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Abstract  22 

Staphylococcus aureus is a serious human and animal pathogen threat exhibiting extraordinary 23 

capacity for acquiring new antibiotic resistance traits in the pathogen population worldwide.  24 

The development of fast, affordable and effective diagnostic solutions capable of discriminating 25 

between antibiotic-resistant and susceptible S. aureus strains would be of huge benefit for effective 26 

disease detection and treatment. Here we develop a diagnostics solution that uses Matrix-Assisted 27 

Laser Desorption/Ionisation – Time of Flight Mass Spectrometry (MALDI-TOF) and machine 28 

learning, to identify signature profiles of antibiotic resistance to either multidrug or benzylpenicillin in 29 

S. aureus isolates. Using ten different supervised learning techniques, we have analysed a set of 82 S. 30 

aureus isolates collected from 67 cows diagnosed with bovine mastitis across 24 farms. For the 31 

multidrug phenotyping analysis, LDA, linear SVM, RBF SVM, logistic regression, naïve Bayes, MLP 32 

neural network and QDA had Cohen’s kappa values over 85.00%. For the benzylpenicillin 33 

phenotyping analysis, RBF SVM, MLP neural network, naïve Bayes, logistic regression, linear SVM, 34 

QDA, LDA, and random forests had Cohen’s kappa values over 85.00%. For the benzylpenicillin the 35 

diagnostic systems achieved up to (mean result ± standard deviation over 30 runs on the test set) : 36 

accuracy = 97.54% ± 1.91%, sensitivity = 99.93% ± 0.25%, specificity = 95.04% ± 3.83%, and 37 

Cohen’s kappa = 95.04% ± 3.83%.  38 

Moreover, the diagnostic platform complemented by a protein-protein network and 3D structural 39 

protein information framework allowed the identification of five molecular determinants underlying 40 

the susceptible and resistant profiles. Four proteins were able to classify multidrug-resistant and 41 

susceptible strains with 96.81% ± 0.43% accuracy. Five proteins, including the previous four, were 42 

able to classify benzylpenicillin resistant and susceptible strains with 97.54% ± 1.91% accuracy.  43 

Our approach may open up new avenues for the development of a fast, affordable and effective day-44 

to-day diagnostic solution, which would offer new opportunities for targeting resistant bacteria. 45 

 46 
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Author Summary 47 

Antibiotic resistance is one of the biggest threats to human and animal health. The incessant 48 

emergence of new multidrug-resistant bacteria needs to be counterbalanced by the implementation of 49 

effective diagnostics solutions to detect resistance and support treatment selection.  50 

The objective of this study is the development of effective diagnostic solutions to identify resistance 51 

to benzylpenicillin and other drugs in S. aureus strains infecting dairy cattle. S. aureus is one of the 52 

most common pathogens of clinical mastitis in the dairy industry, affecting productivity, profitability, 53 

animal health and welfare, and has an extraordinary capacity for acquiring new antibiotic resistance 54 

traits.  55 

Our diagnostic solution combines machine learning and mass spectrometry. The application to a test 56 

set of 82 S. aureus isolates collected from 67 cows diagnosed with bovine mastitis across 24 farms 57 

discriminated between multidrug-resistant and susceptible strains with (mean result ± standard 58 

deviation over 30 runs on the test set) 96.81% ±0.43% accuracy, and between benzylpenicillin-59 

resistant and susceptible strains with 97.54% ± 1.91% accuracy. Through a dedicated bioinformatics 60 

pipeline developed on the results of machine learning, we were able to obtain new insights into the 61 

molecular determinants and mechanism underlying the antibiotic resistance phenotypes. We believe 62 

that our approach may open up new avenues for the development of a fast, affordable and effective 63 

diagnostic solution which would offer new opportunities for targeting resistant bacteria and support 64 

with timely, accurate and targeted treatment selection.  65 

 66 

Introduction 67 

Staphylococcus aureus is a major opportunistic pathogen, infecting both humans and a wide variety of 68 

animals including dairy cattle, which have been recently proven to pose an important zoonotic 69 

potential, being the principal animal reservoir of novel human epidemic clones [1]. Worldwide, S. 70 

aureus is one of the most frequently isolated pathogens of bovine mastitis, which remains a 71 

significant problem in the dairy industry by affecting productivity, profitability, animal health and 72 

welfare [2]. The majority of bovine mastitis infections caused by S. aureus exhibit subclinical and 73 

chronic manifestations resulting in long-term intramammary persistence [3]. S. aureus can reproduce 74 
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swiftly upon entering the mammary gland and induce immune reactions that can lead to tissue injuries 75 

[4]. Most of the time, the immune response of the cow itself cannot successfully eliminate the S. 76 

aureus infection and treatment is needed [4]. Existing S. aureus vaccines are not considered as a 77 

preventive solution due to their yet unproven effectiveness against infections [5]. 78 

In 2000, Gentillini et al. [6] indicated that beta-lactams (penicillins and cephalosporins), 79 

aminoglycosides, macrolides and lincosamides were the most commonly used antibiotics for 80 

treatment of bovine mastitis. In addition, according to a recent survey [7] in 2018, penicillins, 81 

aminoglycosides and third/fourth generation cephalosporins were the most common antibiotics used 82 

on the treatment for bovine mastitis in the UK. The first examples of using benzylpenicillin for bovine 83 

mastitis treatment can be traced back to the 1940s [8]. However, penicillin-resistant S. aureus strains, 84 

carrying a penicillinase/beta-lactamase emerged shortly after its first clinical usage and by the early 85 

1950s, they became pandemic [8]. In 1959 a penicillin derivative, methicillin, that was resistant to β-86 

lactamase hydrolysis was synthetized. However, immediately after methicillin was used clinically, 87 

methicillin-resistant S. aureus (MRSA) strains were isolated [9, 10]. Resistance to methicillin is 88 

conferred by the acquisition of a mobile genetic element, the staphylococcal cassette chromosome 89 

(SCCmec) carrying the gene mecA encoding a penicillin-binding protein (PBP2a) [9, 10]. Over the 90 

years, mutations, acquisition and accumulation of antibiotic resistance-conferring genes, divergent 91 

mecA gene homologues (mecC) [11, 12] and SCCmec elements [11] have led to the emergence of 92 

multi-resistant MRSA strains [13].  93 

Nowadays, MRSA are resistant to virtually all β-lactam antibiotics [11]. Since its emergence in the 94 

early 2000’s, livestock-associated methicillin-resistant S. aureus (LA-MRSA) has become an 95 

emerging problem in many parts of the world [14-16]. The detection of mecC MRSA from dairy 96 

cattle in England [12] was reported in 2011. The first isolation of both mecA and mecC LA-MRSA. In 97 

bulk milk from dairy cattle in the UK was reported in 2012 [17]. Worryingly, a number of studies 98 

have suggested possible human-livestock MRSA transmissions [16, 18-20]. In addition, several 99 

studies have reported that persons with occupational livestock exposure may be at increased risk of 100 

becoming colonized with LA-MRSA [21]. More than 90% of current human-associated isolates [22] 101 

and varying from 84% to 92% of dairy-related isolates were observed to be penicillin-resistant [23, 102 
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24]. However, the UK surveillance report between 2016 and 2018 showed that penicillin resistance in 103 

S. aureus was relatively low (20.4% on average) in British dairy cattle [25].  104 

It is not uncommon in dairy cattle practice to give antibiotics to healthy animals to prevent the 105 

insurgence of diseases, and to sick animals often without certainty about the actual bacterial origin of 106 

the disease. Even when the disease is of recognised bacterial origin, broad-spectrum antibiotics are 107 

often used, instead of targeting the specific bacterial strain causing the illness. Underlying such 108 

prescription practices is the lack of fast, affordable and effective diagnostic solutions, which leaves 109 

the veterinarian to primarily rely on educated guesses. These practices have serious consequences, 110 

amongst which is the appearance and diffusion of multidrug antibiotic resistance profiles in the 111 

pathogen population.  112 

S. aureus has an extraordinary capacity of acquiring new resistance traits by the integration into its 113 

genome of exogenous genetic material via horizontal gene transfer and mutational events [26, 27]. In 114 

Staphylococcus spp, the major targets underlying mechanisms of resistance are the cell envelope, the 115 

ribosome and nucleic acids [28]. However, several studies have identified hypothetical proteins as 116 

also being associated with drug resistance specifically in S. aureus [29]. 117 

Characterising the proteins, alone or in combination, that contribute to resistance, can potentially lead 118 

to improved diagnostic tools and therapeutics against antibiotic-resistant S. aureus and may hold the 119 

key to unlocking this global health problem. In veterinary medicine, the identification of multidrug-120 

resistant (MDR) pathogens and the identification of their antibiotic resistance profiles is done by 121 

conventional methods such as disk diffusion, epsilometer test, Vitek, macrodilution and microdilution 122 

[30]. However, such diagnostic tools are not affordable and quick enough to offer real-time control of 123 

invasive infections.  124 

Matrix-Assisted Laser Desorption/Ionisation – Time of Flight Mass Spectrometry (MALDI-TOF) has 125 

been an alternative way of detecting antibiotic resistance thanks to its low-cost and speed [31]. 126 

Antibiotic resistance profiles of several organisms could be determined by MALDI-TOF [32-34], and, 127 

in combination with machine learning techniques, larger datasets, a wide range of microbial species 128 

identification and complex antimicrobial resistance profile could be analysed faster and more easily 129 

and economically, revolutionizing the field of microbiology [35]. S. aureus was one of the most 130 
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frequently studied genera for antimicrobial resistance prediction [36-40]. Rapid and accurate 131 

classification of MRSA and methicillin-sensitive S. aureus (MSSA) based on MALDI-TOF spectral 132 

of clinical samples were obtained by several studies [36, 38, 39]. Analogously, high accuracy results 133 

have been obtained when applying machine learning approaches to MALDI-TOF spectral data for the 134 

prediction of the broad-spectrum antibiotic vancomycin. In particular, successful separation of 135 

vancomycin-intermediate (VISA) from vancomycin-susceptible S. aureus (VSSA) on the basis of 136 

MALDI-TOF data collected from clinical samples [37, 40, 41]. Recently, van Oosten and Klein [42], 137 

developed classification models for S. aureus which assign the mechanisms of action of antibacterial 138 

drugs.  139 

The objective of this study was to find a fast and more accurate alternative to standard susceptibility 140 

tests, to profile multidrug and benzylpenicillin resistance in S. aureus isolates. To this end, we tested 141 

the discriminatory power given by the combination of supervised machine learning and MALDI-TOF, 142 

complemented by a protein-protein interaction (PPI) network and a protein structural analysis 143 

workflow. Here for the first time, we demonstrate that this approach can be used to develop diagnostic 144 

solutions that can discriminate with high performance between benzylpenicillin- and multidrug-145 

resistant and susceptible bovine mastitis-causing S. aureus isolates. 146 

 147 

Results 148 

Sample Analysis 149 

In this study, 82 S. aureus isolates had been cultured from milk samples collected between March 150 

2004 and May 2005. The samples were from 24 herds each in a different farm (24 farms) where 23 151 

farms were in England (most of them in the south) and one farm was in Wales (Llangathen, 152 

Carmarthen). The locations of the farms and S. aureus isolates collected from each farm are shown in 153 

Figure 1 and the breakdown of isolates per farm is shown on Supplementary Table 1. Moreover, 154 

Supplementary Table 2 indicates the antimicrobial susceptibility profile of the resistant isolates that 155 

were obtained from the same animal. 156 

VITEK analysis showed that the cohort consisted of 31 benzylpenicillin-resistant and 51 157 

benzylpenicillin-susceptible isolates. Amongst the resistant isolates, 16 isolates were found to be only 158 
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penicillin-resistant, while 15 isolates had resistance to multiple antibiotics, among these 15 isolates 13 159 

were found to be resistant to three or more antibiotics, with at least one antimicrobial agent in three 160 

antimicrobial classes (multidrug-resistant, MDR), while two isolates were resistant to two or more 161 

antibiotics with at least one antimicrobial agent in two antimicrobial classes (extensively drug-162 

resistant, XDR). We considered the MDR and XDR as one class and named it as MDR for simplicity. 163 

As shown in Figure 2, out of 15 multidrug-resistant isolates, 11 isolates were resistant to 164 

benzylpenicillin, clindamycin, erythromycin, tilmicosin and tylosin; 1 isolate was resistant to 165 

benzylpenicillin, clindamycin, tilmicosin and tylosin; 1 isolate was resistant to benzylpenicillin, 166 

tetracycline and tilmicosin; 1 isolate was resistant to benzylpenicillin and tetracycline, and 1 isolate 167 

was resistant to benzylpenicillin, cefalotin, cefoxitin and oxacillin. 51 isolates were found to be 168 

susceptible to all antibiotics used in this study which were benzylpenicillin, cefoxitin, oxacillin, 169 

cefalotin, ceftiofur, cefquinome, amikacin, gentamicin, kanamycin, neomycin, enrofloxacin, 170 

clindamycin, erythromycin, tilmicosin, tylosin, tetracycline, florfenicol and 171 

trimethoprim/sulfamethoxazole. 172 

 173 

Generation of MALDI-TOF peak lists and set-up of the classifiers 174 

A total of 312 MALDI-TOF raw data spectra had been obtained from 82 S. aureus isolates, on 175 

average 4 replicate spectra per isolate. The peak lists, i.e. the lists of paired mass/charge (m/z) ratios 176 

and corresponding intensity values, were extracted from the raw spectra as specified in the Methods 177 

Section. 178 

Supervised machine learning algorithms were used to implement classifiers to verify if the MALDI-179 

TOF peaks associated with isolates could be used to predict their resistance or susceptibility to 180 

benzylpenicillin and multidrug. Being based on supervised learning, all methods required the 181 

availability of training datasets for model building and validation datasets for assessing the 182 

performance of the classifier. The prediction performance of each classifier was evaluated measuring 183 

accuracy, sensitivity, specificity and kappa. Thirty iterations of nested cross-validation (described in 184 

Methods) were used to train each classifier. 185 
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The following classification methods, available in the scikit-learn library in Python, were tested: naïve 186 

Bayes, linear and non-linear (RBF kernel) support vector machines (SVM), decision tree, random 187 

forests, multi-layer perceptron neural networks (MLP), AdaBoost (AdaBoost-SAMME version), 188 

logistic regression, linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). 189 

 190 

Analysis of multidrug-resistant vs susceptible isolates 191 

We first focused on investigating the possibility to develop a classifier to verify if MALDI-TOF peak 192 

lists associated with isolates could be used to predict their multidrug phenotype. Specifically, we 193 

considered the spectra of 15 multidrug-resistant isolates (13 MDR and 2 XDR) and 51 susceptible 194 

isolates (susceptible to all antibiotics tested in this study). A total of 249 raw spectra were analysed. 195 

The pre-processing led to the identification of four different peaks (Table 1) found to appear in at 196 

least 30% of all number of spectra. Due to the unbalanced nature of this specific data set (76% of 197 

samples were susceptible and only 24% were resistant), we first standardised the four features by a 198 

down-sampling method to build robust classifiers [43]. At each one of the 30 runs, 15 samples were 199 

randomly chosen out of the initial 51 susceptible samples and a final balanced (50% resistant, 50% 200 

susceptible) dataset was generated. The four peaks were then used as features to build ten classifiers 201 

and to develop predictive models for the multidrug phenotype. Before the classification, features were 202 

standardised (mean centred and unit variance) then resistant and susceptible isolates were labelled as 203 

0 and 1, respectively. 30 runs using nested cross-validation were performed. Amongst the investigated 204 

machine learning approaches, LDA, linear SVM and RBF SVM were found as the top three best 205 

performance showing algorithms, respectively. Diagnostic systems trained on individual isolates 206 

coming from 24 different farms achieved up to (mean result ± standard deviation over 30 runs on the 207 

test set): accuracy = 96.81% ±0.43 %, sensitivity = 99.88% ± 0.41%, specificity = 95.96% ± 0.52%, 208 

and kappa = 91.83% ± 1.37% in LDA algorithm. Detailed performance results of all classifiers on test 209 

data can be found in Figure 3.  210 

 211 

Table 1. Statistical evaluation of the 4 peaks with an overall frequency of appearance higher 212 

than 30% based on the multidrug resistant vs susceptible data set.  213 
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Mass 

(kDa) 
PTTA PWKW Ave1 Ave2 StdDev1 StdDev2 PA PA1 PA2 

4.807 3.78E-12 1.34E-07 7.27 19.55 5.89 3.72 66.88 35.71 98.04 

6.422 0.00036 0.041891 6.92 10.30 4.54 2.00 45.31 35.71 54.90 

6.891 0.02021 0.12752 31.98 43.04 23.96 14.89 80.18 64.29 96.07 

9.621 6.81E-08 3.73E-07 32.39 43.00 3.28 6.23 100.00 100.00 100.00 

 214 

PTTA is the p-value of Welch‘s t-test; PKWK is the p-value of Wilcoxon test; index 1 refers to resistant isolates; index 215 

2 refers to susceptible isolates; Ave is the overall intensity average; Ave1 is the intensity average of class ’Resistant’; 216 

Ave2 is the intensity average of class ’Susceptible’; StdDev is the overall intensity standard deviation; StdDev1 is the 217 

intensity standard deviation of class ’Resistant’; StdDev2 is the intensity standard deviation of class ’Susceptible’; PA 218 

is the overall proportion of appearance; PA1 is the proportion of appearance of class ’Resistant’; PA2 is the proportion 219 

of appearance of class ’Susceptible’. 220 

 221 

Analysis of benzylpenicillin-resistant only vs susceptible isolates 222 

Next, we investigated resistance and susceptibility to benzylpenicillin only. This was to isolate 223 

specific patterns underlying resistance to this specific antibiotic. We chose benzylpenicillin because it 224 

was the only antibiotic for which we had singly resistant isolates. 225 

To this aim, the spectra of the 16 benzylpenicillin-resistant only isolates and 51 susceptible isolates 226 

(susceptible to all antibiotics tested in this study) were first pre-processed as described in the Methods 227 

Section. Five peaks were found in at least 30% of the overall number of spectra (Table 2). Due to the 228 

unbalanced nature of this specific data set (76% of samples are susceptible and only 24% are 229 

resistant), we first standardised the five features by a down-sampling method to build robust 230 

classifiers [43]. At each one of the 30 runs, 16 samples were randomly chosen out of the initial 51 231 

susceptible samples and a final balanced (50% resistant, 50% susceptible) dataset was generated. The 232 

five peaks were then used as features to build ten classifiers and to develop predictive models for the 233 

benzylpenicillin phenotype. Before the classification, features were standardised (mean centred and 234 

unit variance) then resistant and susceptible isolates were labelled as 0 and 1, respectively. 30 runs 235 

using nested cross-validation was performed. Amongst the investigated machine learning approaches 236 

RBF SVM, neural network and logistic regression were those that achieved the best performance. 237 

Diagnostic systems trained on individual isolates coming from 24 different farms achieved up to 238 

(mean result ± standard deviation over 30 runs on the test set); accuracy = 97.54% ± 1.91%, 239 



 10 

sensitivity = 99.93% ± 0.25%, specificity = 95.04% ± 3.83%, and kappa = 95.04% ± 3.83% in RBF 240 

SVM algorithm. Detailed performance results of all classifiers on test data can be found in Figure 4. 241 

Notably, four peaks (4.807kDa, 6.422kDa, 6.891kDa and 9.621kDa) were found common in the 242 

analysis of benzylpenicillin-resistant vs susceptible and multidrug-resistant vs susceptible isolates. 243 

When comparing the intensities of these four peaks in the two datasets (resistant vs. susceptible) we 244 

observed that 4.807kDa, 6.891kDa and 9.621kDa had a higher average in susceptible isolates 245 

consistently while 6.422kDa had a higher average of intensity in benzylpenicillin-resistant only 246 

isolates class. 4.305kDa which was specific to benzylpenicillin-resistant only analysis had higher 247 

average intensity in resistant than susceptible isolates. 248 

 249 

Table 2. Statistical evaluation of the 5 peaks with an overall frequency of appearance higher than 250 

30% based on the benzylpenicillin resistant only vs susceptible data set. 251 

Mass 

(kDa) 
PTTA PWKW Ave1 Ave2 StdDev1 StdDev2 PA PA1 PA2 

4.305 0.258564 0.213998 10.20 9.34 2.60 2.64 34.33 37.50 33.33 

4.807 7.02E-08 5.96E-07 12.94 19.55 4.02 3.72 92.54 75.00 98.04 

6.422 0.39999 0.50342 10.81 10.30 2.44 2.00 58.21 68.75 54.90 

6.891 5.69E-12 8.31E-08 10.00 43.04 8.80 14.89 76.12 56.16 96.07 

9.621 1.81E-10 3.35E-08 29.84 43.00 5.54 6.23 100.00 100.00 100.00 

 252 

PTTA is the p-value of Welch‘s t-test; PKWK is the p-value of Wilcoxon test; index 1 refers to resistant isolates; index 253 

2 refers to susceptible isolates; Ave is the overall intensity average; Ave1 is the intensity average of class ’Resistant’; 254 

Ave2 is the intensity average of class ’Susceptible’; StdDev is the overall intensity standard deviation; StdDev1 is the 255 

intensity standard deviation of class ’Resistant’; StdDev2 is the intensity standard deviation of class ’Susceptible’; PA 256 

is the overall proportion of appearance; PA1 is the proportion of appearance of class ’Resistant’; PA2 is the proportion 257 

of appearance of class ’Susceptible’. 258 

 259 

Machine learning analyses undertaken to prove the effectiveness of our method to differentiate 260 

susceptibility/resistance profiles rather than strain differences   261 

Because two of the five discriminant proteins found in this work were of ribosomal origins and 262 

ribosomal proteins have been used for the discrimination of major S. aureus lineages based on 263 

MALDI-TOF analysis [44-47], we performed further analyses in support that our classifiers were 264 
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picking up susceptibility/resistance differences  rather than strain differences. First, we investigated if 265 

and how in the sole presence of the ribosomal peaks as input features or in their absence the 266 

performance of the classifiers changed and how.  As shown in Supplementary Table 3 by removing 267 

only the ribosomal proteins from the analysis of both multidrug and benzyl-penicillin datasets, the 268 

performance of the classifiers decreases but not significantly, all indicators are still above 80%. 269 

However, when using only the ribosomal proteins as input features for the analysis of both multidrug 270 

and benzyl-penicillin datasets, the specificity and Cohen’s kappa indicators drop to unacceptable 271 

values for both the multidrug and benzyl-penicillin predicted phenotypes. Altogether these results 272 

indicate that the ribosomal proteins in combination with the other discriminant proteins are 273 

contributing to the susceptibility/resistance classification but do not play a major role in the 274 

classification.  275 

 276 

Biomarker Characterization – Identification of the proteins found to correspond to the MALDI-277 

TOF spectral peaks recognised as discriminant by the trained classifiers 278 

The five peaks identified as providing optimal discrimination between benzylpenicillin-resistant only 279 

and susceptible isolates were further analysed to identify their correspondent S. aureus proteins. It 280 

should be noted that the four peaks identified as providing optimal discrimination between multidrug-281 

resistant and susceptible were also amongst these peaks. When compared to the reference S. aureus 282 

Newbould 305 (ATCC 29740) proteome, the five peak masses identified the following five S. aureus 283 

proteins: two hypothetical proteins (molecular weights of 4801.95 and 6901.37 Da), RpmJ, RpmD 284 

and DNA-binding protein HU. The molecular weights of the corresponding proteins changed slightly 285 

from those in the original spectra as a result of the search criteria outlined in the Methods (Table 3). In 286 

order to better understand the functions and roles of these proteins within the drug resistance 287 

phenotype, we characterised the molecular functions (MF), cellular components (CC), and biological 288 

processes (BP) they may carry out. RpmJ and RpmD are the 50S ribosomal proteins L36 and L30, 289 

respectively. HU is a histone-like DNA-binding protein, which interacts with DNA to protect from 290 

denaturation [48]. For the hypothetical proteins, we used 3D threading methods to predict the Gene 291 

Ontology (GO) functions (Figure 5). The hypothetical protein of 4801.95Da was annotated as COPII-292 
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coated vesicle cargo loading (BP), intracellular protein transport (BP), proteolysis (BP), homophilic 293 

cell adhesion via plasma membrane adhesion molecules (BP) and ion binding (MF). The hypothetical 294 

protein of 6901.37Da was annotated as being involved with the small molecule metabolic process 295 

(BP), antibiotic metabolic process (BP), lipid transport (BP) and ion binding (MF). 296 

With the aim to further characterise the function of these proteins we did a PSI-BLAST comparative 297 

analysis; all discriminant proteins with 100% coverage and significant e-values are shown in Table 3. 298 

Next, we investigated the drug resistance interactome by building the protein-protein interaction 299 

network. The benzylpenicillin PPI network, including the four significant proteins (RpmJ, RpmD, HU 300 

and HP2) and their 149 first neighbours, was generated (Figure 6). It should be noted that HP1 could 301 

not be found in the S. aureus proteome that was available in STRING database. GO and KEGG 302 

analyses of the network showed enrichment for ribosome, nucleic acid binding and catalytic activity 303 

(Figure 7). 304 

Tetracycline resistance protein (TetM) and elongation factor G (FusA) were found as the first 305 

neighbours of RpmJ and RpmD based on the experimental findings of their homologs in E. coli [49, 306 

50]. Additional four proteins (MecA, BlaZ, PbpA and metallo-beta-lactamase (MBL)) were 307 

associated with beta-lactams, rRNA adenine N-6-methyltransferase (ErmA), macrolides resistance, 308 

multidrug efflux pump (NorA) and ABC transporter protein (ABC-2). These proteins were found to 309 

interact with some first neighbours of the discriminant proteins in the network. Penicillin-binding 310 

protein 2 prime (MecA) was shown to share a common interactor, cell division protein (DivIB), with 311 

the discriminant protein RpmD. The interactions of MecA-DivIB (interaction score: 0.639) and 312 

DivIB-RpmD (interaction score: 0.864) are based on experimental/biological data coming from 313 

homologs in other species [51]. MecA was also shown to share a common interactor, DNA 314 

polymerase I (PolA), with the discriminant protein HU. While the interaction of MecA-PolA was 315 

based on text mining (interaction score: 0.432), the interaction of PolA-HU was based on 316 

experimental/biological data (interaction score: 0.668) obtained from homologs in other species [52, 317 

53]. PolA was the only protein which links (based on text mining) HU to other beta-lactam resistance 318 

proteins such as penicillin-binding protein I (PbpA) (interaction score: 0.499) and beta-lactamase 319 

(BlaZ) (interaction score: 0.425) [52, 54]. PbpA was also shown to share the common interactor 320 



 13 

DivIB with discriminant proteins RpmD and RpmJ. ErmA was shown to share common nodes 321 

(ribosomal proteins) with the discriminant proteins RpmD and RpmJ. ErmA was shown, based on text 322 

mining, to also interact with PolA, linked to HU as previously described, (interaction score: 0.611) 323 

[55] and to other proteins (RpsA, MetG and GuaA), based on co-expression, gene fusion and co-324 

occurrence (interaction scores >0.400). NorA was shown to share a common interactor, DNA 325 

topoisomerase (TopA) with the discriminant protein HU. ABC-2 was shown to share common 326 

interactors, signal recognition particle proteins FfH and FtsY with discriminant proteins RpmD and 327 

RpmJ. MBL was shown to share a common interactor, putative fatty oxidation complex protein 328 

(AID38649.1), with discriminant protein RpmJ based on co-expression, gene fusion and co-329 

occurrence (interaction scores > 0.400). 330 

Notably, the PPI analysis of the benzylpenicillin-resistant proteome, 153 proteins – a total of 4 331 

discriminant proteins and 149 first neighbour proteins – showed higher connectivity (clustering 332 

coefficient 0.728) than the complete S. aureus proteome network (clustering coefficient 0.421). The 333 

average number of neighbours per protein was 68.719 in the benzylpenicillin-resistant proteome 334 

network and 27.190 in the complete S. aureus proteome network. In terms of network density, the 335 

values ranged between 0.452 (benzylpenicillin-resistant proteome network) and 0.009 (complete S. 336 

aureus proteome network) and for the network heterogeneity the values ranged between 0.528 337 

benzylpenicillin-resistant proteome network) and 1.243 (complete S. aureus proteome network). 338 
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Table 3. Annotation of the S. aureus proteins corresponding to the five MALDI-TOF peaks recognized as significant by the trained classifiers: peak 339 

mass charge ratio, predictedprotein mass, top PSI-BLAST matches, conserved domain analyses, cellular locations and overexpressed classes are shown.    340 

 341 

HP: hypothetical protein. Column 1 shows the mass charge ratio of the MALDI-TOF peaks identified by the machine learning framework; column 2 shows the predicted molecular weights of 342 

the proteins corresponding to the MALDI-TOF peaks; column 3 shows best PSI-BLAST matches; column 4 shows the identities and e-values obtained with the PSI-BLAST matches; column 343 

5 shows the domain and e-value predicted with CDD database; column 6 shows the results obtained with the PSORTB predictor; and column 7 shows the overexpressed class where the 344 

corresponding proteins have the highest intensity.345 

MALDI-

TOF Peak  

Protein (MW) PSI-BLAST Match 

Identity 

(e-value) 

Domain 

(e-value) 

PSORTB location 

(score) 

 Overexpressed Class 

m/z 4305.59  

 

RpmJ 

(4305.36Da) 

50S ribosomal protein 

L36 

100.00% 

(4e-16) 
Ribosomal_L36 (1.2e-19) 

Cytoplasmic 

(10.00) 
 

Benzylpenicillin 

resistant isolates 

m/z 4807.21 
HP1 

(4801.95Da) 

Uncharacterized 

protein 

100.00% 

(4e-14) 

No conserved domain was 

identified. 

Cytoplasmic 

membrane (9.55) 
 Susceptible isolates 

m/z 6422.37 

 

RpmD 

(6422.48Da) 

50S ribosomal protein 

L30 

100.00% 

(4e-33) 
Ribosomal_L30 (3.4e-21) Cytoplasmic (9.67)  

Benzylpenicillin 

resistant isolates 

m/z 6891.17 
HP2 

(6901.37Da) 
Membrane protein 

100.00% 

(1e-07) 

No conserved domain was 

identified. 

 

Cytoplasmic 

membrane (9.55) 

 

 Susceptible isolates 

m/z 9621.26 
DNA-binding protein 

HBsu (9626.01Da) 

HU family DNA-

binding protein 

100.00% 

(2e-56) 

Bacterial DNA-binding 

protein (6.2e-37) 
Cytoplasmic (9.67)  Susceptible isolates 
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Discussion 346 

Antibiotic-resistant S. aureus infections are a major concern in human and veterinary medicine. 347 

Recently, dairy cattle have been shown to be an important risk factor for zoonotic transfer [1]. Fast, 348 

affordable and effective diagnostic solutions which are able to detect the specific S. aureus strains and 349 

their antibiotic resistance and susceptibility profiles are key to support effective and targeted 350 

treatment selection.  351 

Motivated by identifying the most effective method to discriminate (MDR- and benzylpenicillin-) 352 

resistant and susceptible S. aureus strains, we approached the task in a principled way by applying 353 

optimization techniques to overcome uncertainty in data features and by using a wide repertoire of 354 

classification methods. In general, most of the classifiers tested achieved high performance and had 355 

kappa values over 85.00%. However, amongst the investigated machine learning approaches RBF 356 

SVM, neural network and logistic regression were those that achieved the best performance. 357 

Diagnostic systems trained on individual isolates coming from 24 different farms achieved up to 358 

(mean result ± standard deviation over 30 runs on the test set): accuracy = 97.54% ± 1.91%, 359 

sensitivity = 99.93% ± 0.25%, specificity = 95.04% ± 3.83%, and kappa = 95.04% ± 3.83% in RBF 360 

SVM algorithm. We showed that our classification methods while offering high out-of-sample 361 

accuracy can also be solved in practical computational times. 362 

While our primary aim was to develop machine learning-powered diagnostics discriminating 363 

benzylpenicillin-resistant and susceptible isolates of bovine mastitis-causing S. aureus, we also 364 

characterized the molecular determinants and interactions underlying the identified antibiotic 365 

resistance and susceptible patterns. Several isolates were obtained from the same animal, some of 366 

them also presented the same antimicrobial susceptibility profile, possibly suggesting that they 367 

represent the same strain. Moreover, none of the S. aureus isolates, except one, were found resistant 368 

to cefoxitin or oxacillin, despite being resistant to penicillin, suggesting that penicillin-resistant S. 369 

aureus isolates in this study were maybe indeed producers of penicillinase instead of being MRSA. 370 

This might be related to the fact that since the first report of S. aureus resistant to methicillin detected 371 

in a dairy herd in the United Kingdom [12] and from the first isolation in 2012, of both mecA and 372 

mecC LA-MRSA in bulk milk from dairy cattle in the UK [17], frequency of detection of mecA and 373 
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mecC LA-MRSA in the UK, gathered from surveillance and large-scale dairy cattle studies, [11, 17] 374 

remained low [15]. The low frequency of resistance to cefoxitin or oxacillin found in our cohort is 375 

possibly reflecting that LA-MRSA is present in the UK, possibly at a low prevalence level. 376 

Our findings showed that the five MALDI-TOF peaks recognized as significant by the trained 377 

classifiers were found to correspond to two ribosomal proteins (RpmJ and RpmD), DNA-binding HU 378 

protein and two hypothetical proteins. RpmD, DNA-binding HU protein and two hypothetical 379 

proteins were also found to give the best discrimination between multidrug-resistant and susceptible 380 

profiles of S. aureus.  381 

The notion that components of the ribosome are important in the growth rate and antibiotic resistance 382 

of bacteria is a well-known concept [56]. Among those determinants involved in intrinsic resistance, 383 

ribosomal proteins have been found to deal with the general response to stress [57]. Similarly, recent 384 

findings highlighted the existence of ribosomal mutations conferring resistance to antibiotics of 385 

several classes not targeting the ribosome [56]. Specifically, it has been shown that ribosomal 386 

mutations can contribute to the evolution of multidrug-resistant profiles, by inducing ribosomal mis-387 

assembly, that in turn leads to a systematic transcriptional cell alteration, ultimately impacting 388 

resistance to multiple antibiotics by interfering with different cellular pathways [56]. RpmJ was 389 

shown to be up-regulated in Pseudomonas aeruginosa when treated with ciprofloxacin and 390 

fluoroquinolone [58] and similarly in S. epidermidis [59]. Moreover, rpmJ was shown to confer 391 

intrinsic multidrug resistance to a varied set of antibiotics (nitrofurantoin, sulfamethoxazole, 392 

rifampicin, tetracycline, vancomycin, ampicillin, colistin, erythromycin) in E. coli, where deletion of 393 

this gene caused the bacteria to become more sensitive than wild type [60]. In comparison, fewer 394 

literature works have been published about rpmD and antibiotic resistance. Sharma-Kuinekel and 395 

collaborators showed that rpmD was downregulated in S. aureus strains which had the antibiotic 396 

tolerance related LytSR system silenced [61]. 397 

The discriminant protein DNA-binding HU protein was found essential in the bacterial survival and 398 

growth of S. aureus [62]. It was also previously found to be correlated to antibiotic resistance by 399 

being upregulated in the mutant S. aureus isolates with silenced serine/threonine kinase PknB, which 400 

also has a penicillin-binding domain [63]. Besides the proteins with known functions, we also 401 
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identified two hypothetical proteins, but we were unable to find any evidence so far linking them to 402 

antibiotic resistance. Although it was not possible for us to identify the function of these hypothetical 403 

proteins, by applying PSI-BLAST and PSORTb v3.0 together with 3D threading modelling searches, 404 

the hypothetical proteins are predicted to be involved in pathways such as antibiotic metabolic 405 

process, lipid/protein transport and ion binding.  406 

Although the elected mechanism to acquire resistance in S. aureus is through horizontal gene transfer, 407 

spontaneous mutations in the core genome and positive selection are also mechanisms used by the 408 

bacteria to acquire several resistances (e.g., fluoroquinolones, linezolid and daptomycin) [27]. The 409 

spontaneous mutation mechanisms involving ribosomal proteins in S. aureus has been previously 410 

found to raise antibiotic resistance (e.g. vancomycin) [64]. Future efforts may integrate genome 411 

sequencing analysis of the isolated strains towards elucidating and understanding the mechanisms 412 

underlying the antibiotic resistance. 413 

We were not surprised that known genes such as blaZ, mecA, pbpA, conferring resistance to penicillin 414 

in S. aureus were not amongst the MALDI-TOF peaks recognized as significant by the trained 415 

classifiers. This is because the mass range resolution of the MALDI-TOF was set to be between 2kDa 416 

and 12kDa, and the BlaZ, MecA, PbpA are all proteins with molecular weights higher than 20kDa. 417 

However, our PPI cluster analysis results showed that these proteins known to confer resistance have 418 

all been found to interact with most of the proteins corresponding to the MALDI-TOF peaks and to 419 

form a highly connected benzylpenicillin proteome network. 420 

While our approach successfully developed a diagnostic solution to identify antibiotic-resistant 421 

signatures, there are limitations to our method which future work may build upon. For one, the 422 

working range of 2-12kDa does not give the possibility to study the complete S. aureus proteome in 423 

relation to a specific phenotype. .  424 

The MDR and XDR isolates, collectively named multidrug-resistant isolates, used in this study were 425 

all resistant to benzylpenicillin in addition to other antimicrobial agents. Therefore, there is a bias 426 

towards peaks determining resistance or susceptibility to benzylpenicillin, which may explain why all 427 

4 multidrug discriminant peaks occurred within the set of benzylpenicillin-only discriminant peaks.  428 
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In this work, we have opted to pre-process all the data together as previously done by several studies 429 

[42, 65-68] instead of splitting it into a training and validation sets for several reasons. First, given the 430 

low number of samples in each of the two minority classes (multidrug resistant and benzylpenicillin-431 

only resistant) it would have been not possible to have a sufficient number of observations in each set 432 

and each partition being enough representative to yield a good peak selection. Moreover, because 433 

some of the peaks appeared in just a subset of these samples (minority classes), the random sampling 434 

of the data performed could increase the chances of getting spurious peaks in the training set that 435 

would not represent the whole minority class. To avoid these problems, we pre-processed all the data 436 

together. 437 

Moreover, this study has been confined to a relatively small number of isolates. Ideally, a larger 438 

number of isolates would have allowed to refine the machine learning predictions. However, other 439 

studies attempted the analysis of antimicrobial resistance on S. aureus with MALDI-TOF and 440 

machine learning and similar sample size. For example, Tang et al. [39], to implement heterogenous 441 

VISA (hVISA) detection models, examined 10 MSSA and 10 MRSA clinical isolates recovered from 442 

individual patients. Wang et al. [40], used MALDI-TOF mass spectra obtained from 35 hVISA/ VISA 443 

and 90 VSSA isolates. Mather et al. [37], tested 21 VISA, 21 hVISA, and 38 VSSA isolates to 444 

develop their SVM based models. Usually, the larger the dataset the greater is the statistical power for 445 

pattern recognition. However, in our machine learning approach, we have used the Nested CV 446 

approach which is known to produce robust and unbiased performance estimates regardless of sample 447 

size [69]. The machine learning performance indicators associated with our models are high 448 

suggesting that models were sufficiently trained.  449 

In addition, we acknowledge, as a limitation of this study, that our data were collected from farms 450 

only in England and Wales. However, this should not pose a restriction on our method’s ability to 451 

predict resistance or susceptibility in other farms across the globe. If it is given a sufficiently diverse 452 

distribution of data to train the supervised learning algorithms, this would reduce any geographical 453 

bias that could affect predictive capability. This study should be considered a proof-of-principle 454 

where we conducted a feasibility work to invest on with larger samples and geographical areas.  455 
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Finally, the downside of requiring larger sample sizes is limitations in data availability, often 456 

requiring reliance on public databases and thus compromise on the type of available data and possible 457 

studies. Unfortunately, in omics and other technology-based data collection analysis, very often only 458 

small samples are available, this is because of limited in vivo experiments, protocols, involvement of 459 

human participants and costs. For example, whilst not being able to rely on large amounts of data, we 460 

had the unprecedented possibility to demonstrate that our methodology is associated with high 461 

classification accuracy even when using small sample size, this applicability may facilitate research 462 

scenarios where only limited data is available. 463 

In addition to the machine learning analyses undertaken to prove the effectiveness of our method to 464 

differentiate susceptibility/resistance profiles rather than strain differences, we also compared the 465 

MALDI-TOF spectral peaks spectral peaks (4305.59Da, 4807.21Da, 6422.3Da, 6891.17Da and 466 

9621.26Da) recognised  as discriminant by our trained classifiers with the peaks previously found in 467 

literature to discriminate the main clonal lineages of S. aureus [41, 44-47]. When we compared our 468 

peaks with those found by Wolters et al. [45], Böhme et al. [46] and Camoez et al. [47], no common 469 

peaks were found between the studies. However, similarities were found between our results and the 470 

findings reported by Josten et al. [44] and Lasch et al. [70]. 471 

In particular, the peaks at m/z 4305.59 (RpmJ), 6422.37 (RpmD), 6891.17 (HP2) and 9621.26 (DNA 472 

binding protein HU) were revealed to be in common between our study and Josten et al. [44]. 473 

However, the variant (m/z 6397) of the ribosomal protein RpmD found by Josten et al. [44] to be 474 

discriminant for the subgroup of CC22 strains was not present in our spectra as we only detected the 475 

peak at m/z 6422.37 corresponding to RpmD. Moreover, although the protein RpmD was considered a 476 

biomarker by Josten et al. [44], it only showed a limited sensitivity (0.167), reflecting a low level of 477 

conservation of the mutations in the clonal lineages. For example, the CC22 biomarker was not 478 

conserved in all spa types of this clonal complex [44]. The peaks m/z 4305.59 (4306 in Josten et al. 479 

[44]), 6891 (6889 in Josten et al. [44]) and 9621.26 (9627 in Josten et al. [44]) although identified in 480 

the S. aureus spectra by Josten et al. [44] were not included in the list of markers distinguishing the 481 

different strains. Moreover, Lasch et al. [70] analysed 59 diverse S. aureus isolates from 6 different 482 

lineages using MALDI-TOF mass spectrometry. Based on their results over a gel view representation 483 
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and a hierarchical cluster analysis, the authors indicated that, with a few exceptions, CC-specific 484 

biomarkers for S. aureus are an exception rather than a rule. The authors found 3 regions that could be 485 

considered biomarkers for some lineages: m/z 3875 and 3891 (CC5); m/z 6552 and 6592 (CC8); m/z 486 

5002 and 5032 (CC22). Therefore, none of the peaks used in our study were considered biomarkers 487 

by Lasch et al. [70]. The results found by Lasch et al. [70] clearly suggests that typing S. aureus can 488 

be rather unsuccessful due to a lack of stable biomarkers to distinct clonal groups, a low classification 489 

accuracy based on different CC types and a cluster analysis that indicate the limited possibilities to 490 

differentiate S. aureus below species levels. 491 

Further comparisons were also made with existing literature coupling MALDI-TOF mass 492 

spectrometry with a refined analysis framework to accurate classify resistant and susceptible S. aureus 493 

strains.  In particular, the peaks (m/z 4305.59, 4807.21, 6422.3, 6891.17 and 9621.26) recognised as 494 

discriminant for the susceptible and resistant profiles in this study with those previously found [36, 495 

39] differentiating MSSA and MRSA recovered from clinical samples or at distinguishing VSSA 496 

from hVISA/VISA [37, 40] no similar peaks were detected under the experimental conditions chosen 497 

here. In particular, our peaks often mapped in the higher and non-overlapping mass range of the 498 

spectrum. Whereas, when we compared our peaks with those found by Asakura et al. [41] to 499 

differentiate VISA, hVISA, and VSSA clinical isolates, we found that one peak (m/z 4306) was in 500 

common between the two studies. This peak is among 23 other peaks that were found to be 501 

statistically significant among VISA, hVISA and VSSA (p < 10−4, Kruskal-Wallis test). This peak 502 

corresponds to the ribosomal protein RpmJ. Indicating that ribosomal proteins can be correlated with 503 

resistance phenotypes. This was also reported by Josten et al. [44] when analysing the peak pattern of 504 

401 MRSA and MSSA strains (see above). 505 

Although we have not typed our strains, which we acknowledge as a limitation of our study, we 506 

believe that it is not unreasonable to assume that we have classified the resistance/susceptibility 507 

phenotype and not the strains. Our supervised learning-based classifier consisted of a binary 508 

classification (resistant/susceptible), where each observation (isolate) was labelled according to the 509 

MIC values obtained for each specific isolate.  Given the high performance indicators accompanying 510 

our classification and given the variety of different peaks among strains as shown by Josten et al. 511 
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[44], Wolters et al. [45], Böhme et al. [46], Camoez et al. [47] and Lasch et al. [70], it is very 512 

unlikely that we could separate all the different strains circulating in just two groups and importantly 513 

with such high performance indicators. From a machine learning point of view, given the limited 514 

number of observations, relative high number of possible strains, binary outcome, number of 515 

genetic/molecular traits different among the strains it would not had been possible to separate the 516 

different strains in just two groups especially with such high-performance scores. This is also in 517 

agreement with Lasch et al. [70] that although performing an elegant modular/hierarchical ANN 518 

analysis of spectra from the S. aureus data set (we only did a one-step machine learning 519 

classification), apart from a fairly good classification accuracy for CC8 strains of S. aureus and, to a 520 

lesser extent for strains of CC5 (80%) and CC30 (78%), the classification accuracy for the other 521 

strains was unacceptably low. Despite intensive efforts aiming at improving these outcomes, neither 522 

variations of the spectral pre-processing nor of the network topology resulted in better classification 523 

results according to the authors. 524 

Overall, we demonstrated that the combination of supervised machine learning and MALDI-TOF 525 

mass spectrometry can be used to develop an effective computational diagnostic solution that can 526 

discriminate between benzylpenicillin/multidrug-resistant and susceptible S. aureus strains. Our 527 

solution could save time and money with respect to traditional susceptibility testing which is not 528 

viable for day-to-day monitoring of antibiotic resistance. Our solution could support farmers with 529 

timely, accurate and targeted treatment selection.  530 

 531 

Methods 532 

Ethics statement 533 

This study received an ethical review and approval from the Clinical Ethical Review panel at the 534 

School of Veterinary Medicine and Science, University of Nottingham (approval Reference number: 535 

2067 170717). All data is owned by QMMS ltd. 536 

 537 

Data Source 538 
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82 S. aureus isolates were collected from 67 animals that were diagnosed with bovine mastitis in 24 539 

different farms, in England and Wales between March 2004 and May 2005. The animals with mastitis 540 

were either primiparous (n=9) or multiparous (n=73, median parity=4). On the day of sample 541 

collection, the days in milk of the cows varied from 1 to 569 days with a median value of 160 days.  542 

 543 

Sample Analysis 544 

Bovine mastitis-causing S. aureus isolates were tested on VITEK 2 AST-GP79 using one Antibiotic 545 

Susceptibility Testing (AST) card per isolate. Each card was filled with at least one positive control 546 

well with no antibiotic and multiple wells with increasing concentrations of antibiotics. We tested 547 

susceptibility to the following antibiotics: benzylpenicillin, cefoxitin, oxacillin, cefalotin, ceftiofur, 548 

cefquinome, amikacin, gentamicin, kanamycin, neomycin, enrofloxacin, clindamycin, erythromycin, 549 

tilmicosin, tylosin, tetracycline, florfenicol and trimethoprim/sulfamethoxazole. Using the VITEK 2 550 

we measured the growth and viability of the isolates in all wells compared to the control wells. 551 

Relative bacterial growth in each antibiotic well was calculated and compared with the positive 552 

control wells. The minimum inhibitory concentration (MIC) values were calculated by comparing the 553 

growth of the bacteria to the growth of isolates with known MICs. The S. aureus isolates were 554 

labelled as either resistant or susceptible according to their antibiotic resistance profiles based on 555 

CLSI breakpoints (VET01-S3) [71]. 556 

  557 

Generation of MALDI-TOF Spectra 558 

All S. aureus isolates were stored at -80 °C since their recovery in 2004/5 using a microbead 559 

preservation system (Technical Service Consultants Ltd, Lancashire). Isolates were recovered onto 560 

Blood agar and incubated at 37 °C for 24 hours. If no growth was initially observed the isolates were 561 

sub-cultured another 24 hours. All isolated were sub-cultured on blood agar at 37 °C for 24 hours 562 

prior to MALDI-TOF analysis. The same storage and growth conditions were applied to all isolates. 563 

The pure cultures were then analysed using the Time-of-flight (TOF) MALDI mass spectrometer 564 

(Bruker Daltonics, Billerica, MA), Microflex – Flex Control Version 3.4, Bruker Daltonics. The order 565 

of sample analysis was randomised, the Bruker Bacterial Test Standard (BTS) (Bruker Daltonics) was 566 
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used for calibration control on every plate. For each isolate, six technical replicates were generated 567 

from 240 desorption’s per replicate (6 x 40 shots), and protein mass spectra acquired in the range 568 

2000 to 20,000 Da were generated. Spectra were compared visually using Biotyper 3.1 (Bruker 569 

Daltonics) to remove low intensity spectra or spectra with substantial background noise. All the 570 

samples used in this study were further analysed visually on Matlab for insufficient resolution 571 

(defined as a measure to distinguish two peaks of slightly different m/z values [72]), low intensity or 572 

substantial background. However, no samples were discarded for these reasons. The. Technical 573 

replicates were further compared using composite correlation indices (CCI) to remove dissimilar 574 

spectra with CCI < 0.99 [73]. At least three good quality spectra per isolate were required for 575 

inclusion of the isolate in the analysis. Moreover, when three qualifying technical replicates could not 576 

be obtained the sample was re-analysed in order to get at least 3 replicates. All the 82 isolates used in 577 

this study had three good quality technical replicates. 578 

Data Processing 579 

The pre-processing steps of MALDI-TOF mass spectra were performed using MATLAB 580 

Bioinformatics Toolbox Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States. 581 

Our analysis was done using 82 S. aureus isolates with each sample having 3 to 6 replicates. 582 

The pre-processing followed these 8 steps: 583 

1. Mean Computing: the replicates of each biological isolate were averaged. 584 

2. M/Z Cropping: the mass range was cropped to be between 2kDa and 12kDa. 585 

3. Resampling: the data was up-sampled from 13,740 to 20,000 points. 586 

4. Baseline Correction: for each biological isolate, baseline correction was applied by using a 587 

window of 200 Da with a step size of 200 Da to shift the window. The quantile method (10% value) 588 

was used to find the likely baseline value in every window. Shape-preserving piecewise cubic 589 

interpolation approximation was applied to regress the varying baseline. The regressed baseline was 590 

not smoothed. The resulting baseline was subtracted from the spectrum. 591 

5. Normalisation: the area under the curve (AUC) of every spectrum was normalised to the 592 

median and post-rescaled such that the maximum intensity was 100. 593 
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6. Noise reduction: each sample was denoised using least-squares polynomial with a window of 594 

35 Da and a 2-degree polynomial function. 595 

7. Alignment: to align the spectrograms, a set of reference peaks was required. Specifically, the 596 

peaks were selected if present in at least 30% of all spectra. The 30% threshold was chosen following 597 

the workflow suggested in the ClinProTools software documentation [74]. In addition, the first pre-598 

processing step of our workflow consists of averaging all the 3 or more technical replicates of each 599 

sample. Therefore, after this averaging step we have one spectrum per sample and consequently the 600 

30% threshold used to select the peaks is applied to all samples. By applying the 30% threshold we 601 

are selecting only the peaks that are present and hence relevant across both the resistant and 602 

susceptible classes, as shown in Tables 1 and 2 in the Results section. The alignment was estimated 603 

using the default values of msalign function (Bioinformatics Toolbox). 604 

8. Peak Detection: To retain a reasonable intensity a signal-to-noise ratio threshold was defined 605 

at 10% to discard all peaks below it. Therefore, since the spectra were previously normalised to an 606 

overall maximum intensity of 100, any point below 10 is considered noise. A minimum distance of 607 

20Da between neighbouring peaks was set, i.e., two peaks must be at least 20Da apart to be 608 

considered different. 609 

 610 

Spectral Features  611 

After detecting all the peaks in each spectrum, a peak list report was prepared similarly to 612 

ClinProTools 3.0 [74]. Specifically, the peaks were selected if present in at least 30% of all spectra. 613 

The selected peaks were further pre-processed to have zero mean and unit variance. Such peaks 614 

represented the spectral features used in the classification analysis.  615 

 616 

Classification Methods 617 

The performance of the classifiers, naïve Bayes [75], linear and non-linear (RBF kernel) support 618 

vector machines (SVM) [76], decision tree [77], random forests [78], multi-layer perceptron neural 619 

networks (MLP) [79], AdaBoost (AdaBoost-SAMME version [80]), logistic regression [81], linear 620 
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discriminant analysis (LDA) [82] and quadratic discriminant analysis (QDA) [82], was investigated 621 

using the scikit-learn library in Python [83]. 622 

For the classifiers, the following set of values were employed for the hyper-parameter searches: 623 

- Logistic Regression: inverse of regularization strength C = [0.001, 0.01, 0.1, 1, 10, 100, 624 

1000]. 625 

- Linear SVM: penalty parameter of the hinge loss error C = [0.001, 0.01, 0.1, 1, 10, 100, 626 

1000]. 627 

- Decision tree: maximum depth of tree = [10, 20, 30, 50, 100]. 628 

- Random Forests and Adaboost: Number of estimators = [2, 4, 8, 16, 32, 64]. 629 

- MLP Neural Network: α (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100], learning rate 630 

(initial learning rate used to control the step size in updating the weights with adam solver) = 631 

[0.001, 0.01, 0.1, 1] and hidden layer sizes = [10, 20, 40, 100, 200, 300, 400, 500]. 632 

- Non-linear SVM with RBF kernel: γ (RBF kernel coefficient) = [0.0001, 0.001, 0.01, 0.1] and 633 

C (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. 634 

- Naive Bayes, LDA and QDA do not have hyper-parameters. 635 

 636 

Prediction Performance 637 

The prediction performance of each classifier was evaluated by considering the following indicators, 638 

assuming P and N as the total number of positive (benzylpenicillin/multidrug-resistant) and negative 639 

(multidrug susceptible) isolates, respectively and using T for true (correct) and F for false (wrong) 640 

predictions: 641 

- Sensitivity (True Positive Rate) = TP / P 642 

- Specificity (True Negative Rate) = TN / N 643 

- Accuracy = (TP+TN)/(P+N) 644 

- Kappa = (po – pe)/(1-pe) where po= (TP+TN)/(P+N) and pe= (P*(TP+FN) + N*(FP+TN)) 645 

/(P+N)2 646 

 647 

Performance Analysis 648 
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Nested Cross-validation (NCV) [84], which is a well-established cross-validation technique was 649 

employed to assess the performance and select the hyper-parameters of the proposed classifiers.  650 

In NCV there is an outer loop split of the data set into test and training sets. For each training set, a grid 651 

search (inner loop) is run, in order to find the best hyper-parameters of the classifier using accuracy as 652 

a performance metric. Then, the test set is used to score the best classifier found in the inner loop. These 653 

scores tell us how well the classifier model generalises, given the best hyper-parameters found in the 654 

inner loop. 655 

Thirty iterations were carried out, wherein each iteration an NCV was employed. The inner loop of 656 

the NCV finds the best hyper-parameters of each classifier (when suited) using a stratified 3-fold 657 

cross-validation; the outer loop measures the accuracy, sensitivity, specificity and kappa using a 5-658 

fold stratified cross-validation, in order to compare all the classifiers [85]. 659 

 660 

Biomarker Characterization – Identification of the protein corresponding to MALDI-TOF 661 

spectral peaks recognised as discriminant by the trained classifiers 662 

A dedicated bioinformatics pipeline was developed to find correspondences between individual peaks 663 

selected by the machine learning-based classifiers and actual proteins of S. aureus. First, amino acid 664 

sequences of the proteins in the S. aureus Newbould 305 (ATCC 29740) proteome, which is 665 

considered the model bovine mastitis strain [86], were retrieved from the PATRIC database in 666 

FASTA format. The molecular weights of the proteins were calculated using the Compute pI/Mw tool 667 

on ExPASy [87]. The proteins were filtered in the range of ± 200Da of the mass of individual peaks. 668 

Then, N-terminal methionine cleavage was predicted using the online prediction tool TermiNator [88] 669 

and the theoretical molecular weights of the proteins were re-calculated using compute pI/Mw tool 670 

according to presence or absence of the initial methionine. Finally, proteins with a maximum of 0.2% 671 

difference in mass to the individual peaks for the successful identification of correspondence were 672 

selected. 673 

To further investigate the function of the identified proteins, we studied protein-protein interactions 674 

(PPI) as previously described [89]. The PPI dataset of S. aureus (strain NCTC 8325/PS 47) was 675 

obtained from the STRING database [90] and nodes (proteins) with interaction scores lower than 676 
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medium confidence level (interaction scores <0.400) were filtered out. The remaining nodes 677 

(proteins) were analysed in Cytoscape 3.7.1 based on the following parameters: the average number 678 

of neighbours, clustering coefficient, network density and network heterogeneity [91-93].  679 

The characterisation of antibiotic-resistant genes of the beta-lactam, macrolide and tetracycline 680 

antibiotic classes in the PPIs, were obtained from ResFinder v3.1 [94] and using them as queries in a 681 

comparative BLAST search against the S. aureus proteome. The functions of the genes in the network 682 

were annotated with Gene Ontology terms (biological process, molecular function and cellular 683 

component) and KEGG pathways. Finally, to gain a more in-depth understanding of the protein 684 

functions, homology and threading 3D models for discriminant proteins were built. 3D homology 685 

modelling was used for the proteins with good quality templates in the Swiss-Model repository [95] 686 

and the models built by using Swiss-PdbViewer [96]. The 3D models of hypothetical proteins were 687 

generated by using the threading technique on I-TASSER, where biological functions were predicted 688 

as well [97]. The 3D Models of all discriminant proteins were visualized and edited in UCSF Chimera 689 

[98]. 690 

Homologs of the discriminant proteins were checked in the NCBI database by position-specific 691 

iterative basic local alignment tool (PSI-BLAST). Functional domains were searched against the CDD 692 

v3.17-52910 PSSMs database. PSORTb v3.0 was used to predict cellular locations of the discriminant 693 

proteins [99]. 694 
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 1033 

FIGURE CAPTIONS 1034 

 1035 

Figure 1. Location of the enrolled farms in the United Kingdom. The circles represent the location 1036 

of the farms and the size of the circles indicate the number of S. aureus isolates in the farms. The 1037 

highest number of isolates provided by a single farm was 21, while the lowest was 1. The green 1038 

colour represents the susceptible S. aureus isolates while the dark and light blue is for multidrug-1039 

resistant and benzylpenicillin-resistant only S. aureus isolates, respectively. The base layer map of the 1040 

UK can be accessed at https://gadm.org/maps/GBR.html. 1041 

 1042 

Figure 2. UpSet plot comparing the profiles of benzylpenicillin-resistant Staphylococcus aureus 1043 

isolates. The total size of resistant S. aureus isolates is shown on the left bar plot. Antibiotic-resistant 1044 
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profiles of S. aureus isolates are visualized by the bottom plot and the occurrence is represented on 1045 

the top bar plot. 1046 

 1047 

Figure 3. Supervised machine learning prediction of multidrug resistance spectral signature 1048 

profiles. Prediction performance results of different classifiers (logistic regression, linear SVM, RBF 1049 

SVM, MLP neural network, decision tree, random forest, AdaBoost, naïve Bayes, quadratic 1050 

discriminant analysis (QDA) and linear discriminant analysis (LDA)) that were used to classify the 1051 

multidrug resistance profiles are shown on the X-axis. Four performance indicators have been used to 1052 

evaluate the classification: accuracy, kappa, sensitivity and specificity. The scores for each 1053 

performance metric are indicated in the Y-axis. 1054 

 1055 

Figure 4. Supervised machine learning prediction of benzylpenicillin resistance spectral 1056 

signature profiles. Prediction performance results of ten different classifiers (logistic regression, 1057 

linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, naïve Bayes, 1058 

quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) that were used to 1059 

classify the benzylpenicillin resistance profiles are shown on the X-axis. Four performance indicators 1060 

have been used to evaluate the classification: accuracy, kappa, sensitivity and specificity. The scores 1061 

for each performance metric are indicated in the Y-axis. 1062 

 1063 

Figure 5. 3D structures of the five proteins found to correspond to the MALDI-TOF spectral 1064 

peaks recognized as discriminant between benzylpenicillin resistant and susceptible isolates. 1065 

Top row from left to right: homology model of ribosomal protein L36p (RpmJ, mw: 4305.36Da), 1066 

threading model of hypothetical protein (HP1, mw: 4801.95Da) and homology model of ribosomal 1067 

protein L30p (RpmD, mw: 6422.48Da). Bottom row from left to right: threading model of 1068 

hypothetical protein (HP2, mw: 6901.37Da) and homology model of bacterial DNA-binding protein 1069 

(HU, mw: 9626.01Da). 1070 

 1071 
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Figure 6. Protein-protein interaction network of the proteins found to correspond to the 1072 

MALDI-TOF spectral peaks recognized as discriminant between benzylpenicillin resistant and 1073 

susceptible isolates. The PPI network showing the four discriminant proteins, green circles, (RpmJ, 1074 

RpmD, HU and hypothetical protein 2 (HP2)) and their first neighbour interactors (orange colours). 1075 

Amongst these first shell interacting partners, purple nodes represent the antibiotic-resistant proteins 1076 

(BlaZ, NorA, MecA, PbpA, ErmA, ABC-2, TetM, FusA and MBL) predicted by ResFinder v3.1 [94].  1077 

 1078 

Figure 7. Functional enrichment analysis of the benzylpenicillin network in Staphylococcus 1079 

aureus based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 1080 

pathways. The network contains the 4 discriminant proteins, that were found to be discriminant 1081 

between benzylpenicillin resistant and susceptible isolates, and their 149 first neighbours. GO consists 1082 

of cellular component (CC), molecular function (MF) and biological process (BP). In each ontology, 1083 

the enriched categories and the number of genes populating them are shown. Likewise, the enriched 1084 

KEGG pathways and the number of genes populating each pathway are indicated. 1085 

 1086 

Supplementary Table 1. Breakdown of samples per farm 1087 

 1088 

Supplementary Table 2. Antimicrobial susceptibility profile of the resistant isolates that were 1089 

obtained from the same animal 1090 

 1091 

Supplementary Table 3. A) Supervised machine learning prediction of multidrug resistance spectral 1092 

signature profiles using the Linear Discriminant Analysis (LDA) classifier. Prediction performance 1093 

results using all the peaks (4807m/z, 6422m/z, 6891m/z and 9621m/z); only the non-ribosomal peaks 1094 

(4807m/z, 6422m/z, 6891m/z and 9621m/z) and only the ribosomal peak (6422m/z).  B) Supervised 1095 

machine learning prediction of multidrug resistance spectral signature profiles using a non-linear 1096 

(RBF kernel) support vector machine (RBF-SVM) classifier. Prediction performance results using all 1097 

the peaks (4305m/z, 4807m/z, 6422m/z, 6891m/z and 9621m/z); only the non-ribosomal peaks 1098 

(4807m/z, 6422m/z, 6891m/z and 9621m/z) and only the ribosomal peak (4305m/z and 6422m/z).  1099 
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