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ABSTRACT

The object of the present paper is to study the properties

of a hyper generalized pseudo Q-symmetric semi-Riemannian

manifold, proving that under certain assumptions, it is a per-

fect fluid spacetime.

RESUMEN

El objetivo del presente art́ıculo es estudiar las propiedades

de una variedad semi-Riemanniana hiper generalizada pseudo

Q-simétrica, probando que bajo ciertas condiciones, es un

espacio-tiempo fluido perfecto.
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1 Introduction

Let R, S, L and r denote the curvature tensor, Ricci tensor, Ricci operator and the scalar curvature

of a (semi)-Riemannian manifold, respectively. It is Mantica and Suh [5] who have introduced the

notion of Q-curvature tensor. In an n-dimensional Riemannian or semi-Riemannian manifold

(Mn, g) (n > 2), the Q-curvature tensor is defined as

R(Y, U, V,W ) = Q(Y,U, V,W ) +
ψ

n− 1
[g(Y,W )g(U, V )− g(Y, V )g(U,W )], (1.1)

where Y, U, V,W are arbitrary vector fields on Mn and ψ is a scalar function. Semi-Riemannian

manifolds with Ricci tensor S of the form

S(Y, V ) = ag(Y, V ) + bT (Y )T (V ),

for any vector fields Y, V , are often termed as perfect fluid spacetimes, where a and b are scalars

and the vector field %, metrically equivalent to the 1-form T (that is, g(Y, %) = T (Y )), is a unit

time like vector field (that is, g(%, %) = −1).

An n-dimensional semi-Riemannian manifold is said to be hyper generalized pseudo Q-symme-

tric (which will be abbreviated hereafter as (HGPQS)n) if it satisfies the equation

(∇XQ)(Y, U, V,W ) (1.2)

= 2A1(X)Q(Y,U, V,W ) +A1(Y )Q(X,U, V,W )

+A1(U)Q(Y,X, V,W ) +A1(V )Q(Y,U,X,W )

+A1(W )Q(Y, U, V,X) + 2A2(X)(g ∧ S)(Y, U, V,W )

+A2(Y )(g ∧ S)(X,U, V,W ) +A2(U)(g ∧ S)(Y,X, V,W )

+A2(V )(g ∧ S)(Y,U,X,W ) +A2(W )(g ∧ S)(Y,U, V,X),

where

(g ∧ S)(Y, U, V,W ) = g(Y,W )S(U, V ) + g(U, V )S(Y,W ) (1.3)

−g(Y, V )S(U,W )− g(U,W )S(Y, V )

and A1, A2 are non-zero 1-forms whose g-dual vector fields will be denoted by θ1 and θ2, i.e.

A1(X) = g(X, θ1) and A2(X) = g(X, θ2).

We organized our paper as follows: section 2 is concerned with preliminaries. After prelimi-

naries, some curvature properties of (HGPQS)n manifolds are studied in section 3. It is obtained

that the Q-curvature tensor in a (HGPQS)n manifold satisfies 2nd Bianchi’s identity. It is further

obtained that the scalar function ψ is always constant. In section 4 we investigate properties of

divergence-free (HGPQS)n manifolds and we prove that a divergence-free (HGPQS)n manifold

(n > 2) under the assumption A1(Q(Y,U)V ) = 0 is a perfect fluid spacetime as well as the integral
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curves of the vector field % are geodesics and the vector field % is irrotational, if the associated

vector fields % and σ corresponding to the 1-forms T1 and T2 are related by (r − 1)%+ nσ = 0.

2 Preliminaries

In this section, some relations useful to the study of (HGPQS)n manifolds are obtained. Let {ei}
be an orthonormal basis of the tangent space at each point of the manifold, where 1 ≤ i ≤ n.

From (1.1) we can easily verify that the tensor Q satisfies the following properties:

(i) Q(Y,U)V +Q(U, Y )V = 0,

(ii) Q(Y,U)V +Q(U, V )Y +Q(V, Y )U = 0, (2.1)

where g(Q(X,Y )U, V ) = Q(X,Y, U, V ).

Also from (1.1) we have

n∑
i=1

εiQ(X,Y, ei, ei) = 0 =

n∑
i=1

εiQ(ei, ei,W,U) (2.2)

and

n∑
i=1

εiQ(ei, Y, V, ei) =

n∑
i=1

εiQ(Y, ei, ei, V ) = S(Y, V )− ψg(Y, V ) (2.3)

=: Z(Y, V ),

where

εi = g(ei, ei) = ±1, S(X,Y ) =

n∑
i=1

εig(R(X, ei)ei, Y ), r =

n∑
i=1

εiS(ei, ei).

From (1.1) and (2.1) it follows that

(i) Q(X,Y, U, V ) +Q(X,Y, V, U) = 0,

(ii) Q(X,Y, U, V )−Q(U, V,X, Y ) = 0. (2.4)

3 Some curvature properties of (HGPQS)n manifolds

In this section we prove that in a (HGPQS)n manifold, the Q-curvature tensor satisfies 2nd

Bianchi’s identity, that is,

(∇XQ)(Y, U, V,W ) + (∇YQ)(U,X, V,W ) + (∇UQ)(X,Y, V,W ) = 0. (3.1)
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In view of (1.1), (1.2) and (3.1) we get

(∇XQ)(Y,U, V,W ) + (∇YQ)(U,X, V,W ) + (∇UQ)(X,Y, V,W ) (3.2)

= A1(V )[Q(Y,U,X,W ) +Q(U,X, Y,W ) +Q(X,Y, U,W )]

+A1(W )[Q(Y, U, V,X) +Q(U,X, V, Y ) +Q(X,Y, V, U)]

+A2(V )[(g ∧ S)(Y,U,X,W ) + (g ∧ S)(U,X, Y,W )

+(g ∧ S)(X,Y, U,W )] +A2(W )[(g ∧ S)(Y,U, V,X)

+(g ∧ S)(U,X, V, Y ) + (g ∧ S)(X,Y, V, U)].

Using (1.3) and 1st Bianchi’s identity for the Q-curvature tensor in (3.2) and then simplifying,

we obtain (3.1).

Thus we can state the following:

Theorem 3.1. The Q-curvature tensor in a (HGPQS)n manifold satisfies 2nd Bianchi’s identity.

Using (1.1) in (3.1), we have

(∇XR)(Y,U, V,W ) + (∇YR)(U,X, V,W ) + (∇UR)(X,Y, V,W ) (3.3)

− dψ(X)

(n− 1)
[g(Y,W )g(U, V )− g(Y, V )g(U,W )]

− dψ(Y )

(n− 1)
[g(U,W )g(X,V )− g(U, V )g(X,W )]

− dψ(U)

(n− 1)
[g(X,W )g(Y, V )− g(X,V )g(Y,W )] = 0.

By virtue of 2nd Bianchi’s identity for the Riemannian curvature tensor, (3.3) yields

dψ(X)

(n− 1)
[g(Y,W )g(U, V )− g(Y, V )g(U,W )] (3.4)

+
dψ(Y )

(n− 1)
[g(U,W )g(X,V )− g(U, V )g(X,W )]

+
dψ(U)

(n− 1)
[g(X,W )g(Y, V )− g(X,V )g(Y,W )] = 0.

Contracting U and V in (3.4), we have

(n− 2)[dψ(X)g(Y,W )− dψ(Y )g(X,W )] = 0 (3.5)

which yields after further contraction

(n− 1)(n− 2)dψ(X) = 0.

This implies that dψ(X) = 0, that is, ψ is constant since n > 2 and leads to the following:

Theorem 3.2. In a (HGPQS)n manifold, the scalar function ψ is always constant.
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Consequently, one can easily bring out the following:

Theorem 3.3. In a (HGPQS)n manifold, (divQ)(X,Y )Z and (divR)(X,Y )Z are equivalent.

In view of (1.1), (1.2) and Theorem 3.2 we have

(∇XR)(Y,U, V,W ) (3.6)

= 2A1(X)Q(Y,U, V,W ) +A1(Y )Q(X,U, V,W )

+A1(U)Q(Y,X, V,W ) +A1(V )Q(Y,U,X,W )

+A1(W )Q(Y, U, V,X) + 2A2(X)(g ∧ S)(Y, U, V,W )

+A2(Y )(g ∧ S)(X,U, V,W ) +A2(U)(g ∧ S)(Y,X, V,W )

+A2(V )(g ∧ S)(Y,U,X,W ) +A2(W )(g ∧ S)(Y,U, V,X)

which yields

(∇XS)(U, V ) (3.7)

= [F1(X) + F2(X)]S(U, V ) + F2(U)S(X,V ) + F2(V )S(U,X)

+[F3(X) + F4(X)]g(U, V ) + F4(U)g(X,V ) + F4(V )g(U,X)

+A1(Q(X,U)V )−A1(Q(V,X)U)

after contraction over Y and W , where

F1(X) = A1(X) + (n+ 1)A2(X),

F2(X) = A1(X) + (n− 3)A2(X),

F3(X) = rA2(X)− ψA1(X) + 3A2(LX),

F4(X) = rA2(X)− ψA1(X)−A2(LX),

where L is the Ricci operator defined by g(LX, Y ) = S(X,Y ).

Definition 3.4. An n-dimensional semi-Riemannian manifold is called almost generalized pseudo

Ricci symmetric if the non-flat Ricci curvature tensor satisfies the equation

(∇XS)(U, V )

= [A(X) +B(X)]S(U, V ) +A(U)S(X,V ) +A(V )S(U,X)

+[C(X) +D(X)]g(U, V ) + C(U)g(X,V ) + C(V )g(U,X),

where A,B,C and D are non-zero 1-forms whose g-dual vector fields will be denoted by γ1, γ2, δ1

and δ2, i.e. A(X) = g(X, γ1), B(X) = g(X, γ2), C(X) = g(X, δ1) and D(X) = g(X, δ2).

Thus we can state the following:
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Theorem 3.5. A (HGPQS)n manifold (n > 2) under the assumption A1(Q(X,U)V )

= A1(Q(V,X)U) is necessarily almost generalized pseudo Ricci symmetric.

Making use of (2.3) in (3.7), we get

(∇XZ)(U, V ) (3.8)

= [F1(X) + F2(X)]Z(U, V ) + F2(U)Z(X,V ) + F2(V )Z(U,X)

+[F3(X) + ψF1(X) + F4(X) + ψF2(X)]g(U, V )

+[F4(U) + ψF2(U)]g(X,V ) + [F4(V ) + ψF2(V )]g(U,X),

where Z = S − ψg is the tensor considered in ([4], [6], [7]). This leads to the following:

Theorem 3.6. A (HGPQS)n manifold (n > 2) under the assumption A1(Q(X,U)V )

= A1(Q(V,X)U) is necessarily almost generalized pseudo Z-symmetric.

4 (HGPQS)n manifolds (n > 2) with divQ = 0

Let (Mn, g) be a semi-Riemannian manifold of dimension n and let {ei} be an orthonormal basis

of the tangent space TpM at any point p ∈M and εi = ±1. Then the divergence of a vector field

U is defined as

divU =

n∑
i=1

εig(∇eiU, ei),

and the divergence of a tensor field of type (1, 3), which is a tensor field of type (0, 3), is defined as

(divK)(X,Y )Z =

n∑
i=1

εig((∇eiK)(X,Y )Z, ei).

Now

(divQ)(Y,U)V =

n∑
i=1

εig((∇eiQ)(Y,U)V, ei)

=

n∑
i=1

εi[2A1(ei)Q(Y,U, V, ei) +A1(Y )Q(ei, U, V, ei)

+A1(U)Q(Y, ei, V, ei) +A1(V )Q(Y,U, ei, ei)

+A1(ei)Q(Y,U, V, ei) + 2A2(ei)(g ∧ S)(Y,U, V, ei)

+A2(Y )(g ∧ S)(ei, U, V, ei) +A2(U)(g ∧ S)(Y, ei, V, ei)

+A2(V )(g ∧ S)(Y, U, ei, ei) +A2(ei)(g ∧ S)(Y,U, V, ei)]
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= 3A1(Q(Y,U)V ) +A1(Y )[S(U, V )− ψg(U, V )]

−A1(U)[S(Y, V )− ψg(Y, V )] + 3A2(Y )S(U, V )

+3A2(LY )g(U, V )− 3A2(LU)g(Y, V )− 3A2(U)S(Y, V )

+A2(Y )[(n− 2)S(U, V ) + rg(U, V )]

−A2(U)[(n− 2)S(Y, V ) + rg(Y, V )]

= 3A1(Q(Y,U)V ) + S(U, V )[A1(Y ) + (n+ 1)A2(Y )]

−S(Y, V )[A1(U) + (n+ 1)A2(U)]

+g(U, V )[3A2(LY ) + rA2(Y )− ψA1(Y )]

−g(Y, V )[3A2(LU) + rA2(U)− ψA1(U)]

= 3A1(Q(Y, U)V ) + T1(Y )S(U, V )− T1(U)S(Y, V )

+T2(Y )g(U, V )− T2(U)g(Y, V ),

hence

(divQ)(Y, U)V = 3A1(Q(Y, U)V ) + T1(Y )S(U, V )− T1(U)S(Y, V ) (4.1)

+T2(Y )g(U, V )− T2(U)g(Y, V ),

where

T1(Y ) = A1(Y ) + (n+ 1)A2(Y ) =: g(Y, %), for % = θ1 + (n+ 1)θ2,

T2(Y ) = 3A2(LY ) + rA2(Y )− ψA1(Y ) =: g(Y, σ), for σ = 3Lθ2 + rθ2 − ψθ1.

Assuming (divQ)(Y, U)V = 0 and A1(Q(Y, U)V ) = 0, we get from the above equation

T1(Y )S(U, V ) + T2(Y )g(U, V ) = T1(U)S(Y, V ) + T2(U)g(Y, V ). (4.2)

Now contracting (4.2) over U and V we get

S(Y, %) = rT1(Y ) + (n− 1)T2(Y ). (4.3)

Again putting V = % in (4.2) we get

(n− 2)[T1(Y )T2(U)− T1(U)T2(Y )] = 0, (4.4)

which under the assumption n > 2 implies T1(Y )T2(U) = T1(U)T2(Y ).

Now putting U = % in (4.2) and using (4.3) and (4.4) we get

T1(%)S(Y, V ) + T2(%)g(Y, V ) = T1(Y )[rT1(V ) + nT2(V )] (4.5)

and we can state:
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Theorem 4.1. A divergence-free (HGPQS)n manifold (n > 2) under the assumption

A1(Q(Y,U)V ) = 0 is a perfect fluid spacetime with unit timelike vector field %, provided the associ-

ated vector fields % and σ corresponding to the 1-forms T1 and T2 are related by (r− 1)%+nσ = 0.

In this case, (4.5) becomes

S(Y, V ) = ag(Y, V )− T1(Y )T1(V ), (4.6)

where a =: T2(%).

Again, (divQ)(Y,U)V = 0 gives

(∇Y S)(U, V )− (∇US)(Y, V ) = 0. (4.7)

Now using (4.6) in (4.7) we find

da(Y )g(U, V )− da(U)g(Y, V ) (4.8)

−[T1(V )(∇Y T1)(U) + T1(U)(∇Y T1)(V )]

+[T1(V )(∇UT1)(Y ) + T1(Y )(∇UT1)(V )] = 0.

Taking a frame field and contracting Y and V we get

(n− 1)da(U) + [T1(U)(δT1) + (∇%T1)(U)] = 0, (4.9)

where

δT1 =

n∑
i=1

εi(∇eiT1)(ei).

Setting V = Y = % in (4.8) we find

(∇%T1)(U) = −da(U)− da(%)T1(U). (4.10)

Substituting (4.10) in (4.9) we get

(n− 2)da(U) + T1(U)(δT1)− da(%)T1(U) = 0 (4.11)

which yields

δT1 = (n− 1)da(%) (4.12)

for U = %.

Using (4.12) in (4.11) we obtain

da(U) = −T1(U)da(%), (4.13)

provided n > 2.
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Putting V = % in (4.8) and using (4.13) we get

(∇Y T1)(U)− (∇UT1)(Y ) = 0.

This means that the 1-form T1 is closed, that is,

dT1(Y,U) = 0.

Hence

g(∇U%, Y ) = g(∇Y %, U) for all U, Y, (4.14)

which yields

g(∇%%, Y ) = g(∇Y %, %), (4.15)

for U = %. Since g(∇Y %, %) = 0, from (4.15) it follows that g(∇%%, Y ) = 0 for all Y . Hence

∇%% = 0. This implies that the integral curves of the vector field % are geodesics. Therefore we

can state the following:

Theorem 4.2. In a divergence-free (HGPQS)n manifold (n > 2) under the assumption

A1(Q(Y,U)V ) = 0, the integral curves of the unit timelike vector field % are geodesics, provided the

associated vector fields % and σ corresponding to the 1-forms T1 and T2 are related by

(r − 1)%+ nσ = 0.

Taking into account that the divergence of the conformal curvature tensor of a Riemannian

manifold (Mn, g) is ([3], [6]):

(divC)(X,Y )Z =
n− 3

n− 2
[(∇XS)(Y,Z)− (∇Y S)(X,Z)] (4.16)

=
n− 3

n− 2
(divQ)(X,Y )Z,

for any vector fields X,Y, Z on Mn, from the Lemma 2.1 of [2] we infer

Theorem 4.3. Let (M, g) be a (HGPQS)n perfect fluid spacetime (n > 2). If (divQ)(X,Y )Z = 0,

for any vector fields X,Y, Z on M , then the unit timelike vector field % is irrotational.

Also, in [2] was proved the following result:

Theorem 4.4. [2] Let (M, g) be a (HGPQS)n perfect fluid spacetime (n > 2). If (divQ)(X,Y )Z =

0, for any vector fields X,Y, Z on M , then (M, g) is a GRW spacetime whose fiber is Einstein.
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