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INTRODUCTION 
 

Parkinson’s disease (PD) is a progressive, irreversible 

neurodegenerative condition which affects over 6 

million people across the globe [1]. The greatest risk 

factor for PD is advancing age, and with the number of 

people over the age of 60 expected to exceed 2 billion 

by the year 2050 (currently estimated to be over 900 

million) there will soon be significantly higher numbers 

of people living with PD [2]. The classical physical 

symptoms are known to be resting tremor, rigidity and 

bradykinesia. It is now also known that symptoms of 

PD include reduced quality of sleep as well as both 

cognitive impairments and poor mental health. In terms 

of the pathophysiology of the disease, the death of 

pigmented dopaminergic neurons in the substantia nigra 

pars compacta in PD patients is critical [3]. Molecular 

characteristics of PD include the aggregation of α-

synuclein leading to Lewy body formation, alongside 

mitochondrial dysfunction [4, 5]. 

 

Hereditary forms of PD can be either autosomal 

dominant or autosomal recessive, dependent upon the 

mutant gene involved. In both dominant and recessive 

forms of hereditary PD, autophagic and lysosomal 

pathways are both mechanistically implicated [6–8]. 

One of the critical pathways which has been linked to 

the onset of juvenile/early onset PD is the PINK1/ 
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Parkin mitophagy pathway, a form of autophagy for the 

degradation of dysfunctional mitochondria. The role of 

mitophagy is to provide a quality control mechanism for 

the mitochondrial population within a cell, and this is a 

particularly crucial function in energetically demanding 

neuronal cells [9]. 

 

Mechanistically, PINK1 localizes with outer 

mitochondrial membrane (OMM) of depolarized 

mitochondria and then recruits and activates the E3 

ubiquitin-ligase activity of Parkin via phosphorylation 

of its Ser65 residue [10, 11]. PINK1 has also been 

shown to phosphorylate the Ser65 residue of 

Ubiquitin, which aids in the activation of Parkin’s E3 

ligase activity [12, 13]. Ultimately these events lead to 

the ubiquitination of OMM proteins by Parkin, the 

autophagic machinery then degrades the ubiquitinated 

mitochondria [14]. Mutations in PINK1 (and Parkin) 

can result in autosomal recessive juvenile onset  

PD, with onset before the age of 40 years old [15]. 

While this form of PD is rare, a comprehensive 

understanding of it can improve the outcomes of 

patients with PINK1 mutations and also those with 

idiopathic PD due to their shared pathophysiology 

[16]. A recent publication by Sliter et al. reported that 

Pink1 and Parkin mitigate STING induced 

inflammation, where both Pink1-/- and Prkn-/- mice 

under exhaustive exercise have a strong inflammatory 

phenotype that is rescued by the concurrent loss  

of the STING pathway [17]. In the same year, Zhong 

et al. reported that newly synthesised oxidised 

mitochondrial DNA is exported to the cytosol and 

stimulates another of the innate immune responses, the 

NLRP3 inflammasome [18]. 

 

Given the overlapping biology between PINK1 loss of 

function in PD and other forms of genetic and sporadic 

PD, PINK1 null mutants of animal models are hugely 

useful in studies of PD. Pink1 loss of function 

Drosophila models were first developed in 2006, shortly 

after the first parkin loss of function mutant Drosophila 

models were being utilised in research [19–21]. These 

first studies found that Pink1 loss of function resulted in 

mitochondrial dysfunction, compromised fertility in 

males, indirect flight muscle degeneration and associated 

locomotor defects, increased sensitivity to oxidative 

stress, and dopaminergic degeneration (Park et al., 2006) 

[19]. Parkin overexpression rescued many of the defects 

observed in the Pink1 mutants, indicating the 

downstream function of Parkin in the now established 

PINK1/Parkin mitophagy pathway, reviewed here [22]. 

More recent studies using Pink1 mutant Drosophila have 

found that their neurons exhibit decreased levels of 
synaptic transmission, defective fission and reduced ATP 

levels due to decreased COXI and COXIV activity as 

well as non-motor symptoms such as learning and 

memory deficits, weakened circadian rhythms and 

electrophysiological changes in clock-neurons [23–25]. 

 

It was first observed in 1992 that participation in 

exercise reduced the risk of the onset of PD in later 

years, while later data showed that this protection against 

PD risk is more obvious in males [26, 27]. Many groups 

have presented data that show the therapeutic potential 

of exercise in the alleviation of patient symptoms  

[28–30]. The biochemical mechanisms that would 

explain these observations are still unclear, but current 

evidence suggests that exercise may enhance synaptic 

plasticity, protect against neuroinflammation and 

modulate L-Dopa regulated signalling pathways [31–33]. 

 

In this study we aimed to analyse the biochemical 

changes induced by exercise in the mitochondrial 

proteome of the Pink1 loss of function mutant (Pink1-) 

Drosophila. As exercise is reported to both reduce the 

risk of onset and improve outcomes for Parkinson’s 

disease patients, we sought to characterise the 

biochemical changes that could underpin this 

improvement in our model of Parkinson’s disease. We 

focused on the mitochondria as their dysfunction is 

widely associated with Parkinson’s disease, and the 

Pink1- genetic model has a disrupted mitophagy 

pathway due to the absence of a functional PINK1 

protein. 

 

MATERIALS AND METHODS 
 

Drosophila stocks 

 

Fly stocks were kindly provided to NM by Miguel 

Martins (MRC Toxicology Unit) and Alex Whitworth 

(MRC Mitochondrial Biology Unit). Fly stocks and 

crosses were maintained on standard cornmeal agar 

media at 25° C in a 12:12 light-dark cycle. The 

experiments were performed on males: wild type 

(genotype w1118) and Pink1- (genotype Pink1B9/Y). 

 

Drosophila exercise 

 

Approximately twenty wild-type control or Pink1- 

Drosophila, 1-4 days post-eclosion, were separated into 

glass vials filled with 5ml food. Exercised group vials 

were stoppered with cotton wool 6cm from the food; 

non-exercised group vials were stopped with cotton 

wool 1cm from the food, creating a physical barrier to 

activity. Both exercised and non-exercised groups were 

placed in racks on the ICE machine (Supplementary 

Material) for 30 minutes per day for 7 days. The 

Drosophila were exercised in the morning each day and 

were sacrificed by freezing at -80° C one hour after the 

final exercise bout. Comparison groups were exercised 

and non-exercised wild-type and Pink1- Drosophila. 
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Mitochondrial isolation 

 

Groups of twenty wild-type or Pink1- Drosophila were 

homogenised in 100-200µl mitochondrial extraction 

buffer (50mM Tris-Cl pH 7.4, 100mM KCL, 1.5mM 

MgCl2, 1mM EGTA, 50mM HEPES and 100mM 

sucrose) by 5 minutes of manual homogenisation using 

a 1.2-2ml Eppendorf micro-pestle (Sigma-Aldrich). The 

homogenate was centrifuged at 800g for 10 minutes, at 

4° C, to remove the insoluble fraction. Supernatants 

from the first centrifugation were centrifuged at 1,000g 

for 10 minutes at 4° C to pellet the nuclear fraction. 

Supernatants from the second centrifugation were 

centrifuged at 13,200g for 30 minutes at 4° C to pellet 

the mitochondrial fraction. The protein content was 

determined by Bradford assay (µg/µl) and 

mitochondrial fractions were stored at -80° C. 

 

2D-gel electrophoresis 

 

50µg of the mitochondrial fraction were added to 

rehydration solution (8M urea, 2% CHAPS, 2% IPG 

Buffer, 0.1% bromophenol blue). 20mM DTT was 

added to an aliquot of rehydration solution directly 

before use. The standard protocol according to 

manufacturer instructions was followed [34]. Briefly, 

sample was applied to rehydrate ZOOM IPG strips for 

an hour at room temperature followed by iso-electric 

focusing using the ZOOM IPG (Life Technologies) 

system and pH 3-10 (non-linear) ZOOM IPG strips. 

Gels were stained (SimplyBlue™ SafeStain, Life 

Technologies) and imaged (ImageQuant 300, GE 

Healthcare Life Sciences). Analyses were performed 

using SameSpots software (Totallab) (one-way 

ANOVA). Three pooled biological replicates were 

included for each of the four groups. 

 

Samples were analysed by the Centre of Excellence in 

Mass Spectrometry at University of York [35]. Briefly, 

proteins were reduced and alkylated, followed by 

digestion in-gel with trypsin. Matrix Assisted Laser 

Desorption Ionization Tandem Time-of-Flight mass 

spectrometry (MALDI-TOF/MS) was used to analyse 

the samples. The generated tandem MS data was 

compared against the NCBI database using the 

MASCOT search programme to identify the proteins. 

De novo sequence interpretation for individual peptides 

were inferred from peptide matches. 

 

Label-free proteomics 

 

30µg/µl of each mitochondrial fraction was prepared 

with 4X LDS sample buffer and 4mM DTT. Samples 
were run in triplicate on a 4-12% Bis-Tris gel in 1X 

MES SDS running buffer for 40 minutes at 200V (all 

Invitrogen). Three biological replicates were run for 

each of the four groups. The whole, individual gel lanes 

were excised and placed into separate Eppendorf tubes. 

 

Samples were analysed by the Centre of Excellence in 

Mass Spectrometry at University of York [35]. Briefly, 

protein was in-gel digested post-reduction and 

alkylation. The resulting extracted peptides were 

analysed over 1-hour LC-MS acquisitions with elution 

from a 50cm, C18 PepMap column onto a Thermo 

Orbitrap Fusion Tribrid mass spectrometer using a 

Waters mClass UPLC. Extracted tandem mass spectra 

were searched against the combined Drosophila 

melanogaster and Saccharomyces cerevisiae subsets of 

the UniProt database. Protein identifications were 

filtered to achieve <1% false discovery rate as assessed 

against a reverse database. Identifications were further 

filtered to require a minimum of two unique peptides 

per protein group. 

 

For relative label-free quantification, extracted ion 

chromatograms for identified peptides were extracted 

and integrated for all samples. A maximum mass 

deviation of 3 ppm and retention time drift of 3 mins 

were set. Resulting quantifications were further filtered 

to an arbitrary PEAKS quality factor of 5 for feature 

mapping and required a minimum of two aligned 

features from a minimum of two unique peptides per 

protein quantification. Protein abundances were 

normalised between samples based on total identified 

peptide ion area. 

 

Gene ontology enrichment analysis 

 

gProfiler was used to undertake Gene Ontology (GO) 

enrichment analysis for the label-free mass 

spectrometry identified proteins with significant 

expression differences between each of the four 

experimental groups [36]. KEGG, Molecular Function 

(MF), Biological Process (BP) and Cellular 

Compartment (CC) enrichment analyses are generated 

by gProfiler are presented.  

 

Protein-protein interaction network analysis 

 

Differences in expression of proteins between groups 

were further analysed using the STRING database 

v.11.0 [37]. The platform was used to create protein-

protein interaction (PPI) networks based upon the 

differentially expressed proteins (DEPs) observed 

between groups. 

 

RESULTS AND DISCUSSION 
 

We subjected male Pink1- and wild-type Drosophila to a 

seven-day exercise regimen, whilst maintaining groups of 

unexercised Pink1- and wild-type as controls. The 
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mitochondria of the four groups were then isolated and 

investigated using 2D gel electrophoresis and label-free 

mass spectrometry analyses to determine changes in their 

mitochondrial proteome. The 2D gel electrophoresis 

method allowed for a fast and simple separation of 

proteins, which served as a scoping method to identify 

some of the most significant changes in expression. 

Label-free mass spectrometry analyses generated 

proteomes that we used in network enrichment analysis. 

Previously we have used proteomic profiling to 

characterise mitochondrial populations in both mice and 

long-lived pipistrelle bats, and here we apply this to 

better understand the PD phenotype as well as possible 

changes due to exercise [38, 39]. 

 

2DE-MS identified a general reduction in protein 

expression post-exercise in the Pink1 mutant 

Drosophila 

 

We isolated mitochondria from exercised and non-

exercised Pink1- Drosophila and performed 2DE-MS on 

these fractions (Supplementary Figure 1). All proteins 

that were identified as changed in expression after the 

exercise intervention were reduced in expression (Table 

1). PINK1 is recognised as having a central role in 

mitophagy, ensuring a healthy pool of mitochondria are 

maintained [19, 20]. It has recently been recognised that 

the regulation of mitophagy by the PINK1 system is 

age-dependent, with the Drosophila dependency on this 

pathway increasing with age [40]. Further, it has also 

been reported that earlier in the lifespan of the 

Drosophila there is a basal level of mitophagy that is 

not disrupted by the loss of PINK1 [41]. 

 

It is therefore possible that alternate mitophagy 

pathways can compensate for the loss of PINK1 and are 

upregulated during exercise, and this could account for 

the sweeping reductions in protein levels via 2DE-MS 

(Table 1). Indeed, alternative proteins have been 

identified and a pathway described in which they 

promote PINK1/PARKIN-independent mitophagy: 

AMBRA1, HUWE1 and IKKα [42]. It is also notable 

that ATG8, the final mediator of the AMBRA1 

PINK1/PARKIN-independent mitophagy pathway, has 

been reported to be upregulated in response to exercise 

as a part of a broader upregulated autophagic response 

to exercise [43]. However, it could also be suggested 

that the energetic demands of the exercise result in less 

energy available to protein synthesis pathways. In this 

instance, exercise would likely affect proteostasis more 

broadly, beyond just the mitochondrial proteome. 

 

The specific proteins identified within the table include 
structural proteins such as tropomyosin which is 

associated with the intracellular transport of mitochondria 

as well as mitochondrial metabolic proteins from a 

variety of pathways, such as acyl co-enzyme A 

dehydrogenase from the β-oxidation pathway, isocitrate 

dehydrogenase from the TCA cycle, and the metabolic 

gatekeeper pyruvate dehydrogenase. Due to the varied 

function of the proteins in Table 1, it is likely that their 

downregulation is representative of a broader decrease in 

protein expression levels in Pink1 Drosophila in response 

to exercise. 

 

We proceeded to pursue the directionally homologous 

2DE-MS results by obtaining a global topology of the 

mitochondrial protein changes that occur to Pink1- 

Drosophila due to exercise intervention using a label-

free proteomics method. 

 

GO annotation of identified label-free proteins and 

proportion identified that are localised to 

mitochondria 

 

Non-gel-based label-free proteomic analyses identified 

516 proteins from the mitochondrial fractions of Pink1- 

and wild-type Drosophila (Supplementary Table 1). GO 

and KEGG analyses showed that these fractions were 

enriched for mitochondrial processes and pathways, 

confirming the efficacy of our fractionation 

methodology (Figure 1). The top term of the GO 

cellular compartment analysis was cytoplasm, followed 

by mitochondrion and sub-mitochondrial compartments, 

many mitochondrial proteins are known to also localise 

to the cytoplasm [44, 45]. 

 

Pink1- Drosophila have decreased levels of proteins 

from energy metabolism pathways compared with 

wild-type Drosophila 

 

Label-free proteomics highlighted 105 differently 

expressed proteins between non-exercised wild-type 

Drosophila and non-exercised Pink1- Drosophila 

(Supplementary Table 2). Ten of the proteins were 

shown to be reduced in expression in Pink1- Drosophila 
compared to wild-type Drosophila. We found that 

Pink1- Drosophila have reductions in protein expression 

in proteins from mitochondrial processes associated 

with energy metabolism, with the top GO biological 

process terms being oxidative phosphorylation, electron 

transport chain, ATP metabolic process and oxidation-

reduction process (Figure 2). 

 

The deficiencies in mitochondrial oxidative 

phosphorylation, the electron transport chain and 

specifically in the activity of Complex I in Parkinson’s 

disease are well established, and this aligns with our 

findings from the GO analysis of the proteomics data 
[46–49]. Specific subunits of complexes within the 

electron transport chain that decreased in expression 

include NADH dehydrogenase (ubiquinone) 75 kDa 
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Table 1. Expression changes between exercised Pink1- Drosophila and non-exercised Pink1- Drosophila. 

Pink1- mitochondria - 2DE    

Protein identity ANOVA (p) Fold change Exercise related change 

Tropomyosin-1, isoforms 33/34 
0.022 1.4 ↓ 

Tropomyosin-2 

Acyl-coenzyme A dehydrogenase 0.015 1.4 ↓ 

Isocitrate dehydrogenase 0.008 1.4 ↓ 

Enolase 0.022 1.3 ↓ 

Probable isocitrate dehydrogenase [NAD] subunit alpha 

0.015 1.5 ↓ Glycerol-3-phosphate dehydrogenase [NAD(+)] 

Pyruvate dehydrogenase E1 component subunit beta 

Pyruvate dehydrogenase E1 component subunit beta 
0.048 1.3 ↓ 

Aldo-keto reductase, isoform C 

Alcohol dehydrogenase 
0.024 1.3 ↓ 

CG9992, isoform A 

Changes in expression were determined by 2DE-MS. 

 

subunit isoform B (complex I), GH01077p (complex III 

in Drosophila), HDC00331 (complex IV in Drosophila) 

and Levy isoform A (complex IV in Drosophila). While 

complex I and complex IV have been reported as 

dysfunctional in PD, reduced expression or decreased 

activity for complex III isn’t well documented [47, 50, 

51]. However, decreased Complex II/III activity has 

been shown in platelets of untreated Parkinson’s disease 

patients [52]. 

 

It is interesting to note that most (95/105) of the 

differentially expressed proteins were more highly 

expressed in Pink1- Drosophila (Supplementary Table 

2). GO biological process analysis showed these 

proteins to be enriched for redox processes, cytoplasmic 

translation, cellular amide metabolic processes and fatty 

acid derivative biosynthetic processes. GO cellular 

compartment analysis showed that the more highly 

expressed proteins in Pink1- were enriched for 

cytoplasmic ribosomes, organelle membranes and 

endoplasmic reticulum. KEGG pathway analysis 

paralleled these findings, highlighting the identified 

proteins as involved in fatty acid metabolism, ribosomes 

and one carbon pool by folate. 

 

There is evidence linking fatty acid metabolism and 

function to Parkinson’s disease, with proteins identified 

by GWAS studies, suppressed β-oxidation, and physical 

interaction between α-synuclein and fatty acids potential 

being key factors [53–57]. Early studies into the effect 

of α-synuclein (SNCA) gene deletion on lipid 

metabolism in mice reported reduced palmate uptake 
and altered palmate metabolism in the brain, reduced 

acyl-CoA Synthetase activity that resulted in reduced 

arachidonic acid uptake and turnover, and increased 

docosahexaenoic acid brain mass, incorporation and 

turnover [58–60]. Our own work shows differences in 

arachidonic acid derivatives in Parkinson’s disease 

mitochondria [61]. 

 

The data presented here show an enrichment of the 

folate metabolic pathway, not reported previously. It 

may be that in Pink1- Drosophila this is a compensatory 

mechanism. KEGG analysis highlighted the metabolism 

of folate (vitamin B9) as enriched in Pink1- Drosophila. 

B-vitamins, in particular folate, are well studied in the 

context of Parkinson’s disease due to the observation of 

homocysteine (a methionine cycle metabolite) having 

neurotoxic effects [62–65]. It is hypothesised that the 

administration of B-vitamins can drive the synthesis of 

methionine, thus reducing intracellular homocysteine 

[66–68]. However, the relationship between B -

vitamins, neurotoxicity and Parkinson’s disease is 

complex and a consensus has yet to be established. 

Some data show either little correlation between 

homocysteine levels and B vitamins including B6, 

folate and B12 while others show contradictory results, 

including elevated homocysteine levels and decreased 

folate levels in Parkinson’s disease patients [68–71]. 

 

Exercise reduces measured protein levels in Pink1- 

Drosophila 

 

The 2DE-MS analysis of exercised and non-exercised 

Pink1- Drosophila revealed reductions in twelve proteins 

in response to exercise (Table 1). Label-free proteomics 

showed a similar pattern in Pink1- exercised Drosophila 
compared with non-exercised Pink1- Drosophila; of  

the fifty-seven protein expression differences, fifty-five 

were reductions of protein expression in response to 
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Figure 1. Enrichment analysis of all proteins identified by label-free proteomics. Biological process, cellular compartment and 

KEGG enrichment analysis each presented processes associated with mitochondrial function and physiology. 
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exercise (Supplementary Table 3). GO:MF and KEGG 

pathway analysis determined that the terms ribosomal 

and fatty acid metabolism were significantly 

represented in the proteins with reduced expression 

(Figure 3). Interestingly, these terms were shown to be 

increased in Pink1- Drosophila compared to wild-type 

Drosophila that had not been exercised. This suggests 

that in Pink1- Drosophila exercise returns levels of 

protein expression towards wild-type values. 

 

It has been shown that PINK1 interacts with the 

protein translation pathway and that increased  

protein translation in Pink1- Drosophila causes an 

exacerbated Pink1- phenotype. Taking this a step 

further, it was shown that 40S ribosomal subunit S6 

(RpS6) RNAi was able to mitigate the Pink1- 
phenotype [72]. These data suggest improper protein 

translation regulation is involved in the pathogenesis 

of PD and that inhibition of this pathway mitigates 

progression. Exercise appears to be able to reverse the 

upregulated protein translation pathways found in 

Pink1- Drosophila. 

 

KEGG analysis identified fatty acid metabolism from 

proteins reduced in expression due to exercise, while 

GO:MF analysis highlighted CoA Carboxylase activity 

from the same protein data set. This reduction in the 

metabolism, and in particular the synthesis, of fatty 

acids can be contrasted with the KEGG analysis 

described earlier which identified elevated expression of 

fatty acid metabolism associated proteins in Pink1- 

Drosophila compared with wild-type Drosophila. It can 

be interpreted that exercise reverses the change in 

Pink1- Drosophila and returns the fatty acid metabolic 

profile back towards wild-type Drosophila. 

 

The two proteins upregulated with exercise in Pink1- 

Drosophila were OCIA domain-containing protein 1 

(OCIAD1) and dihydroorotate dehydrogenase (quinone) 

mitochondrial (DHODH), neither have previously been 

connected with exercise. OCIAD1 has been shown to 

localise to both endosomes and mitochondria and 

regulate pathways such as JAK/STAT, Notch and 

PI3K/AKT [73–75]. OCIAD1 has been shown to 

regulate mitochondrial ETC activity via control of 

complex I activity, which showed an inverse association 

with OCIAD1 overexpression [76]. Deregulated 

OCIAD1 levels have been linked to mitochondrial 

dysfunction, interaction with BCL-2 and Alzheimer’s 

disease [75]. 

 

DHODH is an inner mitochondrial membrane enzyme 

that catalyses the fourth step in de novo synthesis of 

pyrimidines [77]. A link between pyrimidine synthesis 

and mitochondrial morphology was shown with the 

addition of the drug leflunomide to muscle cells [78]. 

The group showed that leflunomide inhibited DHODH 

by binding to its ubiquinone binding channel, thereby 

preventing the production of pyrimidine ribonucleotide 

uridine monophosphate (UMP). DHODH inhibition 

induced upregulation of mitochondrial fusion and 

subsequent mitochondrial elongation, by depleting the 

cellular pyrimidine pool. As ubiquinone is reduced to 

ubiquinol in the DHODH-mediated catalysis of 

dihydroorotate to orotate, and as ubiquinol is a substrate 

of respiratory complex III, DHODH is important for the 

 

 
 

Figure 2. GO: Biological process analysis for downregulated protein expression differences between Pink1 non-exercised and 
wild-type non-exercised files. Pink1 files have reduced expression of proteins involved in mitochondrial respiration and oxidative 

phosphorylation. 
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ETS. DHODH deficiency has been reported to partially 

inhibit complex III and increase ROS generation [79]. 

 

The same Pink1- Drosophila strain has previously  

been reported to have upregulated genes involved in 

nucleotide metabolism, which is also the case in brains of 

PD patients with PINK1 mutations [80]. Genetic and 

pharmacological upregulation of nucleotide metabolism 

and scavenging pathways restored mitochondrial function 

caused by PINK1 loss. Therefore, DHODH upregulation 

by exercise may act in a compensatory manner to manage 

metabolic stress due to the Pink1- phenotype. 

 

 
 

Figure 3. GO: Molecular Function and KEGG analysis for proteins reduced in expression in Pink1- exercised files compared 
with Pink1- non-exercised files. Both Molecular Function and KEGG enrichment analysis indicated a decrease in expression of fatty acid 

metabolic proteins in the exercised Pink1- files. 
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Exercise reduces the difference in levels of protein 

expression between Pink1- and wild-type drosophila 

 

Of the 516 proteins identified, 105 protein had different 

levels between non-exercised Pink1- Drosophila and 

non-exercised wild-type Drosophila (Supplementary 

Table 2). Comparing the exercised Pink1- Drosophila 

group to either non-exercised wild-type Drosophila, or 

exercised wild-type Drosophila, showed close to half 

the number of differentially expressed proteins (55 and 

56 proteins, respectively) (Supplementary Tables 4, 5). 

Qualitatively the heatmap of protein expression for 

exercised Pink1- Drosophila more closely resembles 

wild-type Drosophila (Figure 4). This suggests exercise 

can ameliorate the aberrant protein profile of Pink1- 

Drosophila towards a more wild-type profile. 

 

This is in agreement with findings from Cheedipudi  

et al. (2020) who reported gene expression data  

from an exercised mouse model of arrhythmogenic 

cardiomyopathy, that originally showed a dysregulation 

of near 800 genes, showed partial restoration of gene 

expression with regular exercise, with the greatest 

remedial effects on proteins involved in inflammation 

and oxidative phosphorylation [81]. 

 

Network analyses of differentially expressed proteins 

 

STRING database network analysis complemented  

the results seen with gProfiler. The protein-protein 

interaction (PPI) networks were generated using 

STRING, and Figure 5A shows that exercised Pink1- 

Drosophila, compared with the exercised wild-type 

Drosophila, have a differentially expressed proteins 

(DEPs) network that consisted of 49 nodes and 200 

edges with average node degree 8.16 and PPI 

enrichment p-value of (P < 1.0e-16). 

 

Most of the proteins in the network have downregulated 

expression, with the following proteins found to be 

upregulated: endoplasmic reticulum chaperone BiP, 

enoyl-CoA hydratase short chain, glutamine synthetase, 

protein disulfide isomerase, methylmalonate-

semialdehyde dehydrogenase, polyadenylate-binding 

protein, poly(U)-specific endoribonuclease, glutamine 

synthetase, flotillin-1, heat shock protein 22, 

phosphatidate cytidylyltransferase, fatty acyl-CoA 

reductase and dihydroorotate dehydrogenase. 

 

The DEPs were found to be part of the ETC and 

OXPHOS processes, transmembrane transport and 

oxidative-reduction processes. The highly connected 

cluster in this network consisted of proteins from 
complex I: ND-18, ND-MLRQ, ND-ASHI, ND-

B14.5B, ND-B14, ND-B16.6, ND-49, ND-51, ND-

B17.2, ND-B14.7; complex IV: COX6B, COX4, mt: 

COII, COX5A; complex III: OX, and other proteins 

CYPE, UQCR-6.4, UQCR-14, levy and 40S ribosomal 

proteins S18. This cluster of proteins was downregulated 

in the exercised Pink1- Drosophila. 

 

Figure 5B shows the non-exercised Pink1- Drosophila 

versus the non-exercised wild-type Drosophila PPI 

network, which consists of 86 nodes and 121 edges with 

average node degree 2.81 and PPI enrichment p-value (P 

< 1.0e-16). In contrast to exercised Pink1- Drosophila 

versus exercised wild-type Drosophila, all DEPs were 

upregulated, except for cytochrome c oxidase subunit 4, 

cyclope isoform A, flightin isoform B, cytochrome b-c1 

complex subunit 7, NADH dehydrogenase 1 alpha 

subcomplex 12, Troponin 1, NADH dehydrogenase 18, 

cytochrome c oxidase subunit, cytochrome P450, NADH 

dehydrogenase 1 beta subcomplex subunit 8, cytochrome 

c oxidase subunit 5A, NADH dehydrogenase B14 and 

levy isoform A. 

 

The DEPs were found to be a part of oxidation-reduction 

processes, fatty-acyl-CoA metabolic processes, 

translation and protein folding. The identification of 

DEPs from fatty-acyl-CoA metabolic process is 

concurrent with the enrichment analysis presented in 

Figure 3. The highly connected node in this network is 

that of upregulated ribosomal proteins RPS18, RPS23, 

RPS23, RPS7, RPS14b, RPL6, RPL5, RPL10AB and 

RPL9. 

 

The DEPs were found to be a part of oxidation-reduction 

processes, fatty-acyl-CoA metabolic processes, 

translation and protein folding. The identification of 

DEPs from fatty-acyl-CoA metabolic process concurs 

with the enrichment analysis presented in Figure 3. The 

highly connected node in this network is that of 

upregulated ribosomal proteins RPS18, RPS23,  

RPS23, RPS7, RPS14b, RPL6, RPL5, RPL10AB and 

RPL9. 

 

Similarly, for Figure 6A–6C, three additional PPI 

networks were generated for DEPs in pairwise group 

comparisons. For exercised Pink1- Drosophila 

compared with non-exercised Pink1- Drosophila the PPI 

network consisted of 43 nodes and 29 edges with 

average node degree 1.35 and PPI enrichment p-value 

<1.62e-06 (Figure 6A). All of the DEPs were 

downregulated except for OCIA domain containing 

protein 1 and dihydroorotate dehydrogenase. The DEPs 

were found to be involved in formation of 40S 

ribosomal subunit, oxidation reduction processes, 

synthesis of ketone bodies, translation and cellular lipid 

catabolic processes. 
 

For non-exercised Pink1- Drosophila compared with 

exercised wild-type Drosophila the network has 107 
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nodes and 341 edges with average node degree 6.37 and 

PPI enrichment p-value (P <1.0e-16) (Figure 6B). The 

DEPs were found to be involved in ETC, translation, 

peroxisome, formation of 40S subunits and protein 

folding. The PPI network showed three highly 

connected clusters. Cluster 1 contained proteins from 

both complex I and complex IV, proteins that are 

downregulated like that of exercised Pink1- Drosophila 

compared with the exercised wild-type Drosophila. 

Cluster 2 contained ribosomal proteins that are 

upregulated, similar to that of non-exercised Pink1- 

Drosophila compared with the non-exercised wild-type 

Drosophila PPI network. Cluster 3 contains the proteins 

UGT, HSP22, HSP60C, CABP1, GP93, HSC70-5, 

HSC70Cb, HSP60A, RTNL1 and CNX99A. These 

proteins involved in proteostasis and protein folding and 

were found to be upregulated. 

 

For the final PPI network, exercised Pink1- Drosophila 

compared with non-exercised wild-type Drosophila, 

there are 44 nodes and 40 edges with average node 

degree 1.82 and PPI enrichment p-value 6.79e-11 

(Figure 6C). The exercised Pink1- Drosophila versus 

non-exercised wild-type Drosophila were involved in 

purine ribonucleotide triphosphate metabolic processes, 

ETC and peroxisomes. 

 

 
 

Figure 4. Heat map of protein expression levels (for proteins identified among all groups), determined by label-free mass 
spectrometry of mitochondrial fractions. Qualitatively, the identified Pink1- exercised fly proteome more closely resembles the two WT 

fly proteomes than does the Pink1 non-exercised fly proteome. 
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Figure 5. Network analysis of differentially expressed proteins. (A) Pink1- exercised vs wild type exercised; (B) Pink1- non-exercised vs 

wild type non-exercised. Networks analysed using STRINGdb. The nodes are coloured according to the processes (legend) that the proteins 
are involved in by using GO Terms for Biological Processes. The edge shows type of interactions, experimentally determined interactions are 
pink and those obtained from databases are sky blue. Predicted interactions such as gene neighbourhood are blue, green and red for gene 
co-occurrence, gene neighbourhood and gene fusions. Co-expression interactions are shown in black, text-mining interactions are shown in 
light green and protein homology edges are purple. 

 

 
 

Figure 6. Network analysis of differentially expressed proteins. (A) Pink1- exercised vs Pink1- non-exercised; (B) Pink1- non-exercised 

vs wild type exercised; (C) Pink1- exercised vs wild type non-exercised. Networks analysed using STRINGdb. The nodes are coloured according 
to the processes (legend) that the proteins are involved in by using GO Terms for Biological Processes. The edge shows type of interactions, 
experimentally determined interactions are pink and the one obtained from databases are sky blue. Predicted interactions such as gene 
neighbourhood are blue, green and red for gene co-occurrence, gene neighbourhood and gene fusions. Co-expression interactions are shown 
in black, text-mining interactions are shown in light green and protein homology edges are purple. 
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For each of the three PPI networks, the number of edges 

is larger than expected and the nodes were more 

connected than for a random PPI network of the same 

size. 

 

CONCLUSIONS 
 

A picture of mitochondrial proteomic changes made in 

response to exercise was obtained by using two 

different mass spectrometry methodologies. We were 

able to measure changes in an organelle whose function 

in exercise, and dysfunction in Parkinson’s disease, is 

crucial. 

 

2D-GE MS data comparison between Pink1- exercised 

and Pink1- non-exercised Drosophila revealed several 

proteins with decreased levels of expression in response 

to exercise. These data were indicative of a generalised 

reduction of expression of the mitochondrial proteome 

in Pink1- Drosophila in response to exercise. This was 

investigated further in exercised and non-exercised 

Drosophila, both wild-type and Pink1-, by label-free 

mass spectrometry. 

 

GO and KEGG analyses of the label-free mass 

spectrometry proteomic data validated our mitochondrial 

isolation methodology by identifying the enrichment of 

mitochondrial processes and pathways. The comparison 

between non-exercised wild-type Drosophila and non-

exercised Pink1- Drosophila revealed that proteins 

involved in bioenergetics had reduced expression in  

the mutant. Most strikingly, exercise of the Pink1- 

Drosophila caused a broad reduction in protein 

expression within the mitochondrial protein, resulting in 

the Pink1- Drosophila mitochondrial proteome to return 

to levels similar to the wild-type Drosophila. 

 

GO, KEGG and STRING network analysis of the 

differentially expressed proteins from the mitochondrial 

proteome comparisons identified enrichment of 

bioenergetic pathways. The most significantly enriched 

pathways in the non-exercised Pink1- Drosophila 

included oxidation-reduction, fatty acid metabolism, 

and folate metabolism, all of which are associated with 

PD. Our data point to exercise aiding normalisation of 

these pathways. Specific proteins in the pathways may 

be candidates to develop therapeutic approaches in PD. 
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SUPPLEMENTARY MATERIALS 
 

Ingram counter-balanced exerciser 

 

Our bespoke Ingram Counter-balanced Exercise (ICE) 

machine was adapted from the PT design of Piazza et 

al., by Mr. John Ingram (TI’s father) [82]. The exerciser 

fits into an incubator with internal dimensions of 48 x 

48 x 35cm and provides a vertically moving tray 

measuring 30 x 34cm. A solenoid-powered 

counterbalanced lever causes the tray to be lifted 3cm. 

The tray is lifted and immediately dropped every 15 

seconds. 

 

Counterbalancing the lever are a series of springs, 

which can be adjusted to allow lifts of up to 3.0kg. 

Springs efficiently store and release energy enabling a 

more rapid drop than would be the case if weights were 

used. They also reduce the size and overall weight of 

the device. 

 

 

Lift is provided by a solenoid wound onto a nylon core 

and fixed to the body of the exerciser. The steel 

armature passing through the solenoid is attached to the 

counterbalanced lever. Activation of the solenoid causes 

the armature to rise which lifts the lever. 

 

Solenoid activation is controlled by an astable timer. 

This triggers a relay to pulse the applied AC voltage. 

Two capacitors acting as a loss-less resistor allow the 

voltage to be reduced without producing excess heat, 

before it is rectified, smoothed and finally applied to the 

solenoid. Powering with DC current causes less 

vibration and heat generation in the solenoid but, as the 

capacitors and the solenoids both work more efficiently 

at lower temperatures, any excess heat is subsequently 

dissipated by proximate fans. Using a pulse of current 

as described rather than the discharge from a large 

capacitor to activate the solenoid saves space, it is also 

safer as there is far less stored energy. 
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Supplementary Figure 
 

 
 

Supplementary Figure 1. Representative 2DE gels of (A) exercised Pink1, (B) non-exercised Pink1, (C) exercised wildtype, (D) non-exercised 
wildtype Drosophila melanogaster. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. Label-free MS identified 516 proteins from the mitochondrial fractions of Pink1- and 
WT D. melanogaster. 

 

Supplementary Table 2. Label-free MS identified 105 proteins with different abundance when comparing non-
exercised Pink1- and wildtype flies. 

 

Supplementary Table 3. Label-free MS identified 57 proteins with altered abundance between exercised and 
non-exercised Pink1- flies, 55 of which had decreased abundance. 

 

Supplementary Table 4. Label-free MS identified 56 proteins with different abundance when comparing 
exercised Pink1- and exercised WT flies. 

 

Supplementary Table 5. Label-free MS identified 55 proteins with different abundance when comparing 
exercised Pink1- and non-exercised WT flies. 


