integrated abstraction, both of the program
and a reactive environment, is fundamental to achieve a full system verification.

We approach Cousot’s Grand Challenge from a much narrower point of view. We do not
verify an embedded system together with its software interfaces. Instead we implement
a model for a physical system in a prototype, and verify numerical properties related
to the errors inherent in floating-point arithmetic, in particular floating-point overflow.
Moreover, we introduce the issue as to whether the supervised development of embedded
systems, namely supervised by verification methods from early development stages such
as the design stage, reduces the verification effort, compared to the verification of a whole
system once fully implemented.

1.2.1 Semantics of Floating-Point Arithmetic

In general, the correctness of programs cannot be fully guaranteed using testing techniques.
Especially in large programs, it is impractical to generate the set of all possible input to
a program and then verify that the resulting output satisfies a set of requirements. For

2Scientific American, November 1998.
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instance, an expression such as
√
x2 + y2 defined for an 80 bit floating-point system has

280 + 280 possible input to verify, and some of these inputs could cause errors. Floating-
point numerical systems are in fact a coarse approximation to the set of mathematical
reals R. A finite representation is used to approximate reals, which incurs in an error in
precision. For instance, a value such as 1

3 = 0.333 . . . ∈ R is approximated by a floating
point with a finite number of decimal digits; namely, for a precision of, say, 5 decimal digits,
1
3 ≈ 0.33334 or 1

3 ≈ 0.33332, depending on the rounding method applied. For successive
computations, this rounding error may lead to unintended semantics in a program. Yet
worse, it may lead the execution of a program to an unexpected halt. Tools for verifying
the correctness with respect to floating point arithmetic in programs before execution are
required.

Static analyses can verify a property of interest in a program without actually gen-
erating all the possible states of an instruction (or program), hence not requiring the
verification of infinitely many possible execution states. Amongst the existing compile-
time analysis techniques for verification, abstract interpretation is unusual in that it has
sound foundations in lattice and domain theory. Abstract interpretation was intro-
duced in [CC77] and comprehensively surveyed for logic programs in [CC92a]. The basic
idea behind abstract interpretation is that the (concrete) semantics of a program may
be approximated by an abstract semantics. Properties of the abstract semantics such as
precision depends on the notion of abstraction, which is specified by the selected abstract
domain [CC79]. Thus the concept of abstract domains is central in the construction of
abstract interpretations.

Central in abstract interpretation is the abstract domain; namely, a set of properties
of interest and a set of operators on these properties. The purpose of abstract domains is
that of approximation of concrete properties of programs. Numerical abstract domains,
for instance, are adequate for the abstraction of numerical properties of variables in a
program. These domains are in fact useful for the abstraction and reasoning of properties
of floating-point arithmetic in programs and in particular, for the analysis of overflow and
division by zero. When choosing a numerical abstract domain for analysing properties of
programs, we must considered issues such as precision and cost. In this way, a generic
criteria to classify numerical abstract domains is that of relational, weakly relational and
nonrelational domains. The first class includes the polyhedra domain [CH78], which de-
scribes relationships between variables. Though computationally expensive, this domain
leads to precise abstractions. The last class includes the interval domain [CC76]. Despite
the low cost of processing, no relation between variables is represented, which leads to im-
precise abstractions. However, the class of weakly relational domains aim at achieving a
compromise between both precision and cost. This class includes for instance the octagon
domain [BK89,Min00,Min01,Min04a,Min06a] and the octahedron domain [CC04].

3



Chapter 1 Introduction

1.2.2 Verification of Programs at Implementation Stage

Static analyses based on abstract interpretation for large amounts of code of critical em-
bedded systems has been developed in [BCC+03,Min04b,Min04a]. These analyses verify
that for instance no floating-point run-time error due to overflow occurs. For this pur-
pose, Antoine Miné presented a relational analysis for floating-point arithmetic based on
the octagon domain. This was the first time a relational domain had been adapted and
used for analysing large amounts of code.

Miné presents a novel technique to adapt symbolic expressions with interval coeffi-
cients into relational domains. Symbolic expressions hold algebraic properties such as
associativity and distributivity that make them amenable for abstracting floating-point
expressions. Moreover, Miné develops symbolic manipulation techniques for processing
abstractions into the octagon domain [Min04a, Min06b]. This abstraction can represent
relations between variables, which can deliver more precise analyses. However, for highly
nonlinear floating-point expressions, Miné’s symbolic techniques may not provide precise
abstractions. This loss of information due to nonlinearity may be crucial in numerical
static analyses for instance for the detection and inference of conditions for division by
zero.

For the purpose of analysing programs with nonlinear floating-point expressions, we
present new abstraction techniques that deliver sets of polyhedra. These techniques are
based on interval valued polynomials. We apply an Approximation Theory method called
Bernstein approximation to abstract such polynomials into the polyhedra domain. Using
these techniques, we can attain any necessary precision for nonlinear expressions. From
these abstractions into the polyhedra domain, we develop relational analyses for the de-
tection and inference of floating-point overflow.

1.2.3 Verification of Prototypes at Design Stage

Another approach to ensure the absence of floating-point run-time errors in a program
is by verifying prototypes at the earlier software development stage of design. Instead of
analysing large programs, we can analyse small software components, which once guaran-
teed to be absent of numerical errors, can be included in a larger system and reused in
further software developments. The benefit of verifying small components at the design
stage is that we can specialise the analyses to examine the nonlinearity of expressions,
which can be of some importance for detecting and avoiding run-time errors.

Though floating point rounding errors are common to any programming language that
includes floating-point systems, some languages may prove more suitable for certain pur-
poses than others. For example, imperative and object-oriented programming languages
are widely used in real-world software applications. Logic programming languages, on the
contrary, are delegated to the prototyping part of the implementation. A distinctive fea-
ture of logic programming languages over other prototyping languages is that of describing
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or declaring a problem. Thus a language based on logic has the capability of verification
that is required in the development of software systems. Logic programming is founded
in a sound mathematical basis. Introduced in the 70’s (see for instance [vEA76]), it has
been evolved throughout the years to improve several issues related to computational ef-
ficiency in addition to adapting logic programming interpreters to particular hardware,
and the introduction of compilers, a considerable effort has been devoted to developing
compile-time automatic analyses for the verification of programs’ properties.

We construct logic programming prototypes from mathematical models for (complex)
physical systems. Note that such models are commonly defined in R, which provides sound
arithmetic. However, the computational version of such systems is based on floating-point
arithmetic, which is unsound, and where algebraic properties of R such as distributivity
and associativity do not hold in general in floating-point arithmetic. Thus, a model which
is specified in R and prototyped in floating-point arithmetic must undergo a static analysis
before developing the prototype toward the final implementation.

In this thesis we present precise abstractions of nonlinear expressions into the polyhedra
domain and develop specialist analyses for the detection of floating-point overflow. In
addition, we develop a backward analysis for the inference of conditions to avoid overflow,
such as for instance overflow caused by division by zero.

1.3 Related Work

Numerical Abstract Domains. Central in analyses based on abstract interpretation
is the abstract domain, by which program invariants are represented. The first numer-
ical abstract domain used in the abstract interpretation framework was the interval do-
main [CC76] 3. This domain has a simple representation and has defined efficient oper-
ators. However, it does not capture relations between variables. Relational domains, on
the other hand, allow for more precise abstractions, as relations between variables can
be captured. A full range of relational domains are nowadays available, spawning from
the highly precise polyhedra domain [CH78, Hal79, BRZH02, BHRZ03b], to the class of
weakly-relational domains, which includes for instance the octagon domain [BK89,Min00,
Min01,Min04a,Min06a], the two variables per inequality domain [SKH02], as well as the
octahedron domain [CC04]. Operators on weakly-relational domains can be implemented
in an efficient way. This is achieved at the expense of precision. Weakly-relational do-
mains, though, achieve a compromise between precision and efficiency. Nonlinear domains
include for instance the ellipsoids [Fer04].

Nonrelational Analyses. Analyses based on abstract interpretation where the ab-
stract domain cannot represent relations between variables are called nonrelational anal-

3 Interval analysis was already considered by Turing and Wilkinson in the 1940s [Wil80, p. 104]. The
first publications appeared in the 1960s and 70s [Moo66,GL70,Moo79].
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yses. The nonrelational domain of intervals has led to several works on precision anal-
yses. Precision analyses aim at determining the difference between the expected result
assuming sound arithmetic and the actual result obtained by floating-point computation,
with unsound arithmetic. Abstract interpretation-based precision analyses can be found
in [Gou01,GMP01,Mar02,Mar,GMP,GMP06]. Another work that uses the interval do-
main to study the influence of noise in the numerical input in embedded systems can be
found in [ABB+03]. Moreover, in [Mar02], an analysis for stability of looping in programs
with floating-point arithmetic is presented.

Relational Analyses. These analyses are characterised by the gain in precision com-
pared to nonrelational analyses, as they can represent relations between variables. Com-
mon relational domains were already cited in the motivation section, and included for
instance the octagon domain, the two variables per inequality domain or the polyhedra
domain. The first relational analysis for numerical expressions based on the polyhedra
domain was presented in [CH78]. This analysis defined invariants calculation, widening,
narrowing and transfer functions for inequality tests and assignments as well as operations
for merging execution paths. However, the problem of nonlinearity of expressions is not
fully addressed. An important extension of this analysis can be found in [Min04b], in
which a relational analysis for detecting floating-point overflow is presented. In this work,
Antoine Miné bases the analysis in abstract interpretation and abstracts linear and also
nonlinear expressions into the octagon domain, which achieves a compromise between cost
and efficiency. In order to abstract floating-point expressions into octagons, he introduces
a symbolic form based on intervals. We will propose an analytical version of symbolic
forms, based on interval valued polynomial (that is to say, polynomials with interval co-
efficients), that will ease the abstraction of floating-point expressions into the polyhedra
domain as well as the finite powerset of polyhedra domain.

Backward Analyses. Backward analysis in the context of abstract interpretation was
presented in [CC79]. and studied for functional programs for instance in [WH98,HW89],
for imperative programs in [CC79, CC82], and for logic programs in [DGB92, FHW00,
GC01, KL02, KL03, HKL04]. Of particular interest is the analysis presented in [KL02],
where Andrew M King and Lunjin Lu developed a backward analysis based on condensing
domains (condensing domains are those equipped with a pseudo-complement operator,
which allows for tracing data-flow information backward). That work presents a novel
approach to inferring preconditions in the moding of logic programs for avoiding grounding
errors. Further development of that work led to [KL03], in which the authors used abstract
interpretation to show the relationship between forward and backward analysis verification
power. Both of these works will prove central in the development of the backward analysis
introduced in this thesis. On the other hand, backward analyses that do not require
condensing domains include for instance type inference analysis [LK02] and backward
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sharing analysis [LK04]. A more recent work on backward sharing analysis can be found
in [LL05], which computes maximal sets of preconditions by reformulating the problem to
be that of finding the set of all maximal models of a boolean formula.

1.4 Structure of the Thesis

The present chapter motivates this thesis and lists the main contributions. Chapter 2
presents preliminary definitions used throughout.

The rest of the thesis has two main parts. The first part includes chapters 3, 4 and 5,
and presents a series of techniques for the abstraction of floating-point arithmetic into poly-
hedra and the powerset of polyhedra. Chapter 3 formulates the abstraction by means of
abstract interpretation, a theory for sound approximations of program semantics. Chapter
4 introduces the core techniques for polyhedra abstraction, which are based on Bernstein
expansion. Numerical expressions with possible divisions by zero are treated in chapter 5,
in which a branch and prune algorithm is presented.

The second part includes chapters 6 and 7, and presents a series of analyses for de-
tecting and avoiding floating-point run-time errors in logic programs. These analyses are
based on the abstractions presented in the first part. Chapter 6 presents a forward anal-
ysis for the detection of floating-point overflow. Chapter 7 presents a backward analysis
for the inference of conditions to avoid overflow, such as for instance overflow caused by
possible divisions by zero. To infer these conditions, the backward analysis requires the
result of the forward analysis. Chapter 8 presents experimental results for both the first
and second parts. Chapter 9 concludes.

1.5 Contributions

The main contributions in this thesis are as follows.

• The introduction of a nonlinear abstract semantics based on interval valued polyno-
mials that preserves nonlinear information, which proves important to avoid loss of
precision.

• The abstraction of floating-point polynomial expressions into the polyhedra domain
and floating-point polynomial quotients into the polyhedra powerset.

• The introduction of a forward analysis based on the polyhedra domain for the de-
tection of floating-point overflow and overflow due to division by zero.

• The introduction of a backward analysis based on the powerset of polyhedra for
the inference of numerical properties in logic programs that perform floating-point
arithmetic operations. The analysis is specialised to the inference of conditions to
avoid floating-point overflow, including overflow due to division by zero.
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Chapter 2

Preliminaries

2.1 Notation

For a set S, |S | denotes the cardinality of S. Moreover, ℘(S) is the powerset of S; ℘fn(S) is
the set of all finite subsets of S. For a syntactic object s, vars(s) denotes the set of variables
occurring in s. The set of natural numbers is denoted by N and the set of natural numbers
greater than 0 by N+. A sequence of n objects is denoted by õ = 〈 o1, . . . , on 〉. A k vector
in Nk is denoted by I = (i1, . . . , ik). Let I, J,N ∈ Nk be k vectors where I = (i1, . . . , ik),
J = (j1, . . . , jk) and N = (n1, . . . , nk). We say that I ≤ N if ij ≤ nj , for j ∈ [1, k]. We
denote by 0 the zero vector, with all the components equal to zero, and by 1 the unit
vector, with all the components equal to one. Note that 0 ≤ I for all I ∈ Nk. Given
` ∈ [1, k], the `-th unit vector is the vector with 1 in the `-th position and zeroes in
every other position. Vector addition is defined as I + J = (i1 + j1, . . . , ik + jk). The k-
dimensional vector space on the field of real numbers R is denoted by Rk. A vector in Rk is
denoted by x = (x1, . . . , xk); the scalar product of its components by x = x1 · . . . · xk ∈ R;
and, for any λ ∈ R, we let λx = (λ ·x1, . . . , λ ·xk). Given I ∈ Nk, we let xI = xi1

1 · . . . ·x
ik
k .

2.2 Polynomials

A univariate polynomial of degree n is a mapping p : R→ R defined as

p(x) =
n∑

i=0

ai · xi , ai ∈ R ,

8
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where an 6= 0 and where each ai and each ai · xi are called respectively a polynomial
coefficient and a monomial. The set of all univariate polynomial functors of degree less
than or equal to n is denoted Polyn,1. A k-variate polynomial of degree N ∈ Nk, k ≥ 0, is
a mapping p : Rk → R defined for S ⊆ {I ∈ Nk | I ≤ N}, by

p(x) =
∑
I∈S

aI · xI , aI ∈ R .

with polynomial coefficients aI and where each aI ·xI is called a term. We refer to a term
of a polynomial as a polynomial term. We call a k-variate polynomial a multivariate
polynomial. The set of all multivariate polynomial functors of k variables of degree less
than or equal to N is denoted PolyN,k.

Example 2.1. Let x = (x1, x2, x3). Then, a polynomial p ∈ PolyN,3 such as p(x) =
2 · x3

2 · x7
1 · x3 + 0.5 · x3 may be denoted, for S ⊆ {(7, 3, 1), (0, 0, 1)}, N = (7, 3, 1), by

p(x) = 2 · x(7,3,1) + 0.5 · x(0,0,1). Likewise, q(x) = 3.17 may be denoted, for S ⊆ {0}, by
q(x) = 3.17 · x(0,0,0).

We say that p(x) =
∑

I∈S aI · xI and q(x) =
∑

J∈S′ bJ · xJ are equal, denoted by
p(x) = q(x), if S = S′ and ∀I ∈ S, aI = bI .

2.3 Orders and Lattices

We follow standard notation as presented in [Bir67] and [DP90]. Let S be a set. For
any a, b, c ∈ S, a binary operation � : S × S → S is commutative if a � b = b � a, and
associative if (a � b) � c = a � (b � c). A partial ordering is a relation ≤: S×S → {0, 1}
that is reflexive (i.e. ∀a ∈ S, a ≤ a), transitive (i.e. ∀a, b, c ∈ S, a ≤ b ∧ b ≤ c ⇒ a ≤ c),
and anti-symmetric (i.e. ∀a, b ∈ S, a ≤ b ∧ b ≤ a ⇒ a = b). A partially ordered set
(or poset) is a set P equipped with a partial ordering ≤ and denoted 〈P,≤〉. We say that
a, b ∈ P are comparable if and only if a ≤ b or b ≤ a. If 〈P,≤〉 is a poset, then C ⊆ P

is a chain if and only if a ≤ b or b ≤ a for all a, b ∈ C. A poset 〈P,≤〉 with a binary
operation meet, denoted ∧, where x ∧ y is the greatest lower bound of x, y ∈ P , is called
a meet-semilattice and is represented by 〈P,≤,∧〉. If m and m′ are both meets of x and
y, then m ≤ m′ and m′ ≤ m, and so m = m′. A poset 〈S,�〉 is said to be well-ordered
if ∀S′ ⊆ S \ {∅}, ∃a ∈ S′ where ∀b ∈ S′, a � b. A complete lattice 〈L,≤,∨,∧,>,⊥〉, with
partial ordering ≤, lub ∨, glb ∧, greatest element (top) >, and least element (bottom) ⊥,
is denoted L̂. A complete lattice L̂ is completely meet-distributive if, for each x ∈ L and
Y ⊆ L, x ∧

∨
Y =

∨
y∈Y (x ∧ y) holds.
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2.4 Interval Arithmetic

The concept of interval arithmetics was presented by R. E. Moore in [Moo66]. A closed
compact interval [a−, a+] is defined as the closed set of real values of the form

[a−, a+] = {c ∈ R | a− ≤ c ≤ a+},

where a− is called the lower bound and a+ the upper bound. The width of an interval
[a−, a+] is defined as the difference a+ − a−. We say that c ∈ R is in [a−, a+], and denote
it c ∈ [a−, a+], if a− ≤ c ≤ a+. Moreover, we say that [b−, b+] is included in [a−, a+]
(or that [b−, b+] is a subinterval of [a−, a+]), and denote it [b−, b+] ⊆ [a−, a+], if a− ≤ b−

and b+ ≤ a+. Further, [a−, a+] and [b−, b+] are equal, denoted [a−, a+] = [b−, b+], if
[a−, a+] ⊆ [b−, b+] and [b−, b+] ⊆ [a−, a+].

The set union of [a−, a+] and [b−, b+], denoted by ∪, is defined as [a−, a+]∪ [b−, b+] =
{c ∈ R | c ∈ [a−, a+] or c ∈ [b−, b+]}. Moreover, the interval union (or interval hull) of
[a−, a+] and [b−, b+], denoted, t, is defined as [a−, a+]t[b−, b+] = [min(a−, b−),max(a+, b+)].
The set of all closed intervals [a−, a+] for each a−, a+ ∈ R where a− ≤ a+ is denoted IR.
An interval [a−, a+] in which a− = a+, is called a degenerate interval, and an interval
[a−, a+] where a− < a+ is called a proper interval.

Unary and binary arithmetic operators on intervals, for n ∈ N, are defined as follows:

[a−, a+] � [b−, b+] = [a− + b−, a+ + b+]

[a−, a+] � [b−, b+] = [a− − b+, a+ − b−]

[a−, a+] � [b−, b+] = [min((a+ · b+), (a− · b+), (a+ · b−), (a− · b−)),

max((a+ · b+), (a− · b+), (a+ · b−), (a− · b−))]

[a−, a+] � [b−, b+] =

[a−, a+] � [1/b+, 1/b−] if b− · b+ > 0

undefined if 0 ∈ [b−, b+]

and

[a−, a+] � n =


[1, 1] if n = 0

[0,max
(
(a−)n, (a+)n

)
] if n 6= 0 and n ≡ 0 mod 2

[min
(
(a−)n, (a+)n

)
,max

(
(a−)n, (a+)n

)
] if n ≡ 1 mod 2.

To simplify the notation, a degenerate interval [c, c] may be denoted by c, and the interval
product [a−, a+] � [c, c] may be denoted in the compact form [a−, a+] c.

The unit interval is denoted by U = [0, 1]. A k-dimensional box B ∈ IRk (or k-box for
short) is defined by B = [a−1 , a

+
1 ]×. . .×[a−k , a

+
k ]. A box B′ ∈ IRk where B′ = [b−1 , b

+
1 ]×. . .×

[b−k , b
+
k ] is a subbox of B, denoted B′ ⊆ B if for each i ∈ [1, k], [b−i , b

+
i ] ⊆ [a−i , a

+
i ]. The set

union of B1,B2 ∈ IRk where B1 = [a−1 , a
+
1 ]×. . .×[a−k , a

+
k ] and B2 = [b−1 , b

+
1 ]×. . .×[b−k , b

+
k ],
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denoted B1 ∪B2, is defined by B1 ∪B2 = ([a−1 , a
+
1 ]∪ [b−1 , b

+
1 ])× . . .× ([a−k , a

+
k ]∪ [b−k , b

+
k ]).

The k-dimensional unit box is denoted by Uk.
The set IR is a semi-group under addition and multiplication since interval addition

and multiplication are associative and commutative, namely, for B,C,D ∈ IR,

B �
(
C � D

)
=

(
B � C

)
� D,

B �
(
C � D

)
=

(
B � C

)
� D,

B � C = C � B,

B � C = C � B,

and the zero and unit (degenerated) intervals are defined respectively as [0, 0] and [1, 1].
However, additive and multiplicative inverses are not defined for proper intervals. More-
over, the distributivity law does not hold in general. However, the multiplication is sub-
distributive with respect to addition; namely, for B,C,D ∈ IR,

B � (C � D) ⊆ (B � C) � (B � D).

The operations over intervals are monotone with respect to interval inclusion; namely,
for B,C,D,E ∈ IR, if B ⊂ D and C ⊂ E, then

B � C ⊂ D � E,

B � C ⊂ D � E,

B � C ⊂ D � E,

B � C ⊂ D � E.

2.5 Functions and Fixpoints

We follow the notation used in [KL02]. For sets A and B, let f : A→ B. The domain and
codomain (also referred as range) of f are respectively denoted by dom(f) and cod(f).
Given two complete lattices 〈L,v,t,u〉 and 〈L′,v′,t′,u′〉, let the map f : L→ L′. Then
• for each X ⊆ L, f is said to be additive if and only if f(tX) = t′f(X);
• for each X ⊆ L, f is said to be co-additive if and only if f(uX) = u′f(X);
• for each chain C ⊆ L, f is said to be continuous if and only if f(tC) = t′f(C);
• for each chain C ⊆ L, f is said to be co-continuous if and only if f(uC) = u′f(C);
• for each x v y, f is said to be monotonic if and only if f(x) v′ f(y).

Monotonicity of f is implied by continuity and also by co-continuity. Let g : B → C. Then
the composition of f and g, denoted by (g◦f), is defined as: ∀x ∈ A : (g◦f)(x) = g(f(x)).
Moreover, if f : L→ L, then
• for each x ∈ L, f is said to be idempotent if and only if f(x) = f(f(x));
• for each x ∈ L, f is said to be extensive if and only if x v f(x);
• for each x ∈ L, f is said to be reductive if and only if f(x) v x.

11
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Given a monotone operator f : L → L on a complete lattice 〈L,v,∪,∩,>,⊥〉, the least
and greatest fixpoints (denoted respectively by lfp and gfp) are defined as

lfp(f) = u{x ∈ L | f(x) v x} and gfp(f) = t{x ∈ L | x v f(x)}.

Moreover, for f continuous, lfp(f) = tn∈Nf
n(⊥), and for f co-continuous, gfp(f) =

un∈Nf
n(>).

2.6 Abstract Interpretation

Abstract interpretation [CC77,CC92a] is a general theory for specifying and then validat-
ing program analyses. In abstract interpretation, if 〈D,v〉 and 〈D],v]〉 are two complete
lattices (called respectively the concrete and the abstract domains) where for a pair of
monotonic maps α : D 7→ D] and γ : D] 7→ D, γα is extensive (c v γα(c)) and αγ is
reductive (αγ(a) v] a), then the tuple 〈D,α,D], γ〉 is called a Galois connection between
D and D]. In such a case, α is additive (i.e. it preserves least upper bounds) and γ is
co-additive. If in addition, for any y ∈ D] where α(γ(y)) = y, then the tuple 〈D,α,D], γ〉
is called a Galois insertion of D] in D. We call α and γ respectively the abstraction and
concretisation functions. The conditions for defining a Galois connection can be weak-
ened in order to work either with a concretisation or abstraction function [CC92b]. For
the posets D and D], a concretisation is a monotonic map γ : D] → D. We say that
a ∈ D] is an abstraction for c ∈ D if c v γ(a). For an operator F ] on D] is said to
be a sound abstraction for an operator F on D with respect to 〈α,D, γ,D]〉 if and only
if for all a ∈ D], (α ◦ F ◦ γ)(a) v] F ]. An abstract operator F ] is a sound abstraction
for a concrete operator F if and only if for all a ∈ A, (F ◦ γ)(a) v (γ ◦ F ])(a). For a
concrete domain D of objects, a semantic function [[.]] : Program → D associates with
each program P ∈ Program its semantics: [[P ]] ∈ C. An abstract domain D] and an
abstract semantics function [[.]]] ∈ D] approximates the concrete program semantics.

2.7 Polyhedra Domain

The polyhedra domain [CH78] was introduced by Cousot and Halbwachs for the purpose
of analysing numerical properties of programs at compile-time. Let Rn, for n > 0, be the
space of n-dimensional real vectors. A set P ⊆ Rn is a closed and convex polyhedron (in
what follows we may refer to it as polyhedron) if and only if it is possible to express P as
the intersection of a finite number of closed half-spaces of Rn [BRZH02,BHZ04]. We let
CPn denote the set of all closed convex polyhedra in Rn.
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Double Description. A polyhedron P ∈ Rn has two representations [MRTT53]. One
representation involves an m× n matrix A and an m-vector b, where

P = {x ∈ Rn | Ax ≤ b},

The tuple (A,b) is called the constraint description of P . A polyhedron P can also be
represented by the finite sets V and R of n-vectors, where V = {vi ∈ Rn} is the set of
vertices and R = {rj ∈ Rn} is the set of rays, where

P =
{ |V|∑

i=1

λivi +
|R|∑

j=1

µjrj | λi ≥ 0, µj ≥ 0,
|V|∑
i=1

λi = 1
}
.

The tuple (V,R) is called the system of generators of P . Chernikova’s algorithm [Che68]
performs a conversion from one representation to another, and delivers a minimal descrip-
tion. This algorithm was later improved by LeVerge [LeV92].

Affine Transformations. Let S ⊆ Rn be a set of vectors and ψ : Rn → Rm a function.
We denote by ψ(S) ⊆ Rm the codomain of the set S under ψ, defined by

ψ(S) = {ψ(x) ∈ Rm | x ∈ S}.

Moreover, let S′ ∈ Rm be a set of vectors. We denote by ψ−1(S′) ⊆ Rn the pre-image of
the set S′ under ψ, defined by

ψ−1(S′) = {x ∈ Rn | ψ(x) ∈ S′}.

Note that ψ−1(S′) delivers the largest set S ∈ Rn where ψ(S) ⊆ S′. We say that ψ :
Rn → Rm is space-dimension preserving if n = m, and an affine transformation if there
exists an m × n matrix A with values in R and a vector b ∈ Rm where for each x ∈ Rn,
ψ(x) = Ax + b. The set CPn is closed under any affine image and preimage operators
that are space-dimension preserving.

Existential Quantifier. This operator eliminates the j-th variable in P by the Fourier-
Motzkin procedure, and it is denoted ∃xj(P ) . The existential quantifier of xj can be
calculated by adding the j-unit vector uj ∈ Rn and −uj to the set of rays.

Test Inclusion. This operator verifies that every point of a polyhedron is included in
another polyhedron. Let P, P ′ ∈ CPn be represented respectively by a system of generators
(V,R) and a system of constraints (A,b). Then, P ⊆ P ′ if and only if for each v ∈ V and
each r ∈ R, Av ≤ b and Ar ≤ 0.
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Polyhedra Lattice. When CPn is partially ordered by subset inclusion, we can define
a lattice, in which the empty set and Rn are the bottom and top elements respectively,
and in which the binary meet operator ∩ of set-intersection and a binary join operator ]
called poly-hull, are included. In this way, we have the abstract domain

ĈPn := 〈CPn,⊆, ∅,Rn,],∩〉.

Note that given P1, P2 ∈ CPn, P1]P2 delivers the least closed convex polyhedron P where
P1, P2 ⊆ P . Moreover, the poly-hull of a finite set of polyhedra, denoted ]{Pi ∈ CPn | i ∈
[0,m− 1]} is defined by P1 ] . . . ] Pm−1.

2.8 Finite Powerset Domain of Polyhedra

This section is based on [BHZ04] and [Bag98].

Definitions The powerset domain is built from the base-level domain CPn, n ∈ N, which
includes the entailment relation of set inclusion, the meet operation ∩, a top element Rk,
and a bottom element ∅.

The elements of the powerset of CPn are reduced to nonredundant elements; namely,
a set P is called nonredundant with respect to ⊆ if and only if ∅ /∈ P and ∀d1, d2 ∈ P , if
d1 ⊆ d2 then d1 = d2. The set of finite nonredundant subsets of CPn with respect to ⊆ is
denoted by ℘⊆fn(CPn). The reduction function Ω⊆

CPn
: ℘fn(CPn) → ℘⊆fn(CPn) that maps a

finite set into its nonredundant counterpart is called Omega-reduction, and is defined for
each P ∈ ℘fn(CPn) as

Ω⊆
CPn

(P ) = P \ {d ∈ P | d = ∅ or ∃d′ ∈ P. d ⊂ d′},

For any P ∈ ℘fn(CPn) where P 6= {∅}, Ω⊆
CPn

(P ) is the finite set of the maximal elements
of P .

The finite powerset domain over a domain ĈPn is the set of all finite reduced sets
of CPn and denoted by ℘fn(ĈPn). The domain includes an approximation ordering ⊆?

defined as

S1 ⊆? S2 ⇔ ∀d1 ∈ S1 : ∃d2 ∈ S2. d1 ⊆ d2.

The top element is {Rn} and the bottom element is the empty set. Thus, we denote the
lattice of finite powerset domain over a domain ĈPn by

℘fn(ĈPn) = 〈 ℘fn(CPn),⊆?,∪?,∩?, ∅, {Rn} 〉.
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Meet and Upper Bound Operators. Given the sets S1, S2 ∈ ℘fn(CPn), the powerset
meet operator ∩? and the upper powerset bound operator ∪? are defined respectively by

S1 ∩? S2 = Ω⊆
CPn

(
{d1 ∩ d2 | d1 ∈ S1, d2 ∈ S2}

)
,

and by the reduced set union S1 ∪? S2 = Ω⊆
CPn

(S1 ∪ S2).

Add Disjunct Operators. Given the powerset element S ∈ ℘fn(CPn)p and the base-
level element d ∈ CPn, the add disjunct operator returns the powerset element Ω⊆

CPn
(S ∪

{d}).

2.9 Logic Programming

For a standard introduction to logic programming, see for instance [Apt90]. Another
standard text on the topic is [Llo87]. The language considered is first order predicate logic.
The following definitions in logic programming can be found at [HS02] and [BZGH01]. Let
Σ denote a possibly infinite set of function symbols, ranked over the set of natural numbers
and Vars a denumerable set of variable symbols, disjoint from Σ. Given V ∈ ℘fn(Vars), Σ
and k ∈ N, we define

terms0(Σ, V ) = V

termsk+1(Σ, V ) = termsk(Σ, V )

∪

{
f(t1, . . . , tn)

fn ∈ Σ and{
t1, . . . , tn

}
⊆ termsk(Σ, V )

}
terms(Σ, V ) =

⋃
d≥0 termsd(Σ, V ) .

It is assumed that Σ contains at least two distinct function symbols, one having rank 0
and one with rank greater than 0 (so that there exist an infinite number of terms both
with and without variables).

The free algebra of all (possibly infinite) terms in the signature Σ having a set of
variables V ∈ ℘f (Vars) is denoted by terms(Σ, V ). If t ∈ terms(Σ, V ) then vars(t) denotes
the set of variables occurring in t. If vars(t) = ∅ then t is said to be ground ; t is a finite
term (or Herbrand term) if it contains a finite number of occurrences of function symbols.
The sets of all ground and finite terms are denoted by GTerms and HTerms, respectively.

A substitution is a total function σ : Vars → HTerms that is the identity almost
everywhere. That is, the domain of σ, defined as

dom(σ)
def
=

{
x ∈ Vars

∣∣ σ(x) 6= x
}
,

is a finite set of variables. If x ∈ Vars and t ∈ HTerms\{x}, then x 7→ t is called a binding.
The set of all bindings is denoted by Bind. Substitutions are conveniently denoted by the
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set of their bindings. Thus, a substitution σ is identified with the (finite) set

{
x 7→ σ(x)

∣∣ x ∈ dom(σ)
}
.

We denote by vars(σ) the set of all variables occurring in the bindings of σ. For a substi-
tution θ and a term t, the instance of t by θ, denoted tθ, is the term obtained from t by
simultaneously replacing each occurrence of xi, by ti, where xi 7→ ti ∈ θ, i ∈ [1, n] and
|θ | = n. Moreover, tθ is a ground instance if tθ is ground.

An atom is of the form p(t1, . . . , tn), for ti, i ∈ [1, n], terms. A literal is an positive
atom or a negated atom. A clause is a sequence of literals. A clause is called definite if it
has at most one positive atom. In a definite clause, the positive atom is called head atom
and the rest of (negated) atoms are called body atoms. A clause with all negative atoms
is called a query. A clause with one and only one atom is called atomic clause. A logic
program consists of a finite set of clauses.

A mode for a predicate p/n is an atom p(m1, . . . ,mn) where mi ∈ I ∪O, i ∈ [1, n], and
I ∩O = ∅. Every mi ∈ I is called an input argument and every mj ∈ O, i 6= j, i, j ∈ [1, n],
is called an output argument. Each i ∈ [1, n] denotes an input or output position in p/n.
A mode of a program is a set of modes, one for each predicate declared in the program.
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Chapter 3

Concrete and Abstract Semantics

of Floating-Point Arithmetic

In this chapter we review the IEEE-754 standard for floating-point systems
and existing work on floating-point arithmetic abstractions. Then we propose
a generalisation of the so-called linear forms [Min04b, Min04a]. This gener-
alisation is founded in interval valued polynomials and holds in the abstract
interpretation framework of [Min04a]. As this general form preserves nonlinear
information of the concrete semantics, we obtain a more expressive abstract
semantics. An implication of this expressiveness is that for instance we avoid
linearisation in the abstract product and division. Moreover, this generalisation
will prove useful for abstracting floating-point expressions into the polyhedra
domain.

Although this may seem a paradox, all exact science is dominated by the idea of approximation.

Bertrand Russell

3.1 Introduction

Programming languages often manipulate finite representations of numerical values, equipped
with unsound arithmetic that do not enjoy most algebraic properties assumed in the design
of software with numerical processing. For instance, real numbers have a finite represen-
tation, which often incurs in rounding errors that lead to inaccurate results.

17
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Traditionally, the analysis for properties of floating-point arithmetic has been carried
out using interval arithmetic [Moo66]. Though robust, simple to handle and efficient,
analyses based on this arithmetic do not guarantee narrow enclosures; namely, the re-
sulting intervals might be too wide so that the analysis is inconclusive. One reason for
this is the fact that dependencies between variables in an arithmetic calculation are not
represented, since, for instance, there exist no additive or multiplicative inverses. That is,
if a variable x ranges over an interval [a, b], namely, x ∈ [a, b], then x− x = [a− b, b− a]
and x/x = [a/b, b/a], though the optimal results are [0, 0] and [1, 1], respectively. To over-
come this, Hansen [Han75] proposed a generalisation of interval arithmetic that included
information on variables.

A further refinement was introduced in [VACS94], called affine arithmetic, that used
synthetic variables. Two affine forms can be added, and an affine form can be multiplied
by a constant. However, as noted in [Min04b, Min04a], linearisation is required when
two affine forms are multiplied. Moreover, synthetic variables become a disadvantage
when it comes to constructing abstractions in relational domains, since these synthetic
variables do not correspond to variables in a program. In order to overcome the problem
of synthetic variables, Miné [Min04b,Min04a] presented a symbolic form, called interval
linear form. This form allows for affine arithmetics, and most importantly, the variables
used correspond to those in a program, thus allowing for a direct use of such variables in the
abstraction into relational (and nonrelational) domains. Moreover, based on interval linear
forms, Miné provides a nondeterministic model of floating-point rounding errors. However,
when multiplying two linear forms, a linearisation is required. This may represent a loss
of precision in the abstraction of floating-point expressions of a program.

By preserving nonlinear information of a floating-point expression, we can avoid lineari-
sation, for instance, in the abstract product. For this purpose, we present a generalisation
of linear forms based on interval valued polynomials (that is, polynomials with interval
coefficients). These polynomials are expressed with variables of the program, as in the
linear forms. However, the product of two polynomial forms delivers a (possibly) nonlin-
ear polynomial form. This is important in order to preserve nonlinear information of a
floating-point expression. Polynomial forms are not exempt from problems, though. In
the division of two polynomial forms, we can choose between a symbolic division, which
delivers a complex expression, or else make use of linearisation. We show that there exist
precise boundaries for linearised polynomial forms. The following chapter will present a
series of techniques for efficient and precise linearisations of polynomial forms.

Our contribution in this chapter is the introduction of a nonlinear abstract semantics
based on interval valued polynomials that has increased precision in comparison with other
abstractions for floating-point arithmetic. This semantics preserves nonlinear information
which proves important to avoid linearisation and thus, loss of precision. Our abstraction
holds in the abstract interpretation framework of [Min04a]. This abstract semantics will

18



Chapter 3 Concrete and Abstract Semantics of Floating-Point Arithmetic

Format† Size Precision p Exponent Size e bias Range‡

Single 32 bits 23 bits 8 bits 127 3.4028 · 10±38

Double 64 bits 52 bits 11 bits 1023 1.7976 · 10±308

Double Extended 80 bits 64 bits 15 bits 16383 1.1897 · 10±4932

† Each format includes one bit to represent the sign.
‡ Maximum Range Magnitude.

Figure 3.1: IEEE-754 single and double precision floating-point formats.

prove useful for abstracting floating-point expressions into the polyhedra domain.

3.2 The IEEE-754 Floating-Point System Standard

In 1985, the IEEE Standards Board and the American National Standards Institute ap-
proved the IEEE 754-1985 Standard for floating-point binary arithmetic [oEE85]. There-
after, computers and also compilers were designed following this standard. In this section
we describe the IEEE 754-1985 floating-point arithmetic. For this purpose we adopt the
formulation used in [Min04b,Min04a] as standard.

3.2.1 Representation

The IEEE-754 standard binary representation of a floating-point number includes three
fields:
• a 1-bit sign s;
• an exponent e = e1 . . . ee, represented by e bits;
• a mantissa m = m1 . . .mp, represented by p bits.

The number p of bits is called the precision. The exponent e is biased by a value −bias

and bounded by emin ≤ e ≤ emax, where emin = −bias + 1 and emax = bias. The
purpose of biasing the exponent is to represent both positive and negative exponents. In
the mantissa, bits m1 and mp are respectively the most and less significant bits.

A floating-point format is denoted by a tuple f = 〈e,bias,p〉. The set of floating-point
values of format f is denoted Ff . The set of all floating-point formats is denoted F. For
instance, the IEEE-754 single precision format is denoted by f = 〈8, 127, 23〉 (or f = 32

for short) and the double precision format by f = 〈11, 1023, 53〉 (or f = 64 for short), as
detailed in figure 3.1. Note that for any format f of finite precision, Ff ⊂ R.

3.2.2 Characteristic Values

The largest and smallest positive representable values in a format as well as the machine
epsilon value are important for defining further concepts related to floating-point system
and analyses. For each format f , the smallest and largest nonzero positive number in Ff
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Category Bit Pattern Value
Normalised 1 ≤ e ≤ 2e − 2 (−1)s · 2e−bias · 1.m
Denormalised e = 0, 0 < m < 2p−1 (−1)s · 21−bias · 0.m
Signed Zeroes e = 0, m = 0 (−1)s · e ·m
Signed Infinities e = 2e − 1, m = 0 (−1)s · e ·m
NaN (Not a Number) e = 2e − 1, m 6= 0 (−1)s · e ·m

Figure 3.2: IEEE-754 Categories for a format f = 〈e,bias,p〉 ( [Min04b]).

is defined respectively by mf f = 21−bias−p and Mf f = (2− 2−p)22e−bias−2. Moreover,
we call epsf = 2−p the machine epsilon.

3.2.3 Categories

For a given f , the set Ff may be separated into five distinct categories, as shown in fig-
ure 3.2. Denormalised numbers are used 1 to represent smaller values than those obtained
by normalised numbers. Values +0 and −0 validate the equality relational operator. More-
over, +∞, −∞ and NaN are used to represent results of floating-point arithmetic that are
not mathematically defined. For instance, an operation such as 1/± 0 produces a division
by zero and it is represented as ±∞. Also, when the result of a floating-point operation
overflows the maximum or minimum representable value +Mff or −Mff , respectively, it
is represented as ±∞. The result of operations such as ±0/± 0 are represented by NaN .

We denote by Ω ∈ {−∞,+∞, NaN} a floating-point value that has either no repre-
sentation in Ff or no mathematical definition. For instance, values greater than Mff or
smaller than −Mff cannot be represented in format f and are denoted by Ω. In the con-
text of rounding functions or evaluation of floating-point expressions, symbol Ω denotes a
run-time error (in which case, the execution of a program may raise an exception or halt).

The result of an operation underflows if it is smaller than the absolute value of mff
and greater than zero. For instance, the result of dividing mff by 10 is clearly not
representable and it is set to 0. Gradual underflow delivers a denormalised number rather
than rounding a normalised underflowed value to zero. The purpose of denormalised
numbers is not simply to avoid underflow in all the cases, but to eliminate underflow in
sensible cases such as in a multiplication followed by an addition [Dem84,Hig02].

Example 3.1. Some examples of normalised and denormalised floating-point values in
single precision as well as examples of special values for the IEEE-754 single precision
format may be found in figure 3.3. The decimal representation of such values are as

1In this thesis, we refer to a number as a representation (namely, a sequence of bits that comply with
a format), and a value as the element in the set R represented by a number.
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Exact Value Representation
Sign Exponent Mantissa

(normalised)
1 0 01111111 00000000000000000000000
2 0 10000000 00000000000000000000000
−5.125 1 10000001 01001000000000000000000
0.75 0 01111110 10000000000000000000000
0.1 0 01111110 00011001100110011001100

(denormalised)
2−127 0 00000000 10000000000000000000000
2−149 0 00000000 00000000000000000000001

(special values)
+0 0 00000000 00000000000000000000000
−0 1 00000000 00000000000000000000000
+∞ 0 11111111 00000000000000000000000
−∞ 1 11111111 00000000000000000000000
NaN 0 11111111 (At least one bit set to 1.)

Figure 3.3: Binary representation of values in each category of IEEE-754 single precision
format.

follows:

1 = (−1)0 · 2127−127 · 1

2 = (−1)0 · 2128−127 · 1

−5.125 = (−1)1 · 2129−127 · (1 + 2−2 + 2−5)

0.75 = (−1)0 · 2126−127 · (1 + 2−1) .

The decimal value 0.1 has no finite binary representation for any finite precision. For
instance, in single precision, 0.1 is represented as shown in figure 3.3. However, its
binary representation does not denote the exact decimal value, namely

0.1 ≈ (−1)0 · 2126−127 · (1 + 24 + 25 + 28 + 29 + 212 + 213 + 216 + 217 + 220 + 221)

=
3355440
33554432

≈ 0.09999990463256836.
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Rf ,+∞(x) =

{
Ω if x > Mff

min{y ∈ Ff | y ≥ x} otherwise

Rf ,−∞(x) =

{
Ω if x < −Mff

max{y ∈ Ff | y ≤ x} otherwise

Rf ,0(x) =

{
Rf ,+∞(x) if x ≤ 0
Rf ,−∞(x) if x ≥ 0

Rf ,n(x) =



Ω if |x |> Mff

Mff else if x ≥Mff

−Mff else if x ≤ −Mff

Rf ,−∞(x) else if |Rf ,−∞(x)− x |<|Rf ,+∞(x)− x |
Rf ,+∞(x) else if |Rf ,+∞(x)− x |<|Rf ,−∞(x)− x |
Rf ,−∞(x) else if least significant bit of Rf ,−∞(x) is 0
Rf ,+∞(x) else if least significant bit of Rf ,+∞(x) is 0

Figure 3.4: Rounding functions [Min04b].

3.2.4 Rounding Methods

Rounding is used to approximate proper subsets of R by a finite set of floating-point
numbers. A rounding function is a mapping Rf ,r : R → Ff , where r denotes a rounding
method and f a floating-point format. The IEEE-754 standard defines four rounding
methods: toward 0, toward −∞, toward +∞ and to the nearest (denoted by n). Each
rounding method is defined by a rounding function as shown in figure 3.4.

Function Rf ,+∞(x) rounds x to the next larger representable value in f . Function
Rf ,+∞(x) rounds x to the next smaller representable value in f . Function Rf ,0(x) applies
to either of the first two functions depending on the sign of x. Note Rf ,0(0) = 0. Function
Rf ,n minimises the distance between the exact and the representable values. When the
distance between x and the next larger representable value is the same as the distance
between x and the next smaller representable value, then x is rounded to the value whose
least significant digit is 0 (also called round to even). When | x | is larger than the
largest representable value Mff , the rounding delivers Ω. A value |x | that is larger than
Mff but smaller than the first nonrepresentable value in f , is rounded to Mff ; namely,
Rf ,n(x) ∈ {−Mff ,Mff} if

(2− 2−p−1) · 22e−bias−2 > |x | ≥ (2− 2−p) · 22e−bias−2,
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where Mff = (2− 2−p) · 22e−bias−2.

3.3 Concrete Semantics of Floating-Point Arithmetic

Expressions in floating-point arithmetic are syntactically equivalent to those in real arith-
metic. However, the evaluation of a floating-point expression does not deliver the same
value as the evaluation of a real expression. This is due to the finite precision of floating-
point numbers. In this section we recall the concepts of absolute and relative floating-point
rounding errors, as well as a concrete semantics for floating-point expressions.

3.3.1 Rounding Errors

A rounding error refers to the error introduced by rounding an exact value to an approx-
imate value. In such a case, the difference between the exact and represented value is
called rounding error. This error is dependent on the underlying floating-point format.
The following definition formalises this concept.

Definition 3.2. (Absolute rounding error.) Given x ∈ R, a format f and a rounding
method r, the absolute rounding error for x is defined as εf ,r(x) = |Rf ,r(x)− x |.

Note that the rounding error is bounded by

|Rf ,r(x)− x | ≤|Rf ,−∞(x)−Rf ,+∞(x) | ≤ 2−p · 2e−bias.

Definition 3.3. (Relative rounding error.) Given x ∈ R, x 6= 0, a format f and a
rounding method r, the relative rounding error for x is defined as

ε′f ,r(x) =
|Rf ,r(x)− x |

|x |
.

The relative error for x can be bounded as follows. For f = 〈e,bias,p〉, let

(−1)s(1.m1 . . .mp,mp−1, . . .)2 · 2e−bias and (−1)s(1.m1 . . .mp)2 · 2e−bias

be the (possibly infinite) binary representation of x ∈ R and its (finite) floating-point
binary representation, respectively. Thus

|x | ≥ 2e−bias ⇔ 1
|x |

≤ 1
2e−bias

and therefore,

|Rf ,r(x)− x |
|x |

≤ 2−p · 2e−bias

2e−bias
= 2−p,
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recover(N, K, X, Z) :-

p(N, K, X, Y),

Kinv is 1 / K,

p(N, Kinv, Y, Z),

(X == Z, write(’Exact result.’);

write(’Precision loss.’)).

p(N, K, X, Y) :-

0 == N,

Y is X * K.

p(N, K, X, Y) :-

1 =< N,

N1 is N - 1,

X1 is X * K,

p(N1, K, X1, Y).

Figure 3.5: Innocuous program (Prolog SICStus syntax).

and

|Rf ,r(x)− x | ≤ |x | ·2−p. (3.1)

This boundary proves useful for the abstraction of errors of floating-point values.

As an example that illustrates how the final result of a computation can be changed
by the accumulated (absolute) rounding errors, consider the program in figure 3.3.1. For
each of the N recursive calls, the program multiplies a constant value K by another initial
value X. Then, the inverse operation over the result of multiplying N times K by an
initial X is performed. Variable Z is instantiated in the answer substitution. In real
arithmetic, Z should be equal to the value of X in the query. More precisely, a recurrence
equation of the form Xn+1 = K ·Xn is recurred a finite number N of times for an initial
value X0. The result XN is then equated to Y0, and a recurrence equation of the form
Yn+1 = 1

K ·Yn is recurred N times. Thus, X0 = YN . However, in floating-point arithmetic,
for a large number N of recursive calls, the accumulated absolute rounding error may be
nonzero. Thus the value that instantiates Z is not equal to the value of X in the query.
Moreover, for sufficiently large N , underflow may occur; namely, for a sufficiently large i,
Xi is rounded to 0. In such a case, the initial value of X cannot be obtained.

Note in figure 3.6 that the absolute rounding error increases with the number of recur-
sive calls, and the growth is considerable for some N > 310. The source of errors in this
case is due to the inexact binary representation of the decimal value 0.1.

Further examples related to the unsoundness of floating-point arithmetic may be found
in [Gol91].
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N K X Z εf ,n(Z), f = 64
1 0.1 1 1.0000000000000002 2.22044 · 10−16

5 0.1 1 1.0000000000000007 6.66133 · 10−16

10 0.1 1 1.0000000000000007 6.66133 · 10−16

100 0.1 1 1.0000000000000062 6.21724 · 10−15

200 0.1 1 1.0000000000000115 1.15463 · 10−14

300 0.1 1 1.0000000000000175 1.75415 · 10−14

310 0.1 1 0.9999999999999474 5.26245 · 10−14

315 0.1 1 0.9999999836597133 1.63402 · 10−8

316 0.1 1 1.0000002306925362 2.30692 · 10−7

317 0.1 1 0.9999987484955987 1.25150 · 10−6

318 0.1 1 0.9999888671826831 1.11328 · 10−5

319 0.1 1 0.9999888671826831 1.11328 · 10−5

320 0.1 1 0.9980126045993181 0.00198
321 0.1 1 0.9881312916824931 0.01186
322 0.1 1 0.9881312916824931 0.01186
323 0.1 1 0.0 1.0 due to underflow

Figure 3.6: Rounding errors for queries to the innocuous program (Prolog SICStus 3.11.0
in double precision and rounding to the nearest).

exprf ::= [a, b]f ,r a, b ∈ R
| v v ∈ Vf

| 	exprf
| exprf ~f ,r exprf ∗ ∈ {+,−,×, /}
| exprf }f ,r n n ∈ N+

Figure 3.7: Grammar for floating-point expressions (adapted from [Min04b]).

3.3.2 Evaluation of Floating-Point Expressions

We present now a concrete semantics for floating-point expressions. In order to define
the concrete semantics, we present first a grammar for floating-point expressions and the
definition of concrete environment.

Figure 3.7 presents the syntax of numerical expressions for floating-point arithmetic
for a format f and rounding mode r. This grammar includes operators of addition, sub-
traction, product and division, denoted by the operator symbols ⊕f ,r, 	f ,r, ⊗f ,r and �f ,r.
It extends the grammar presented in [Min04b] by including an exponentiation operator
}f ,r for the exponentiation by a natural number. It also includes constants (represented as
closed intervals) and a finite set Vf of variables that can store values of format f . Note that
[a, b]f ,r for a, b ∈ R denotes the set of floating-point values where a ≤ c ≤ b, for c ∈ Ff and
rounding method r. This will be useful for treating rounding errors as nondeterministic.

Definition 3.4. (Concrete environment.) A concrete environment e : Vf → Ff is a
function that associates to each variable v ∈ Vf a floating-point value in Ff .
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The following semantics is an extension of that proposed in [Min04a] by including an
exponentiation operator.

Definition 3.5. (Concrete semantics (adapted from [Min04a]).) A concrete se-
mantics for a floating-point expression is a function [[exprf ]]fl(e) : (

∏
f∈F(Vf → Ff )) →

℘(Ff ) defined in an environment e as

[[ [a, b]f ]]fl(e) =

{
Rf ,r(c) ∈ Ff

constf ,r(a) ≤ c ≤ constf ,r(b),
Rf ,r(c) 6= Ω

}

[[v]]fl(e) =
{
e(v)

}
[[	f ,r pf ]]fl(e) =

{
−c ∈ Ff

c ∈ [[pf ]]fl(e),
Rf ,r(c) 6= Ω

}

[[pf ~f ,r qf ]]fl(e) =

{
Rf ,r(c ∗ d) ∈ Ff

c ∈ [[pf ]]fl(e), d ∈ [[qf ]]fl(e),
Rf ,r(c ∗ d) 6= Ω

}
,

∗ ∈ {+,−}

[[pf ⊗f ,r qf ]]fl(e) =

{
Rf ,r(c · d) ∈ Ff

c ∈ [[pf ]]fl(e), d ∈ [[qf ]]fl(e),
Rf ,r(c · d) 6= Ω

}

[[pf �f ,r qf ]]fl(e) =

{
Rf ,r(c/d) ∈ Ff

c ∈ [[pf ]]fl(e), d ∈ [[qf ]]fl(e),
Rf ,r(d) 6= 0, Rf ,r(c/d) 6= Ω

}

[[pf }f ,r 0]]fl(e) =
{
1 ∈ Ff

∣∣ [[pf ]]fl(e) 6= Ω
}

[[pf }f ,r n]]fl(e) =

{
{Rf ,r(c · d) ∈ Ff

c ∈ [[pf ]]fl(e), d ∈ [[pf }f ,r (n− 1)]]fl(e),
Rf ,r(c · d), n ∈ N+

}
.

It must be noted that this semantics delivers a set of floating-point values, which are
usually singleton sets, except for the case of intervals. The purpose of this is that we
can define an abstract interpretation between this concrete semantics and an abstract
semantics defined over intervals. In this way, a single floating-point value that results
from evaluating a floating-point expression is represented by a degenerate interval, that is
a singleton set.

In the context of floating-point representations, Ω denotes either ±∞ or NaN . In the
semantics for floating-point expressions, Ω is interpreted as a run-time error. This error
can be caused by:
• an invalid operation, denoted NaN (e.g. 0/0 or 0 · ∞);
• a division by zero, denoted ±∞ (e.g. Mff/0); or
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• an overflow, denoted ±∞ (e.g. Mff · 10).
When an underflow occurs, however, the result is expressed with denormalised numbers
or 0. The occurrence of a run-time error in the evaluation of an expression means that
the computation has failed. As a possible consequence, the execution of a program may
be halted, or an exception raised. Moreover, when evaluating a floating-point expression,
the associative and distributive laws of algebra do not necessarily hold. For instance, for
some a, b, c ∈ Ff and rounding mode r,

(a⊕f ,r b)⊕f ,r c 6= a⊕f ,r (b⊕f ,r c)

(a⊗f ,r b)⊗f ,r c 6= a⊗f ,r (b⊗f ,r c)

a⊗f ,r (b⊕f ,r c) 6= (a⊗f ,r b)⊕f ,r (a⊗f ,r c) .

Different evaluation orders of a floating-point expression may result in different values.

3.4 Nonlinear Abstract Semantics of Floating-Point Arith-

metic

This section introduces a new specialised transfer function for the purpose of achieving
high precision in the abstraction of arbitrary expressions. The key idea is that in the
abstract semantics we preserve the nonlinearity of the concrete expressions. In this way,
the transfer function delivers a nonlinear expression in the form of interval valued poly-
nomials, which includes all the possible concrete semantics, as well as an approximation
to rounding errors. From this nonlinear expression, we will show that it is possible to
construct polyhedra (chapter 4). Central in this nonlinear abstraction is the concept of
interval valued polynomials (or polynomials with interval coefficients) [RR84,RR03]. We
show that for each interval valued polynomials there exists an enclosure. Moreover, we
define a partial ordering for interval valued polynomials, and a poset. This is necessary
for defining an abstract interpretation scheme.

3.4.1 Interval Valued Polynomials

An interval valued polynomial is a polynomial in which the coefficients are closed intervals.
We denote such polynomials by [p](x) in order to distinguish them from single-valued
polynomials. In this way, an interval valued polynomial of degree N ∈ Nk for S ∈ ℘fn(Nk),
where S ⊆ {I ∈ Nk | I ≤ N}, is a function [p] : Rk → IR expressed asa polynomial
r(x) =

∑
I∈S aIxI ,

r(x) ∈ [p](x) ⇔ ∀I ∈ S : aI ∈ [a−I , a
+
I ].
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In order to compare interval valued polynomials, we define a partial ordering relation v
as

[p](x) v [q](x) ⇔ ∀r(x) ∈ [p](x) : ∃s(x) ∈ [q](x) . r(x) = s(x).

Interval valued polynomials are comparable under variable renaming if and only if their
interval coefficients are comparable. Moreover,

[p](x) = [q](x) ⇔ [p](x) v [q](x) ∧ [q](x) v [p](x).

From this ordering we can define a poset, which will prove useful in constructing a Galois
connection between the concrete and the abstract semantics.

Proposition 3.6. The set of all interval valued polynomials of at most k variables and
degree less than or equal to N ∈ Nk, equipped with the partial ordering relation v, is a
poset.

Recall that for a floating-point format f of finite precision, Ff ⊂ R, and thus, all the
representable floating-point values can be mapped one to one onto R. Put another way,
a variable in a program that is instantiated to a floating-point value, in fact holds a real
value. This observation is important in the definition of a concrete semantics for interval
valued polynomials, which is defined over R and for real arithmetic.

Definition 3.7. (Concrete semantics of an interval valued polynomial.) A con-
crete semantics for an interval valued polynomial [p](x) =

∑
I∈S [a−I , a

+
I ]xI , where x =

(x1, . . . , xk), is a function [[ [p](x) ]]re(e) : (
∏

f∈F(Vf → Ff )) → IR defined for a concrete
environment e as

[[ [p](x) ]]re(e) =
∑
I∈S

[a−I , a
+
I ](e(x1))i1 · . . . · (e(xk)ik).

3.4.2 Range Enclosure for Interval Valued Polynomials

Computing the boundaries of a floating-point expression is central in our analyses since
the knowledge of its extreme values allows for deciding whether a program may overflow
or divide by zero. Chapter 4 provides approximate methods to compute the boundaries
of expressions. Here we show that every interval valued polynomial has an optimal upper
and lower boundary. It is well-known that for each B ⊆ Rk, if a real function f : B→ R
is continuous then it is upper and lower-bounded by a closed interval [fmin, fmax]; namely,
for all x ∈ B, f(x) ∈ [fmin, fmax]. We say that a function is bounded if it is upper and
lower-bounded. Note that a polynomial is a continuous function and therefore bounded
for each B ⊆ Rk. We extend the notion of boundedness to interval valued polynomials.
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Definition 3.8. (Range enclosure of an interval valued polynomial.) We say that
Enc([p](x),B) ∈ IR is a range enclosure of [p](x) for a bounding box B ∈ Rk if for all
x ∈ B,

[p](x) ⊆ Enc([p](x),B).

We show that for every interval valued polynomial defined over a bounding box,
there exists a range enclosure. Let [p](x) be an interval valued polynomial and sup-
pose that [p](x) is a single valued polynomial, that is, every interval coefficient is de-
generated. Then, [p](x) is a continuous function and therefore bounded. Suppose now
[p](x) =

∑
I∈S [a−I , a

+
I ]xI . Note that each r(x) ∈ [p](x) is continuous and therefore

bounded. The problem now is to find for each x ∈ B a polynomial r(x) ∈ [p](x) that
upper or lower-bounds all polynomials in [p](x). Note that each polynomial is defined by
a finite summation of monomials. Let r(x) =

∑
I∈S aI · xI . Then, for each I ∈ S,

a−I · x
I ≤ aI · x ≤ a+

I · x
I or a−I · x

I ≥ aI · x ≥ a+
I · x

I .

Note that aI ∈ [a−I , a
+
I ] and thus, ∀x ∈ Rk where xI ≥ 0,

aI · xI ∈ [a−I · x
I , a+

I · x
I ] = [a−I , a

+
I ]xI ,

and ∀x ∈ Rk where xI ≤ 0,

aI · xI ∈ [a+
I · x

I , a−I · x
I ] = [a+

I , a
−
I ]xI .

Moreover, from the inequalities above we can note that the maximal values for boundaries
are obtained when aI ∈ {a+

I , a
−
I } for each x ∈ Rk. Thus, for each x ∈ B there exists a

single valued polynomial in [p](x) defined as the summation of monomials in which each
coefficient is a boundary of each interval in [p](x), which upper or lower-bounds [p](x).

Example 3.9. Let [p](x) = [1, 2]x3 + [1, 2]x2 defined over B = [−1, 1]. In this case, we
can form up to four permutations and thus up to four single-valued polynomials with the
boundaries of each interval; namely,

r0(x) = 1 · x3 + 1 · x2, r1(x) = 2 · x3 + 1 · x2,

r2(x) = 1 · x3 + 2 · x2, r3(x) = 2 · x3 + 2 · x2.

Let PR([p]) denote the finite set of single valued polynomials defined by permuting
the boundaries of each interval in [p](x). Note that |PR([p]) | = 2| S |. Moreover, let

M = {β ∈ R | ∀x ∈ B . β = max(ri(x)), {ri} ⊆ PR([p])} and

m = {α ∈ R | ∀x ∈ B . α = min(ri(x)), {ri} ⊆ PR([p])}
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be respectively the sets of all upper and lower-bounds of all the polynomials included in
PR([p]). Then for all x ∈ B, [p](x) is bounded by [min(m),max(M)].

Definition 3.10. (Optimal range enclosure of an interval valued polynomial.)

The optimal range of an interval valued polynomial [p](x) over a box B, is defined as the
interval [min(m),max(M)] and is denoted by Opt([p](x),B).

Thus the following proposition holds.

Proposition 3.11. Let Opt([p](x),B) = [pmin, pmax]. Then [p](x) ∈ [pmin, pmax] and,
for all Enc([p](x),B) = [l, u], l ≤ pmin and u ≥ pmax.

Clearly, any closed interval that includes Opt([p](x),B) is a range enclosure of [p](x).

3.4.3 Operators for Interval Valued Polynomials

The following arithmetic will be used to construct the abstract semantics.

Definition 3.12. The operators �], �], �], �] and �] on interval valued polynomials
are defined by:

•iIxI �] i′Ix
I = (iI � i′I)x

I

•iIxI �] i′Ix
I = (iI � i′I)x

I

•iIxI �] iJxJ = (iI � iJ)xI+J

•iIxI �] i′ = (iI � i′)xI

•iIxI �] n =

[1, 1] if n = 0

iIxI �]
(
(iIxI) �] (n− 1)) if n ∈ N+.

Algebraic properties such as associativity and distributivity of �], �], �] and �]

are important for proving the soundness of the abstract semantics. These properties are
formalised in the following proposition.

Proposition 3.13.

• (
∑

I∈S iIxI) �] (
∑

I∈S i′Ix
I) =

∑
I∈S (iIxI �] i′Ix

I)
• (

∑
I∈S iIxI) �] (

∑
I∈S i′Ix

I) =
∑

I∈S (iIxI �] i′Ix
I)

• (iIxI) �] (
∑

J∈S iJxJ) =
∑

J∈S(iIxI �] iJxJ) for some I ∈ Nk

• (
∑

I∈S iIxI) �] (
∑

J∈S′ iJx
J) =

∑
I∈S

∑
J∈S′

(
iIxI �] iJxJ

)
• (

∑
I∈S iIxI) �] i′ =

∑
I∈S

(
iIxI �] i′

)

• (
∑

I∈S iIxI) �] n =

[1, 1] if n = 0

(
∑

I∈S iIxI) �]
(
(
∑

I∈S iIxI) �] (n− 1)
)

if n ∈ N+.
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Proof. The proof is by induction on the cardinality of S. If S = ∅, the result is trivial.
Suppose now that S has at least one element and I1 ∈ S. Then, for the �] operator we
have:

( ∑
I∈S

iIxI
)

�]
( ∑

I∈S

i′Ix
I
)

=
(
iI1x

I1 �]
∑

I∈S\{I1}

iIxI
)

�]
(
i′I1x

I1 �]
∑

I∈S\{I1}

i′Ix
I
)

=
(
iI1x

I1 �] i′I1x
I1

)
�]

∑
I∈S\{I1}

iIxI �]
∑

I∈S\{I1}

i′Ix
I

=
(
iI1x

I1 �] i′I1x
I1

)
�]

∑
I∈S\{I1}

(
iIxI �] i′Ix

I
)

=
∑
I∈S

(
iIxI �] i′Ix

I
)
,

where the third step follows from the induction hypothesis. A similar reasoning applies in
the case of the �] operator. In the case of the �] operator, for some I ∈ Nk and J1 ∈ S,

iIxI �]
∑
J∈S

iJxJ =
(
iIxI �] iJ1x

J1
)

�]
(
iIxI �]

∑
J∈S\{J1}

iJxJ
)

=
∑
J∈S

(
iIxI �] iJxJ

)
.

For the general case of the �] operator,

( ∑
I∈S

iIxI
)

�]
( ∑

J∈S′

iJxJ
)

=
(
iI1x

I1 �]
∑
J∈S′

iJxJ
)

�]
( ∑

I∈S\{I1}

(
iIxI �]

∑
J∈S′

iJxJ
))

=
(
iI1x

I1 �]
∑
J∈S′

iJxJ
)

�]
( ∑

I∈S\{I1}

∑
J∈S′

(iIxI �] iJxJ)
)

=
∑
I∈S

∑
J∈S′

(
iIxI �] iJxJ

)
.

In the case of the �] operator, the proof is identical to the �] operator since for i′ =
[a−, a+],

(
∑
I∈S

iIxI) �] i′ = (
∑
I∈S

iIxI) �] [1/a+, 1/a−].

The proof for the �] operator follows the same reasoning as that for the product opera-
tor. ut

3.4.4 Abstracting Rounding Errors

The abstract semantics for floating-point arithmetic must enclose the rounding errors
introduced in the evaluation of a floating-point expression. In this section we summarise
the results presented in [Min04a] which will serve to generalise the definition of relative

31



Chapter 3 Concrete and Abstract Semantics of Floating-Point Arithmetic

rounding error to interval valued polynomials. In this way, two classes of rounding errors
must be considered: the class of errors in which normalised numbers are involved, and the
class of errors in which denormalised numbers are involved. For a format f ∈ F, a relative
rounding error of amplitude 2−p and an absolute error of amplitude mff are considered.
Thus, for a normalised x, as noted in (3.1) (page 24),

| Rf ,r(x)− x | < 2−p· |x |,

and for a denormalised x,

| Rf ,r(x)− x | ≤ mff .

Recall that the distance between two consecutive normalised floating-point values is pro-
portional to 2−p. Theorem [Min04a, cf. 7.4.1] proposes a boundary for rounding errors
for ⊕f ,r, 	f ,r, ⊗f ,r and �f ,r that is valid for all rounding modes. Then a relative rounding
error approximation is proposed for interval linear forms. We generalise this definition to
interval valued polynomials.

Definition 3.14. (Relative rounding error on an interval valued polynomial

(adapted from [Min04a]).)

Given a floating-point format f = 〈e,bias,p〉, the relative rounding error on the in-
terval valued polynomial [p](x) =

∑
I∈S [a−I , a

+
I ]xI is defined as

εf
( ∑

I∈S

[a−I , a
+
I ]xI

)
=

∑
I∈S

[
|a−I | ·(−2−p), |a+

I | ·2
−p

]
xI . (3.2)

Particular in this definition is that as we raise x to the I-th power, the rounding error
may be reduced to a smaller value if x ∈ U, since any xI would deliver a value less than or
equal to |1 |. To approximate the overall rounding error, Miné proposes to add these two
types of rounding error. In this way, by adding the absolute rounding error [−mff ,mff ]
to the relative rounding error, we obtain the overall rounding error. This approximation
is immune to those architectures that use a guard bit 2 when operating floating-point
arithmetic.

3.4.5 Abstract Interpretation of Floating-Point Arithmetic

Given a polynomial in floating-point arithmetic, we construct an abstract semantics that
safely over-approximates the concrete semantics and takes into account rounding errors.
An abstract environment is a function that delivers the set of values that a variable can
take at each program point for all the possible executions that reach each point.

2A guard bit is an extra bit used to store the least significant bit of the mantissa when computing a
floating-point arithmetic operation in order to preserve precision.
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Definition 3.15. (Abstract environment.) An abstract environment e] is defined by
a mapping e] :

∏
f∈F(Vf → IR) that associates to each variable an interval.

The set of abstract environments for a format f ∈ F is denoted by AEnvf .
We reformulate the abstract semantics presented in [Min04a, Def. 7.4.2], for inter-

val valued polynomials. Although the underlying arithmetic in the following definition
corresponds to interval valued polynomials, the main difference with respect to Miné’s
semantics can be found in the definitions of product and division. By reformulating such
a semantics by means of interval valued polynomials, we can use the techniques presented
in the following chapter for polyhedral abstraction.

Definition 3.16. (Abstract semantics (partly adapted from [Min04a]).) Given
an abstract environment e], the interval valued polynomial [[exprf ]]

]
fl(e

]) for exprf is con-
structed as follows:

[[[a, b]f ]]
]
fl(e

]) = [Rf ,r(a), Rf ,r(b)]

[[v]]]fl(e
]) = [1, 1] v

[[	pf ]]]fl(e
]) = �] [[pf ]]

]
fl(e

])

[[pf ⊕f ,r qf ]]
]
fl(e

]) = [[pf ]]
]
fl(e

]) �] [[qf ]]
]
fl(e

]) �]

εf ([[pf ]]
]
fl(e

])) �] εf ([[qf ]]
]
fl(e

])) �] [−mff ,mff ]

[[pf 	f ,r qf ]]
]
fl(e

]) = [[pf ]]
]
fl(e

]) �] [[qf ]]
]
fl(e

]) �]

εf ([[pf ]]
]
fl(e

])) �] εf ([[qf ]]
]
fl(e

])) �] [−mff ,mff ]

[[pf ⊗f ,r qf ]]
]
fl(e

]) =
(
[[pf ]]

]
fl(e

]) �] [[qf ]]
]
fl(e

])
)

�](
εf ([[pf ]]

]
fl(e

])) �] εf ([[qf ]]
]
fl(e

]))
)

�] [−mff ,mff ]

[[pf �f ,r qf ]]
]
fl(e

]) =
(
[[pf ]]

]
fl(e

]) �] Opt([[qf ]]
]
fl(e

]), e](x))
)

�]

(εf ([[pf ]]
]
fl(e

])) �] Opt([[qf ]]
]
fl(e

]), e](x))) �]

[−mff ,mff ]

[[pf }f ,r n]]]fl(e
]) = [1, 1]

[[pf }f ,r n]]]fl(e
]) = [[pf ]]

]
fl(e

]) �]
(
[[pf ]]

]
fl(e

]) �] (n− 1)
)
,

where for the optimal range enclosure Opt([[qf ]]
]
fl(e

]), e](x)), x = (x1, . . . , xk) ∈ Rk where
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vars(x) ⊆ vars(qf ), and e](x) ∈ IRk where

e](x) = e](x1) × . . . × e](xk).

In the definition above, two points must be noted. First, the product of two interval
polynomial forms does not need intervalisation [Min04a, Def. 6.2.2] for any of its argu-
ments, and subsequently no tailored strategy is needed to minimise the loss of precision.
Second, in the operator division, an interval valued polynomial is divided by the range en-
closure of another interval valued polynomial in an abstract environment. An alternative
would be to compute a symbolic division, which would deliver a complex expression diffi-
cult to process. This range enclosure is in fact the optimal enclosure for a floating-point
expression defined for an abstract environment.

An interval valued polynomial evaluated in R over-approximates the possible val-
ues that a floating-point expression can deliver in the environments γ(e]). This is for-
malised in the following theorem, which was originally formulated for (symbolic) interval
forms [Min04a]. However, the theorem also holds in our formulation for interval valued
polynomials, since 〈IR,⊆〉 is a poset, the abstract semantics is defined over sound interval
arithmetic and a sound nonlinear rounding error approximation (definition 3.2), and the
arithmetic operators presented in definition 3.12 for interval valued polynomials are asso-
ciative and distributive. We formulate the soundness of the abstract semantics in a similar
fashion to [Min04a, cf. theorem 7.4.2], but in this case for interval valued polynomials and
optimal range enclosures; namely,

Theorem 3.17. For all e ∈ γ(e]),

[[exprf ]]fl(e) ⊆ [[ [[exprf ]]
]
fl(e

]) ]]re(e).

Note that the theorem holds not only for the enclosure delivered by the intervalisation
procedure defined in [Min04a], but for an optimal range enclosure. This is important for
precision considerations, since we can define procedures that approximate the optimal en-
closure to any degree of precision. However, we will require further techniques to compute
a (possibly optimal) range enclosure. This is in contrast with Miné’s approach that can
compute the approximations without any further application of specific techniques. Thus,
we trade efficiency for precision. On the other hand, for highly nonlinear floating-point
expressions, the gain in precision may be crucial for the outcome of an analysis. As a final
remark, note that analyses based on this abstract semantics may use a default abstract
environment e](v) = [−Mff ,Mff ] for each variable v ∈ Vf .
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3.5 Discussion and Related Work

Computational Approaches to Real Algebraic Structures. A major problem
found when defining computational models for R is that of finiteness of representation.
This in turn derives in other problems such as the rounding errors. Floating-point arith-
metic is not associative or distributive. Floating-point systems [Hig02] are in fact a coarse
finite approximation to real algebraic structures. Sound alternatives for specialised sci-
entific applications, where precision is crucial, includes the systems provided in [Eda97,
EP97,ES99], which are based on domain theory and fractal encoding of exact real numbers.
Other alternatives include multi-precision floating point arithmetic [KJ93, Sco89], which
uses floating-point numbers of variable precision. Also continued fractions [KM85,RT73,
Sei83,Vui90] have been considered as an alternative for sound computational arithmetic.

Rounding Errors. Goubault [GMP01, Gou01, Mar02] provides a precise interval ab-
straction of floating-point expressions with no variables. Then he presents a complex
(and precise) abstract semantics that soundly approximates the rounding errors of an ex-
pression. This precise semantics can be used to trace back the origin of floating-point
arithmetic errors in a program. Miné [Min04b,Min04a] presents an nondeterministic ab-
straction of rounding errors using intervals. This brings a simpler framework for the
analysis of floating-point errors in programs, such as the representation of relationships
between variables. Sound abstractions of floating-point divisions must consider the trun-
cation in the concrete division operator, in addition to rounding errors. In fact, truncation
is an implicit rounding that should be considered in the abstraction for relational analy-
ses, as remarked by Axel Simon in [Sim05]. Alternative approaches to studying roundoff
errors in programs are those provided by stochastic methods. These approaches have not
been fully accepted especially in the scientific community (criticism against such meth-
ods may be found for instance [Kah95]). Perturbation methods such as the CESTAC
method [CV88,CV92,Vig96] are based on probabilistic error distribution and they cannot
ensure sound answers.

Precision of Abstraction for Highly Nonlinear Expressions. In the following
chapters we study some problems related to intervalisation when abstracting nonlinear
floating-point expressions. Although intervalisation is efficient and simple, the loss in
precision that it incurs in the case of nonlinear floating-point expressions may affect the
outcome of an analysis, especially when analysing division by zero, where tight enclosures
are fundamental.
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Chapter 4

Polyhedra for Floating-Point

Polynomial Expressions

In this chapter we present methods to abstract the semantics of floating-point
polynomial expressions into polyhedra as well as to approximate and optimise
the range enclosure of such semantics. These methods are based on interval
Bernstein expansion and vary in computational cost and in precision of ap-
proximation to the optimal range enclosure. In contrast to existing methods
for estimating range enclosures, such as intervalisation [Min04a], the increase
in sophistication leads to higher precision as well as polyhedra abstraction.

4.1 Introduction

The nonlinearity of concrete and abstract functions can limit the scope of static analysis of
program semantics. Nonlinear multivariate polynomial expressions are used for instance
to abstract nested loops or subscripts in array references. Advanced features of compilers
also require the manipulation of nonlinear expressions for optimisation transformations.
The problem of analysing nonlinear expressions has been tackled for instance with the
use of a technique from Approximation Theory called Bernstein expansion [Ber52,Ber54].
Bernstein expansion has been used in dependency analysis [MP94] and also in analyses
based on integer multivariate polynomials for loop parallelisation [CT04]. In this chap-
ter we use Bernstein expansion to soundly abstract floating-point expressions into the
polyhedral domain.
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Programs that use floating-point arithmetic are often analysed using numerical do-
mains such as intervals (see for instance [HJvE01] and [Hig02]) and more recently oc-
tagons [Min04b,Min04a]. The use of the weakly relational octagon domain for analysing
floating-point arithmetic, in contrast to the nonrelational interval domain, provides more
precise analyses as relations between variables are captured. In [Min04b], after construct-
ing a linear abstract semantics for floating-point expressions, based on interval linear
forms, an adaptation to the octagon domain is proposed. This adaptation is algebraic in
nature, thus appropriate for handling by an analyser.

However, such adaptation has two main drawbacks related to the (possible) nonlin-
earity of the concrete semantics. First, as the abstract semantics does not capture any
nonlinear information, any subsequent adaptation into an octagon will loose considerable
precision in this respect. In particular, a coarse linearisation method called intervalisation
is proposed. Though sound and efficient, intervalisation may loose considerable precision
when computing nonlinear expressions, and thus be inappropriate for analyses in which
preserving precision in the abstract semantics is paramount. Second, the proposed adap-
tation technique does not allow for abstracting into polyhedra. Precise abstractions means
that we can approximate the range enclosure of an expression as close to the optimal as
required, and that in the analysis, we can use highly precise relational abstract domains
such as the polyhedra.

In this chapter we study these two central characteristics of precise abstractions of
nonlinear floating-point polynomial expressions using Bernstein expansion, which is based
on Bernstein polynomials. Recall that the set of polynomials of degree less than or equal to
n forms a vector space. A particular basis of interest is the Bernstein basis that allows for
symbolic computation with low complexity and low resolution cost of complex program
analysis. The coefficients of Bernstein polynomials enjoy two important properties for
the analysis of floating-point expressions: the range enclosure property and the convexity
property. The range enclosure of a polynomial defined over a box is included in the interval
formed by the largest and smallest of these coefficients. Moreover, the poly-hull of all of
these coefficients delivers a convex hull that includes all the values defined by a polynomial
over a box.

Our contribution in this chapter is the adaptation of a series of methods based on
Bernstein polynomials to abstract the nonlinear abstract semantics introduced in chap-
ter 3, into polyhedra, and also to approximate the range enclosure of such semantics. Such
methods vary in cost of computation as well as in the degree of precision attained. Meth-
ods that achieve a compromise between time and space efficiency, as well as precision are
also proposed.
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4.2 Bernstein Expansion

This section presents the results of [CS66], [RR84], [Far93] and [ZG98] for Bernstein expan-
sion and its properties of interest. These results are central in the definitions of operators
and further properties of interest for abstracting floating-point expressions into polyhedra.

Consider a single valued univariate polynomial, and let us represent it as

p(x) = an · xn + an−1 · · ·xn−1 + . . . + a1 · x + a0.

This polynomial is a linear combination of the elementary polynomials {1, x, x2, . . . , xn}.
The set of polynomials of degree less than or equal to n form a vector space, where the
set of elementary polynomials form a basis of this vector space. Any two polynomials in
the vector space can be added, multiplied by a scalar, and moreover, the vector space
properties hold.

A polynomial can also be represented as a linear combination of Bernstein basis
elements. Bernstein expansion transforms a single valued polynomial from the power basis
to the Bernstein basis form. A polynomial in Bernstein basis enjoys the convexity and
range enclosure properties by which we can construct a polyhedron for a given polynomial
and also obtain an estimate of the range enclosure of the polynomial when defined over a
closed box.

We follow the notation of [ZG98], and in order to ease the presentation, we intro-
duce first the case for univariate polynomials, and then the general case for multivariate
polynomials.

4.2.1 Definitions

Case for Univariate Polynomials Given a polynomial p(x) where

p(x) =
n∑

i=0

ai · xi,

the Bernstein form of p(x) is defined for x ∈ U as

p(x) =
n∑

i=0

bi ·Bn,i(x),

where for each i ∈ [0, n],

bi =
n∑

j=0

(
i
j

)(
n
j

) · aj and Bn,i(x) =
(
n

i

)
· xi · (1− x)n−i
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are respectively the Bernstein coefficients and Bernstein polynomial basis, each aj denotes
the j-th coefficient of p(x), and where each

(
n
i

)
denotes a binomial coefficient defined by(

n

k

)
=

n!
(n− k)!k!

, k ∈ [0, n],

where n! denotes the factorial of n. Moreover, for each i ∈ [0, n], Bn,i(x) ≥ 0 if x ∈ U.
The Bernstein coefficients enjoy important properties that will be useful for the ab-

straction of interval valued polynomials into the polyhedra domain and also for the com-
putation of enclosures. In order to use these properties, the concept of control points,
defined by means of Bernstein coefficients, proves central. The set of control points of p(x)
for x ∈ U is delivered by the mapping Cp : (R→ R)→ ℘fn(R2) defined as

Cp(p(x)) =


(

i
n , bi

)
∈ R2

∀i ∈ [0, n] : ∀x ∈ U .

p(x) =
∑n

`=0 a` · x` ∧ bi =
∑n

j=0

(i
j)

(n
j)
· aj ∧

a` = aj ⇔ ` = j

 ,

where each bi is a Bernstein coefficient.

Example 4.1. For x ∈ U consider the polynomial

p(x) = 7 · x3 − 7 · x2 + x+ 5/4,

and let a0 = 5/4, a1 = 1, a2 = −7, and a3 = 7. Then the Bernstein coefficients for p(x)
are calculated as follows:

b0 = a0 = 5/4

b1 = a0 +

(
1
1

)(
3
1

) · a1 = a0 + 1/3 · a1 = 19/12

b2 = a0 +

(
2
1

)(
3
1

) · a1 +

(
2
2

)(
3
2

) · a2 = a0 + 2/3 · a1 + 1/3 · a2 = −5/12

b3 = a0 + a1 + a2 + a3 = 9/4.

The set of control points is then

Cp(p(x)) = {(0, 5/4), (1/3, 19/12), (2/3,−5/12), (1, 9/4)}.

Case for Multivariate Polynomials This is the general case of Bernstein expansion.
Let x ∈ Uk and I,N ∈ Nk where I = (i1, . . . , ik) and N = (n1, . . . , nk). Moreover, let the
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binomial coefficient for N and I be defined as(
N

I

)
=

k∏
j=1

(
nj

ij

)
.

Let p(x) be a polynomial of degree N , where for S ⊆ {I ∈ Nk | I ≤ N},

p(x) =
∑
I∈S

aI · xI .

Then the Bernstein form of p(x) is defined for x ∈ Uk by

p(x) =
∑
I∈S

bI ·BN,I(x),

where for each I ∈ S,

bI =
∑
J≤I

(
I
J

)(
N
J

) · aJ and BN,I(x) = Bn1,i1(x1) · . . . ·Bnk,ik(xk),

which are called the Bernstein coefficients and Bernstein polynomial basis respectively, and
where each aJ denotes the J-th coefficient of p(x). Moreover, for each I ∈ S, BN,I(x) ≥ 0
if x ∈ Uk. The set of control points of p(x) for x ∈ Uk is delivered by the mapping
CP : (Rk → R)→ ℘fn(Rk+1) defined as

CP (p(x)) =
(

i1
n1
, . . . , ik

nk
, bI

)
∈ Rk+1

∀S ∈ ℘fn(Nk) . S = {L ∈ Nk | L ≤ N} :
∀I ∈ S . I = (i1, . . . , ik) :
∀x ∈ Uk :

p(x) =
∑

L∈S aL · xL ∧ bI =
∑

J≤I
(I

J)
(N

J ) · aJ ∧

aL = aJ ⇔ L = J


,

where each bI is a Bernstein coefficient. Note that the mapping CP is a generalisation of
the mapping Cp for the case of multiple variables.

4.2.2 Convex Hull Property

An important characteristic of Bernstein expansion is that the set of control points can
be used to construct a polyhedron which includes a polynomial defined over a closed box.

Theorem 4.2. ( [Far93].) Let p(x), x ∈ Uk, be a polynomial of degree N . Then,

{(
x1, . . . , xk, p(x)

)
∈ Rk+1 | x ∈ Uk

}
⊆ ] CP (p(x)).
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Figure 4.1: Convex hulls for [p](x) = 7 · x3 − 7 · x2 + x+ 5/4, x ∈ [0, 1].

Example 4.3. In example 4.1, the poly-hull of the set of control points Cp(p(x)) delivers
a convex closed polyhedron P ∈ CP2 where for all x ∈ U, p(x) ∈ P , as shown in figure 4.1.

4.2.3 Range Enclosure Property

A central problem in interval-based analysis is the computation of the range of a polyno-
mial over an interval. From the set of control points of a polynomial defined over a closed
intervals, it can be estimated the range enclosure of the polynomial. This is formalised in
the following theorem.

Theorem 4.4. ( [CS66].) For N ∈ Nk, let S ∈ ℘fn(Nk) where S ⊆ {I ∈ Nk | I ≤ N}. Let
p(x) =

∑
I∈S aI · xI , x ∈ Uk, be a polynomial of degree N and p(x) =

∑
I∈S bI ·BN,I(x)

its Bernstein form. Moreover, let C = {bI ∈ R | ∀I ∈ Nk : I ∈ S} be the set of Bernstein
coefficients of the Bernstein form of p(x). Then

Enc(p(x),Uk) = [min(C),max(C)].

When min(C),max(C) ∈ {p(0), p(1)} for x ∈ Uk, the enclosure is optimal.

Example 4.5. From the set of Bernstein coefficients in example 4.1,

max(b0, b1, b2, b3) = 9/4

min(b0, b1, b2, b3) = −5/12.
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Therefore Enc(p(x),U) = [−5/12, 9/4]. The upper boundary of the enclosure is optimal
since p(1) = 9/4.

4.2.4 The φ Transformation

An important property of the Bernstein coefficients obtained for a polynomial is that
they are invariant under affine transformations. For B ∈ IRk, x ∈ B, and y ∈ Uk, we
define an affine transformation φ which transforms a polynomial p(x) into a polynomial
p′(y). Then, by applying the Bernstein expansion on p′(y), we can obtain the Bernstein
coefficients for p(x). For

B = [a−1 , a
+
1 ]× . . .× [a−k , a

+
k ],

where for each i ∈ [1, k], a−i < a+
i , let φB be a mapping

φB : B → Uk

x = (x1, . . . , xk) → y = (y1, . . . , yk),

where for i ∈ [1, k],

yi =
xi − a−i
a+

i − a
−
i

.

Thus,

p(φU(x)) = p(φU(x1), . . . , φU(xk))

= p′(y).

Example 4.6. Let x ∈ [a−, a+] = [−1/2, 1] and consider the polynomial

p(x) = 56/27 · x3 − 8/9 · x+ 115/108.

Moreover, let

y =
x− a−

a+ − a−

= 2/3 · x+ 1/3,

where x = 3/2 · y − 1/2. Thus, by replacing each occurrence of x in p(x) by 3/2 · y − 1/2,
we obtain the new polynomial

p(φU(x)) = p′(y)

= 7 · y3 − 7 · y2 + y + 5/4,
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where y ∈ [0, 1].

The inverse transformation φ−1
B is defined as

φ−1
B : Uk → B

y = (y1, . . . , yk) → x = (x1, . . . , xk),

where for i ∈ [1, n],

xi = (a+
i − a

−
i ) · yi + a−i .

Thus,

p′(φ−1
B (y)) = p′(φ−1

B (y1), . . . , φ−1
B (yk))

= p(x).

Example 4.7. Given the polynomial p′(y) of example 4.6, where x ∈ [1/2, 1] and y ∈ U,

p′(φ−1
[1/2,1](y)) = p(x),

by replacing each occurrence of y in p′(y) by 2/3 · x+ 1/3.

Note that p′(y) = p(φ−1
B (y)), and therefore the range enclosure property is invariant

under φ transformation.

4.3 Standard Method

In this section we present a method for abstracting floating-point expressions into polyhe-
dra. Central in this method is the use of interval extensions of the Bernstein expansion,
which is important for proving the soundness of our abstraction with respect to the nonlin-
ear abstract semantics of definition 3.16. This method is the basis for developing further
techniques for abstracting floating-point expressions into more precise polyhedra.

4.3.1 Definitions

We first formalise the concept of a floating-point polynomial expression which complies
with the grammar presented in figure 3.7.

Definition 4.8. (Floating-point polynomial expression.) Let exprf be a floating-
point expression defined for all e ∈ γ(e]). Moreover, by definition 3.16, vars(x) ⊆ vars(exprf ).
We say that exprf is a floating-point polynomial expression if

[[exprf ]]
]
fl(e

]) = [p](x),
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for e(x) ∈ e](x).

Let N ∈ Nk and S ∈ ℘fn(Nk) where S ⊆ {I ∈ Nk | I ≤ N}. Then the Bernstein form
of an interval valued polynomial of degree N = (n1, . . . , nk) such as

[p](x) =
∑
I∈S

[a−I , a
+
I ] xI

is defined for x ∈ Uk as

[p′](x) =
∑
I∈S

[b−I , b
+
I ] BN,I(x),

where for each I ∈ S, I = (i1, . . . , ik),

[b−I , b
+
I ] =

∑
J≤I

(
I
J

)(
N
J

) [a−J , a
+
J ] and BN,I(x) = Bn1,i1(x1) · . . . ·Bnk,ik(xk).

are respectively the interval Bernstein coefficientsand Bernstein polynomial basis. The
relationship between [p](x) and [p′](x) is shown in section 4.3.4.

4.3.2 Interval φ Transformation

The φ transformation defined for single valued polynomials can be extended to interval
valued polynomials by considering the product of an interval by the compact representation
of a degenerate interval. Recall that the interval product [a−, a+]� [c, c] = [c, c]� [a−, a+]
is denoted by [a−, a+]c. Let x ∈ B, B ∈ IRk, and y ∈ Uk. Then, by considering this
compact representation, the definition of the φ transformation can be extended for an
interval valued polynomial [p](x) as

[p](φB(x)) = [p](φB(x1), . . . , φB(xk))

= [p′](y).

This extension is illustrated in the following example.

Example 4.9. Consider the interval valued polynomial

[p](x) = [2, 2.1]x3 + [−1,−0.9]x+ [1, 1.1 ],

for x ∈ [−1/2, 1], as plotted in figure 4.2. The interval φ transformation on [p′](y) proceeds
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Figure 4.2: Plot of [p](x) = [2, 2.1]x3 + [−1,−0.9]x+ [1, 1.1] for x ∈ [−0.5, 1].

as follows:

[p′](y) = [p′](φB(x))

= [2, 2.1]
(
1.5 · y − 0.5

)3 + [−1,−0.9]
(
1.5 · y − 0.5

)
+ [1, 1.1]

= [2, 2.1]
(
3.375 · y3 − 3.375 · y2 + 1.125 · y − 0.125

)
+

[−1,−0.9 ]
(
1.5 · y − 0.5

)
+ [1, 1.1]

= [6.75, 7.085]y3 + [−7.0875,−6.75]y2 + [0.75, 1.0125]y + [1.1875, 1.35],

where y ∈ U. In the polynomials p(x) and p′(y) in examples 4.6 and 4.7, note that
p(x) ∈ [p](x) and p′(y) ∈ [p′](y).

Let us define the interval extension of the inverse φ−1 transformation as

[p′](φ−1
B (y)) = [p](φ−1

B (y1), . . . , φ−1
B (yk)).

Recall that the additive inverse of IR is not defined for proper intervals; namely, for proper
intervals [a−, a+] and [b−, b+],

[a−, a+] ⊆ [a−, a+] � [b−, b+] � [b−, b+]

= [a− + b− − b+, a+ + b+ − b−],

where b− − b+ < 0 and b+ − b− > 0. Therefore, when the coefficients of [p](x) are proper
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intervals,

[p](x) v [p′](φ−1
B (y)).

Example 4.10. The inverse transformation for [p′](y) in example 4.9, namely

y = (x+ 1/2)/(3/2)

= 2/3 · x+ 1/3,

delivers the polynomial

[p′](x) = [2, 2.1]x3 + [−0.15, 0.15]x2 + [−1.15,−0.751]x+ [0.9, 1.1995].

Note that [p](x) v [p′](x).

From this observation we can note also that the interval φ transformation is sound:
namely, the optimal range enclosure of [p](x) for x ∈ B is included in the optimal range
enclosure of [p′](x), which is computed by calculating first the interval φ transformation
and then the inverse of the initial transformation.

4.3.3 Bernstein Mappings

We present now a series of mappings based on Bernstein expansion which deliver a set of
points in Rk+1 for a given interval valued polynomial. These sets of points are central in
our framework for abstracting floating-point polynomial expressions into polyhedra, since
they enjoy the convexity property as well as the range enclosure property. Moreover, from
these mappings we can define recursive versions, with increased precision in the polyhedral
abstraction and range enclosures.

Definition 4.11. (Interval Bernstein mapping.) The interval Bernstein mapping
πU : (Rk → IR) → ℘fn(Rk+1) for a polynomial p(x) of degree N ∈ Rk, where N =
(n1, . . . , nk), is defined by

πU([p](x)) =
(

i1
n1
, . . . , ik

nk
, bI

)
∈ Rk+1

∀S ∈ ℘fn(Nk) . S = {L ∈ Nk | L ≤ N} :
∀I ∈ S . I = (i1, . . . , ik) :
∀x ∈ Uk :
[p](x) =

∑
L∈S [a−L , a

+
L ]xL ∧

[b−I , b
+
I ] =

∑
J≤I

(I
J)

(N
J ) [a

−
J , a

+
J ] ∧ bI = b−, b+ ∧

[a−L , a
+
L ] = [a−J , a

+
J ] ⇔ L = J


.

An interval Bernstein mapping may be referred as Bernstein mapping hereafter. Each
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element contained in the set delivered by a Bernstein mapping is called a control point.
The interval Bernstein mapping can be defined for any box B ∈ IRk, where x ∈ B, using
the φ transformation. Thus,

πB([p](x)) = πU([p](φB(x)). (4.1)

Moreover, we can define a mapping which uses the inverse φ transformation to map
the set of control points from Uk onto B:

πB([p](φ−1
B (x))) =

 c ∈ Rk+1

∀I ∈ Nk :
∀( i1

ik
, . . . , ik

nk
, bI) ∈ πU([p](y)) :

c = (φ−1
B ( i1

n1
), . . . , φ−1

B ( ik
nk

), bI)

 .

The following example illustrates the calculation process of sets of control points.

Example 4.12. Consider the interval valued polynomial [p′](y) of example 4.9, and let
the polynomial coefficients be denoted by

[a−0 , a
+
0 ] = [1.1875, 1.35]

[a−1 , a
+
1 ] = [0.75, 1.0125]

[a−2 , a
+
2 ] = [−7.0875,−6.75]

[a−3 , a
+
3 ] = [6.75, 7.085].

From these interval coefficients we calculate now the interval Bernstein coefficients [b−i , b
+
i ],

as follows:

[b0,−
0 , b0,+

0 ] =

(
0
0

)(
3
0

) · [a−0 , a
+
0 ]

= [a−0 , a
+
0 ]

= [1.1875, 1.35]

[b0,−
1 , b0,+

1 ] =

(
1
0

)(
3
0

) · [a−0 , a
+
0 ] �

(
1
1

)(
3
1

) · [a−1 , a
+
1 ]

= [a−0 , a
+
0 ] �

1
3
· [a−1 , a

+
1 ]

= [1.1875, 1.35] �
1
3
· [0.75, 1.0125]

= [1.4375, 1.6875]
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[b0,−
2 , b0,+

2 ] =

(
2
0

)(
3
0

) · [a−0 , a
+
0 ] �

(
2
1

)(
3
1

) · [a−1 , a
+
1 ] �

(
2
2

)(
3
2

) · [a−2 , a
+
2 ]

= [a−0 , a
+
0 ] �

2
3
· [a−1 , a

+
1 ] �

1
3
· [a−2 , a

+
2 ]

= [1.1875, 1.35] �
2
3
[0.75, 1.0125] �

1
3
[−7.0875,−6.75]

= [−0.675,−0.225]

[b0,−
3 , b0,+

3 ] =

(
3
0

)(
3
0

) · [a−0 , a
+
0 ] �

(
3
1

)(
3
1

) · [a−1 , a
+
1 ] �

(
3
2

)(
3
2

) · [a−2 , a
+
2 ] �

(
3
3

)(
3
3

) · [a−3 , a
+
3 ]

= [a−0 , a
+
0 ] � [a−1 , a

+
1 ] � [a−2 , a

+
2 ] � [a−3 , a

+
3 ]

= [1.1875, 1.35] � [0.75, 1.0125] � [−7.0875,−6.75] � [6.75, 7.085]

= [1.6, 2.6975].

For each b−i and b+i , i ∈ [0, 3], we can now define the set of control points, namely

πU([p′](y)) =
{
(0, 1.1875), (1/3, 1.4375), (2/3,−0.675), (1, 1.6)

}
∪{

(0, 1.35), (1/3, 1.6875), (2/3,−0.225), (1, 2.7)
}

These points can be mapped back to the original interval [−0.5, 1] by the inverse of the
affine transformation. Recall that

x = φ−1(y)

= (a+ − a−) · y + a−

= 3/2 · y − 1/2.

Hence for x ∈ [a−, a+] = [−0.5, 1],

φ−1(0) = −1/2

φ−1(1/3) = 0

φ−1(2/3) = 1/2

φ−1(1) = 1.

Thus,

P− =
{(
− 0.5, 1.1875

)
,
(
0, 1.4375

)
,
(
0.5,−0.675

)
,
(
1, 1.6

)}
P+ =

{(
− 0.5, 1.35

)
,
(
0, 1.6875

)
,
(
0.5,−0.235

)
,
(
1, 2.7

)})
.
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4.3.4 Polyhedra Abstraction

This section formalises the abstraction of floating-point polynomial expressions into poly-
hedra. For this purpose, we must first show the relationship between an interval valued
polynomial and its (interval) Bernstein form; namely, for N ∈ N and S ∈ ℘fn(Nk) where
S ⊆ {I ∈ Nk | I ≤ N}, let

[p](x) =
∑
I∈S

[a−I , a
+
I ]xI

be an interval valued polynomial of degree N defined for x ∈ Uk, and let

[p′](x) =
∑
I∈S

[b−I , b
+
I ]BN,I(x)

be the Bernstein form of [p](x). Consider now a polynomial r(x) ∈ [p](x) where

r(x) =
∑
I∈S

αI · xI , αI ∈ [a−I , a
+
I ].

The transformation of r(x) into its Bernstein form is

r(x) =
∑
I∈S

bI ·BN,I(x)

where

bI =
∑
J≤I

(
I
J

)(
N
J

) · αI .

Note that each αI ∈ [a−I , a
+
I ]. Moreover,

b−I =
∑
J≤I

(
I
J

)(
N
J

) · a−I , bI =
∑
J≤I

(
I
J

)(
N
J

) · αI , b+I =
∑
J≤I

(
I
J

)(
N
J

) · a+
I .

For

c =
∑
J≤I

(
I
J

)(
N
J

)
we have that

c · a−I ≤ c · aI ≤ c · a+
I .

Hence bI ∈ [b−I , b
+
I ] and ∀r(x) ∈ [p](x),

r(x) ∈
∑
I∈S

[b−I , b
+
I ]BN,I(x).
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Thus

[p](x) v
∑
I∈S

[b−I , b
+
I ]BN,I(x).

These observations are formalised in the following theorem.

Theorem 4.13. Let N ∈ N and S ∈ ℘fn(Nk) where S ⊆ {I ∈ Nk | I ≤ N}. Moreover, let
[p](x) =

∑
I∈S [a−I , a

+
I ]xI be an interval valued polynomial of degree N defined for x ∈ Uk,

and let
∑

I∈S [b−I , b
+
I ]BN,I(x) be the Bernstein form of [p](x). Then∑

I∈S

[a−I , a
+
I ]xI v

∑
I∈S

[b−I , b
+
I ]BN,I(x).

The theorem above also says that the convex hull obtained by Bernstein expansion for
a single valued polynomial r(x) for x ∈ Uk is included in the convex hull obtained for an
interval valued polynomial that includes r(x) for x ∈ Uk. That is, for some x ∈ Uk for
r(x) we can associate a Bernstein coefficient bI . But for the same x we can associate for
[p](x) an interval Bernstein coefficient [b−I , b

+
I ] where bI ∈ [b−I , b

+
I ]. Thus, by the definition

of the poly-hull operator in R,

bI = ] bI
∈ ]{b−I , b

+
I }

= [b−I , b
+
I ].

This can be generalised to Rk, as follows.

Proposition 4.14. Let B ∈ IRk and [p](x) an interval valued polynomial defined for all
x ∈ B. Then,

]

{
(x1, . . . , xk, c) ∈ Rk+1 ∀x ∈ B : ∀r(x) ∈ [p](x) :

c = r(x)

}
⊆ ] πB([p](x)).

Example 4.15. Consider the interval valued polynomial

[p](x) = [2, 2.1]x3 + [−1,−0.9]x+ [1, 1.1]

of example 4.12, and let a single valued polynomial

r(x) = 2 · x3 − x+ 1,

for x ∈ [−0.5, 1], where r(x) ∈ [p](x). Thus, after φ transformation on r(x) we have the
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Figure 4.3: Convex hull for [p](x) = [2, 2.1]x3 + [−1,−0.9]x+ [1, 1.1], x ∈ [−0.5, 1].

polynomial

r′(y) = 6.75 · x3 − 6.75 · x2 + 0.75 · x+ 1.25,

for y ∈ U. The Bernstein coefficients for r′(y) are b0 = 1.25, b1 = 1.5, b2 = −0.5 and
b3 = 2. Note that from the interval Bernstein coefficients [b−i , b

+
i ], i ∈ [0, 3], for [p](x) (see

page 47), bi ∈ [b−i , b
+
i ]. Moreover, it can be noted that for

P− = {(i/3, b−i ) ∈ R2 | i ∈ [0, 3]} and

P+ = {(i/3, b+i ) ∈ R2 | i ∈ [0, 3]}

it holds that

]
(
{(i/3, bi) ∈ R2 | i ∈ [0, 3]}

)
⊆ ]

(
P− ∪ P+

)
.

Figure 4.3 plots [p](x) for x ∈ [−0.5, 1] and the convex hull delivered by the poly-hull of
the set of control points obtained from the Bernstein mapping.

From theorem 4.13, we can now present an abstraction of floating-point polynomial
expressions into polyhedra. Recall from theorem 3.17 that an interval valued polynomial
evaluated in R delivers an interval which over-approximates the possible values that a
floating-point polynomial expression can deliver in the concrete environments γ(e]). The
approach we take here is to abstract an interval valued polynomial into a polyhedron using
the Bernstein mappings, and to prove that the polyhedron includes the concrete semantics
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a floating-point polynomial expression. The following theorem shows that the abstraction
of a floating-point polynomial expression into polyhedra is sound.

Theorem 4.16. ∀e ∈ γ(e]), vars(x) ⊆ vars(exprf ), where x = (x1, . . . , xk) and e(xi) ⊆
e](xi), i ∈ [1, k],

]

{ (
e(x1), . . . , e(xk), c

)
∈ Fk+1 ∀c ∈ Ff :

c = [[exprf ]]fl(e)

}
⊆ ] πe](x)([[exprf ]]

]
fl(e

]))

Proof. Note first that

[[exprf ]]fl(e) ⊆ [[[[exprf ]]
]
fl(e

])]]re(e) [by theorem 3.17]

= [[ [p](x) ]]re(e). [by definition 3.7]

Moreover, note that for all x ∈ Rk,

[[ [p](x) ]]re(e) v [p](x),

where v denotes the partial ordering between interval valued polynomials. Given B ∈ IR
and [p](x), for all x ∈ Rk

B v [p](x) ⇔ B ⊆ [p](x).

Thus, for [[exprf ]]fl(e) ∈ IR, for all x ∈ Rk, and for all x ∈ Rk where e(x) ∈ e](x),

[[exprf ]]fl(e) ⊆ [p](x),

Therefore,

]
{(
e(x1), . . . , e(xk), c

)
∈ Fk+1 | ∀c ∈ Ff : c = [[exprf ]]fl(e)

}
⊆ ] {[p](x) ∈ IR | ∀x ∈ Rk : e(x) ∈ e](x))}

⊆ ] πe](x)([[exprf ]]
]
fl(e

])).

ut

4.3.5 Range Enclosures

The range enclosure of a floating-point polynomial expression can be approximated by the
interval Bernstein coefficients, as follows.

Theorem 4.17. (Range enclosure of a floating-point polynomial expression.)

Let vars(x) ⊆ vars(exprf ). Moreover, let πe](x)([[exprf ]]
]
fl(e

])) = {(x1, . . . , xk, bI) ∈ Rk+1 |
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I ∈ S, S ∈ ℘fn(Nk)}. Then,

Enc
(
[[exprf ]]

]
fl(e

]), e](x)
)

= [min(bI), max(bI)].

Proof. Let [[exprf ]]
]
fl(e

]) = [p](x) and r(x) ∈ [p](x). By theorem 4.4,

Enc(r(x),Uk) = [min
I∈S

bI , max
I∈S

bI ],

where each bI is a Bernstein coefficient of r(x). By proposition 3.13 that shows the
soundness of interval arithmetic for interval valued polynomials, and by theorem 4.13,
∀I ∈ S,

bI ∈ [min
I∈S

bI , max
I∈S

bI ] ⊆ [b−I , b
+
I ],

where each b−I and b+I are Bernstein coefficients delivered by the Bernstein mapping for
[p](x) defined over e](x). ut

As a consequence of theorems 4.16 and 4.17, we have the following result.

Corollary 4.18. ∀e ∈ γ(e]), vars(x) ⊆ vars(exprf ), ∀c ∈ [[exprf ]]fl(e)

c ∈ Enc([[exprf ]]
]
fl(e

]), e](x)).

Moreover, by theorem 4.16 of soundness of the abstraction of floating-point polynomial
expressions into polyhedra, and corollary 4.18, we have that

Opt([[exprf ]]
]
fl(e

]), e](x)) ⊆ Enc([[exprf ]]
]
fl(e

]), e](x)).

Example 4.19. In example 4.12, the range enclosure of [p](x) for x ∈ [−0.5, 1] is

Enc([p′](y),U) = Enc([p](x), [−0.5, 1])

= [min({b ∈ R | (x, b) ∈ P+ ∪ P−}), max({b ∈ R | (x, b) ∈ P+ ∪ P−})]

= [−0.675, 2.7].

The knowledge of the range of a floating-point polynomial expression is important for
instance to determine whether such expression may overflow.

4.4 Recursive Method

Tightening the range enclosures is important for the abstraction of the abstract division:
the closer to the optimal range enclosure, the more precise abstractions of abstract divisions
can be achieved. Moreover, the recursive method presented here is useful for finding roots
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of floating-point expressions, which in turn is important for the analysis of division by
zero. In addition, the knowledge of tighter enclosures is useful for reducing the number of
false positives in the analysis of floating-point overflow.

The range enclosure can be tightened by increasing the degree of the Bernstein expan-
sion, as noted in [CS66,Rok77]. That is to say, by computing the expansion for a degree
greater than that of the given polynomial. However, as shown in [Gar86, Zet91,Gar93],
subdivision-based methods prove more efficient at producing tight range enclosures. The
recursive method is a subdivision-based method that delivers a polyhedra powerset which
provides range enclosures that are tighter than those provided in the standard method.
The central idea in the recursive method is that of segmentation of an abstract environ-
ment. We can apply the standard method to subintervals of an abstract environment and
hence gain in precision. The outcome of the recursive method is a finite set of polyhedra.

Central in the recursive method is the concept of segmentation of abstract environ-
ments. By segmenting an abstract environment we mean that the box that defines the
application of an abstract environment to the set of variables of a floating-point expression,
is segmented.

An important property of this method is that transfer functions based on it deliver
a set of polyhedra that are nonredundant. Thus, no preprocessing of the abstraction is
required before computing an analysis.

4.4.1 Definitions

The recursive method is based on segmenting the domain over which an expression is
defined. This domain is approximated by an abstract environment which maps each
variable of the expression to an interval. Thus, we define segmentations for intervals
mapped by abstract environments.

Definition 4.20. (Degree of segmentation.) The degree of segmentation n ∈ N,
n ≥ 1, is the number of subintervals of same width in which an interval can be segmented.

For instance, for n = 2, the interval U is segmented into [0, 1/2] and [1/2, 1]. We define
a segmentation operator for k-variate boxes, as follows.

Definition 4.21. (Segmentation operator.) Let n ≥ 1 be a segmentation degree.
Moreover, let I ∈ Nk, I = (i1, . . . , ik), where I ∈ [0, n − 1]k. Then, the segmentation
operator ϕn,I : IRk → IRk is defined as

ϕn,i([a−, a+]) = [ a− + i · w
n
, a− + (i+ 1) · w

n
]

ϕn,I([a−1 , a
+
1 ]× . . .× [a−k , a

+
k ]) = ϕn,i1([a

−
1 , a

+
1 ]) × . . . × ϕn,i1([a

−
k , a

+
k ]).

Definition 4.22. (I-th segmentation of an abstract environment.) Let I ∈ [0, n−
1]k where I = (i1, . . . , ik). The I-th segmentation of segmentation degree n ≥ 1 of an
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X0

X1

10

1/2

1

1/2

I=(0,1) I=(1,1)

I=(0,0) I=(1,0)

Figure 4.4: Plot of segmented unit box for n = 2.

abstract environment e] is a mapping e]n,I :
∏

f∈F(Vf → IR) defined as

e]n,I(x) = ϕn,I(e](x)),

where ϕn,I(e](x)) = ϕn,i1(e
](x1))× . . .× ϕn,i1(e

](xk)), x = (x1, . . . , xk).

The number of segments for an abstract environment defined for k variables and seg-
mentation degree n is nk.

It is important to note that for all n ≥ 1 and some I ∈ Nk, e]n,I ∈ AEnvf is an abstract
environment. However, to make it noticeable that an abstract environment e]n,I is defined
by a segmentation operator, we refer to e]n,I as a segmentation.

Example 4.23. For a floating-point polynomial expression exprf , let x ∈ vars(exprf ), and
e](x) = U. Then for a segmentation degree n = 2 on e](x),

e]2,0(x) = [0,
1
2
] and e]2,1(x) = [

1
2
, 1].

Example 4.24. Let exprf be a floating-point polynomial expression where vars(x) ∈
vars(exprf ), and x = (x0, x1). Moreover, let e](x) = U2, where

e](x0) = e](x1) = [0, 1].
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Then for a segmentation degree n = 2 on e](x),

e]2,(0,0)(x) = e]2,0(x0)× e]2,0(x1) = [0,
1
2
]× [0,

1
2
]

e]2,(0,1)(x) = e]2,0(x0)× e]2,1(x1) = [0,
1
2
]× [

1
2
, 1]

e]2,(1,0)(x) = e]2,1(x0)× e]2,0(x1) = [
1
2
, 1]× [0,

1
2
]

e]2,(1,1)(x) = e]2,1(x0)× e]2,1(x1) = [
1
2
, 1]× [

1
2
, 1].

Figure 4.4 plots the unit box and the subboxes that result of segmenting it for n = 2.

From these definitions, we can now formalise the recursive method.

Definition 4.25. (Recursive Bernstein mapping.) Let exprf be a floating-point
polynomial expression and e] an abstract environment where [[exprf ]]

]
fl(e

]) = [p](x) and
vars(x) ⊆ vars(exprf ). A recursive Bernstein mapping πn

B : (Rk → IR) → ℘fn(℘fn(Rk+1))
for B ∈ IRk and segmentation degree n is defined as

πn
e](x)([p](x)) =

{
P ∈ ℘fn(Rk+1)

∀I ∈ [0, n− 1]k :
e]n,I(x) = ϕn,I(e](x)) ∧ P = π

e]
n,I(x)

([p](x))

}
.

4.4.2 Polyhedra Powerset Abstraction

The abstraction presented in this section is based on the abstraction introduced in the
standard method. Central is the definition of segmentations of an abstract environment
for a floating-point polynomial. Then it must be applied the Bernstein mapping for each
new segmentation. The following mapping delivers an abstraction of a floating-point
polynomial defined for an abstract environment e], into a polyhedra powerset.

Definition 4.26. (Powerset polyhedra abstraction operator.) Let exprf be a floating-
point polynomial expression defined for all e ∈ γ(e]), where vars(x) = vars(exprf ), that
[p](x) = [[exprf ]]

]
fl(e

]), and e(x) ∈ e](x). Moreover, let n ≥ 1 be a segmentation degree.
Then the operator Υn

e] : (Rk → IR)→ ℘fn(CPk+1) is defined as

Υn
e]([p](x)) = P ∈ CPk+1

∀I ∈ Nk . I ∈ [0, n− 1]k :
∀Q ∈ ℘fn(Rk+1) : ∀e]n,I(x) ∈ AEnvf :
e]n,I(x) = ϕn,I(e](x)) ∧ Q = πn

en,I(x)([p](x)) ∧ P = ] Q

 .

Example 4.27. To attain a more precise polyhedral abstraction, we can apply the recursive
method to [p](x) of example 4.9. For a segmentation degree n = 2, we first segment the
original interval [−0.5, 1] into [−0, 5, 0.25] and [0.25, 1]; then we apply the standard method
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Figure 4.5: Convex hulls for [p](x) = [2, 2.1]x3 + [−1,−0.9]x + [1, 1.1], x ∈ [−0.5, 0.25] ∪
[0.25, 1].

to each subinterval. The result is a set of sets of control points; namely

π2
[−0.5,1]([p](x)) = Υn

e](x)([p](x)) =
(
] π

e]
2,0(x)

([p](x))
)
∪

(
] π

e]
2,0(x)

([p](x))
)

=
(
] π[−0.5,0.25]([p](x))

)
∪

(
] π[0.25,1]([p](x))

)
=

(
] (P−

1 ∪ P+
1 )

)
∪

(
] (P−

2 ∪ P+
2 )

)
,

where

P−
1 =

{(
− 0.5, 1.1875

)
,
(
− 0.25, 1.3125

)
,
(
0, 0.846875

)
,
(
0.25, 0.634375

)}
P+

1 =
{(
− 0.5, 1.35

)
,
(
− 0.25, 1.51

)
,
(
0, 1.12

)
,
(
0.25, 1.05

)}
and

P−
2 =

{(
0.25, 0.634375

)
,
(
0.5, 0.421875

)
,
(
0.75, 0.4625

)
,
(
1, 1.6

)}
P+

2 =
{(

0.25, 1.05
)
,
(
0.5, 0.98

)
,
(
0.75, 1.23

)
,
(
1, 2.7

)}
By theorem 4.32, ∀ z ∈ R2 where

z ∈
{(
x, r(x)

)
∈ R2 | ∀x ∈ [−0.5, 1], r(x) ∈ [p](x)

}
z ∈ ]P−

1 , and/or z ∈ ]P−
2 , and/or z ∈ ]P+

1 , and/or z ∈ ]P+
2 .

Figure 4.5 shows the polyhedra obtained by the recursive method, in which the original
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interval [−0.5, 1] has been segmented. Also in this figure, it can be noted that the poly-hull
of these two polyhedra delivers a single polyhedron that preserves the range enclosure.

The proof of soundness of this abstraction requires a series of results, as follows. First
we show the relationship between segmentations of an abstract environment.

Proposition 4.28. Let exprf be a floating-point expression defined for an abstract envi-
ronment e] where x ⊆ vars(exprf ). Moreover, let n ≥ 1 be a segmentation degree. Then
∀i, j ∈ [0, n− 1],

e]n,i(x) ⊆ e]n,j(x) ⇔ e]n,i(x) = e]n,j(x).

where each e]n,i is the i-th segmentation of e].

Proof. (⇒) Let e](x) = [a−, a+], w = a+ − a−, and i, j ∈ [0, n − 1]. Then e]n,i = [a− +
i · w/n, a− + (i + 1) · w/n] and e]n,j = [a− + j · w/n, a− + (j + 1) · w/n]. By definition
of interval inclusion, e]n,i ⊆ e]n,j implies a− + i · w/n ≥ a− + j · w/n if and only if i ≥ j

and a− + (i + 1) · w/n ≤ a− + (j + 1) · w/n, if and only if i ≤ j. Thus, i = j and by
definition 4.21, e]n,i(x) = e]n,j(x).

(⇐) Let e](x) = [a−, a+] and w = a+ − a−. Moreover, let i, j ∈ [0, n − 1] where
e]n,i(x) = e]n,j(x). By definition 4.21, we can write this equality as [a− + i · w/n, a− +
(i+ 1) · w/n] = [a− + j · w/n, a− + (j + 1) · w/n], and by definition of interval inclusion,
[a− + i · w/n, a− + (i+ 1) · w/n] ⊆ [a− + j · w/n, a− + (j + 1) · w/n]. Thus the statement
of the proposition holds. ut

The result presented above can be generalised to multiple variables, as follows.

Proposition 4.29. Let exprf be a floating-point expression defined for an abstract envi-
ronment e] where vars(x) ⊆ vars(exprf ) and x = (x1, . . . , xk). Moreover, let n ≥ 1 be a
segmentation degree. Then ∀I, J ∈ [0, n− 1]k,

e]n,I(x) ⊆ e]n,J(x) ⇔ e]n,I(x) = e]n,J(x).

Proof. (⇒) Let I = (i1, . . . , ik) and J = (j1, . . . , jk). Moreover let e]n,I(x) = e]n,i1
× . . . ×

e]n,ik
and e]n,J(x) = e]n,j1

× . . . × e]n,jk
. By definition of box inclusion, e]n,I ⊆ e]n,J if and

only for each ` ∈ [1, k], e]n,i`
⊆ e]n,j`

, if and only if i` = j` (by proposition 4.28). Thus,
e]n,I(x) = e]n,J(x).

(⇐) Let I = (i1, . . . , ik) and J = (j1, . . . , jk). Recall that e]n,I(x) = e]n,i1
(x1) × . . . ×

e]n,ik
(xk), and by definition of subbox inclusion, e]n,I(x) = e]n,J(x) implies e]n,I(x) ⊆ e]n,J(x)

if and only if for each ` ∈ [1, k], e]n,i`
(x`) ⊆ e]n,j`

(x`), which holds by proposition 4.28. ut

Corollary 4.30. For each I ∈ [0, n− 1]k, e]n,I(x) ⊆ e](x).
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Moreover, note that

e](x) =
⋃

I∈[0,n−1]k

e]n,I(x).

The segmentation of an abstract environment has important implications. For in-
stance, when applying a Bernstein mapping to segments of an abstract environment, the
range enclosure for example is tighter. Consider a floating-point expression exprf defined
for an abstract environment e] where vars(x) ⊆ vars(exprf ). For a segmentation degree
n ≥ 1 and I ∈ [0, n− 1],

[[exprf ]]
]
fle

] = [p](x), x ∈ e](x),

and

[[exprf ]]
]
fle

]
n,I = [p](x), x ∈ e]n,I(x),

where e]n,I(x) ⊆ e](x). This observation is important since the poly-hull of points obtained
from a Bernstein mapping for some e]n,I delivers a smaller polyhedron than those from the
mapping for e]. To see this, recall the concept of inclusion monotonicity of an interval
function; namely, an interval function [f ] : IRk → IR is inclusion monotone if for all
B1,B2 ∈ IRk, [f ](B1) ⊆ [f ](B2) whenever B1 ⊆ B2. Moreover, recall that interval
arithmetic operators such as those of addition, subtraction, multiplication and division
are monotone inclusion. As shown in [HS95] and [Sta95], the range enclosures of the sets
of points delivered by the Bernstein mappings for interval valued polynomials defined in
section 4.3.3 are monotone inclusion. Moreover, it can be noted that the poly-hull operator
is monotone inclusion with respect to polyhedron inclusion; namely, for P1, P2, Q1, Q2 ∈
CPk where P1 ⊆ Q1 and P2 ⊆ Q2, (P1]P2) ⊆ (Q1]Q2). These observations can be used to
obtain more precise polyhedral abstractions and tighter range enclosures of floating-point
polynomial expressions, as formalised in the following theorem.

Theorem 4.31. For a floating-point polynomial expression exprf where vars(x) ⊆ vars(exprf ),
and for a segmentation degree n ≥ 1 and I ∈ [0, n− 1]k, if e]n,I(x) ⊆ e](x), then

] π
e]
n,I(x)

([[exprf ]]
]
fle

]
n,I) ⊆ ] πe](x)([[exprf ]]

]
fl(e

])).

From these results, the abstraction of floating-point polynomial expressions into poly-
hedra powerset is formalised as follows.

Theorem 4.32. (Soundness of polyhedra powerset abstraction.) ∀e ∈ γ(e]),
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vars(x) ⊆ vars(exprf ), x ∈ Rk, there exists P ∈ πn
e](x)

([[exprf ]]
]
fl(e

])) where

{(
e(x1), . . . , e(xk), c

)
∈ Rk+1 | c ∈ [[exprf ]](e)

}
⊆ ] P.

Proof. By theorem 4.16, for each e]n,I(x). ut

Moreover, we have completeness since

e](x) =
⋃

I∈[0,n−1]k

e]n,I(x).

Further, by the monotone inclusion property, each concrete interpretation of a floating-
point polynomial expression is included in some polyhedron of the powerset.

4.4.3 Nonredundancy Property

In this section we show that the elements of the powerset of CPk delivered by the recursive
method are in a reduced or nonredundant form. Recall that a set P ∈ ℘fnCPk is called
nonredundant with respect to ⊆ if and only if ∅ /∈ P and for each d1, d2 ∈ P , d1 ⊆ d2

implies that d1 = d2.

Definition 4.33. (Comparable polyhedra.) Let P,Q ∈ CPn. Then P and Q are
comparable if and only if P ⊆ Q or Q ⊆ P (or P = Q).

By definition of nonredundant sets for a partial ordering, if a set of convex hulls is
noncomparable, then the set is nonredundant. In the following theorem we show that the
polyhedra that can be obtained by computing the recursive Bernstein mapping is non-
comparable and therefore nonredundant; namely, we define a bijective mapping between
the set of abstract environment segmentations and the polyhedra for the sets of control
points of the recursive Bernstein mapping. We show that the injectivity of this mapping
implies that two elements in the co-domain are comparable if and only if both are the
same polyhedron. Moreover, surjectivity ensures soundness of the mapping with respect
to the abstract environment that is segmented. Put another way, we have bijectivity since
e]n,I = e]n,J if and only if I = J and a recursive Bernstein mapping is defined for each e]n,I ,
n ≥ 1, I ∈ [0, n− 1]k.

Theorem 4.34. Let exprf be a floating-point expression defined for an abstract environ-
ment e] and vars(x) ⊆ vars(exprf ), where x ∈ Rk. Moreover, for a segmentation degree
n ≥ 1, let

ρ : {e]n,I(x)}I∈[0,n−1]k → {] PI}I∈[0,n−1]k ,

where PI ∈ πn
e](x)

([[exprf ]]
]
fl(e

])) and e](x) = ∪I∈[0,n−1]ke
]
n,I . Then ρ is a bijection.
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The bijectivity of ρ ensures the elements in the co-domain are noncomparable unless
the co-domain is a singleton, in which case, nonredundancy is trivial. Therefore any set
of polyhedra computed from a recursive Bernstein mapping is nonredundant with each
other. Thus, any abstraction of floating-point expressions into polyhedra powerset using
the recursive Bernstein mappings is nonredundant.

Corollary 4.35. Let exprf be a floating-point polynomial expression defined for an ab-
stract environment e], where vars(x) ⊆ vars(exprf ), and let n be a segmentation degree for
e]. Then the set

{
] P ∈ CPk+1 | ∀P ∈ ℘fn(Rk) : P ∈ πn

e](x)([[exprf ]]
]
fl(e

]))
}
∈ ℘fn(CPk+1)

is nonredundant with respect to polyhedron inclusion.

Example 4.36. In example 4.27, it can be verified graphically that none of the polyhedra
obtained by ] P−

i or ] P+
i , i ∈ {1, 2} are comparable with each other, and therefore the

set of all these polyhedra is nonredundant.

4.4.4 Range Enclosures

This section shows that the recursive method is sound with respect to the optimal range
enclosure.

Definition 4.37. Let exprf be a floating-point polynomial expression and e] an abstract
environment where [[exprf ]]

]
fl(e

]) = [p](x) and vars(x) ⊆ vars(exprf ). Then,

Enc(πn
e](x)([p](x))) = [pmin, pmax],

where

pmin = min
I∈[0,n−1]k

(Enc(π
e]
n,I(x)

([p](x)))) and

pmax = max
I∈[0,n−1]k

(Enc(π
e]
n,I(x)

([p](x)))).

Note that by the monotone inclusion property, for each I ∈ [0, n− 1]k,

Enc(πn
e]
n,I(x)

([p](x))) ⊆ Enc(πn
e](x)([p](x))).

Thus, the upper boundary of the enclosure corresponds to the maximum of all the en-
closure upper boundaries of all πn

e]
n,I(x)

([p](x)), and the lower boundary of the enclosure

corresponds to the minimum of all the enclosure lower boundaries of all πn
e]
n,I(x)

([p](x)).
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Moreover, by the monotone inclusion property,

Enc(πn+1
e](x)

([p](x)), e](x)) ⊆ Enc(πn
e](x)([p](x)), e](x))

⊆ Enc(π1
e](x)([p](x)), e](x))

= Enc(πe](x)([p](x)), e](x)),

and for n sufficiently large,

Opt([p](x), e](x)) = Enc(πn
e](x)([p](x)), e](x))

if and only if

Enc(πn
e](x)([p](x)), e](x)) = Enc(πn+1

e](x)
([p](x)), e](x)).

Example 4.38. In example 4.27, the estimate for the range enclosure for e](x) = [−0.5, 1]
is

Enc(π2
e](x)([p](x)), e

](x)) = [0.42, 2.7],

which is tighter than the enclosure obtained in example 4.12 for a segmentation degree
n = 1, namely

Enc(π1
e](x)([p](x)), e

](x)) = [−0.67, 2.7].

Moreover, from the enclosure for n = 2, we can note that [p](x) > 0 for all x ∈ [−0.5, 1].
This is important for instance when determining the existence of solutions of an equation
such as [p](x) = [0, 0].

The time complexity of the recursive method is exponential to the number of variables,
which determine the number of segments.

4.5 Minimal Method

When the purpose of using the recursive method is to abstract a floating-point expression
into polyhedra — instead of finding zeroes in an interval valued polynomial — it may
be convenient to reduce the abstraction into a more time and space efficient representa-
tion. This representation, though, must preserve the properties of interest of the initial
abstraction, namely, convexity and range enclosure. In this case, we simply compute the
poly-hull of the set delivered by the recursive method.
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4.5.1 Definitions

The minimal method delivers the least polyhedron which includes all the polyhedra in
the powerset obtained in the recursive method. This least polyhedron preserves the range
enclosure property of the recursive method as well as the convexity property, while keeping
a reduced representation. Thus, we have a precise and efficient way of abstracting floating-
point polynomial expressions into polyhedra.

Definition 4.39. (Minimal Bernstein mapping.) Let exprf be a floating-point polyno-
mial expression and e] an abstract environment where [[exprf ]]

]
fl(e

]) = [p](x) and vars(x) ⊆
vars(exprf ). For a segmentation degree n ≥ 1 and B ∈ IRk, the minimal Bernstein map-
ping mπn

B : (Rk → IR)→ ℘fn(Rk+1) is defined as

mπn
e]([p](x) =

⋃
I∈[0,n−1]k

π
e]
n,I

([p](x)).

4.5.2 Polyhedra Abstraction

The following theorem shows the soundness of the minimal method.

Theorem 4.40. ∀e ∈ γ(e]), vars(x) ⊆ vars(exprf ), e](x) ∈ IRk, where

]

{ (
e(x1), . . . , e(xk), c

)
∈ Fk+1 ∀c ∈ F :

c ∈ [[exprf ]]fl(e)

}
⊆ ] mπn

e](x)([[exprf ]]
]
fl(e

]))

Proof. By definition of the poly-hull operator and theorem 4.32. ut

Example 4.41. The minimal method, after applying the recursive method for a given
segmentation degree n, computed the poly-hull of all the sets of control points. Following
example 4.27 for the recursive method, let P1 = P−

1 ∪ P
+
1 P2 = P−

2 ∪ P
+
2 . Then,{(

x, c
)
∈ R2 | ∀x ∈ [0, 1] : ∀r(x) ∈ [p](x) . c = r(x)

}
⊆ ] (P− ∪ P+).

Figure 4.6 plots the convex hull (shadowed region).

4.5.3 Range Enclosures

The range enclosure is invariant under the poly-hull operator. Thus we have the following
result for the range enclosure for the minimal Bernstein mapping.

Theorem 4.42. Let exprf be a floating-point polynomial expression and e] an abstract
environment where [[exprf ]]

]
fl(e

]) = [p](x) and vars(x) ⊆ vars(exprf ). Then

Enc(mπn
e](x)([[exprf ]]

]
fl(e

]))) = Enc(πn
e](x)([[exprf ]]

]
fl(e

]))).
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Figure 4.6: Convex hull for [p](x) = [2, 2.1]x3 + [−1,−0.9]x+ [1, 1.1], x ∈ [−0.5, 1]∪ [0, 1].

Note that

Opt([p](x), e](x)) ⊆ Enc(mπn
e](x)([p](x)), e](x)).

Example 4.43. Note in example 4.41 that the range enclosure is the same as the range
enclosure obtained from the recursive method. In fact, the poly-hull operator computes a
polyhedron which includes the same set of control points as in the recursive method.

4.6 Discussion and Related Work

Bernstein Expansion. The Russian mathematician Sergei Natanovich Bernstein (1880-
1968) worked on the theory of best approximation of functions. In 1911, Sergei Bernstein
presented what are now called Bernstein polynomials that provide a constructive proof
of Weierstrass Approximation Theorem 1 (1885) [Ber12]. Bernstein expansion of real
polynomials has been studied for instance in [CS66, Riv70, Rok77, Rok79, Rok82, RR84,
Fis90,RR03]. Applications of Bernstein expansion include the study of robustness stabil-
ity [MMTG92, ZG98], solutions of polynomial inequalities [GG99, SG00] and computer
aided geometric design [Far93].

Polyhedra Abstraction for Floating-Point Expressions. The development of the
methods presented here has been originally motivated by the problems inherent in the

1The Weierstrass Approximation Theorem [Wei85] states that for a given continuous function f : U → R
and a positive real ε > 0, there exists a polynomial p : R → R where |f(x)− p(x) |< ε, for all x ∈ U.
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intervalisation method [Min04b], which produces a coarse linear approximation to non-
linear expressions. Intervalisation requires further adaptation to a polyhedral relational
domain, which can turn to be a complex task for the polyhedra domain. However, as
shown in [MSV+02], Bernstein expansion delivers more precise results than interval-based
methods. Contrarily to intervalisation, our approach is independent of nonlinearity but
the computational cost grows exponentially with the number of variables.

Of Efficiency of the Methods. Time complexity of the standard method (and its
derived methods) grows exponentially to the number of variables in an interval valued
polynomial. However, Delgado and Peña [DP03] presented a linear time complexity algo-
rithm for computing Bernstein basis, that overcomes this problem. An improvement in
efficiency can be achieved by reusing already calculated Bernstein coefficients to compute
new ones. This idea is formalised and developed in the sweep procedure [Gar86,Gar93],
which is based on the Casteljau algorithm for interpolation and is widely used in computer
aided graphics design (CAGD) [Far93]. This procedure computes the Bernstein coefficients
for subsets of boxes obtained by segmenting the original box. However, in order to produce
polyhedral abstractions useful for analyses, an adapted sweep procedure should compute
coefficients for every box, The standard method for floating-point expressions can be easily
adapted to deal with integer expressions by adopting a conservative rounding of Bernstein
coefficients in R; namely, rounding up a real value c to the larger positive integer if c > 0,
and to the smaller negative integer if c < 0.
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Chapter 5

Polyhedra for Floating-Point

Polynomial Quotients

In this chapter we present a method for abstracting floating-point polynomial
quotients in which a division by zero may occur. For this, we introduce a branch
and prune algorithm which excludes those abstract environments for which a
division by zero in a polynomial quotient may occur. Zeroes for quotients are
checked using a test based on Miranda’s theorem which takes advantage of the
range enclosure property of the Bernstein mappings defined in chapter 4. The
abstraction delivers a set of polyhedra, which is important for the development
of a backward analysis for the inference of possible divisions by zero.

5.1 Introduction

When abstracting floating-point expressions that include a division operator, one must
check whether the divisor subexpression may evaluate to 0 for some values that instantiate
the variables. If the subexpression evaluates to 0, then the division operation produces
a floating-point division by zero exception, represented either by NaN or by ±∞. This
exception may cause in turn a floating-point run-time error when querying a program.
The purpose of this chapter is to present a polyhedral abstraction that includes the sets of
values that can be assigned to variables in a floating-point expression which do not cause
division by zero.

Existing approaches to abstracting floating-point expressions with division operators
into a relational domain includes those developed in [Min04b,Min04a]. These relational
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abstractions rely on the definition of the interval division operator, which is not defined
when the divisor interval includes 0. In that case, the abstraction may fail (and there-
fore the analysis cannot proceed). A reason for this is the coarse linearisation method
used (intervalisation), which may deliver an overestimated range enclosure that includes
0 whereas the optimal range enclosure does not.

By identifying parts of the variables domain, namely parts of an abstract environment,
for which it can be proved that no division by zero can occur, the abstraction does not fail.
This means also that the abstraction should deliver a powerset of a polyhedral domain,
which in general is more precise but also more costly. In addition, the use of more precise
methods for calculating range enclosures, such as those presented in chapter 4, can lead
to the inclusion of larger parts of an abstract environment for which it can be proved that
no division by zero can occur.

The central problem in this chapter is thus the identification of the parts of an abstract
environment that cannot lead to a division by zero. Our approach is the introduction of
a variation of a branch and prune method for identifying such parts of abstract environ-
ments. In a floating-point polynomial quotient, the divisor is tested against the existence
of zeroes. For this, a test based on Miranda’s existence theorem which uses the range
enclosure property of Bernstein mappings, is performed. Those parts of an abstract en-
vironment that satisfy the test for the divisor, namely that includes a zero, are either
discarded (pruned) or refined (branched). The refinement consists in segmenting an ab-
stract environment. Those parts that do not satisfy the test, namely that do not include
zeroes, are used for abstracting the expression following the abstract semantics of defini-
tion 3.16 and the powerset of the polyhedra domain of section 4.4. The termination of the
method is guaranteed by ensuring a finite number of refinements.

Our contribution in this chapter is the definition of a test for zeroes existence in
interval valued polynomials, based on Miranda’s existence theorem and the range enclosing
property of the Bernstein mappings. Moreover we introduce a variation of the branch and
prune method for identifying segments of an abstract environment in which no zeroes
exists. Based on this, we propose an abstraction of floating-point polynomial quotients
into the polyhedra powerset.

5.2 Tests for Zero Existence in Interval Valued Polynomials

In order to prove the existence of zeroes of a function defined over a box, several existence
theorems are available: namely for instance Kantorovich, Miranda’s or Borsuk [AFHM04,
FL05]. But in order to decide whether there may exist zeroes in an abstract environment,
we can define tests based on existence theorems including Moore test [Moo72] and the test
based on Miranda’s theorem [MK80]. These tests require an estimate of the range enclo-
sure of the function to be analysed. Such estimates are usually computed using interval
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arithmetic, and includes the näıve method (the optimal range is replaced by the interval
arithmetics evaluations of the function over the facets), the centred method [MK80] (based
on calculating a slope matrix), and the facet-centred method [FL05, pp. 1350].

A weaknesses of these tests is the coarse estimate for range enclosures, as shown for
instance in [FL05], where the use of the more general zero existence theorem by Bor-
suk [AFHM04] is required. However, we can compute tight estimates using the range
enclosing property of Bernstein mappings. This idea was used for instance in [SG00] to
solve systems of polynomials and interval valued polynomials respectively. We use the
range enclosure property of Bernstein expansion to obtain an estimate of the range enclo-
sure of an interval valued polynomial defined over a box.

Thus, by combining Miranda’s existence theorem and the range enclosure property of
Bernstein mappings, we define a test for an interval valued polynomial defined over an
abstract environment which succeeds only if the abstract environment includes a zero for
the given interval valued polynomial. In the following section we formalise the concept of
zero of an interval valued polynomial.

5.2.1 Definitions

The concept of floating-point polynomial quotient is central in this chapter, and is for-
malised as follows.

Definition 5.1. (Floating-point polynomial quotient.) Let exprf be a floating-point
expression and e] be an abstract environment where [[exprf ]]

]
fl(e

]) = [p](x) �] [q](x). We
say that exprf is a floating-point polynomial quotient if vars([q](x)) 6= ∅.

For a divisor [q](x) = [a−, a+] where a−, a+ ∈ R, it is possible to multiply [p](x) by
the inverse of such interval, thus eliminating the division operator.

In order to introduce the definition of zeroes of an interval valued polynomial, we need
first to formalise the notion of zero of a polynomial, as follows.

Definition 5.2. (Zero of a polynomial.) Let z ∈ Rk. We say that z is a zero of a
k-variate polynomial r(x) if r(z) = 0.

It is important to remark that we do not consider zeroes in C.
The standard definition of a zero of an interval valued polynomial can be found for

instance in [PCT95]; namely, for an interval valued polynomial [p](x) defined for x ∈ Rk,
we say that z ∈ Rk is a zero of [p](x) if there exists r(x) ∈ [p](x) where r(z) = 0. For the
purpose of defining and computing abstractions of quotients of interval valued polynomials
into polyhedra, we provide an alternative definition.

Definition 5.3. (Zero of an interval valued polynomial.) Let [p](x), x ∈ Rk, be an
interval valued polynomial. We say that z ∈ Rk is a zero of [p](x) if [0, 0] ⊆ [p](z).
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5.2.2 Miranda’s Existence Theorem

This section recalls Miranda’s existence theorem, which generalises the intermediate value
theorem to a higher number of dimensions, and is important in the study of existence of
solutions for systems of nonlinear equations. For a given B ∈ IRk, let f : B ⊆ Rk → Rk

be a (nonlinear) continuous mapping where ∀x ∈ B

x 7→ (f1(x), . . . , fk(x)),

Miranda’s existence theorem provides a general result for proving the existence of solutions
for a system of nonlinear equations such as

f1(x) = 0

. . .

fk(x) = 0.

For B ∈ IRk, we say that x∗ ∈ B is a solution of the system above if f(x∗) = 0. In the
following theorem, the term facet refers to a k−1 dimensional face of a k dimensional box
B ∈ IRk.

Theorem 5.4. (Miranda’s Existence Theorem [Mir41].) Let B ∈ IRk be a box
denoted by B = [a−1 , a

+
1 ] × . . . × [a−k , a

+
k ], and for some i ∈ [1, k], let B−

i = {x ∈ B |
xi = a−i } and B+

i = {x ∈ B | xi = a+
i } denote the pair of opposite parallel facets of

B perpendicular to the i-th coordinate direction. Let f : B ⊆ Rk → Rk be a continuous
mapping where x 7→ (f1(x), . . . , fk(x)). If

fi(x) ≥ 0 for x ∈ B+
i , and fi(x) ≤ 0 for x ∈ B−

i ,

where i ∈ [1, k], then B contains a zero z of f .

Miranda’s theorem can be formulated in a more general form if the facets and function
components are related by a permutation, namely, a bijective mapping τ : {1, . . . , k} →
{1, . . . , k} where

fτ(i)(x) ≥ 0 for x ∈ B+
i , and fτ(i)(x) ≤ 0 for x ∈ B−

i .

Moreover, note that Miranda’s theorem can be used to study the existence of zeroes
of a function f : Rk → R in B ∈ IRk, by studying the existence of zeroes of a mapping
g : B ⊆ Rk → Rk where ∀x ∈ B

x 7→ (f(x), 0, . . . , 0).

In general, this system of (possibly nonlinear) equations may have infinitely many so-
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lutions. The following extension of Miranda’s theorem to the case of interval valued
polynomials is useful for showing the existence of solutions for

[0, 0] ⊆ [p](x);

namely, to show whether [p](x) has zeroes.

Theorem 5.5. (Miranda’s Existence Theorem for Interval Valued Polynomials.)

Let B ∈ IRk be a box denoted by B = [a−1 , a
+
1 ] × . . . × [a−k , a

+
k ], and for some i ∈ [1, k],

let B−
i = {x ∈ B | xi = a−i } and B+

i = {x ∈ B | xi = a+
i } denote the pair of opposite

parallel facets of B perpendicular to the i-th coordinate direction. Let [f ] : B ⊆ IRk → IRk

be a continuous mapping where x 7→ ([f1](x), . . . , [fk](x)). If ∃fi(x) ∈ [fi](x) where

fi(x) ≥ 0 for x ∈ B+
i , and fi(x) ≤ 0 for x ∈ B−

i , (5.1)

i ∈ [1, k], then B contains a zero z of [f ].

5.2.3 Bernstein Tests

Miranda’s theorem for interval valued polynomials can be applied as follows. Let [p](x)
be an interval valued polynomial defined over B ∈ IRk. Moreover, let

Opt([p](x),B) = [pmin, pmax].

The verification of 5.1 for [p](x) is equivalent to checking whether

pmin ≤ 0 ≤ pmax,

namely, whether [0, 0] ⊆ [pmin, pmax]. Interval arithmetic-based methods for checking the
condition above such as the näıve, centred or facet-centred provide coarse approximations
to the range enclosure which may be inconclusive. We use the range enclosure property of
Bernstein mappings to approximate the optimal range enclosure of [p](x) for x ∈ B by a
(nonoptimal) range enclosure, for a segmentation degree n ≥ 1. Moreover, recall that the
optimal range enclosure of an interval valued polynomial can be obtained by the recursive
Bernstein mapping for a sufficiently large segmentation degree n.

It must be noted that the signs of the range enclosure boundaries are preserved under
affine transformation, since the range enclosure is invariant under affine transformation.
Moreover, recall that our interest lies in zeroes in R, not in C. The following test is useful
to develop a method for isolating the segmentations of an abstract environment that does
not contain zeroes for a floating-point polynomial expression.

Definition 5.6. (Bernstein test.) Let B = {0, 1}. Moreover, let exprf be a floating-
point polynomial expression defined for e] ∈ AEnvf , where vars(x) ⊆ vars(exprf ). The
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Bernstein test for exprf over e](x) ∈ IRk, for a segmentation degree n ≥ 1, is a mapping
Btn

e](x)
: IR→ B where

Btne](x)([[exprf ]]
]
fl(e

])) =

1 if [0, 0] 6⊆ Enc(πn
e](x)

([[exprf ]]
]
fl(e

])))

0 otherwise.

Example 5.7. In example 4.12, the range enclosure for e](x) = [−0.5, 1] and n = 1 is
[−0.67, 2.7], which includes the zero interval [0, 0] and therefore the test evaluates to 0.
However, as shown in example 4.27, the range enclosure for e](x) = [−0.5, 1] and n = 2
is [0.42, 2.7] which does not include the zero interval [0, 0] and therefore the test evaluates
to 1.

The range enclosure processed in the test above is not necessarily optimal. Clearly,
testing whether [0, 0] is not included in this possibly nonoptimal range enclosure ensures
that [0, 0] is not included in the optimal range enclosure. When the Bernstein test delivers
1 for a given floating-point polynomial expression exprf and abstract environmente], then
there exists no zeroes in exprf for e]. That is to say, no change of sign occurs when
evaluating the function in any point of any two opposed facets. Assume that for pmin ·
pmax > 0, pmin > 0 and pmax > 0, where pmax ≥ pmin. Since pmin > 0, and moreover
[p](x) ⊆ [pmin, pmax], we have that [0, 0] 6⊆ [pmin, pmax]. Furthermore, [0, 0] 6⊆ [p](x) and
therefore @ z ∈ e](x) where [0, 0] ⊆ [p](z). A similar reasoning applies to the case in which
pmin < 0 and pmax < 0. Thus, for a floating-point expression exprf defined over e] where

Enc(πn
e](x)([[exprf ]]

]
fl(e

]))) = [pmin, pmax],

for some n ≥ 0, if pmin · pmax > 0 then for each [p](x) ⊆ [[exprf ]]
]
fl(e

]), @z ∈ e](x) where
[0, 0] ⊆ [p](z). When the range enclosure is not optimal, the test can be invoked with a
larger segmentation degree. This however, does not guarantee an optimal enclosure and
thus the existence of zeroes cannot be assured.

When the Bernstein test delivers 0, zeroes in [[exprf ]]
]
fl(e

]) may exist. This is the case
in which we can use Miranda’s existence theorem to prove the existence of a zero, or else,
the case where the optimal range enclosure does not include [0, 0].

5.3 Branch and Prune Method for Abstract Environments

In this section we present a method to approximate the set of segmentations which do not
include any zero for a given interval valued polynomial; namely, for [p](x) and ∀e ∈ γ(e]),
we must find the sets of all z ∈ Rk where

[0, 0] 6⊆ [[[p](z)]]re(e). (5.2)
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We can approximate the sets of all z ∈ Rk by{
e](x) ∈ IRk ∀z ∈ Rk : ∀e] ∈ AEnvf :

z ∈ e](x) ∧ [0, 0] 6⊆ [[[p](z)]]re(e)

}
.

We define a mapping that builds a set of abstract environments for which 5.2 holds. This
mapping explores this set of abstract environments and segments those environments
which do not satisfy the Bernstein test a finite number of times. Those environments
which satisfy the Bernstein test are proposed as an approximation to the solution for 5.2.
Space and time complexity as well as soundness and completeness of this mapping are
discussed. Moreover, we discuss possible merging of abstract environments to reduce the
cardinality of the solution set.

5.3.1 Definitions

Recursive Segmentations. Recall by definition 4.22 that for a segmentation degree
n ≥ 1, x ∈ Rk and e] ∈ AEnvf , where e](x) ∈ IRk,

e]n,I(x) = ϕn,I(e](x)),

I ∈ [0, n−1]k. We generalise the definition to sequences of successive segmentations. For
instance, for a sequence of two successive segmentations,

e]n,I,J(x) = ϕn,J(ϕn,I(e](x))),

where I, J ∈ [0, n− 1]k. The general case is as follows.

Definition 5.8. (Multiple segmentation.) Let e] ∈ AEnvf where for x ∈ B, B ∈ IRk,
e](x) ∈ IRk. Moreover, let n ≥ 1 be a segmentation degree. Then a multiple segmentation
e]n,Id,Id−1,...,I0

of degree d ∈ N is defined by

e]n,Id,Id−1,...,I0
(x) = ϕn,Id

(ϕn,Id−1
(. . . (ϕn,I0(e

](x))))), (5.3)

where Id, Id−1, . . . , I0 ∈ [0, n− 1]k.

Definition 5.9. (Direct segmentation.) Let e] ∈ AEnvf where for x ∈ B, B ∈ IRk,
e](x) ∈ IRk, and d ∈ N. Moreover, let n ≥ 1 be a segmentation degree. Then we say
that e]n,Id,...,Id−j+1,Id−j

, 1 ≤ j ≤ d − 1, is a direct segmentation of e]n,Id,...,Id−j+1
, where

Id, . . . , Ij+1, Ij ∈ [0, n− 1]k.

Expression 5.3 can be denoted in a compact form by

ϕn,Id,Id−1,I0(e
](x)), = ϕn,Id

(ϕn,Id−1
(. . . (ϕn,I0(e

](x))))).

72



Chapter 5 Polyhedra for Floating-Point Polynomial Quotients

Tree for segmentations. These segmentations can be represented by a finite connected,
acyclic, directed graph, namely a tree, defined as follows. A tree for segmentations is a
finite, labelled, directed tree denoted by T = (V,E), where V is the set of vertices (or
nodes) and E the set of edges. Each node is denoted by a box obtained from a segmentation
for a variable. Thus, for e] ∈ AEnvf , the root node corresponds to e](x), and the rest of
nodes by a subbox of the root node, obtained from a multiple segmentation. Each edge
connects two nodes where the destination node is a direct segmentation of the origin node.
The destination node is called successor node and the origin node, parent node.

Definition 5.10. (Tree depth.) We say that d ∈ N is the tree depth of a tree T if the
maximum degree for every multiple segmentation is d.

Definition 5.11. (Set of successor nodes.) Let x ∈ B, B ∈ IRk, and for e] ∈ AEnvf ,
let e](x) ∈ IRk be a root node. Moreover, let n ≥ 1 be a segmentation degree. The set of
successors of a node e]n,Id,...,Id−j

(x), 1 ≤ j ≤ d− 1, is delivered by the following operator:

Succd(e
]
n,Id,...,Id−j

(x)) ={
e]n,Id,...,Id−j−1

(x) ∈ AEnvf
∀Ii ∈ [0, n− 1]k, 1 ≤ j ≤ d− 1, i ∈ [d− j − 1, d]
e]n,Id,...,Id−j−1

(x) = ϕn,Id,...,Id−j−1
(e]n,Id,...,Id−j

(x))

}
.

For a segmentation degree n ≥ 1, each node in a tree can have up to nk child nodes.

Definition 5.12. (Terminal node.) A terminal node is a node where the set of its
successors is empty.

For notational purposes, when constructing a segmentation tree of depth d, the root
node is assigned depth d, the successor nodes of the root node are assigned depth d−1, and
so forth. There are two types of terminal nodes: those with d = 0, and those with d > 0.
The existence of each type in a tree is determined by each particular search performed.

Definition 5.13. (Deepest terminal node.) Let e] ∈ AEnvf and x ∈ B, B ∈ IRk,
where e](x) ∈ IRk. For a tree depth d ∈ N and segmentation degree n ≥ 1, a deepest
terminal node in a tree is denoted are denoted by

e]n,Id,...,I0
(x) = ϕn,Id,...,I1(e

](x)),

where Id, . . . , I0 ∈ [0, n− 1]k.

The following example illustrates these definitions.

Example 5.14. In example 4.24, for a segmentation degree n = 2, I ∈ [0, n− 1]k, where
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X0

X1

10

1/2

1

1/2

I=(1,1)

I=(0,0) I=(1,0)

3/4

1/4

I=(0,1)
J=(1,0)

I=(0,1)
J=(0,1)

I=(0,1)
J=(1,1)

I=(0,1)
J=(0,0)

(a) Segmentations for U2 and n = 2.
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(b) A segmentation tree for n = 2 and d = 2.

Figure 5.1: Segmentation of U2 and its corresponding segmentation tree.
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I = (0, 1), and e](x0, x1) = U2, let

e]2,(0,1)(x) = ϕ2,(0,1)(e
](x0, x1))

= e]2,0(x0)× e]2,1(x1)

= [0,
1
2
]× [

1
2
, 1].

For J ∈ [0, 1]2 where J = (0, 0),

e]2,(0,1),(0,0)(x) = ϕ2,(0,0)(ϕ2,(0,1)(x))

= ϕ2,(0,0)(e
]
2,(0,1)(x))

= ϕ2,(0,0)([0,
1
2
]× [

1
2
, 1])

= [0,
1
4
]× [

1
2
,
3
4
].

Figure 5.1 depicts both the segmentations on the unit box U2 and the mapping of such set
of segmentations onto a tree. The set of terminal nodes includes all the nodes occurring
in the tree except e](x) and e]n,(0,1)(x); namely,

Succd(e](x)) ∪ Succd(e
]
n,(0,1)(x)) \ {e](x), e]n,(0,1)(x)}

The deepest terminal nodes are included in the set Succd(e
]
n,(0,1)(x)).

5.3.2 Constructing and Traversing the Search Space

In this section we present a tree search mapping that builds a search space of abstract
environments. This mapping performs a breadth-first search and prunes those nodes of
the tree which do not hold the Bernstein test. The search is performed for all nodes up
to a preset depth d ∈ N. In order to ease the presentation of this operator, consider first
the following worked example which illustrates the tree construction and search.

Example 5.15. This example illustrates the search process through a tree of segmenta-
tions, for a given interval valued polynomial which has zeroes in the interval in which it
is defined. This search identifies the segmentations which do not include zeroes for the
interval valued polynomial. Thus, consider the interval valued polynomial

[p](x) = [1, 1]x3 + [−1,−1]x+ [0.25, 0.26],

defined for x ∈ U. Figure 5.2 plots [p](x), where it can be noted that U includes two
zeroes. Let e] ∈ AEnvf where e](x) = U. Moreover, let n = 2 be a segmentation degree
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Figure 5.2: Plot of [p](x) = [1, 1]x3 + [−1,−1]x+ [+0.25,+0.26] for x ∈ [0, 1].

and d = 4 the tree depth. Note that

Enc([p](x), e](x)) = [−5/12, 312/1200]

and thus the Bernstein test fails. Then we must process the successors of e](x); namely,
e]n,0 and e]n,1, for which

Enc([p](x), e]n,0) = [−3/24, 312/1200] and

Enc([p](x), e]n,1) = [−3/24, 312/1200],

The Bernstein test fails and we must process the successors for d = 2. This is illustrated
in the following segmentation tree:

e](x)

ttttttttt
d = 4

e]
n,0(x)

uuuuuuuuu

IIIIIIIII
d = 3

e]
n,0,0(x) e]

n,0,1(x) d = 2

and
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e](x)

HH
HH

HH
HH

H d = 4

e]
n,1(x)

ww
ww

ww
ww

w

IIIIIIIII
d = 3

e]
1,0(x) e]

n,1,1(x) d = 2

where

e](x) = [0, 1]
e]n,0(x) = [0, 1/2] e]n,1(x) = [1/2, 1]
e]n,0,0(x) = [0, 1/4] e]n,0,1(x) = [1/4, 1/2] e]n,1,0(x) = [1/2, 3/4] e]n,1,1(x) = [3/4, 1]

Nodes e]n,0,1(x) and e]n,1,1(x) fail the Bernstein test since

Enc([p](x), e]n,0,1(x)) = [−2/3, 305/500] and

Enc([p](x), e]n,1,1(x)) = [−1/2, 3820/12000].

As the tree depth has not been reached, we must calculate the successors of these nodes;
namely,

e]
n,0,1(x)

qqqqqqqqqq

MMMMMMMMMM
d = 2

e]
n,0,1,0(x)

qqqqqqqqqq

MMMMMMMMMM
e]
n,0,1,1(x) d = 1

e]
n,0,1,0,0(x) e]

n,0,1,0,1(x) d = 0

where

e]n,0,1,1(x) = [3/8, 1/2]
e]n,0,1,0,0(x) = [1/4, 5/16] e]n,0,1,0,1(x) = [5/16, 3/8]

and
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e]
n,1,1(x)

qqqqqqqqqq

MMMMMMMMMM
d = 2

e]
n,1,1,0(x)

qqqqqqqqqq

MMMMMMMMMM
e]
n,1,1,1(x) d = 1

e]
n,1,1,0,0(x) e]

n,1,1,0,1(x) d = 0

where

e]n,1,1,1(x) = [7/8, 1]
e]n,1,1,0,0(x) = [3/4, 13/16] e]n,1,1,0,1(x) = [13/16, 7/8].

In level d = 1, we have that

Enc([p](x), e]n,0,1,0(x)) = [−37/512, 164/6400] and

Enc([p](x), e]n,1,1,0(x)) = [−7/96, 2284/38400].

These nodes do not hold the Bernstein test. Thus we compute the Bernstein test to their
successors. We note that nodes e]n,0,1,0,0(x) and e]n,1,1,0,1(x) do not hold the Bernstein
test. Therefore such nodes can be excluded from the set of intervals that do not contain
zeroes. Thus, the set of abstract environments for which there exists no zeroes for [p](x)
in x ∈ [0, 1] for up to tree depth d = 3 is

NRn,3({e]}, [p](x)) =
{
e]n,0,0, e

]
n,1,0, e

]
n,0,1,1, e

]
n,1,1,1, e

]
n,0,1,0,1, e

]
n,1,1,0,0

}
,

where NRn,3 denotes a tree search operator defined below.

We present now a formalisation of the operator

Definition 5.16. (Tree search operator.) The mapping that delivers the set of abstract
environments for which no zero exists for a given floating-point polynomial expression, for
tree depth d ∈ N, where NRn,d : ℘fn(AEnvf )×(Rk → IR)→ ℘fn(AEnvf ), n, d ∈ N, n ≥ 1,
is defined for m ≥ 1 as

NRn,0(E, [q](x)) = {e] ∈ AEnvf | ∀e] ∈ E : Btme](x)([q](x)) = 1}

NRn,d(E, [q](x)) = g1(E, [q](x)) ∪ NRn,d−1(g2(E, [q](x)), [q](x)),
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where

g1(E, [q](x)) =

 e]n,Id,...,Id−j
∈ AEnvf

∀e]n,Id,...,Id−j
∈ E,

Id−j , . . . , Id ∈ [0, n− 1]k, 1 ≤ j ≤ d− 1,
s.t. Btm

e]
n,Id,...,Id−j

(x)
([q](x)) = 1



g2(E, [q](x)) =


e]n,Id,...,Id−j−1

∈ AEnvf

∀e]n,Id,...,Id−j
∈ E, 1 ≤ j ≤ d− 1,

Id−j−1, . . . , Id ∈ [0, n− 1]k,
s.t. Btm

e]
n,Id,...,Id−j

(x)
([q](x)) = 0,

e]n,Id,...,Id−j−1
(x) ∈ Succd(e]n,Id,...,Id−j

(x))


.

This mapping is initially queried with a singleton set consisting of an abstract environ-
ment, namely {e]}. This abstract environment is then segmented into n segmentations. A
pruning is performed on those segmentations for which the Bernstein test does not hold.
Then each remaining segmentation is further segmented. This process of segmenting and
pruning is repeated up to d times. As a result, we have a (possibly empty) set of terminal
nodes (segmentations) up to tree depth d which hold the Bernstein test.

The pruning of tree nodes reduces the number of nodes evaluated in the tree. It is not
necessary to further segment a segmentation for which it has been proved that no zero is
included in it. This saves processing time and does not affect the final result of the search.

The NRn,d mapping for n ≥ 1 and d ∈ N is sound since it is guaranteed that no
segmentation delivered by the mapping includes any zero. A finite number of recursions
are computed, since in the recursive definition, d ∈ N is decreased monotonically and
〈N,≤〉 is a well-ordered set, thus reaching the nonrecursive case of the definition of the
tree search mapping in a finite number of recursive calls.

Theorem 5.17. ⋃
e]
`∈NRn,d({e]},[p](x))

e]`(x) ⊆ e](x).

Proof. By proposition 4.29 the set union of the successors of a node are included in the
parent node, and by corollary 4.30, each node is included in its parent node. Since the root
node has no parent, by the mentioned proposition and corollary, every node is included in
the root node. ut

5.3.3 Optimisation of the Search Space

In this section we propose first an optimisation to reduce the number nodes in the search
space that hold the Bernstein test. This optimisation does not lose information obtained
from the initial solution tree. Second, we propose ways of improve the accuracy of the
solution tree.
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Tree compactification. A box that has been segmented into a set of segmentations,
can be reconstructed back either by the set union mapping of the segmentations or by the
poly-hull mapping of the segmentations; namely

](Succd(e
]
n,Id,...,Id−j

(x))) = ∪(Succd(e
]
n,Id,...,Id−j

(x))).

This observation is useful to optimise the tree in the case where all the successors of a
tree node hold the Bernstein test. Thus, the successors can be pruned. This optimisation
is of special importance when the interval valued polynomial evaluates to an interval in
which either of its boundaries are closed to zero. In that case, the Bernstein mappings are
likely to deliver Bernstein coefficients for which the Bernstein test fails, up to a certain
tree depth. Recall that when a node fails the test and the maximum tree depth is not
reached, then that node is further expanded. For a sufficiently large tree depth, it can be
proved that all the expanded nodes hold the Bernstein test. Thus, we can propagate the
optimisation upward toward the first parent node that failed the test, and mark that node
as free of zeroes.

Example 5.18. Consider the interval valued polynomial

[p](x) = [−1,−1]x3 + [1, 1]x2 + [1, 1]x + [0.5, 0.6]

defined for x ∈ [−1, 1]. Let e] ∈ AEnvf where e](x) = [−1, 1]. Then

Enc(πe](x)([p](x))) = [−7/6, 8/5],

and the Bernstein test fails. Let n = 2 be a segmentation degree n = 2 and d = 1 a tree
depth. Then we can construct a tree such as

e](x)

wwwwwwww

GGGGGGGG d = 1

e]
n,0(x) e]

n,1(x) d = 0

The enclosures for each successor node, namely

Enc(π
e]
n,0(x)

([p](x))) = [1/6, 8/5] and

Enc(π
e]
n,1(x)

([p](x))) = [1/2, 8/5],

hold both the Bernstein test. Thus we can compactify the tree into its root node e](x).
However, it is necessary to preserve the tighter enclosure and set of Bernstein coefficients
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obtained from the successors of the root, to ensure a sound (and also more precise) poly-
hedra abstraction.

Note that in order to avoid unnecessary segmentations that do not include any zero, it
is convenient to select a small segmentation degree n. This is in contrast with the purpose
of finding tight range enclosures for an interval valued polynomial, in which case a larger
n allows for tighter enclosures.

It is important to note that the notion of compactification is similar to the idea under-
lying the minimal method. However, the main difference here with respect to that method
is that we compactify subsets of segmentations obtained from an initial box, whereas in
the minimal method we compactify the whole set of segmentations obtained from an initial
box. Moreover, segmenting the whole set of segmentations is unsound when the least one
segmentation includes possible zeroes.

Moreover, note that when each child in the successor set fail the Bernstein test in the
lowest tree level, then the parent node must be excluded from the solution set.

5.4 Polyhedra Abstraction

In this section we propose abstractions for floating-point polynomial quotients into the
polyhedra domain. Since the division operator is not defined when the divisor is zero, we
must examine the existence of zeroes in the divisor polynomial. First of all note that the
zeroes of a floating-point polynomial expression are included in the set of floating-point
values for which the concrete semantics of the polynomial expression evaluate to 0. A
divisor floating-point polynomial is approximated by an interval valued polynomial. If the
concrete evaluation of an interval valued polynomial for a floating-point value, evaluates
to an interval which includes the interval [0, 0], then the floating-point value is a zero in
the floating-point polynomial.

In the following definition we present an operator for the abstraction of floating-point
polynomial quotients into polyhedra. We use the operator NRn,d to identify those segmen-
tations that do not include a zero for a given floating-point expression. Then it defines an
interval valued polynomial from which a polyhedron is constructed. The presented opera-
tor delivers a set of polyhedra which does not contain zeroes for the polynomial quotients
defined over a box.

Definition 5.19. (Polynomial quotient polyhedra abstraction.) Let the map Υn,d
e] :

AEnvf × (Rk → IR) → ℘(CPk+1) can be defined for different Bernstein mappings. From
definition 3.16, let pf �f ,r qf be a floating-point polynomial quotient, where vars(x) ⊆
vars(pf �f ,r qf ), [[pf �f ,r qf ]]

]
fl(e

]) = [r](x), and where

[r](x) = ([p](x) �] Opt([q](x), e](x))) �]

εf ([p](x) �] Opt([q](x), e](x))) �] [−mff ,mff ].
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Figure 5.3: Plot of [r](x) = [0.1, 0.1]x �] ([1, 1]x3 + [−1,−1]x + [−0.25,−0.24]) for x ∈
[−1, 1].

Then the polyhedra abstraction operator Υn,d for [r](x) is defined as

Υn,d
e] ([r](x)) =

P ∈ CPk+1

∀ s] ∈ NRn,d({e]}, [q](x)) : ∃ P ∈ CPk+1 . ∃ [a−, a+] ∈ IR .

Enc(πs] [q](x), s](x)) = [a−, a+] ∧
[r′](x) =

(
[p](x) �] [a−, a+]

)
�] εf

(
[p](x) �] [a−, a+]

)
�] [−mff ,mff ] ∧

P = ] πs]([r](x))


.

The abstraction delivered by Υ is sound, as shown in chapter 4 for the Bernstein
mapping. The following example illustrates the abstraction of polynomial quotients into
polyhedra.

Example 5.20. Let

[r](x) =
[0.1, 0.1]x

[1, 1]x3 + [−1,−1]x+ [−0.25,−0.24]
,

for x ∈ U, as plotted in figure 5.3, and where the divisor expression corresponds to [p](x)
of example 5.15. We calculate the range enclosure of [p](x) for each abstract environment
that has been proved not to include zeroes, that is to say, for each abstract environment

82



Chapter 5 Polyhedra for Floating-Point Polynomial Quotients

Figure 5.4: Plot of set of polyhedra for the abstraction of [r](x) for x ∈ [0, 1].

included in NRn,3({e]}, [p](x)); namely,

Enc([p](x), e]n,0,0) = [3/192, 312/1200]
Enc([p](x), e]n,1,0) = [−7/48,−1308/19200]
Enc([p](x), e]n,0,1,1) = [−3/241,−9564/153600]
Enc([p](x), e]n,1,1,1) = [19/384, 312/1200]
Enc([p](x), e]n,0,1,0,1) = [−111/1536,−27012/1228800]
Enc([p](x), e]n,1,1,0,0) = [−7/96,−3264/153600].

Thus, we can build a convex hull from each enclosure, as shown in definition 5.19. Fig-
ure 5.4 plots [r](x) and a set of polyhedra which approximates parts of [r](x). A deeper
search in the tree would lead to a larger number of polyhedra around the asymptotes of
[r](x). This means the resulting abstraction would be more precise. Moreover, it is impor-
tant to remark the purpose of this example is to illustrate the process: when abstracting
a floating-point polynomial quotient as part of an analysis process, higher tree depth is
required in order not to loose information of boxes near a zero.

The recursive and minimal Bernstein mappings can also be used to abstract polynomial
quotients, though at a high cost. Moreover, the gain in precision does not payoff the high
cost especially when a segmentation due to the existence of (possible) zeroes has been
computed. That is to say, a segmentation has already been processed, which guarantees
tighter enclosures in the abstraction.
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5.5 Discussion and Related Work

Interval-Based Branch and Prune Methods. Branch and prune methods based on
interval arithmetic for solving systems of polynomials includes [vHMK97], which is im-
plemented in the global optimisation system Numerica [vHMD97]. The method proposed
in this chapter does not require a preprocessing for zero isolation (such as for instance
in [PCT95]). On the contrary, it computes zeroes existence in a given bounding box and
either refines or excludes those boxes that contain at least a zero. By assigning a suffi-
ciently large recursion degree d ∈ N and reverting to the valuation of the Bernstein test,
we would obtain those boxes for which the range enclosure could include [0, 0]. The use of
segmentations in the intervalisation method may not be precise enough to determine the
existence of zeroes in an interval valued polynomial defined over a box, since intervalisation
provides a rough approximation to the range enclosure of functions.

Inclusion and Exclusion Methods. Two different approaches can be taken in order to
obtain parts of an abstract environment that do not include any zero; namely zero inclusion
and zero exclusion methods. In the first approach, after enclosing the set of zeroes in the
abstract environment, we must construct sets of convex polyhedra for the parts of the
abstract environment not included in such enclosure. This approach may become complex
and tedious in order to further partition the parts of the abstract environment for the
purpose of constructing convex polyhedra [BL03]. In the second approach we isolate parts
of the abstract environment for which it can be proved no zero is included and where the
construction of convex polyhedra is trivial. However, this method may produce a large
number of abstract environment partitions that must be processed. A bisection method
based on zero exclusion was proposed in [MS87]. The main difference with our approach
is that we compute interval valued polynomials whereas Morgan processed more general
functions.

Solving Quantified Constraints. The branch and prune method presented here can
be used also to solve quantified constraints, namely, parametric constraints with quantified
parameters. This can be achieved by reverting the definition of the Bernstein test [Gol06].
For instance, the parametric constraint α · x2 + β = 1 on the variable x, where α ∈ [1, 2]
and β ∈ [1/2, 1], leads to the quantified constraint

(
∃α ∈ [1, 2], ∃β ∈ [1/2, 1]

)(
α · x2 + β = 1

)
.

This constraint can be reformulated into an interval valued polynomial equation such as

[1, 2]x + [1/2, 1] = [1, 1]
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Then, the approximation of the set of solutions for such quantified constraint can be
performed by solving this polynomial equation by using the reversed Bernstein test.
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Chapter 6

Forward Relational Analysis for

Constraint Logic Programs

In this chapter we present an analysis for the verification of the nonexistence of
floating-point overflow when querying a logic program. Central in this analysis
is the use of the finite polyhedra powerset domain, which proves appropriate for
the precise abstraction of nonlinear expressions. We present precise abstrac-
tions for nonlinear assignments and nonlinear tests, which allow for verifying
the absence of errors where linear versions would inevitably report a potential
hazard. This analysis does not halt if a potential overflow is detected. Instead,
it always reaches the output variables of the analysed program. Reaching such
variables is necessary in order to produce the needed information to run a
backward analysis for the inference of input that do not cause overflow. We
analyse different classes of overflow including the intermediate overflow.

6.1 Introduction

Program analysis for the detection of floating-point run-time errors such as overflow or di-
vision by zero is important for preventing abnormal behaviours that may lead to disastrous
results. Existing work is usually concerned with imperative programs [Gou01,Min04b],
and up to date, the analysis of errors due to floating-point in logic programs has been
focused on the analysis for termination [SS02,SM04]. Logic programs represent a unifying
language for denoting models for physical systems [JL87, Col90, HJM+91, Hon93, OV93,
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JM94,Hon94,vE99] — unifying in the sense that problems of different nature can be de-
scribed in the common language of logic programming. In modelling physical systems,
floating-point arithmetic plays a central role as the preferred arithmetic for computation.
In this respect, logic programs with floating-point computations are vulnerable to errors
inherent of floating-point arithmetic such as overflow. In this chapter we address the prob-
lem of analysing logic programs with floating-point computations using abstract interpre-
tation and the polyhedra domain. Our analysis focuses on the detection of floating-point
overflow.

In particular, we use the finite powerset domain of polyhedra. It allows for delivering
highly precise abstractions which are important for the analysis of nonlinear expressions,
and especially when an expression is not defined for all the elements of the domain. This
is the case for instance of an expression with possible divisions by zero. By defining the
set of subsets of a domain for which an expression is defined, we can compute an analysis
that will reach the output variables of the program. This is necessary in order to have
available the required information for computing a backward analysis, from the output to
the input variables of a program.

The logic programs we analyse include constraints on the input and output variables,
and these constraints as well as the expressions involved, are abstracted into polyhedra.
From these constraints we can define three classes of overflow; namely, the absolute over-
flow, in which the result of evaluating an expression has no representation in the underlying
floating-point system; the relative overflow, in which the declared constraints on the out-
put variables are violated; and the intermediate overflow, in which an absolute overflow
occurs when evaluating a subexpression. The purpose of the analysis is to constrain the
sets of values that can instantiate the output variables and that do not fall into any of
these three classes of overflow.

Our contribution in this chapter is the presentation of abstractions for (possibly non-
linear) assignments and tests in the powerset of polyhedra. These abstractions are general
in that linear and nonlinear expressions are considered. Moreover, we introduce a forward
analysis for the detection of floating-point overflow and overflow due to division by zero
which always reaches the output variables of a program. This is necessary in order to de-
velop a backward analysis which infers preconditions on the input variables of a program
to avoid possible divisions by zero.

6.2 Formal Language

In order to define an operational semantics for both forward and backward analyses, we
formalise first the concrete language we analyse, and also its abstract version.
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6.2.1 Logic Programs

Logic programs considered in this analysis include two classes of numerical atoms; namely,
assignment and test atoms. Assignment atom is denoted by

v is exprf ,

where for a substitution θ, where vars(exprf ) ⊆ vars(θ), θ instantiates all variables in
vars(exprf ). We call variable v the assignee and the floating-point expression exprf the
assigner. Test atom is denoted by

exprf ≤ exprf .

Logical connectives such as or and and are inherent to logic programming. Thus we do
not include explicitly such operators in our concrete semantics. We assume that each
argument in a test has the same floating-point format. For simplicity, we do not consider
casting between different formats. The corresponding build-in in a Prolog system such as
SICStus is denoted by =</2. A clause with empty body is denoted by

p(x)←

whereas a clause with nonempty body is denoted by

p(x)← p1(x1), . . . , pn(xn).

Moreover, a query is denoted by

← p1(x1), . . . , pn(xn).

An empty logic program is denoted by O. Note that an atomic predicate includes the← sym-
bol to differentiate it from a polynomial. When a logic program is denoted in Prolog-like
syntax, it is platform and floating-point system dependent. We refer to this notation
as dependent notation. Otherwise, we assume left-to-right SLD resolution and no preset
floating-point system. We refer to this notation as independent notation. Most Prolog
systems, such as SICStus [oCS06] use the IIIE-754 standard double format to represent
their floating-point system values. The theoretical framework presented in this chapter
uses independent notation, whereas the examples use dependent notation. In what follows,
we may refer to a logic program as program.

A normalisation process is required for the case of arguments that are grounded in the
head atom of a clause. This process consists in declaring the grounded input arguments
as tests and the grounded output arguments as assignments.
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Example 6.1. An atomic clause such as p(0, 1) is normalised as

p(X,Y ) ← X == 0, Y is 1.

6.2.2 Syntactic Conditions for Correctness

Logic programs analysed here are moded: each argument position is assumed to be either
an input or an output. Moreover, programs are required to be well-moded [AM94], where
a correctness condition between the input arguments and the output arguments must hold.
Though well-modedness is commonly used to study termination of logic programs [Plü90,
EBC99, AL95], our purpose here is to ensure that the input and output arguments of
predicates that compute floating-point expressions (which includes assignments and tests)
do not cause a run-time instantiation error.

Let p(m1, . . . ,mk) be a mode for predicate p/k, where each mi, i ∈ [1, k] is preset as
an input or output argument, namely, mi ∈ In ∪ Out, where In ∩ Out = ∅. Thus, by
p(ũ, ṽ) we denote an atom where the sequence ũ denotes the terms that occur in the input
arguments, and the sequence ṽ denotes the terms that occur in the output arguments. We
say that a definite clause

p0(t̃0, s̃n+1)← p1(s̃1, t̃1), . . . , pn(s̃n, t̃n)

is well-moded if for each i ∈ [1, n+ 1],

vars(s̃i) ⊆
i−1⋃
j=0

vars(t̃j).

A query
← q1(s̃1, t̃1), . . . , qn(s̃n, t̃n)

is called well-moded if and only if the clause

q ← q1(s̃1, t̃1), . . . , qn(s̃n, t̃n)

is well-moded, where q is an atom of arity zero. Moreover, we say that a program is
well-moded if each clause in it is well-moded. We assume left-to-right SLD resolution.
Thus in the first atom in a well-moded query, the input arguments are ground. These
ground argument positions are available as output t̃0 for any input arguments in the
body of the clause. For instance for input argument s̃1, by well-modedness condition,
vars(s1) ⊆ vars(t0), but vars(t0) are grounded so no instantiation error can occur in p0 or
p1. In a definite clause or query in which all atoms have input and output arguments,
assume the input arguments of an atom are grounded. By definition of well-modedness,
this atom can instantiate the output arguments from the input arguments. Moreover,
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these output arguments are input arguments to another atom (or atoms), thus ensuring
that the subsequent output of these other atoms will be instantiated as well. Thus, well-
modedness of a definite clause or query ensures the persistence of groundness throughout
all the atoms. The following result formalises this persistence of groundness in well-moded
programs (a proof of the following proposition can be found in [AP94]).

Proposition 6.2. Let P be a well-moded logic program and let denote by Ã the well-moded
query ← q1(s̃1, t̃1), . . . , qn(s̃n, t̃n). Then for each answer substitution σ of Ã in P , Ãσ is
ground.

Recall that a substitution maps each variable in its domain to either another vari-
able or a (possibly ground) term. By the proposition above, each variable in the answer
substitution is mapped to a ground term. In the context of our analysis, a concrete en-
vironment corresponds to an answer substitution obtained from a well-moded query to a
well-moded program. Thus, a concrete environment is defined for each output variable of
a well-moded query. In what follows we assume programs are well-moded and queries to
them are also well-moded, since well-modedness ensures that the necessary input to an
atom being queried is available. This is important to avoid instantiation run-time errors
for instance in assignment and test predicates.

6.3 Concrete Semantics

The concrete semantics of logic programs considered here, which includes floating-point
arithmetic, is defined by means of a transition system of program states. A program state
consists of a tuple of a predicate and a concrete environment. The transitive closure of
a transition from the initial state to the empty program state (or final state) defines the
concrete semantics.

6.3.1 Definitions

Central in defining a concrete semantics for logic programs with floating-point arithmetic
are the assignment and test states. This section presents the necessary definitions to
introduce such states in order to define the concrete semantics of a program.

Definition 6.3. (Program state.) A program state is defined as a tuple of the form

〈g1, . . . , gk; R〉,

where g1, . . . , gk ∈ Atoms and R ∈ ℘fn(Envf ) is a set of concrete environments defined for
each variable in g1, . . . , gk.

The set of states is denoted by States.
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In the definition above, we use sets of environments in order to take into account the
concrete semantics presented in definition 3.5, which is defined for sets of floating-point
values.

Definition 6.4. (Query state.) A query state is a program state of the form

〈g1, . . . , gk; R0〉,

where g1, . . . , gk ∈ Atoms and R0 ∈ ℘fn(Envf ) is the initial set of concrete environments.

Program states that involve numerical atoms are defined as follows.

Definition 6.5. (Assignment state.) An assignment state is defined by

〈v ← exprf , g1, . . . , gk; R〉 ∈ States.

In an assignment atom, we assume that the variables occurring in the expression are
input variables, whereas the assignee is an output variable. However, in a test atom every
variable occurring in the expressions is assumed to be an input variable, and further,
no output variables can occur. This restriction on output variables still ensures well-
modedness, as no atom in a well-moded clause can obtain input from nonexisting output.

Definition 6.6. (Test state.) A test state is defined by

〈expr1,f ≤ expr2,f , g1, . . . , gk; R〉 ∈ States.

When a variable is instantiated in an assignment or in a unification with a query, we
must extend the definition of the concrete environments in a program. Let e ∈ Envf , and
for a set Vf of variables, let v ∈ Vf be a variable which has been instantiated to a value
c ∈ Ff . Then, we say that e is extended to v for value c and denote it e[v 7→ c]. This
clarification is important in the following definition.

Definition 6.7. (Assignment state transition.) The transition from an assignment
state to another state for a program P is defined for R,R′ ∈ ℘(Envf ) as

〈v ← exprf , g1, . . . , gk; R〉 →P 〈g1, . . . , gk; R′〉,

where R′ = { e ∈ Envf | ∀e ∈ R : ∃c ∈ [[exprf ]]fl(e) . e[v 7→ c] }.

Recall that our analysis studies logic programs with numerical atoms. Thus, a tran-
sition from an assignment state must reach another state with a numerical atom. Recall
that each variable in a substitution can be instantiated only once.
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Definition 6.8. (Test state transition.) The transition from a test state to another
state for a program P is defined for ≤ and for R,R′ ∈ ℘(Envf ) as

〈 expr1,f ≤ expr2,f , g1, . . . , gk; R 〉 →P 〈 g1, . . . , gk; R′ 〉,

where R′ = {e ∈ Envf | ∀e ∈ R : ∃v1 ∈ [[expr1,f ]]fl(e) . ∃v2 ∈ [[expr2,f ]]fl(e) : v1 ≤ v2}.

The concrete semantics domain is defined by the lattice

Ĉ = 〈℘(States),⊆,∪,∩, ∅,States〉,

ordered by set inclusion, and equipped with set intersection and set union, and in which
the bottom element is the empty set and the top element is the set of all states.

We define the concrete semantics of a logic program by means of a transition system,
which is defined as a set of relations between states of a program.

6.3.2 Operational Semantics

The following definition and results are standard in operational semantics. However, we
propose a reformulation that suits the context of our analysis, in which concrete environ-
ments as well as assignment and test predicates are central.

First we need the definition of an operator that removes from the definition of a
concrete environment those variables that do not occur in the head atom of a clause.
Then we define a mapping

projx : ℘fn(Envf )→ ℘fn(Envf )

for e ∈ Envf and vars(x) ⊆ Vf , by means of the polyhedra existential quantifier operator;
namely, for R,R′ ⊆ Envf , projx(R) = R′ where ∀e ∈ R, e(x) ∈ IRn, ∃e′ ∈ R′ where
e′(x) = ∃x(e(x)).

We define an immediate consequence operator over the complete lattice of powerset
of states. Since such operator is monotonic and defined over a complete lattice, the least
fixpoint exists.

Definition 6.9. (Immediate consequence operator.) The immediate consequence
operator F

bC
P : ℘(States) → ℘(States) is defined over the complete lattice of powerset of

states as

F
bC
P (I) =

 〈 p(x); R′ 〉
∀ 〈p(x);R〉, 〈p1(x1);R1〉, . . . , 〈pk(xk);Rk〉 ∈ I :
p(x)← p1(x1), . . . , pk(xk) ∈ P ∧
R′ = R ∩ ∩k

i=1 projxi(Ri)

 .
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Since F
bC
P is monotonic and defined over a complete lattice, the least fixpoint semantics

exists and is defined as follows.

Definition 6.10. (Fixpoint semantics of a program P over Ĉ.) The fixpoint se-
mantics of a program P over Ĉ, denoted F

bC(P ) is defined as

F
bC(P ) = lfp(F bC

P ).

The operational semantics of a program P over the concrete semantics domain Ĉ is
defined by means of the transition mapping →P and its closure. We denote the closure of
→P by →?

P .

Definition 6.11. (Operational semantics.) The operational semantics of a program
P over Ĉ is defined on atomic goals as

O
bC(P ) = {〈 p(x); R 〉 | 〈 p(x); States 〉 →?

P 〈 O; R 〉}.

In the definition above, the state 〈O; R〉 denotes that the empty program has been
reached and that an answer substitution for the query to the program is available. The
answer substitution can be obtained from R by mapping each variable of x onto the
co-domain of each e ∈ R.

The operational semantics is related to the fixpoint semantics as

O
bC(P ) = F

bC(P ).

6.4 Abstract Semantics

The analysis is carried out using the powerset of polyhedra since the possible occurrence
of a division by zero should not halt the process. Alternatively it could be performed
initially using the polyhedra domain and reformulating the abstraction into the powerset
when a possible division by zero is detected. This last option would be an improvement
in efficiency with respect to time and use of space, but the possible loss of precision while
using the polyhedral domain could also result in an inconclusive analysis. In fact, violation
of assertions would deliver the empty set, as our analysis cannot halt until the output point
of a program O is reached.

6.4.1 Definitions

We use abstract states to define the abstract semantics of a logic program. An alternative
approach consists in annotating the abstract version of a logic program with assertions in
the abstract domain, as done for instance in [KL02,KL03].
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Definition 6.12. (Abstract program state.) Let A ∈ Atoms and κ ∈ ℘fn(ĈPn) be a
success pattern for A. Then an abstract program state is defined to be any pair of the
form 〈A, κ〉.

The set of abstract states is denoted by States]. Abstract program states will be used
to express conditions in the variables of the atom that hold after querying the atom.

Definition 6.13. (Abstract semantics domain.) The abstract semantics domain is
defined by the complete lattice Â of powerset of abstract program states as

Â = 〈 ℘fn(States]),⊆,∪,∩, ∅,States] 〉

where ⊆ is the set inclusion relation, ∪ is the set union operator and ∩ is the set inter-
section operator.

6.4.2 Assignments

In this section we define the abstract state transition for assignments. In a (concrete)
program state 〈p(x), g1, . . . , gk; R〉, each input variable in p is instantiated to a value
within the interval [−Mff ,Mff ].

Definition 6.14. (Abstract assignment state.) An abstract assignment state is de-
fined by

〈 v ← exprf , g1, . . . , gk; κ 〉 ∈ States].

In the following definition, ∩? denotes the polyhedra powerset meet operator, as
defined in section 2.8.

Definition 6.15. (Abstract assignment state transition.) The transition from an
abstract assignment state to another abstract state for a program P is defined as

〈 v ← exprf , g1, . . . , gk; κ 〉 ⇒P 〈 g1, . . . , gk; κ ∩? κ′ 〉

for κ, κ′ ∈ ℘fn(CPn), vars(x) ⊆ vars(exprf ) where

E = {e] ∈ AEnvf | ∀Q ∈ κ : e](xi) = ∃vars(x)\{xi}Q, i ∈ [1, n]}

and

κ′ = { Q ∈ CPn+1 | ∀e] ∈ E : Q = ] π([[exprf ]]
]
fl(e

])) ∧ Q ⊆ [−Mff ,Mff ]n+1 }.

where the n+ 1 dimension in the polyhedra corresponds to variable v.

Recall that our analysis studies logic programs with numerical atoms. Thus the tran-
sition from an abstract assignment state reaches another state with a numerical atom.
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Figure 6.1: Plot of input assertion and initial output assertion for y ← [1, 1]x2 (left); and
upgrade of output assertion (darker gray) (right).

We can be achieved higher precision in the computation of κ′ by considering the recursive
method. For some segmentation degree m ≥ 1,

κ′ = { Q ∈ CPn+1 | ∀e] ∈ E : Q ∈ Υm
e]([[exprf ]]

]
fl(e

])) ∧ Q ⊆ [−Mff ,Mff ]n+1 }.

Moreover, we can extended the definition above for the case of expressions with possible
divisions by zero. Thus, for a segmentation degree m ≥ 1 and tree depth d,

κ′ = { Q ∈ CPn+1 | ∀e] ∈ E : Q ∈ Υm,d
e] ([[exprf ]]

]
fl(e

])) ∧ Q ⊆ [−Mff ,Mff ]n+1 }.

Moreover, note that for m = 1 and d = 0,

] πe](x)([[exprf ]]
]
fl(e

])) = Υm
e]([p](x))

= Υm,d
e] ([p](x)).

The following example illustrates the definition of an abstract assignment state for a
floating-point expression that does not include polynomial quotients.

Example 6.16. Let y ← exprf be an assignment atom where for some e] ∈ AEnvf ,

[[exprf ]]
]
fl(e

]) = [1, 1]x2.

Moreover, for x ∈ vars(exprf ) let e](x) = [0, 1]. Then, by applying the Bernstein mapping
on [1, 1]x2 we get the set of control points

πe](x)([1, 1]x2) = { (0, 0), (0.5, 0), (1, 1) }
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which corresponds to the set of linear constraints
−x+ y ≤ 0,

−y + 2 · x ≤ 0,

−y ≤ 0.

The intersection of the input assertion with these linear constraints are the linear con-
straints themselves. Figure 6.1 plots the input, initial output, and upgraded output asser-
tions.

6.4.3 Tests

In the case of test atoms, we assume that each variable is an input variable and that it is
bounded by an interval included in [−Mff ,Mff ]. Let Q ∈ CPn be denoted by the set

{(c1, . . . , cn) ∈ Rn | (c1, . . . , cn) ∈ Q}.

Moreover, let vars(x) ⊆ vars(Q), x = (x1, . . . , xn), and let e] ∈ AEnvf be defined by

e](xi) = ∃vars(x)\{xi} Q, i ∈ [1, n− 1].

Then

Enc(Q, e](x)) = [min(cn), max(cn)]. (6.1)

The definition that follows delivers those abstract environments for which the values that
instantiate the variables make the test hold. This definition considers both linear and
nonlinear tests.

Definition 6.17. (Abstract test state transition.) The transition from an abstract
test state to another abstract state for a program P is defined as

〈 expr1,f ≤ expr2,f , g1, . . . , gk; κ 〉 ⇒P 〈 g1, . . . , gk; κ′ 〉,

where for κ, κ′ ∈ ℘fn(CPm), and vars(x) ⊆ vars(expr1,f )∪vars(expr2,f ), and x = (x1, . . . , xm),

κ′ =


s](x) ∈ CPm

∃e] ∈ AEnvf . ∀Q ∈ CPm :
Q ∈ κ ∧ e](xi) = ∃vars(x)\{xi}Q, i ∈ [1,m] :
∀Q′ ∈ Υn,d

e] ([[expr2,f ]]
]
fl(e

]) �] [[expr1,f ]]
]
fl(e

])) :
∀s] ∈ AEnvf : s](x) ⊆ e](x) ∧
Enc(Q′, s](x)) = [a−, a+] ∧ a− ≥ 0


.
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6.4.4 Operational Semantics

In this section we compute the success patterns for logic programs with floating-point
computations.

Definition 6.18. (Abstract fixpoint semantics operator.) The abstract fixpoint

semantics operator F
℘fn( dCPn)
P : ℘(States])→ ℘(States]) is defined over the complete lattice

of powerset of abstract states as

F
℘fn( dCPn)
P (A) =

 〈p(x); κ′〉 ∈ ℘fn(States])

∀〈p(x), κ〉 ∈ A :
∀〈p1(x1); κ1〉, . . . , 〈pk(xk); κk〉 ∈ A :
p(x)← p1(x1), . . . , pk(xk) ∈ P ∧
κ′ = κ ∩? ∩?

i∈[1,k] ∃xi(κi)

 .

Definition 6.19. (Abstract fixpoint semantics of a program P over ℘fn(ĈPn).)
The abstract fixpoint semantics of a program P over ℘fn(ĈPn), denoted F℘fn( dCPn)(P ) is
defined as

F℘fn( dCPn)(P ) = lfp(F℘fn( dCPn)
P ).

The convergence to a fixpoint can be accelerated with the use of widening operators for
the polyhedra domain [CC77,CH78,Hal79] and widening operators for the finite powerset
of the polyhedra domain [BHRZ03a].

Definition 6.20. (Abstract operational semantics.) The abstract operational se-
mantics of a program P is defined by the transitive closure of the abstract states transition
on atomic goals as

O
℘fn(ĈPn)
P = {〈p(x); κ〉 ∈ States] | 〈p(x); Rn〉 ⇒?

P 〈O; κ〉}

The abstract operational semantics soundly approximates the concrete operational se-
mantics since each state transition in the concrete is soundly approximated by an abstract
state transition. This soundness can be assured since the computation of assertions in
each state is defined by means of the sound abstraction operators presented in chapters 4
and 5. Thus for the concrete and the abstract operational semantics for a logic program
we have the following soundness result.

Theorem 6.21.

∀〈p(x);R〉 ∈ O
bC
P : ∃〈p(x);κ〉 ∈ F

℘fn(CPn)
P . ∀e ∈ R : {e(x)} ⊆? κ.

Theorem 6.22.

O℘fn( dCPn)(P ) = F℘fn( dCPn)(P ).

97



Chapter 6 Forward Relational Analysis for Constraint Logic Programs

6.5 Detecting Floating-Point Overflow

In chapter 3, we defined floating-point overflow for floating-point arithmetic as the re-
sult of an operation which has no representation in the underlying floating-point system;
namely, for a floating-point system of format f , those values not included in the interval
[−Mff ,−Mff ] overflow, and are denoted by Ω. In this section we generalise the meaning
of the term overflow. Informally, we say that the result of evaluating a floating-point
expression overflows if it is larger or smaller than preset values.

6.5.1 Absolute and Relative Overflow

For n variables (in both input and output positions) in the query state atoms, we define
a bounding box Babs ∈ IRn, where

Babs = [−Mff ,Mff ]× . . . (k times) . . .× [−Mff ,Mff ].

We call Babs the absolute overflow bounding box. Moreover, we can set constraints on the
variables in the query state atoms, which bound the possible values each variable can take.
For this case we define a bounding box Brel ∈ IRn, where

Brel = [r−1 , r
+
1 ]× . . . (k times) . . .× [r−n , r

+
n ].

We call Babs the relative overflow bounding box. Note that [r−i , r
+
i ] ⊆ [−Mff ,Mff ], for

i ∈ [1, n]. A formal definition of overflow for our analysis is presented below.

Definition 6.23. (Absolute overflow.) We say that a floating-point expression exprf ,
where vars(x) ⊆ vars(exprf ), overflows for an abstract environment e] ∈ AEnvf if

Enc([[exprf ]]
]
fl(e

]), e](x)) 6⊆ [−Mff ,Mff ].

In our analysis, absolute overflow refers to the overflow inherent in a floating-point
system of format f , in which the result of evaluating a floating-point expression is too
large or too small to be represented in format f . We consider another class of overflow,
which is relative to a given interval. The boundaries of the relative overflow interval are
representable in the floating-point system in use. A formal definition of relative overflow
is as follows.

Definition 6.24. (Relative overflow.) We say that a floating-point expression exprf ,
where vars(x) ⊆ vars(exprf ), overflows for an abstract environment e] ∈ AEnvf relative
to an interval [r−, r+] ∈ IR where [r−, r+] ⊆ [−Mff ,Mff ] if

Enc([[exprf ]]
]
fl(e

]), e](x)) 6⊆ [r−, r+].
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The relative overflow is useful to analyse programs with constraints on the variables.
Both classes of overflow can be extended to every variable in an expression; namely, for
an expression exprf where vars(x) ⊆ vars(exprf ), x ∈ Rk, we specify the absolute overflow
of exprf by Bf ,abs ∈ IRk and the relative overflow of exprf by Bf ,abs ∈ IRk.

Example 6.25. In example 6.16, we can constrain variable y by y ∈ Bf ,rel = [0, 1/2].
Note that

Enc([[exprf ]]
]
fl(e

]), e](x)) ⊆ [0, 1],

and thus [0, 1/2] 6⊆ [0, 1], which indicates a relative overflow for y.

Note that the analysis for relative overflow is different to the analysis for precision,
which investigates the difference between the expected result and the actual result (for
works on floating-point arithmetic precision analysis see for instance [Gou01] and [GMP01]).
The analysis for relative overflow verifies that the possible values taken by the output vari-
ables of a program are consistent with a set of constraints of such variables.

Moreover, note that in the analysis presented in this chapter, we use the empty set
to denote that any input to a given floating-point expression overflows (absolute over-
flow in our context) or divides by zero (which is a cause of absolute overflow). However,
both in the case of absolute and relative overflow, parts of the polyhedra may be within
the representable or allowed limits. In such a case, we are interested in retrieving such
nonoverflowing parts. Our approach is simple: for the case of absolute overflow we in-
tersect each polyhedron in the powerset, defined over Rk, with Bf ,abs ∈ IRk and for the
case of relative overflow, we intersect each polyhedron in the powerset with Bf ,rel ∈ IRk.
Whenever the intersection does not include the element of the powerset, then such element
is discarded as it may cause an overflow. The case of absolute overflow was formalised in
definitions 6.15 and 6.17 for abstract assignment and test state transitions, respectively.
For the case of relative overflow, such definitions can be easily reformulated by replacing
Bf ,abs by Bf ,rel.

The output of the forward analysis is used to perform a backward analysis. The
backward analysis assumes that there may be possible overflow (such as those caused by
division by zero), but it must deliver conditions of the input which do not produce any
floating-point run-time error. The worst case scenario is that all input to a program can
cause a floating-point run-time error, in which case both the forward and the backward
analyses deliver an empty set. Consider example 5.20 in which it is abstracted a quotient
of interval valued polynomials into a finite set of polyhedra. In that case, none of the
polyhedra includes zeroes and thus no overflow occurs; namely, the forward analysis com-
putes only those polyhedra that do not include zeroes. Thus, when analysing a clause with
more than one assignment or test, the powerset meet operator ∩? of any two polyhedron
that do not include any point that overflows, delivers a set of polyhedra that also do not
include any point that overflows. Moreover, this also holds for the poly-hull operator.
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These polyhedra are then used by the backward analysis to infer conditions in the input
variables. None of these polyhedra would be considered by the forward analysis if they
included some zero. In that case, the output of the forward analysis would be an empty
set, which would lead the backward analysis to deliver an empty set as well.

6.5.2 Intermediate Overflow

Subexpressions of a floating-point expression may also overflow. Thus, we refer to interme-
diate overflow as the overflow in a subexpression. In order to detect intermediate overflow,
an expression is broken down into subexpressions, which undergo a separate analysis each.

To illustrate this, consider the following program for the computation of the amplitude
of energy density; namely,

density(X,Y, Result) :-

Result is sqrt(X * X + Y * Y).

Assume double precision in the floating-point system. Note that in the assignment atom,
for X = 1e300, an intermediate overflow may occur, since

10300 · 10300 � Mff = 10308.

The analysis computes the set of polyhedra for which X*X, Y*Y, and X*X+Y*Y do not
overflow. For this purpose, it is defined three new assignments and a forward analysis
on each is performed, in order to detect possible overflow. Section 8.3 explains in detail
how the analysis processes sets of polyhedra for expressions with the square root function
using the concept of logarithmic segmentation.

6.6 Discussion and Related Work

Analyses of Logic Programs with Floating-Point Arithmetic. A related line of
research that involves logic programming and run-time errors due to floating-point arith-
metic is presented in [SS02,SM04]. These works deal with the problem of termination in
logic programs with floating-point arithmetic. It is shown that for certain settings in the
floating-point rounding method, a query to a program may not terminate. This work is
closely related also to the issue of fixpoint convergence of programs, which is central in
static analysis. Intuitively, a program that does not converge may not terminate.

Invariants. The study of nonlinear invariants for programs with floating-point com-
putations is important for the analysis of reactive systems. For this purpose, Sankara-
narayanan [San05] provides techniques for finding (possibly) nonlinear invariants in im-
perative programs with floating-point computations. This work is founded in abstract
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interpretation, and uses weakly relational domains, which avoid exponential space com-
plexity. However, no specific treatment of rounding errors is considered. In [BRCZ05],
techniques for inferring polynomial invariants are presented. These techniques are useful
for the verification of numerical properties of programs that cannot otherwise be verified
with linear invariants. However, no specific treatment of floating-point arithmetic is con-
sidered in this work either. In our analysis, we work with linear invariants for the analysis
of programs of nonlinear expressions, although at the high space cost of using the finite
powerset of polyhedra. Thus, we trade analysis cost for precision, as well as an analysis
general enough to cope with a wide class of nonlinear expressions.
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Chapter 7

Backward Relational Analysis for

Constraint Logic Programs

In this chapter we present a backward analysis for the inference of precondi-
tions in the input variables of a logic program to avoid floating-point run-time
overflow. We instantiate the backward analysis presented in [KL02] and fur-
ther extended in [KL03] to the powerset of polyhedra. However, we show that
the powerset of polyhedra does not require a definition of a logical model as it
does in [KL03]. Moreover, we synthesize a universal quantifier operator from
which it can be defined a Galois connection that ensures the correctness of the
analysis.

7.1 Introduction

Backward analysis propagates constraints from the output of a program toward the in-
put in order to infer which conditions must hold in the input to obtain a safe output.
That is to say, for a given postcondition, backward analysis infers the preconditions that
ensures the postcondition holds. Backward analysis for logic programs has been devel-
oped, for instance, for safe calls inference [KL02, KL03], for type inference [LK02], for
set sharing inference [LK04, LL05], for suspension analysis [GK03], and for termination
inference [GC01].

In this chapter we propose a backward analysis for the inference of preconditions in
the input to a program from which it can be ensured that no floating-point overflow can
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occur whenever the inferred preconditions are satisfied; that is to say, for the inference of
nonoverflow. This backward analysis is useful, for instance,

• for prototype development; namely, for ensuring that the implementation of a model
for a physical system, the coding of the model parameters, and input to the prototype
program do not conflict with the underlying floating-point system;

• for code reusability; namely, for reusing mathematical models for physical system,
where the composition of models is mathematically sound but the composition of
implemented components may not be;

• for defensive programming development; namely, for protecting critical parts in the
code that have been left unprotected against potentially hazardous input, and where
the inference of safe preconditions in large or complex code can be a tedious or even
impractical task if delegated to the programmer.

In the design of a backward analysis, two approaches can be followed: the design by
abstract interpretation on a backward collecting semantics (from scratch); or by invert-
ing an already designed forward analysis. The second approach in general reduces the
design effort as the correctness of the backward analysis can be determined from the cor-
rectness of the forward analysis [HL94,KL03]. In the backward analysis presented here,
we use the outcome of the forward analysis presented in chapter 6. We follow King’s &
Lu backward framework [KL02, KL03], which requires the abstract domain to include a
pseudo-complement operator that guarantees the existence of the maximal preconditions
that does not violate a given postcondition. Our analysis is designed for the powerset
of the polyhedra domain. Moreover, following [KL03], we define existential and universal
quantifier operators for the powerset of the polyhedra domain from which we can guarantee
the correctness of the analysis.

In particular the backward analysis presented here can be instantiated to infer condi-
tions for either absolute or relative overflow. This is achieved by parameterising the initial
element in the lattice from which the backward inference starts; that is to say, whether
the initial element corresponds to Babs or Brel, as defined in chapter 6.

Our contribution in this chapter is the introduction of a backward analysis for the
inference of numerical properties in logic programs that compute floating-point arithmetic
operations. The analysis infers preconditions to avoid floating-point overflow, such as for
instance that caused by division by zero. Central in this analysis is the use of the powerset
of polyhedra, for which a logical model is defined, which makes it appropriate for use in
King’s & Lu backward framework. Moreover, we present an application for the inference
of preconditions for safe motion of robots.
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7.2 Pseudo-Complementation in Polyhedra Domains

The backward analysis framework presented by King’s & Lu relies on the existence of a
pseudo-complementation operator in the abstract domains. Using this operator we can
obtain the maximal preconditions that must hold any success call to an atom. First we
introduce the basic concepts needed to develop King’s & Lu backward framework. Then
we study two domains of interest: namely the polyhedra domain and the powerset of
polyhedra domain. We show that both domains are equipped with a pseudo-complement
operator and thus are appropriate for backward analysis.

7.2.1 Definitions

For a given lattice 〈D,≤,∨,∧〉, the pseudo-complement operator, if it exists in D̂, is
defined by the join and meet operators of D̂ [GPR96,Ran02]; namely, for d1, d2 ∈ D, the
pseudo-complement of d1 relative to d2, denoted by wr(d1, d2), is a mapping wr : D → D

defined as

wr(d1, d2) = ∨ {d ∈ D | d ∧ d1 ≤ d2}.

We say that a domain D̂ is completely meet-distributive if ∀a, b1, . . . , bn ∈ D, n ∈ N,

a ∧ (∨n
i=1 bi) = ∨n

i=1 (a ∧ bi).

A domain that is completely meet-distributive implies that it is a complete Heyting alge-
bra [Bir67]. This in turn implies that the domain is equipped with a pseudo-complement
operator [GS98]. Moreover, condensing domains [MS93, GRS05] are equipped with a
pseudo-complement operator. In addition, the powerset of any domain is equipped with
a pseudo-complement operator.

7.2.2 Pseudo-Complement Operators

We define the pseudo-complement of polyhedra relative to another polyhedra through the
concept of maximal weakest polyhedra, as follows.

Definition 7.1. (Maximal weakest polyhedra.) For P,Q ∈ ℘fn(CPn), the maximal
weakest polyhedra of P relative to Q, denoted wr?(P,Q), is defined by the polyhedra
C ∈ ℘fn(CPn) where

C = ∪
{
D ∈ CPn | P ∩? {D} ⊆? Q

}
.

In [KL03], the pseudo-complement operator is defined through the negation of con-
straints in LinX . Our approach is different. We define a pseudo-complement powerset
operator for the powerset of bounded convex polyhedra, which in fact is a meet powerset
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operator. First, recall that the polyhedra powerset meet operator is defined as a mapping
∩? : ℘(Hull)× ℘(Hull)→ ℘(Hull) where

{s1, . . . , sm} ∩? {t1, . . . , tn} = Ω⊆
CPn

(
{s1 ∩ t1, . . . , s1 ∩ tn, . . . , sm ∩ t1, . . . , sm ∩ tm

)
}.

That is to say, the finite polyhedra powerset meet operator is defined as a finite set of
maximal weakest polyhedra.

Definition 7.2. (Pseudo-complement operator for the powerset of polyhedra.)

The pseudo-complement operator for the powerset of polyhedra is defined as

wr?({s1, . . . , sm}, {t1 . . . , tn}) = {s1, . . . , sm} ∩? {t1 . . . , tn}.

7.3 Backward Fixpoint Semantics

In this section we present the backward fixpoint semantics for the inference of preconditions
on queries to clauses in a logic program with floating-point computations. First we define
the concept of call patterns with is central in specifying preconditions. Then we define
quantifier operators, which are central in King’s and Lu backward framework. From these
concepts we can then present a parametrised operator for the inference of preconditions.
This operator is parametrised on the initial element in the lattice of powerset of polyhedra
from which the inference starts. Results on correctness of the analysis follows.

7.3.1 Definitions

Here we formalise the concept of precondition under the term of call pattern. First, recall
that an abstract program state that includes a postcondition f ∈ ℘fn(CPn) is denoted by

〈 p(x); f 〉b ∈ States].

The concept of success pattern has been introduced chapter 6. Here we formalise this
concept as follows.

Definition 7.3. (Success pattern.) We say that f ∈ ℘fn(CPn) describes a success
pattern for an atom p(x) if

〈p(x); Rn〉 ⇒?
P 〈O; f〉.

where {Rn} is the top element of ℘fn(ĈPn).

Definition 7.4. (Call pattern.) We say that d ∈ ℘fn(CPn) describes a call pattern for
an atom p(x) if

〈pi(xi); d〉 6⇒?
P 〈O; ∅〉

where {Rn} is the top element of ℘fn(ĈPn).
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In our analysis, the empty set ∅ is considered as a call pattern where there exists no
values for the input variables of a query that can succeed. We denote an abstract program
state for an atom p(x) which includes a precondition by

〈 p(x); d 〉b ∈ States].

7.3.2 Quantification Operators

Central in King’s and Lu backward framework is the definition of a universal quantifier
operator, by which it can be guaranteed the correctness of the analysis. Thus, we must
engineer a universal quantifier operator for the powerset of polyhedra, which is monotonic
and additive. If such properties hold then we can define a Galois connection as in [KL03]
that ensures the correctness of the analysis. Note that the universal quantifier operator
for powerset of polyhedra can be defined by means of the existential quantifier operator
for the same domain. The existential operator for the powerset can be defined in turn as
an extension of the existential operator for the polyhedra domain, by applying the latter
operator to each element in the powerset.

In [KL03, example 6], a definition of such operators is provided for the polyhedral
domain LinX [LS97]. The generalisation of the operators for the full polyhedra domain
is straightforward. First, we need the concept of free variable, defined as follows. For a
linear constraint of the form

∑
v∈V avv ≥ 0, we denote by

fr(
∑
v∈V

avv ≥ 0)

the set of free variables in the constraint; namely, the set of variables whose coefficients
are different to zero:

fr(
∑
v∈V

avv ≥ 0) = {v ∈ V | ∀av ∈ R : av 6= 0},

Let ξP denote a set of linear constraints of the form
∑

v∈V avv ≥ 0 that define an element
P ∈ CPn. Then,

fr(ξP ) = ∪`∈ξP
fr(`),

where ∪ is the set union operator. Then the existential quantifier operator is defined as a
mapping ∃v : CPm → CPn where

∃v(P ) = {e ∈ ξP | ∀e ∈ ξP : v /∈ fr(e)}

That is to say, those constraints that define P and that do not include a variable v are
removed from the set ξP of constraints. Moreover, the universal quantifier operator is
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defined as a mapping ∀v : CPn → CPn where

∀v(P ) =

ξP if v /∈ fr(ξP )

∅ otherwise.

That is to say, the operator delivers P if every constraint in ξP does not include variable
v; otherwise, the operator delivers the bottom element of the lattice, namely, the empty
set.

Moreover, we can extend the definition of these operators to the case of the pow-
erset of polyhedra; namely, the existential quantifier powerset operator is a mapping
∃?

v : ℘fn(CPn)→ ℘fn(CPn) defined for a set of variables V , where v ∈ V , as

∃?
v(Q) = {∃v(P ) ∈ CPn | ∀P ∈ CPn : P ∈ Q}

The universal quantifier powerset operator is a mapping ∀?
v : ℘fn(CPn)→ ℘fn(CPn) defined

for a set of variables V , where v ∈ V , as

∀?
v(Q) = {∀v(P ) ∈ CPn | ∀P ∈ CPn : P ∈ Q}.

Both the existential and universal quantifier operators are monotonic and both project
a variable away from a set of constraints. The main difference between them, as noted
in [KL03], is the direction of approximation; namely, for P ∈ CPn defined for a set V of
variables,

∀v(P ) ⊆ P ⊆ ∃v(P ).

Moreover, for Q ∈ ℘fn(CPn),

∀v(Q) ⊆? Q ⊆? ∃v(Q).

This observation is important to show the correctness of the backward analysis.

7.3.3 Backward Operators

In order to define a backward fixpoint semantics for logic programs that compute floating-
point arithmetic, we must first present two particular backward operators. One of these
operators delivers call patterns for assignment atoms; the other delivers call patterns
for test atoms. Informally, a backward operator for assignments infers which are the
possible values that can instantiate the variables in an assigner expression, so that the
assignee variable is instantiated to those values inferred by a forward semantics operator.
A backward operator for tests infers which are the possible values that can instantiate the
variables in the expressions for which the test holds.

Definition 7.5. (Backward semantics for assignments.) The backward semantics
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for an assignment v ← exprf where vars(x) ⊆ vars(exprf ), x = (x1, . . . , xm), is defined as

D
℘fn(CPm)
v is exprf

= 〈v ← exprf ; Bf 〉b ∈ States]
∃e] ∈ AEnvf . e](x) ⊆ Bf .

∀Q ∈ CPm+1 : Q ∈ Υn,d
e] ([[exprf ]]

]
fl(e

])) ∧
Bf = ∃v Q

 ,

where the m+ 1 dimension in the polyhedra corresponds to variable v and

Bf ∈ {Bf ,abs,Bf ,rel}.

In the definition that follows, it is important to recall expression 6.1 in page 96.

Definition 7.6. (Backward semantics for inequality tests.) The backward se-
mantics for a test expr1,f ≤ expr2,f where vars(x) ⊆ vars(expr1,f ) ∪ vars(expr2,f ) and
x = (x1, . . . , xm) is defined by

D
℘fn(CPm)
expr1,f≤expr2,f

=
s](x) ∈ CPm

∃e] ∈ AEnvf . ∀Q ∈ CPm : Q ∈ Bf ∧
e](xi) = ∃vars(x)\{xi}Q, i ∈ [1,m] :
∀Q′ ∈ Υn,d

e] ([[expr2,f ]]
]
fl(e

]) �] [[expr1,f ]]
]
fl(e

])) :
∀s] ∈ AEnvf : s](x) ⊆ e](x) ∧
Enc(Q′, s](x)) = [a−, a+] ∧ a− ≥ 0


.

where
Bf ∈ {Bf ,abs,Bf ,rel}.

We define a backward fixpoint semantics operator that uses the existential and univer-
sal quantifier operators, which are monotonic, reductive and extensive. This ensures the
correctness of the analysis, as shown in [KL03]. Moreover, this operator is parameterised
with the initial element in the lattice from which the inference starts; namely, for instance
Bf ,abs ∈ Rk or Bf ,rel ∈ Rk for absolute or relative overflow, respectively.

Definition 7.7. (Parametric backward fixpoint semantics operator.) Let P be a
constraint logic program over CPn. Then operator BCPn

P Int→ Int is defined by

B
℘fn(CPn)
P,Bf

(D℘fn(CPn)
P ) =
〈p(x); e〉b ∈ States]

∀{ 〈pi(xi); fi 〉f}mi=1 ⊆ F
℘fn(CPn)
P .

∀{ 〈pi(xi); di 〉b}mi=1 ⊆ D
℘fn(CPn)
P .

∃p(x)← c, p1(x1), . . . , pm(xm) ∈ P :
em+1 = {Bf} ∧ ei = di ∩? (fi ∩? ei+1) ∧
e ⊆ ∀?

vars(x)(e0) ∧ e0 = wr?(c, e1)


,
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where F
℘fn(CPn)
P is the set of success patterns of the program and where

Bf = {Bf ,abs, Bf ,rel}.

In the definition above, D
℘fn(CPn)
P denotes the set of initial call patterns, which are

defined for assignments and tests, and for every other class of predicate. Such a set is
defined by polyhedra intersection with either Bf ,abs or Bf ,rel, following initial constraints
required in the variables of each head atom. Moreover, di represents the conditions that
must hold pi(xi) to avoid overflow errors when it is queried; moreover, ei ⊆? di, which en-
sures that the sub-goal pi+1(xi+1), . . . , pn(xn) does not cause an overflow. If the conditions
represented by ei hold, then no overflow occur when querying pi(xi), . . . , pn(xn).

An important result to show the correctness of a backward framework for logic pro-
grams verification is the relationship between quantifier operators found in [KL03]. King
and Lu found that a forward and backward verification mechanism has the same verifi-
cation strength, since it can be constructed a Galois connection using the abstract do-
main and the quantifier operators. Moreover, King and Lu noted that such operators are
monotonic, reductive (∃x) and extensive (∀x), and thus it is possible to define a Galois
connection. To see this note first that

∃?
x ◦ ∀?

x(P ) ⊆? P ⊆? ∀?
x ◦ ∃?

x(P )

That is to say, ∀?
x ◦ ∃?

x is extensive and ∃?
x ◦ ∀?

x is reductive. Moreover, ∃x and ∀x are
monotonic. Thus,

〈CPn,∀x,CPn,∃x〉

is a Galois connection. Hence by theorem 5 in [KL03],

〈℘fn(CPn),∀?
x, ℘fn(CPn),∃?

x〉

is a Galois connection. That is to say, both semantics have the same verification power.

7.4 Discussion and Related Work

Our analysis is particular in that it focuses on inferring numerical preconditions in queries
to a program. If such preconditions are satisfied, then floating-point overflows are avoided.
In order to infer numerical properties, we use the finite powerset of polyhedra. Our
backward analysis could be easily adapted to use octagons, by defining the corresponding
meet operator for powerset. This could lead to more efficient backward analyses than the
analysis presented here for polyhedra. A limitation of our approach is that in general we
cannot calculate invariants for nonlinear expressions. Chapter 6 discusses related work on
computation of invariants of nonlinear expressions.
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Chapter 8

Applications and Experimental

Results

8.1 Introduction

In this chapter we apply the analysis techniques developed for the analysis of logic pro-
grams with nonlinear floating-point expressions. We present an application for designing
robot trajectories and an application for designing satellite orbits.

The analysis is implemented in C++, which allows for encapsulation and scalabil-
ity, as well as efficiency. Using C++ allows moreover for using multiprecision arithmetic
libraries such as GMP 1. The GMP library provides a series of functions defined over
the rationals, the implementation of which is sound. This is important for implement-
ing the Bernstein mappings. Moreover, the analysis uses the Parma Polyhedra Library
(PPL) [BRZH02,BHRZ03b] for computing operations related to the polyhedra and polyhe-
dra powerset domains. This library in turn uses the GMP library. Although most existing
libraries for the manipulation of convex polyhedra use rational coefficients (namely for
instance Polka [Jea04,HPR97]), two exceptions can be found: the CDD library [Fuk01],
which uses floating-point arithmetic and is not except of rounding errors, and the analyser
in [Min04b], which employs interval floating-point arithmetic soundly to analyse floating-
point arithmetic itself. The implementation of the Bernstein mappings and subsequent
forward and backward analyses follows very closely the definitions presented in chap-
ters 3, 4 and 5.

The C++ code was compiler with the GNU gcc 3.2.2 and the experiments were con-
1GMP is a GNU Multiple Precision Library. The home page can be found at http://www.swox.com/gmp
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ducted in a ThinkPad X20 (600Mhz, Pentium III, 20Gb, 192MB of memory).

8.2 Robot Trajectory Verification

8.2.1 Introduction

The verification of a trajectory of a parallel robot before using the machine for instance for
manufacturing operations, can be of critical importance. The verification of a trajectory
commonly consists in checking whether a set of validity criteria holds for the given machine
specifications. This includes for example the verification of whether any possible trajectory
lies within the reachable workspace of a robot or whether the physical limitations of the
machine such as maximum leg length are satisfied. The verification of the robot geometry
has been addressed in [GPV95, CWMM04]. An algorithm for checking the validity of a
trajectory has been proposed in [Mer94]. Extensions of this latter work using interval
analysis have been proposed in [Mer01,Mer04], where complex trajectories with possible
nondeterministic floating-point rounding errors are considered. However, the floating-
point rounding errors are assumed to be bounded by some pre-established ranges.

In our approach, we first implement the mathematical model for the robot motion
trajectory through a logic program prototype. This implementation is in fact a direct
transcription of the model and captures the control flow as well as possible problems that
can be found in the machine-dependent floating-point system used. Moreover, we can
specify valid ranges for variables. This machine dependency is important when scaling the
prototype to a larger nonprototypical implementation.

8.2.2 Prototyping in Logic Programming

The following program is a prototype for verifying that the leg’s length of a robot is
bounded by a maximum length over a period of time. The problem at hand is to verify
whether the leg’s length will be bounded by for any allowed period of time. The analysis
treats this case as a relative overflow verification problem.

jointTrajectory(Time) :-

Time >= 0,

Time1 is Time + 1/100,

Time1 <= 4,

Length is 2 * Time - Time * Time + sin(Time) / 3,

Length <= 1.25,

jointTrajectory(Time1).

jointTrajectory(Time) :-

write(’Error: maximum length surpassed.’),

!, fail.

The functor sin/1 in the program above corresponds to the trigonometric function
sinus and is defined for radians. Moreover, this program is well-moded since each atom
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has available all the input before being queried.

8.2.3 Adaptive Method

In practice, in order to attain higher precision of abstraction in some problems, we can
redefine the NR mapping (see definition 5.16) by parameterising the test, instead to
assuming the Bernstein test Bt. We can define tests to comply with specific requirements
of the analysed program. In the prototype above, we define a leg length test which delivers
1 if the leg’s length is less than or equal to 1.25 and delivers 0 otherwise.

LLt(t) =

1 if [[2 · t− t2]]]fl(e
]) �] [−1/3−mff , 1/3 +mff ] ≤ [1.25, 1.25]

0 otherwise.

Given the set of abstract environments delivered by the redefined NR operator, we can
apply then a Bernstein mapping to each of these abstract environments to obtain polyhe-
dra. In the following section we present experimental results that show the performance
of this adaptive method by means of time of computation and precision attained.

8.2.4 Experimental Results

In the table of figure 8.1, it can be noted first that for depth 1, we have the standard
segmentation presented in chapter 4. Moreover, for depths larger than 1, the adaptive
method presents several performances in terms of number of solution segments and preci-
sion loss. The method achieves the best compromise between time of computation, number
of solution segments delivered and precision loss for values of n between 8 and 16. This
may be surprising since the bisection method, namely for n = 2, does not perform better.
As argued in [Vu05], bisection methods are suitable for cases with isolated solutions. In
this case, however, we have a continuum of solutions included in the intervals [0, 0.711]
and [0.711, 1.289]. These two intervals are obtained by backward analysis and correspond
in fact to the set of values for the input variable (time) for which no relative overflow can
occur.

Moreover, note that here the maximum number of possible branching in the adaptive
method is predetermined by n and the depth (d). Thus, the maximum number of branching
is nd. However, this number is not reached since [0.711, 1.289] ⊂ [0, 4], that is, there exists
subintervals in [0, 4] that do not cause relative overflow and that are larger than the width
of the shortest interval in the maximum depth.
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n depth time segments precision loss
2 1 0.01s 1 9.16667 · 10−1

2 0.05s 1 9.16667 · 10−1

3 0.08s 3 1.66667 · 10−1

4 0.12s 3 1.66667 · 10−1

5 0.14s 5 5.72917 · 10−2

4 1 0.03s 2 9.16667 · 10−1

2 0.07s 6 1.66667 · 10−1

3 0.10s 12 1.43229 · 10−2

4 0.14s 14 4.80143 · 10−3

5 0.18s 18 2.23796 · 10−4

8 1 0.04s 6 1.66667 · 10−1

2 0.08s 12 1.43229 · 10−2

3 0.12s 18 2.23796 · 10−4

4 0.15s 18 2.23796 · 10−4

5 0.20s 24 1.2214 · 10−5

16 1 0.04s 12 1.66667 · 10−1

2 0.10s 38 4.80143 · 10−3

3 0.14s 54 2.23796 · 10−4

4 0.19s 66 1.2214 · 10−5

5 0.24s 76 1.20146 · 10−6

32 1 0.09s 26 5.72917 · 10−2

2 0.21s 70 2.23796 · 10−4

3 0.28s 76 1.2214 · 10−5

4 0.38s 86 1.20146 · 10−6

5 0.47s 120 3.14214 · 10−8

64 1 0.18s 54 1.43229 · 10−2

2 0.37s 102 2.23796 · 10−4

3 0.55s 152 3.40391 · 10−6

4 0.75s 200 1.00247 · 10−7

5 0.93s 292 1.31022 · 10−9

128 1 0.36s 108 1.43229 · 10−2

2 0.73s 302 8.27114 · 10−5

3 1.10s 452 1.00247 · 10−7

4 1.51s 474 5.61182 · 10−9

5 1.92s 640 3.31866 · 10−11

Figure 8.1: Adaptive method for robot leg length (n, segmentation degree; tree depth; anal-
ysis time in seconds; number of segments that hold nonoverflow criteria; precision loss in
the abstraction).
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8.3 Analytical Orbital Mechanics

8.3.1 Introduction

In this experiment, we show the utility of the techniques presented in this work for the
detection and inference of absolute and intermediate overflows. We present a small proto-
type for computing parameters for the calculation of orbits of satellites, where the values
in consideration may have several orders of magnitude. Moreover, we consider nonlinear
multivariate expressions.

8.3.2 Prototyping in Logic Programming

The small prototype below computes parameters related to the orbit of satellite requires
information on the position and velocity of an orbiting object in the plane.

orbit(Rx, Ry, Vx, Vy, Gmp, R, EE) :-

massDistance(Rx, Ry, R),

totalEnergy(Vx, Vy, Gmp, R, EE).

massDistance(Rx, Ry, R) :-

R is sqrt(Rx * Rx + Ry * Ry).

totalEnergy(Vx, Vy, Gmp, R, EE) :-

Gmp > 0,

EE is (Vx * Vx + Vy * Vy)/2 - Gmp/R.

The function sqrt/1 is included in the mathematics module of SICStus and computes the
square root of its argument. This program is in fact a simplified model which is not
intended to include all the possible parameters to fully specify an orbit.

8.3.3 Logarithmic Segmentation

When considering large domains such as for instance in double precision the range [0,Mff ] ≈
[0, 10308], the segmentation method presented in chapter 4 may be impractical; namely,
the number of segmentations required to provide a reasonably significant solution may
be of the order of 10308 which is clearly computationally unfeasible. In this section we
introduce a logarithmic segmentation, namely, a segmentation that bisects the domain
into two subdomains according to the order of magnitude. For instance, the logarithmic
segmentation of [0, 10308] would be the two intervals [0, 10154] and [10154, 10308].

More formally, given an interval [a, b], let `a = log10 a and `b = log10 b. Then, for
`b − `a > 2, the logarithmic segmentation of [a, b] delivers the intervals

[a, 10d
`a+`b

2
e] and [10d

`a+`b
2

e, b].

For `b − `a ≤ 2, then the segmentation in chapter 4 can be applied.
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The logarithmic segmentation is useful for floating-point expressions that may grow
exponentially, such as for instance in the expressions in the above prototype.

8.3.4 Experimental Results

We assume the underlying floating-point system corresponds to double precision. In the
case of the mass distance, the analysis uses first logarithmic segmentation and then stan-
dard segmentation (with segmentation degree n = 2). The analysis shows in 0.11 seconds
that no intermediate overflow can occur in the output of the mass distance predicate if

Rx ∈ [0, 6.25 · 10153] and Ry ∈ [0, 6.25 · 10153].

These constraints can be tightened further at higher time and space cost. Under the
conditions above on the input variables, no intermediate overflow can thus occur, and
therefore no absolute overflow can occur either. The analysis moreover, uses the square
function to show that the floating-point square root does not overflow if invoked for values
different to NaN or ±∞. Thus, assuming no intermediate overflow occurs, the output
variable R is bounded by

R ∈ [0, 10154].

In the case of the total energy, the analysis infers in a similar way than for the mass
distance case, that no intermediate overflow can occur if the input variables are bounded
by

V x ∈ [0, 6.25 · 10153] and V y ∈ [0, 6.25 · 10153].

Note that for R = 0, division by zero occurs. Thus, in order to avoid division by zero, the
variable R is bounded by R ∈ [mff , 10154]. Moreover, Gmp ∈ [mff ,Mff ]. However, an
intermediate overflow is detected in the division of Gmp by R. Thus, R is further bounded
to [1, 10154], which ensures no overflow can occur. The analysis concludes that

EE ∈ [−Mff , 3.90625 · 10307].

That is, if the input variables hold the inferred nonoverflow conditions, then no overflow
can occur in the output variables.

This analysis can be a useful tool to improve the design of programs by detecting and
inferring conditions for overflow in floating-point expressions.
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Chapter 9

Conclusion

This thesis has presented techniques for the abstraction of floating-point expressions into
the polyhedra domain and the finite powerset of polyhedra domain. Moreover, a forward
and a backward analyses for detecting and inferring conditions of overflow and division
by zero have been introduced. The main aim of this thesis has been oriented around the
gain in precision in the abstractions and subsequent analyses, in order to detect and infer
several classes of overflow that may occur in software applications with nonlinear floating-
point expressions, which are common for instance in complex (physical) systems. In this
way, the main contributions of this thesis are summarised as follows:

• The introduction of a nonlinear abstract semantics based on interval valued polyno-
mials that has increased precision in comparison with other abstractions for floating-
point arithmetic. This semantics preserves nonlinear information which proves im-
portant to avoid linearisation and thus, loss of precision. Our abstraction holds
in the abstract interpretation framework of [Min04a]. This abstract semantics will
prove useful for abstracting floating-point expressions into the polyhedra domain.

• The adaptation of a series of methods based on Bernstein polynomials to abstract
the nonlinear abstract semantics introduced in chapter 3, into polyhedra, and also
to approximate the range enclosure of such semantics. Such methods vary in cost of
computation as well as in the degree of precision attained. Methods that achieve a
compromise between time and space efficiency, as well as precision are also proposed.

• The definition of a test for root existence in interval valued polynomials, based on
Miranda’s root existence theorem and the range enclosing property of the Bernstein
mappings, and the introduction of a variation of the branch and prune method for
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identifying segments of an abstract environment in which no roots exists. Based
on this, we propose an abstraction of floating-point polynomial quotients into the
polyhedra powerset.

• The introduction of general abstractions for assignments and tests in the powerset
of polyhedra. These abstractions are general in that linear and nonlinear expres-
sions are considered. Moreover, we introduce a forward analysis for the detection
of floating-point overflow and overflow due to division by zero which always reaches
the output program points. This is necessary in order to develop a backward anal-
ysis that infers preconditions on the input variables of a program to avoid possible
divisions by zero.

• The introduction of a backward analysis for the inference of numerical properties
in logic programs that perform floating-point arithmetic operations. The analysis is
specialised in the inference of preconditions to avoid floating-point overflow, such as
for instance that caused by division by zero. Central in this analysis is the use of
the powerset of polyhedra.
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Comptes Rendus de l’Académie des Sciences, 1(307):855–860, 1988.

[CV92] J. M. Chesneaux and J. Vignes. Les fondaments de l’arithmétique stochas-
tique. Comptes Rendus de l’Académie des Sciences, 1(315):1435–1440, 1992.

[CWMM04] D. Chablat, Ph. Wenger, F. Majou, and J-P. Merlet. An interval analysis
based study for the design and the comparison of three-degrees-of-freedom
parallel kinematic machines. The International Journal of Robotics Research,
23(6):615–624, 2004.

[Dem84] J. W. Demmel. Underflow and the reliability of numerical software. SIAM
Journal in Scientific and Statistical Computing, 5(4):887–919, 1984.

[DGB92] S. Debray, D. Gudeman, and P. Bigot. Detection and optimisation of
suspension-free logic programs. The Journal of Logic Programming, 29(1–
3):171–194, 1992.

121



Chapter 9 BIBLIOGRAPHY

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge, United Kingdom, 1990.

[DP03] J. Delgado and J. M. Peña. A linear complexity algorithm for the Bern-
stein basis. In International Conference on Geometric Modeling and Graphics
(GMAG’03), pages 162–167. IEEE, July 2003.

[EBC99] S. Etalle, A. Bossi, and N. Coco. Termination of well-moded programs.
Journal of Logic Programming, 38(2):243–257, 1999.

[Eda97] A. Edalat. Domains for computation in mathematics, physics and exact real
arithmetic. Bulletin of Symbolic Logic, 3(4):401–452, 1997.

[EP97] A. Edalat and P. J. Potts. Exact real computer arithmetic. Technical Report
DOC 97/9, Department of Computing, Imperial College, London, 1997.

[ES99] A. Edalat and P. Snderhauf. A domain-theoretic approach to real number
computation. Theoretical Computer Science, 210(1):73–98, 1999.

[Far93] G. Farin. Curves and surfaces for computer aided geometric design. A practi-
cal guide. Computer Science and Scientific Computing. Academic Press, San
Diego, CA 92101, US, 3rd edition, 1993.

[Fer04] J. Feret. Static analysis of digital filters. In D. A. Schmidt, editor, Program-
ming Languages and Systems, 13th European Symposium on Programming,
ESOP 2004, held as part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, volume 2986 of Lecture Notes in Com-
puter Science, pages 33–48, Barcelona, Spain, March 29 - April 2, 2004.
Springer.

[FHW00] M. Falaschi, P. Hicks, and W. Winsborough. Demand transformation analy-
sis for concurrent constraint programs. The Journal of Logic Programming,
42(3):185–215, March 2000.

[Fis90] H. C. Fischer. Range computations and applications. Contributions to Com-
puter Arithmetic and Self-Validating Numerical Methods, pages 197–211,
Amsterdam, 1990.

[FL05] A. Frommer and B. Lang. Existence tests for solutions of nonlinear equations
using Borsuk’s theorem. SIAM Journal on Numerical Analysis, 43(3):1348–
1361, 2005.

[Fuk01] K. Fukuda. cddlib reference manual, cddlib Version 092a. McGill Uni-
versity, Montreal, Canada, 2001. Manual and software available at
http://www.cs.mcgill.ca/ fukuda/software/cdd home/cdd.html.

122



Chapter 9 BIBLIOGRAPHY

[Gar86] J. Garloff. Convergent bounds for the range of multivariate polynomials.
Interval Mathematics 1985, 212:37–56, 1986.

[Gar93] J. Garloff. The Bernstein algorithm. Interval Computations, 2:154–168, 1993.
(Interval Computations is now known as Reliable Computing).

[GC01] S. Genaim and M. Codish. Inferring termination conditions for logic pro-
grams using backwards analysis. In International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 681–690. Springer-Verlag, 2001.

[GG99] J. Garloff and B. Graf. Solving strict polynomial inequalities by Bernstein
expansion. In N. Munro, editor, Symbolic Methods in Control System Analysis
and Design, pages 339–352, London, 1999. IEEE.

[GK03] S. Genaim and A. King. Goal-independent suspension analysis for logic pro-
grams with dynamic scheduling. In P. Degano, editor, European Symposium
on Programming, volume 2618 of Lecture Notes in Computer Science, pages
84–98. Springer-Verlag, April 2003.

[GL70] D. I. Good and R. L. London. Computer interval arithmetic: Definition and
proof of correct implementation. Journal of the Association for Computing
Machinery, 17(4):603–612, October 1970.

[GMP] E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-
point computations: a simple abstract interpreter. In D. Le Métayer, editor,
Programming Languages and Systems, 11th European Symposium on Pro-
gramming, ESOP 2002, held as part of the Joint European Conference on
Theory and Practice of Software ETAPS 2002, Grenoble, France, April 8-12,
2002, volume 2305 of Lecture Notes in Computer Science, pages 133–150.
Springer.

[GMP01] E. Goubault, M. Martel, and S. Putot. Concrete and abstract semantics of
floating-point operations. Technical report, CEA – Recherche Technologique,
LIST–DTSI–SLA, CEA F91191 Gif-Sur-Yvette Cedex, France, August 2001.

[GMP06] E. Goubault, M. Martel, and S. Putot. Some future challenges in the val-
idation of control systems. In Embedded Real Time Software, ERTS’06,
Toulouse, France, January 25-27, 2006.

[Gol91] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, March 1991.

[Gol06] A. Goldsztejn. A branch and prune algorithm for the approximation of non-
linear AE-solution sets. In 21st ACM Symposium on Applied Computing

123



Chapter 9 BIBLIOGRAPHY

Track Reliable Computations and their Applications 2006, Dijon, France,
2006.

[Gou01] E. Goubault. Static analyses of the precision of floating-point operations. In
Patrick Cousot, editor, Static Analysis, 8th International Symposium, SAS
2001, volume 2126 of Lecture Notes in Computer Science, pages 234–259,
Paris, France, July 16-18, 2001. Springer.

[GPR96] R. Giacobazzi, C. Palamidessi, and F. Ranzato. Weak relative pseudo-
complements of closure operators. Algebra Universalis, 36(3):405–412, 1996.
Also available as Technical Report LIX/95/04, 1995 LIX, Ecole Polytech-
nique, 91128 Palaiseau Cedex, France.

[GPV95] C. Gosselin, L. Perreault, and C. Vaillancourt. Simulation and computer-
aided kinematic design of three-degree-of-freedom spherical parallel manipu-
lators. Journal on Robotic Systems, 12(12):857–869, 1995.

[GRS05] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract domains con-
densing. ACM Transactions on Computational Logic (ACM-TOCL), 6(1):33–
60, 2005.

[GS98] R. Giacobazzi and F. Scozzari. A logical model for relational abstract
domains. ACM Transactions on Programming Languages and Systems,
20(5):1067–1109, 1998.
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d’Informatique Fondamentale, École Polytechnique Fédérale de Lausanne,
Laussane, Switzerland, March 2005.

[Vui90] J. E. Vuillemin. Exact real computer arithmetic with continued fractions.
IEEE Transactions on Computers, 39(8), 1990.

[Wei85] K. Weierstrass. Uber die analytische darstellbarkeit sogenannter willkurlicher
functionen einer reellen veranderlichen. Sitzungsberichte der Koniglich

131



Chapter 9 BIBLIOGRAPHY

Preussischen Akademie der Wissenshcaften zu Berlin, pages 633–639,789–
805, 1885.

[WH98] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In Func-
tional Programming and Computer Architecture, volume 274 of Lecture Notes
in Computer Science, pages 385–407. Springer-Verlag, 1998.

[Wil80] J. H. Wilkinson. Turing’s work at the National Physical Laboratory and the
construction of Pilot ACE, DEUCE and ACE. In N. Metropolis, J. Howlett,
and G-C. Rota, editors, A History of Computing in the Twentieth Century:
A Collection of Essays, pages 101–114, New York, US, 1980. Academic Press.

[Zet91] M. Zettler. Subdivision and degree elevation for Bernstein polynomials, 1991.
diploma thesis, Fachhochschule Konstanz, Fachbereich Informatik, Germany.

[ZG98] M. Zettler and J. Garloff. Robustness analysis of polynomials with polynomial
parameter dependency using Bernstein expansion. IEEE Transactions on
Automatic Control, 43:425–431, 1998.

132



133


	Abstract
	Acknowledgements
	1 Introduction
	1.1 The Cost of Finiteness
	1.2 Motivation
	1.2.1 Semantics of Floating-Point Arithmetic
	1.2.2 Verification of Programs at Implementation Stage
	1.2.3 Verification of Prototypes at Design Stage

	1.3 Related Work
	1.4 Structure of the Thesis
	1.5 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Polynomials
	2.3 Orders and Lattices
	2.4 Interval Arithmetic
	2.5 Functions and Fixpoints
	2.6 Abstract Interpretation
	2.7 Polyhedra Domain
	2.8 Finite Powerset Domain of Polyhedra
	2.9 Logic Programming

	3 Concrete and Abstract Semantics of Floating-Point Arithmetic
	3.1 Introduction
	3.2 The IEEE-754 Floating-Point System Standard
	3.2.1 Representation
	3.2.2 Characteristic Values
	3.2.3 Categories
	3.2.4 Rounding Methods

	3.3 Concrete Semantics of Floating-Point Arithmetic
	3.3.1 Rounding Errors
	3.3.2 Evaluation of Floating-Point Expressions

	3.4 Nonlinear Abstract Semantics of Floating-Point Arithmetic
	3.4.1 Interval Valued Polynomials
	3.4.2 Range Enclosure for Interval Valued Polynomials
	3.4.3 Operators for Interval Valued Polynomials
	3.4.4 Abstracting Rounding Errors
	3.4.5 Abstract Interpretation of Floating-Point Arithmetic

	3.5 Discussion and Related Work

	4 Polyhedra for Floating-Point Polynomial Expressions
	4.1 Introduction
	4.2 Bernstein Expansion
	4.2.1 Definitions
	4.2.2 Convex Hull Property
	4.2.3 Range Enclosure Property
	4.2.4 The  Transformation

	4.3 Standard Method
	4.3.1 Definitions
	4.3.2 Interval  Transformation
	4.3.3 Bernstein Mappings
	4.3.4 Polyhedra Abstraction
	4.3.5 Range Enclosures

	4.4 Recursive Method
	4.4.1 Definitions
	4.4.2 Polyhedra Powerset Abstraction
	4.4.3 Nonredundancy Property
	4.4.4 Range Enclosures

	4.5 Minimal Method
	4.5.1 Definitions
	4.5.2 Polyhedra Abstraction
	4.5.3 Range Enclosures

	4.6 Discussion and Related Work

	5 Polyhedra for Floating-Point Polynomial Quotients
	5.1 Introduction
	5.2 Tests for Zero Existence in Interval Valued Polynomials
	5.2.1 Definitions
	5.2.2 Miranda's Existence Theorem
	5.2.3 Bernstein Tests

	5.3 Branch and Prune Method for Abstract Environments
	5.3.1 Definitions
	5.3.2 Constructing and Traversing the Search Space
	5.3.3 Optimisation of the Search Space

	5.4 Polyhedra Abstraction
	5.5 Discussion and Related Work

	6 Forward Relational Analysis for Constraint Logic Programs
	6.1 Introduction
	6.2 Formal Language
	6.2.1 Logic Programs
	6.2.2 Syntactic Conditions for Correctness

	6.3 Concrete Semantics
	6.3.1 Definitions
	6.3.2 Operational Semantics

	6.4 Abstract Semantics
	6.4.1 Definitions
	6.4.2 Assignments
	6.4.3 Tests
	6.4.4 Operational Semantics

	6.5 Detecting Floating-Point Overflow
	6.5.1 Absolute and Relative Overflow
	6.5.2 Intermediate Overflow

	6.6 Discussion and Related Work

	7 Backward Relational Analysis for Constraint Logic Programs
	7.1 Introduction
	7.2 Pseudo-Complementation in Polyhedra Domains
	7.2.1 Definitions
	7.2.2 Pseudo-Complement Operators

	7.3 Backward Fixpoint Semantics
	7.3.1 Definitions
	7.3.2 Quantification Operators
	7.3.3 Backward Operators

	7.4 Discussion and Related Work

	8 Applications and Experimental Results
	8.1 Introduction
	8.2 Robot Trajectory Verification
	8.2.1 Introduction
	8.2.2 Prototyping in Logic Programming
	8.2.3 Adaptive Method
	8.2.4 Experimental Results

	8.3 Analytical Orbital Mechanics
	8.3.1 Introduction
	8.3.2 Prototyping in Logic Programming
	8.3.3 Logarithmic Segmentation
	8.3.4 Experimental Results


	9 Conclusion
	  Bibliography

