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Abstract This communication provides initial information and understanding of the manner in which a newly
developed theoretical mechanism (Soldatos in Int J Solids Struct 202:217–225, 2020) is applied in specific
boundary value problems met in polar linear elasticity of fibrous composites and thus enables the determina-
tion of the spherical part of the couple-stress tensor. In this context, it tests the applicability of the implied
mechanism/method in the case that a rectangular plate reinforced by a single family of unidirectional fibres is
subjected to pure bending. The problem solution is obtained for either non-polar or polar material behaviour,
where fibres are considered perfectly flexible or resistant in bending, respectively, and provides clear evidence
of the correctness of the principal argument that underpins the proposed method. Namely, that the general
rotation field of the plate deformation differs from the fibre rotation field. That newly discovered method
enables an extra energy term that emerges in the strain energy function of the fibrous composite plate to relate
with the spherical part of the couple-stress tensor outside conventional equilibrium conventions. It thus leads
to the determination of the spherical part of the couple-stress and its distribution throughout the plate body in
a complete and comprehensive manner.

1 Introduction

It is well known that the spherical part of the couple-stress tensor does not affect the stress equilibrium and
is, therefore, left indeterminate in conventional polar elasticity (e.g. [1–11] and references therein). On the
other hand, though, the polar elasticity theory of fibre-reinforced materials [7, 9] reveals that the strain energy
density/function of polar fibrous composites contains an extra energy term that also leaves unaffected their
stress equilibrium. These observations led the present author [12] to search for a mechanism that could connect
the implied extra energy term with the work done by the spherical part of the couple-stress and thus would
enable determination of the latter outside or regardless of standard equilibrium conventions.

The search for such a mechanism made it initially understood [12] that the implied indeterminacy arises
by the direct manner in which the Cosserat framework [13], which underpins the conventional theory of polar
elasticity, relates the spherical part of the couple-stress tensor to the rotation field of the deformation. This
rotation field,ω, is the antisymmetric part of the displacement gradient and is generally present in a deformation
regardless of whether the solid of interest exhibits polar or non-polar material behaviour. In the latter case
though, which embraces non-polar linear elasticity, the interaction of this antisymmetric rotation field with
the encountered symmetric stress field does not produce work and, hence, does not influence the strain energy
function. In other words, the Cosserat theoretical framework essentially considers that the general rotation
field of deformation, ω, relates to the emerged couple-stress field in a manner that makes it reciprocal to

K. P. Soldatos (B)
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
e-mail: kostas.soldatos@nottingham.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-021-03035-z&domain=pdf


K. P. Soldatos

its associated antisymmetric stress counterpart. Hence, necessarily, the latter contributes to the strain energy
function of the polar material of interest only by its direct interaction with the antisymmetric field ω.

However, in the case of polar material behaviour of fibrous composites [7, 9], where fibres with bending
stiffness behave like embedded Euler–Bernoulli beams, no apparent reason requires from the resulting fibre
rotation field, ϕ say, to coincide with for the corresponding general rotation field of the deformation. This fact
led the present author [12] to generalise the Cosserat couple-stress theory in a manner that enables distinction
of the two different rotation fields ω and ϕ. The implied theoretical generalisation [12] considers that, at least
in the case of polar fibrous composites [7, 9], it is the fibre rotation field, rather than its general deformation
counterpart, that is reciprocal to the antisymmetric part of the stress. In this manner, (i) it creates room for
a direct connection to be made between the spherical part of the couple-stress and the extra energy term
observed in [7, 9], and (ii) is thus furnished with a theoretical mechanism/method that enables determination
of the spherical part of the couple-stress outside the standard, well-known equilibrium conventions.

The present communication aims to provide some further information and better understanding of the
manner in which this newly developed theoretical mechanism or method [12] is applied in specific boundary
value problems met in polar linear elasticity of fibrous composites. In this context, it tests the applicability
of the method in the case that a rectangular plate reinforced by a single family of unidirectional fibres is
subjected to pure bending. In the special case that fibres are absent, this is recognised as the classical pure
bending problem of non-polar isotropic elastic plates (e.g. [14]). The corresponding plane strain problem and
its solution is also classical and older. For the case of material isotropy, this is detailed in classical texts as well
[14, 15]. Moreover, an anisotropic material generalisation of the latter has also been found useful in a recent
relevant publication [16].

The three-dimensional boundary value problem of present interest is thus regarded as one of the simplest
linear elasticity problems that can be considered in the fibrous composite plate literature. A proper and full
description of this problem is detailed in Sect. 3, immediately after some necessary preliminary features
of the aforementioned couple-stress theory generalisation [12] are briefly quoted in Sect. 2. Section 3 also
provides the problem solution in the case of either non-polar or polar material behaviour, where the fibres are
considered perfectly flexible or resistant in bending, respectively. It thus verifies the fact that the aforementioned
antisymmetric rotation fields, ω and ϕ, are indeed different.

Section 4 next describes in detail the form attained by the couple-stress constitutive equation, including
both its deviatoric and spherical parts, and by applying the implied newly developed method, demonstrates
the manner that the latter part can be determined in linear polar elasticity of fibrous composites. It is recalled
that there are currently available three versions of linear polar elasticity for fibrous composites, namely (i)
the unrestricted theory and (ii) its restricted, bending mode version [7, 9], as well as (iii) a recently emerged
restricted version [12, 17] that is principally associated with fibre-splay deformation features. As is shown
in Sect. 4 and is also discussed afterwards as a part of the concluding discussion and observations detailed
in Sect. 5, accuracy of the spherical couple-stress determination naturally depends on the extent to which
the employed version of the theory sufficiently captures the principal deformation features of the considered
boundary value problem.

2 Generalised formulation of the couple-stress theory for linearly elastic solids

Consider a suitable Cartesian coordinate framework Oxi, where, here as well as in what follows, indices take
the values 1, 2, and 3, and, wherever necessary, the summation notation of repeated indices also applies.
Quotation of the principal equations of the Cosserat couple-stress theory [13] may begin with the standard
decomposition,

σi j � σ(i j) + σ[i j], (2.1)

of the components of the non-symmetric stress tensor, σ , into symmetric and antisymmetric parts, and continue
with the equilibrium equations

σi j,i � 0, σ[i j] � 1

2
εk jim�k,�, (2.2.1,2)

wherem denotes the corresponding couple-stress tensor, ε represents the alternating tensor, and, for simplicity,
body forces and body couples are neglected.
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In (2.1) and (2.2) the components of the tensors σ andm have been assumed differentiable functions of the
implied coordinate parameters. Under the assumption that the derivatives of m appearing in (2.2.2) are also
differentiable, a combination of (2.1) with the equilibrium Eqs. (2.2) leads to

σ(i j),i +
1

2
εk ji m̄�k,�i � 0, (2.3)

where

m̄�k � m�k − 1

3
mrrδ�k (2.4)

is the deviatoric part of the couple-stress tensor, and the appearingKronecker’s delta represents the components
of the unit matrix, I. While no constitutive equations are provided or required at this point, the absence of
the spherical part of the couple-stress, mrr , from the equations of equilibrium (2.3) implies that it cannot be
determined by use of the outlined standard equilibrium considerations.

Along with the above equations, the components of the traction and the couple-traction vectors acting on
any internal or bounding surface of the material are, respectively, given as follows:

T (n)
i � σ j i n j , L (n)

i � m jin j , (2.5)

where n denotes the outward unit normal of that surface. In the case of the bounding surface of an elastic solid,
Eqs. (2.5) represent the traction and couple-traction boundary conditions applied externally on the material,
respectively.

In line with the polar material extension of Clapeyron’s theorem [16], it is postulated that, in the absence
of body forces and body moments, the total energy stored within an arbitrary volume, V, of a polar linearly
elastic material is

E � 1

2

∫

S

(
T (n)
i ui + L (n)

i �i

)
dS ≥ 0, (2.6)

where S denotes the surface that surroundsV, dS represents the corresponding surface element, and the equality
sign holds only in the absence of deformation. Moreover, u (with components ui) is the standard displacement
vector that is conjugate to the traction vector T(n), and Φ (with componentsΦ i) is some appropriately specified
spin-type vector that (i) characterises the couple-stress theory of interest, (ii) is generally dependent on the
displacement gradients, and (iii) is conjugate to the couple-traction vector L(n).

This characteristic spin vector, Φ, is perceived as the vector of a corresponding, antisymmetric, rotation-
type tensor, ϕ, in the sense that

�i � 1

2
εi jkϕk j , ϕk j � εi jk�i . (2.7)

It is recalled that the conventional/general spin vector of the implied deformation,Ω , and the antisymmetric
rotation tensor, ω, also obey these relationships, so that

	i � 1

2
εi jkωk j , ωk j � εi jk	i . (2.8.1,2)

In this context, the outlined generalised couple-stress theory reduces naturally to its conventional Cosserat
counterpart as soon as Φ is considered identical to Ω (or, equivalently, ϕ ≡ ω) in what follows.

Regardless of the choice of Φ, a combination of (2.5) and (2.6), followed by application of the divergence
theorem and the product rule of differentiation, leads to

E � 1

2

∫

V

[
σ j i ui, j +

(
m ji�i

)
, j

]
dV, (2.9)

where (2.2.1) is also taken into consideration. Moreover, due to the symmetry and the antisymmetry, respec-
tively, of the standard small strain and rotation tensors,

ei j � 1

2

(
ui, j + u j,i

)
, ωi j � 1

2

(
ui, j − u j,i

)
, (2.10.1,2)
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(2.9) is seen equivalent to the following:

E � 1

2

∫

V

[
σ( j i)ei j + σ[ j i]ωi j + (m�i�i ),�

]
dV . (2.11)

Use of (2.2.2) then leads to

E � 1

2

∫

V

[
σ( j i)ei j +

1

2
εki jm�k,�ωi j + (m�i�i ),�

]
dV,

and, by further use of (2.8.2), one obtains

E � 1

2

∫

V

[
σ( j i)ei j + m�i,�(�i − 	i ) + m�i�i,�

]
dV ≡

∫

V

(
We +W�

)
dV �

∫

V

WdV . (2.12)

The positive semidefinite quantities

We � 1

2
σ( j i)ei j ≥ 0, W� � 1

2

[
m�i,�(�i − 	i ) + m�i�i,�

] ≥ 0, (2.13.1,2)

thus, respectively, represent the standard strain energy function met in non-polar linear elasticity and its
generalised spin-gradient counterpart that is due to the considered polar material response of the elastic solid
of interest. The equality sign appearing in (2.13.1) or (2.13.2) applies only in the absence of strain or polar
material response, respectively. In this manner, the internal energy stored in the material is guaranteed to also
be positive semidefinite,

W � We +W� ≥ 0, (2.14)

with the equality holding only in the complete absence of deformation.
The outlined generalised couple-stress theory may be found useful in any kind of a polar linear elasticity

application in which the characteristic spin vector Φ acquires some specific physical meaning. As is already
mentioned though, its formation (see also [12]) is essentially motivated by the observation that identification
of Φ with the concept of an appropriate fibre spin vector can lead to the determination of the spherical part of
the couple-stress, which otherwise remains indeterminate in polar elasticity of fibre-reinforced materials.

The correctness and effectiveness of this observation is verified in Sect. 4, with an example application that
connects the outlined theoretical development with the pure bending problem of a rectangular fibre-reinforced
plate subjected to terminal couples.Meanwhile, Sect. 3 introduces this linear elasticity boundary value problem
and provides the principal details of both its non-polar and polar elasticity solutions.

3 Pure bending of a rectangular plate reinforced by a single family of straight fibres

In the aforementioned Cartesian coordinate system, Oxi, consider a rectangular linearly elastic plate whose
dimensions are such that |x1|≤L1, |x2|≤h/2 and |x3|≤L3 (see also Fig. 1). At the edges x1 � ±L1, the plate
is subjected to the externally applied normal stress distribution

σ11 � σ̂1x2, (3.1)

where σ̂1 is a known positive constant (see Fig. 2). No other traction is applied externally on any of the six
boundary planes. The plate thus bends under the action of a pair of terminal couples with magnitude

M3 �
h/2∫

−h/2

σ11
∣∣x1�±L1 x2dx2 � h3

12
σ̂1, (3.2)

per unit plate width. The magnitude of the total bending moment applied externally on each of those edges (x1
� ±L1) is evidently equal to L1M3 � L1h3σ̂1/12.

The history and the relatively simple solution that this classical boundary value problem attains in the case
of isotropic, non-polar linear elasticity may be found in textbooks (e.g. [14, 15]). It is recalled in this context
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Fig. 1 Schematic representation of a rectangular plate in a suitably selected Cartesian coordinate system, Oxi (−L1 ≤x1 ≤L1,− h/2≤x2 ≤h/2, −L3 ≤x3 ≤L3)

Fig. 2 Schematic representation of a plate cross section that is normal to the x3-direction, featuring the boundary traction distri-
butions which create pure bending in the case of non-polar linearly elastic material behaviour

that, in cases that the normal stress distribution applied externally at x1 � ±L1/2 satisfies (3.2) but differs
from (3.1), the implied isotropic elasticity solution is still considered accurate for sufficiently thin plates, by
virtue of the Saint–Venant’s principle.

In the present case of interest though, it is assumed that the plate has embedded a single family of straight
fibres oriented along the x1-direction. The fibres may be either perfectly flexible or resistant in bending
and thus furnish the linearly elastic plate of interest with non-polar or polar transversely isotropic material
characteristics, respectively. As is also mentioned in the Introduction, the corresponding plane strain problem
is considered and solved in [16].

3.1 Non-polar material behaviour

The non-polar elasticity solution of the present three-dimensional version of this anisotropic linear elasticity
problem may thus be considered as an appropriate, relatively simple extension of its counterparts detailed
in the above publications. This begins with consideration of the stress–strain part of the relevant constitutive
equation which, as the x1-axis defines a preference material direction, is described as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

e11
e22
e33
2e23
2e13
2e12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0
S12 S22 S12 0 0 0
S12 S12 S22 0 0 0
0 0 0 S44 0 0
0 0 0 0 S66 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ(23)

σ(13)

σ(12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)
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where the appearing 6×6 matrix of elastic compliances, S, is the inverse of the corresponding matrix of
elastic stiffness, C (e.g. [18]). Moreover, the suffices associated with the shear stress components are enclosed
in parentheses to signify that (3.3) will also still hold, as one of the constitutive equations met later in the
description of the corresponding polar elasticity problem. A second constitutive equation that relates the
couple-stresses and fibre curvature-strains is required in this case, and this will be introduced in Sect. 3.2, as
appropriate.

It can readily be verified that if (3.1) and

σ22 � σ33 � 0, σ12 ≡ σ(12) � 0, σ13 ≡ σ(13) � 0, σ23 ≡ σ(23) � 0, σ[i j] ≡ 0 (3.4.1–5)

are all adopted to represent the stress distribution throughout the body of the plate, then the implied all-around
traction boundary conditions and the corresponding equilibrium equations, namely (2.2) with m ≡ 0, are
satisfied identically. Thus, (3.1) and (3.4) represent the stress distribution associated with the unique, exact
solution of the non-polar version of this anisotropic linear elasticity boundary value problem, provided that a
corresponding displacement field does exist and is identified.

That displacement field becomes indeed available by inserting the stress field (3.1) and (3.4) into (3.3)
and combining the resulting equations with the definition (2.10.1) of the strain tensor. In this manner, one
obtains the following set of six simultaneous partial differential equations for the three unknown displacement
components:

u1,1 � S11σ̂1x2, u2,2 � S12σ̂1x2, u3,3 � S12σ̂1x2,

u2,3 + u3,2 � 0, u1,3 + u3,1 � 0, u1,2 + u2,1 � 0.
(3.5)

Integrating this set of equations in a manner that ensures strain compatibility, and ignoring rigid body
translation, one obtains the displacement field sought as follows:

u1 � σ̂1S11x1x2, u2 � 1

2
σ̂1

[
S12

(
x22 − x23

) − S11x
2
1

]
, u3 � σ̂1S12x3x2, (3.6)

where care is also taken for the rotations, ωij, to vanish at the coordinate origin.
The outlined derivations suffice for the description and the solution of this simple boundary value problem

in the case of non-polar linear elasticity, where fibres are considered perfectly flexible. Indeed, as m ≡ 0, a
combination of the displacement field (3.6) with the stress field (3.1) and (3.4) suffices to satisfy the equilibrium
Eqs. (2.2) (or, equivalently, (2.3)) and all the externally applied boundary conditions.

3.2 Polar material behaviour

However, in the polar linear elasticity case, some further investigation is required onwhether (i) the equilibrium
equations as well as the relevant set of traction boundary conditions are still satisfied, and (ii) a corresponding
set of homogeneous couple-traction boundary conditions suffices to maintain the displacement field (3.6).
Moreover, as polar material behaviour is here attributed to the resistance that individual fibres exhibit in
specific deformation modes, a further investigation is required on the extent to which (iii) the method proposed
in [12], in conjunction with the generalised couple-stress theory briefed in Sect. 2, enables the determination
of the spherical part of the couple-stress.

In search for definite answers to these questions, the subsequent sectionwill introduce and handle separately
each one of all three of the existing versions of polar linear elasticity for fibrous composites [7, 9, 17].
Nevertheless, itmay already be noticed that the quadratic formof the displacement components (3.6) guarantees
a positive answer to the first of the above questions. This is because the curvature-strains employed in any of
the implied versions of the theory [7, 9, 17] are second-order spatial derivatives of the displacements, and, in
the present problem, they will all emerge constant (see also Sect. 4).

The couple-stresses obtained by use of any of the three available relevant sets of linear constitutive equations
will thus also be constant, and (2.2.2) will thus yield

σ[i j] � 0. (3.7)

This equation, which agrees with and, in fact, replaces the corresponding non-polar elasticity identity
(3.4.5), makes then evident that the anticipated stress field will still satisfy the equations of equilibrium as well
as all the traction boundary conditions applied all-around the plate boundaries.
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3.3 Connection of the polar elasticity problem with the generalised couple-stress theory

On the other hand, and in close connection with (2.14), the strain energy function of polar, linearly elastic
fibrous composites is of the form

W � We +Wk ≥ 0, (3.8)

where We is the strain energy function underpinning the non-polar solution outlined already in Sect. 3.1.
Moreover, Wk emerges by consideration of deformation effects associated with the fibre direction gradients
and, necessarily, should thus be identical with the spin energy involved in the strain energy function (2.14) of
the generalised couple-stress theory (W� ≡ Wk).

Most importantly, Wk contains an extra energy term which, as already noted in the Introduction and
explained further in Sect. 4, does not contribute to the couple-stress constitutive equation. As this term thus
leaves unaffected the state of equilibrium, its emergence inWk is necessarily interpreted as energy contribution
that is due to the action of the spherical part of the couple-stress, which does not affect equilibrium either.
A comparison is then required between the expressions of Wk and W�, the former of which is explicitly
provided in any of the three available versions of the polar linear elasticity for fibrous composites (see Sect. 4).
Nevertheless, (2.13.2) reveals that evaluation ofW� requires prior determination of the spin vectors Ω and Φ.

It is accordingly noted that the already determined displacement field (3.6) gives rise to the following
deformation spin vector:

� � (ω32, ω13, ω21)
T � (

σ̂1S12x3, 0, − σ̂1S11x1
)T

, (3.9)

and yields the tangent vector of the deformed fibres as follows:

b � a + u,1 � (
1 + σ̂1S11x2, − σ̂1S11x1, 0

)T
, (3.10)

where

a � (1, 0, 0)T (3.11)

is the direction vector of the undeformed fibres.
On the other hand, the fibre spin vector, Φ, which characterises the generalised couple-stress theory of

present interest is defined as follows [12]:

� � φ̃�̃, (3.12)

where

�̃ � a × b � (
0, 0, − σ̂1S11x1

)T
, (3.13)

and the scalar quantity φ̃ is to be determined. This result shows that Φ and Ω have different directions and, as
anticipated in [12] (see also Sect. 2), verifies that these are therefore different spin vectors.

Connection of (3.12) with (2.13.2) enables next the spin energy of the generalised couple-stress theory to
be rearranged as follows:

W� � 1

2

[(
1

3
mrr,�δ�i + m̄�i,�

)(
φ̃�̃i − 	i

)
+

(
1

3
mrrδ�i + m̄�i

)(
φ̃�̃i

)
,�

]

� W�
1

(
mrr , φ̃

)
+W�

2

(
m̄�i , φ̃

)
, (3.14)

where

W�
1

(
mrr , φ̃

)
� 1

6

[(
mrr φ̃�̃i

)
,i

− mrr,i	i

]
, W�

2

(
m̄�i , φ̃

)
� 1

2

[(
m̄�i φ̃�̃i

)
,�

− m̄�i,�	i

]
(3.15)

depend on the spherical part and on the components of the deviatoric part of the couple-stress tensor, respec-
tively. With use of (3.9) and (3.13), these quantities thus obtain more specific forms, namely

W�
1

(
mrr , φ̃

)
� − σ̂1

6

[
S11

(
x1φ̃mrr

)
,3
+ S12x3mrr,1 − S11x1mrr,3

]
, (3.16.1)
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W�
2

(
m̄�i , φ̃

)
� − σ̂1

2

[
S11

(
x1m̄�3φ̃

)
,�
+ S12x3m̄�1,� − S11x1m̄�3,�

]
, (3.16.2)

which comply with the specific features of the plate bending problem of present interest.
The aforementioned comparison that is required between W� andWk can then be performed as soon as a

specific version of the polar linear elasticity for fibrous composites is selected and, hence, the corresponding
form ofWk is explicitly specified. The relevant process is detailed in the subsequent Section, where attention
is paid to all three of the existing linear versions of the theory. In line with the relevant developments detailed
in [12, 17], Sect. 4 thus begins with the simplest and ends with the most complicated version of the theory.

4 Couple-stress field and determination of its spherical part

4.1 The fibre-bending deformation mode/version of the theory

The curvature-strain part of the strain energy function employed in the restricted, fibre-bending version of the
theory is as follows [7, 9]:

WK � 3

8
d f K j K j + γ̄

(
a j K j

)2 � 3

8
d f (K 2

1 + K 2
2 + K 2

3

)
+ γ̄ K 2

1 , Ki � ui,k j aka j � ui,11, (4.1.1,2)

where Ki is the relevant fibre curvature vector and (3.11) still holds. Moreover, df represents the single fibre-
bending stiffness that enters actively the constitutive equation of the deviatoric part of the couple-stress tensor,
namely

m̄�r � d f εrsi Kia�as � d f εr1i Kia� � d f εr1i ui,11a�, (4.2)

while the additional relevantmodulus, γ̄ , enters the extra energy term that leaves unaffected both the constitutive
Eq. (4.2) and the state of equilibrium. Evidently, positive definiteness of (4.1) requires

d f > 0, γ̄ > 0. (4.3)

A combination of (4.1.2) with (3.6) then shows that the only nonzero curvature-strain component is

K2 � u2,11 � −σ̂1S11. (4.4)

Hence, in this plate bending problem, the curvature part of the strain energy function is

WK � 3

8
d f K 2

2 � 3

8
d f (σ̂1S11)2, (4.5)

and, in a similar manner, the only nonzero component of the deviatoric part of the stress tensor is

m̄13 � d f K2 � −d f σ̂1S11. (4.6)

This version of the theory thus predicts that the deviatoric part of every normal couple-stress is zero
(m̄11 � m̄22 � m̄33 � 0), and (2.4) then yields

m11 � m22 � m33 � 1

3
mrr . (4.7)

These results make it clear that, in line with the corresponding plane strain problem [16], the implied pure
bending deformation of the fibre-reinforced rectangular plate is sustainable within the framework of the fibre-
bending deformation version of polar linear elasticity, only if, in addition to the traction boundary conditions
(2.1), a couple-traction having constant magnitude

m̂3 � ∣∣m̄13

∣∣ � d f σ̂1S11 (4.8)

and direction parallel to the x3-axis is also applied externally on the boundaries x1 � ±L1, in a point-by-point
sense (see Fig. 3 for a schematic representation). Further relevant explanations, comments, and discussion may
thus be found in [16] and will not be repeated here.
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Fig. 3 Schematic representation of constant couple-traction distributions superposed on the externally applied loading depicted
in Fig. 2, for a corresponding polar fibre-reinforced elastic rectangular plate to maintain the pure bending deformation (3.6)

It is important to notice at this point that, due to the simplicity of the displacement field (3.6), (4.1.2) returns
K1 � 0, and, in this boundary value problem, the extra energy term appearing in (4.1.1) thus attains a zero
value. This fact though does not prevent the present analysis to proceed and, by setting equal to zero the extra
energy term (3.16.1) that emerges in the generalised couple-stress theory, to determine the spherical part of
the couple-stress and its distribution throughout the fibrous composite plate of interest.

Accordingly, by requiring equality of the polar elasticity parts (3.14) and (4.5) of the strain energy function
encountered in the generalised couple-stress theory and the present theory, respectively, one obtains

W�
1

(
mrr , φ̃

)
� 0, W�

2

(
m̄�i , φ̃

)
� 3

8
d f (σ̂1S11)2. (4.9.1,2)

The first of these equations implies that this is an exceptional boundary value problem, in which the action
of the spherical part of the couple-stress does not store work in the material of the deformed plate. With use of
(3.16) and (4.6), (4.9) are then transformed into the following pair of simultaneous partial differential equations
(PDEs):

(
x1φ̃mrr

)
,3
+ (S12/S11)x3mrr,1 − x1mrr,3 � 0,

(
x1φ̃

)
,1

� 3

4
(4.10.1,2)

for the pair of the unknown scalars mrr and φ̃.
Solution to the second of these PDEs yields

φ̃ � 3

4
+

1

x1
f (x2, x3),

where f is an arbitrary function of its arguments. However, the fibre spin vector, Φ, is anticipated finite
throughout the plate volume, including the internal plane x1 � 0, and this is possible only if f � 0. It follows
that

φ̃ � 3/4, � � (
0, 0, − 3σ̂1S11x1/4

)T
, (4.11)

where use is also made of (3.12) and (3.13).
With the value of the parameter φ̃ being thus determined, the PDE (4.10.1) simplifies into the following:

4(S12/S11)x3mrr,1 − x1mrr,3 � 0. (4.12)
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A general solution to this PDE is obtained in the Appendix with use of the method of characteristic lines,
and is as follows:

mrr � mrr (x2, u), u � x21
4S12

+
x23
S11

. (4.13)

This reveals that the implied characteristic lines are ellipses that lie on the x1x3-plane and that themagnitude
of their axes depends only on the elastic moduli of the non-polar elastic plate.

A less general and, hence, more specific solution of (4.12), may be obtained with use of the method of the
separation of variables (see the Appendix). This is evidently a special case of (4.13) and is of the form

mrr � f2(x2) exp

{
g2(x2)

(
x21
4S12

+
x23
S11

)}
, (4.14)

where f2(x2) and g2(x2) are arbitrary functions of the thickness coordinate parameter, x2. It is observed
that some more specific form of either (4.13) or (4.14) may be sought as soon as a set of relevant boundary
conditions is associated with any of the normal couple-stresses (4.7).

If, for instance, it is assumed that m22 � 0 on the top and bottom planes of the plate (x2 � ±h/2) then,
any choice of the form

f2 � f2
(
x22 − h2/4

)
(4.15)

is qualified as admissible to enter (4.14). In that case though, the displacement field (3.6) is sustainable within
the framework of the present version of the theory, only if, in line with (4.7), the following additional boundary
conditions are also satisfied on the remaining plate boundaries:

m11
∣∣x1�±L1 � f2

(
x22 − h2/4

)
exp

{
g2(x2)

(
L2
1

4S12
+

x23
S11

)}
,

m33
∣∣x3�±L3 � f2

(
x22 − h2/4

)
exp

{
g2(x2)

(
x21
4S12

+
L2
3

S11

)}
.

(4.16)

In this regard, it becomes evident that, in the present boundary value problem, the specific form of the
arbitrary functions f2(x2) and g2(x2) is essentially dictated by the known form of the externally applied normal
boundary couple-tractions.

It is then also of interest to note that the choice f2
(
x2

) � 0 makes the displacement field (3.6) attainable
in the complete absence of normal boundary couple-tractions. In other words, if no normal couple-stresses are
applied externally on any of the plate boundaries, then the choice (4.14) predicts that, in this boundary value
problem, all three normal couple-stresses are zero throughout the body of the plate.

4.2 The fibre-splay deformation mode/version of the theory

Like the unrestricted version of the theory, which is considered separately in Sect. 4.3, its restricted, fibre-splay
version makes use of the full form of the fibre curvature-strain tensor, namely

κi j � (
ui,kak

)
, j � ui, j1, (4.17)

where (3.11) has evidently again beenused.However, this versionof the theory imposes the following restriction
on the curvature-strain part of the strain energy function [17]:

W κ(κs, κa, a) � W κ(κa, κs, a) � W κ(κ, a), (4.18)

where the components of the symmetric, κs, and the antisymmetric, κa, parts of κ are, respectively,

κ(i j) � 1

2

(
κi j + κ j i

) � 1

2

(
ui, j1 + u j,i1

)
, κ[i j] � 1

2

(
κi j − κ j i

) � 1

2

(
ui, j1 − u j,i1

)
. (4.19.1–3)

The restriction (4.18) requires from W κ to acquire the form

Wk � β1
(
κ(nn)

)2 + β2κ(nn)akκ(km)am + β̂3
(
akκ(km)am

)2
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� β1(κnn)
2 + β2κnnakκkmam + β̂3(akκkmam)2, (4.20)

and, hence, to make use of three elastic moduli, whose values are required to obey the inequalities

β1 ≥ 0, β2 + β̂3 ≥ 0, β̂3 ≥ β2
2/4β1. (4.21)

It is recalled that β1 and β2 are here elastic moduli that participate actively in the constitutive equation of
the deviatoric the couple-stress, namely

m̄�r � 2

3
εr�sas(2β1κnn + β2κkmakam) � 2

3
εr�sas

(
2β1κ(nn) + β2κ(km)akam

)
, (4.22)

while β̂3 regulates the extra energy term that leaves unaffected both (4.22) and the state of equilibrium.
In the present problem of interest, the displacement field (3.6) produces only two nonzero curvature-strain

components, namely

κ12 � u1,21 � σ̂1S11, κ21 � u2,11 � −σ̂1S11. (4.23)

The symmetric part of the curvature-strain tensor thus is identically zero (κ(i j) � 0), while its antisymmetric
part contains only a single pair of nonzero components, namely

κ[12] � −κ[21] � σ̂1S11. (4.24)

Introduction of these results to (4.20) then yields

Wk � β1(κnn)
2 + β2κnnκ11 + β̂3κ̂

2
11 � 0, (4.25)

which essentially reveals that fibre-splay deformation does not contribute to the strain energy function at all.
This rather interesting result should not come as a surprise, because the present problem of interest is a

classical, pure bending problem that involves no other types of plate deformation. In other words, no fibre-splay
deformation takes place, and, as the bending and the splay deformation modes are totally uncoupled in this
pure bending problem, a combination of (4.22) and (4.23) yields

m̄�r � 0. (4.26)

As far as this example application is concerned, the fibre-splay deformation version of the polar theory
simply coincides with the non-polar theory of linear elasticity.

4.3 The unrestricted theory

The unrestricted theory [7, 9] accounts for full coupling of fibre-bending, fibre-splay, and fibre-twist deforma-
tion effects and is thus considerably more complicated than either of its restricted fibre-bending and fibre-splay
versions. Like its fibre-splay counterpart, this makes use of the full form of the fibre curvature-strain tensor
(4.17) as well as of the curvature-strain decomposition (4.19) but makes no use of the restriction (4.18).

Instead, this full version of the theory relies on the following, complete form of the polar part of strain
energy function:

W κ � β1 J
2
1 + β2 J1 J2 + β̂3 J

2
2 + β3 J3 + β4 J4 + β5 J5 + β6 J6 + β7 J7, (4.27)

where the appearing deformation invariants are

J1 � trκs � trκ, J2 � aκsa � aκa, J3 � trκ2
s , J4 � aκ2

s a, J5 � trκ2
a , J6 � aκ2

aa, J7 � aκsκaa.
(4.28)

As is also noted in [12], the first three of the terms appearing at the right-hand side of (4.27) correspond
to their counterparts employed earlier in (4.20). It follows that β̂3 J 22 is still the extra energy term that does
not affect the state of equilibrium. This becomes further clear from the absence of β̂3 in the corresponding
constitutive equation of the deviatoric couple-stress which, for straight fibres parallel to the x1-direction, is as
follows:

m̄�r � 2

3
εr�1(2β1κnn + β2κ11) +

2

3
εri1

(
2β3κ(i�) + β4a�κ(i1)

)
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− 1

3
εris

{
4β5

(
asκ[i�] + a�κ[is]

)
+ 2β6a�

(
aiκ[s1] − 2asκ[i1]

)
+ β7a�(aiκ1s − 2asκi1)

}
. (4.29)

An alternative, explicit and practically more useful form of all nonzero components of this tensor is given
as follows [7, 9, 12]:

⎡
⎣
m̄11

m̄22

m̄33

⎤
⎦ �

⎡
⎣0 2b3

−b2 −b3
b2 −b3

⎤
⎦

[
e23,1
	1,1

]
,

⎡
⎢⎢⎢⎣

−m̄32

m̄23

−m̄12

m̄13

⎤
⎥⎥⎥⎦ �

⎡
⎢⎣
d11 d22 d33 0 0 0 0
d11 d33 d22 0 0 0 0
0 0 0 d23 d32 0 0
0 0 0 0 0 d23 d̂32

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11,1
e22,1
e33,1
e31,1
	2,1

e12,1
	3,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.30)

where the appearing elastic moduli connect with their counterparts involved in (4.27) by the relations

b2 � 4

3
β3, b3 � 4

3
β5, d11 � 2

3
(2β1 + β2), d22 � 4

3
(β1 + β3), d33 � 4

3
β1,

d23 � 1

3
(4β3 + 2β4 + 3β7), d̂32 � −d32 � 1

3
(2β4 + β7 − 12β5 − 6β6).

(4.31)

These elastic moduli thus contain inherited information of the ability of the model to account not only for
fibre-bending, but also for fibre-splay and fibre-twist types of deformation.

With the strain, the rotation, and the curvature-strain components of the pure bending problem of interest
being already determined by (3.5), (3.9), and (4.19), respectively, it is next seen that the only nonzero deviatoric
couple-stress stemming from (4.30) is

m̄13 � d̂32	3,1 � −d̂32σ̂1S11. (4.32)

It is recalled that (4.30.1) implies that the normal components of the deviatoric part of the couple-stress
tensor may generally be nonzero. However, as m̄rr � 0, the spherical part, mrr , of the couple-stress tensor is
still unspecified.

On the other hand, as (4.24) are still the only nonzero components of the antisymmetric part of the
curvature-strain tensor while κ(i j) � 0, a combination of (4.27) and (4.28) reveals that

W κ � β5 J5 + β6 J6 � −(2β5 + β6)κ
2
[12] � D77

(
σ̂1S11

)2
, (4.33)

where the notion

D77 � −(2β5 + β6) > 0 (4.34)

is employed to show that (4.33) agrees with its alternative form introduced in [9]. For the plate bending problem
of present interest, this alternative form of W κ can in fact be expressed as follows [16]:

W κ � W	 � D77	
2
3,1. (4.35)

A comparison of (4.32) and (4.33) with (4.6) and (4.5), respectively, shows a close resemblance of the
present formulation with its counterpart outlined in Sect. 4.1 by use of the restricted, bending mode version
of the theory. Indeed, the only relevant mathematical difference observed is essentially the fact that the two
different active elastic moduli d̂32 and D77 appearing at present in the constitutive Eq. (4.32) and the curvature
part of the strain energy (4.33), respectively, are both replaced in the earlier formulation (Sect. 4.1) by the
single active elastic modulus d f . Nevertheless, the physical difference between the implied pair of different
formulations is underpinned by the fact that, while d f emerged as a single elastic modulus of fibre-bending
stiffness, either of d̂32 and D77 emerges by suitable combination of coefficients that enable the general energy
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expression (4.27) to be regarded as a quadratic invariant representation of all three, fibre-bending, fibre-splay,
and fibre-twist deformation modes.

It is thus noted that the unrestricted version of the theory still predicts that the deviatoric part of all three
normal couple-stresses is zero (m̄11 � m̄22 � m̄33 � 0) and, hence, that (4.7) still holds. Moreover, the
implied pure bending deformation of the plate is still sustainable only if, in addition to the traction boundary
conditions (2.1), the constant couple-traction depicted in Fig. 3 is also applied externally on the boundaries, x1
� ±L1. However, (4.32) now implies that the magnitude of this boundary couple-traction is more accurately
given according to

m̂3 � d̂32σ̂1S11, (4.36)

rather than to (4.8).
As, on the other hand, the displacement field (3.6) returns κs � 0, the extra energy term β̂3 J 22 appearing

in (4.27) still attains a zero value. The equality requirement imposed between (4.35) and its polar counterpart
(3.14) encountered in the generalised couple-stress theory thus leaves (4.9.1) unaltered but replaces (4.9.2)
with

W�
2

(
m̄�i , φ̃

)
� D77

(
σ̂1S11

)2
. (4.37)

Hence, with use of (3.16) and (4.32), (4.9.1) leads again to (4.10.1) while (4.37) yields(
x1φ̃

)
,1

� 2D77/d̂32. (4.38)

It is accordingly observed that, as far as the present pure bending plate problem is concerned, the analytical
simplification offered by the bending mode version of the theory considered in Sect. 4.1 is essentially confined
in the approximation

D77/d̂32 � 3/8. (4.39)

A treatment of (4.38) with the same solution process applied earlier on (4.19.2) then yields

φ̃ � 2D77/d̂32, � �
(
0, 0, − 2σ̂1S11D77x1/d̂32

)T
. (4.40)

This result enables (4.10.1) to replace (4.12) with the following PDE:
(S12/S11)

1 −
(
2D77/d̂32

) x3mrr,1 − x1mrr,3 � 0. (4.41)

As a matter of fact, connection of this PDE with the fibre-bending mode approximation (4.39) leads
naturally to (4.12).

The method of characteristic lines, employed in the Appendix for the solution of (4.12) then yields the
general solution of (4.41) in the following form:

mrr � mrr (x2, v), where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v � x21
4S12d̂32

+
x23

S11
(
d̂32 − 2D77

) , if d̂32 > 2D77,

v � x21
4S12d̂32

− x23

S11
∣∣∣d̂32 − 2D77

∣∣∣
, if d̂32 < 2D77,

(4.42)

which is essentially an appropriate generalisation of (4.13). This solution reveals that, dependent on the sign of
the term d̂32 −2D77, the implied characteristic lines are either ellipses or hyperbolas that lie on the x1x3-plane.
However, the generality of the unrestricted theory now reveals further that the magnitude of the axes of those
curves depends not only on the elastic moduli of the corresponding non-polar elastic plate but also on the
micromechanics elastic moduli that characterise the deformation resistance of individual fibres.

In the rare and rather unlikely special case that d̂32 � 2D77, (4.41) predicts that mrr is essentially an
arbitrary function of the coordinate parameters x2 and x3. If/when necessary, more specific forms of (4.42),
like, for instance, forms that resemble (4.14), may also be obtained with use of the method of the separation of
variables (see the Appendix). As is already mentioned towards the end of Sect. 4.1, determination of arbitrary
functions of integration that enter any of the derived or implied solutions of (4.41) may be sought and obtained
as soon as some specific set of boundary conditions is associated with the normal couple-stresses (4.7).
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5 Further discussion and conclusions

The pure bending problem of a rectangular fibrous composite plate, introduced and solved in Sects. 3 and
4, is one of the simplest boundary value problems that verify the validity of the argument that underpins the
generalised couple-stress theory briefed earlier in Sect. 2 (see also [12]). Namely, that the deformation spin
vector, Ω , and its fibre spin counterpart, Φ, are in general different vectors. Based on the relevant arguments
detailed in the Introduction, this verification favours the claim that the extra energy term that emerges in the
strain energy function of polar fibrous composites, outside the standard equilibrium conventions, represents
an energy contribution that is due to the action of the spherical part of the couple-stress on the relevant fibre
curvature-strain field.

Due to the simplicity of the investigated problem though, the obtained solution is based on an equally
simple, essentially quadratic displacement field, namely (3.6). All curvature-strain components, which are
second-order partial derivatives of the displacement components, are therefore constant, while several of them
are equal to zero. It thus happens that zero are also the curvature-strains that combine with the spherical part
of the couple-stress in the noted extra energy term that appears in the general form of the curvature part of the
strain energy function. This result makes the aforementioned extra energy term zero and thus shows that, due
to simplicity, the present example application is essentially an exceptional relevant problem.

Nevertheless, the equilibrium-independent mechanism developed in [12] for the determination of the
spherical part of the couple-stress tensor is still applicable in the present case and provides the relevant
information sought in a complete and comprehensivemanner. Still though, the successful use of thismechanism
depends on the appropriateness and effectiveness of the version of polar linear elasticity for fibrous composites
that it is applied upon.

It is accordingly seen that the splay-mode/version [17] of the theory (Sect. 4.2) is unable to offer any
kind of reliable information, not only regarding the spherical, but also the deviatoric part of the couple-stress
tensor. This is because the specific boundary value problem considered is a classical pure bending problem
which, as such, does not involve fibre-splay deformation features of any kind. For the same reason, and by
essentially recognising that neither fibre-twist characteristics are present, the unrestricted theory (Sect. 4.3)
provides information that presents remarkable similarity to that obtained by use of its restricted, bending mode
counterpart (Sect. 4.1).

In this context, both the unrestricted theory and its restricted bending mode version predict that only a
single component of the deviatoric couple-stress tensor is nonzero, namely m̄13. Moreover, both versions of
the theory predict that this nonzero m̄13-value is constant throughout the plate body. By virtue of a relevant
theorem proved in [16], it thus follows that the obtained solution of this polar elasticity problem is unique, in
the sense that there exist no additional weak discontinuity solutions (see also [12]). These results further led
to the conclusion that the implied bent plate deformation is sustainable in the polar elasticity case only if, in
addition to the classical traction boundary conditions assumed in the non-polar elasticity problem (Fig. 2), a
constant boundary couple-traction of magnitude

∣∣m̄13

∣∣ and direction parallel to the x3-axis is further applied,
in a point-by-point sense, on the opposite edges of the plate that the fibres end upon (Fig. 3).

Moreover, the spherical part of the couple-stress predicted by the unrestricted theory has similar, if not
identical qualitative characteristics to those predicted by its restricted, bendingmode version. A few, essentially
quantitative relevant differences are due to, and arise from the fact that the elastic moduli (4.31) employed
in the couple-stress constitutive equations of the unrestricted theory contain advanced material information
which enables that model to account not only for fibre-bending, but also for fibre-splay and fibre-twist features
of deformation. Nevertheless, this difference between the two versions of the theory does not create substantial
mathematical difference in the solution of the present example application, which is exclusively dominated by
the bending deformation mode of the plate.

It is fitting in this regard to also note that, in more advanced polar elasticity problems of plate flexure (e.g.
[19]), a similarly advanced form of the plate displacement components will return nonzero curvature-strains
and will enable them to combine with the spherical part of the couple-stress in a manner that makes also
nonzero the aforementioned extra energy term appearing in the curvature part of the strain energy function. As
a result, the PDE that corresponds to either (4.12) or (4.42) will be an inhomogeneous one, in the sense that
its right-hand side will acquire some specific nonzero form. The general solution of this PDE might thus need
to be sought as the superposition of a complementary solution, analogous to either (4.13) or (4.42), and some
appropriately specified particular integral/solution of the same.

As the form of such a particular solution is necessarily dictated by the form of the PDE’s nonzero right-hand
side, the thus obtained general solution will be influenced not only by arbitrary functions of integration, but
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also by specific fibre curvature characteristics that relate to the advanced plate flexure problem considered.
Along with an externally imposed set of normal, boundary couple-tractions, analogous to those detailed in
(4.36), those fibre curvature characteristics will then also influence the determination process of the involved
arbitrary functions of integration.
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sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
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Appendix: Solution of the partial differential Eqs. (4.12) and (4.41)

Potential solution of the PDE (4.12) on the x1x3-plane with use of the method of characteristic lines requires
initially a search for the plane curves whose tangent satisfies the equation

dx3
dx1

� − S11x1
4S12x3

. (4.43)

Integration of this equation then shows that the characteristic lines sought are the elliptical level curves

x21
4S12

+
x23
S11

� u. (4.44)

If mrr was a function of x1 and x3 only, the general solution of (4.12) would simply require from mrr to
be an arbitrary function of the parameter u. However, as mrr may also be a function of x2, the solution sought
for (4.12) has necessarily the form (4.13) in the three-dimensional space.

If, on the other hand, a potential solution of (4.12) is sought on the x1x3-plane with use of the method of
the separation of variables, one initially assumes that mrr is of the form

mrr (x1, x2, x3) � f1(x1) f2(x2) f3(x3) �� 0. (4.45)

Introduction of (4.43) into (4.12), followed by some appropriate rearrangement, leads to

4S12 f ′
1(x1)

x1 f1(x1)
� S11 f ′

3(x3)

x3 f3(x3)
� 2g2(x2), (4.46)

where a prime denotes ordinary differentiation and, in the x1x3-plane, the arbitrary function 2g2(x2) plays the
role of an arbitrary separation variable. Solution of the resulting pair of ordinary differential equations, namely

d f1
f1

� g2
x1dx1
2S12

,
d f3
f3

� 2g2
x3dx3
S11

, (4.47)

yields then (4.14), where the associated arbitrary constants of integration have been incorporated into the
arbitrary form of f2(x2).

Derivation of the general solution (4.42), obtained for the partial differential Eq. (4.41) with the method of
characteristics, begins by replacing (4.43) with

dx3
dx1

� −
(
1 − 2D77/d̂32

)
S11x1

S12x3
, (4.48)

and following afterwards identical steps. More specific forms of the general solution (4.42) may also be
obtained with use of the method of separation of variables. Starting with (4.45) the search for such solutions
will lead to a rather evident generalisation of (4.14) and/or (4.42).

http://creativecommons.org/licenses/by/4.0/
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