
Decentralised Economic Resource Allocation
For Computational Grids

by

Simon Mark Davy

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

November 2008

The candidate confirms that the work submitted is his own and that the appropriate
credit has been given where reference has been made to the work of others.

This copy has been supplied with the understanding that it is copyright material
and that no quotation from the thesis may be published without proper

acknowledgement.

Abstract
Grid computing is the concept of harnessing the power of many computational re-

sources in a transparent manner. It is currently an active research area, with significant
challenges due to the scale and level of heterogeneity involved. One of the key challenges
in implementing grid systems is resource allocation. Currently, centralised approaches are
employed that have limited scalability and reliability, which is a key factor in achieving a
usable grid system.

The field of economics is the study of allocating scarce resources using economic
mechanisms. Such systems can be highly scalable, robust and adaptive and as such are a
potential solution to the grid allocation problem. There is also a natural fit of the economic
allocation metaphor to grid systems, given the diversity of autonomy of grid resources.

We propose that an economic system is a suitable mechanism for grid resource allo-
cation. We propose a simple market mechanism to explore this idea. Our system is a
fully decentralised economic allocation scheme, which aims to achieve a high degree of
scalability and reliability, and easily allows resources to retain their autonomy.

We implement a simulation of a grid system to analyse this system, and explore its
performance and scalability, with a comparison to existing systems. We use a network
to facilitate communication between participating agents, and we pay particular attention
to the topology of the network between participating agents, examining the effects of
different topologies on the performance of the system.

i

Acknowledgements
I’d like to thank my supervisors Karim Djemame and Jason Noble for all their time,

effort and knowledge. I’d like to thank the Biosystems Research Group at the School of
Computing for much insightful discussion and enjoyable comradeship. For supporting
me through the process of completing this thesis, I’d like to thank my wonderful wife.

ii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Computational Grids . 1
1.1.2 Economic Resource Allocation 2
1.1.3 An Economic Grid . 3

1.2 Objectives . 4
1.3 Investigation Methodology . 4
1.4 Thesis Contribution . 4
1.5 Thesis Overview . 5

2 Resource Allocation on Grid Systems 6
2.1 The Grid Concept . 6
2.2 History of Grid Research . 8

2.2.1 Early Work . 8
2.2.2 The Open Grid Forum . 9

2.3 Grid Challenges . 9
2.4 Grid Applications . 11

2.4.1 Types of Application . 11
2.4.2 Types of Grid Systems . 12

2.5 Architecture . 13
2.5.1 Grid Fabric Layer . 13

2.5.1.1 Computational Resources 14
2.5.1.2 Storage Resources . 15
2.5.1.3 Network Resources 15

2.5.2 Grid Connectivity Layer . 15
2.5.3 Grid Resource Layer . 15
2.5.4 Grid Collective Layer . 16
2.5.5 Grid Application Layer . 16

iii

2.5.6 Gird Architecture Summary . 16
2.6 Resource Discovery and Allocation . 16

2.6.1 Resource Discovery . 17
2.6.2 Resource Selection/Allocation 17
2.6.3 Limitations of Centralised Approaches 18

2.7 Summary . 19

3 Economics and Market Based Control 20
3.1 Economics . 21

3.1.1 Supply, Demand, and Market Equilibrium 21
3.1.2 Market Traders . 22
3.1.3 Market Rules and Auctions . 23

3.1.3.1 English Auction . 23
3.1.3.2 Dutch Auction . 24
3.1.3.3 Sealed-bid Auction 24
3.1.3.4 Second Price Sealed Bid Auction 24
3.1.3.5 Double Auctions . 25
3.1.3.6 Other Auction Mechanisms 26

3.1.4 Computational Economics . 26
3.1.5 Summary . 27
3.1.6 Terminology . 27

3.2 Computational Economic Traders . 29
3.2.1 Modelling Human Traders: The Trading Agent Competition . . . 29
3.2.2 Simple Computational Traders 30

3.2.2.1 ZIP Traders . 31
3.2.2.2 Decentralised ZIP Traders 33
3.2.2.3 GD Traders . 33
3.2.2.4 Simple Agent Comparison 35

3.3 Market Based Control . 36
3.3.1 Early Pre-Grid Work . 36

3.3.1.1 Agoric Open Systems 36
3.3.1.2 Enterprise . 36
3.3.1.3 Spawn . 37
3.3.1.4 Other Pre-Grid Systems 37

3.3.2 Grid MBC Systems . 38
3.3.2.1 Nimrod/G . 38

iv

3.3.2.2 Bellagio . 39
3.3.2.3 Tycoon . 39
3.3.2.4 The SE3D Competition 40
3.3.2.5 Hewlett Packard’s Utility Data Centre 41
3.3.2.6 CATNETS . 43

3.3.3 Summary . 44
3.4 Network Theory . 46

3.4.1 Motivation: Modelling the Marketplace 46
3.4.2 Network Characteristics . 47

3.4.2.1 Statistical Analysis 47
3.4.3 Types of Network . 48

3.4.3.1 Random Networks . 48
3.4.3.2 Regular Networks . 48
3.4.3.3 Small World Networks 48
3.4.3.4 Scale Free Networks 49
3.4.3.5 Social Networks . 49

3.4.4 A Grid Marketplace . 50
3.5 Summary . 50

4 Methodology 51
4.1 Overview . 51
4.2 The Grid Model . 52

4.2.1 Resources and Jobs . 52
4.2.2 Grid Sites . 54
4.2.3 Other Abstractions and Assumptions 55

4.3 The Market Model . 55
4.3.1 Commodities - What Are We Trading? 55
4.3.2 Trader Rationale . 55
4.3.3 Buyers and Sellers . 56
4.3.4 Auction Rules . 56

4.4 Economic Communication Model . 57
4.4.1 Trader Relationships . 58
4.4.2 Network Topology . 58

4.5 Model Evaluation . 60
4.5.1 Metrics . 60
4.5.2 Comparison . 61

v

4.6 Preliminary Investigation . 62
4.7 Implementation Details . 62

4.7.1 Approximating Reality . 62
4.7.2 System Load . 62
4.7.3 Supply and Demand . 63
4.7.4 Decentralised Trading . 64

4.7.4.1 Acceptance Protocol 66
4.7.4.2 Observing Success/Failure 67

4.7.5 Technical Details . 67
4.8 Summary . 68

5 Performance Results 69
5.1 Overview . 69
5.2 Sealed-Bid Auction . 70

5.2.1 A Decentralised Sealed Bid Auction 70
5.2.1.1 The Sealed Bid Auction Protocol 70

5.2.2 Basic Performance . 72
5.2.3 Grid Allocation Efficiency . 75

5.2.3.1 Job Size . 77
5.2.4 Limit Price . 80

5.2.4.1 Node degree . 82
5.2.5 Economic Performance . 83
5.2.6 Scalability . 87
5.2.7 Summary . 90

5.3 CDA Auction . 91
5.3.1 CDA Implementation . 91
5.3.2 ZIP implementation . 92
5.3.3 CDA with ZIC Traders . 93
5.3.4 CDA with ZIPD Traders . 96
5.3.5 CDA Summary . 98

5.4 Network Topologies . 99
5.4.1 Implementation Details . 99
5.4.2 Performance . 100

5.4.2.1 Small World Networks 100
5.4.2.2 Scale Free Networks 103
5.4.2.3 Social Networks . 106

vi

5.4.3 Networks Summary . 109
5.5 Summary . 109

6 Evaluation 110
6.1 Overview . 110
6.2 A Centralised Grid Allocation Mechanism 111

6.2.1 Performance Characteristics . 112
6.3 Comparison of Systems . 115
6.4 Market Adaption . 116
6.5 Evaluation Summary . 119

7 Conclusions and Further Work 121
7.1 Conclusions . 121

7.1.1 Objectives . 121
7.2 Thesis Contribution . 121
7.3 Further Work . 122

7.3.1 A More Accurate Model of the Grid 122
7.3.2 Grid Infrastructure and Network Topology 123
7.3.3 Auction Mechanisms . 124
7.3.4 Trader Strategy . 125
7.3.5 Further Economic Evaluation 126

Bibliography 127

vii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Computational Grids

The area of “grid computing”, or more recently “cloud computing” is an ongoing research
area looking at computing resource provision. It denotes a concept of computers as a
utility, where computational resource can be provided as-and-when needed transparently
to large and diverse numbers of users. It is similar in concept to other utilities, such as
water or electricity, indeed the grid name owes in part to its similarity in concept to the
National Grid. An ideal grid system would allow users to utilise massive computational
resources as easily and as transparently as we plug something into a power socket at home
and turn it on.

While allowing different people to share computing resources is nothing new, the grid
takes the concept to a new level in several ways. Firstly, the sheer scale is much larger.
Previously, a few hundred machines, or at the most a few thousand, have been harnessed
together in some sort of grid-like system. The grid concept takes these numbers into the
tens of thousand, or even millions. Secondly, and more importantly, it relies on the sharing
of multiple resources owned and administered by different organisations or individuals.
In previous resource sharing systems, the resources are all owned by a single entity. Grid
computing, however, aims to allow many resource-owners to participate in sharing their
resources together in a single unified manner. This is the ultimate aim of grid computing,

1

Chapter 1 2 Introduction

and presents some major research challenges. Arguably the most significant of these
challenges, and the one with the fewest practical solutions, is resource allocation.

In a grid environment, a resource is some computational facility which users wish
to utilise for their applications and programs. The challenges of deciding which users
run which applications on whose resources are significant, especially in the face of huge
numbers of resources and different administrative domains. Additionally, to achieve the
full potential of grid computing, resource allocation needs to be done in a fast, automatic,
robust and scalable manner.

The current dominant approach is to have a central point that maintains the state of
all resources on the grid, and provides ways of selecting suitable resources to use. This is
the historical approach to allocating computing resources, as most computational systems
are centralised in nature. However, this method is not particularly scalable or robust,
at least in current implementations, especially when you start to scale to thousands of
resources. Current resource allocations systems do not deliver the necessary resource
allocation capabilities necessary to realise the grid concept.

1.1.2 Economic Resource Allocation

The problem of allocating scarce resources is one that has been ever-present in human
history. A resource is scarce if there is not enough supply of that resource to meet the
corresponding demand for at a price of 0. The raw method used by nature for allocat-
ing such resources is through competition and survival. Humans have developed more
sophisticated systems for facilitating this allocation, which is the subject of economics.

Economics provides a system for allocating scarce resources between different parties
using understood mechanisms to swap (trade) one resource for another, usually money in
exchange for some other resource. Many varying and complex economic systems have
arisen over the centuries of human history to facilitate the exchange of scarce goods,
and in recent centuries, these system have been much examined in their function and
performance. Economic systems are recognised to be adaptive to change, highly scalable
and robust to the failure of individual components. They have evolved to provide highly
efficient methods of resource distribution at a large scale.

The property of economic systems that gives rise to these factors is that they are
generally decentralised at the base level, except in extreme cases (such as governmen-
tal regulation). Whilst many existing economic systems utilise a central mechanism for
efficiency, base economic systems developed from individuals acting independent of any
central imperative. This decentralisation is present in two distinct ways. Firstly, individ-

Chapter 1 3 Introduction

ual participants in an economic system, that is, the traders themselves, are self-interested.
The system simply provides them with an incentive to trade. There is no mandated co-
operation, other than conforming to the common trading protocol, each individual agent
is its own master, and utilises its own resources to participate in the trading. Secondly, no
single trader has a complete picture of the whole system. Traders have knowledge of their
own specific needs or resources, which are generally known only to themselves, although
other traders may have some indication of the resources or needs of other traders in a more
general sense. Additionally, traders usually only participate in a subset of all the trade in-
teractions occurring in a given economic system, and thus have only a limited knowledge
of others’ trades. Yet despite these limitations, the interactions of many traders give rise
to a global system behaviour that has the useful properties or adaptivity, scalability and
robustness. These are also important properties of a grid environment.

1.1.3 An Economic Grid

There is a clear parallel between the needs of a resource allocation mechanism for grid
systems and the economic resource allocation paradigm. The grid is envisioned as a large
system, so any allocation mechanisms used must be highly scalable. Because of the large
size, the number of individual components that fail in such a system will also be large, so
a suitable mechanism must also be robust to these failures.

The economic paradigm is also well suited to the problem of multiple autonomous
domains, as each resource can act as a self-interested agent in an intuitive manner. Each
autonomous domain will have specific knowledge of its own needs and resources, and
along with an inferred knowledge of other traders situations, can effectively reason on
suitable trade prices.

A potential additional benefit of using an economic system for allocation is that it is
also a revenue generating business model for the grid. This is an active research area in
itself, but an economic system could combine the two. In theory, an economic system
could be used for allocation and a different system for the business model. However, for
an economic model to work, the currency used in trade prices would need to have real-
world value or be limited in some other manner, or else the trader’s resources would in
effect be unlimited.

An economic allocation system would be very different from most of the current ap-
proaches to grid resource allocation, and represents an orthogonal approach compared
to the current methods. If such a system could be implemented, it could provide the
necessary transparency and scalability needed to implement a working grid system that

Chapter 1 4 Introduction

embodies the aims of the grid concept.

1.2 Objectives

This thesis explores the potential for a fully decentralised economic resource allocation
scheme for a computational grid. Whilst economic allocation schemes for computational
resources and grid systems have been developed previously, they are all centralised in
nature, thus losing the potential scalability benefits of using such systems.

We also look to apply the work on simple trading agents in the literature to au-
tonomous grid trading agents, something that has not been done in other economic grid
allocation systems, where novel systems have been used.

We also apply network theory to our economic model. In most computational eco-
nomic systems, communication between traders is assumed to be either all-to-all or ran-
dom in nature. We look at different topologies for communication between traders.

1.3 Investigation Methodology

In order to investigate the range of situations desired, and to have full control over the en-
vironment, we use simulation to explore our economic approach for grid allocation. Real
world grid systems are difficult to gain access to, as well as not being of sufficient size to
investigate scalability, and would require elevated privileges to allow the implementation
of a resource broker.

1.4 Thesis Contribution

The contributions of this thesis are as follows.

• We provide a detailed description of existing economic allocation mechanisms, and
examine their suitability for use in a grid environment.

• We propose and investigate a novel decentralised economic allocation mechanism
for grid allocation, and show that it is both feasible and has the desired scalability
characteristics that economic systems can provide.

• We examine the effect of topological features on the network used by our de-
centralised mechanism, including a novel method of generating socially inspired
topologies, and show that certain topologies have potential benefits.

Chapter 1 5 Introduction

• We compare our decentralised economic system with the current approach to grid
allocation, and show that our system performs better at larger network sizes.

1.5 Thesis Overview

In Chapter 2 we review the literature from the field of grid computing, including the
history and motivation of the grid concept, as well as a critique of the current solutions to
resource allocation.

In Chapter 3, we review basic economic theory and examine previous work in mod-
elling economic systems computationally, as well as existing work applying economics
principles to computational resource management. We also take a brief look at the field
of statistical network theory, summarising a variety of network types and their properties.

Chapter 4 outlines our proposed investigation, including a basic model of a grid sys-
tem, and presents a simple economic model for market system and trader rationale.

In Chapter 5 we present the experimental details and initial findings based on the
proposed solution in the previous chapter.

In Chapter 6 we compare our system with the current centralised approaches to allo-
cation, and examine its ability to adapt to dynamic markets a variety of conditions.

The final chapter, Chapter 7, concludes the study, summarising the thesis contribution
and suggests areas for future work.

Chapter 2

Resource Allocation on Grid Systems

2.1 The Grid Concept

Since the invention of the computer, there has been steadily increasing demand for more
computational performance and resources. Initially this was met by the development of
faster machines and more efficient software. The continued demand for more perfor-
mance led to the use of many faster machines in parallel, and now we have massively
parallel clusters of commodity hardware, with a recent move towards multiple processors
on a single chip. And while the average desktop computer today has sufficient perfor-
mance to handle the demand of a typical user, there are still many users that require more
computational power. A current example of this is the Large Hadron Collider project [96]
at CERN which has recently come on-line, and is expected to produce over 15 Peta-bytes
of data per year [17]. The sheer quantity of data that will be generated is beyond both the
storage and computational resources of any one institution.

To meet these needs, organisations often build large high performance computing
(HPC) systems, which are capable of much higher computational performance. How-
ever, the cost of these HPC resources is significant. They are increasingly in demand, but
the hardware is expensive to buy, maintain and run. Initial hardware costs can be millions
of pounds, and the recurring costs, such as power, cooling, repairs, parts, and floor space
can add up to a non-negligible monthly sum. And the larger the resource, the more skilled
staff are needed to keep it running smoothing, adding significant salary costs. This means

6

Chapter 2 7 Resource Allocation on Grid Systems

that only those with sufficient resources (i.e. large companies or institutions) can feasibly
make use of HPC resources.

These high costs lead to organisations looking to utilise their existing infrastructure as
much as possible. Many make use of the spare computation available on idle resources,
such as utilising staff desktops overnight. This also has an administration overhead, but
can be more cost-effective than a purpose built HPC resource.

If computational resources were able to be utilised, and made available to users as a
utility service, the demand for performance could be better met. For users of computa-
tional resource, it would allow them to pay a marginal cost for the use of those resources,
and the owners of the resource would recoup the investment and operation costs, including
deprecation costs.

On one hand, it would lower the barrier of entry for everyone, allowing modestly
resourced organisations to access previously unavailable computing power. On the other,
it would allow multiple HPC resources to be used simultaneously, which would allow for
very large problems to be tackled, that otherwise would be computationally infeasible. It
would also allow new kinds of services to be built upon previously unavailable on-demand
access to HPC resources.

Also, it would help mitigate the costs of providing the resources, as they could po-
tentially gain a better return on their investment and increased resource utilisation. Office
machines could be made available overnight, providing a large pool of cheap computa-
tional power.

This is the idea behind the grid, providing high levels of computational resources as a
utility for many. It has also been called Utility Computing or Autonomic Computing, but
they are synonymous terms. Recently, the term Cloud Computing has come into popular
usage, and indicates the use of some of these grid technologies to provide a specific type
of general computational resource.

The idea of a grid is a relatively recent concept, even in the fast moving world of
computer technology. It draws its inspiration from previous ’grids’ that have developed,
such as transport, telecommunication and power grids. These ’grids’ supply affordable,
scalable and powerful resources to the whole of modern day society. The resource ‘the
grid’ will supply is mainly computational power, but also storage, network and specific
application resources.

There will be other uses that are currently beyond our conception and vision. Gov-
ernments, corporations, academic institutions and organisations will all be able to make
productive use of grid technology. These capabilities elevate the grid to an important
research area, and it has received much attention over the last decade.

Chapter 2 8 Resource Allocation on Grid Systems

2.2 History of Grid Research

The term “The Grid” was first introduced in a book by Foster and Kesselman [52], which
defined a grid as “a hardware and software infrastructure that provides dependable, con-
sistent, pervasive, and inexpensive access to high-end computational capabilities”. Foster
and Kesselman’s book was quickly followed by Foster’s Anatomy Of The Grid [54], which
further defined the grid concept in more detail.

However, there had been much work prior to this by various groups working on vari-
ous utility computing projects, and the grid concept had emerged out of all these projects.

2.2.1 Early Work

An early effort towards grid systems was Condor [8], based at the University of Wis-
consin. It was designed to make use of idle workstations to run independent jobs. If a
workstation ceased to be idle, the job would be ’frozen’ and migrated to another machine
to continue. It was the earliest example of a fault-tolerant allocation algorithm (see Sec-
tion 2.6), and made use of the ClassAd [98] system for matching jobs to resources. It was
modernised to some degree with current grid concepts as Condor/G [55], but is not under
active development anymore.

Legion [18] was started in 1993, and based on an Object Oriented view of the grid
system. It presented the grid as a giant virtual machine to the user with which to execute
jobs. Originally based at the University of Virginia, it was commercialised via Avaki
Corporation as a complete grid infrastructure, and has had some success, being bought
out by database providers Sybase.

The Unicore [101] project started in 1997 and was developed to provide access to
HPC resources all across Germany. Like Legion, it is a complete grid implementation in
JAVA, providing access through a single gateway, hiding much of the complexity from
the user.

The leading grid implementation is the Globus [91] project, a collaboration of many
organisations. It provides a toolkit to implement many of the low-level grid services,
such as security, but leaves a lot of room for development of higher level services and
applications. Originally released in 1998 [51], the Globus Toolkit [50] is now at Version
4 and counting, and has been adopted as the defacto standard grid implementation.

The key innovations demonstrated by these applications are that of use of multiple
disparate HPC facilities, with different architectures and locations, connected using cur-
rent networking technologies, as well as the automatic allocation of resources on these
machines. These were the early attempts at implementing grid systems.

Chapter 2 9 Resource Allocation on Grid Systems

2.2.2 The Open Grid Forum

The multiple grid-orientated projects around the world prompted the need for standards
and specifications for grid systems. The Global Grid Forum (GGF) [49] formed in 1999
to be a focal point for the emerging grid concepts and technologies, and a place for these
different groups to work together on defining and building grid systems. The project has
since re-branded itself as the Open Grid Forum (OGF).

One of the initial key proposals that came out of the OGF was the Open Grid Services
Architecture (OGSA) [53], and its underlying infrastructure, the Open Grid Services In-
frastructure (OGSI) [108]. This was an attempt to draw up an overall pattern for grid
development. However, it revealed that key interoperability technologies were needed in
order to implement grid systems.

In the web world the idea of Web Services (WS) [31] was gaining interest as an inter-
operability solution. Based on the Simple Object Access Protocol (SOAP [30]) protocol,
WS (in theory) allowed remote procedure call between any systems supporting the WS
standards.

The OGF decided to utilise the WS standards as the solution to their interoperability
challengers and in 2002 refactored the OGSA to use WS [32], and released as the Web
Service Resource Framework (WSRF) [33]. It defined the standard services a grid would
need to function, and the interfaces between them. Additionally, the basic WS standards
alone were not enough to implement the level of interaction needed for grid computing.
Particularly the lack of stateful resource access was a critical limitation. The OGF contin-
ues to work in partnership with the W3C [29] to add stateful Web Services which would
allow Web Services to be a standard way to implement the WSRF services need for a grid
system. All of the major grid middleware applications are working towards providing the
services described by OGSA via the WSRF standards.

2.3 Grid Challenges

The grid introduces a whole new level of diversity to the problem of HPC resource alloca-
tion. The level of heterogeneity in capacity, type, location, and ownership is much greater
than in previous systems.

In order for this to be used on a large scale, any grid system would have to provide
a service that was transparent, reliable, and affordable, like any other utility. A common
analogy for the concept is the UK’s National Power Grid. A user does not care which
power station their electricity comes from, or the technology of the generator, or which

Chapter 2 10 Resource Allocation on Grid Systems

overhead lines it travelled down, nor that it needs to be transformed before being supplied
to their house. They are simply concerned that it’s there when they plug in and switch
on. The generation and supply of the power is transparent to them. If they had to select
and negotiate all the above factors, or if the supply was erratic and unreliable, or overly
expensive, they may seek other sources of power.

An additional factor present in grid computing that our National Grid analogy does
not capture is that of security. As information is now the resource being supplied, a
grid system would need to ensure secure delivery and receipt of the workload and its
results, whatever they may be. Individuals, both users and suppliers, would need to be
authenticated and authorised, which in itself is no easy task.

The grid is effectively a new model of computing, and as such there are many chal-
lenges to overcome, in both understanding and implementation. Some of the challenges
include:

• Applications : Currently applications are designed mainly around single systems.
Many of the design methodologies, tools and environments are based on sequential
systems. While there has been much work done on parallel software, it remains a
specialist field. If grid enabled applications are going to be developed, then parallel
programming models, tools and environments are going to need greater develop-
ment.

• Systems : The level of distribution and communication on a grid would be much
more than current architectures handle, and the routers and load balancing systems
that control a grid will need to be able to handle this dramatically increased load.
Networking protocols and infrastructure will also need much development if they
are to be able to deliver the transparent access required.

• Algorithms : Problem solving algorithms that utilise the distributed nature of the
grid will need to be developed in order to make the most of the grid environment.

• Resources : Given the multitude and variety of tasks that will be run on a grid
system, resource handling is a key issue. The sort of resource management that
will need to be done is different in scale to the low-level management technologies
so far, and much work will need to be done in this area, particularly in large scale
co-allocation and reservation, due to the autonomy and scale of the grid.

• Security : With the orders of magnitude increase in data transmission that a grid
will bring, security is of even more importance than ever before, and is a significant

Chapter 2 11 Resource Allocation on Grid Systems

challenge. Given the diverse ownership of grid resources, this poses an even bigger
problem.

• End user systems : Both the hardware and software design and implementation of
end user systems will have to change in order to adapt them to be part of a grid.
Current designs are based on being a single entity, and much work needs to be done
in grid enabling these systems.

2.4 Grid Applications

A grid will enable many different types of application to run on top of it. It is these
applications that provide the useful information and services that are the reason for the
existence of the grid in the first place.

2.4.1 Types of Application

A brief synopsis of the various general types of applications that will be run on a grid
system, is given in [52]. It is summarised and illustrated here.

• Distributed super-computing - also known as Grand Challenge applications, these
solve very large or intensive problems that require either many processors (for
speed) and/or vast amounts of memory (for large problem sizes). Many of the
existing grid systems and their applications are based on solving these kinds of
problems.

• High throughput - utilising idle systems to increase the aggregate computation or
IO throughput of an existing application. For high computational throughput, an
example would be trivially parallelisable job like micro-processor chip verification
at idle engineers workstations. Other applications, like web servers and financial
trading servers, require large IO throughput, and struggle to deal with spikes in data
traffic.

• On demand - applications which dynamically allocate specific resources for a par-
ticular period upon request, for a specific purpose. Good examples are medical
procedures that can utilise real-time image processing through on demand alloca-
tion of computational resources.

• Data intensive - processing vast amounts of data and synthesising new information.
The processing of high energy physics experiment results requires petabytes of data

Chapter 2 12 Resource Allocation on Grid Systems

to be processed. Storing, transporting and managing these levels of data will require
new applications.

• Collaborative - applications that allow collaborative working between multiple dis-
tributed parties. This includes the virtual laboratory concept.

Some applications may be of more than one type, but these are the various uses of
grid systems that we can currently see. Again, others may emerge as the field matures.
An example of a real grid application is the DAME project [110], a collaboration between
Rolls Royce and the University of Leeds to build an online decision support system for
aircraft maintenance. Engine data recorded during flight is downloaded and sent to the
grid-based DAME application for analysis when the aircraft lands. This process uses
available grid computing resources to complete the analysis and report the results back
to the waiting engineers at the aircraft. The grid enables enough computing resource to
be available on demand that an analysis can take place in a short enough time for the
engineers to fix any potential problems before the aircraft is due to take off again. On
conventional resources, the results of the analysis would take too long to perform and the
aircraft will have taken off on its next flight before the results would be available.

2.4.2 Types of Grid Systems

The actual purpose and function of specific grid systems may vary widely depending on
their creators’ desires. One grid may not function the same way or for the same reason
as another. Krauter et al [69] classify potential grid systems into three main categories,
depending on function and purpose.

• Computational Grids - grid systems that have higher computational capacity for
a single application than any component machine. This will replace the current
stand alone super-computer idea, and allow extremely demanding applications to
be run in practical time scales and with much larger problem sizes than previously
possible.

• Data Grid - an infrastructure for storing, analysing and synthesising new informa-
tion from data repositories. Similar in nature to a computational grid, but its focus
is specifically on the storage and management of huge amounts of data.

• Service Grid - these are grid systems that provide computing services that are not
available from a single machine. It provides an ‘on demand’ service to the user,
such as interactive multimedia and collaborative conferencing.

Chapter 2 13 Resource Allocation on Grid Systems

All three categories of grid system will use the same underlying network and comput-
ing technologies, but the way in which resources are managed and allocated will be very
different, and the intended usage and user groups are also diverse. For computational and
data grids, it is unlikely that many end-user consumers will use their facilities directly.
Rather, a service grid will allow for large scale use in the consumer market, especially the
multimedia possibilities. It may be that other types of grid system emerge in the years
ahead - it is still a new and largely undeveloped area.

Another distinction in grid types is less technical and more social in origin. The grid
concept has largely been developed in academia, which is an open and public environ-
ment. The typical applications for HPC in academia are open and freely available any-
way, so data security in not a big concern. In industry, however, this is often not the case.
Companies can have large amounts of proprietary data that they wish to keep private,
and as they would not own the resource that would execute their application, would need
to be able to guarantee their data’s integrity. Any disgruntled local system administrator
could potentially spy on the applications execution. This leads to the possibility of “closed
grids”, or “virtual private grids” (similar to virtual private networks in networking), which
are hired wholesale (or in isolated sections) from a trusted provider.

2.5 Architecture

The architecture of a grid is decomposed into distinct layers, similar to the current net-
working protocols on which they are based. Figure 2.1 is taken from [54] and describes a
high level view of the current grid architecture.

We examine each of these layers in turn, starting from the bottom up. This grid ’layer’
model bears much similarity to the original OSI reference model [89] for the internet.

2.5.1 Grid Fabric Layer

The elements at this layer comprise of the actual resources of the grid system, as well as
the low-level interface to the resources themselves. Given their heterogeneous nature and
differing administration policies, this is not a simple task.

The available resources can be broken down into three main types of resource.

Chapter 2 14 Resource Allocation on Grid Systems

Figure 2.1: Grid architecture protocols with corresponding internet protocols (from Foster et al
[54])

2.5.1.1 Computational Resources

These are the actual computers that do the work. In [52] four basic system types are
suggested.

• End user systems : These are common computer devices, such as desktop machines
and appliances. They are designed as a single functional entity with hardware and
software working together in a homogeneous environment.

• Clusters : A cluster is a network of systems that is specifically designed to be used
as a single high powered computational resource. Like an end user system, clusters
are most often highly homogeneous and have a single controlling entity through
which resource requests are made. They have arisen as a more affordable, scalable
and possibly more powerful alternative to traditional integrated supercomputers.

• Intranets : These are large local networks belonging to a single organisation. They
are generally heterogeneous in nature, with a large variety of resources available.
Different parts of the system may be under different administration and there is less
global knowledge about the system than in either a cluster or end user system.

• Extranets : These are large networks spanning multiple organisations. These are
even more heterogeneous in nature than intranets, and have even less global knowl-

Chapter 2 15 Resource Allocation on Grid Systems

edge available. They often are much more geographically distributed also, increas-
ing latency and other communication issues.

These are the systems that a grid is composed from, whether dedicated to grid usage
or used when idle, and will provide the actual computational resource that the grid offers.

2.5.1.2 Storage Resources

These are dedicated storage machines for holding large amounts of data. This could be
simply large file-systems, or complex databases for querying or updating. They make the
data they manage available to other resources on the grid in a consistent manner. Given
the vast quantities of data that a super-computing application can produce (in the order of
GB/s), managing and sharing this data is a key objective of grid systems.

2.5.1.3 Network Resources

A network is made up of cabling and routers, but the resources it provides are measured
in bandwidth and latency. Given different grid applications needs, grid network resources
will need to be able to provide Quality of Service (QoS) as part of the grid networking in-
frastructure. It will be necessary to be able to reserve and allocate network resources such
as bandwidth or latency on a whole variety of different network structures and capacities.

2.5.2 Grid Connectivity Layer

This layer is responsible for all aspects of actual connection between grid components.
As well as the actual data and message transmission, it is responsible for the authentica-
tion of user and request, i.e. that they are allowed to use a particular resource. It is also
responsible for security of transmission and the integration with diverse security policies
and procedures on different resources. It must also track usage and keep account of re-
sources used for each application, for determining costs incurred. The development of
this layer is very much linked with the development of Internet technologies such as IPv6
and other QoS mechanisms.

2.5.3 Grid Resource Layer

This layer controls the reservation and allocation of a single resource, as well as taking
responsibility for the execution of jobs on that resource. It is unconcerned with anything
other than the resource management, and is unaware of the global state of the grid. It

Chapter 2 16 Resource Allocation on Grid Systems

provides information on the state, load, usage and free capacity of its own resources. It
also allows direct management of applications executing on its resources, such as process
creation, monitoring and reporting.

2.5.4 Grid Collective Layer

This is the layer that pulls all the resources together coherently. It allows access to and
maintenance of a grid wide information service that can provide the state of any resource
on the grid. This allows it to co-reserve and co-allocate resources across the whole grid.
It is concerned with the concurrent management of all the resources available to the grid.

2.5.5 Grid Application Layer

This is similar to the internet application layer at the highest level. These are the applica-
tions written by users to run on grid systems. They use the other grid layer protocols to
acquire and use the resources they need. An ‘application’ may actually be a grid ‘portal’
or entrance for another specific type of application.

2.5.6 Gird Architecture Summary

In this section we have detailed the high level architecture of grid systems. This work is
focused on the Collective layer, where the details of the resource allocation are worked
out. In the next section we look more closely at the resource allocation mechanisms that
function at this layer.

2.6 Resource Discovery and Allocation

Resource allocation of multiple resources is an established work in the HPC field. HPC is
not new, and many successful systems and technologies have been developed to manage
the usage of resources. Typically, a HPC resource has been a single multi-processor
parallel machine, or a cluster of many smaller machines. They are usually owned by a
single organisation, although there may be many different groups of users within the larger
body, and are usually based at a single location, rather than spread between several sites.
However, grid systems break some of the underlying assumptions, so new techniques are
needed.

Grid scheduling has seen much development recently, and we discuss current ap-
proaches below, but for a more in depth review see [82]. In current grid implementations,

Chapter 2 17 Resource Allocation on Grid Systems

resource allocation is broken down into two main steps, resource discovery, and resource
selection or allocation. Resource discovery is the process of knowing what resources are
available for use, as well as their current load and state, whereas resource allocation in
this sense means the actual determination of which resource to execute an application on.

2.6.1 Resource Discovery

The dominant resource discovery provider is the Globus Toolkit’s Monitoring and Discov-
ery Service Directory (MDS) [34] which has been developed since the projects inception,
and has undergone several major revisions as the OGF specifications have developed. It
supplies a grid directory service and a protocol for querying the service for information
about a resource or set of resources, in order to aid a user or application to select suitable
resources to use. The directory maintains itself by both allowing registered resources to
push information to the service and regularly pulling this information from the resources.
Entries in a directory have a limited lifespan and must be renewed periodically or be re-
moved from the directory. The design facilitates multiple directory servers that aggregate
resource information, as a resource could be registered on multiple independent directo-
ries. This is aimed at increasing scalability and robustness, which has been a limitation
and subject of investigation [64].

There is an inherent trade-off between the accuracy of information in a directory about
a resource’s state, and the number of resources registered. The more frequent the updating
of state to the directories, the more accurate the grid information will be, but the greater
the demand on the directory services. In a typical MDS deployment, of a few hundred
resources, a directory’s information is out of date by about 5 minutes. This is suited to
grid environments where the demand is relatively stable and jobs are long running.

MDS provides the infrastructure on which grid meta schedulers could allocate grid
resources, but does not implement any such algorithms itself. Often its left for specific
applications or users to make final decisions. It is not a complete allocation mechanism,
but provides an important service upon which to build such a mechanism.

2.6.2 Resource Selection/Allocation

Typical grid level allocation and scheduling query a directory service and perform some
kind of algorithm on the query results to select the resources to be used.

Many schedulers are design to schedule jobs on local resources under a single do-
main. Condor-G [55] is a dynamic on-demand scheduler for dedicated and idle resources.
Sun’s GridEngine [11] uses a sophisticated priority queueing system and supports ad-

Chapter 2 18 Resource Allocation on Grid Systems

vance reservations. The Portable Batch System (PBS) [62] is one of the oldest schedulers
around, but has been adapted to suit more modern environments. The most common
commercial system is the Load Sharing Facilitator (LSF) [92], which is widely deployed.
These system are often used to aggregate a group of heterogeneous resources to present a
single resource interface to a larger grid system.

The EZ-Grid project [19] and the Grid Resource Broker [2] gather grid information us-
ing a centralised publish/subscribe (pub/sub) model. This is designed to help users make
allocation decisions manually, but they do not actually schedule anything automatically.

There are actually very few functional grid-level schedulers. AppLeS (Application-
Level Scheduling) [9] can schedule jobs in highly heterogeneous and dynamic environ-
ment. The Maui scheduler [93] has good provision for advance reservation and QoS. The
Gridway project [95] provides a full scheduling system, with fault tolerance and job mi-
gration. It uses the Globus toolkit and focuses on interoperability between different local
schedulers.

Of particular relevance to this study is the Nimrod/G [14] project, which is based on an
economic paradigm. It is specifically designed for easily parallelisable parameter sweep
applications, and is built upon the Globus Toolkit. It allows users to negotiate prices and
completion deadlines, including advance reservations. See Section 3.3.2.1 for a more
detailed discussion.

2.6.3 Limitations of Centralised Approaches

The current approaches to resource allocation have been developed out of the traditional
HPC field, and have facilitated initial grid implementations. They are all centralised in
nature, as this is the most straight forward implementation. However, they face some
serious challenges as the size and use of grid systems continue to increase.

• Scalability. The chief challenge in building grid systems is size. Once a grid con-
sists of more than a few hundred machines, current grid systems struggle to cope.
If the full potential of grid systems is to be achieved, breakthroughs in improving
scalability are essential.

• Dynamism. Different grid usage demand levels mean different policies and usage
patterns. Current grid systems are not designed to adapt to high degrees of change
in demand (and conversely, supply). If resource state is changing more rapidly than
a centralised directory can keep up with, the accuracy of information is decreased,
leading to incorrect allocation decisions being made. This can lead to decreased

Chapter 2 19 Resource Allocation on Grid Systems

performance of both the allocation system and the grid resources themselves, as
more work is needed to successfully allocate jobs, and more load on the allocation
system, which can spiral downhill.

• Single Point of Failure. Whilst this has been addressed to some degree by systems
such as MDS, any centralised system, even if aggregated, is vulnerable if the central
mechanism fails in some way. If it fails completely, the system may be totally
unusable. If it’s performance starts to degrade, the whole system’s performance
suffers.

Whilst there is much investment and knowledge in such centralised systems, and much
work still to be done based on that paradigm, there are inherent limitations. Therefore it
is important to explore decentralised approaches as potential solutions to this problem, as
the limitations of centralised systems are the strengths of decentralised systems. And it is
specifically these limitations which grid computing is trying to overcome.

2.7 Summary

The grid concept has been the focus of much development in the last 15 years, and has
seen much progress. Much work has been done on existing technologies and their ap-
plication to the grid. Work has also been done in identifying the issues involved with
enabling a grid scale computing system.

However, while some of the challenges involved have been solved, others are still
open challenges, particularly resource allocation. If the grid concept, as envisioned and
stated by its proponents, is to become reality, large advances in the fields of networking
transmission speeds, network management, and parallel software development will also
be necessary.

However, the potential is clear, and recent “cloud” computing initiatives have drawn
it into the main stream. The possibilities that a functioning grid system could provide are
stimulating more investment in this area, and increase the need to solve some of these
fundamental problems.

Chapter 3

Economics and Market Based Control

20

Chapter 3 21 Economics and Market Based Control

3.1 Economics

Economics is the study of the allocation of scarce resources between competing alternate
uses. In a free economic market, allocation decision making is distributed amongst the
many interested parties, whether individuals and organisations, with no ultimate central
control (except in heavily centralised and regulated markets). It is driven by the availabil-
ity of a resource (supply) and the need for that resource (demand). In particular, we are
interested in microeconomics, the study of individual traders’ behaviour and interactions,
and their aggregated effects in a particular market.

We start with a summary of simple microeconomics principles. There is much pub-
lished work within the field of economics, and we focus specifically on decentralised
economic mechanisms. Most real-world and theoretical economic studies are based on
some centralised regulation mechanism, and as such are not directly relevant to our study.

The term market is used to describe the interactions of traders trading a particular
commodity or resource. The are many different types of markets, selling many different
products, but the basic principles of a market are well defined. Here we introduce some
key concepts about economic markets, and go on to look at three key components of a
market; the traders who act in the market, the rules of the market, and a market place in
which the interaction occurs. Much of this next section has been distilled from [86].

3.1.1 Supply, Demand, and Market Equilibrium

The basic model of equilibrating interactions supply and demand is well understood. A
larger supply of a resource than demand for it will lead to the price falling as sellers of
the resource compete with each other by offering lower prices to make a sale. Likewise,
a high demand relative to supply would lead to the price rising as buyers compete to meet
their demand. This is known as a competitive market equilibrium.

This key idea in microeconomics occurs when the price in a market for which the
quantities supplied and demanded of a resource at that price are equal, and thus all supply
of a resource is sold and all demand for that resource is met at that price. Any other price
would result in a surplus or shortfall of resource. In an efficient market, the aggregate
price of a transaction will tend to hover around this point over time. The buyer does not
want to spend any more than necessary to meet their demand, and sellers do not want
to waste their own resources to produce resource that is not needed. The further the
aggregate trade price is from the equilibrium price, the more inefficient the market.

Note that there is not always an equilibrium point. Factors governing the nature of
producing the resource, or other outside influences, can result in markets that have con-

Chapter 3 22 Economics and Market Based Control

stant shortfall or surplus of resource.
A particular market’s supply and demand do not remain constant, and therefore neither

does the equilibrium price. As they change, the market price will track the equilibrium
price, as this is in the interests of all traders individually. Thus a market can adapt to its
changing environment. This is one of the key properties which makes markets interesting
for this work.

The rate of change of demand and supply varies in different types of markets. Some
are slow and static with well understood supply and demand models, such as traditional
resources like stone and timber. Others are highly dynamic and volatile (e.g. stock). This
difference in dynamism leads to many different types of market. A less dynamic market
can use a longer process to agree on a trade price, for instance, while a highly dynamic
market needs to utilise a faster method. See Section 3.1.3 for more examples.

This concept of an “optimal” price for a particular supply/demand is key in evalu-
ating economic systems, particularly when a market is concerned with global allocative
efficiency, as is the case in Grid systems.

3.1.2 Market Traders

Traders are the individual agents that participate in a market, either buyer or seller. A
trader has a private valuation of the current market price, and participates in a market
process by offering a quote to another trader, or accepting a quote from another trader.

In real world markets, traders are people, who make decisions about trading according
to some internal rationale. It is this rationality which has been the focus of much study
and investigation. How does a trader decide what to bid? What information is available to
the trader to make the decision? How does the trader adapt to changes in demand/supply?

Economic traders generally have the following basic characteristics as agents.

• Self-interested: A trader is fundamentally selfish and interested in its own utility or
profit. While traders can cooperate, they do so only to their own advantage. No
rational trader will knowingly trade at a loss.

• Autonomous: A trader can make its own trading decisions, without the need for a
central authority. Often some sort of independent central authority is utilised, i.e.
an auctioneer, but it is not essential.

• Limited resources: A trader has basic limitations. They have a finite amount of
resource to sell, or money with which to purchase resource.

Chapter 3 23 Economics and Market Based Control

• Limited knowledge: The trader only has a limited view of the world, they are not
omniscient. This limited view is formed from two main sources; public information
that can be observed from the actions or communications of other traders, or is
provided by a central arbiter, and private information, such as their own resources
or valuation of a resource.

• A rationale

Traders have some way of using the information that they have to estimate the
market price and formulate a price to quote at, and, potentially, when to make a
quote. For human traders, this rationale can be complex, and difficult to model. See
section 3.2 for a discussion of this rationale.

It is these characteristics that lend the trader metaphor to the grid environment, as
there are many similarities between traders and resources and jobs. The main similarity
is in their self interest or autonomy, as this has been key challenge to traditional grid
mechanism, but it is a base characteristic of economic systems.

3.1.3 Market Rules and Auctions

Any market has a set of well understood rules or conventions by which to communicate
quotes between traders and agree on a price to trade at. These can be completely decen-
tralised, such as simple “flea market” bilateral bargaining, or utilise a central arbiter, often
computerised in modern markets.

Many forms have arisen over time that have varying characteristics as needed by a
particular situation or market. The main recognised auction types, and the way in which
they vary, are summarised below. Much of this review is based on [68].

In classical economics, the word “auction” is usually used to describe a specific set of
market rules that use a central arbiter. In this work we use it in a more general sense, to
mean any set of rules used to trade in market.

There are four ’classical’ auction types recognised in the literature, each involving a
single seller and multiple buyers, or vice-versa. These are usually single unit auctions
(i.e. a seller selling a non-divisible amount of resource, or a buyer buying a non-divisible
amount).

3.1.3.1 English Auction

An English auction (or ascending price auction) is one of the most commonly recognised
auction mechanisms. It is a public auction with a single seller selling a single resource

Chapter 3 24 Economics and Market Based Control

and multiple competing buyers. The buyers start quoting low and raise the quote until no
other buyer is willing to quote higher. The buyer with the highest quote wins the auction.
Often a central independent auctioneer is used to control the quote rises, although the
seller could act as the auctioneer.

It is commonly used for very scarce and unique resources such as works of art and
large houses. In other words, high demand and low supply.

In general, the dominant strategy for a trader in an English auction is to bid up to your
value, as the next to last bidder will hopefully drop out before then, leaving you with a
gain in utility (in the case of a buyer, savings).

3.1.3.2 Dutch Auction

A Dutch auction is similar to the English auction in that there is a single seller and multiple
buyers, but the quoting is reversed. The seller starts high and then repeatedly lowers the
quote until the first buyer accepts the price. It is very fast auction and is utilised in fresh
flower markets in Holland (from where it gets its name) where speed of trade is of the
essence. The dominant strategy for a Dutch auction is for the seller to start higher than
their price and for the buyer to wait until the price meets their price.

3.1.3.3 Sealed-bid Auction

In sealed-bid auctions the traders submit private quotes to a single opposing trader, (e.g.
a buyer with many sellers). The best quote (lowest if buying, highest if selling) wins the
auction. Government contracts commonly use this form. A variation of this is to make
the bidding iterative, with the best bid of each round being communicated to all parties
between quoting rounds. Strategically for the trader, this is the same as the Dutch auction,
a trader should bid below their true value in the hope of maximising profit if they win.

3.1.3.4 Second Price Sealed Bid Auction

This is identical to the sealed bid auction, and the best quote still wins, but at the price of
the next-best quote. It is strategically similar to an English auction, where the best price
is not actually quoted, the winner wins when they offer just slightly better than the best
price of the second best bidder. So the dominant trader strategy is to bid your true value.
However, this kind of auction requires an independent auctioneer, to enforce the second
price rule.

A second price sealed bid auction is a single unit specialisation of the general multi-
unit Vickery [111] auction. In this kind of auction, with n units for sale, the top n bids

Chapter 3 25 Economics and Market Based Control

win, but at the price for the highest failed bid, i.e. the n−1th best bid.

3.1.3.5 Double Auctions

A double or 2-sided auction is one where both buyers and sellers quote. The previous
auctions are ’single’ auctions in this sense, as only the buyer or seller quotes, not both. A
comprehensive review of the double auction is presented in [56].

Double auctions can be both very simple and highly complex. Simple bilateral bar-
gaining, where a single buyer and seller alternately raise or lower their quote until they
meet somewhere in the middle, has been around since civilisation began, as is still used
today in many kinds of markets.

Probably one of the most recognised forms of this auction is the continuous double
auction (CDA), where many buyers and sellers participate in quoting prices simultane-
ously.

The classic example of this is the open outcry auctions used by the stock exchange
trading pits. Such auctions occur in a shared common space, where a trader will shout out
his quote, while simultaneously listening to quotes from both other buyers and sellers. He
then adjusts his quote according to what he hears and his trading rationale, until his price
meets that of an opposing trader, or another trader’s shouted quote is acceptable, and a
trade is made. This has the advantage of being efficient in the sense of fast adaptation
to the market equilibrium, and is used in highly dynamic markets such as stocks and
commodities. A common stipulation, often called the New York Stock Exchange rule
after its origin, requires that a quote persists after being given, and subsequent quotes
must improve on that quote. The difference from the bilateral bargaining described above
in that it is a public many-to-many auction, i.e. many buyers and many sellers (or traders
who are both).

In the past, these types of auctions were often highly decentralised, with just aggre-
gated information being provided to the traders centrally. With the advent of computers,
many different kinds of CDA auctions have been implemented around the world. A com-
prehensive review of such systems can be found in [39].

One of the most common forms of computerised auction is a clearing house auction,
also know as call auctions, which is centralised variation of a CDA. In a call auction, all
traders submit their trade prices (asks and bids) to a central independent “order book”.
Periodically, the total perceived market supply and demand are then calculated, along
with the equilibrium price, and all traders simultaneously trade at this price. Additionally,
traders can review all current orders in the order book to aid decision making, as more
information is available to them. This is a fast and efficient market form that is common in

Chapter 3 26 Economics and Market Based Control

finance markets, but is completely centralised in nature, as the central order system must
be independent and trusted by all traders. Additionally, because it is used in specialised
markets, it has not been scaled to large numbers.

3.1.3.6 Other Auction Mechanisms

Retail auctions, or posted offer auctions, are the most common form of market mechanism
today, being used in most western consumer markets. The seller posts a price for particu-
lar good (e.g. bread) at a particular location (e.g. a supermarket). The buyer travels to the
posted price location, and either accepts the fixed price or rejects it. The seller adjusts the
posted price occasionally, in view with its perception of the market’s supply and demand.
This is used in high volume markets with low dynamics and is very scalable, although
not particularly fast in terms of adapting to change in the market supply/demand. A local
supermarket is a prime example of this type of “auction”.

3.1.4 Computational Economics

The basic equilibrium model described in section 3.1.1 above is tried and tested, and used
frequently in the study of market behaviour and dynamics. It lends itself to the mathe-
matical modelling of markets, where supply and demand functions can be specified and
the model’s equations solved to provide results. This has been the dominant form of mod-
elling markets in the field of economics. However, many of these mathematical models
have had to make assumptions about the market to retain mathematical tractability. For
instance, they may assume perfect rationality on the part of traders, or all to all com-
munication between traders. It often requires fixed supply/demand curves, and thus it is
difficult to analyse individual model agents’ adaption to changing market conditions. The
final state of the market can be examined, but not the dynamic state as a market ’finds’
equilibrium. This is very much a ’top-down’ model, attempting to capture the entire be-
haviour of a system in concrete manner.

The field of experimental economics represents a different approach to understanding
markets, and was established by Vernon Smith in 1962 [105]. He created a simple exper-
imental market, and used real human traders to explore market dynamics. This approach
allows individual trader behaviour to be examined, which the mathematical models do
not.

With the emergence of cheap and accessible computation now available to researchers,
experimental computational modelling has become increasingly popular in economics
during the last 20 years. Whereas the size and complexity of experiments in earlier work

Chapter 3 27 Economics and Market Based Control

was tied to human limitations, computational agents allow for many more options. Mar-
kets can actually be fully simulated and traced, and the behaviours of individual traders
defined and examined. This allows us to look at the above assumptions in great detail,
and study more complex questions that were not feasible with previous models. They can
provide more detail about the rich dynamics that can be present in economic systems.

This approach is a ’bottom-up’ model, as the individual agents give rise to system-
level behaviour. It allows us to observe details like robustness and individual traders
actions, and explore areas that were previously infeasible to examine.

3.1.5 Summary

Many different kinds of markets exist in the financial world. The dynamics of the supply
and demand can be very different. In this section, we have reviewed a variety of common
auction types, which vary in many ways:

• quotes can be private or public;

• quotes be communicated simultaneously or continuously;

• quotes can be given by the buyers, sellers or both;

• the number of quotes allowed can vary;

• the number of participants: one-to-one/one-to-many/many-to-many;

• the need for a central arbiter or not;

For our work, we will need auction mechanisms that can be decentralised, and are
suited to the Grid environment, as well as the usual desirable properties such as enabling
market efficiency due to accurate predication of the equilibrium price.

The individual rationales of the traders involved can be very different (e.g. the con-
sumer market for clothes versus the market for company stock). In the next section, we
look at understanding and modelling human trader rationality, and the work being done
to automate this.

3.1.6 Terminology

For the rest of this thesis, the following terms are defined as described below.

• quote: a price offered from one trader to another for an amount of resource.

Chapter 3 28 Economics and Market Based Control

• bid: a price offered by a buyer to a seller.

• ask or offer: a price offered by a seller to a buyer.

• transaction: a trade between two traders at an agreed on price.

• market price: the current aggregate price of a transaction.

• equilibrium price: the theoretical price where supply and demand meet and the
market is most efficient.

Chapter 3 29 Economics and Market Based Control

3.2 Computational Economic Traders

In the academic world, much effort has gone into modelling and artificially reproducing
individual trading behaviours and rationales, with some success. The industrial world
has also had increasing interest in automating trading, as results have shown that fast
automated traders can both increase individual utility as well as improve overall market
efficiency by small amounts. In this section we review this work, in particular the recent
work inspired on simple generalised traders.

3.2.1 Modelling Human Traders: The Trading Agent Competition

The main focus of academic effort in the area of artificially intelligent traders has been
around the Trading Agent Competition (TAC) [114]. Every year since 1999, an interna-
tional competition has been held to allow different artificial agents to compete in complex
market situations.

The original TAC market defines a multi-commodity travel market. Each agent must
buy flights, hotel accommodation and different event tickets as entertainment. Each agent
in the competition represents 8 customers, who all have different preferences for the vari-
ous commodities. Each commodity is sold as a separate type of centralised auction, with
different characteristics and market rules. Some auctions (for hotels) closed at specific
times during the game. In the entertainment market, the traders could both buy and sell
event tickets rather than just buy, as in other markets. A successful agent must maximise
its clients’ utility in terms of the clients preferences regarding travel dates, hotel quality
and entertainment value.

A successful agent in this market is SouthamptonTAC [60]. This agent utilised fuzzy
logic whose rules were based on whether related hotel markets were still open or had
closed recently, or a while ago. It also included an environment sensor which used histor-
ical data from previous games to detect the dynamics of the different markets, and classify
them as either competitive, semi-competitive, or non-competitive. This was used to decide
on which of three 3 different basic strategies based around risk-aversion, risk-neutrality
and risk-seeking to employ in bidding. A risk-seeking strategy was to buy flights first, and
fit everything else around that. A risk adverse strategy involved delaying hotel purchase
until flights and entertainments were closer to being acquired.

Another successful agent model was Walverine [20]. This agent takes a more analyt-
ical approach, and commits to buying flights early. It then uses a linear integer optimiser
to decide what price for a good to bid on to maximise a trip’s utility. The optimiser uses
predicted prices for the different markets based on the Walrasian competitive equilibrium

Chapter 3 30 Economics and Market Based Control

(the set of prices at which all markets would clear).
A new TAC market was introduced in 2003, based on supply chain management, and

called TAC-SCM [4]. It simulates a computer production supply chain, where a computer
is made up of a CPU, a motherboard, some Memory and a Disk. These different goods
are supplied by different suppliers with their own quantities and prices, and the agents
must manage the whole chain of components, orders, assembly in a factory, and shipping.

A successful agent by the same people in this market was SouthhamptonSCM [61],
which split the trading into three agents, a component agent to talk to the suppliers, a
customer agent for orders, and a factory agent to assemble and ship. Each agent had
a hand-coded custom trading strategy, and communicated via the factory agent, which
balanced the supply and demand coming from the other agents.

The paradigm for these agents is a ’top-down’ approach to artificial intelligence. That
is, they attempt to capture human thought patterns at a high level, and develop methods of
implementing similar strategies computationally. This means that the architecture of these
agents is often sophisticated and multi-layered, as human strategies are often complex and
intricate.

Additionally, these agents are designed for a specific market that is well defined and
very specific to a particular situation. They are also very complex markets to simulate and
implement in the first place.

Whilst it would be potentially feasible to implement similar algorithms in our ex-
ploratory work, the agents are complex to implement and would require refactoring to be
more general. Additionally, it would be difficult to extract the generalised trading ratio-
nales from the market specific strategies. We therefore look to a different approach for
trader rationale than the TAC-orientated algorithms.

3.2.2 Simple Computational Traders

A simpler model of trader rationale would be more useful in this investigation. Gode and
Sunder [58] developed such an agent and investigated the effect of rationality in market
performance. They formulated a Zero-Intelligence (ZI) trader model, where agents bid
randomly in a double auction market. They added the constraint that the traders’ random
bids must be within their limit prices (ZI Constrained, or ZIC). That is, a ZIC buyer’s bid
is uniformly random between its limit price and the market minimum, whilst a seller’s is
between its limit price and the market maximum. They found that even with no bidding
strategy, just these simple constraints, markets with ZIC traders still reached equilibrium.
They proposed that market structure was a partial substitute for trader rationality. This

Chapter 3 31 Economics and Market Based Control

model has been much investigated, and been used as a baseline market predictor [47]
amongst further investigations into areas such as general market efficiency [59], and in-
formation transmission [87].

3.2.2.1 ZIP Traders

In [26], Cliff analysed the ZI traders performance and demonstrated that in certain market
situations ZIC traders failed to find the equilibrium price. These were markets which flat
supply curves, which means the ZIC agents have no variance in their constraints, and thus
are unable to move towards an equilibrium. Cliff shows that the accurate equilibrium’s
reached by the original ZIC traders were artifacts of the original simulation supply and
demand curves. While these curves are not unrealistic, in real world markets they can
vary significantly.

Following on from this analysis, Cliff proposed and investigated an improved trading
algorithm, called Zero Intelligence Plus, or ZIP traders. A ZIP trader’s rationale is split
into two parts. Firstly when to adjust price (and in what direction), and secondly, how
much to adjust the price by.

The first part is formulated as follows. When a ZIP trader hears a quote, it will adjust
its price in the following three situations.

• When the quote was successful and the quote price is better than the traders current
price (i.e.. lower for a buyer, higher for a seller), it raises its profit margin (i.e.
lowers price for a buyer, raises it for a seller). The quote shows the possibility of
successfully trading at a better price.

• When the quote is successful with a worse price and is an opposite quote (i.e. ask
for buyer, bid for seller), the trader lowers its margins (i.e. raises price for buyer,
lowers price for seller). The quote indicates a successful trade that the trader would
not have won at its current price.

• When the quote is unsuccessful with a worse price, and is a competing quote (i.e.
bid for buyer, ask for seller), it lowers its margins. The quote indicates that a com-
petitor failed with a worse price, so we should adjust ours accordingly.

The second part, the question of how much, is provided by using a Widrow-Hoff delta
rule to adjust the price. The delta rule, commonly used in back-propagation in neural
networks, allows the price to descend the error curve in proportion to the degree of error.

∆u = (1− γ)β (q− t)+ γ∆ulast (3.1)

Chapter 3 32 Economics and Market Based Control

Each ZIP agent has a limit price λ and profit margin u. The margin is adjusted as
in equation 3.1, where β is the learning rate, γ is the momentum, q is the quote price,
t is the target price, and ∆ulast is the last calculated change to the margin. The target
price is calculated with a stochastic function t = (1±R)q±A) where R is a small relative
perturbation, A is a small absolute perturbation, q is the observed quote price, and both
R and A are randomly drawn from a uniform distribution. When the intention is to lower
the price, R and A are subtracted, whereas when the intention is to raise the price, R and
A are added. The price is then generated as p = λ (1+u) for sellers and p = λ (1−u) for
buyers, then constrained to the the agents’ limits if greater (buyer) or lesser (seller).

The purpose of this rule is to approach the perceived equilibrium price. If quote prices
are constant, it would asymptotically approach the constant price at the learning rate. The
momentum parameter is included to dampen oscillation as the perceived price changes
from quote to quote. The stochastic function provides a small amount of noise to improve
the adaption.

Using a small centralised auction Cliff found that ZIP traders out performed ZIC in
finding market equilibrium, and were also able to successfully find equilibrium in the
market environments in which ZIC traders were unsuccessful.

Cliff went on to further optimise this original ZIP algorithm using evolutionary opti-
misation [25], including developing a novel partially-double auction mechanism. Addi-
tional investigation was done on whether the results were depending on the synchronised
“trading days” used in the simulation [24], but ZIP continued to perform in a continuous
trading situation.

Further extensive work on optimising ZIP can be found in [48]. Here, the original
8 parameters were extended to 60 parameters for further evolutionary optimisation. The
base 8 parameters are the lower and upper bounds for γ , β and initial profit margin, and A

and R. Different sets of these 8 parameters were used for each of the 3 adjustment condi-
tions described above, separately for buyers and for sellers, giving 6 sets of 8 parameters.
Also, rather have A and R set system wide, they were drawn randomly for each set of
parameters from a bounded uniform distribution, providing six sets of 10 parameters. On
the whole, the elite ZIP60 agents out performed the elite ZIP8 agents from [25], although
not by significant amounts, and with more variance, and cast doubt on the earlier partial
double auction result. The initial ZIP60 optimisation work presented suggests that the
distinction of different sets or parameters for buying/seller has less impact than using dif-
ferent sets for raising/lowering market price, and a more sophisticated genetic encoding
to explore this is suggested for future work.

ZIP traders are an established trader rationale and have been used in variety of market

Chapter 3 33 Economics and Market Based Control

studies [72] [73] [35], as well as apparently being used to some degree in real markets,
although this work is understandably not published.

3.2.2.2 Decentralised ZIP Traders

All the experiments using ZIP have utilised a global centralised auction mechanism. Its
use in a decentralised auction is problematic, as there is no default method to know the
success or failure of a quote, which the ZIP algorithm depends upon. Particularly rele-
vant to this work, an exploratory method of using ZIP in a decentralised P2P setting is
presented in [37], which attempts to guess the likelihood of the success or failure of an
observed quote. It uses ZIP’s delta learning rule to track the observed ask prices and buys
prices separately. When a quote is observed, it is assumed that it will eventually trade
at a price halfway between its current price and the traders delta-observed price for the
opposite quote price. For a bid, this is half way between the bid’s price and the estimated
current ask price, and for an offer, this is half way between ask’s price and the estimated
current buy price. If the quote price is better than the current estimated price of the oppo-
site quotes, then a successful quote is observed at that price by a normal ZIP algorithm.
For a bid, if its price is greater than the currently estimated ask price, it is observed as a
success, else is is observed as having failed. Whereas for an ask, if its price is less than
the current estimated bid price, it is observed as succeeded, or else as having failed.

The simulation details presented are minimal, but indicate a single unit decentralised
CDA auction. The results showing only market efficiency losses, which overall were
worse than that of the centralised ZIP auction, which is to be expected given the decen-
tralisation. Efficiency was shown to improve with more traders, which implies an all to all
topology between traders, although this detail is not discussed. The efficiency was most
improved by increasing the number of quotes an agent sent, presumably by specifying
a minimum number before being allowed to accept. Results were also presented for an
asymmetric markets, with many more buyers than sellers. Here the efficiency dropped
considerably when there were more than twice the number of buyers than sellers. While
the simulation details are minimal and analysis of this result is lacking, the ideas are an
interesting development on the ZIP paradigm, and relevant to this work.

3.2.2.3 GD Traders

The Gjerstad-Dickhaut (GD) trader model was introduced in [57]. It defined a method of
using a recent history of market activity to calculate a bidding price. This history includes
the price, whether it was an ask or a bid, and whether it was successful or not.

Chapter 3 34 Economics and Market Based Control

In the GD model, a “belief” function f (p) is used to calculate the likelihood of a price
p being acceptable to any trader, based on this recent market history. For the seller it is
formulated as:

f (p) =
AAG(p)+BG(p)

AGG(p)+BG(p)+UAL(p)
(3.2)

where for the order in the history, AAG is the number of accepted asks above p, BG
is the number of bids above p, and UAL is the number of unaccepted asks below p.
Conversely, for the buyer:

f (p) =
ABL(p)+AL(p)

ABL(p)+AL(p)+UBG(p)
(3.3)

where ABL is the number of accepted bids below p, AL is the number of asks below
p, and UBG is the number of unaccepted bids above p.

For each price in the order history, this belief function is used to calculate a hard value
point, which indicates the likelihood of this price being acceptable in the current market
(as defined by the history). Other price’s belief values are then interpolated using a cubic-
spline based on the nearest hard values for prices above and below it, and clamped to
[0,1]. The price that maximises the likely utility, defined as (p)(p− l) for sellers and
(p)(l− p) for buyers, where l is the agent’s limit price, is chosen as the next ask or bid
price, respectively.

The GD model was modified in [107] (MGD) with three small modifications. Firstly,
the MGD agent remembers the highest and lowest successful trades in the previous trading
period, and uses them to limit the belief function above and below those values. That is,
the belief function values for prices below the minimum successful price are set to zero,
and those above the maximum to 1. Secondly, the values provided by the belief function
are clamped to [0,1] before the interpolation, rather than afterwards, as in the original.
Thirdly, for agents with multiple units, agents are allowed to bid using the least valued
unit.

These modification are designed to reduce the volatility of the GD algorithm in certain
situations (such as no rejected bids in the history) and to improve the agent’s surplus.

Tesauro further extended the GD model, along different lines to MGD, in [106], by
using dynamic programming techniques to optimise for longer term prediction (GDX),
which was show to slightly outperform both MGD and the original ZIP8 algorithm.

Chapter 3 35 Economics and Market Based Control

3.2.2.4 Simple Agent Comparison

A competition between different agents was presented in [107]. Agents were compared
against competing homogeneous populations of agents in a multi-unit CDA. The agents
included ZIC, ZIP, GD, MGD and Kaplan “sniper” agents [65]. Kaplan agents wait until
the last possible moment before submitting a bid, thus hoping to win the trade by slightly
under cutting the current best price. They do not adapt to market price, just undercut
the current quotes, even if they are far from equilibrium. The results presented showed
in general that GD, MGD and ZIP out-perform ZIC and Kaplan agents, and MGD was
slightly better than ZIP, and both were slightly better than GD.

A further investigation was carried out on heterogeneous populations of agents, in-
cluding ZIP, MGD and Kaplan agents. Interestingly, this experiment used an order book
CDA auction which required minor modifications to MGD and ZIP. It allowed agents to
switch tactics by observing another random agent, and switching to that agent’s strategy
if it would improve their surplus. The most likely strategy equilibrium in this initial CDA
auction was a mix of approximately 45% ZIP and 55% Kaplan agents. Although other
equilibria gave a higher market payoff (e.g. MGD 55%, ZIP 35%, Kaplan 10%), they
were less stable equilibria. They added an artificial improvement to the MGD agents,
which resulted in a swing in most likely equilibria being all MGD agents, if the MGD
could achieve 5% more utility.

In [35], a comparison between artificial agents (ZIP/GD) and human traders in a sim-
ulated computerised market is presented. The ZIP algorithm was slightly modified, but is
essence the same. It was however the unoptimised version for the original study, rather
than the optimised one released later. Both the ZIP and GD out-performed the human
agents in this simple market, by a similar amount, suggesting the simple automated traders
such as ZIP and GD could be used advantageously in the real world.

Chapter 3 36 Economics and Market Based Control

3.3 Market Based Control

Market Based Control is the field of Artificial Intelligence that uses economic principles
to design intelligent systems, of for the purposes of resource allocation. Early efforts in
this approach were collected in a work entitled “The Ecology of Computation”, edited by
Bernado Huberman [63] in 1988. The collection included early efforts at applying market
ideas and principles to distributed computer system design. Since then, the ideas have
continued to be developed, with a lot of recent effort focusing on allocating resources on
Grid-like systems.

3.3.1 Early Pre-Grid Work

3.3.1.1 Agoric Open Systems

Under the moniker “Agoric Open Systems” [79], Drexler and Miller presented a simulated
MBC system [40] that used a rental model to share a single machine’s processor and
storage resources. It utilised a centralised, sealed-bid, second price auction mechanism
on a single machine. It included a bidding method of escalating bid prices over time to
ensure a degree of fairness, and to provide opportunities to change a process’s current
bid. The design was specific to a single machine, dealing with garbage collection and
pointer management, a much lower level model of computation than the grid. It was an
exploratory study on the potential for economics systems,

3.3.1.2 Enterprise

The Enterprise mechanism [77] was an early job allocation system that utilised a decen-
tralised, first-price, seller quotes, single-round, sealed-bid auction. The price metric was
user-estimated job completion time, and it included a cancellation/reneging protocol. It
was optimised toward system level mean job flow rate, or throughput, as opposed to fair-
ness, and there was no actual currency involved

It utilised an all-to-all communication network over a local network, which scaled well
up to 90 machines. However, such a system would eventually hit a limit of communica-
tion overheads for its all-to-all connections, especially if some machines were located
non-local networks with increased communication costs, particularly for broadcasting
communication. This limited the potential scalability of the approach.

Additionally, using a user supplied completion time as a price metric encouraged users
to be dishonest in their estimates in order to get quicker scheduling, and while they address

Chapter 3 37 Economics and Market Based Control

this somewhat with a penalty mechanism, it would be a problem in applying their solution
to the grid.

3.3.1.3 Spawn

Similar to to the Enterprise project, Waldspurger et al developed Spawn, a distributed
computational economic allocation system [112]. The resources are a network of het-
erogeneous machines, and the Jobs are modelled as easily parallelisable Monte-Carlo
simulations.

It utilised a sophisticated sponsorship hierarchy for allocating complex jobs across
multiple resources. A root agent, controlled by a human, instantiates bidding agents on a
variety of resources with different rates of funding supplied. A static global knowledge
of resources is assumed. A single-round sealed-bid second-price auction was used on
each resource to allocate a 60 second slice of execution time, and the winner could extend
their time by continuing to pay the auction price if needed. The root agent could then
manually adjust the funding rate to its spawned agents to used the cheapest resources,
if so desired. Various topologies of connected resources were used, including small all-
to-all topologies, up to 64 machines in a regular ring network, although they discuss the
possibility of scaling using a random network.

Tycoon (see section 3.3.2.3) is the effective successor to this system and is examined
in more detail below.

3.3.1.4 Other Pre-Grid Systems

A collection of pre-grid MBC systems was presented in [22], that built upon the work
reviewed above a variety of early systems. Examples include a system for trading hot
and cold air in a building’s air-conditioning system [23], scheduling of jobs in a factory
production line [6] and allocation of bandwidth in ATM networks [80]. A critical review
of these systems is presented in [27], which points out that all the system presented either
used a centralised auction mechanism that required a global view of the market, and in
some cases have no real auction mechanism at all.

Additionally for this work, the markets are all specific to particular problems, which
are not grid-like. In every case the auction was under the control of a single administrative
domain, unlike a potential grid market.

More modern, grid-orientated systems have developed in recent years, and we exam-
ine these in the next section.

Chapter 3 38 Economics and Market Based Control

3.3.2 Grid MBC Systems

The idea of an economic model for grid computing is not new. A review of distributed
economic systems is presented in [12], outlines the various potential auction mechanisms
for a grid market place, similar to those outlined here, and provides an overview of some
distributed economic allocation systems. Most of these systems are designed for a spe-
cific purpose, and require administrative control over the resources, and as such are not
applicable to a grid system. The Grid Economics and Business Models conference [3] is
the focus of much of the activity in the Grid community in this area. However, most of
the work is directed at the business model for the grid, as opposed to utilising economic
principles for actual allocation, although some systems have been developed along these
lines, and are discussed below.

In the more general MBC literature, a recent review [66] of current grid MBC sys-
tems shows much progress, and a collaborative effort is underway in the UK to build an
economic grid system [41] on top of existing Grid systems.

3.3.2.1 Nimrod/G

One of the earliest Grid focus MBC systems is Nimrod/G [14] [1]. It allows users to de-
fine a maximum cost and execution deadline, and resources define a base cost. The sched-
uler uses the centralised Globus MDS to discover potential resources and their associated
costs, and uses a cost-deadline optimisation algorithm [13] to select suitable resources.
The cost and estimated completion time for these resources is passed back to the user,
who can then adjust their cost or deadline amounts if desired, or accept the allocation and
dispatch the job. The resource prices are set manually by resource owners based upon
their own perception of market demand. It does support advanced reservation in this way.

Nimrod/G thus acts as an economic facilitator with humans as the traders, and effec-
tively a posted price/retail auction mechanism. This has the potential to scale well, as
retail auctions do, but will be less effective in more dynamic markets, where faster adap-
tation to changing supply/demand is required. Additionally, the trader strategy relies on
human interaction, and therefore is not automatic, and is not as performant or as scal-
able as utilising computational agents to automate the bidding process. It is also based
around a centralised resource discovery mechanism (Globus’ MDS), which further limits
its scalability.

Chapter 3 39 Economics and Market Based Control

3.3.2.2 Bellagio

The Bellagio [5] system uses a distributed peer-to-peer search mechanism to locate a
set of resources matching a user’s criteria. This mechanism is the SWORD [88] service
deployed on the PlanetLab Grid system. Bellagio uses SWORD to populate a list of
suitable resources on demand.

The bidding mechanism uses a centralised combinatorial auction mechanism called
SHARE [21]. This uses threshold rule, similar to a Vickery auction, that provides an
incentive for honest bidding, and calculates a reasonable estimate for allocation, given the
optional allocation is NP complete.

Human users construct bids with a bidding language called XOR [10]. It is capable
of handling bids for multiple resources, and short-term advance allocations (less than 1
week). The timescale for allocation is quite long, with the SHARE auction clearing every
hour, and taking several minutes to perform the combinatorial calculations.

Bellagio is particularly focused on multiple resources. Buyers can use the XOR lan-
guage to bid for slices of CPU time, memory, disk space and bandwidth.

It is based a round a slow, centralised combinatorial auction mechanism, which limits
both scalability and dynamic adaption to market conditions, and such would not be use-
ful in an on-demand market. Additionally, it requires human participation to manually
construct complex bids, further limiting is ability to adapt compared to automatic trading
agents.

3.3.2.3 Tycoon

A real world economic allocation system called Tycoon has been implemented by HP
Labs [75] [67] [74] [102]. Tycoon separates the bidding into two layers, a top-level strate-
gic bidding level which expresses the high-level preferences of the buyer, and a lower level
per-resource auction mechanism which takes the supplied preferences and allocates actual
resources. In many ways it is similar to the seminal Spawn system (see section 3.3.1.3).

The strategic top layer decides on which resources to utilise, using a Parent Agent.
This Parent agent is customised per-application, including a budget, deadline and number
of resources required. It also includes a description of the performance requirements of
the application (e.g. a low latency web server, or a high-throughput simulation).

It uses a simple centralised service discovery service that is updated every 30 sec-
onds with resource utilisation information. The update also includes the key needed to
communicate with that resource directly.

The Parent Agent queries the central discovery service with its requirements, and

Chapter 3 40 Economics and Market Based Control

receives a list of potential resources. It then weights these potential resources according to
its supplied preferences for performance, and selects the number of resources it requires
that have the best weights. A Child Agent is instantiated on each selected resource, to
participate in the lower level mechanism. It is supplied with an initial amount of funding,
plus an indication of the expected interval ei at which more funding will be granted by the
Parent Agent.

The lower level mechanism consists of a modified proportional share auction on each
single resource, call Auction Share. Each Child Agent specifies a bid amount bi at their
budget and CPU time amount qi. Agents of high-throughput jobs would set qi = ei, as
their priority is to get as much CPU times possible,w whenever. Agents of a job needing
low-latency would set qi < ei, holding some in reserve to win more CPU time when
needed. Every 10ms, the auctioneer calculates the winning bid as the best of bi

qi
, and that

Agent’s application runs until it has run for qi or a better bid is submitted. The Child
Agent is then charged in proportion to the amount of time they actually executed for.

This allows the Parent Agent to fund Child Agents differently over the life-time of the
application. If a resource becomes cheaper, the Agent can fund that Child Agent more (or
less if the resource is expensive), thus increasing the Parent Agents utility. A particularly
expensive resource can be dropped in favour of finding a new one.

The Tycoon system is in production, and performs reasonably well with moderate
numbers of machines. The authors estimate scaling potential of up to 75K machines and
2500 Parent Agents, which seem over-optimistic, given that the central service would
have to handle over 1.5 million connections per second.

Also, the bidding strategy is still very manual, there is little automatic adaption to
market price, or any computational agent rationality. The onus is on the user to produce
a customised Parent Agent implementation for their application, and is not generic or
automatic.

Additionally, the system still relies on a centralised service to some degree. While the
action allocation is decentralised, it still has the weaknesses of a single point of failure
and lack of scalability.

3.3.2.4 The SE3D Competition

In 2005 HP Labs ran an experimental computational market for selling compute time
for rendering 3D animations called SE3D [71]. Specialised rendering resources were
provided to a variety of client production companies via an MBC based allocation system.
Given that all the resources were owned by a single entity (HP Labs), a centralised system
was used. Results from a simulation based on SE3D are reported in [15].

Chapter 3 41 Economics and Market Based Control

There are two different auction mechanisms used. The first was a simple proportional
share auction, where agents would be awarded resources based on their bid’s share of all
the bids. As resource was consumed, it was deducted from the agents budget. An agent’s
bid for this auction was calculated from a polynomial equation based on the current time
t and the deadline d, parametrised with 6 constant parameters c1,. . . ,c6, as shown in equa-
tion 3.4, where Ba is agent a’s remaining budget.

ba/Ba = (ca
1/d + ca

2 + ca
3d + ca

4d2)× (1+ ca
5t + ca

6t2) (3.4)

The second auction was a generalised Vickery auction (see section 3.1.3.4) where
users submit a multi-unit bid of a price for each desired quantity of resources. The re-
source allocation is then calculated as the allocation that would maximise the sum of
maximum prices, thus providing the highest global gained utility. The agent strategy used
equation 3.4 to control 3 parameters, the total bid bmax, the maximum quantity of units
Nmax and a risk factor r.

The above strategies were optimised via a genetic algorithm, and the generalised Vick-
ery mechanism in general performed worse than the proportional share mechanism.

While an interesting real world experiment, this approach has limited application for
grid-like systems. Each agent is identical, under one domain’s control, and they do not
adapt to market conditions, simply using a function based on only their own internal
information. Additionally, both auction mechanisms used are centralised, and the actual
auction mechanisms used do not scale well in terms of computational performance.

3.3.2.5 Hewlett Packard’s Utility Data Centre

HP Labs developed systems based on grid ideas under the name Utility Data Centres
(UDC). These were essentially large sheds which housed many high-density, multi-processor
machines, with the goal being 50,000 processors in a single centre. HP Labs explored a
number of market-based approaches to allocation resources, including a centralised com-
binatorial optimisation auction [16].

Of particular relevance to this work is the simulation of decentralised ZIP agent ap-
proach in 2002 [100]. This work repeated the previous work on evolving ZIP trading
agents (see Section 3.2.2.1), and then used ZIP agents to allocate resources on a simu-
lated UDC. The UDC was modelled as a ring of processing nodes with a certain task
capacity, and both a ZIP buyer and ZIP seller. Each node is connected to its nearest n

neighbours, typically 5 (a regular network, see Section 3.4.3). A task arrives at a node
along with a ZIP buyer, and the node gives an auction “call” to its neighbouring nodes.

Chapter 3 42 Economics and Market Based Control

If any of the neighbours wish to participate, they indicate this to the original node. Once
all neighbours have responded, an identical auction to the original ZIP work is then held
at the original node, using the pool of sellers who responded positively at the task’s ZIP
buyer.

In order to spread the load across the network, nodes can “task-shift” a currently run-
ning task away to another node. In this case, when a node is full and receives a new auction
call, it can initiate its own auction process (with its own ZIP buyer) to unload one of its
tasks to free up resource for the new task. This new auction process must complete be-
fore the node can send back its participation response to the original node’s auction. This
means that these task-shifting auctions can cascade across the entire network, spreading
the load out, but also delaying the completion of the original auction considerably.

Three different task-shifting policies where examined; no task-shifting, always task-
shift, and randomly task-shift on one node when all neighbours for an auction are full.
When tested again drip-feeding tasks into single node, a no task-shifting policy limited
the exposure to that node’s neighbours, as expected. An always task-shift policy spread
the load more evenly, but led to longer allocation times due to the cascading auctions,
which decreased overall utility. The random task-shift policy spread the load, but not as
well as the always task-shift policy in this case. However, when applied to a more general
case of tasks arriving at random nodes as opposed to drip feeding into a single node, the
random task-shift policy was shown to out-perform the always task-shift policy in both
the “spread” of tasks and in overall utility, due to its lesser disruption of running tasks.

While an interesting experiment, the simulation had some simplifications and limi-
tations. Given that the target model was based on the singly-owned UDC, some of the
mechanisms used would only be feasible in a singly administered non-grid environment.
For example, the most successful task-shifting policy of random task-shifting only works
when the original node has the authority and ability to choose and enforce the node to be
task shifted. It is difficult to see how this would work in a grid environment, where each
node may be separately owned and self-interested. A real economic grid nodes would
need to base the decision to task-shift on a more complex cost/benefit analysis of the cost
of task-shifting against the benefit of performing this new task. Given the more compet-
itive environment, a node may not have the time to complete any sub-auctions in time to
compete in the original auction, and thus may have to risk bidding on the original task
(add possibly winning) without having yet secured new resources for its current task.

The simulation was based on a continuous time-step model, similar to the original ZIP
work. This is easier to implement and enables unaltered use of the original ZIP market
simulation model, but has many simplifying assumptions. For example, in a real world

Chapter 3 43 Economics and Market Based Control

implementation, the timing of arrival of quote messages may have an affect on the auction
process outcome. A model with a more realistic communication model would be needed
for further experimentation.

The model also relies wholly on task-switching for distribution of jobs, and given
the challenges associated with a method of self-interested grid-based task-switching (as
outlined above), this makes task-shifting alone a limited method of distributing tasks.

3.3.2.6 CATNETS

The CATNETS system [43] [45] [44] [46] explores a decentralised economic mechanism
with similarities to this work.

It uses the BRITE [109] topology generator to generate an overlay network of nodes,
although they fail to specify what topologies were chosen or why.

It uses two separate markets, one for Applications buying Services, and one for Ser-
vices buying Resources. A Complex Service Agent (CSA) is a buyer for Services and a
Basic Service Agent (BSA) is a seller for Services and a buyer for Resources. The pur-
pose of splitting the system into two distinct markets is a design simplification, justified
by the fact that resources and services (composed of resources) are separate commodities.
They expect Services to vary widely, but for Resources to be fairly standardised. This
allows for the possibility of using separate market/trading mechanism for each market,
which may prove more efficient overall.

The CATNETS system uses a hybrid auction approach. It combines the resource
discovery phase with initial bidding using a private, single round, best price, seller quotes
auction, as follows. A CSA at a given node advertises need for a Basic Service (BS) to
all other nodes within 2 network hops. BSAs at these nodes respond with an initial quote.
After a 500ms timeout the CSA selects the best quote from the BSA, and begins further
bilateral negotiation between the CSA and the BSA until an agreement is reached, or not.
If not, then the next best quoting BSA from the initial auction is selected, etc.

This second negotiation protocol is a bargaining protocol, with buyer and seller alter-
nating offers until accepted or abandoned. It is based on the AVALANCHE [90] protocol.
Each agent has a limit price, with initial estimations of current market price set at a ran-
dom point within their valid range.

The decision of whether to accept, reject or counter offer is controlled by 5 parameters.

• priceNext : the target price for this negotiation, based on an improvement of the last
negotiation price.

Chapter 3 44 Economics and Market Based Control

• priceStep : the fraction of the initial starting price difference that concession prices
are set at, defined at the beginning of each negotiation. For example, if the sellers
starting price was 100, and the buyers 50, and the priceStep was 0.2, buyer conces-
sion prices would be 90 initially, then 80, 70, etc. The sellers would be 60, then 70,
80, etc.

• weightMemory : a weight ratio of current to historical pricing information.

• satisfaction : the chance that an agent will counter offer if the last offer’s price is
above its estimated market value, or abandon the negotiation.

• acquisitiveness : the probability an agent will not make a counter offer. For exam-
ple, a agent with acquisitiveness 1 will never adjust its price, but with 0 will always
counter offer at the next concession price.

These parameters are tuned at run time using the STDEA [104] evolutionary learning
algorithm to facilitate adaption to market conditions.

In the simulation results presented in [46], a Complex Service only needed a single
instance of a Basic Service, which only need a single instance of a Resource, and each
Service had a constant execution time of one second. A fixed number (1000) of complex
jobs were allocated per simulation run.

The results showed poor convergence on equilibrium for large numbers of traders,
as the demand was not kept in proportion with the number of traders. This left traders
starved of information with which to estimate market price.

The homogeneous nature of the Service and Resource quantities meant that the Re-
source market was essentially identical to the Service market, somewhat removing the
need for having separate markets in the first place.

The trader rationale is also limited, as it relies on a wholly stochastic approach to de-
cision making. Market adaption was provided via evolutionary algorithm, which suggests
it would not adapt quickly to highly dynamic markets. Overall, while the only other work
to aim for a fully decentralised approach, it falls short in its design, in both experiment
methodology (failing to increase trades for larger markets) and design (arbitrarily split
markets for no real gain).

3.3.3 Summary

A common factor to most of the systems discussed in this section is that they are cen-
tralised in nature, requiring a central auctioneer process. This centralisation loses some of

Chapter 3 45 Economics and Market Based Control

the potential benefits of an economic system and imposes severe limitations on scalabil-
ity, which is key for any grid-sized market. Many operate within a single administrative
domain, unlike the grid environment, which has multiple competing domains.

Additionally, the type of auction mechanism used is more often than not some vari-
ation of a call auction which requires a global market view and thus cannot be decen-
tralised, as well as potentially being very computationally intensive. Many are also specif-
ically designed for particular applications and specific markets, and would be difficult to
abstract to a general grid type market.

This tendency towards centralised markets is understandable, as they generally pro-
vide a global market view and are thus more efficient, as well as being easier to implement.

In terms of trading rationale, all the above systems use simple static models cus-
tomised to their specific market situations and implementations. There is no use of mod-
ern trading agent rationality.

Of the four systems that implement decentralised auctions, two (Enterprise and Spawn)
rely on an all-to-all communication, which limits scalability, as well as both not being
actively investigated any longer. The third (Tycoon), uses a central service, with decen-
tralised auctions. This approach does potentially provide a greater degree of scalability
and adaption, but still has centralised dependencies and constraint. The fourth, CAT-
NETS, is the most promising in terms of decentralisation. It uses a overly network for
decentralisation, and a distributed hybrid auction, consisting of an initial sealed bid auc-
tion followed by a bilateral bargaining auction. However, the simple custom model of
trader rationality is limited and would not adapt well in dynamic markets. The results
reported so far are unconvincing as to its performance, especially the scalability of the
system.

There are no current systems that provide a fully decentralised economic system, or
that utilise work from the adaptive trading agent area. Additionally, none of the above
systems consider any topologies other than all-to-all or random. This is not the case in
real world markets, and in the next section we review some of recent work in statistical
network analysis of different topologies, to aid in understanding the various properties of
different topologies, and how they might apply in an economic setting.

Chapter 3 46 Economics and Market Based Control

3.4 Network Theory

Recent years have seen much development in statistical network theory. This field pro-
vides tools to categorise, create and analyse large networks and their topologies and be-
haviour. We provide a brief overview of some types of network topologies, and the tech-
niques that can be used to analyse them.

3.4.1 Motivation: Modelling the Marketplace

A marketplace is traditionally a location at which traders meet to trade. Many factors
have contributed over time to the formation of marketplaces. For example, social factors
like language and culture, or geographical factors such as presence or absence of natural
resources and ease of travel and transportation, can affect the trading relationships in
a market. Technology has played a pivotal role in this area, and the 20th century saw
sweeping changes in the way in which marketplaces develop. The advent of the internet
has impacted markets hugely, as now there are few geographical limits on potential trading
partners and opportunities.

Whereas before markets needed to have central physical locations to facilitate com-
munication between traders, modern communication technology allows for potentially
anybody to trade with anyone else. This has the effect of decentralising marketplaces in
terms of geography to some degree. However, the same technologies have also resulted
in a centralisation of many markets also, as they allow many more traders to efficiently
participate. While physical location has become less important, the higher efficiencies
provided by centralised mechanisms mean many markets are centralised to around spe-
cific market areas, such as commodities or stock, where the number of traders is relatively
small.

One aspect of marketplaces that has not changed is the fact that trading is still a human
activity (for the moment). This implies trading relationships that are based on underly-
ing social interactions between people. The network of interactions between real world
human traders is therefore a social network.

In this section, we examine various networks including social networks in order to
develop a suitable virtual marketplace for allocation on grid systems. We look at recent
development in network theory, particularly statistical analysis of networks. We also look
at different types of network, particularly social networks, which form the basis of real
world market places. We are particularly interested in whether or not the properties of
social networks make for more efficient marketplaces. For reference see [84] for a full
review of network theory, from which much of this section has been distilled.

Chapter 3 47 Economics and Market Based Control

3.4.2 Network Characteristics

A network is simply a set of nodes (vertices) connected by some number of links (edges).
The London tube map is an excellent example of a network, with each station being a
node and each section of tube line being an link. The possible connection topologies for
even a small number of nodes is very large. Note that we are only interested in undirected
graphs (where a link goes both ways), so we exclude discussion of directed graphs.

3.4.2.1 Statistical Analysis

Large networks are complex to analyse. Beyond a few hundred nodes, simple visual-
isation techniques are generally unhelpful for analysis. Network theory uses statistical
analysis of large networks in order to properly understand their structure and behaviour.
Fist we define some key statistical properties that can be used to describe a topologies
characteristics. We then look at some typical real world topologies and describe them
using these statistics.

• Mean degree: The degree of a node is the number of edges it has, and the mean
node degree gives a measure of a network’s density (proportion of actual edges
over possible edges).

• Degree distribution: the distribution of node degrees can vary. For example, a small
number of nodes could have a very high degree, with the majority of nodes having
very low degrees. A simple measure of this can be to calculate the skewness of
degree distribution. A positive skew would indicate the majority of nodes have
low degrees, with a fewer having higher degrees, while a negative skew indicates a
larger number of nodes with a higher degree than lower.

• Degree Correlation: also called the assortivity coefficient [83]. This is a measure
of correlation between linked node’s degrees. That is, a high correlation means that
nodes usually have links to other nodes that have a similar degree (the network is
assortatively mixed). A low correlation means that nodes usually link to nodes of a
much different degree (the network is disassortively mixed).

• Average Path Length: this is mean of all the shortest paths between every pair of
nodes in the network.

• Transitivity: also called the clustering coefficient, transitivity represents the prob-
ability a node’s linked nodes are also linked, forming a triangle of links between

Chapter 3 48 Economics and Market Based Control

three nodes. Its is measured as the achieved proportion of the maximum possible
number of triangles in the network.

3.4.3 Types of Network

Many types of network have been categorised. We review a selection of real-world topolo-
gies that occur in large real-world networks

3.4.3.1 Random Networks

The classic basic random network is Erdös and Rényi’s random graph [42] . This is
defined by the probability p that any two nodes are connected. These networks typically
have a small average path length, low transitivity and a degree correlation of 0. These
types of networks are generated by iterating through all possibly edges in the graph, and
using a uniform random variate compared with p to deciding if those two nodes are linked.
These types of networks have been much studied, and are used on P2P systems today.
They are useful as a base with which to compare other network topologies.

3.4.3.2 Regular Networks

A regular network has a uniform structure of links for each node. For example, a two
dimensional lattice where each node has a link to its north, south, east, and west neigh-
bours. Another common regular network structure is a ring, where the nodes are placed
in a ring and each node is connected to a number of nodes along either side of the ring.
They are simple to visualise and understand. They often have high average path lengths,
transitivity and degree correlation. A key concept in regular network is that of locality -
where you are in relation to other nodes.

Generation of regular network requires an underlying model of n-dimensional space
in which the nodes are located. For a ring structure, this is a one dimensional position,
whereas a lattice is a 2D space, and many other models are possible. Once a measure
of locality is defined, edges are created between local nodes, depending on the regular
structure the network is a based on.

3.4.3.3 Small World Networks

First formalised in [113], small world networks are observed in many different real world
situations. Its presence in social networks gives rise to its name, the “small world” effect,

Chapter 3 49 Economics and Market Based Control

the idea any two people can be linked one to the other via a short number of other people
(edges).

Typical generation of such topologies is based on a regularly connected network, such
as a grid or ring, and randomly rewiring some proportion of links across the whole ring.
This maintains the high transitivity of the original regular network, while significantly
lowering the average path length, with only a small proportion of rewired global links.

3.4.3.4 Scale Free Networks

Scale free networks were defined by Barabási and Albert [7] as a network whose degree
distribution follows a power law (which implies a positive skew). In the regular lattice
network described above, for example, each node has a degree of 4, and the degree distri-
bution is therefore uniform. However, in many real world networks, the degree distribu-
tion is not uniform, and often follows a power law. Examples include inter website links
on the world wide web, links between internet routers and protein interaction networks.

Scale free networks exhibit similar characteristics as small world networks, such as
high transitivity and low average path length, with the additional property of negative
degree correlation. There are few nodes with high degrees, with a larger number of nodes
with lower degrees.

Such topologies can be created using a preferential attachment algorithm, in which
a node is more likely to link to a node with a higher degree than a low degree. In a
sense, scale-free networks are in part hierarchical, with high degree nodes at the top of
the hierarchy, and low degree nodes at the bottom.

3.4.3.5 Social Networks

Social networks are the depiction of interaction between humans, and have traditionally
been hard to quantify. In recent years, examples of networks such as high school student
friendships and scientific publication collaborations have been available to study and have
allowed interesting insights. Newman and Park [85] show that social networks have a
particularly unique combination of properties, that is, a high transitivity (your friends
are also friends with each other) and high degree correlation (popular people know other
popular people, loners know other loners). This type of network is particularly relevant to
this study as economic networks are based on social networks. However, a social network
may not be the best topology for an online market - other topologies may be more efficient,
but previously have not been feasible to implement.

There are no standard techniques for generating social topologies, and we propose a

Chapter 3 50 Economics and Market Based Control

novel mechanism for creating them in section 5.4.1.

3.4.4 A Grid Marketplace

A decentralised grid market place requires an underlying network of trader relationships
to function. Random, small world, scale-free and social network topologies all have prop-
erties that maybe useful in implementing a market. BitTorrent [28] utilises random net-
works to great effect in achieving scalable bandwidth distribution. In a previous study [87]
we investigated the effects of topology on a social information transmission and a simple
economic market, using a small world and scale free networks. It was found that small
world and scale free networks had regions in the space of their construction parameters
that provided a better transmission of information and economic utility, which is a start-
ing point for our investigations. However, we did not model communication costs, so the
more realistic model of this study will test our earlier findings.

3.5 Summary

In this chapter we have reviewed current economic approaches to grid allocation, as well
as work on economic artificial agent rationale and basic network theory. In the next
chapter, we build a decentralised economic mechanism for allocating grid resources using
some of the work discussed here.

Chapter 4

Methodology

4.1 Overview

In this chapter we present the basic model of grid resource allocation upon which the
experiments detailed in Chapter 5 are based.

Ideally, a real world implementation of a resource allocation system would provide the
best evaluation of its potential, but is not feasible for several reasons. Firstly, it requires a
lot more investment in the implementation, as operating system process management and
network communication would be necessary, and it would also need to be fault tolerant
to a greater degree as it is running on real hardware. Secondly, and more significantly, it
requires an actual grid system on which to deploy. While access to a small grid system
may be feasible, it would limit the size of experiments run to the size of the actual grid.
There are some larger grid systems available, such as the National Grid Service [103],
TeraGrid [97] and the EGEE [94]. However, access to these for this work is not feasi-
ble, particularly as it would require modifying or running alternate allocation middleware
from what is currently employed. Also, while the number of individual processors in
these Grids is rather large, the number or participating resource owners is relatively small
(10-20). As a particular focus of this work is investigating allocation with large numbers
of independent parties on larger systems, a real implementation would be both impracti-
cal and restrict this focus of the investigation. Therefore, a simulation of a grid system
has been the experimental vehicle for this study. This allows us to make many useful

51

Chapter 4 52 Methodology

abstractions and greatly simplify the grid model used, as well as look at arbitrarily large
grids.

This chapter details this simulation framework and the model of the grid hardware,
users, jobs, resources and infrastructure. It also explains the basic economic model, in-
cluding the overlay network model. Finally it looks at how best to evaluate the perfor-
mance of such a grid, and reports on an initial implementation.

The base components that make up our grid model are;

• Resource: a computational resource.

• Job: a unit of work that can be executed on a Resource

• Site: the location of a resource and administrative domain

• Buyer: an agent responsible for negotiating and executing a particular Job on a
Resource

• Seller: an agent responsible for negotiating and executing multiple Jobs on a par-
ticular Resource.

4.2 The Grid Model

4.2.1 Resources and Jobs

A Resource on our model is a representation of a computational resource that can be
scheduled to run Jobs. For the purposes of simplicity in this investigation, we ignore
other types of resource, such as network requirements or storage.

A Resource is modelled by a unit capacity, which represents an amount of work it is
capable of carrying out simultaneously. Given that parallelisation is the dominant factor
for achieving greater performance, this is meant to loosely represent a number of proces-
sors. We make several abstractions here.

1. Hardware comes in many different types and with different performance charac-
teristics. Given the growing virtualistion of computing resources, as well as for
simplicity, we abstract these details. Thus all processors are modelled as being
equivalent in throughput, with the number of parallel units being the primary per-
formance metric. This trend can be seen in the hardware world, as CPU clock
speeds have hit a wall, and the manufacturers are focusing on multi-CPU chips.

Chapter 4 53 Methodology

2. Software also varies greatly. Again, virtualistion technologies are quickly making
this a non-issue as users can bundle their application load in the operating system
of their choice. So we assume a Resource can provide whatever software platform
a particular application requires.

Closely linked with a Resource, a Job represents an amount of work to be carried out
on a grid. This is modelled with a fixed unit size or work and a fixed duration. The size
is meant to represent a Job’s minimum resource requirements and applies directly to a
Resource’s capacity. A Job consumes its size of a Resource’s capacity when executing
on that Resource for a length equal to its duration. A Job that has a larger size than a
Resource’s free capacity cannot be executed on that Resource. This abstraction is made
for simplicity, but overlooks two key challenges in this area of grid systems.

1. It is technically challenging to correctly estimate the actual execution time of a
given grid Job, and this is an active research area [99] [38]. The user can provide an
estimation of a Job’s requirements, but it is not guaranteed to be accurate. However,
this problem is not our focus in this work so we assume that a job describes itself
accurately and will run at that size for that duration. It is relatively simple to add
a degree of run-time variance to the Job model at a later date along with an appro-
priate penalty model for providing a bad estimate or overrunning. This is discussed
further in Section 7.3.

2. In reality, the “size” of a Job is variable. A large job can still be run on a small
resource, but will take a very long time to complete. Likewise a small job can
potentially be scaled up and be completed faster on a large resource, although this
is not as easy as the former, as it may be not able to be parallelised easily. This
introduces a completion time into the equation when considering which Resource
to run on. While this is a feasible option for the model, it has been omitted from the
basic model for simplicity. Also, our primary focus is for “on demand” allocation
(see Section 2.4). This means that it is reasonable to assume that the Job description
exactly represents the amount of Resource needed, no more or less, at that particular
time. Again, further ideas for modelling this aspect of grid Jobs are discussed in
section 7.3.

For both Jobs and Resources, we do not consider the storage or network requirements
(e.g. bandwidth) and availability in our model. We assume that there is enough of each
to allow the Job to execute successfully. This is a reasonable assumption given that our
titled focus is on computational grids, not storage grids. Possible ways to include these
type of resources are discussed in Section 7.3.

Chapter 4 54 Methodology

4.2.2 Grid Sites

Our model uses the notion of a grid Site to capture the idea of diverse domains of own-
ership of resources as well as physical location. It represents potentially many individual
resources under one autonomous administrative domain. These resources are not nec-
essarily physically co-located but are owned by the same group (or virtual organisation,
in Grid terms). It is assumed that multiple resources at a site would have a faster intra-
connection speed between themselves compared to that between separate Sites and thus
can be represented as a single aggregated Resource consisting of the sum of the capacity
of all resources at that Site.

The Site is the basic location of our simulation and the basic node in our network (see
Section 4.4). A Site contains a Resource and a Seller for handling the negotiations about
the resource.

A Site also has a Server object to model the performance and communication costs
between it and other Sites. The Server is a software system assumed to be running on ded-
icated hardware (i.e. not the Resource itself). This allows us to model the execution of
grid Jobs (the actual performance of which we are less interested in) separately from the
execution of the allocation system (which we are more interested in). The Server’s perfor-
mance is modelled by a sampling execution time to process a message from a stochastic
distribution (see Section 4.7.1), processing a single message at a time, with a wait queue
of messages to be processed.

This is intended as a general measure of the Server’s ability to process requests from
other Servers, not necessarily the performance of a specific machine. It may be run on
a cluster or larger machine, but this is simply modelled by increasing the overall per-
formance of the Server, rather than introducing more complex hardware models, with a
similar rationale to the section above on our Resource model.

A Site also acts as an entry point to the grid network for Buyers, allowing them to
communicate with other traders at other Sites. So any particular Site will have a number
of currently active Buyers utilising that Site’s Server to find an allocation.

The management of a Job by a Seller in our simplified model consists of starting
the Job when successfully allocated and finishing it when completed (i.e. it has run for
its specified duration). In reality, the Seller has to do much more, including setting up
the Job, monitoring its status (and reporting it to the Job’s user) during execution, and
cleaning up and returning the results when completed. We assume this to be automatic in
our model, as it is not part of the problem of resource allocation that we are looking at.

The actual local scheduling algorithm used by our Resource is very simple. If a re-
source has enough free capacity for a Job at the current time, it reports being capable of

Chapter 4 55 Methodology

scheduling it, and if is told to do so, simply executes it straight away, and removes it when
completed. Given that we are focusing on “on demand” grids, and not doing any advance
reservation or completion time modelling, this is as complex as it needs to be.

4.2.3 Other Abstractions and Assumptions

Our model assumes perfect execution of Jobs and no Resource or trader failure. Fault-
tolerance is an important part of any realistic grid allocation solution, but is not necessary
for the first exploration of a decentralised economic system. Real economic systems
suggest many possible methods to handle a breach of contract, but this is outside the
scope of this initial investigation. A discussion of extending this model to include it can
be found in section 7.3.1.

4.3 The Market Model

4.3.1 Commodities - What Are We Trading?

We are interested in trading a particular amount of the single commodity of computational
resource. If we were simply modelling as a number of units sold, that would be straight-
forward. However, we are technically hiring the resources for a fixed period of time, not a
one-off transfer of ownership. This changes the unit of resource quantity that traders are
quoting for. Our unit of commodity is Job size multiplied by Job duration, or processor-
seconds. The quoted price in our markets is in this measure, and traders consider the price
of a quote relative to this value, rather than size or duration alone.

Our opposite commodity is a simple integer model of monetary value, possibly a real
currency, more likely a “Grid currency”. An integer value gives us simple, rounding error
free arithmetic. We denote the currency using a $ sign, for which approximate real-world
might be a 10000th of a penny. So, a Job with a size of 20 and a duration of 100s, which
traded at a price of $250 (or 0.025 pence per processor second) would in total cost the
buyer $500,000 (about $50).

4.3.2 Trader Rationale

Our model of trader rationale is purposely simplistic, following after Gode and Sunder’s
Zero Intelligence (ZI) trader model [58], as opposed to the Trading Agent Competition
(TAC) [114] trader models (see section 3.1.4 for details). This desire for simplicity de-
rives from our interest in the performance of the system as a whole as opposed to the

Chapter 4 56 Methodology

relative competitive performance of individual agents. Additionally, the TAC agents are
designed for a specific market and commodity, with particular dynamics, whereas Gode
and Sunder’s ZI traders are general to any market, due to their complete lack of strategy.

The main attribute of a trader in our model, after the ZI model, is simply a limit price.
This is the price a seller won’t go below, and a buyer won’t go above. For the baseline
agent, we implement the Gode and Sunder’s ZIC method (see Section 3.2.2). This means
the agents bid randomly between their limit price and a system maximum (for Sellers) or
minimum (for Buyers) price. This is designed to act both as a baseline comparison for
different systems, and also as an exercise in how simple a working system could be.

4.3.3 Buyers and Sellers

A Seller object in our model represents a Site and its Resource. A Buyer object represents
a Job. Both are located at a particular site, with a single Seller trading the Site’s Resource,
and multiple Buyers using the Site as their grid entry point. We could model the Buyers
as separate ’Buyer only’ nodes on the grid network, that came and went as buyers finished
their work. However, this would require a dynamic network, and our network model (see
4.4) is static, so we link the Buyers to a Site to avoid the complexity of implementing
a dynamic network. Additionally, this allows to maintain the network parameters and
metrics as constant for a whole experiment, rather than needing to dynamically recalculate
them as the network changes. This is also a likely real world scenario - that Buyers will
join the grid at some point in its existing infrastructure (e.g. a portal or service). Both
Buyers and Sellers utilise the Site’s Server to model their execution.

There is a major difference between Buyers and Sellers; Sellers are long running
processes linked to a specific resource, whereas a new Buyer is instantiated for each new
Job in the system. In theory, this puts the Buyers at a disadvantage when they start to
trade, as they have not been participating in recent trade and are thus unaware of the
current market state. Therefore, when a buyer is created for a new Job, we allow a delay
for the buyer to observe the market before commencing trading.

4.3.4 Auction Rules

The defining element to our design of auction rules is the need for a decentralised auction
system. This places some large constraints on the practicality of many normal auctions.
Some auction mechanisms rely on a central arbiter, which we are looking to avoid to
achieve scalability, or assume all interested parties can hear all quotes in the market (i.e.
they are in the same place). The nature of our network (our market place) means we

Chapter 4 57 Methodology

cannot guarantee that all traders will hear all the quotes for an auction, as it is not an
all-to-all system.

An English auction assumes that all buyers are able to hear all other buyers quotes,
usually facilitated by being in the same place. In theory, a seller could act as this auction-
eer if all buyers are still able to hear the quotes. In our model, the Seller could take on
the responsibility of doing this, and broadcast the quotes to all interested buyers. How-
ever, we couldn’t guarantee the Seller would not attempt to alter the quotes in their favour
somehow, possibly reporting different quotes to different buyers. This would effectively
be a kind of double-auction, but with dishonest trading. While this may work if Buyer’s
are still willing to accept the falsified quotes, it would undermine the auction mechanism
and could have unknown dynamics. As such, we do not use this mechanism in this study.

As discussed in 3.1.3, a Vickery auction is semantically the same as an English auction
in terms of bidding incentive. It will not work in a decentralised setting however, as there
is no incentive for the trader holding the auction not to accept the best quote at the best
quote’s price, rather than at the second best quote’s price - it requires an arbiter.

In theory, a posted price auction could be used. However, given no central location
to post static prices, the Sellers would have to actually quote individually to each trader,
or the buyers query each Seller, thus losing the potentially useful scalable aspect of such
auctions.

Of the auction mechanisms discussed in 3.1.3, the CDA and the sealed bid auctions
can most easily be used in a decentralised setting. A sealed bid mechanism is simpler to
design, but the CDAs ability to quickly adapt to market changes is an obvious attraction.
A sealed bid auction allows for private bids, which the Dutch and CDA do not. This suits
a diversely owned grid environment where traders naturally may prefer to bid privately.
Its implementation is also simple.

In this study, we implement both a decentralised sealed bid auction and a explore a
decentralised CDA mechanism. We discuss the implementation of a Sealed Bid Auction
method as well as a CDA method in more detail sections 5.2 and 5.3.

4.4 Economic Communication Model

In this section we define a model of a decentralised grid “marketplace” in which traders
can conduct their business.

Chapter 4 58 Methodology

4.4.1 Trader Relationships

In the real world, trading usually occurs around a specific physical location, such as a city
street, a specific event somewhere like a farmer’s market, or special purpose venue like
the London Stock Exchange. With the advent of the Web, these places can be virtual such
as eBay auction pages. These locations provide a meeting place for traders to conduct
business with other traders. They may not trade with every trader present at such a loca-
tion, but will form relationships of some form with other traders that they can try and sell
to or buy from.

With a decentralised grid system, we do not have a centralised location. All traders
are connected to the Internet, and could in theory trade with any and all other traders.
However, all-to-all communication for any significant number of traders would quickly
become impractical. It may be possible to have a number of central “trading floors” that
could provide a central point of contact, and this has some real world examples, such as
the various stock exchanges around the world. But we are focused on exploring a fully
decentralised system.

We need to define which traders a particular trader knows about and can trade with.
Ideally this needs to be as many traders as is it is feasible to communicate with simul-
taneously over the Internet. We model this with an overlay network between traders,
commonly called a peer-to-peer (P2P) network. A node in the network is a Site with both
Buyers and Sellers, and a link between any two sites indicates that the Sites (and their re-
spective traders) know each other, and have a potential trading relationship. This attempts
to capture the relationships between traders in a scalable manner, allowing trade to occur
between traders that are linked to each other.

As a simple optimisation to avoid unnecessary transmission of messages, each mes-
sage that is being broadcast keeps a copy of which nodes in the network it has already
been to. While duplication can still occur with this method, as message copies may fol-
low different routes, it is much reduced, and Servers automatically drop any message they
have seen before, so the same message is not processed twice.

4.4.2 Network Topology

The topology of this network is a key area of study. The topology could potentially affect
the efficiency of the market, and its degree of scalability and penetration.

As an initial baseline topology, we use a modified version of Erdös and Rényi’s [42]
classic random graph. We modify it because we have some real world constraints on our
system, and we are not interested in random graphs per se, but in utilising them for a basic

Chapter 4 59 Methodology

economic system.
This basic network is generated in two stages. A desired mean degree is specified.

We first iterate through all nodes and link them to one other uniformly chosen random
node. This ensures that each node has at least one connection, and significantly reduces
the chance of generating a graph with disconnected components. It also means the mean
degree cannot be less than 2, but as such a sparse graph would be of little interest to study,
this is not a problem, although it does affect the degree distribution to some level. We
then choose a node at random and connect it to a new node via the same method. This is
repeated until we have acquired a specified amount of links.

This modified random network is our base network for testing the performance of the
system, and is very similar to some of the peer-to-peer generated networks in use today
[28]. However, we are interested in other topological features, such as the shortening of
average path length that small world graphs provide. A variation of the above method
for generating graphs based on other topologies is discussed and results are presented
in Section 5.4.1, where we look at generating and examining the effect some of the other
topologies discussed in section 3.4.3, such as small-world, scale-free and social networks.

We also base our network on a physical torus-like model of spatial distribution. The
grid concept is globe spanning, and so we model the location of our nodes over a wrap-
around two dimensional space. Thus, nodes are a certain 2D distance apart. This distance
is used to group nodes into n×m regions, as well as an indication for communication
costs. Nodes within the same region can communicate faster than in those in different
regions. This concept of regions could be seen as analogous to the different stock ex-
changes and other economic centres around the world. We use a 3 by 3 grid layout of
9 regions over a 2D coordinate space as the base network. Note that the regions simply
serve as a grouping of nodes within which communication costs are lower than when
communication with nodes in other regions.

In order to spread the jobs across the grid, we utilise a network broadcast and a relo-
cation mechanism. Traders are able to use the network as a broadcast channel to pass on
other traders’ quotes to increase the “shout radius” of the quoting trader. This is similar
to general P2P search techniques, and the topology of the network is a key part of the per-
formance of such systems. This allows a job exposure to a much larger set of resources
and increases the likelihood of a successful allocation.

If a buyer fails to find a suitable allocation, the Buyer can relocate to another random
node to try again, which facilitates the spread of jobs across the grid. The addition of the
notion of regions as above allows Buyers to try other region completely in the event of
being unable to successfully trade in one region. For ease of implementation we assume

Chapter 4 60 Methodology

that each region will have a approximately up-to-date registry of machines from which to
choose a random new node.

An alternative method would be to initiate a local search for a new node using the
overlay network. As well as being more complex, this would likely lead to the new
location having a large intersection of neighbours with the old location. This would make
the success of the second auction less likely, as the same sellers are unlikely to respond
differently than previously.

It would be useful to also allow task-shifting after the UDC work [100]. However,
developing a mechanism for doing this in a self-interested grid environment is a significant
research challenge (see Section 3.3.2.5). It would require each node’s seller to also control
a buyer, and perform a run-time risk/benefit analysis for each possibility. Whilst this
would be a useful addition, it is a significant area of work, and we do not implement it
here, instead relying on network broadcasts and relocation to spread load across the grid.

4.5 Model Evaluation

4.5.1 Metrics

In order to assess the performance of the allocation system, we need to record various
results they produce. We have two main performance aspects to consider. While most
other computational economic systems are primarily interested in optimising market per-
formance, our primary interest is the performance of the grid allocation scheme itself
compared to current approaches. Of course the characteristics of the market and interde-
pendent to some degree with the performance of the allocation system

To measure the grid’s performance, we use the following metrics.

1. Mean Resource utilisation - the proportion of usage of resources across the whole
grid.

2. Mean Server utilisation - the proportion of Server load, as a measure of the cost of
all the communication costs

3. Mean Server queue delay - the mean time for message spent waiting in a queue

4. Mean allocation time - length of time taken to successfully allocate a Job

5. The different properties of Jobs that failed or succeeded, such as size, it’s buyers
limit price and the degree of the node it traded on.

Chapter 4 61 Methodology

For evaluating the market we can use many of the standard measures used to analyse
market performance in computational economics.

1. Trader utility/profit - mean traders utility (for buyers and sellers)

2. Market Efficiency - a measure of allocative efficiency as the proportion of surplus
achieved of maximum surplus.

3. Smith’s α value - a measure of convergence to equilibrium price. This is the root
mean square of the difference of trade prices from the theoretical market equilib-
rium price.

The system mean of these values are measured for each experiment, in addition to be-
ing traced at regular intervals within a single simulation run, which allows us to examine
the internal dynamics of the system. In general, for any parameter values, the simulation
was run 100 times, and the mean and standard error (defined as the standard deviation of
the distance from the mean) values were calculated. For statistical analysis, we use the
WilcoxonMannWhitney U test [78] [115] where appropriate to verify the significance of
the results. More specifically, we use the Kruskal-Wallis test [70], which is a generalisa-
tion of WilcoxonMannWhitney to three or more groups.

4.5.2 Comparison

In order to correctly assess the performance of an economic grid allocation system, we
need to compare its performance with other allocation systems. We use two such compar-
ison systems that do not use an economic allocation mechanism, but a centralised one.

We implement a simulated comparison system that is a version of the current state of
grid allocation schemes. This follows the idea that each Site publishes its own resource
state regularly to a central Broker. This Broker is queried by a new Job to find the best
location for itself. The Broker attempts to optimise system throughput by returning an
allocation that fits the Job into the smallest free resource capacity available. Additional
Brokers can be added to scale the system, with each Broker periodically exchanging its
current grid view with the others. This is similar to the way that the Globus Monitoring
and Discovery System (MDS) [34] works, and is aimed at a realistic current day grid
implementation.

Both these models use the same underlying network and Site model used by our eco-
nomic system.

Chapter 4 62 Methodology

4.6 Preliminary Investigation

A early version of the above model was reported by the author in [36]. This used a similar
basic grid model as outlined above, but a different trader rationale and network.

The trader rationale was not designed as a self interested profit-making algorithm, but
rather as a static system utilisation optimisation function. A Seller bid higher for a Job
the more the Job’s size filled its available free capacity. Thus the Seller whose Resource
would have maximum utilisation would win the auction. A simple sealed bid algorithm
was used, with a Buyer advertising to all connected Sellers, and accepting the lowest of
the first three offers that it heard.

As no actual per-trader variability was used in the trading process, this was not really
a market-based economy, but more of an experiment in using a decentralised overlay
network based system for grid allocation. It showed it was a feasible approach, even
without an actual market economy, proving the validity of an overlay network model
approach to communicating on a grid system and achieving acceptable performance.

4.7 Implementation Details

4.7.1 Approximating Reality

There is little real world data from grid systems with which to chose sensible represen-
tations of grid usage and provision. However, many similar scheduling and allocation
problems have been observed and can be utilised here. We rely on [76] for much of this
section. In particular, their discussion of distributions in machine shop scheduling are
applicable here.

We have several main numerical system aspects to model as accurately as possible.
Table 4.1 shows the details of major random variate distribution and default mean values.

4.7.2 System Load

A key parameter to define is the mean interarrival time of Jobs into the system, which is
drawn from an exponential distribution. We derive this mean value from several of the
above values that are inter-dependent, along with a higher-level parameter, load. This
variable represents the potential maximum resource utilisation. A load of 1.0 indicates
a situation in which, hypothetically speaking, 100% of the grid’s Resources would be in
use. In market terms, it means there are equal supply and demand quantities.

Chapter 4 63 Methodology

Model Description Distribution Notes

Grid

Resource capacity Gamma (α = 5,β = 20) µ = 100 (1)
Job size Gamma (α = 5,β = 4) µ = 20 (1)
Job duration Gamma (α = 5,β = 20) µ = 100
Server service mean Normal (µ = 0.05,σ = 0.012 (2)

Communication

Trader on same Node 0
Overlay latency mean Normal (µ = 0.1,σ = 0.025) (2)(3)
Regional latency mean Normal (µ = 0.2,σ = 0.05) (2)(4)
Global latency mean Normal (µ = 0.4,σ = 0.1) (2)(5)

Table 4.1: Note: Normally distributed variates are re-sampled if negative, introducing a slight
positive skew. (1) These are integer values. (2) The actual values used are drawn
from am appropriate gamma distribution with this mean. (3) For node linked in a
trading relationship in the network. (4) For unlinked nodes in the same regions. (5) For
unlinked nodes in different regions.

A load value is supplied as a simulation parameter, and using Resource capacity and
Job size/duration we calculate the appropriate inter arrival mean to generate that level of
load on the system (see equation 4.1, where µx indicates the mean of the labelled value x,
and nresource is the number of resources). We fix the values of Resource capacity and Job
size/duration to sensible defaults, thus allowing us to alter the Job inter-arrival time as a
key parameter driven by a simple load value. We can then easily compare the system on
a variety of load values. Note that the above method means our load is spread out over
one average job duration period of time. As such, on an empty grid, it would take one full
mean duration period before the grid achieves the specified load level. For this reason, we
commence measurement of our system-wide metrics after this time (typically after 100s).

µ job size×µ job duration

nresource×µresource size× load
(4.1)

Note that with a load of 1.0 even an optimal system will be unable to achieve 100%
resource utilisation, as our Jobs are modelled as discrete sizes, so there will always be
some unused space, as Jobs are unlikely to fit perfectly into any remaining free space. As
such we would expect an optimal load in the mid 90% range.

4.7.3 Supply and Demand

The values given to traders for their limit prices are a key parameter in our simulation.
They define the supply and demand curves and thus the equilibrium price of the market.
We use uniformly distributed values between two points to populate these with our traders
in a variety of market situations, as shown in table 4.2.

Chapter 4 64 Methodology

Market Buyer Limits Seller Limits Eq. Price
A Uniform(100,400) Uniform(100,400) $250
B Uniform(100,400) Constant(250) $250
C Constant(250) Uniform(100, 400) $250
D Constant(300) Constant(200) $250

Table 4.2: Standard limit price values for traders. The market minimum is $1 and the market
maximum is $500

• A: The “normal” situation of supply and demand of equal and opposite magnitudes.
This is the usual situation in our experiments unless stated otherwise.

• B: Flat supply prices and variable demand prices as above.

• C: Flat demand prices, with variable supply prices.

• D: Flat supply and demand prices. This situation has the characteristic that the
trading is limited mainly by available quantity, as all traders should be able to trade
with any other trader on price.

However, unlike most other computational economic experiments, our supply and
demand curves are not precise, and thus also the equilibrium price is not precisely known.
Our prices are fixed, but the quantities available for both Buyers and Sellers vary, thus
altering the slope of the curve.

For Sellers, the supply curve depends on the size of the network, which is usually
constant for a particular series of experiments. However, given that resource sizes are
randomly sampled, the curve will only be approximately similar, with some variance.

For Buyers, the effect of varying the load value as described above affects the length
of the Buyer’s demand curve. At levels below 1.0 it produces a over-supply situation, and
higher values produce and under-supply situation. And given the random sampling, even
a load of 1.0 can produce situations of slight over/under supply.

Figure 4.1 demonstrates this “stretching” of demand quantities for each market type
for a variety of load values. Note that in markets B, C and D, ZI-C traders have been
shown to be unable to find the optimal equilibrium. See Section 5.2.3 for more detail.

4.7.4 Decentralised Trading

Another big difference between conventional computational economic experiments and
this work is the distributed nature of the trading. Usually, there are a small number of
agents (< 30) and a central auctioneer that employs synchronised bidding. This means

Chapter 4 65 Methodology

Figure 4.1: The theoretical market supply and demand curves for markets A, B, C and D for loads
above and below 1.0. Note that the values have been chosen specifically to provide a
theoretical market price of $250, except for market A, which will vary depending on
demand, and market C at loads below 0.5, which will be less than $250.

Chapter 4 66 Methodology

that all traders get a synchronised authoritative response to a quote, and in the case of a
public auction, all other traders also know that response. This poses two problems in our
systems given the time-separation and uncertainties inherent in distributed systems, and
the lack of a central arbiter.

4.7.4.1 Acceptance Protocol

Firstly, in a distributed system there is an inherent communication delay between receiv-
ing a quote and then responding to it. In that time, the situation may have changed.
Additionally, it is possible that a server might be overloaded, and thus not respond to a
specific request for some time or at all, leaving the sender hanging.

Our system addresses these issues with a simple generalised confirm/reject and time-
out protocol. If trader A wishes to accept a quote it has heard from trader B, it sends
trader B an acceptance message and sets a timeout. If no response is received from that
trader B within the specified timeout, the trader A sends a cancellation message (in case
trader B has responded positively, but the message is in transit), and moves on to other
quotes from other traders.

If a confirmation response is received from trader B, the transaction is completed. If
a rejection response is received, it means trader B can no longer fulfil the original quote
(e.g. a Seller who has since filled up its Resource) and trader A moves on to other quotes.

When Trader A times out and sends a cancel message to Trader B, Trader B can be in
one of three states, depending on what messages it has seen.

• Trader B received the accept message, but rejected it for some reason (e.g. a Seller
who is now too busy). However, the reject message was not received by Trader A
before its accept timeout occurred. In this case, the cancel message is ignored.

• Trader B received the accept message, and sent a confirmation. If trader B is a
Seller, this involves starting the job. However, the confirmation did not arrive in
time and the Buyer timed out and cancelled. In this case the Seller cancels the
running Job. The confirmation, when it arrives at the buyer is ignored. This done
for simplicity, but would potentially need better handling in a real system.

• Trader B did not receive the original accept message, so never responded, and ig-
nores the cancellation message, and the accept message when it arrives.

Chapter 4 67 Methodology

4.7.4.2 Observing Success/Failure

The second problem is the uncertainty about whether a quote has been rejected or ac-
cepted. For ZIC agents this information is unimportant. However, for traders with any
intelligence (such as ZIP), this knowledge is necessary.

A quote than has been accepted can be observed by the traders who send/receive and
accept messages for that quote, but there is no explicit “reject quote” message in our
system, as this would add extra messaging burden when it has to be shouted to all traders.

We investigate two possible solutions for this problem that provide success of failure
information to the ZIP trader algorithm.

Firstly we use an observation timeout protocol. If a traders hears a quote (either from
other traders or its own quote), an observation timeout is set. If the trader receives a
corresponding acceptance message from another trader, it observes a successful trade at
that price and cancels the timeout. If the timeout fires before an acceptance message is
received the trader observes a failure for that price. If the observation timeout value is
relatively long however, it could mean that in general there is a small amount of latency
before the price might start to adapt to a general price fall compared to a price rise. Addi-
tionally, an acceptance message could be received after the timeout has fired, introducing
further error into the estimation of market price.

As an alternative, we implement the experimental solution in [37], which is proposed
for such decentralised systems as ours. In this approach, a traders uses the Widrow-Hoff
rule from the ZIP algorithm to observe bid (B) and ask (A) prices separately. It then uses
this information to guess the success or failure of a quote, and then uses the normal ZIP
algorithm based on this decision, as follows.

If a bid of price p is heard, the current estimated ask price A is compared against an
estimate trade price of (p + A) / 2. If greater, a successful trade at the calculated trade
price is observed by the normal ZIP algorithm. Otherwise, a failure at that trade price is
observed. For offers, the process is the same, except the estimated trade price is calculated
with and compared to the currently observed buy price B. This allows traders to guess the
success or failure without needed explicit notification of success.

4.7.5 Technical Details

Earlier investigations used a custom C++ simulation tool, which performed well but was
difficult to modify for different experiments. In order to allow for easier development
and experimentation the simulation was re-implemented using SimPy [81], a discrete
event simulation tool written in the python programming language. This allowed rapid

Chapter 4 68 Methodology

development of different ideas and simplified making changes to the model and execution,
at the cost of increased execution times and memory usage.

4.8 Summary

In this chapter we have outlined the basic simulation model and defined various key sys-
tem parameters. In the next chapter, we explain the market process and parameters in
more detail and present our findings using the metrics defined in this chapter.

Chapter 5

Performance Results

5.1 Overview

In this chapter we present the results and analysis of the proposed allocation scheme as
implemented in our simulation model.

We present a decentralised sealed-bid auction model in Section 5.2, using random
networks and ZIC traders. This shows both the feasibility and basic performance level
of a simple fully decentralised economic system. We use this to analyse the performance
of the grid infrastructure, and set suitable values for experiment parameters for further
investigations. We investigate the performance of this system under a variety of different
conditions.

We then introduce the implementation of a CDA auction in Section 5.3, and investigate
using ZIP traders as an option for trader rationale. We compare this with the baseline
sealed bid/ZIC model.

In Section 5.4.1 we develop a network model that allows exploration of varying net-
work topologies, and investigate its effect on the performance of the system.

69

Chapter 5 70 Performance Results

5.2 Sealed-Bid Auction

5.2.1 A Decentralised Sealed Bid Auction

This Section details the implementation of a single round, sealed bid, first price auction
used to allocate resources. The sealed bid auction lends itself well to implementation in
our model for a number of reasons.

• The private quoting is attractive in a decentralised grid system, as public quoting
presents some challenges due to the lack of a central arbiter. Without a central
independent information point, public quotes must be broadcast and forwarded by
other traders, and thus depend on other interested parties being honest. For exam-
ple, a trader could refuse to forward quotes better than their own current quote. The
heard quotes therefore lack the authority provided by the independent arbiter. Pri-
vate quoting avoids this issue, as quotes are point to point between the two primary
parties.

• In a synchronised bidding system, the traders know the success or failure of quotes
at the same time. This is certainly true in the simulated CDA markets used in most
experiments. However, the asynchronicity introduced by network transmission and
server load means that traders receive the quote information at different times in
our system. Potentially, trades could be agreed on by nearby traders that have not
seen the same quotes. Whilst this is to be expected to some degree given our de-
centralised approach, it could further decrease the efficiency of the market.

A sealed bid auction avoids these difficulties by having one way quoting (sellers only
in our model) and private bids. As baseline system, we use ZIC traders (see Section
4.3.2), and random topologies (see Section 4.4.2). ZIP traders are not used in this sealed
bid auction, as quotes are private, and therefore the information the ZIP algorithm needs
is not available.

5.2.1.1 The Sealed Bid Auction Protocol

The normal flow of a trade is as follows. When a Buyer arrives into the system, it sends an
“advert” to all its connected Sellers, including the one at its own Site. This advert includes
the job details (size and duration), but no price information - it is simply a statement
of interest. The Buyer sets a trade timeout to occur later, in order to trigger making a
decision. In effect, the Buyer is advertising its own sealed bid auction.

Chapter 5 71 Performance Results

The advert has a “shout radius” which indicates the number of hops the advert will
be broadcast along the network, thus increasing the penetration of the advert into the grid
system. Any Seller who hears the advert can then make an offer on the job directly back
to the Buyer.

Upon hearing an advert, Sellers check they have the free capacity available at the
moment to perform the Job. If they do, they make an offer using ZIC (i.e. a random value
between their market price and the market ceiling price). If they cannot perform the job,
they simply ignore the advert. This offer is private, communicated directly to the Buyer.
Thus, only Sellers are using a strategy of any kind in this model.

A Buyer records the offers it hears from Sellers, resetting its timeout each time a quote
is heard. If the offer is below its limit price, it keeps a record, else it discards the offer.
When no offers have been received for the timeout period the Buyer selects the lowest of
all the offers it has heard, and sends an accept message to the offering Seller, setting an
acceptance timeout.

The acceptance model is as described in Section 4.7.4.1. Upon receiving an accept
message from a Buyer, the Seller checks if it is still able to honour the offer (execute the
Job), since it may have had other offers accepted in the meantime, and now be too busy.
If it has enough free capacity, it sends a confirmation to the Buyer and begins executing
the Job. When the Buyer receives the confirmation, it records the successful trade and is
removed from the system. If the Seller can not now honour the original quote, it sends a
cancel message to the Buyer. Upon receiving this, the Buyer removes that quote from its
list, and repeats the acceptance process with the next best offer. If the Buyer’s acceptance
timeout occurs before receiving anything from the Seller, the Buyer sends a cancellation
message and proceeds with the next best quote.

If the Buyer reaches the point when it has no valid offers (either never having received
any, or receiving later rejections for the ones it did receive) then the Buyer can migrate to
another region and start the process again. This is analogous to a trader moving to another
market when failing to trade successfully in one market, and is included to allow a greater
chance that the Job will be allocated by exposing it to more of the system. A Job can only
migrate a limited number of times before reporting failure and leaving the system.

Table 5.1 shows the various parameters used in implementing this sealed bid auction
mechanism.

Chapter 5 72 Performance Results

Parameter Value
Max. Buyer Migrations 3
Buyer Quote Timeout 5s
Buyer Accept Timeout 10s

Table 5.1: Parameter values for the Sealed Bid Auction mechanism

5.2.2 Basic Performance

The performance of the network of Sites and Servers, or “infrastructure” is investigated
first. This allows us to set the key network parameters of mean degree and shout radius
for later experiments.

Degree Radius Shout Load Shout Load (ld 1.0) msgs/node (ld 1.0) msgs/node (ld 2.0)
2 2 7 12.4 (±2.98) 2.6 (±1.12) 5.7 (±2.33)
4 2 21 18.5 (±0.37) 3.7 (±0.17) 7.9 (±0.27)
6 2 43 34.9 (±0.53) 6.5 (±0.31) 14.3 (±0.59)
8 2 73 52.1 (±0.58) 9.4 (±0.45) 19.1 (±0.47)

10 2 111 67.2 (±0.58) 12.1 (±0.70) 20.1 (±0.57)
2 3 15 12.8 (±1.57) 5.8 (±3.21) 12.3 (±6.61)
3 3 40 27.3 (±1.08) 5.3 (±0.30) 11.3 (±0.61)
4 3 85 48.7 (±1.24) 8.9 (±0.45) 17.7 (±0.52)
5 3 156 67.2 (±1.25) 12.2 (±0.67) 19.5 (±0.54)

Table 5.2: The base network parameters investigated, and the measured message load on the sys-
tem for load values of 1.0 and 2.0. The shout load is the mean number of Servers that
process a broadcast/shouted message. Msgs/Node is the mean number of messages per
server per second. Values in parentheses indicate the standard deviation for 100 runs.
Note that for a load value of 2.0 and higher network values, the mean number of mes-
sages processed per node is near our set mean maximum of 20 messages per second,
indicating that the infrastructure system is near full capacity. Also note that our simple
shout load reducing optimisation (see Section 4.4.1) does successfully reduce the shout
cost on the system. The larger standard deviations for mean degree’s of two are due to
the low network density at these levels, which means a Buyer must migrate more often,
staying active in the system longer and increasing message load.

There is a trade-off between the network mean degree and shout radius, and the net-
work performance overall. The more connections a site has, the more information it
will have available, and the more traders on that node will be able to trade successfully.
However, the more connections a node has the more time it spends processing messages,
which leads to increasing message delays, which can affect the performance of the allo-
cation system.

Additionally, with the concept of a broadcast message with a shout radius, additional
message processing load is added to the system polynomially. For example, a network
with a mean degree of 4 and a shout radius of 3 can actually cause a theoretical maximum

Chapter 5 73 Performance Results

Figure 5.1: The mean server utilisation for the system against load and by mean degree and shout
radius. The overall utilisation clearly tends towards 1 as the load increases for higher
degree/shout radius values.

Chapter 5 74 Performance Results

of 40 + 41 + 42 + 43 = 85 Sites to process that message (given a trader will send any
broadcast message to its own node as well as its neighbours). The actual message load
was less in most cases, because of the duplication avoidance mechanism described in
Section 4.4.1

A further impact on the message load of the infrastructure are market supply and
demand conditions. Market A prices will mean more chance of not finding a successful
trading partner, which could mean more migrations and thus more load on the system,
whereas market D prices would provide a much greater chance of finding a suitable trade.
As our goal in this instance is to investigate the infrastructure load, we use market A for
these experiments.

We investigate our grid system under a variety of different load values, from 0.25 to
2.0. The key parameters that affect the grid’s infrastructure performance are mean degree,
shout radius and the Server’s mean Server service time. We want to set these at levels
that allow the grid infrastructure to cope with the messaging level for high load situations.
We set the mean service time as in table 4.1. This value allows for a mean throughput of
20 requests per second. This is very modest compared to many systems, but we wish to
allow for a wide variety of Sites to be represented, and thus keep the mean performance
relatively low.

We vary the mean degree and shout radius as shown in table 5.2. Given the desire to
investigate the effects of topology, we do not experiment with a shout radius of 1 (i.e a
single hop), as this effectively negates the effects of any network topology characteristics
on the results. Shout radius values higher than two quickly overload the network, so we
experiment with shout radius values of 1 and 2. A sample network size of 100 was used
to provide statistically viable results without overly impacting execution times. Table 5.2
also shows some results for the actual message load on a system under load values of 1.0
and 2.0.

Figure 5.1 shows the basic grid performance for the mean degree/shout radius values
specified above. More values were tested but a selected subset have been shown to im-
prove the clarity of the graphs. The other values tested followed in the same patterns as
the ones shown, that is, lower values were virtually identical to the lower values shown,
and higher ones continued to degrade the system performance further. For now, we do
not discuss the actual allocation performance, as we are looking at the infrastructure. See
Section 5.2.3 for a discussion on the allocation.

The main factor emerging here is that our simulated Servers can get overloaded easily
for high mean degree, shout radius and load values. Particularly, the large increase in wait
time as the Servers get too busy to handle messages, which adversely affects the resource

Chapter 5 75 Performance Results

utilisation. This is especially the case for higher load values.
While higher values do offer marginal improvements in resource utilisation for load

values around 1.0, the severe degradation at higher load values is not worth the gain.
Based on these results, a standard mean degree of 4 and shout radius value of 2 seem
the most appropriate to use for further exploration. These values essentially give the grid
infrastructure the capacity to investigate what we are interested in (the resource allocation
problem) rather than the performance of the infrastructure itself, which is not the aim of
this work.

At a higher level, by setting relatively low mean degree/shout radius values, we con-
tinue to direct our work in its pursuit of investigating how simple systems, with limited
agent knowledge, can solve the resource allocation problem.

It should also be noted here that there are a variety of changes that could be made to
the model to allow for higher mean degree/shout radius values. For one, currently there
is only one Server processing all the messages for a Site, which is an implementation
abstraction. In reality, every trader will probably be running on its own computing re-
sources to some degree or other. However, the central server will still be the “gateway” to
the traders at that node, and will have to route and store all broadcast messages, if not the
point-to-point accept/reject messages. Additionally, the facility to dynamically adapt the
number of connections or change the shout radius value depending on market conditions
(i.e. current load) would be important for a real system. This is discussed further in Sec-
tion 7.3.2, but is not investigated, as the study of dynamic networks is both complex and
not the stated focus of this work.

5.2.3 Grid Allocation Efficiency

We next investigate our prime performance interest, that of the allocation of resources.
Using a mean degree of 4 and shout radius of 2, we investigate the allocative performance
of the system for the various different market conditions described in Section 4.7.3. For
these experiments, we fix our network size at 256 (see Section 5.2.6 for a discussion of
network sizes).

Figure 5.2 shows the resource utilisation for a network size of 256 for each of market
types A, B, C and D, against a range of load values. A theoretical optimum for each
market is also indicated to aid comparison. For each market, when demand is lower (low
loads), utilisation is close to optimum. As load approaches 1.0, we see that all markets
except D fall below the optimal level - this is an indication of the loss of efficiency from
lack of centralisation. As the system goes into over-demand (loads above 1.0), utilisation

Chapter 5 76 Performance Results

Figure 5.2: Resource utilisation for different markets by load. The solid lines indicate the mea-
sured utilisation of the grid for 100 runs, with error bars indicating the standard devia-
tion from the mean. The dashed lines indicate the corresponding theoretical estimated
maximum utilisation for each type of market. These theoretical levels are based on
the assumption of a uniform distribution of job sizes and durations. See text for full
discussion.

Chapter 5 77 Performance Results

continues to increase slightly. This is because of the non-divisible nature of our job’s
sizes. As more jobs come into the system, there are more smaller sized jobs available to
fill in the small “holes” still left in resources’ capacities, so overall utilisation goes up.

An obvious factor here is that the measured utilisation actually exceeds the indicated
estimated theoretical optimum. This is the case in markets B, C and D at the lower loads
only, whilst in market D it is typically around 3-5% above the optimum. The reason
for this is that the calculation for the estimation is misleading. The calculation is based
on the market supply/demand curves described in Section 4.7.3. It assumes a uniform
distribution of supply quantity values (i.e. job sizes and durations), which is not the case,
as we use a gamma distribution for these values. Thus although the mean value for job
size is about 20 (which is what the calculation for the optimal value uses), the modal value
is somewhat less (about 16-17). Likewise, while the mean job duration is 100, the mode
is closer to 75. The fact that the majority of quantity values (size× duration) are under
the mean value, and thus will be able to fit in the resource “holes” better and not take as
long to finish, explains the ability of the utilisation to be above the theoretical optimal, as
more jobs can be executed. Additionally, our resource utilisation is measured from after
the first 100s of execution, to avoid calculating the first job duration interval when the
grid has by necessity not reached the desired load value.

Now that we understand why market A can apparently perform super-optimally, it
is clear that given market A conditions (which are the closest to potential real world
conditions), the system performs very well in terms of allocating quantities. The other
market conditions perform less well, although all achieve a significant proportion of the
theoretical optimal (above 75% in all cases). The results for market D, given its lack of
price constraint, indicate the fact that our system does not achieve an optimal allocation
when based on quantities alone due to its decentralised nature. Section 5.2.6 highlights
the benefits decentralisation provides.

To further understand the system behaviour, we look at the different reasons a job can
fail to be allocated, and examine them for each market. A Job can fail because of quantity
constraints (i.e. finding enough spare capacity) or price constraints (i.e. the Buyer’s limit
price is too low). Additionally, the fact that traders can only access a limited subset of the
potential trades affects both these reasons.

5.2.3.1 Job Size

Given that our Buyers’ desired Job sizes are indivisible, a Buyer can fail because there is
currently not enough free capacity with the network of traders that can be reached. This
is especially true when the job size is large, or the load is high.

Chapter 5 78 Performance Results

Figure 5.3: Mean Job size for failed/succeeded Jobs for different markets by load. The solid line
indicates the successful jobs, whilst the dashed line indicates the failed jobs.

Chapter 5 79 Performance Results

Figure 5.4: Mean Buyer limit prices for failed/succeeded jobs for different markets by load. The
solid line dotted line indicates the successful jobs, whilst the dashed line indicates the
failed jobs.

Chapter 5 80 Performance Results

Figure 5.3 shows the sizes of successful and unsuccessful Jobs for each of the markets.
From this figure we can see a pattern of behaviour. In general, mean failed job sizes are
significantly higher than succeeded sizes, as we would expect. However, as the different
markets provide different price constraints, the impact of size on job failure varies. In
general, we would expect impact of size on job failure to be greater as load increases,
with succeeded sizes decreasing as high loads. This would be indicated by a divergence
of succeeded and failed sizes with load.

• Market A shows a clear divergence between succeeded and failed sizes. The suc-
ceeded sizes continue to drop as load increases, but the failed size levels out at
around 22 at high load. This indicates that Job size is not as key a factor in alloca-
tion failure in this market as it is in others (e.g. market D), but still has some impact.
This is understandable given the supply/demand curves of Market A.

• Market B is similar to market A, but with much less divergence and only at higher
load levels. This implies that Job size has very little impact on job success in this
situation, which given that Market B is the harshest price-wise, is intuitive. It is
only at very high loads that size makes any appreciable difference.

• In Market C failed and succeeded sizes do not diverge, they are close to constant.
Additionally, the difference is much greater than markets A and B. This indicates
that size has a larger impact on failure, with large jobs finding it harder to get
successfully allocated.

• Market D has the least price constraints, and as expected size is a key factor of
success. The difference between succeeded/failed prices is the largest, and there is
some convergence at higher loads. Note that at the lowest load level (0.25, 0.5),
no jobs failed. This indicates that when supply is less scarce market D has no size
constraints, as expected.

The effect of size on allocation success has most impact on market D, then C, A and
then least impact on B. Markets A and B have a similar behaviour, as do C and D. The
main difference between the two behaviours is that limit prices for Buyers are flat in
markets C and D, but sloped in A and B.

5.2.4 Limit Price

Figure 5.4 indicates the Buyers’ limit prices for successful and failed jobs. Given that
in markets C and D Buyer limits are fixed, we only show markets A and B. The figure

Chapter 5 81 Performance Results

shows that for both markets A and B, price is a significant factor in success of Job, with a
large difference between the limit prices of successful and unsuccessful jobs. For market
A, the price generally increases as expected given the increased competition at higher
loads. However, the price for market B is flat as to be expected from the flat supply
prices of market B. The small increase at loads 1.75/2.0 is because at loads approaching
2.0, we can see from the supply/demand curves of market B (see section 4.7.3) that the
equilibrium price can be higher than $250, given the random nature of the jobs’ sizes.
This gives rise to slightly inflated succeeded/failed prices in this case.

Figure 5.5: The mean proportions of reasons for Job failure. The solid line indicates the propor-
tion of failures due to the Buyer’s limit price i.e. the proportion of asks received that
were above the Buyers limit. The dashed line indicates the proportion of potential
asks that were lost because the Seller’s resource was too busy.

However, this is not the full picture of the impact of limit price on failure or success
of allocation. In markets C and D particularly, given the flat Buyer limits, the figure does
not grant any insight. Figure 5.5 shows the proportions of different reasons why a Job
failed to generate any valid asks. This can either be from a Seller not sending asks due
to not having enough capacity, or an ask being rejected because its price is higher than
the Buyers limit price. Again markets A and B show a similar behaviour, in that for low

Chapter 5 82 Performance Results

loads, price is the key reason for failure, but as load increases size becomes more of a
factor. Markets C and D show very different behaviour, however. In Market C, price is
always the main reason for failure, although the proportions converge as load increases,
implying size does become more important at higher loads, as expected. In Market D, the
opposite is true - size is the dominant reason for failure throughout. Another factor for
markets C and D is that the simple ZIC algorithm has been shown to be unable to reliably
find equilibrium in these market settings, which contributes to the lack of price adaption.

5.2.4.1 Node degree

If a Buyer is at a node with a low degree, this reduces the trading opportunities and
increases the likelihood of failure from either price or size constraints.

Figure 5.6: The mean degree of the nodes for failed and successful Jobs. The solid line indicates
successful jobs, whilst the dashed line indicates the failed jobs.

Figure 5.6 shows the mean degree of nodes for successful and unsuccessful jobs.
While it is clear that successful Jobs have higher node degree, there is not a significant dif-
ference (around 1 additional connection on average), especially at higher loads levels. At
lower load levels, the slight drop is due to there being relatively few failures for markets

Chapter 5 83 Performance Results

C and D at the lower load levels, so the Buyers that did fail were particularly limited.

5.2.5 Economic Performance

Our concern so far has been primarily with allocation of quantities. In an economic
system, quantities are only half the story. In this section the economic system as a whole
is considered, including price and quantity.

Figure 5.7: The mean economic efficiency of markets by load for markets A to D.

Figure 5.7 shows the economic efficiency of the system for markets A-D, calculated
as the percentage of total surplus, and overall efficiency levels are low. Lower efficiencies
are to be expected given the fact that our system is decentralised and based on the simple
ZIC traders.

One factor that leads to this is our fixed indivisible sizes. Trades that might be possible
from a price point of view are not achieved due to the quantity constraints. Additionally,
given that larger quantities are more likely to fail, and thus add larger amounts of lost
surplus. The smaller jobs that do succeed add less surplus respectively to the achieved
values. The general slight rise in efficiency as load increases is due to the increased
opportunity to utilise the capacity that’s still free by the over demand of jobs.

Chapter 5 84 Performance Results

As market D has the largest potential surplus given its lack of price constraints, we
would expect for its efficiency to be lower than that of Market A, whose supply/demand
curves dictate a much lower achievable surplus.

Interestingly market B is lower than market D. This is due to the much reduced ask
price window (between $250 and $500) when Seller limits are flat and high, making it
impossible for 50% of traders to trade, and more difficult for the other 50% who might be
able to trade.

Figure 5.8: The actual equilibrium price achieved by load for markets A to D. The solid line in-
dicates the achieved price, whilst the dashed line indicates the theoretical equilibrium
price. Note that the theoretical price for markets D is the same as market B.

Figure 5.8 shows the mean achieved equilibrium prices along with the theoretical
equilibrium prices for comparison. For all markets the increased demand from increasing
load does drive the price of resources up to some degree, showing that even with ZIC
traders, the market does adapt to different conditions. The level of adaption however is
variable. Market C does not react to the under-supply situation at high loads, keeping the
same equilibrium price as a load of 1.0. This is due to the fact of the flat buyer prices for
market C, as once all possible supply is sold (which is around a load of 0.5 for market C),
increasing the quantity does not bring pressure to increase price.

Chapter 5 85 Performance Results

Markets C and D are consistently below the theoretical equilibrium. This is to be ex-
pected of market C, as the maximum tradable price is the theoretical equilibrium price.
For market D however, this is likely an indication of the Buyers having an unequal ef-
fect on the price, due to there being many more buyers. Additionally, Market D is the
type of market that ZIC traders have been shown to under-perform in, as there is no guid-
ance towards the equilibrium from the supply/demand curves. Market B is as expected
constantly above the equilibrium price, as the minimum price is the equilibrium price.

The most accurate is market A, with the “standard equal” and opposite supply/demand
curves it provides the most guidance to the market towards equilibrium price. It provides
the closest fit to the theoretical equilibrium price.

Figure 5.9: The periodic average transaction price over simulation time for a range of load values
across all markets.

Figure 5.9 shows the mean transaction prices over time for selected loads for each
market, as another view into the system’s equilibrium state. Here we can see the initial
period of price adaption, and then the prices roughly stabilise. Figure 5.10 shows the time
series variation of Smith’s alpha values for a range of load values for each market. It

Chapter 5 86 Performance Results

Figure 5.10: The periodic averaged alpha values over simulation time for a range of load values
across all markets.

Chapter 5 87 Performance Results

confirms that all markets do converge over time towards the equilibrium price, reaching a
stable point after about 100s on average, this being one “period” of load on the system.

Interestingly, the alpha values drop below the final level before returning up to it. The
reason for this is that the first 100s period is then initial “seeding” period. As the Buyers
arrive in the system sequentially, the first 100s are always in an over-supply situation
initially. This decreases as we approach 100s at which point the system should be stable
with the specified load value and market type dictating over/under supply. This initial
supply situation over exaggerates the initial convergence, and it is consequently readjusted
as the system “fills up” to the requisite load.

In general, high load values mean a slightly lower alpha value. This is due to the
increased number of trades that are happening after the price has stabilised. For higher
load levels, the initial period where the price is adjusting has less trades occurring due to
the initial interim period, and this reduces the number of trades that are further from the
equilibrium.

The notable exception to this is market B, in which the higher loads produce a worse
(higher) alpha value. However, the standard deviation for all alpha values for market B is
much greater than that of other markets, which suggests that market B does not reach as
stable a state as the other markets.

5.2.6 Scalability

One of the key goals of this work is developing a scalable system, and it is that aspect
we explore in this Section. Having set the values of mean degree and shout radius at 4
and 2 respectively, we now vary the size of the network against the same load values. We
test two market conditions here, markets A and D. In Market A, likely trades are more
price-constrained than in Market D, as we see in their relative allocation performance
measures.

Figures 5.11 and 5.12 show the results for a variety of network sizes for these markets.
It is clear that the system does scale as it was intended to, both in terms of the resource
utilisation and the grid infrastructure. Similarly, Figure 5.13 shows that size does not
effect the market efficiency either.

While this is a simple result to show, it should be noted that no current grid allocation
systems scale to this level, in simulation or reality. This strongly suggests that the scala-
bility benefits of a decentralised economic systems are worth further investigation. Given
the scalability characteristics of the system, we use a network size of 256 for the rest of
our investigations, as smaller sizes produce lightly more variance in the results, and larger

Chapter 5 88 Performance Results

Figure 5.11: The mean resource and server utilisation for the system against load and by size in
market A. The results are scaled to compare against a size of 32 as the base level
for each load value. The main observation here is the scalability of the resource and
server utilisation, as all sizes are indistinguishable in resource utilisation. A Kruskal-
Wallis ANOVA on the resource utilisation on sizes show the utilisation levels were
were statistically identical (n = 100, 0.1 < p < 0.9 for all loads). However, using
the Mann-Whitney U test to compare each size sample to each other indicated that
for a size of 32 utilisation was significantly lower at lower load values (p < 0.05 for
size = 32 and load < 0.6). This is due the fact that the performance suffers from the
very small network size (and consequently increases the issues with discrete non-
divisible job sizes).

Chapter 5 89 Performance Results

Figure 5.12: The mean resource and server utilisation for the system against load and by size
in market D, scaled as in the previous figure. Again, the main observation here is
the scalability of the system. Interestingly, larger sizes do perform slightly better in
this scenario at higher load levels. A Kruskal-Wallis ANOVA shows utilisation is
identical for low load values (n = 100,0.2 < p < 0.8 for load < 1.0) but statically
slightly higher for higher loads (p < 0.05 for size = 32 and load >= 1). Again this
slightly higher utilisation (less than 1%) is due to the discrete Job sizes being less
likely to hit limits due to the increase number of Resources.

Chapter 5 90 Performance Results

Figure 5.13: The mean market efficiency for the system against load and by size for Market A
on the left and Market D on the right. Kruskal-Wallis ANOVAs show efficiency
is similar for all sizes when load is low (n = 100,0.1 < p < 0.5 for load < 1.0),
however individual Mann-Whitney comparisons indicate that that higher loads, a
size of 32 once again is lower by 2-3%(p < 0.05 for size = 32 and load >= 1.0).

sizes take longer to execute.

5.2.7 Summary

The basic results indicate that the system provides a reasonable trade off between an
efficient allocation and a scalable allocation. A high degree of scalability is achieved at
the cost of a slightly less than optimal allocation.

Chapter 5 91 Performance Results

5.3 CDA Auction

In this Section, we develop a decentralised CDA auction mechanism, and explore the use
of ZIP traders in such an auction.

5.3.1 CDA Implementation

Implementing a decentralised CDA is more complex than a sealed bid auction, due to
public quoting. Each trader must “shout” its quote out to its neighbours, which is then
forwarded on up to the shout radius. Additionally, both Buyers and sellers can quote
a price, whereas only Sellers quote in the sealed bid implementation. However, unlike
actual shouting, where it is impossible to selectively shout to some and not others, our
electronic shouting is over a point-to-point link, so it can be selective.

For all traders, we implement the shouting of quotes using a repeating timeout, or
shout period. That is, every shout period, a trader who is capable of trading shouts his
current price to all neighbours. Sellers commence this regular shout after a short random
delay, to avoid synchronisation, so they are all shouting regularly but out of phase. Buyers,
however, do not shout as soon as they enter the system - they wait for one shout period
in order to ascertain the state of the market. At the end of this period, they can either
commence shouting, or accept any asks they may have heard during this initial period.
This delay is added to that a new naive trader that joins the market does not accept the
first acceptable price to come its way - it waits until it has a more accurate picture of the
current market. It does however increase the allocation time somewhat compared to the
sealed bid auction.

When a trader hears a quote, it checks to see if the quote is valid, i.e. the price and
quantity are acceptable to the trader. For Buyers, this means the quote price is below their
current price, and has enough size to perform their job. For Sellers, this means the quote
price is above their current price, and they have spare capacity with which to do the job.
If the quote is valid, it sends an accept else it ignores the quote. If a Buyer accepts an
ask, he becomes inactive, not responding to any other asks, and ceases to shout out his
quote, although continues to observe the market. If the accept is rejected or times out, the
Buyer becomes active again and starts shouting and trading. If a seller accepts and bid
that would leave it no spare capacity, it becomes similarly inactive, until an executing job
completes or the accept is rejected or times out.

Accepts are handled in the same manner as the sealed bid auction. That is, a private
message is sent between the traders. Usually in CDA, the acceptance of a quote is public
knowledge, either by the other traders hearing the acceptance shout in an open outcry

Chapter 5 92 Performance Results

auction, or by the information presented by a central auction mechanism. In a P2P setting,
this is difficult to achieve without adding some degree of centralisation, as we cannot
trust the traders to shout their acceptance - they may signal acceptance just to the other
trader, or even shout out false accepts to influence the market. Whereas with a private
acceptance, no trust is needed between traders to behave honestly. This is another trade-
off of removing any centralised component.

5.3.2 ZIP implementation

We explore the CDA with ZIC traders, and compare to the sealed bid mechanism. Unlike
the sealed bid model, a CDA has public quoting, so we can also attempt to use a simple
ZIP algorithm to improve the trading process.

However, there is a difficult problem to overcome. The ZIP algorithm (like all other
trading algorithms discussed in Section 3.2.2) relies on the knowledge of the success
or failure of a particular quote in the market. Usually, this is provided by a centralised
mechanism, which we do not have. In theory, traders could shout accepts in the same
manner as an open outcry CDA. This would allow other traders to observe the success
or failure of a quote, and use it to update their ZIP model. However, this is difficult to
enforce in a decentralised fashion, as discussed above.

To attempt to solve this problem, we make use of Despotovic’s decentralised ZIP
trader [37] (see Section 3.2.2.2), which we label ZIPD. ZIPD first uses ZIP’s delta rule to
observe the price of buys and asks separately. This is the estimate bid price and ask price,
indicated at time t by bidst and askst respectively.

When observing a quote, it first calculates an estimated completion price p as the mid-
point between the quote’s price, and the observed values. For a bid, p = bidst+q

2 (where q

is the quote’s price and bidst is as above). For an ask p = askst+q
2 (q is the quote’s price

and askst is as above).
If the quote’s price is better than the currently estimated opposite quotes price (for a

bid, if q > askst , or for an ask, if q < bidst) then the trade is estimated to have succeeded
at the estimate trade price p, else failed at price p. This estimated success and price p are
then used to update a standard ZIP algorithm to track the price changes.

By removing the need for explicit knowledge of success or failure of a quote, ZIPD
allows the use of some ZIP-like intelligence in a completely decentralised manner. The
fact that success or failure is estimated rather than observed will likely mean that the
ZIPD does not perform as well as centralised ZIP agents, but it does actually add some
intelligence beyond the basic ZIC agent used so far.

Chapter 5 93 Performance Results

In the next section look at both ZIC and ZIPD in a CDA market.

5.3.3 CDA with ZIC Traders

We examined the CDA auctions under the same conditions as our sealed bid investiga-
tions. That is, a mean degree of 4, shout radius of 2, a random network of size 256 and
ZIC traders. The accept timeout parameter is the same (10s), as is the number of mi-
grations (3). A new parameter was introduced, the shout period, being the time between
regular quote shouts on the network. We tested a variety of values for this value in simu-
lation, a lower period meaning better allocation performance, but more message load on
the system. A value of 10s was used for these experiments, as that value was the lowest
that would not overload the messaging infrastructure at high load levels. As before, the
CDA was examined over varying load levels and market situations, for 100 runs.

Figure 5.14 compares the system allocation performance of the CDA auction. In
general, the CDA does not perform as well as the sealed bid. In markets A, B and C,
the resource utilisation is significantly lower than the sealed bid mechanism. Market D is
comparable, but the utilisation is slightly less. The mean server utilisation is higher for
the CDA, as would be expected given both traders are shouting regularly. The queue time
increases significantly at higher loads, as many more messages are being shouted.

Figure 5.15 compares the CDA’s economic performance with that of the sealed bid
auction. Interestingly, the equilibrium price is higher in the CDA than in the SB, although
it follows the same pattern across load values. This is understandable, given a more equal
exposure of price information from both Buyers and Sellers. Market efficiencies are lower
with the CDA for all markets except D.

Figure 5.16 shows the allocation times for the sealed bid auction and the CDA. Clearly
the CDA takes a lot longer to perform the allocation process. This explains the lower
measured resource utilisation to some degree, as well as the lower market efficiency, as
jobs are taking much longer to allocate in the CDA, thus taking longer to “fill up” the
grid, which lowers the utilisation results.

There are several factors that underlie the CDA’s performance. Firstly, the time taken
to allocate is very long, especially compared to the actual run time of the job itself. This
means that jobs persist in the system much longer, so increasing the load as there are a
larger number of active Buyers. Clearly, this is contrary to the argument for using a CDA
in the first place - that of fast adaption.

The second factor is a key difference between the two auctions mechanisms. In the
sealed bid auction, Buyers receive a number of quotes before responding to one of them.

Chapter 5 94 Performance Results

Figure 5.14: The above figures show results from the sealed bid mechanism on the left and the
CDA on the right. The top figure shows resource utilisation, the middle shows server
utilisation and the bottom figure shows mean server queue time. Presentation is as
previous figures for these values.

Chapter 5 95 Performance Results

Figure 5.15: The above figures show results from the sealed bid mechanism on the left and the
CDA on the right. The top figure shows the equilibrium price, the middle shows
market efficiency and the bottom figure shows the alpha values. Presentation is as
previous figures for these values.

Chapter 5 96 Performance Results

Figure 5.16: The allocation times for sealed bid auctions and CDAs. The solid lines show the
succeeded times, dashed lines show the failed times.

In the CDA, all traders respond as soon as a quote is heard that is satisfactory. This eager
bidding will likely result in more traders accepting the same bid at roughly the same
time. For example, suppose a seller shouts a quote, and five Buyers accept this quote as
soon as they hear it. The first Buyer’s accept to arrive at the Seller will win the quote,
and the other four will lose out. In the mean time, the losing four Buyers have not been
actively trading, waiting for a response, so may have missed other opportunities, and have
to wait for another acceptable quote to arrive. This partial synchronisation of the bidding
is detrimental to the process, and adds directly to the greatly increased allocation times.

5.3.4 CDA with ZIPD Traders

Here we investigate the ZIPD agent strategy. We set the parameters for the internal ZIP
agent to be the same as the initial ZIP work [26].

To verify the convergence behaviour of the ZIPD traders we look at the behaviour of
ZIPD Buyers with constant Sellers, and of constant Buyers with ZIPD Sellers. Figure
5.17 shows the price and trader values for a single run, for both situations. The ZIPD
traders observation of asks and sell price accurately follows the curve of quote prices. The
ZIPD Sellers converge well to the Buyers’ fixed price, however the ZIPD Buyers under-
estimate the Sellers price and offer below the fixed price. Figure 5.18 shows the same
metrics when both Buyers and Sellers are ZIPD agents again for a single run. Here we
see that the agent’s prices are diverging rather than converging towards the equilibrium.
They reach a steady state that is quite far from the equilibrium price.

Chapter 5 97 Performance Results

Figure 5.17: The mean price for ZIPD agents in the CDA over time for a single run of 512 re-
sources, a load of 1.0 and Market A. The left figure shows the Buyers as ZIPD agents
with the Sellers at a fixed price of $200, while the right image shows ZIPD Sellers
with the Buyers at a fixed price of $300.

Figure 5.18: The ZIPD trader mean price factors for ZIPD agents over time for a single run of
512 resources, a load of 1.0 and market A.

Chapter 5 98 Performance Results

The ZIPD traders’ estimation of market success seems to be inaccurate in our CDA
market. As little further details were published in the original work, it may be that some
assumption was made that we are not aware of. It is likely that the lack of sophistication in
our CDA mechanism as discussed above is influencing the ZIPD algorithm’s performance
to some degree.

Building a ZIP derivative that can function in decentralised markets is a challenge and
requires further study. We discuss possible directions for this study in Chapter 7.

5.3.5 CDA Summary

Currently, our CDA mechanism lacks the sophistication needed to achieve reasonable
performance. A possible improvement might be to collect quotes and respond to the best
one heard over a period of time, thus improving the price of the final trade, and avoiding
the “race condition” imposed by a synchronised immediate response. This idea and others
for improving our CDA mechanism are discussed further in Section 7.3.3.

Additionally, our implementation of ZIPD was not able to adapt to the market condi-
tions. This may be a factor of our inefficient CDA process, but more work is needed to
investigate further. However, the ZIC traders still provide basic economic functionality
that provides reasonable performance.

For the rest of the study, we use the sealed bid mechanism, given its superior perfor-
mance.

Chapter 5 99 Performance Results

5.4 Network Topologies

In this Section we investigate the effect of varying the topology of the network, and its
effect on the performance of the simulation.

5.4.1 Implementation Details

In order to modify the characteristics of the topology or our network, we modify the basic
generation algorithm described in Section 4.4.2. We maintain the initial round of giving
every node a random link, and then adding random links until the requisite number of
links has been achieved. However, we alter the choice of random links using a variety of
parameters.

We add the concept of local vs global links (small world) after [113], preferential at-
tachment after [7], and add a further novel mechanism for generating more social (higher
transitivity) topologies.

For the local vs. global aspect, we first introduce the idea of locality. As each node in
the network has a 2D coordinate, we use this to split the nodes into a number of regions,
and a “local” link is defined as a link to a node in the same region.

We then introduce the parameter p global, which denotes the probability that the link
will be selected from the global population as opposed to the local population. This is
based on the random re-wiring of a regular network from Watts and Strogaz [113], and is
a similar method as used in our previous work [87], albeit with less regular locality. Our
random networks used so far therefore have a p global of 1.0, as all links are selected
globally. Given that only small numbers of these “long range” global links are needed
for small world-type behaviour, we use the values of 1

64 , 1
32 , 1

16 , 1
8 , 1

4 , 1
2 and 1 to explore

this parameter space. We do not use a value of 0 (or close to 0), as for our model of
locality, this would not produce a single network component, rather one component for
each region.

For exploring scale free topologies, we use the preferential attachment algorithm pro-
posed in [7]. When choosing a link to connect to (whether from a pool of local or global
links, as above), preference is given to those with a higher degree according to an expo-
nent, p pre f . A roulette selection method is used to then select the node. That is, each
valid node choice is given a score equal to the degree of the node to the power of the
exponent p pre f . A uniform random variate between 0 and the sum of the nodes’: scores
is used to select the node with which to link. Thus, those nodes with a higher degree are
more likely to be chosen. Note for our random networks, p pre f is 0, and node choice
is egalitarian. We investigate this space using the same values as in our previous work,

Chapter 5 100 Performance Results

using 0.2,0.4,0.6,0.8,1.0 and 1.2.
We add a social network inspired method of modifying the chosen node. We introduce

the parameter p social, which represents the probability that a node to link to must be
chosen from a node’s neighbours’ neighbours, or “friends of a friend” (FOAF). If a link
is “social”, a list of all the current node’s neighbours’ neighbours is produced (a FOAF
list), excluding any that are already neighbours of the node. If the link is local, the FOAF
list is limited to local neighbours, otherwise it is global across all neighbours. The FOAF
list is used to select a node to link to, using the preferential model outlined above. Thus
each additional “social” link forms a new triangle in the network. In the early days of
generating the network (when only a handful of links are generated), this is not always
possible, so if there are no valid social links to be made, a random choice is made.

We utilise some of the measures described in Section 3.4.2.1 to analyse the charac-
teristics of the network. This allows us to examine the expected characteristics of the
network topologies generated.

5.4.2 Performance

We use the sealed bid mechanism for ZIC traders to explore each parameter, as this is the
most robust solution we have explored. These experiments were run with our standard
setup of size 256, a mean degree of 4 and shout radius of 2. We use Market A as an
example of a common realistic market condition. We examine the effect of the topologies
on resource and server utilisation, and market efficiency and convergence, over varying
load levels, as before.

5.4.2.1 Small World Networks

Figure 5.19 shows the impact on the resource utilisation and the infrastructure for vary-
ing the p global across the range of values discussed. A p global of 1.0 is the same
as the base random network we have been using so far. Table 5.3 shows the measured
characteristics of the different topologies generated.

Interestingly, low values of p global (1
64 and 1

32) give rise to a slight improvement in
overall resource utilisation, but add a slight increase to the load on the infrastructure. In
these situations, most of a node’s links are to other nodes in its own region, and thus are
able to communicate at a reduced latency. This suggest that communication latency is a
factor in overall performance, and should be taken into account when designing network
mechanisms for these systems. The infrastructure load increase is interesting. Note that
for a p global of 1

16 to 1
2 , the load on the infrastructure is actually lower that a p global of

Chapter 5 101 Performance Results

Figure 5.19: a) The mean resource utilisation b) mean server utilisation and c) the mean queue
time, over load for a variety of small world networks determined by the parameter
p global. Results are shown scaled relative to p global = 1, which is a standard
random network. We can see here that lower values of p global perform better
than values. Specifically (using Mann-Whitney test), p global values of 1

64 and
1
32 are significantly greater by up to 30% (n = 100, p < 0.05 for p global <= 1

32
for all loads), whilst greater p global values have no real effect (0.1 < p < 0.4 for
p global > 1

32).

Chapter 5 102 Performance Results

Figure 5.20: a) The equilibrium price b) market efficiency and c) Smith’s alpha value, over load
for a variety of small world networks determined by the parameter p global, scaled
as previous figure. Interestingly, efficiency for a p global values of 1

32 or less
achieve slightly lower efficiency at lower loads (Mann-Whitney, n = 100, p < 0.05
for load < 0.8), and slightly higher efficiency at greater load levels (p < 0.05 for
load >= 1.2). Other values of p global performed comparably (0.1 < p < 0.5 when
p global > 1

32 for all loads).

Chapter 5 103 Performance Results

p global Avg Path Length Degree Correlation Degree Skew Transitivity
1/64 6.117 (1.350) -0.020 (0.033) 0.301 (0.176) 0.279 (0.096)
1/32 7.017 (1.546) -0.025 (0.043) 0.437 (0.176) 0.158 (0.067)
1/16 5.968 (0.455) -0.034 (0.041) 0.510 (0.175) 0.112 (0.021)
1/8 5.088 (0.161) -0.030 (0.043) 0.510 (0.158) 0.090 (0.012)
1/4 4.515 (0.062) -0.027 (0.045) 0.545 (0.163) 0.059 (0.009)
1/2 4.222 (0.029) -0.033 (0.041) 0.544 (0.162) 0.022 (0.006)
1 4.184 (0.027) -0.029 (0.042) 0.532 (0.159) 0.013 (0.004)

Table 5.3: Key network parameters for small world networks of size 256 and varying p global
values (standard deviation in brackets, for 100 runs). As expected, the average path
length decreases with increasing p global values, as does transitivity. Interestingly,
the degree skew (as an indicator of degree distribution) also increases slightly with
p global, showing a move towards scale free properties. This is a result of our initial
link creation round, where we give every node a link, which skews the distribution
slightly.

1.0. A plausible reason for this variation is due to the reduced latency for local links. For
very local topologies (low p global), the lower latency means messages arrive quicker,
building up more load in the servers. It could also make the bidding more sensitive to
message arrival times - “you snooze, you lose” - and increase the need for further negoti-
ations, thus increasing load.

As locality is reduced, some messages arrive quickly, but others are slower, evening
out the spread of messages out, which explains the reduction in message load. The in-
creased load found when p global is 1.0 is interesting. Given that in this case there will
be the most variance in latencies across a node’s links, this increases the load slightly, as
some synchronisation is lost.

Figure 5.20 shows the effect of varying p global on the economic market. Again,
low p global values induce the largest effect, most notably a slightly lower equilibrium
price. This loses efficiency at low load levels but gains some at higher loads, and overall
improves the convergence of the market towards equilibrium.

This suggests that a regular topology with a few global links provides the best perfor-
mance for this system. These results for p global are similar to the values found to be
best in our previous work [87].

5.4.2.2 Scale Free Networks

In this Section we investigate the effect of preferential attachment on the system. Figures
5.21 and 5.22 show the system performance, and Table 5.4 shows the network character-
istics.

Chapter 5 104 Performance Results

Figure 5.21: a) The mean resource utilisation b) mean server utilisation and c) the mean queue
time, over load for a variety of scale free networks determined by the parameter
p pre f . Results are shown scaled in comparison to p pre f = 0. For lower loads,
only a p pre f of 1.2 is significantly greater (Mann-Whitney, n = 100, when load <
0.6, p < 0.05 for p pre f = 1.2, p > 0.1 for p pre f < 1.2). The load allows the social
“hubs” to perform well and do their job as a mediator for other nodes. However,
when load is higher, p pre f values greater than 0.4 all perform worse (at load of 2.0,
p < 0.05 for p pre f > 0.4), while values less than 0.4 perform similarly to a p pre f
of 0.

Chapter 5 105 Performance Results

Figure 5.22: a) The equilibrium price b) market efficiency and c) Smith’s alpha value, over load
for a variety of scale free networks determined by the parameter p pre f , scaled as
the previous figure.

Chapter 5 106 Performance Results

p pre f Avg Path Length Degree Correlation Degree Skew Transitivity
0.0 4.183 (0.027) -0.031 (0.037) 0.560 (0.162) 0.014 (0.004)
0.2 4.155 (0.029) -0.047 (0.045) 0.643 (0.171) 0.014 (0.005)
0.4 4.114 (0.029) -0.070 (0.041) 0.782 (0.203) 0.015 (0.004)
0.6 4.056 (0.040) -0.099 (0.043) 1.017 (0.211) 0.016 (0.005)
0.8 3.972 (0.041) -0.134 (0.036) 1.475 (0.301) 0.017 (0.005)
1.0 3.853 (0.051) -0.168 (0.031) 2.395 (0.751) 0.019 (0.004)
1.2 3.617 (0.121) -0.197 (0.034) 4.504 (1.928) 0.025 (0.005)

Table 5.4: Key network parameters for small world networks of size 256 and varying p global
values (standard deviation in brackets, for 100 runs). Here we see decreasing degree
correlation as well as increasing positive degree skew, which are the indicators of scale
free networks. The slight increase in transitivity is due to the increased chance that any
two linked nodes will be more likely to link to the same high degree node, thus forming
a triangle. The decrease in average path length are due to the popular nodes acting as
central hubs for paths, and are lower than those in table 5.3.

Clearly the higher levels of p pre f have a detrimental effect on every aspect of per-
formance, especially at high load levels, and do not perform any better than a p pre f

of 0. This is due to the modelling of server performance, as there is no guarantee that
a node with a a high number of links will have a faster service time. Thus the popular
nodes are being swamped beyond their capabilities, increasing the load on the whole sys-
tem. A worthwhile extension to this aspect of the investigation would be to change the
preferential attachment to be towards faster servers rather than higher node degree. This
would have the effect of faster servers having more connections, but they would be able to
support these connections, which may allow the scale free nature of the topology to have
more impact. It should be noted that our previous investigations found a p pre f value of
0 to be the most effective when communication costs were not modelled, so it is unlikely
this extension would change the result. In a dynamic network, exploiting preferential at-
tachment when load is low may provide some benefit, but would need to relaxed if load
rises.

5.4.2.3 Social Networks

Here we present the results for varying p social. Figures 5.23 and 5.24 show the results.
Higher levels of “socialness” result in slightly degraded performance overall, particularly
at high loads and low loads. This suggests that while real trading networks are formed
over social lines, in a purely topological sense, random networks perform better.

Chapter 5 107 Performance Results

Figure 5.23: a) The mean resource utilisation b) mean server utilisation and c) the mean queue
time, over load for a variety of social topologies determined by the parameter
p social. Results are shown scaled relative to a p social of 0. For low loads, a
p social of 0.8 yield slightly improved utilisation (Mann-Whitney, n = 100, p < 0.05
when p social = 0.8 and load < 1.2). However, as load increases, the higher
p social yield significantly lower utilisation, and a p social of 0 has higher utili-
sation than all others (p < 0.05 for p social = 0 and load > 1.2).

Chapter 5 108 Performance Results

Figure 5.24: a) The equilibrium price b) market efficiency and c) Smith’s alpha value, over load
for a variety of social topologies determined by the parameter p social, scaled as
previous figure. For load values around 1.0, p social make little difference to market
efficiency (Mann-Whitney, n = 100, p > 0.1 when 0.8 <= load <= 1.2). At higher
loads however, a greater p social has a negative effect on efficiency (p < 0.05 for
p social > 0 and load > 1.2).

Chapter 5 109 Performance Results

p social Avg Path Length Degree Correlation Degree Skew Transitivity
0.0 4.186 (0.030) -0.020 (0.044) 0.552 (0.171) 0.013 (0.004)
0.2 4.356 (0.150) -0.019 (0.044) 0.608 (0.139) 0.103 (0.010)
0.4 4.559 (0.437) -0.003 (0.044) 0.656 (0.187) 0.193 (0.019)
0.6 4.947 (0.690) 0.012 (0.041) 0.717 (0.170) 0.277 (0.028)
0.8 4.602 (1.672) 0.019 (0.043) 0.692 (0.184) 0.338 (0.046)

Table 5.5: Key network parameters for small world networks of size 256 and varying p social
values (standard deviation in brackets, for 100 runs). Here we see the increase in tran-
sitivity typical of social networks. We also see a small increase in degree correlation,
which is another characteristic of social topologies. However, the average path length
and degree skew are similar to our base random network.

5.4.3 Networks Summary

Overall, the topologies investigated here do not have significant impact on the perfor-
mance of the system. In extreme cases, scale free and social topologies actually reduce
the performance due to their uneven spreading of message load across the system. It
is possible that when under low load, scale free and social topologies my provide some
benefit, but not at higher load levels.

The only topology that provides any benefit at high loads is the small world topology at
low values of p global. As this is effectively a regular network with a few random links,
topologies for this type of system would likely benefit from adopting a geographically
based regular network of some kind, along with adding functionality for creating longer
range links. However, the benefit is very small, and it could be that random networks
provide the best real world implementation option due to their simplicity.

5.5 Summary

In this chapter we have presented our base decentralised economic mechanism, and ex-
amined its performance and behaviour. We also introduced an effort towards a fully
decentralised CDA mechanism, however this did not perform as well as the sealed bid
mechanism, and need further exploration. We also investigated the use of a decentralised
ZIP algorithm, but found it unable to correctly converge on the market price.

We further explored our decentralised system by examining the topologies underlying
the trader communications, and found some evidence that small world networks based on
underlying regular networks have some benefits to our system.

In the next chapter, we evaluate our solution further, by comparing it to the current
grid allocation approaches, and examining its adaptability.

Chapter 6

Evaluation

6.1 Overview

In this chapter we evaluate the performance of our grid allocation mechanism by com-
paring it to a centralised approach based on Globus MDS. Ideally for a fuller evaluation
comparison to other economic allocation systems, such as Tycoon (see Section 3.3.2.3),
would be valuable. However, the model of grid computation used by Tycoon is very dif-
ferent to the concept of jobs that we have utilised. Tycoon’s job model is that of custom
CPU-bound or IO-bound jobs that find a pool of available resources and manage a long-
running job by interactively altering the bidding amounts on different machines according
to their load. In comparison, our simpler model of a single job with a fixed budget, which
participates in a one-off market to agree on a price for the whole job, is very different.
The simulation tool used in this work is based around this model, and would require ex-
tensive modification to incorporate Tycoon’s grid model. Additionally, the Parent/Child
agent strategies used in Tycoon are custom built and more challenging to implement in a
more generic manner.

This means that a full comparison with Tycoon is out of the scope of this work. How-
ever, comparison with an implementation of a current non-economic grid system has been
investigated, and highlights some of the benefits of our economic approach.

We also examine the system adaptability. So far, the supply and demand of the system
has been static for the length of each experiment. In Section 6.4, we report on effects of

110

Chapter 6 111 Evaluation

varying the load on the system throughout the execution of the simulation.

6.2 A Centralised Grid Allocation Mechanism

The most common centralised algorithm for computational grids today utilises the Globus
MDS system discussed in Section 2.6.1 as a resource discovery service. Various different
agents can then query this service and use the results to select a suitable resource (or set
of resources).

Our MDS model uses the concept of a centralised resource broker to provide an au-
thoritative allocation. This broker maintains a view of the current global state of all the
resources on the grid. Resources periodically update the broker with their current free
capacity. When a new job enters the system, it queries the broker for an allocation. Our
broker then returns an allocation for the job of the best resource to execute on. To de-
termine this, it constructs a list of all resources that currently have enough free capacity
to execute this job’s size, and then selects the resource that would maximise utilisation,
i.e. the resource with the smallest free capacity. It then reduces its record of the free
capacity of the chosen resource by the job’s size. In this way, the broker should maximise
the resource utilisation across the whole grid. Upon receiving the allocation, the job then
contacts that resource directly to request execution.

Clearly, a single broker would provide a close to optimal allocation. However one bro-
ker can only support a limited number of resources before becoming overloaded. Globus
MDS supports the idea of federated servers that exchange information between each other
about the current state of their resources to allow the system to scale. Thus we imple-
ment a system of federated brokers, that periodically update each other of their resources’
states. We use the idea of regions to facilitate this. Each region has its own broker, and
resources in that region send updates to that broker. Periodically, the brokers update each
other on their resources’ state. This allows the broker system to scale, as one broker is
not handling the allocation for the whole grid, but introduces a further degree of error into
their view of the state of the grid, as state will more likely be out of date.

The federation reduces the authority of the allocation of the broker. It may be that
two different jobs get allocated by two different brokers to the same resource, which only
has enough free capacity to do one of the jobs. In which case, the first job’s request that
arrives at the resource will execute, while the other with be rejected, and will have to
query its broker again for another allocation. Jobs can only query a broker a fixed number
of times (similar to the migration concept of our economic approach). Note that because
of the sharing of information between brokers, each broker has a record of every resource

Chapter 6 112 Evaluation

on the grid, thus there is no need to migrate the jobs themselves, as a broker could allocate
a resource anywhere on the entire grid.

6.2.1 Performance Characteristics

The accuracy of the broker’s model of the grid depends on the update frequency from
its resource. The shorter the period between updates, the more accurate it will be, but
it will only be able to process a limited number of updates per second before becoming
overloaded. Clearly, a single broker can only support a certain number of resources (and
therefore each region must be of a maximum size) before the broker cannot perform ade-
quately. Additionally, the broker will have to handle allocation requests for all the jobs in
its region as well.

Figure 6.1: The mean resource utilisation for MDS with one broker and a load of 2.0 across a
range of update periods and sizes, for 100 runs.

As the brokers would be a central aspect of the grid service, it is fair to expect that
the broker’s server will be faster than a normal server, so we set service time means for
brokers using a normal distribution with µ = 0.02 and σ = 0.005 (2.5 times faster than
a normal server on average). We also ensure that each site has a faster “local” link to its

Chapter 6 113 Evaluation

region’s broker, and that the brokers have fast links to each other (see table 4.1). In terms
of the maximum number of attempts before failing, we limit this to 3, the same as our
maximum migrations parameter in the economic systems.

Figure 6.2: The mean resource utilisation for MDS with one broker and a load of 2.0 across a
range of update periods and sizes, for 100 runs.

In order to ascertain the maximum connections a broker can sustain, we investigate
the performance of the system with a single broker across a range of update periods at
a maximum load of 2.0. Figure 6.1 shows the MDS resource utilisation for a variety
of resource update period and sizes. Firstly, we notice from this that the mean resource
utilisation is better for a lower resource update period. While a single broker keeps track
of when jobs are allocated, it still needs the update from the resource to tell it when the
jobs have completed. This creates a time window where a less than optimal allocation can
occur due to outdated information. Of course, even with an optimal allocation scheme
some utilisation is lost due to our fixed job sizes, as discussed previously.

Secondly, at bigger sizes utilisation degrades considerably. Figure 6.2 shows the
server utilisation and queue time for the single broker. For each resource update period,
there is a maximum number of connections before the system gets overloaded.

Given the improved utilisation of lower resource update values, we will use the lowest
value of 10s for the resource update period to provide the best performance, and set the
maximum region size to 100, to allow the brokers to perform adequately.

A further element to the MDS system is the broker update period, the amount of time
between updates between brokers. Setting the resource update period to 10s, we examine
the effect of this parameter with a fixed number of 4 brokers, across a variety of sizes.
Figure 6.3 shows the results, and we can see that surprisingly, a more frequent update
reduces the utilisation slightly, but not significantly. Above sizes of 400 (i.e. bigger than
4 times a region size of 100) we see performance degrades slightly. Figure 6.4 shows the

Chapter 6 114 Evaluation

Figure 6.3: The mean resource utilisation for MDS with 4 brokers and a load of 2.0 across a range
of broker update periods and sizes, for 100 runs.

Figure 6.4: The mean broker utilisation and queue time for MDS with one broker and a load of
2.0 across a range of broker update periods and sizes, for 50 runs.

Chapter 6 115 Evaluation

load on the brokers, and shows that broker update time has a much lesser effect on system
load, and so we set the value to 20s for our experiments.

6.3 Comparison of Systems

Figure 6.5: The mean resource utilisation for the sealed bid mechanism (market D) on the left and
the MDS system on the right, across varying size and load values, for 100 runs.

We compare the performance of our sealed bid mechanism against that of the MDS
system. As the MDS system has no concept of economic price constraints for jobs, we
used market D with the sealed bid auction, with price constraints that maximise trading
opportunities as Buyers and Sellers prices never intersect.

Figure 6.5 shows the resource utilisation for both systems, across both size and load.
The main factor here is that while the MDS system performs better at lower loads and
lower sizes, its performance degrades at high loads and sizes. Our economic system
however scales identically for all loads and sizes, and out performs MDS at higher sizes.
This shows the primary advantage of our economic system, that of scalability.

Figure 6.6 shows the broker utilisation and queue times across size and load. This
shows that the degradation of performance in MDS at higher sizes/loads is not due to the

Chapter 6 116 Evaluation

Figure 6.6: The mean broker utilisation and queue time for the MDS system across varying size
and load values, for 100 runs.

overloading of the broker servers, but rather to the algorithm itself.

6.4 Market Adaption

The experiments reported in Chapter 5 were all run with static supply and demand curves
for the whole simulation run. In reality, these curves are not constant, and change over
time. To investigate the responsiveness and adaptability of our simulated markets, we
dynamically vary the load value. We define four varying demand schemes as follows.

1. A square wave pattern, starting low at a load of 0.5, and alternating up to a load of
1.5. This simulates “market shock” situations, where the underlying market supply
and demand change suddenly.

2. An inverted square wave, as 1 but starting high and then dropping low.

3. A sine wave pattern, starting at a load of 1.0, rising to 1.5, then down to 0.5. This
is designed to simulate the general fluctuations of supply and demand that happen
over time.

4. An inverse sine wave - as 3, but going down to 0.5 first then up to 1.5.

Every scheme’s overall mean load value is 1.0, so they should provide the same overall
level of utilisation, in theory, and every pattern is repeated twice.

Figure 6.7 shows the resource utilisation for the sealed bid auction with market A,
over time for each demand scheme, averaged over 50 runs. The system responds well to
the various schemes driving it, clearly adapting to the changes in load. For the harsher

Chapter 6 117 Evaluation

Figure 6.7: The adaption of mean resource utilisation for the sealed bid auction with market A for
each demand scheme over time. The left scale indicates the resource utilisation, while
the right indicates the load values driving the run. Results for the average of 100 runs.

Chapter 6 118 Evaluation

square wave patterns (1 and 2), some time is needed to adapt. This is due to the fact that
increase in load means an increase in arrival rate, which will of course impact the system
over time rather than instantaneously. Of course the utilisation is not affected until the job
has successful been allocated, adding the delay from the bidding process to the results.
The sine wave patterns (3 and 4) show this more clearly, as there is a clear phase delay,
although the adaption does follow the driving curve closely at the peaks, and less so in
the troughs.

Figure 6.8: The adaption of mean transaction price for the sealed bid auction with market A for
each demand scheme over time. The left scale indicates the mean transaction price,
while the right indicates the load values driving the run. Results are for the average of
100 runs.

The results for mean transaction price are shown in figure 6.8, and we see a similar
adaption here, the price adapts quickly to the changes in demand. With the square wave
pattern, we see that the price changes to the price level usually before 100s have elapsed
since the change in load value. That is, most of the change in price has occurred before the
new load value has actually been achieved. This is a desirable characteristic, and shows
that our sealed bid auction with ZIC traders can adapt to changes within a short time
period (less than 30 simulated seconds), although we would of course expect intelligent

Chapter 6 119 Evaluation

traders to adapt faster than this.

Figure 6.9: The adaption of mean transaction price for the sealed bid auction with market D for
each demand scheme over time. The left scale indicates the mean transaction price,
while the right indicates the load values driving the run. Results for the average of
100 runs.

The above results use Market A, which provides intersecting supply/demand curves
to drive the adaption of price. For comparison, Figure 6.9 shows the results for Market
D, where the supply/demand curves are flat. Here we see the same basic adaption, but
without the guidance of intersecting supply/demand curves. The effect of the different
supply curves can be seen in the range between upper and lower prices, which is greater
for Market A than Market D. But adaption still occurs at a similar speed in both markets,
if less accurately in Market D.

6.5 Evaluation Summary

In this chapter we have presented a comparison of our decentralised economic resource
allocation system with an example of the centralised systems currently employed. While
the centralised system does provide greater overall allocation performance, it has been

Chapter 6 120 Evaluation

shown to have difficulty scaling to large numbers of resources. The economic mechanism
in general slightly under-performs the centralised system for low sizes and loads, but
scales extremely well to larger values of size and load.

We have shown that our economic system can adapt to dynamic changes in the under-
lying market situation, both sharp shock changes and gradual fluctuations, within reason-
able time scales and performance.

Chapter 7

Conclusions and Further Work

7.1 Conclusions

7.1.1 Objectives

We have proposed and investigated a novel fully decentralised system for resource al-
location on grid systems, using an economic metaphor. We have shown that this is a
feasible option for a grid allocation mechanism, and in key aspects such as scalability,
it has advantages over the current centralised approach. While there are many areas of
improvement may be needed to make such a system a suitable solution, we have carried
out initial exploratory work and laid a foundation for future development.

We also explored variations in network topology of the trading networks, which has
not been extensively investigated, particularly at larger network sizes. As part of this, we
develop and implement a novel mechanism for creating social network inspired topolo-
gies.

7.2 Thesis Contribution

In this thesis, we contributed the following as outlined in Chapter: 1.

• We have provided a detailed description of existing economic allocation mecha-
nisms, and have examined their suitability for use in a grid environment.

121

Chapter 7 122 Conclusions and Further Work

• We have investigated our novel fully decentralised economic allocation mechanism
for grid systems, and shown it to to achieve acceptable performance.

• We have examined the effects of topological features on the network used by our
decentralised mechanism, and show that small world topologies have potential ben-
efits.

• We have compared our decentralised economic system with the current approach to
grid allocation, and show that our method performs better at larger network sizes.

Whilst the basic mechanism proposed here is an early effort, as a first step towards
producing such systems it shows the promise of such systems. In particular, the scalability
characteristics of our system would be very desirable in a real grid system. There is much
that could be done to develop our system further, which is outlined in greater detail in
Section 7.3.

7.3 Further Work

7.3.1 A More Accurate Model of the Grid

Our simplified model abstracts away many real world issues in grid computing. A more
detailed model would increase the validity of our results.

An obviously useful addition would be the inclusion of variable job execution times.
That is, a job’s duration is only an estimate with some degree of error. It could therefore
finish quicker or take longer by some amount of time, a more realistic model. In our
current model, the costs of late completion (or savings of early completion) would be
passed back to the Buyer, as they would pay for the resource actually used. However,
more sophisticated mechanisms might be useful, where if a resource completes a job
early, it gets to keep the difference. This would be especially important if some form of
advance reservations are added.

The notion of a fixed job size could be relaxed, and jobs could be allowed to run on less
resource capacity but take longer to complete, or on more capacity for a faster completion
time. As not all applications are easily altered in this manner, a scalability factor could
be introduced to each job to represent this. A scalability of 1.0 could indicate that a job
is trivially parallel and can easily run on more or less resource for a linear adjustment in
execution time, i.e. a job with a size of 10 and a duration of 100s would execute in 200s
on a resource size of 5, or 50s on a resource size of 20. Correspondingly, a scalability of
0.0 would mean that a job cannot be run on more or less resource at all, much like our

Chapter 7 123 Conclusions and Further Work

current model. A value in between would modify the estimated execution in a suitable
manner.

Given that different resources could now in theory execute the same job in different
times, the completion time could be offered by the resource in addition to a price. For
example, one resource could offer a fast execution price and a premium, whilst another
offers a discount rate with a best effort execution time. Buyers could then weight their
preference for a speedy completion versus cheaper resource usage, and select differing
bids accordingly. This could be handled by have a multi-valued “value” element, or both
monetary cost and completion time.

A further simple optimisation of the current system could be to relax the “on-demand”
availability of resource to some degree. For example, if a Seller knows that a big job is
due to finish in 10s, it could make an offer on a job it could not do right away, but could
in 10s when the big job finishes.

7.3.2 Grid Infrastructure and Network Topology

Our model of communication and server costs could be improved in several ways.
Currently the performance of all the Buyers plus the Seller at a site is represented by

a single server object with appropriate service times. A more accurate model would be
to have each trader have their own “server” model in parallel with a site server. The site
server would still be the main entry point for messages into the site, but would merely
be a message broker, and thus could be faster than having to handle more complex state.
Individual traders at a site would then be forwarded relevant messages and process them
appropriately.

Another avenue of exploration would be to allow for dynamic network adaption. That
is, a server could monitor its utilisation/queue levels, and either increase or decrease its
number of connections to adjust to current load conditions. This would allow the sys-
tem to better scale to higher loads, and increase the system performance and low loads
by increasing the mean degree. A trivial implementation of this would add or release
connections at random.

However, there is an opportunity here to extend the model of trader strategy into de-
ciding who to trade with, or what market to move into.

For dropping connections, a possible method would be to keep a record of the number
of messages received per second via a connection for each connection. This would be a
measure of the CPU cost of maintaining that link. However this would need to be balanced
against the gains that connection may have provided. Thus, a record of the profit made at

Chapter 7 124 Conclusions and Further Work

this node from transactions via each connection could be kept. A comparison of the two
would allow the node with the lowest return for added load to be dropped. In theory this
should provide a better overall grid/market performance than a purely random selection.

Adding a new connection is a more difficult problem, as there is no central list of
nodes to choose from. However, the server could keep a record of every node that it has
seen in the system, from any quote or message from anywhere, that it is not currently
connected to. For each such node, it could again track a measure of the profit generated
from that node. When selecting a new node, the most favourable node in the list could be
selected. If no nodes have been seen, one could be chosen at random via broadcasting a
request for new connections.

Note that this dynamic adaption of the network topology will mean that the network
characteristics, such as transitivity, will vary over time. If the scheme proposed above is
used, then growth will likely result in social topology, as new nodes will be friends of
friends. If random long range links are to be preserved in such a network, some kind of
central node registration would be needed.

7.3.3 Auction Mechanisms

Building on the success of the sealed bid auction, the mechanism could be further ex-
tended to an iterated version. In this case, a Buyer would advertise as normal, and then
advertise the best price via a shout. Sellers could then resubmit a better bid or withdraw.
This would have the advantage of providing some price information to the market, al-
though this kind of auction is used to get the best price for the auctioneer (the Buyer in
our case), so will likely drive down prices.

Clearly, a more sophisticated implementation of a CDA, which also allows for ZIP and
other traders to function appropriately would be a valuable addition. Possibly exploring
some form of loose bidding synchronisation may allow successful use of ZIP and other
traders that have been developed in centralised markets.

An initial improvement would be to add some basic intelligence to the bidding, and
allow for periodic consideration of quotes, rather than the current eager acceptance model.
For example, a trader could collect quotes for a period of time, then at the end of that
period, could either accept the best of any valid trades or shout their adjusted current
quote if there are no valid trades.

One possibility would be to make each shout in the system include multiple pieces of
information, rather than just a quote. It would still carry the trader’s quote price, but it
could also carry a list of quotes recently accepted or known to be accepted by the trader,

Chapter 7 125 Conclusions and Further Work

as well as recently failed quote prices. This would provide a more definite success/failure
knowledge to other traders, as well as adding some synchronisation to the observation for
trader strategies like ZIP and GD. However, given that traders can not be trusted to be
fully honest, this would probably be best implemented as part of the site’s server. It could
be that only the servers shout recent accept/reject prices, the traders utilise the information
at their servers only to trade.

This would allow the site servers to add a degree of centralisation to the auction mech-
anisms, with the aim of improving the efficiency. For example, each Site server could act
as a local order book to some degree, and take responsibility for communicating trans-
action knowledge with other sites. Thus, the agents at a particular site could use the
collective information about the success or failure of quote prices to improve their esti-
mation of market price. It could also be used to add a level of synchronicity to the trading,
which may help with the challenges of implementing decentralised CDA auctions.

This would be moving away from a central aim of this initial work, that of full decen-
tralisation with no independent parties required. However, large numbers of Site servers
adding some simple centralisation may grant significant efficiency gains whilst still pre-
serving the desirable scalability characteristics.

7.3.4 Trader Strategy

Algorithms such as ZIP have been developed for synchronised auctions with an indepen-
dent arbiter, trading in units of indivisible quantities. This is different from our market
model in several key ways.

• No independent arbiter means quotes (and heir results) lack authority.

• Decentralisation means that less information is known to traders than in a cen-
tralised market.

• Our Buyer quantities are not divisible, adding an additional constraint on trading.

• Our Buyers are only interested in a single transaction - they are not persistent in the
market.

• Lack of centralisation means asynchronous updates of trader’s views of the market.

• There are many more Buyers in our system than Sellers.

Chapter 7 126 Conclusions and Further Work

A study of the ZIP algorithm that experimented with the effects of altering these fac-
tors would be of great value in successfully adapting ZIP to this type of decentralised
market.

For example, we could alter the original ZIP auction used so that only a random subset
of traders were updated with transaction data rather than all of them as in the original
work. The updates could also be delayed by random amounts to different traders, to
simulate an asynchronous network. We could add the idea of the quantities of one type of
trader being indivisible, as well as the effect of adding new naive agents into the system
for one “day” only. Observing the effect of these changes to the performance of the
ZIP traders would identify the key provisions of a centralised auction that provide the
ZIP traders performance, and hopefully allow for an adaption of ZIP to our decentralised
setting.

7.3.5 Further Economic Evaluation

In Chapter 6 we compared the allocation mechanism against a theoretical optimal non-
economic allocation scheme. This scheme was only concerned with quantities or jobs and
resource, not with price. Comparison to a theoretical optimal system that considered both
price and quantity would be useful.

An implementation of such a system could maintain a “magic” system-wide order
book, with traders using a zero latency CDA mechanism to update it. This could be used
to best allocate resources on both quantity and price in two possible ways. Firstly, it could
allow trading across the whole grid system. This would potentially provide an absolute
optimal performance measure of an economic system for grid allocation, and would be
interesting to compare against the optimal non-economic allocation scheme.

Secondly it could restrict traders to trading with traders who are within the shout
radius links apart. This would preserve the local decentralised limitations of our work,
and provide a realistic optimal level for a decentralised market to aim for. This would
greater aid in the analysis of the effectiveness of various auction schemes.

Bibliography

[1] D. Abramson, R. Buuya, and J. Giddy. A computational economy for grid com-
puting and its implementation in the nimrod-g resource broker. Future Generation

Computer Systems, 18(8), Oct 2002.

[2] G. Aloisio, M. Cafaro, E. Blasi, and I. Epicoco. The grid resource broker, a ubiqui-
tous grid computing framework. Scientific Programming Journal, 10(2):113–119,
2002.

[3] Jrn Altmann, Dirk Neumann, and Thomas (Eds.) Fahringer, editors. Grid Eco-

nomics and Business Models, 5th International Workshop, volume 5206/2008. Sp-
inger Berlin/Heidelberg, 2008.

[4] Raghu Arunachalam and Norman Sadeh. The 2003 supply chain management
trading agent competition. In ICEC ’04: Proceedings of the 6th international

conference on Electronic commerce, pages 113–120, New York, NY, USA, 2004.
ACM.

[5] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in feder-
ated distributed computing infrastructures. In Proceedings of the 1st Workshop on

Operating System and Architectural Support for the Ondemand IT InfraStructure,
October 2004.

[6] Albert D. Baker. Metaphor or reality: a case study where agents bid with actual
costs to schedule a factory. In Market-based control: a paradigm for distributed

resource allocation, pages 184–223. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1996.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

[8] Jim Basney and Miron Livny. Deploying a high throughput computing cluster.
High Performance Cluster Computing, 1:Chapter 5, May 1999.

127

Chapter 7 128 BIBLIOGRAPHY

[9] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and
D. Zagorodnov. Adaptive computing on the grid using apples. IEEE Transactions

on Parallel and Distributed Systems (TPDS), 14(4):369–382, 2003.

[10] Craig Boutilier and Holger H. Hoos. Bidding languages for combinatorial auctions.
In In Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (IJCAI), pages 1211–1217, 2001.

[11] Paulo Tibrio Bulhes, Chansup Byun, Rick Castrapel, and Omar Hassaine. N1 grid
engine 6 features and capabilities. Technical report, Sun Microsystems, 2004.

[12] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for re-
source management and scheduling in grid computing. Journal of Concurrency:

Practice and Experience, Grid computing special issue, 2002.

[13] R Buyya, M. Murshed, and D. Abramson. A deadline and budget constrained cost-
time optimization algorithm for scheduling task farming applications on global
grids. In International Conference on Parallel and Distributed Processing Tech-

niques and Applications, Las Vegas, June 2002.

[14] Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/g: An architec-
ture for a resource management and scheduling system in a global computational
grid. In The 4th International Conference on High Performance Computing in

Asia-Pacific Region. IEEE Computer Society Press, USA., 2000.

[15] Andrew Byde. A comparison between mechanisms for sequential compute re-
source auctions. In AAMAS ’06: Proceedings of the fifth international joint confer-

ence on Autonomous agents and multiagent systems, pages 1199–1201, New York,
NY, USA, 2006. ACM.

[16] Andrew Byde, Mathias Salle, and Claudio Bartolini. Market-based resource allo-
cation for utility data centers. Technical Report HPL-2003-188, HP Labs, 2003.

[17] C.E.R.N. The worldwide lhc computing grid. http://lgc.web.cern.ch/LCG/public,
last accessed 01/2009.

[18] Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw. The
legion resource management system. In 5th Workshop on Job Scheduling Strategies

for Parallel Processing (JSSPP ’99) in conjunction with the International Parallel

and Distributed Processing Symposium (IPDPS ’99), April 1999.

Chapter 7 129 BIBLIOGRAPHY

[19] B.M. Chapman, B. Sundaram, and K.K. Thyagaraja. Ez-grid: Integrated resource
brokerage services for computational grids. http://www.cs.uh.edu/ ezgrid/, 2001.

[20] S-F Cheng, E Leung, KM Lochner, K O’Malley, DM Reeves, LJ Schvartzman, and
MP Wellman. Walverine: A walrasian trading agent. Decision Support Systems,
39:169184, 2005.

[21] Brent N. Chun, Chaki Ng, Jeannie Albrecht, David C. Parkes, and Amin Vahdat.
Computational resource exchanges for distributed resource allocation. Technical
report, Intel Corporation, 2004.

[22] Scott H. Clearwater, editor. Market-Based Control: A PAradigm for Distributed

Resource Allocation. World Scientific Publishing, 1996.

[23] Scott H. Clearwater, Rick Costanza, Mike Dixon, and Brian Schroeder. Saving
energy using market-based control. In Market-based control: a paradigm for dis-

tributed resource allocation, pages 253–273. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1996.

[24] Dave Cliff. Days without end : On the stability of experimental single-period
continuous double auction markets. Technical Report HPL-2001-325, HP Labs,
2001.

[25] Dave Cliff. Evolution of market mechanism through a continuous space of auction-
types. Technical Report HPL-2001-326, HP Labs, 2001.

[26] Dave Cliff and Janet Bruten. Less than human: Simple adaptive trading agents for
cda markets. Technical Report HPL-97-155, HP Labs, 1997.

[27] Dave Cliff and Janet Bruten. Simple bargaining agents for decentralized market-
based control. In Proceedings of the 12th European Simulation Multiconference

on Simulation - Past, Present and Future, pages 478–485. SCS Europe, 1998.

[28] B. Cohen. Incentives build robustness in bittorrent. In 1st Workshop on Economics

of Peer-to-Peer Systems, 2003.

[29] World Wide Web Consortium. W3c homepage. http://www.w3c.org/, Last visited
08/2005.

[30] World Wide Web Consortium. W3c soap technical specification.
http://www.w3.org/TR/soap/, Last visited 11/2006.

Chapter 7 130 BIBLIOGRAPHY

[31] World Wide Web Consortium. W3c web services. http://www.w3.org/2002/ws/,
Last visited 11/2006.

[32] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke. From open grid services infrastructure to ws-resource framework:
Refactoring & evolution. Global Grid Forum (GGF), 2004.

[33] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The ws-resource framework. Draft
WS Specficiation, Global Grid Forum (GGF), 2004.

[34] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser-
vices for distributed resource sharing, 2001.

[35] Rajarshi Das, James E. Hanson, Jeffrey O. Kephart, and Gerald Tesauro. Agent-
human interactions in the continuous double auction. In The Proceedings of the In-

ternational Joint Conferences on Artificial Intelligence (IJCAI), pages 1169–1176,
2001.

[36] Simon Davy, Karim Djemame, and Jason Noble. The application of bioinspired
engineering principles to grid resource allocation. In UK Performance Engineering

Workshop, July 2003.

[37] Z. Despotovic, J. C. Usunier, and K. Aberer. Towards peer-to-peer double auction-
ing. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii Interna-

tional Conference on, pages 8 pp.+, 2004.

[38] K. Djemame and M. H Haji. Grid application performance prediction: a case
study in broaden. In 1st International Workshop On Verification and Evaluation of

Computer and Communication Systems (VECoS’2007), pages 162–173, 2007.

[39] Ian Domowitz. A taxonomy of automated trade execution systems. Journal of

International Money and Finance, Volume 12, Issue 6:605–631, December 1993.

[40] K. Drexler and M. Miller. Incentive engineering for computational resource man-
agement. In B. Huberman, editor, The Ecology of Computation, pages 231–266.
Elsevier Science Publishers B.V., 1988.

[41] Various UK e Science Centres. Grid markets: A market for grid services.
http://www.lesc.imperial.ac.uk/markets/, Last accessed 10/2008.

Chapter 7 131 BIBLIOGRAPHY

[42] P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–
297, 1959.

[43] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, L. Diaz de Cerio, F. Freitag,
R. Messeguer, L. Navarro, and D.Royo. Decentralized vs. centralized economic
coordination of resource allocation methods in grids. In 1st European Across Grids

Conference, February 2003.

[44] Torsten Eymann, Dirk Neumann, Michael Reinicke, Bij?rn Schnizler, Werner Stre-
itberger, and Daniel Veit. On the design of a two-tiered grid market structure. In
Proceedings of the Multikonferenz Wirtschaftsinformatik 2006, Passau, Germany,
2006.

[45] Torsten Eymann, Michael Reinicke, Werner Streitberger, Omer Rana, Liviu Joita,
Dirk Neumann, Björn Schnizler, Daniel Veit, Oscar Ardaiz, Pablo Chacin, Isaac
Chao, Felix Freitag, Leandro Navarro, Michele Catalano, Mauro Gallegati, Gi-
anfranco Giulioni, Ruben Carvajal Schiaffino, and Floriano Zini. Catallaxy-based
grid markets. Multiagent and Grid Systems, an International Journal, Special Issue

on Smart Grid Technologies and Market Models, 1(4):297–307, 2005.

[46] Torsten Eymann, Werner Streitberger, and Sebastian Hudert. Catnets - open market
approaches for self-organizing grid resource allocation. In Jrn Altmann and Daniel
Veit, editors, GECON, volume 4685 of Lecture Notes in Computer Science, pages
176–181. Springer, 2007.

[47] J. D. Farmer, P. Patelli, and I. I. Zovko. The predictive power of zero intelligence in
financial markets. Proceedings of the National Academy of Science, 102(6):2254–
2259, 2005.

[48] Maria Fasli, editor. Evolutionary Optimization of ZIP60: A Controlled Explosion

in Hyperspace. Springer, 2006.

[49] Global Grid Forum. Homepage. http://www.ggf.org/, Last visited 08/2005.

[50] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In
IFIP International Conference on Network and Parallel Computing, pages 2–13.
Springer-Verlag LNCS 3779, 2006.

[51] I. Foster and C. Kesselman. The globus project: A status report. In Proc.

IPPS/SPDP ’98 Heterogeneous Computing Workshop, pages 4–18, 1998.

Chapter 7 132 BIBLIOGRAPHY

[52] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, 1999.

[53] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The
open grid services architecture, version 1.0, 2005.

[54] Ian Foster. The anatomy of the grid: Enabling scalable virtual organizations. Int.

Journal of Supercomputing Applications, Vol 15, No. 3, 2001.

[55] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke.
Condor-g: A computation management agent for multi-institutional grids. In Tenth

IEEE Symposium on High Performance Distributed Computing (HPDC10), Au-
gust 2001.

[56] Daniel Friedman. The double auction market institution: A survey. In Daniel
Friedman and John Rust, editors, The Double Auction Market: Institutions, Theo-

ries, and Evidence, pages 3–25. Addison-Wesley, 1993.

[57] S Gjerstad and J Dickhaut. Price formation in double auctions. Games and Eco-

nomic Behaviour, 22(1):1–29, 1998.

[58] Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of markets with zero-
intelligence traders: Market as a partial substitute for individual rationality. Journal

of Political Economy, 101(1):119–37, 1993.

[59] Dhananjay K Gode and Shyam Sunder. What makes markets allocationally effi-
cient? The Quarterly Journal of Economics, 112(2):603–30, May 1997.

[60] Minghua He and N. R. Jennings. Southamptontac: Designing a successful trading
agent. In ECAI 2002: 15th European Conference on Artificial Intelligence. IOS
Press, 2002.

[61] Minghua He, A. Rogers, E. David, and N. R. Jennings. Designing and evaluating an
adaptive trading agent for supply chain management applications. In Proc. IJCAI

Workshop on Trading Agent Design and Analysis, pages 35–42, 2005.

[62] R.L. Henderson. Job scheduling under the portable batch system. In D. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing (Pro-

ceedings of the 1st International JSSPP Workshop; LNCS No. 949), pages 178–
186. Springer-Verlag, 1995.

Chapter 7 133 BIBLIOGRAPHY

[63] B. Huberman, editor. The Ecology of Computation. Elsevier Science Publishers
B.V., 1988.

[64] Adriana Iamnitchi and Ian Foster. On fully decentralized resource discovery in grid
environments. In International Workshop on Grid Computing, Denver, Colorado,
November 2001. IEEE.

[65] R. Palmer J. Rust, J. H. Miller. Behavior of trading automata in a computerized
double auction market. In D. Friedman and J. Rust, editors, The Double Auction

Market: Institutions, Theories, and Evidence, page 155198. Addison Wesley, 1993.

[66] Rajkumar Buyya James Broberg, Srikumar Venugopal. Market-oriented grids and
utility computing: The state-of-the-art and future directions. Journal Of Grid Com-

puting, December 2007.

[67] Bernardo A. Huberman Kevin Lai and Leslie Fine. Tycoon: A Distributed Market-
based Resource Allocation System. Technical Report arXiv:cs.DC/0404013, HP
Labs, Palo Alto, CA, USA, 2004.

[68] Paul Klemperer. Auction theory: A guide to the literature. Journal of Economic

Surveys, 13 (3):227–286, 1999.

[69] K. Krauter, R. Buyya, M, and Maheswaran. A taxonomy and survey of grid re-
source managment systems for distributed computing. Int. Journal of Software:

Practice and Experience, Vol 32, No. 2, Feb 2002.

[70] William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance
analysis. Journal of the American Statistical Association, 47 (260):583621, De-
cember 1952.

[71] HP Labs. Se3d - growing animated film talent. http://www.dshed.net/SE3D, last
accessed 09/2008.

[72] Dan Ladley and Seth Bullock. Who to listen to: Exploiting information quality in
a zip-agent market. In Agent-Mediated Electronic Commerce. Designing Trading

Agents and Mechanisms, pages 200, 211, 2005.

[73] Dan Ladley and Seth Bullock. The strategic exploitation of limited information
and opportunity in networked markets. Computational Economics, 32(3):295–315,
October 2008.

Chapter 7 134 BIBLIOGRAPHY

[74] Kevin Lai. Markets are Dead, Long Live Markets. Technical Report
arXiv:cs.OS/0502027, HP Labs, Palo Alto, CA, USA, February 2005.

[75] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang, and
Bernardo A. Huberman. Tycoon: an Implemention of a Distributed Market-Based
Resource Allocation System. Technical Report arXiv:cs.DC/0412038, HP Labs,
Palo Alto, CA, USA, 2004.

[76] A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 3rd
Edition, 2000.

[77] T. Malone, R. Fikes, K. Grant, and M. Howard. Enterprise: A market-like task
scheduler for distributed computing environments. In B. Huberman, editor, The

Ecology of Computation, pages 177–199. Elsevier Science Publishers B.V., 1988.

[78] H. B. Mann and D. R.Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Annals of Mathematical Statistics, 18:5060,
1947.

[79] M. Miller and K. Drexler. Markets and computation: Agoric open systems. In
B. Huberman, editor, The Ecology of Computation, pages 133–176. Elsevier Sci-
ence Publishers B.V., 1988.

[80] Mark S. Miller, David Krieger, Norman Hardy, Chris Hibbert, and E. Dean Trib-
ble. An automated auction in atm network bandwidth. In Market-based control: a

paradigm for distributed resource allocation, pages 96–125. World Scientific Pub-
lishing Co., Inc., River Edge, NJ, USA, 1996.

[81] K. Muller. Simpy, a discrete event simulation tool in python.
http://simpy.sourceforge.net, Last visited 10/2008.

[82] J. Nabrzyski, J.M. Schopf, and J. Weglarz. Grid Resource Management: State of

the Art and Future Trends. Kluwer Academic Publishers, 2004.

[83] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89(20):208701,
Oct 2002.

[84] M. E. J. Newman. The structure and function of complex networks. Society for

Industrial and Applied Mathematics Review, 45:167–256, 2003.

[85] M. E. J. Newman and J. Park. Why social networks are different from other types
of networks. Physical Review E, 68(036122), 2003.

Chapter 7 135 BIBLIOGRAPHY

[86] Walter Nicholson. Intermeadiate Microeconomics and It’s Application. Thomp-
son/South Western, 8th edition, 2000.

[87] J. Noble, S. Davy, and D. W. Franks. Effects of the topology of social networks on
information transmission. In S. Schaal, A. J. Ijspeert, A. Billard, and S. Vijayaku-
mar, editors, From Animals to Animats 8: Proceedings of the Seventh International

Conference on Simulation of Adaptive Behavior, pages 395–404. MIT Press, Cam-
bridge, MA, 2004.

[88] David Oppenheimer, Jeannie Albrecht, David Patterson, and Amin Vahdat. Scal-
able wide-area resource discovery. Technical Report UCB/CSD-04-1334, EECS
Department, University of California, Berkeley, 2004.

[89] International Standards Organisation. Osi reference model.
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269 ISO IEC 7498-
1 1994(E).zip, Last visited 11/2006.

[90] Boris Padovan, Stefan Sackmann, and Torsten Eymann. A prototype for an agent-
based secure electronic marketplace including reputation tracking mechanisms. In
International Journal of Electronic Commerce, pages 93–113, 2001.

[91] Globus Project. The globus project homepage. http://www.globus.org/, Last visited
08/2005.

[92] LSF Project. Platform lsf. http://www.platform.com/products/LSF/, Last visited
04/06.

[93] Maui Project. Maui scheduler. http://mauischeduler.sourceforge.net/, Last visited
06/06.

[94] The EGEE Project. Enabling grids for e-science. http://public.eu-egee.org, Last
visited 10/2008.

[95] The Gridway Project. The gridway meta-scheduler. http://www.gridway.org/, Last
visited 04/06.

[96] The LHC Project. L.h.c. - the large hadron collider. http://lhc.web.cern.ch/lhc, last
accessed 09/2008.

[97] The TeraGrid Project. The teragrid project. http://www.teragrid.org, Last visited
10/2008.

Chapter 7 136 BIBLIOGRAPHY

[98] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed
resource management for high throughput computing. In Proceedings of the Sev-

enth IEEE International Symposium on High Performance Distributed Computing

(HPDC7), Chicago, IL, July 1998.

[99] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Cactus application: Perfor-
mance predictions in a grid environment. In In proceedings of European Confer-

ence on Parallel Computing (EuroPar) 2001, 2001.

[100] Neil Robinson. Evolutionary optimisation of market-based control systems for
resource allocation in compute farms. Technical Report HPL-202-284, HP Labs,
2002.

[101] M Romberg. The unicore architecture: Seamless access to distributed resources.
In High Performance Distributed Computing, 1999. Proceedings. The Eighth In-

ternational Symposium on, pages 287–293, 1999.

[102] Thomas Sandholm and Kevin Lai. Evaluating demand prediction tech-
niques for computational markets. In GECON ’06: Proceedings of the

3rd International Workshop on Grid Economics and Business Models, 2006.
http://gridasia.ngp.org.sg/2006/gecon.html.

[103] The National Grid Service. The national grid service. http://www.grid-
support.ac.uk, Last visited 10/2008.

[104] R. Smith and N. Taylor. A framework for evolutionary computation in agent-based
systems. In J. Castaing C. Looney, editor, Proceedings of the 1998 International

Conference on Intelligent Systems, pages 221–224, 1998.

[105] Vernon L. Smith. An experimental study of competitive market behaviour. Journal

of Political Economy, 70:111–137, 1962.

[106] Gerald Tesauro and Jonathan L. Bredin. Strategic sequential bidding in auctions
using dynamic programming. In AAMAS ’02: Proceedings of the first international

joint conference on Autonomous agents and multiagent systems, pages 591–598,
New York, NY, USA, 2002. ACM Press.

[107] Gerald Tesauro and R. Das. High-performance bidding agents for continuous dou-
ble auctions. In IJCAI-01 Workshop on Economic Agents, Models and Mecha-

nisms, pages 42–51, August 2001.

Chapter 7 137 BIBLIOGRAPHY

[108] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,
T. Sandholm, P. Vanderbilt, and D. Snelling. Open grid services infrastructure
(ogsi) version 1.0. Draft Recomendation, Global Grid Forum (GGF), 2003.

[109] Boston University. Brite: Boston university representative internet topology gen-
erator. http://www.cs.bu.edu/brite/, last accessed 04/2008.

[110] The Whiterose Grid University and Rolls Royce. D.a.m.e - distributed aircraft
maintenance environment. http://www.cs.york.ac.uk/dame, last accessed 09/2008.

[111] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16(1):8–37, 1961.

[112] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffery O. Kephart, and
W. Scott Stornetta. Spawn: A distributed computational economy. IEEE Trans. on

Software Engineering, 18(2):103–117, February 1992.

[113] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

[114] M. Wellman and P. Wurman. A trading agent competition for the research com-
munity. In IJCAI-99 Workshop on Agent-Mediated Electronic Trading, Stockholm,

August 1999, 1999.

[115] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1:8083, 1945.

