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ABSTRACT In this work we implement a COVID-19 infection detection system based on chest X-
ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided
diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully
analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data
through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches,
comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare
the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between
the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike
most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test
results show a significant improvement in uncertainty estimates when using unlabelled data. The best results
are obtained with the use of the Monte Carlo dropout method.

INDEX TERMS Uncertainty estimation, Coronavirus, Covid-19, Chest X-Ray, Computer Aided Diagno-
sis, Semi-Supervised Deep Learning, MixMatch.

I. INTRODUCTION

The COVID-19 pandemic is putting significant pressure on
governmental health systems, as the number of cases grows
exponentially [1]. Furthermore, the availability of medical
staff is lowered as they also get infected by the virus, reduc-
ing the overall capacity of hospitals and clinics [1]. The accu-
rate and widespread detection of infected subjects is of great
importance to control the growth of the disease [2]. The usage
of medical imaging can be an alternative tool when other
methods like Real-time Reverse Transcription Polymerase
Chain Reaction (RT-PCR) testing become more expensive as
less resources are available to supply the growing demand
[3]. The usage of computed tomography and X-ray based

tests for COVID-19 detection has been studied in [4]–[6],
reporting mixed sensitivity and accuracy in the case of X-
ray imaging based solutions. However, the usage of X-ray
images is ubiquitous, as this technology is usually cheaper
and more widely available [7].

X-ray chest imaging is in general more widely accessi-
ble when compared to computed tomography imaging [7].
Furthermore, the low availability of medical staff to sample
and analyze the medical images can increase the costs of this
alternative solution, especially in low resource environments
[8]. For example, in India, with a population of around
1.44 billion, approximately one radiologist for every 100,000
people is currently available [8]. This increases the need of
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X-ray based COVID-19 computer aided diagnosis tools.
The application of deep learning based models to estimate

the prevalence of COVID-19 from X-ray images has recently
been explored, with different deep learning architectures
reporting high test accuracy [9], [10]. Given the lack of high
quality labeled data, semi-supervised methods have also been
implemented to perform COVID-19 detection, making use
of cheaper unlabelled data to improve the model’s accuracy
[11], [12].

Along with high model accuracy, Artificial Intelligence
(AI) based solutions should also provide explainable deci-
sions to increase reliability, especially in the medical domain
[13], [14]. Model uncertainty estimation is a common ap-
proach to increase model interpretability and safety in use
[13], [15]. The estimation of model uncertainty allows the
user to interpret how sure or confident is the model for a
specific prediction. In the context of COVID-19 detection us-
ing X-ray images, an estimation with high uncertainty should
justify further tests to be done in the subject. This enforces
safety upon the usage of a computer aided diagnosis system,
as low-confidence predictions are quantitatively estimated by
the system itself.

In this work we focus in the measurement and improve-
ment of uncertainty estimations for a deep learning model de-
signed to identify COVID-19 infection using X-ray images.
We aim to improve uncertainty estimations by using unla-
belled data. Using unlabelled data is an useful approach when
using datasets with a low number of high quality labelled
data. This is a frequent setting during the onset of a pandemic.
Moreover, for a statistically significant comparison of the
tested uncertainty estimation methods, we propose a novel
density function based divergence approach.

II. STATE OF THE ART
A. PREDICTIVE UNCERTAINTY ESTIMATION

Predictive uncertainty estimation (or simply referred as un-
certainty estimation in this work) for machine learning mod-
els has been widely studied in the literature [16].In general,
uncertainty sources can be categorized in aleatoric and epis-
temic. Aleatoric uncertainty refers to the uncertainty inherent
in the measurements [17]. In conditional distribution terms,
it refers to the distribution of the target variables with a
given set of measured features. Aleatoric uncertainty cannot
be reduced by taking a larger sample of features within the
same distribution [17]. Epistemic uncertainty refers to the
model’s parameters uncertainty caused by the limited sample
size used to build the model (or lack of knowledge of the
feature space) [17]. Therefore, epistemic uncertainty can be
diminished by sampling a larger dataset, specially collecting
data in the sparser regions [17]. In the context of Semi-
supervised Deep Learning (SSDL), epistemic uncertainty can
be considered to be more important, as labeled data are
usually very scarce when SSDL is used. Unlabelled data
might lower epistemic uncertainty, usually less effectively as
target information is missing [17].

In this work we analyze simple and straightforward uncer-
tainty estimation methods. The tested methods were selected
based on their post-hoc capacity, i.e. their ability to leave the
original deep learning architecture intact and not require any
re-training of the model.

The Softmax function, typically used as an activation
function in the output layer of a neural network, is among the
basic methods for uncertainty estimation. Assume a multi-
class discrimination problem in i = 1, ..., C classes [18].
Take the array of model outputs yj = fθ(xj) with network
weights θ for a given input xj . The Softmax function approx-
imates a density function p as follows:

pi =
exp (yi,j)∑
k exp (yk,j)

(1)

Therefore, the output of the Softmax function for a specific
output unit i can be interpreted as a proxy for model confi-
dence for class i, given a specific input observation xj . Either
the highest pi for the estimated class or the entropy over p can
be used for uncertainty estimation. However, authors in [19]
highlight how neural networks are typically overconfident in
their predictions, leading to poor uncertainty estimations.

To address this, authors in [20] propose to post-process the
Softmax’s confidence outputs, by implementing an additional
temperature parameter T in the Softmax function:

pi =
exp (yi,j/T )∑
k exp (yk,j/T )

. (2)

To find the optimum T leading to better uncertainty es-
timates, the authors propose to minimize the negative log
likelihood, encouraging the model to assign high confidence
to correct classes only (ignoring incorrect classes). This
means that an additional optimization step is needed.

Authors in [19] propose an alternative approach to avoid
the Softmax based uncertainty estimates, known as Monte
Carlo Dropout (MCD). In their method forward passes
through M perturbed models yj,m = fθ′

m
(xj) with

perturbed weights θ′m are performed. This way, epis-
temic uncertainty is modeled with a distribution of the
model’s weights [21]. The approach estimates the dispersion
σmodel (xj) of M evaluations of the perturbed model, for the
same input observation xj :

σ2
model (xj) =

1

M

M∑
m=1

K∑
k=1

(ym,j,k − ȳj,k)
2
. (3)

The calculation of the dispersion or the distribution of the
outputs can be summed for all the output units k = 1, ...,K,
or only the unit with the highest output can be taken into
account.

Another recent method in [22] relying on the feature
representations of the training data, was proposed for un-
certainty estimation and Out of Distribution (OOD) data de-
tection. This method is known as Deterministic Uncertainty
Quantification (DUQ). For a set of feature centroids E =
{e1, . . . , eC} calculated using the training data, uncertainty
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is calculated using the distance from each centroid to the
input observation xj , with a radial basis kernel Ki:

Ki (fθ (xj) , ei) = exp

(
−
‖Wifθ (xj)− ei‖22

2σ2

)
(4)

where Wi stands for a weight matrix, tuned to encourage
feature insensitivity per class, thereby minimizing feature
collapse [22]. The uncertainty is then estimated as the maxi-
mum class centroid distance in the feature space:

arg max
i

Ki (fθ (xj) , ei) . (5)

The authors of the DUQ method claim that their approach
measures both the epistemic and aleatoric uncertainty. Epis-
temic uncertainty is modeled through the construction of the
feature centroids and the kernel Ki, which can improve as
more data is available. The measurement of the centroids also
includes aleatoric uncertainty [22].

Other popular uncertainty approaches include deep ensem-
bles [23] and interval networks [24]. These methods require
additional training steps, increasing complexity, and are often
impractical when no access to the original training data set is
possible.

B. UNCERTAINTY ESTIMATION FOR RELIABLE
MEDICAL IMAGING ANALYSIS AND COVID-19
DETECTION
Uncertainty estimation has been implemented in the liter-
ature to increase the reliability of medical imaging analy-
sis systems. For example, in [25] uncertainty estimation is
implemented for a diabetic retinopathy diagnosing system.
A MCD based approach for uncertainty estimation was im-
plemented. The system was evaluated using rejection plots,
which calculate the average accuracy for the data rejected
by using different uncertainty thresholds. Furthermore, the
reliability was evaluated by measuring the impact of referring
samples to further manual inspection during clinical usage.

In [26], a Bayesian deep learning approach was imple-
mented to segment retinal optical coherence tomographies.
The Bayesian model is able to estimate an uncertainty map,
used to post-process the segmentation. Neither a comparison
to other uncertainty methods nor the usage of uncertainty
metrics was performed in the study.

As for COVID-19 detection, a system with uncertainty
assessment was proposed in [27]. By providing practitioners
with a confidence factor of the prediction, the overall relia-
bility of the system is said to be improved. A high correlation
between the prediction accuracy of the model and the level
of uncertainty was reported in [27]. The data set used for
positive COVID-19 cases uses the repository of [28], and
normal X-ray readings were collected from [29].

Perhaps the most similar previous method to our proposed
approach is the pre-published work of [30]. The authors
write on the importance of measuring model uncertainty
for COVID-19 detection from chest X-ray images. They

compared three popular uncertainty estimation approaches,
namely ensemble networks, Monte Carlo dropout and a
combination of both approaches. An objective uncertainty
estimation metric is also proposed, as the authors found a lack
of metrics to compare uncertainty estimation methods. We
agree on this gap in the literature, however we think that the
metric should allow to compare not only different uncertainty
estimation methods, but also several uncertainty estimations
with different deep learning architectures, leading to different
accuracy measurements, with statistical significance. [30]
proposed a confusion matrix approach which does not hold
statistical meaning by itself. Therefore, in our work, we pro-
pose an alternative metric to compare different uncertainty
estimation methods and assess the impact of semi-supervised
learning on uncertainty estimation.

C. SEMI-SUPERVISED LEARNING WITH MIXMATCH
In this work, we explore the recent and successful SSDL
method referred to as MixMatch [31]. It creates a set of
pseudo-labels, and also implements an unsupervised regu-
larization term. The consistency loss implemented uses the
pseudo-labels for the unlabelled dataset Xu to train the
model. To calculate the pseudo-labels, the average model
output of a perturbed input xj is used:

ŷj =
1

K

K∑
η=1

fw (Ψη (xj)) . (6)

Where K is the number of perturbations (like image flip-
ping) Ψη done. A value of K = 2 is recommended by the
authors. According to authors, the estimated pseudo-labels
ŷj might present high entropy, increasing low confidence
estimations. To address this, the output array ŷ is sharpened
with a temperature coefficient ρ (with ρ = 0.25 recom-
mended by the authors):

ỹi =
ŷ
1/ρ
i∑
j ŷ

1/ρ
j

. (7)

The set S̃u =
(
Xu, Ỹ

)
corresponds to the data with the

sharpened pseudo labels, where Ỹ =
{
ỹ1, ỹ2, . . . , ỹnu

}
Authors in [31] highlight how data augmentation is im-

portant to improve the SSDL performance. Therefore the
authors proposed the MixUp approach [32], which consists
on augmenting data using both labelled and unlabelled ob-
servations:

(
S′l , S̃

′
u

)
= ΨMixUp

(
Sl, S̃u, α

)
, where Sl =

(Xl, Yl) stands for the labelled data with a sample size
of nl. The MixUp algorithm generates new observations
combining the unlabelled (with its pseudo labels) and la-
belled data through a linear interpolation. Specifically, for
two labelled and/or pseudo labelled data pairs (xa, ya) and
(xb, yb), the MixUp approach creates a new observation and
its label (x′ = λ′xa + (1− λ′)xb, y′ = λ′ya + (1− λ′) yb)
using a linear interpolation. The parameter α controls the
Beta distribution where the MixUp coefficient is sampled
from λ ∼ Beta (α, α). A value of α = 0.75 is recommended
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by the authors [31]. This results in the augmented data sets(
S′l , S̃

′
u

)
, used by the MixMatch algorithm to train a model

as specified in the training function TMixMatch:

fθ = TMixMatch (Sl, Xu, γ) = argmin
w
L (S,w) (8)

L (S,θ) =
∑

(xi,yi)∈S′
l

Ll (θ,xi,yi) +

γr(τ)
∑

(xj ,ỹj)∈S̃′
u

Lu
(
θ,xj , ỹj

)
(9)

In [31] the supervised loss term was implemented with a
cross-entropy loss;Ll (w,xi,yi) = δcross-entropy (yi, fw (xi)).
Regarding the unlabelled loss term, an Euclidean distance
was implemented Lu

(
w,xj , ỹj

)
=
∥∥ỹj − fw (xj)

∥∥. Au-
thors in [31], modelled the coefficient r(τ) as a ramp-up
function that increases its value as the epochs τ increase. In
our implementation, r(τ) was set to τ/3000. The γ factor is
used as a regularization coefficient. It regulates the influence
of unlabelled data. It is important to remark how unlabelled
data also affects the labelled data term Ll, as unlabelled data
is used to augment data observations by using the MixUp
approach for the labelled term as well.

D. SEMI AND SELF SUPERVISED LEARNING FOR
IMPROVING UNCERTAINTY ESTIMATION
Recently, in [33] the authors analyze the use of unlabelled
data to improve a model’s calibration (defined by the authors
as the correlation between accuracy and uncertainty). A
regularization based approach was implemented, improving
the calibration of the model for structured data. Moreover,
in [34], authors explore the improvement of uncertainty esti-
mations using self-supervised learning. Some popular semi-
supervised approaches like MixMatch [31] use concepts im-
plemented in self-supervised learning, namely consistency
regularization. The results presented in [33] reveal the ad-
vantage of using unlabelled data for uncertainty estimation.
Semi-supervised learning has recently been proven to en-
hance adversarial robustness, as argued in [35]. Moreover, in
[36], the impact of MixUp data augmentation on the model
uncertainty estimation (also known as model calibration) is
assessed. Authors used the Softmax function to estimate the
model’s uncertainty, yielding better calibrations through the
usage of MixUp. MixUp is also used in the MixMatch model
[31].

E. COMPARING MODEL UNCERTAINTY RELIABILITY
To compare uncertainty reliability across different uncer-
tainty estimation techniques, different approaches have been
developed in the literature. Uncertainty reliability is related
to the calibration error [37]. For a classification problem in
a given data set D, intuitively, the calibration error refers
to the difference between the total estimated probability
(confidence) p̂ for the observations of label y and the real
proportion of the estimation of a label y, given in p.

Reliability histograms [38] are proposed to build a his-
togram, with bins defined for different uncertainty ranges. A
reliability histogram plots the normalized confidence against
the accuracy for each bin. Defining Bm as the set of indices
of observations whose uncertainty prediction belongs to the
interval Im =

(
m−1
M , mM

]
, the sample mean accuracy for the

bin Bm is given by:

acc (Bm) =
1

|Bm|
∑
i∈Bm

1 (ŷi = yi) , (10)

where ŷi corresponds to the model estimation for the obser-
vation i with label yi. Similarly the average uncertainty for a
bin Bm for an uncertainty density function p̂ is given by:

unc (Bm) =
1

|Bm|
∑
i∈Bm

p̂i. (11)

An uncertainty estimator is considered better as the relation-
ship of unc and acc reaches the identity and thus becomes
less spiky. The Expected Calibration Error (ECE) measures
this gap in one scalar, taking the average difference between
the sample accuracy and confidence mean:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|. (12)

In [37] different downsides of the ECE are noted. One such
downside is the sparseness that is frequently yielded by the
computed confidence histogram. This is referred in [37] as
the problem of fixed calibration ranges. Frequently used Soft-
max based uncertainty estimations are overconfident, making
higher bins more populated. This makes the estimates of less
populated bins potentially inaccurate. Other improvements
added to the ECE include the root mean squared calibration
error [39] and the static and adaptive calibration error [37].

However, an important downside of using the ECE is the
assumption that it makes about the uncertainty measure-
ment as a normalized measure between 0 and 1. Different
approaches for uncertainty estimation as MCD and DUQ
yield unbounded values (outside from the 0 to 1 interval),
making the use of the ECE inappropriate. For instance in
[26], MCD has been implemented for uncertainty estimation,
with no normalized values reported. For instance, comparing
uncertainty estimations of [25], [26] to the ones yielded
in [40], is difficult as different uncertainty measures yield
different uncertainty value ranges for different data sets.
Using the ECE is only possible when a bounded uncertainty
estimator such as the Softmax function is used (where its
values are bounded from 0 to 1). This makes the comparison
of uncertainty estimation approaches difficult as they can be
normalized using the sampled values for the data set tested,
but this leads to a data set bias.

However, a bigger issue when using a measure like the
ECE is the limited statistical interpretation. The ECE relies
on the sample mean per bin acc, which ignores the dis-
tribution of the data and information from other statistical
measurements like the variance.
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As an alternative, rejection-classification plots were used
in [22]. Rejection-classification plots use as x-axis the pro-
portion of data rejected based on the uncertainty score. The y-
axis represents the level of accuracy. Similar to the rejection-
classification plots, the accuracy vs. confidence curves were
used in [23] to compare different uncertainty estimators
graphically. For a quantitative comparison, the area under the
curve of this plot can be used. However, such value is also
unbounded and holds no statistical significance. For either
the rejection plots or the ECE based metrics, a comparison
problem arises when the compared curves present different
accuracy levels. As the number of wrong estimations fluc-
tuates for each model, the average accuracy per bin also
changes, making it harder to compare the uncertainty esti-
mation quality. This situation is faced in this work, where
we compare the impact of a supervised to a semi-supervised
model, which changes the model’s accuracy.

Other common metrics to measure the error of a model
have also been used for out of distribution data detection
through uncertainty methods. In [41] for instance, the area
under the precision-recall curve and the error rate have both
been used for out of distribution detection to compare uncer-
tainty estimation methods. However, the metric is also not
statistically relevant as no distribution information is used to
compare the evaluated methods. Using the outlined context,
this work comprises the following contributions:

• We explore the impact of semi-supervised deep learn-
ing in the reliability of the uncertainty estimations for
COVID-19 detection, using a common deep learning
architecture.

• We evaluate and compare qualitatively as well as quan-
titatively the performance of three different uncertainty
estimation techniques for both the supervised and semi-
supervised models.

• We propose the use of the Jensen-Shannon divergence
[42] as a probability density based metric to compare
the performance of uncertainty estimation techniques.

We show that our proposed method is simple to implement
and that it is often effective. The method takes advantage
of unlabelled data to improve uncertainty estimations for
COVID-19 detection using digital chest X-ray images. Unla-
belled data is generally widely available, and in the context of
a virus out-break, easier to obtain, when compared to labelled
data.

III. PROPOSED METHOD
In this work, we propose the use of unlabelled data through
MixMatch (as depicted in equations 8 and 9), to improve
uncertainty estimation. We test the impact of using unlabelled
data in three uncertainty estimation methods:

• Softmax as described in Equation 1, using the maxi-
mum Softmax value for the output layer. Therefore, the
Softmax uncertainty estimation corresponds to ui =
arg max

i
pi.

• MCD as depicted in Equation 3, using the standard
deviation of the distribution from the evaluation of the
model with dropout for the same input observation xj
[19], making ui = σmodel (xj).

• DUQ as introduced in Equation 4. We used a generic
weight matrix Wi = 1 for all classes i = 1, ..., C,
implementing an Euclidean distance for the radial basis
kernel Ki. The uncertainty estimation for this approach
is implemented as

ui = arg max
i

Ki (fθ (xj) , ei) , (13)

for an input observation xj .
In this work we also propose the comparison of the eval-

uated methods for uncertainty estimation, using the Jensen-
Shannon divergence between the distribution of the uncer-
tainty estimations for the correct and incorrect estimations.
More specifically, take a model uncertainty estimation uj
for an input observation xj . For a given data set S, we
group the uncertainties of the wrong estimations for the
trained model, semi or supervised, as wrong or correct ac-
cording to the labels in the test partition of the labelled
dataset Sl = (Xl, Yl). This results in a set of uncertainties
for the wrong estimations Uwrong =

{
u1, . . . , unwrong

}
and

correct estimations Ucorrect = {u1, . . . , unincorrect}, used to
calculate the corresponding normalized histograms pucorrect

and puincorrect
. We implement the Jensen-Shannon divergence

DJS
(
pucorrect

,puincorrect

)
to measure the divergence between the

two non-parametric approximations of the density functions
pucorrect

and puincorrect
. Figure 1 summarizes the implemented

pipeline in this work.

IV. EXPERIMENTS
A. DATASET
The COVID-19+ data sample was downloaded from the
publicly available github repository of Joseph Cohen [28].
The observations were gathered from journals such as
radiopaedia.org and the Italian Society of Medical and In-
terventional Radiology. In this work we used only images
labelled with COVID-19+, discarding images labelled as
Middle East Respiratory Syndrome (MERS), Acute Respi-
ratory Distress Syndrome (ARDS) and Severe Acute Res-
piratory Syndrome (SARS). After applying this filtering, 99
observations of front chest X-rays were selected. The images
were stored with resolutions ranging from 400 × 400 up to
2500× 2500 pixels.

Together with the COVID-19− observations we sampled
a 5856 observations containing pneumonia and no lung
pathologys as defined by [29]. The data set is composed
of 4273 observations of viral and bacterial pneumonia and
1583 normal observations (with no lung pathology). We used
the observations with no findings, for the COVID-19− class.
The negative COVID-19 cases gathered in this dataset have
been used in recent research related to COVID-19 detection
using deep learning [43]–[45]. The images were stored with
a resolution of 1300× 600 pixels.
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FIGURE 1. Description of the implemented work-flow: Training of the semi-supervised model MixMatch (MM) and the supervised model (Sup.). Calculation of the
predictive uncertainties using the Softmax activation function, MonteCarlo Dropout (MCD) and Deterministic Uncertainty Quantification (DUQ). We propose to
compare the distribution of the predictive uncertainties for correct (C) and Incorrect (I) estimations, using the Jensen-Shannon distance (JS).

We created a balanced base-line data set of 99 COVID-
19+ observations and also 99 observations for COVID-19−

cases, using the aforementioned data sets. Figure 2 shows a
sample of the images used.

Both supervised and semi-supervised models were trained
with nl = 20, 30, 60, 70, 100 labelled observations, to study
the impact of different labelled data sample sizes. We splitted
the data set of 198 observations with 70% (138 observations)
of the data for training and the remaining 30% (60 observa-
tions) for testing. The labelled observations were taken from
the training dataset, and as for the SSDL model, we used
the remaining as unlabelled data, always keeping the number
of labels balanced. We chose to use the unlabelled data as a
partition of the original labelled dataset, to avoid distribution
mismatch related issues as suggested in [46]. This is out of
the scope in this work, however testing unlabelled datasets
from other sources with possibly more observations, is left
for future work.

B. NEURAL NETWORK ARCHITECTURES AND
METRICS

In this work we used a WideResNet model as a supervised
model for binary classification (COVID-19+ and COVID-
19− discrimination), with transfer learning from the Ima-
geNet dataset. For the supervised model we used the cross
entropy as loss function. The semi-supervised MixMatch
framework implemented also used the WideResNet model
with a K = 2 transformations, a sharpening coefficient ρ =

FIGURE 2. Left column, positive COVID-19 X-ray observations, right column,
three negative COVID-19 observations. All of them were taken from the
dataset used in this work.
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0.25, a MixUp parameter α = 0.75, as recommended in [31],
and a γ = 200 for the unsupervised coefficient, as advised in
[11]. For both the supervised and semi-supervised model we
used a learning rate of 0.00002 and a batch size of 10 ob-
servations, with 50 epochs per run. As a preprocessing stage,
we implemented a standardization of the training dataset. All
images were resized to 150 × 150 pixels. The model was
implemented with the FastAI library, and optimized with the
1-cycle policy [47].

We evaluated the Softmax, MCD and DUQ uncertainty
methods in the semi and supervised models to collect for
each one of them a set of uncertainties US, UMCD, and UDUQ,
respectively. As for the parameters of the tested uncertainty
methods, for the MCD, we used M = 100 evaluations
with the default dropout of WideResNet. Regarding the DUQ
method, we used an Euclidian based kernel K for all the
classes.

We first report the model’s F1 score, to compare the
accuracy gained when using SSDL, and use it as a reference
for the uncertainty results analysis. This is depicted in Table
1. We also report the ρlu and δρ (this last one for the SSDL
model), as advised in [11] for assessing the accuracy gain for
SSDL frameworks.

Secondly, we report the sample mean and standard devi-
ation for the correct and incorrect estimations. We perform
this comparison for all three tested uncertainty estimation
methods (Softmax, MCD and DUQ). We also measure the
Jensen-Shannon divergence between the distributions of the
uncertainties puincorrect

and pucorrect
, for the incorrect and correct

estimations, respectively. Uncertainty for wrong and right
estimations is expected to be higher and lower respectively.
The reported descriptive statistics correspond to the results of
10 runs with 10 different test and training data partitions. The
results yielded for the described experiment are displayed in
tables 2, 3 and 7.

Finally, as a complementary qualitative test, we calculated
the rejection-classification plots described in [22]. The av-
erage accuracy was calculated for each uncertainty bin. In
general, for rejection plots, the less spiky and closer to an
identity function, the better for an uncertainty estimator. Such
plots are displayed in Table 9 for the three tested uncertainty
estimators.

V. RESULTS
The F1-score and accuracy of the models trained with less
than 70 labels reported a significant performance gain when
using the tested SSDL model. The F1-score gain goes from
around 0.18 with 20 labels to almost 0.01 when using 60
labels. With 70 labels, the sample mean accuracy and F1-
score gets marginally better for the supervised model, making
the impact of SSDL negligible. We also report the ∆ρ to mea-
sure the accuracy gain under the specific SSDL data setting.
The yielded results allow to evaluate uncertainty estimation
performance under the setting of substantial (nl = 20, 30),
marginal (nl = 60) and negative (nl = 70, 100) accuracy
and F1-score gains when using MixMatch.

Taking the accuracy gains into account for different num-
ber of labels nl used for training we proceed to analyze
the uncertainty estimation reliability by using the proposed
Jensen-Shannon divergence between the uncertainty distri-
bution of correct and wrong estimations.

For the Softmax function, the wrong-correct uncertainty
distribution distances are depicted in Table 2. In this table, a
significant Jensen-Shannon divergence gain is yielded when
nl = 20 and nl = 30, with gains ranging from 0.32 to
0.2. However, when nl = 60 and nl = 70 the Jensen-
Shannon (JS) divergence gets smaller between the supervised
and SSDL model, with only 0.04 of difference. For nl = 100,
the supervised model gets a much higher JS divergence,
suggesting a high correlation between the accuracy/f1-score
gain and uncertainty reliability gain by using SSDL for the
softmax uncertainty based approach. Table 6 shows how the
distributions of the softmax uncertainties for the wrong and
correct distributions are significantly different for both the
SSDL and supervised models, however, the JS divergence
makes easier to spot the difference between the distributions
quantitatively.

As for the MCD for uncertainty estimation, a similar
behavior can be observed, with decreasing uncertainty reli-
ability gains when the number of labels go from nl = 20
and nl = 100 when using the SSDL model. Similarly, for
nl = 20 up to nl = 70 labels, the reliability of the SSDL
model uncertainty estimations outperform the supervised
model by a larger margin. MCD obtains lower reliability
gains for the SSDL model when compared to the Softmax
approach, for the lowest number of labels nl = 20 and
nl = 30 tested. Also for the SSDL model, when the number
of labels increases from nl = 60, the reliability of the MCD
approach is better when compared to the softmax method.
The uncertainty distribution plots for the correct and wrong
estimations depicted in Table 5 show important differences
between such distributions, but the improvement between the
SSDL and supervised models is hard to discern visually.

Regarding the results for the DUQ uncertainty estimation
method, the overall JS divergences are significantly lower
than the MCD and softmax approaches. This suggests that
both methods significantly outperform DUQ as an uncer-
tainty estimation method. The plots in Table 4 qualitatively
complement the small difference between the DUQ uncer-
tainty distributions of correct and wrong estimations. How-
ever, similar to the softmax and MCD methods, the usage of
SSDL makes a positive impact when nl is between nl = 20
up to nl = 60.

A summary of the results is presented in Table 8. The use
of the Jensen-Shannon divergence between the uncertainty
distributions of the correct and wrong estimations allowed us
to perform such analysis. We can see how the highest relative
uncertainty estimation improvements are yielded when the
models are trained with fewer labels. In such case, the gains
range from 81 to 142 percent, for all the tested uncertainty
estimation methods. In general, as the the number of labels
increases, the reliability gain of the uncertainty estimations
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nl Desc. stat. No SSDL F1-Score/Accuracy SSDL F1-Score/Acc ρlu ∆ρ

20 x 0.754/0.816 0.93/0.965 0.144 7.684
s 0.069/0.07 0.0415/0.021

30 x 0.836/0.89 0.943/0.976 0.217 7.295
s 0.07/0.048 0.032/0.013

60 x 0.902/0.96 0.917/0.971 0.434 0.641
s 0.044/0.028 0.048/0.018

70 x 0.931/0.958 0.909/0.968 0.507 0.409
s 0.032/0.025 0.0473/0.025

100 x 0.932/0.975 0.791/0.9 0.724 -2.287
s 0.032/0.018 0.064/0.029

TABLE 1. F1 score and accuracy statistics for batches tested with different number of labels nl.

nl Desc. stat. s(y) correct NO-SSDL s(y) wrong NO-SSDL JS div. No SSDL s(y)correct SSDL s(y) wrong SSDL JS div. No SSDL
20 x 0.8216 0.7343 0.2407 0.9452 0.7481 0.5812

s 0.1384 0.1457 0.0932 0.1298
30 x 0.8594 0.7207 0.3554 0.9597 0.7722 0.5497

s 0.1337 0.1429 0.0755 0.1556
60 x 0.9159 0.7128 0.506587 0.9301 0.7315 0.5462

s 0.1116 0.1504 0.0986 0.1384
70 x 0.9097 0.7387 0.4514 0.9232 0.7309 0.4976

s 0.1167 0.1535 0.1066 0.1467
100 x 0.9324 0.7297 0.5067 0.8445 0.7254 0.2872

s 0.1016 0.1471 0.1438 0.1505

TABLE 2. Softmax results for the semi-supervised and supervised models with different numbers of labels nl. Higher values indicate higher model confidence. The
higher the better for correct estimations, and the lower the better for incorrect estimations.

nl Desc. stat. σ correct No SSDL σ wrong No SSDL JS div. No SSDL σ correct SSDL σ wrong SSDL JS div. SSDL
20 x 0.5401 0.6222 0.271 0.3076 0.6334 0.4938

s 0.1266 0.0852 0.2107 0.0925
30 x 0.5008 0.6370 0.367503 0.2890 0.6038 0.5204

s 0.1552 0.0964 0.1904 0.1255
60 x 0.4041 0.6253 0.49075 0.3687 0.6317 0.5591

s 0.1856 0.1150 0.1975 0.0730
70 x 0.4133 0.6253 0.4301 0.3968 0.6355 0.5105

s 0.1882 0.1228 0.1825 0.0840
100 x 0.3540 0.6186 0.5534 0.5179 0.6313 0.3382

s 0.2028 0.1348 0.1551 0.0903

TABLE 3. MCD results for the semi-superivised and supervised models with different numbers of labels nl. Lower values indicate higher model confidence. The
lower the better for correct estimations, and the higher the better for incorrect estimations.

using SSDL tend to decrease. This correlates well with the
average accuracy gains using SSDL depicted in Table 1.

This tendency is more visible for the MCD and Softmax
methods. The DUQ method is very unstable, as its capability
for uncertainty estimation is more limited when compared
to the first two methods, with lower JS divergences for
all the tested configurations as seen in Table 7. Marginal
uncertainty estimation improvements were obtained for the
DUQ method, as seen in Table 8.

Finally, Figure 9 shows the rejection plots for the tested
uncertainty estimation methods, with different numbers of
labels nl. In most cases the plots are rather similar, and also
reveal a very high dispersion of the results for each bin,
depicted by the blue (supervised model) and the orange areas
(SSDL model). Such high dispersion suggests a possible sta-
tistically irrelevant comparison of results. Most of the plotted
curves show higher accuracies per bin for the SSDL model,
which corresponds to the results yielded in Table 1 where for

most tested configurations the SSDL model outperforms the
supervised one. This makes the comparison of the rejection
plots between the supervised and the SSDL model harder.

VI. LIMITATIONS OF THE STUDY
This work used a limited sample of COVID-19 positive
observations coming from a very different distribution when
compared to the source of COVID-19 negative observations
sampled from [29]. This causes a bias in the population of
patients sampled for COVID-19 positive and negative cases
related to age and ethnicity, as the data sources for both
cases are completely different. The low availability of public
repositories of COVID-19 chest X-rays with reliable labels at
the time of writing poses a limitation to this work. Therefore,
an additional validation of the proposed method in this work
with other datasets with higher quality (with less age and
ethnicity biases) is necessary. We plan to do this in the
future. This work focused on measuring the impact of semi-
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TABLE 4. DUQ uncertainty distributions for correct (blue dashed line) and
incorrect estimations (orange dashed with ’x’ line) using nl = 30, 70 labels
(from left to right). From top to bottom, the first row corresponds to the
supervised model and the second row, to the SSDL model results.
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TABLE 5. MCD uncertainty distributions for correct (blue dashed line) and
incorrect (orange dashed with ’x’ line) estimations using nl = 30, 70, from left
to right. From top to bottom, the supervised and the semi-supervised deep
learning models results.

supervised learning on uncertainty estimations for COVID-
19 detection, and evidenced how predictive uncertainty es-
timations improve as model accuracy improves. However,
the quality of the predictive uncertainty estimations can be
improved through model calibration methods. Furthermore,
other uncertainty estimation methods can be included in the
comparison. We plan to test uncertainty estimation improve-
ments in future work.

VII. CONCLUSIONS
In this work we have tested the impact of using unlabelled
data to improve the reliability of uncertainty estimations
through the implementation of the SSDL algorithm known as
MixMatch. We tested three different uncertainty estimation
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TABLE 6. Softmax confidence distributions for correct (blue dashed line) and
incorrect (orange dashed with ’x’ line) estimations using nl = 30, 70, from left
to right. From top to bottom, the supervised and the semi-supervised deep
learning models results.

methods (softmax, MCD and DUQ). The yielded descriptive
statistics suggest an important reliability improvement of the
uncertainty estimations when using SSDL for all the three
uncertainty estimation methods. With low number of labels,
the JS divergence is boosted by up to 142%, as seen in Table
8.

To ease the comparison of the tested uncertainty tech-
niques, we proposed the use of the JS divergence, comparing
the distributions of the wrong and correct estimations. The
test is statistically relevant as it takes into account the whole
results distribution, and it is easy to interpret, with values
ranging from 0 to 1 (the higher the values the better). The
use of the JS divergence index to compare the uncertainty
estimations proved to be simple to analyze, with easy to map
correspondence with the distribution plots. Its use is rec-
ommended when comparing different uncertainty methods
under different models which cause fluctuations in the model
accuracy.

When comparing the three tested uncertainty estimation
methods, the MCD and the softmax techniques performed
better than the DUQ approach. The comparison between
the MCD and the softmax methods is rather mixed, with
MCD performing better when nl is higher. Results with
the DUQ method yielded a significantly worse performance
for uncertainty estimation. We speculate that this is due to
the high similarity between the images of the two classes.
This makes the averaged observations in the feature space
similar for both classes and the comparison of new unseen
observations less sensitive. In terms of the uncertainty source,
the MCD approach seemed to be more sensitive to epistemic
uncertainty, than the DUQ method. Epistemic uncertainty
can be considered to be very high in models trained with
very few labels, as the feature space sample is very limited.
MCD takes into account the epistemic uncertainty of both the
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nl Desc. stat. `2 correct No SSDL `2 wrong No SSDL JS div.No SSDL `2 correct SSDL `2 wrong SSDL JS div. SSDL
20 x 133.7481 143.8356 0.072 131.9169 137.8194 0.17024

s 24.4915 55.7149 33.7233 21.8417
30 x 130.7032 147.3737 0.13599 132.2328 142.4301 0.108488

s 32.4645 48.0116 31.6105 58.383
60 x 135.0814 137.0349 0.072 132.7359 142.3879 0.163092

s 35.8013 20.6742 37.7423 20.4047
70 x 132.1344 149.7608 0.216469 132.5677 148.2541 0.14228

s 24.8133 80.2325 32.204 75.853
100 x 134.1262 143.4125 0.1599 132.6018 140.198 0.0943

s 29.4393 71.2851 34.5869 51.501

TABLE 7. DUQ results for the semi-supervised and supervised models with different numbers of labels nl. Lower values indicate higher model confidence. The
lower the better for correct estimations, and the higher the better for incorrect estimations.

nl MCD: JS div. gain SSDL vs. No SSDL Softmax: JS div. gain SSDL vs. No SSDL DUQ: JS div. gain SSDL vs. No SSDL
20 +0.222/+81% +0.34/+142% +0.098/+136%
30 +0.153/+41.7% +0.194/+54.6% -0.027/-20%
60 +0.069/+14% +0.04/+8% +0.092/+126%
70 +0.08/+18% +0.04/+10% -0.073/-34%
100 -0.21/-38% -0.22/-0.43% -0.065/-41%

TABLE 8. Summary of the Jensen-Shannon divergence gains (uncertainty distributions divergence for the correct and incorrect estimations), for each tested
uncertainty estimation method, using semi-supervised learning.
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TABLE 9. Rejection plots for the three tested uncertainty approaches. The first row correspond to the DUQ estimations, the second one to the MCD uncertanties
and the last one to the Softmax confindence scores. From left to right, models with different number of labels nl. Orange and ’x’ lines correspond to the
semi-supervised model and the dashed and blue lines correspond to the supervised model.
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feature extractor and the top model (fully connected network
acting as classifier), unlike DUQ which only uses the feature
extractor, and can be considered the only channel for the
epistemic uncertainty for this method.

As future work, we plan to explore more recent uncer-
tainty estimation approaches which have been originally
designed for distribution mismatch measurement [48], [49].
Interchangeably, the quality of the unlabelled dataset and its
impact in the model’s accuracy and uncertainty estimations is
also worth to explore. For this end, dataset quality metrics can
be implemented [50]. Furthermore, we plan to explore the
impact of unlabelled data in other engineering requirements
of deep learning models such as model robustness. Little
research has been done about the actual impact of semi or self
supervised learning in important model properties such as ro-
bustness in practical applications like medical imaging analy-
sis. For instance, we plan to further evaluate the improvement
of model uncertainty reliability and robustness for COVID-
19 detection using computed tomography as an alternative
imaging technology which is also interesting to explore. The
use of modern semi- and self-supervised techniques can do
more than just improving the model accuracy under restricted
number of labels. Therefore its impact should be studied
in depth. In general, we highlight the need for evaluating
other important model properties such as robustness and
uncertainty reliability, specially for sensitive applications like
medical imaging analysis.
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