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We consider Markovian dynamics of a finitely dimensional open quantum system featuring a weak unitary
symmetry, i.e., when the action of a unitary symmetry on the space of density matrices commutes with the
master operator governing the dynamics. We show how to encode the weak symmetry in quantum stochastic
dynamics of the system by constructing a weakly symmetric representation of the master operator: a symmetric
Hamiltonian, and jump operators connecting only the symmetry eigenspaces with a fixed eigenvalue ratio. In
turn, this representation simplifies both the construction of the master operator as well as quantum jump Monte
Carlo simulations, where, for a symmetric initial state, stochastic trajectories of the system state are supported
within a single symmetry eigenspace at a time, which is changed only by the action of an asymmetric jump
operator. Our results generalize directly to the case of multiple Abelian weak symmetries.

DOI: 10.1103/PhysRevA.103.042204

I. INTRODUCTION

Markovian open quantum systems describe a broad class of
systems interacting weakly with environments whose dynam-
ics are much faster than those of the system itself, as relevant,
e.g., for atomic, molecular, and optical physics [1], as well as
optomechanics [2]. This leads to system dynamics efficiently
described by a local-in-time master equations [3,4], so that
both the dynamics and stationary states can be found by its
numerical integration or diagonalization. Since the space on
which the corresponding master operator acts scales quadrat-
ically with the system dimension, other methods for exact
numerical simulations of dynamics have been developed scal-
ing with respect to the system dimension rather than its square,
such as the quantum jump Monte Carlo (QJMC) approach
[5–9], also known as the quantum trajectory technique or
Monte Carlo wave-function method, which corresponds to the
stochastic description of system dynamics in terms of quan-
tum Langevin equations [10–12] or continuous measurement
theory [13,14].

Similarly as in closed quantum system dynamics governed
by Hamiltonians, the presence of symmetries in master equa-
tions is known to simplify the structure of corresponding
master operators, although, due to the presence of dissipation,
their symmetries are not in general related to conservation
laws [15–18] and their stationary states are unique [19–22]. In
this work we show how a weak symmetry of the master equa-
tion can be encoded in the corresponding stochastic dynamics
of an open quantum system: via a symmetric Hamiltonian and
jump operators connecting only the symmetry eigenspaces
with a fixed eigenvalue ratio, which we refer as a weakly
symmetric representation of a master operator. This has di-
rect consequences for the numerics: QJMC simulations are
simplified, particularly for symmetric initial states, which
remain symmetric and thus confined to a single symmetry

eigenspace at a time. In turn, also the construction of the mas-
ter operator, which describes change in time of the average
system state, is simplified. Our results carry on directly to
the case of multiple weak symmetries, provided their action
on density matrices commutes, that is, they correspond to
an Abelian group. This is illustrated with a dissipative spin
system featuring both a weak translation symmetry and a
weak rotation symmetry.

This article is structured as follows. In Sec. II we re-
view Markovian dynamics with weak symmetries. We define
weakly symmetric representations and show how to construct
them in Sec. III. We then explain how such representations
simplify stochastic dynamics in Sec. IV, leading to simplified
construction of the master operator and QJMC simulations,
as outlined in Sec. V. Finally, we discuss examples of many-
body systems with weak symmetries in Sec. VI.

II. WEAK UNITARY SYMMETRIES OF OPEN QUANTUM
SYSTEM DYNAMICS

Here we review Markovian dynamics of open quantum
systems featuring weak symmetries.

A. Open quantum system dynamics

The Markovian dynamics of an open quantum system is
governed by a Gorini-Kossakowski-Lindblad-Sudarshan mas-
ter equation [3,4],

d

dt
ρt = −i[H, ρt ] + 1

2

∑
j

(2 Jj ρt J†
j − J†

j J jρt + ρt J
†
j J j )

≡ L(ρt ), (1)

where ρt is a density matrix describing the average state of the
system at time t , H is a system Hamiltonian (we take h̄ ≡ 1),
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and Jj are so-called jump operators describing the interaction
with external environments. The dynamics in Eq. (1) is com-
pletely positive and trace preserving [L†(1) = 0], from which
it follows that there exists a stationary state of the system
[L(ρss) = 0]. We refer to the superoperator L as the master
operator. A Hamiltonian and jump operators are not uniquely
defined for a given master operator [23], and we refer to their
particular choice as its representation.

B. Weak unitary symmetries

1. Definition

Dynamics of an open quantum system features a dynamical
symmetry [15] or a weak symmetry of the dynamics [16,17]
when it commutes with a unitary transformation of system
states. For a unitary operator U on the system Hilbert space
H, the dynamics features the corresponding weak symmetry
when the master operator is symmetric,

ULU† = L, (2)

with respect to the action of the symmetry on density matrices,
U (ρ) ≡ UρU †. Indeed, Eq. (2) is equivalent to [U ,L] = 0.
This is often referred to as a discrete weak symmetry, as
it follows that the dynamics features weak symmetries for
unitary operators U n, with n ∈ Z.

Abelian weak symmetries correspond to weak symme-
tries with commuting symmetry superoperators, [U1,U2] = 0,
which requires the symmetry operators to commute as well,
[U1,U2] = 0. A special case is a continuous weak symmetry,
that is, a weak symmetry for Uφ = eiφS , where S is a Hermi-
tian operator and φ ∈ R, which requires [cf. Eq. (2)]

[S,L] = 0, (3)

with S (ρ) ≡ [S, ρ].
Note that weak symmetries in Eqs. (2) and (3) are defined

as symmetries of the master operator in Eq. (1). We will
discuss the resulting properties of a Hamiltonian and jump
operators in Sec. III, and the structure of the corresponding
quantum stochastic dynamics in Sec. IV.

2. Resulting structure of master operator

It is known that weak symmetries limit the structure of
the master operator, which can be exploited to simplify its
diagonalization or numerical integration required to solve the
dynamics of system states [17], as we review below.

The structure of the master operator due to a weak symme-
try can be conveniently seen in the Liouville representation
(see Fig. 1). For an orthonormal basis {|ψk〉}dim(H)

k=1 of the
system Hilbert space H, and a density matrix ρ represented
as a vector ρ ≡ ∑dim(H)

k,l=1 〈ψk|ρ|ψl〉 |ψk〉 ⊗ |ψl〉 ∈ H ⊗ H, its
dynamics [cf. Eq. (1)]

d

dt
ρt = L ρt (4)

FIG. 1. Dynamics with a weak symmetry. (a) Consider a basis
of eigenstates of a unitary operator U (or a Hermitian operator S)
and denote Hk the eigenspace with eiφk (or sk) eigenvalue. A density
matrix ρ features both support inside Hk (solid diagonal blocks)
and coherences between symmetry eigenspaces (shaded off-diagonal
blocks). (b) When the density matrix is expressed as a vector ρ,
the master operator becomes a matrix L [cf. Eq. (5)]. The weak
symmetry implies that the eigenspaces of the symmetry superoper-
ator U (or S) evolve independently [gray blocks (with black solid
or black dashed contour)]. When ratios of U eigenvalues (or gaps
in S eigenvalues) are trivially degenerate [ei(φk−φl ) = ei(φk′ −φl′ ) (or
sk − sl = sk′ − sl ′ ) for k �= l implies k = k′ and l = l ′], individual
coherences evolve independently (gray blocks with black dashed
contour vanish while colored blocks remain).

is governed by the matrix

L ≡ −iH ⊗ 1 + i1 ⊗ H∗

+ 1

2

∑
j

(2 Jj ⊗ J∗
j − J†

j J j ⊗ 1 − 1 ⊗ JT
j J∗

j ), (5)

where ∗ and T denote the complex conjugation and the matrix
transposition in the chosen basis, respectively, and we used
HT = H∗ since H = H†.

A weak symmetry in Eq. (2) corresponds to

[U ,L] = 0, (6)

where U ≡ U ⊗ U ∗. Therefore the weak symmetry is equiva-
lent to conservation of the eigenspaces of symmetry superop-
erator U , ∑

k, l :
ei(φk −φl ) = eiδ

L
(
1Hk ⊗ 1∗

Hl

) =
∑
k, l :

ei(φk −φl ) = eiδ

(
1Hk ⊗ 1∗

Hl

)
L, (7)

where Hk is the eigenspaces of U corresponding to an
eigenvalue eiφk , and 1Hk is the corresponding orthogonal
projection, while eiδ is an eigenvalue of U . In particular,
considering eiδ = 1 leads to k = l in Eqs. (7), we obtain
that the symmetric part of a system state evolves indepen-
dently from the coherences between symmetry eigenspaces.
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As a result, in a generic case when the stationary state of
the dynamics is unique [19–21], it is symmetric and can be
found by solving the dynamics restricted to the symmetric
eigenspace [17,22,24,25]. Furthermore, averages and higher-
order correlations for symmetric system observables can be
found, without loss of generality, by solving the dynamics
restricted to that eigenspace, that is, by considering symmetric
initial states. Finally, choosing the basis {|ψk〉}dim(H)

k=1 as an
eigenbasis of U , the matrix U becomes diagonal. Thus, after
reordering the basis {|ψk〉 ⊗ |ψl〉}dim(H)

k,l=1 of H ⊗ H to group
together elements corresponding to the same eigenvalues of
U , L in Eq. (5) becomes block diagonal, with the blocks cor-
responding to the eigenspaces of U (see Fig. 1). The dynamics
of the system states can then be found by diagonalization or
numerical integration of individual blocks.1

Similarly, as superoperators of Abelian symmetries com-
mute in the Liouville representation, [U1,U2] = 0, the master
operator L featuring corresponding weak symmetries con-
serves all intersections of their eigenspaces. Let orthogonal
subspaces {Hk}k be defined as intersections of eigenspaces
of the symmetry operators, so that each Hk corresponds to a
different set of eigenvalues for the symmetry operators. Then
the sums in Eq. (7) are replaced by sums over k, l with the
ratios of the symmetry operator eigenvalues corresponding to
a given set of eigenvalues for the corresponding symmetry
superoperators. In particular, for a continuous weak symmetry
in Eq. (3) and an eigenspace Hk of S corresponding to an
eigenvalue sk , ei(φk−φl ) = eiδ in Eq. (7) is replaced by sk − sl =
δ, where δ is an eigenvalue of S = S ⊗ 1 − 1 ⊗ S∗, so that
δ = 0 corresponds to the symmetric part of a system state.

As we show in Sec. V A, the Liouville representation of the
master operator in the symmetry eigenbasis can be efficiently
constructed using a weakly symmetric representation. Even
when restricted to symmetric states, however, the master oper-
ator acts on the space of dimension

∑
k dim(Hk )2, which can

inhibit its diagonalization or numerical integration. Therefore,
in Sec. V B, we instead focus on exploiting Abelian weak
symmetries to simplify QJMC simulations.

III. WEAKLY SYMMETRIC REPRESENTATIONS

Here, we define and construct weakly symmetric repre-
sentations for any master operator with a weak symmetry by
modifying its Hamiltonian and jump operators into a form re-
specting the symmetry. We also discuss their nonuniqueness.

A. Definition

In Sec. III B we show that in the presence of a weak
symmetry in Eq. (2), there exists a weakly symmetric repre-
sentation with a Hamiltonian H̃ and jump operators {J̃ j} j such

1The preservation of operator hermiticity by the dynamics and sym-
metry superoperators, [L(ρ )]† = L(ρ†) and [U (ρ )]† = U (ρ†), leads
to the dynamics of the blocks corresponding to complex-conjugate
pairs of symmetry eigenspaces being related by the complex
conjugation and swap operation T , as T (Lρ )∗ = L(T ρ∗), where
T |ψk〉 ⊗ |ψl〉 = |ψl〉 ⊗ |ψk〉 for the orthonormal basis {|ψk〉}dim(H)

k .

that

U (H̃ ) = H̃ and ∀ j U (J̃ j ) = eiδ j J̃ j . (8)

Since the Hamiltonian and the jump operators in Eq. (8)
are eigenmatrices of the symmetry superoperator U , they are
supported on the corresponding eigenspaces,

H̃ =
∑

k

1Hk H̃ 1Hk , (9a)

J̃ j =
∑
k, l :

ei(φk −φl ) = eiδ j

1Hk J̃ j1Hl , (9b)

for all j. This property plays a crucial role in simplifying
numerical simulations of the system dynamics (see Sec. V).
Note that when eiδ j = 1 for all j, a Hamiltonian and all jump
operators themselves are symmetric. This then holds for any
representation of the master operator [23] and is known as a
strong symmetry [16,17]. Although a strong symmetry implies
the corresponding weak symmetry, the converse is not true
[15–17], as evident by considering weakly symmetric repre-
sentations in Eqs. (9).

Similarly, for Abelian weak symmetries, a Hamiltonian can
be chosen symmetric with respect to all symmetry superoper-
ators and jump operators can be chosen as their simultaneous
eigenmatrices. In particular, in the presence of a continuous
weak symmetry in Eq. (3), there exists a weakly symmetric
representation such that

S (H̃ ) = 0, S (J̃ j ) = δ j J̃ j, (10)

with H̃ and J̃ j supported as in Eq. (9), but with ei(φk−φl ) =
eiδ j replaced by sk − sl = δ j , where sk is an eigenvalue of S
corresponding to an eigenspace Hk .

B. Construction

We now give two constructions of weakly symmetric repre-
sentations from a given representation of the master operator
in Eq. (1), that is, a Hamiltonian H and a set of jump op-
erators {Jj} j . In the first construction, the Hamiltonian is
projected on the symmetric eigenspace of the symmetry su-
peroperator, while the jump operators are projected on all its
eigenspaces, so that their number n in general increases to
m-fold, where m is the number of distinct eigenvalues of the
symmetry superoperator. Here the knowledge of symmetry
eigenspaces is assumed, which generally requires diagonaliz-
ing the dim(H) × dim(H) matrix of the symmetry operator
U (see Fig. 2). In the second construction, the number of
jump operators does not increase as a weakly symmetric
representation with the minimal number of jump operators is
constructed, but at the cost of diagonalizing two matrices of
size n × n (see Fig. 3).

1. Weakly symmetric representation by dynamical decoupling

In this construction we use the fact that for dynamics with
a weak symmetry in Eq. (2),

L = lim
N→∞

1

N

N∑
n=0

UnLU†n. (11)
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FIG. 2. Constructing a weakly symmetric representation by dy-
namical decoupling. From any representation a weakly symmetric
representation can be obtained by projecting the Hamiltonian on the
symmetric eigenspace of the symmetry superoperator and projecting
the jump operators on all its eigenspaces; see Eqs. (12).

The right-hand-side limits in Eqs. (11) corresponds to the
projection of the master operator on the symmetric part under
its transformations U (·)U†, and in the construction we con-
sider this projection applied to individual terms appearing in
the master equation in Eq. (1) (see Fig. 2). Note that such
a projection occurs when the dynamics is in fact composed
of the system master dynamics governed by L and much
faster unitary dynamics corresponding to U , in which case the
former acts as a perturbation of the latter (see Supplemental
Material of Refs. [26,27]). Therefore, a weak symmetry can
be facilitated by dynamical decoupling [28,29] at a rate much

FIG. 3. Constructing a minimal weakly symmetric represen-
tation. From any representation a minimal weakly symmetric
representation can be obtained in three steps: 1. Shifting the jump
operator to traceless operators [Eq. (13)] defines a symmetric Hamil-
tonian [Eq. (14)]. 2. Diagonalizing the matrix of scalar products
between the traceless jump operators [Eq. (15)] yields orthogonal
jump operators [Eq. (16)]. 3. Diagonalizing the action of the sym-
metry on the orthogonal jump operators [Eqs. (19)] gives weakly
symmetric jump operators [Eqs. (20)].

faster than system dynamics but much slower than relaxation
of the environment (see Refs. [30,31]).

Step 1. A symmetry operator U is diagonalized to find its
eigenspaces.

Step 2. Eigenspaces of the symmetry superoperator U are
constructed.

Step 3. The Hamiltonian and jump operators are replaced
by their projections on U eigenspaces [cf. Eq. (9)]:

H̃ ≡
∑

k

1Hk H 1Hk , (12a)

∀ j∀eiδ J̃ j,eiδ ≡
∑
k, l :

ei(φk −φl ) = eiδ

1Hk Jj1Hl , (12b)

with eiφk denoting an eigenvalue of U corresponding to an
eigenspace Hk and eiδ denoting an eigenvalue of U .

Construction for Abelian weak symmetries. Consider-
ing Eq. (11) for all Abelian weak symmetries present,
Eq. (12a) holds with subspaces Hk defined as intersections
of eigenspaces of the symmetry operators, while the sum in
Eq. (12b) is replaced k, l with the ratios of the symmetry oper-
ators eigenvalues corresponding to a given set of eigenvalues
for the corresponding symmetry superoperators. In particular,
for a continuous symmetry in Eq. (3), and an eigenspace
Hk of S corresponding to an eigenvalue sk , the Hamiltonian
is constructed as in Eq. (12a), while a jump operator Jj is
replaced by the set {J̃ j,δ ≡ ∑

k,l: sk−sl =δ 1Hk Jj1Hl }δ defined
for all eigenvalues δ of S [cf. Eq. (12b)].

Proof of Eq. (12). First, note that U LU† corresponds
to the master operator with the Hamiltonian U (H ) and the
jump operators U (Jj ), as seen, for example, in the Liouville
representation. The master operator L in Eq. (5) is linear in
H ⊗ 1 and J†

j J j ⊗ 1, so that in the limit of the right-hand
side in Eq. (11) they are replaced by their projection on the
symmetric subspace of U ⊗ I, where I is an identity super-
operator, that is, H̃ ⊗ 1 of Eq. (12a) and

∑
k 1Hk J†

j J†
j 1Hk ⊗

1 = ∑
eiδ J̃†

j,eiδ J̃
†
j,eiδ ⊗ 1. Similarly, the term Jj ⊗ J∗

j is pro-
jected on the symmetric subspace of U ⊗ U∗ and is thus
replaced by

∑
eiδ J̃ j,eiδ ⊗ J̃∗

j,eiδ .

2. Minimal weakly symmetric representation

The steps of this construction are motivated by following
two facts (see Fig. 3). First, a representation of the master op-
erator with the traceless Hamiltonian and orthogonal traceless
jump operators is uniquely defined (up to degeneracy in jump
rates) and corresponds to the minimal number, nmin � n, of
jump operators (see Ref. [23]). Second, the set U (H ), {U (Jj )} j

is a representation of ULU† [32], and thus, in the presence of
the weak symmetry, it is also a representation of L [7]. Since
U does not change the orthogonality and trace of the operator
being transformed, we have that in the presence of weak
symmetry, the traceless Hamiltonian is necessarily symmetric,
while orthogonal traceless jump operators with the same rate
are transformed unitarily by U , and thus they can be chosen as
its eigenmatrices.

Step 1. Traceless jump operators are constructed by intro-
ducing

J ′
j ≡ Jj − Tr(Jj )1, j = 1, ..., n, (13)
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while the Hamiltonian is replaced by

H̃ ≡ H + i

2

∑
j

[Tr(J†
j ) Jj − Tr(Jj )J

†
j ], (14)

in order to leave the master operator in Eq. (1) unchanged [a
further shift of the Hamiltonian by −Tr(H )1 only introduces a
global phase, and is also symmetric, and thus will be omitted].

Step 2. A Hermitian matrix of the scalar products,2

(C) jk ≡ Tr[(J ′
j )

†J ′
k], j, k = 1, ..., n, (15)

is diagonalized in order to define via its orthonormal eigen-
vectors, Cc j = λ jc j , c†

j ck = δ jk , and c†
j ck = δ jk , orthogonal

jump operators

J ′′
j ≡

n∑
k=1

(c j )k J ′
k, (16)

with the rate determined by the corresponding eigenvalue

Tr[(J ′′
j )†J ′′

k ] = c†
j Cck = λ j δ jk ≡ � jk . (17)

We reorder jump operators with decreasing λ j and neglect j
with λ j = 0, as J ′′

j = 0 ( j � nmin).
Step 3. For a weak symmetry in Eq. (2), the Hamiltonian in

Eq. (14) is symmetric,

U (H̃ ) = H̃ , (18)

while the set of orthogonal jump operators in Eq. (16) is
transformed as U (J ′′

k ) = ∑nmin
j=1(U) jkJ ′′

j , where

(U) jk ≡ λ j
−1 Tr[J ′′†

j U (J ′′
k )], j, k = 1, ..., nmin (19)

is a unitary matrix3 which is block diagonal in the eigenspaces
of �. The jump operators determined by the orthonormal
eigenvectors of U, U u j = eiδ j u j ,

J̃ j ≡
nmin∑
k=1

(u j )kJ ′′
k =

n∑
l=1

nmin∑
k=1

(u j )k (ck )l [Jl − Tr(Jl )1], (20)

are eigenmatrices of the symmetry superoperator,

U (J̃ j ) = eiδ j J̃ j, (21)

j = 1, ..., nmin. In particular, when diagonalizing blocks in
U, the jump operators in Eq. (20) are chosen orthogonal, as
Tr(J̃†

j J̃k ) = u†
j�uk , j, k = 1, ..., nmin.

Construction for Abelian weak symmetries. The choice of
the Hamiltonian in Eq. (14) is independent from the pres-
ence of weak symmetries and thus is always symmetric.
When weak unitary symmetries commute, [U1,U2] = 0, so
do the corresponding unitary transformations on the set of
orthogonal traceless jump operators [Eq. (19)], [U1, U2] = 0.
Therefore the jump operators in Eq. (20) can be chosen as

2The matrix C is Hermitian and positive semidefinite, as c†Cc =
Tr(J ′†

c J ′
c ) � 0, where J ′

c = ∑n
j=1(c) jJ ′

j is a linear combination of
jump operators.

3U is unitary as U† corresponds to the superoperator U†,
(U†) jk = (U)∗k j = λ−1

k Tr[J ′′
k

†U (J ′′
j )]∗ = λ−1

k Tr[U†(J ′′
k

†) J ′′
j ]∗ =

λ−1
k Tr[J ′′

j
†U†(J ′′

k )] = λ−1
j Tr[J ′′

j
†U†(J ′′

k )], and thus, from UU† =
U†U = I and Eq. (17), it follows that UU† = U†U = I.

eigenmatrices of all symmetry superoperators. In particular,
for a continuous weak symmetry in Eq. (3), the jump operators
in Eq. (20) can be defined with orthonormal eigenvectors of a
Hermitian matrix4

(S) jk ≡ λ j
−1 Tr[J ′′†

j S (J ′′
k )], j, k = 1, ..., nmin, (22)

which generates the unitary transformation Uφ = eiφS of or-
thogonal jump operators under Uφ = eiφS [cf. Eq. (19)] and is
block diagonal in the eigenspaces of � [Eq. (17)].

C. Nonuniqueness

In Sec. III B we constructed two generally different repre-
sentations of the master equation, which proves that a weakly
symmetric representation [Eq. (8)] is nonunique. Here, we
characterize the freedom in the choice of weakly symmetric
representations.

A general weakly symmetric representation with trace-
less jump operators is described by an n × nmin isometry V
[(V†V) jk = δ jk] that does not mix U eigenspaces [(V) jk �= 0
and (V) jl �= 0 take place only for eiδk = eiδl ], that is, the set
of jump operators {J̃ j} j defined in Eq. (20) is replaced by
{∑nmin

k=1(V) jk J̃k}n
j=1 (cf. Ref. [23]). In that case, jump operators

are generally not orthogonal, with the scalar product between
the jth and kth jump given by (V∗�UVT) jk , with (�U) jk =
u†

j�uk [cf. Eqs. (15) and (17)].
A general weakly symmetric representation features to

shifted symmetric jump operators (cf. Ref. [23]). That is, sym-
metric jump operators in a weakly symmetric representation
need not to be traceless, as can be shifted by a constant since
[U,1] = 0. Indeed, any jump operator J̃ j with eiδ j = 1 in a
weakly symmetric representation can be replaced by J̃ j + a j1

with a j ∈ C, while the symmetric Hamiltonian H̃ is trans-
formed to H̃ + b1 − i

∑
j: eiδ j =1(a∗

j J̃ j − a j J̃
†
j )/2 with b ∈ R

[cf. Eqs. (13) and (14)].

IV. QUANTUM TRAJECTORIES WITH WEAKLY
SYMMETRIC REPRESENTATIONS

We now briefly discuss implications of the presence of a
weak symmetry for the structure of quantum trajectories and
the survival of coherences between symmetry eigenspaces.
This structure simplifies the construction of the master opera-
tor and reduces both the memory and processing required for
QJMC simulations, as we explain in Sec. V.

A. Quantum trajectories

The dynamics in Eq. (1) for the system initially in a pure
state, ρ0 = |ψ0〉〈ψ0|, can be unraveled as [13,14]

ρt =
∞∑

n=0

∑
j1,..., jn

∫
0�t1�...�tn�t

dt1 · · · dtn

× |ψt (t1, j1; ...; tn, jn)〉〈ψt (t1, j1; ...; tn, jn)|, (23)

4S is Hermitian as (S)∗k j = λ−1
k Tr(J ′′

k
†[S, J ′′

j ])∗ = λ−1
k Tr

([J ′′
j

†
, S]J ′′

k ) = λ−1
k Tr(J ′′

j
† [S, J ′′

k ]) = λ−1
j Tr(J ′′

j
† [S, J ′′

k ]) = (S) jk .
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with

|ψt (t1, j1; ...; tn, jn)〉 ≡ e−i(t−tn )Heff Jjn · · · e−i(t2−t1 )Heff Jj1 |ψt1〉,
(24a)

|ψt 〉 ≡ e−itHeff |ψ0〉, (24b)

and the effective Hamiltonian

Heff ≡ H − i

2

∑
j

J†
j J j . (25)

Equation (24) as a function of time is referred to as a (un-
normalized) quantum trajectory, which at time t describes
the (un-normalized) state of the system conditioned on the
occurrence of jumps j1,..., jn at respective times t1,..., tn
[Eq. (24a)] or their absence [Eq. (24b)], which takes place
with the probability density and the probability

pt (t1, j1; ...; tn, jn) ≡ 〈ψt (t1, j1; ...; tn, jn)|ψt (t1, j1; ...; tn, jn)〉,
(26a)

pt ≡ 〈ψt |ψt 〉, (26b)

respectively.
For dynamics with a unique stationary state, normalized

quantum trajectories are ergodic [33],

lim
T →∞

1

T

∫ T

0
dt

|ψt (t1, j1; ...)〉〈ψt (t1, j1; ...)|
pt (t1, j1; ...)

= ρss, (27)

with probability 1.

B. Simplified quantum trajectories

We now discuss how quantum trajectories simplify for a
weakly symmetric representation (see Fig. 4).

1. Symmetric initial states

Consider the system initially supported in a symmetry
eigenspace Hl , U |ψ0〉 = eiφl |ψ0〉, which we refer to as a
symmetric initial state since U (|ψ0〉〈ψ0|) = 0. For a weakly
symmetric representation, the system state remains supported
in the same eigenspace when no jumps take place [cf.
Eq. (24b) and see Fig. 4(a)],

U |ψ̃t 〉 = Ue−it H̃eff |ψ0〉 = e−it H̃effU |ψ0〉 = eiφl |ψ̃t 〉, (28)

because of the symmetry of the effective Hamiltonian,

U (H̃eff ) = U (H̃ ) − i

2

∑
j

U (J̃†
j )U (J̃ j ) = H̃eff (29)

from U (J̃†
j ) = [U (J̃ j )]† = e−iδ j J̃†

j . Occurrence of the first
jump J̃ j1 at time t1 transforms the state |ψ̃t1〉 from Hl into the
symmetry eigenspace Hk with the eigenvalue eiφk = ei(δ j1 +φl )

[cf. Eqs. (9b) and (24a)],

UJ̃j1

∣∣ψ̃t1

〉 = UJ̃j1U
†U

∣∣ψ̃t1

〉 = eiδ j1 J̃ j1 eiφl
∣∣ψ̃t1

〉
. (30)

Only for a symmetric jump, eiδ j1 = 1, the symmetry
eigenspace remains unchanged, Hk = Hl . The system state
remains in Hk until the next asymmetric jump [see Fig. 4(a)].

Therefore, for an initially symmetric system state, quan-
tum trajectories with a weakly symmetric representation are

FIG. 4. Quantum trajectories in a weakly symmetric representa-
tion. (a) An example of a quantum trajectory for a symmetric initial
state (red). The system remains in the original symmetry eigenspace
Hl at least until the first jump J̃ j1 , as the effective Hamiltonian
governing no-jump evolution is symmetric (red horizontal arrow);
cf. Eq. (28). When the first jump J̃ j1 is asymmetric, the system is
transformed (dashed black arrow) to another eigenspace Hk (blue)
determined by the corresponding eigenvalue eiδ j1 of U [or δ j1 of
S]; cf. Eq. (30). The system state remains in Hk until the next
asymmetric jump [see also Figs. 8(a) and 8(b)]. (b) The average sys-
tem state [Eq. (23)] is symmetric, U (ρt ) = ρt , since no coherences
between symmetry eigenspaces are present in individual trajectories
[cf. Eq. (31)]. Its dynamics is governed by the master operator L
(black horizontal arrow) restricted to the symmetric eigenspace of U
(or S); cf. Fig. 1(b).

symmetric at all times,

U [|ψ̃t (...)〉〈ψ̃t (...)|] = |ψ̃t (...)〉〈ψ̃t (...)|. (31)

In contrast, in a general representation, coherences between
symmetry eigenspaces are present in individual quantum tra-
jectories but interfere destructively in the average of Eq. (23).
This illustrates the fact that quantum stochastic dynamics
with a weakly symmetric representation features the weak
symmetry, as do the dynamics of a density matrix under the
effective Hamiltonian or the action of any of jump operators
[cf. Eqs. (28) and (30)]. The weak symmetry is then inherited
by the average dynamics [see Fig. 4(b)]. Analogous results
hold for the case of Abelian weak symmetries.

2. General initial states

For an initial state in a superposition of symmetry
eigenstates, |ψ0〉 = ∑

l 1Hl |ψ0〉, the coherences between
symmetry eigenspaces are in general maintained in a quan-
tum trajectory, since in a weakly symmetric representation
asymmetric jump operators connect many pairs of symmetry
eigenspaces [see Eq. (9b)]. Nevertheless, no new coherences
with respect to the eigenvalues of the symmetry superoperator
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are created, since the action of individual jump operators also
features the weak symmetry [cf. Fig. 1(b)]. Furthermore, for
a unique stationary state, from the ergodicity [Eq. (27)], any
coherences in a quantum trajectory must either interfere de-
structively in the time average or decay to 0 over time. When
not only the asymptotic time average in a quantum trajectory
but also the asymptotic time distribution is independent from
an initial state, as is the case for generic dynamics [34], coher-
ences in quantum trajectories necessarily decay to 0.

V. NUMERICAL APPLICATIONS OF WEAKLY
SYMMETRIC REPRESENTATIONS

We now explain how weakly symmetric representations
can be used to simplify a construction of the master operator
as well as QJMC simulations.

A. Simplified master operator construction

As discussed in Sec. II B 2, the master operator with a
weak symmetry becomes block diagonal in the Liouville rep-
resentation when using a basis corresponding to symmetry
eigenspaces. This simplifies both its diagonalization and nu-
merical integration. We now show how its construction in such
a basis can be further simplified by using a weakly symmetric
representation.

We have [cf. Eqs. (5) and (25)]

L = −iHeff ⊗ 1 + i1 ⊗ H∗
eff +

∑
j

J j ⊗ J∗
j . (32)

For dynamics with a weak symmetry in Eq. (2), we consider
a weakly symmetric representation in Eq. (8). From Eq. (9), a
subspace Hk ⊗ Hl is mapped onto itself only by the symmet-
ric effective Hamiltonian and symmetric jump operators (cf.
Fig. 5):

(
1Hk ⊗ 1∗

Hl

)
L

(
1Hk ⊗ 1∗

Hl

)
= −i1Hk H̃eff1Hk ⊗ 1∗

Hl
+ i1Hk ⊗ (

1Hl H̃eff1Hl

)∗

+
∑

j: eiδ j =1

1Hk J̃ j1Hk ⊗ (
1Hl J̃ j1Hl

)∗
, (33)

with 1Hk H̃eff1Hk =1Hk H̃1Hk −i
∑

j: eiδ j =ei(φk′ −φk )

(1Hk′ J̃ j1Hk )†(1Hk′ J̃ j1Hk )/2, where k′ is such that
ei(φk′ −φk ) = eiδ j . Furthermore, it is mapped onto a different
subspace Hk′ ⊗ Hl ′ corresponding to the same eigenvalue of
U [that is, for ei(φk′ −φl′ ) = ei(φk−φl )] only by the jump operators
J̃ j with eiδ j = ei(φk′ −φk ) = ei(φl′ −φl ) (cf. Fig. 5):

(
1Hk′ ⊗ 1∗

Hl′

)
L

(
1Hk ⊗ 1∗

Hl

)

=
∑

j : eiδ j = ei(φk′ −φk )

eiδ j = ei(φl′ −φl )

1Hk′ J̃ j1Hk ⊗ (
1Hl′ J̃ j1Hl

)∗
. (34)

The construction of the master operator in the Liouville
representation with a weakly symmetric representation is
made efficient in two ways. First, only the nontrivial action
of L within the eigenspaces of the symmetry superoperator U

FIG. 5. Master operator construction with a weakly symmetric
representation. When a density matrix is expressed as a vector ρ,
a master operator with the weak symmetry becomes a matrix L
[Eq. (5)], block diagonal in the eigenspaces of the symmetry U (or
S). A subspace Hk ⊗ Hl is transformed onto itself by the effective
Hamiltonian and symmetric jump operators, while weakly symmet-
ric jump operators connect it to the subspace Hk′ ⊗ Hl ′ determined
by their U eigenvalue eiδ j (or S eigenvalue δ j); see Eqs. (33) and
(34). For a discrete weak symmetry with U with trivially degenerate
eigenvalue ratios (or a continuous weak symmetry with S with triv-
ially degenerate gaps), Hk ⊗ Hl with k �= l is always mapped onto
itself [dotted gray block vanishes; cf. Fig. 1(b)].

is computed, i.e., only nonzero blocks of L are constructed.5

Second, transformations between individual subspaces Hk ⊗
Hl can be computed using only the operators in the repre-
sentation that correspond to a specific eigenvalue of U ; see
Fig. 5. Therefore, for a minimal symmetric representation,
the maximal number of jump operators that contributes in
Eq. (33) is the maximal number of symmetric jump opera-
tors,

∑
k dim(Hk )2 − 1, while in Eq. (34) it is the maximal

number of jump operators with the eigenvalue ei(φk′ −φk ), i.e.,∑
l,l ′: ei(φl′ −φl )=ei(φk′ −φk ) dim(Hl ′) dim(Hl ) (as can be seen, for ex-

ample, by using the Choi representation [23]).
The simplified construction of the master operator is a

direct consequence of the simplified structure of quantum
trajectories discussed in Sec. IV. Indeed, an infinitesimal
change in the average system state is a consequence of a
change in quantum trajectories, either due to the symmetric
effective Hamiltonian [cf. Eq. (28)] or to an occurrence of
a jump J̃ j [Eq. (30)]. The mapping of Hk ⊗ Hl for k = l is
then determined by quantum trajectories originating in Hk ,

5Note that projecting the master operator with a given representa-
tion on eigenspaces of the symmetry superoperator, as in Eqs. (33)
and (34), effectively leads to a weakly symmetric representation
constructed in Sec. III B 1.
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while for k �= l it is determined by quantum trajectories of
superpositions in Hk ⊕ Hl (cf. Fig. 5).

Analogous results hold for Abelian weak symmetries. In
particular, for a continuous weak symmetry in Eq. (3) and a
weakly symmetric representation in Eq. (10), we have Eq. (33)
with eiδ j = 1 replaced by δ j = 0, and Eq. (34) with eiδ j =
ei(φk′ −φk ) replaced by δ j = sk′ − sk for Hk ⊗ Hl is mapped
onto Hk′ ⊗ Hl ′ within the same eigenspace of S (that is, for
sk′ − sk = sl ′ − sl ).

B. Simplified QJMC simulations

The QJMC approach (see, e.g., Refs. [5–9]) is used to
generate quantum trajectories in order to obtain dynamics of
the average system state via the empirical mean [cf. Eq. (23)]
or stationary states of the system [by considering trajectories
longer than the relaxation time, or, in the case of a unique
stationary state, via Eq. (27)]. The advantage of this method
in comparison with solving Eq. (1) lies in considering linear
operators on pure states in the system space H rather than the
master operator on density matrices in the space isomorphic to
H ⊗ H (cf. Fig. 1). Since, by definition, the average dynamics
governed by the master operator in Eq. (1) does not depend on
its representation, it can be chosen to simplify QJMC simula-
tions. Here, we discuss how for the dynamics with a weak
symmetry, weakly symmetric representations can be utilized
(see also Refs. [7,9,35]).

1. Algorithm

In order to construct a quantum trajectory up to a finite
time t , each step consists of two parts. First, for an initial state
|ψ0〉, time t1 of the first jump is found by drawing a random
uniformly distributed number u1 ∈ [0, 1], which represents the
probability of no jump occurring until t1 [cf. Eq. (26b)],

u1 = 〈
ψt1

∣∣ψt1

〉 = 〈ψ0|eit1H†
eff e−it1Heff |ψ0〉. (35)

Second, if t1 > t , the normalized quantum trajectory at
time t is given by normalized Eq. (24b). Otherwise, a jump
takes place of the type j1 drawn with the probability p j1
proportional to its instant rate,

p j ∝ 〈
ψt1

∣∣J†
j J j

∣∣ψt1

〉
, (36)

and the system state is updated as |ψt1+dt1 ( j1, t1)〉 = Jj1 |ψt1〉
[cf. Eq. (24a)]. Then, in order to find time t2 of the next jump,
the step is repeated with |ψ0〉 replaced by the normalized
conditional state |ψt1+dt1 ( j1, t1)〉/‖|ψt1+dt1 ( j1, t1)〉‖ and t1 re-
placed by time t2 − t1 between the first and the second jumps.
This is done until tn+1 > t , in which case the normalized
quantum trajectory after the occurrence of n jumps is given
at time t by normalized Eq. (24a).

The main computational difficulty is the evaluation of jump
occurrence times [Eq. (35)], which requires finding a norm
of a system state evolving under the non-Hermitian effec-
tive Hamiltonian Heff. Therefore efficient computation of the
no-jump dynamics is necessary, e.g., via the exact diagonal-
ization of Heff or via fourth-order Runge-Kutta integration
[8,9]. We note that, alternatively, a discretization of quantum
trajectories to finite but small time steps δt can be considered.
Here, at each step, occurrence of a jump is decided when a

FIG. 6. Simplified QJMC algorithm. (a) For an initial symmetric
state in an eigenspace Hl (red), the time t1 of first jump is found
by drawing a random u1 that equals the probability of no jumps
occurring until t1 determined by the square norm of |ψ̃t1 〉 evolving
with 1Hl Heff1Hl [cf. Eq. (35)]. If t1 > t , the system state at time t
is chosen as the normalized |ψ̃t 〉. (b) Otherwise, the type of the first
jump is drawn with the probability proportional to the rate of jump
operators 1Hk J̃ j1Hl , where k corresponds to Hk with the eigenvalue
eiφk = eiδ j1 eiφl , where the updated state J̃ j |ψ̃t1 〉 is found [cf. Eq. (36)].
(c) This state is normalized and used as the initial state in the next
step, which is repeated until tn+1 > t when the state at time t is
chosen as normalized Eq. (24a), inside the symmetry eigenspace with
the eigenvalue eiδ jn · · · eiδ j1 eiφl .

random uniformly distributed number [0,1] is smaller than
δt

∑
j〈ψ |J†

j J j |ψ〉, which approximates, up to the linear order,
the probability of a jump occurring for the system in |ψ〉 at
the beginning of the step [cf. Eq. (35)], upon which the type of
jump j is drawn according to its rate [cf. Eq. (36)]. The system
state is then updated to Jj |ψ〉 or, when no jump occurs, to
(1 − iδtHeff )|ψ〉, and subsequently normalized before the next
step. This originally proposed approach [6,7] is equivalent to
first-order Euler integration of Eq. (35) [8]. Nevertheless, an-
other important factor remains: manipulating the conditional
system state generally described by dim(H) coefficients [for
example, in Eq. (36) or when updating and normalizing the
state].

2. Simplified algorithm

We now explain how the complexity of the QJMC al-
gorithm can be lowered thanks to a weak symmetry by
considering a weakly symmetric representation. Simulations
are simplified, in particular, for symmetric initial states, which
is relevant for system dynamics with a unique stationary state
and for averages of symmetric system observables (see Fig. 6).

Symmetric initial states. For a symmetric initial state, any
quantum trajectory is confined to only a single symmetry
subspace at a time [cf. Eq. (31) and see Fig. 4(a)]. There-
fore the system state is described at any time by at most
maxk dim(Hk ) coefficients (and the label k for the occu-
pied eigenspace Hk). Furthermore, the evolution with the
symmetric effective Hamiltonian in each step of the algo-
rithm can be integrated, if needed, solely on the currently
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occupied symmetry subspace [that is, for Hl , 1Hl H̃eff1Hl

in Eq. (35)]. Furthermore, the stochastic dynamics remains
exactly the same upon replacing each of the jump operators Jj

with the set {1Hk J̃ j1Hl }k,l: eiδ j =ei(φk −φl ) [cf. Eq. (30) and
Fig. 4], with the rates of jumps for a state in Hl simplified
as 1Hl J̃

†
j J̃ j1Hl = (1Hk J̃ j1Hl )

†(1Hk J̃ j1Hl ) [for k such that
eiδ j = ei(φk−φl ); cf. Eq. (36)].

While these improvements are known for the open
quantum dynamics microscopically defined by a weakly sym-
metric representation corresponding to a continuous weak
symmetry [9], such as particle losses in a many-body system
corresponding to the U (1) symmetry generated by the particle
number [35], in this work we show how to implement them
for any weak symmetry by constructing a weakly symmetric
representation.

General initial states. For a general initial state, |ψ0〉=∑
l1Hl |ψ0〉, in each step of the algorithm, the effective

Hamiltonian can be integrated, if needed, independently in
each symmetry subspace, |ψ̃t 〉=

∑
l e−it1HlH̃eff1Hl 1Hl |ψ0〉 ≡∑

l |ψ̃ (l )
t 〉 and 〈ψ̃t |ψ̃t 〉=

∑
l〈ψ̃ (l )

t |ψ̃ (l )
t 〉 [cf. Eq. (35)]. Further-

more, a type of occurring jump can be determined with respect
to the sum of its rates in individual subspaces, 〈ψ̃t |J̃†

j J̃ j |ψ̃t 〉 =∑
l〈ψ̃ (l )

t |(1Hk(l ) J̃ j1Hl )
†(1Hk J̃ j1Hl )|ψ̃ (l )

t 〉 [cf. Eq. (36)], and
the updated state corresponds to the superposition of the
updated states,

∑
l 1Hk(l ) J̃ j1Hl |ψ̃ (l )

t 〉, where k(l ) is such that
eiδ j = ei[φk(l )−φl ].

We conclude that QJMC simulations with weakly sym-
metric representations are simplified in a way comparable to
the strong symmetry case with a Hamiltonian and all jump
operators being symmetric [16,17]. Indeed, in that case there
exists a stationary state ρ (k)

ss inside each symmetry eigenspace
Hk , which can be obtained from quantum trajectories for
an initial state within that subspace evolving with the effec-
tive Hamiltonian 1Hk H1Hk and jump operators {1Hk Jj1Hk } j .
Similarly, for a general initial state, the dynamics can be
solved independently in each symmetry eigenspace.

C. Sparsity

Hamiltonians and jump operators for many-body system
involving only few-body terms are sparse in any basis com-
posed as a tensor product of local bases. Since the number of
few-body operators scales linearly in the system size, rather
than exponentially as the dimension of the system Hilbert
space, the master operator is also sparse [cf. Eq. (5)]. This
allows for a significant computational speedup in its diago-
nalization or numerical integration.

Although a weakly symmetric representation features a
Hamiltonian and jump operators which are linear combina-
tions of the original operators (cf. Secs. III B and III C), their
number scales linearly with system size and thus does not
significantly affect the sparsity. In order to exploit the weak
symmetry, either for construction and diagonalization of the
master operator or for QJMC simulations, however, it is nec-
essary to work in the basis of eigenspaces of the symmetry
operator U (cf. Figs. 1, 5, and 4). For a local symmetry
(U being a tensor product of local unitaries), e.g., a global
rotation of spin systems, the basis of symmetry eigenspaces
can be chosen separable. For a nonlocal symmetry, such as a

translation symmetry, symmetric states are entangled. There-
fore, similarly as for symmetries in closed quantum dynamics,
it needs to be judged on a case-by-case basis whether exploit-
ing a weak symmetry leads to improved numerical simulations
of the open quantum dynamics (see Fig. 7 and Sec. VI).

VI. EXAMPLES

Finally, we give closed formulas for weakly symmetric rep-
resentations of many-body open quantum system dynamics
with translation and rotation symmetries. We utilize these rep-
resentations for numerical simulations of a spin-1 chain with
nearest-neighbor interactions and local dissipation shown in
Figs. 7 and 8, which features both symmetries.

A. Translation symmetry

Consider the system composed of N identical subsys-
tems with the Hamiltonian H = ∑N

j=1 Hj , where Hj is a
Hamiltonian for the jth subsystem (possibly including in-
teractions). With periodic boundary conditions and in one
spacial dimension, the Hamiltonian is translationally invari-
ant, T (Hj ) = Hj+1, where T (·) = T (·)T † and T |ψ1〉 ⊗ ... ⊗
|ψN−1〉 ⊗ |ψN 〉 = |ψN 〉 ⊗ |ψ1〉 ⊗ ... ⊗ |ψN−1〉 so that T N =
1. For uniform dissipation, Jj,α = T j (JN,α ), where j =
1, ..., N and α describes the type of dissipation, the master
operators in Eq. (1) features the weak translation symmetry,
T LT † = L.

To construct a weakly symmetric representation we
can consider the symmetric Hamiltonian H and introduce

FIG. 7. Effective dimension and sparsity of a weakly symmetric
representation for dynamics of N spins 1 with translation and rotation
symmetries. (a) Both the average (•) and the maximal (�) dimension
among symmetry subspaces, indexed by quasimomentum and total
spin along an axis, scales exponentially with N but at a lower rate
than the dimension 3N of the system Hilbert space (�). (b) With
nearest-neighbor interactions, H = ∑N

j=1 V �Sj · �Sj+1, and local dis-

sipation, Jj,α = √
λS( j)

α , j = 1, ..., N , α = x, y, z, for the effective
Hamiltonian the average sparsity (•) over the symmetry eigenspaces
weighted by their dimension is dominated by the sparsity in the max-
imal subspace [�; see also Fig. 8(d)], and significantly larger than the
overall sparsity in the initial basis (�); cf. Sec. VI A. Nevertheless,
the shown ratios of nonzero to all entries in considered matrices
decay exponentially with N . Similarly, the maximum values among
collective jumps, J̃q,z, J̃q,+, J̃q,−, q = 0, ..., N − 1, of the sparsity av-
eraged over blocks connecting pairs of symmetry subspaces [◦; with
weights given by dimensions of initial subspaces] and the sparsity in
the block connecting from the maximal subspace [�, cf. Figs. 8(e)
and 8(f)] are larger than the sparsity of local jumps Jj,α in the initial
basis (�) but decay exponentially with N .
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FIG. 8. QJMC simulations with a weakly symmetric representation considered in Fig. 7 for N = 8 spins. (a) Normalized trajectories
for the initial state Sz|ψ0〉 = −N |ψ0〉 and V/λ = 1, shown in terms of average values of (top to bottom) the rotation generator S = Sz, the
quasimomentum Q = ∑N−1

q=0 q1Hq , the system Hamiltonian H , and the total instant jump rate R [cf. Eq. (36)]. The mean and fluctuations per
trajectory obtained from 104 trajectories are indicated by red curve and blue shading, respectively. (b) Individual trajectories (blue) for the time
interval marked by gray in the panel (a) occupy a single symmetry eigenspace at a time (cf. Fig. 4). (c) Dimension of symmetry subspaces
Hq,s indexed by quasimomenta q and a total spin s along the z axis is maximal for s = 0. (d)–(f) Sparsity in a symmetric basis quantified as the
ratio of nonzero entries to all entries in matrices projected onto symmetry subspaces for Heff [(d)] and J̃0,z [(e)], and in matrices projected onto
pairs of symmetry subspaces connected by J̃1,+ [(f); indexed by the initial subspace], is lowest in highly dimensional subspaces [cf. panel (c)].

collective plane-wave jump operators,

J̃q,α = 1√
N

N∑
j=1

e−i j 2πq
N Jj,α, q = 1, ..., N, (37)

where q denotes a quasimomentum and T (J̃q,α ) = ei 2πq
N J̃q,α

[cf. Eq. (8)]. Equation (37) leaves the master operator un-
changed as a Fourier transform (a unitary transformation) of
the jump operators. For a single type of jump operator (a
redundant index α), asymmetric jump operators (with q < N)
in Eq. (37) are uniquely defined (cf. Sec. III C).

A symmetric basis can be determined as follows. For a
local basis of the system chosen as product states of identical
subsystem bases, each element belongs to a cycle of a length l
under the translation symmetry, where l divides N . The plane-
wave superpositions of the basis elements with quasimomenta
ql corresponding to that cycle are eigenstates of T corre-
sponding to eigenvalues ei2πql /l , where ql = 0, 1, ..., l − 1,
so that the effective quasimomenta is q = Nql/l . Therefore
the dimension of a symmetry subspace indexed by q equals
the number of cycles with lengths l = N/dq, where dq is a
common divisor of q and N [cf. Figs. 7(a) and 8(c)].

For local interactions and dissipation, the effective Hamil-
tonian and collective jump operators in Eq. (37) remain sparse
in the translationally symmetric basis constructed above [cf.
Figs. 7(b), 7(c), and 8(d)–8(f)]. Indeed, the basis elements are
superpositions of at most N local states. Thus, in such a basis,
a matrix for the effective Hamiltonian features at most N2z
nonzero elements in each column, where z is the maximal

number of nonzero entries in columns of the matrix in the
local basis.

Similarly, collective plane-wave jump operators in Eq. (37)
being linear combinations of N jump operators feature at
most N3zα nonzero elements in each column, where zα is the
maximal number of nonzero entries in columns of the matrix
in the local basis for a jump of type α. For a local Hamiltonian
H and local jumps Jj,α , z and zα are independent from N .

B. Rotation symmetry

Consider the system of N spins with the Hamiltonian
H = ∑N

jk=1 Vjk �S j · �Sk + ∑N
jklm=1 Wjklm (�S j · �Sk )(�Sl · �Sm), where

�S j = [S( j)
x , S( j)

y , S( j)
z ], with S( j)

α being the jth spin operator for
α direction, while the dissipation corresponds to local depo-
larization, Jj,α = √

λ j S(k)
α , with j = 1, ..., N and α = x, y, z.

The dynamics features the weak rotation symmetry, as [�n ·
�S,L] = 0, where �S = (Sx,Sy,Sz ) is a vector of generators

of rotation of all spins around the axes, with Sα = ∑N
j=1 S( j)

α

for α = x, y, z and �n ∈ R3 [cf. Eq. (3)].
A weakly symmetric representation for U (1) symmetry

generated by Sz can be obtained by keeping the Hamiltonian
H , while replacing Jj,x and Jj,y with Jj,± = (Jj,x ± iJj,y)/

√
2,

which, respectively, increase and lower S( j)
z by 1, and thus

Sz(Jj,±) = ±Jj,± [cf. Eq. (10) and see Figs. 8(a) and 8(b)].
These operators act on the symmetry subspaces composed of
parts corresponding to fixed numbers of spins with a given
spin value along the z axis, whose dimension is given by
multinomial coefficients [cf. Fig. 8(c)]. Analogous construc-
tions hold for Sx and Sy, but the representations differ, as
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these generators do not commute with Sz. In contrast, when
the weak translation symmetry is also present, e.g., λ j ≡ λ,
Vjk ≡ V| j−k|, and Wjklm ≡ W| j−k||l−m| (see Fig. 8), the jump
operators in Eq. (37) for α = z,+,−, are simultaneously
eigenmatrices of Sz and T (note that [Sz, T ] = 0). Note that
the jump operators J̃q,± with q < N are uniquely determined
(cf. Sec. III C).

VII. CONCLUSIONS

In this article, we investigated how Abelian weak sym-
metries in Markovian dynamics of open quantum systems
can be translated into their quantum stochastic dynamics. We
showed how to construct weakly symmetric representations
of a master operator governing the dynamics, for which quan-
tum trajectories are symmetric, i.e., are found within a single
symmetry eigenspace at a time, whenever initial system states
are chosen symmetric. This enabled us to exploit weak sym-
metries of the dynamics for simplifying the QJMC algorithm,

with the memory and processing required for simulations
reduced in a way akin to the case of strong symmetries.
We also demonstrated how the efficiency in constructing
the Liouville representation of the master operator can be
improved—a result directly relevant for solving the system
evolution via diagonalization or numerical integration of the
master operator. Finally, we note that the existence of weakly
symmetric representations does not rely on the dynamics be-
ing time independent, as considered, for simplicity, in this
work. For a time-dependent dynamics that features the same
weak symmetry at all times, a time-dependent weakly sym-
metric representation can be analogously constructed from
given time-dependent Hamiltonian and jump operators.
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