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Abstract

Collaborative virtual environments (CVEs) extend existing virtual environment (VE)

technology to enable it to run over a network (e.g. the Internet), and introduce mech-

anisms that allow multiple people to co-exist, be aware of each other’s presence (e.g.

through avatars) and communicate. CVEs are useful for when teams of people want to

collaborate when they are geographically separated, e.g. in games [14], social communi-

cation [65], visualisation [120], computational steering [17], or alternatively people might

be spatially collocated in the real world but wish to work together in a VE, e.g. military

training [99].

The dream is for interaction in CVEs to be more effective than interaction in the

real world. The increase in globalisation and geographically distributed personnel who

need to collaborate, act as a driving force for the development of effective collaborative

technologies, which would allow businesses to save time and money, help distributed

communities stay in touch, and reduce the impact on the world’s environment. The work

presented in this thesis aims to make collaborative interaction in virtual environments

more effective, more like that of face-to-face interaction, without unnecessarily restricting

virtual collaboration to the naturalistic constraints of the ‘real world’ (cf. [79], [39]).

This thesis describes the implementation and evaluation of techniques to support syn-

chronous and asynchronous collaborations in virtual environments. The techniques were

evaluated in the context of an urban planning application, where proposed developments

could be modelled in 3D and evaluated by members of the public (and potentially clients,

architects) to decide if they support or object to the designs (e.g. [30]).

Synchronous collaborations were supported by a suite of techniques called Mobile

Group Dynamics (MGDs), which were introduced and evaluated in two stages (Chap-

ters 4 and 5). First, a novel ‘group graph’ metaphor was used to explicitly show the

groups that people had formed themselves into (and help people locate the whereabouts

of their collaborators), and techniques were provided to help people move around together

and communicate over extended distances. The techniques were evaluated by providing

one batch of participants with MGDs and another with an interface based on conven-

tional CVEs. Participants with MGDs spent nearly twice as much time in close proximity

(within 10m of their nearest neighbour), communicated seven times more than partici-

pants with a conventional interface, and exhibited real-world patterns of behaviour such

as staying together over an extended period of time and regrouping after periods of sepa-

ration (Chapter 4).

Second, three additional techniques were introduced (teleporting, awareness and mul-

tiple views) which, when combined, produced a four times increase in the amount that
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participants communicated in the CVE and also significantly increased the extent to which

participants communicated over extended distances in the CVE (Chapter 5).

Asynchronous working in CVEs was assisted using the metaphor of Virtual Time

(VT), where the utterances of previous users were embedded in a CVE as conversation

tags (Chapter 6). With VT, participants chose to listen to a quarter of the conversations

of their predecessors while performing the task. The embedded conversations led to a

reduction in the rate at which participants travelled around, but an increase in the live

communication that took place. Taken together, the studies have implications for CVE

designers, because they provide quantitative and qualitative data on how group dynamics

functioned in a CVE, and how synchronous and asynchronous groupwork was improved

by using MGDs and VT techniques. In addition, the rich complexity of possible function-

ality for VT highlights a number of possibilities for future research.
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Chapter 1

Introduction

Virtual environments (VEs) are three dimensional electronic worlds that contain infor-

mation (e.g. 3D design models) that a user can interact with (e.g. visualise, navigate,

modify). VE technologies have many application areas, e.g. engineering [57], medical

visualisation [25], urban planning [30].

Collaborative virtual environments (CVEs) extend VE technology to enable it to run

over a network (e.g. the Internet), and introduce mechanisms that allow multiple people to

be co-present in the virtual environment. CVEs are useful for when teams of people want

to collaborate. The people may be geographically separated, e.g. in games [14], social

communication [65], visualisation [120], computational steering [17], or they might be

spatially collocated in the real world but wish to work together in a VE, e.g. military

training [99]. CVEs are introduced in more detail in Section 2.2.

The work presented in this thesis aims to improve collaborative interaction in virtual

environments, and this research fits within a more general framework of collaborative

interaction, introduced in the following section. In addition, examples are provided of the

usage of technology to aid collaboration. Section 1.2 gives the problem statement, and

Section 1.3 outlines the hypotheses for this thesis. Section 1.4 gives an overview of the

thesis as a whole.

1



Chapter 1 2 Introduction

1.1 Collaborative interaction

Collaborative interaction in general may be classified in terms of time (synchronous vs.

asynchronous) and space (collocated vs. remote) [56]. Table 1.1 shows examples of col-

laborative interaction classified in these terms. For example, face-to-face ‘real life’ collab-

oration takes place at the same time and in the same place (synchronous and collocated).

Technology (phones, video conferencing, computer supported cooperative work tools,

collaborative virtual environments) widens the possibilities to include remote collabora-

tion.

Asynchronous collaboration can occur in the same place (e.g. communicating by

leaving post-it notes in a shared office), or in a different place (e.g. using email, voicemail,

or a wiki).

Synchronous Time Asynchronous

Collocated Face-to-face; Leaving notes/messages

Computer aided design; in a shared office:

Virtual prototyping post-it notes, whiteboard;

People passing on messages

on behalf of others

Space

Telephone; Email;

Remote

Video conferencing; Voicemail;

Chat/social systems Newsgroups;

(e.g. Second Life); Wiki;

Online games (e.g. World of

Warcraft);

Virtual time (Chapter 6)

Collaborative visualization;

Mobile group dynamics

(Chapter 4);

Teleporting, awareness & mul-

tiple views (Chapter 5)

Table 1.1: Collaborative interactions classified in terms of time and space [56]

People have many modes of communication available to them in synchronous, collo-

cated situations. Face-to-face communication includes eye-contact, body language, verbal

communication, and multiple channels of communication (talking to one’s neighbour vs.

addressing the group as a whole). Further, communication can be supported by providing

people with tools such as whiteboards, flipcharts, or digital technology (e.g. projectors, in-

teractive whiteboards). On the other hand, providing team members with their own space
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reduces the chance of interruptions and distractions, and increases privacy. Lai et al. high-

lighted research that showed benefits at both ends of this scale: ‘radical collocation’ where

team members were in the same room without cubicles (known as a ‘warroom’), [114],

vs. private workspaces [28], cited in [62].

Can technology provide an idealised scenario, where team members can benefit from

the privacy of their own workspace, while technology provides awareness of their fellow

team members’ activities, and makes them available for communication? Can we provide

an easy way to bring people together (metaphorically speaking) for effective, synchronous

collaboration, and then allow people to switch to their own space, leave the group, move

away, at the push of a button? This would be particularly useful in cases where team

members are distributed, and meeting up face-to-face would be time consuming.

An example scenario where technology is being used to support collaboration in this

way (i.e. collaboration between team members who are spatially separated) is in soft-

ware development. Technology is needed to help team members share knowledge, but

in addition it is important to build up social aspects of collaboration (the team members

need to have cohesive relationships) [59], and to have awareness of other members’ ac-

tivities [114]. Technology platforms such as Jazz (from IBM Rational) [54], and Visual

Studio Team System (Microsoft) [72] aim to provide these benefits.

Cheng and coworkers engineered Jazz, for which they envisioned a growing trend of

geographically distributed software development teams [23]. The Jazz project integrated

communication and collaboration technologies into the ‘Eclipse’ integrated development

environment (IDE) [32]. The project combined synchronous and asynchronous collabo-

ration technologies, e.g. instant messaging (IM) and email communications. It provided

awareness of other team members’ activities by allowing users to see photos of the peo-

ple who were online and coding, and provided functionality for status messages—team

members could provide a one or two sentence description of what they were working

on, similar to status messages used in IM, and on social networking sites such as Face-

book [34].

The Jazz project and similar collaborative tools are from the field of computer sup-

ported cooperative work (CSCW). Collaborative virtual environment (CVE) technologies

are a subset of CSCW tools, and are introduced in Section 2.2.

An extension to Jazz that used CVE technology was called Bluegrass [85]. In Blue-

grass, teams were allocated with a plot of land in a 3D environment. Team location,

work items, and meeting places were represented visually by objects in the environment,

such as trees, gazebos and patios. The system was linked to IBM’s social networking

system, known as Beehive, and provided information in the environment from users’ pro-
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files. Does the social aspect of collaborative virtual environments increase team cohesion,

which in theory would enhance productivity [58]? The evaluation of collaborative work

can help answer this question, and Section 2.5 discusses this in more detail.

Table 1.1 categorises the research in later chapters. The work is placed in the remote

category (users are spatially separated). However, there is a difference between CVEs

and conventional CSCW tools: the former allow people to be virtually collocated (they

provide a ‘place’ for users to meet up and interact [47]) when they are physically remote.

The research from Chapter 4 describes a suite of techniques called Mobile Group Dy-

namics (MGDs), which helps people work together as they travel around large-scale vir-

tual environments. Chapter 5 improves these techniques by adding teleporting, awareness

of who is within hearing range, and multiple views of the environment. Finally, Chapter 6

describes implementation and evaluation of a paradigm for asynchronous collaborations

in virtual environments: a system called Virtual Time (VT).

The following sections introduce the problem, hypothesis, and provide a brief overview

of the thesis as a whole.

1.2 Problem statement

It is well known that collaborative interaction in virtual environments is non-trivial, e.g.

due to problems with perspective [51], usability difficulties [7], and a lack of awareness

of the activities of others [75]. Section 2.3.2 discusses these problems in more detail, and

provides more references to related work.

The work in this thesis aims to improve collaborative interaction in virtual environ-

ments for synchronous and asynchronous remote collaboration (Table 1.1). Synchronous

work is facilitated by a suite of techniques called Mobile Group Dynamics (MGDs).

MGDs support ‘group dynamics’ (the processes by which people form themselves into

groups and operate), as people travel around (i.e. are mobile) and work together in a large-

scale space. Asynchronous work in virtual environments is assisted using the metaphor of

Virtual Time (VT), where participants have access to conversations and activities of those

who were in the environment before them.

The following chapter introduces CVEs, details their technology and applications,

and gives a literature review on group dynamics. Following this a scenario is given for

the evaluation of the MGD and VT techniques. Chapter 3 details the technical implemen-

tation of the CVE used for evaluation, and the experiments themselves and the individual

hypotheses are given in the respective chapters. MGDs are introduced in the thesis in two

stages: Chapters 4 and 5, and VT is detailed in Chapter 6.
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1.3 Hypothesis

The overriding hypothesis of this research was that MGDs and VT would improve syn-

chronous and asynchronous interaction in CVEs, respectively. This hypothesis is broken

down to show the predicted outputs of the research (below). The metrics in this research

are the communication between participants, the spatial positioning of participants within

the virtual environment, the usage of MGDs and the usage of VT. More detail of the latter

two metrics is provided in Chapters 4, 5 and 6.

An improvement of synchronous teamwork taking place in the CVE was expected to

be identified by two major outputs from the evaluations of MGDs. The first output was

predicted to be a greater amount of conversation about the task. More communication

in general can be attributed to lack of sensory information, e.g. making the implicit ex-

plicit [51]. However, in the research presented in this thesis participants were provided

with greater sensory information (information provided by the MGDs techniques) and

the communication was coded to identify task related utterances for analysis. The sec-

ond output was predicted to be closer spatial proximity. Participants working primarily

as individuals were expected to navigate separately and times spent collocated would be

coincidental. In contrast, participants working together as a team were expected to exhibit

closer spatial proximity as they engaged in collaborative navigation and shared perspec-

tives to share ideas.

The outputs of the usage for MGDs and VT related more specifically to their imple-

mentation. In summary, they were the usage of explicit groups (how they were formed,

how many people were a part of a group, and the number of groups formed), and the

usage of MGDs to collaboratively navigate and collocate within the environment. These

outputs are discussed in context in the corresponding chapters (Chapters 4 and 5).

The hypothesis for the second stage of MGDs (Chapter 5) specifically builds on the

results of the first: the awareness and multiple views functionality were predicted to in-

crease the distance over which participants communicated, and more details of this are

given in the related chapter.

The hypothesis for the VT study was difficult to generate, since there are few obser-

vations of asynchronous teamwork in virtual environments. The initial rationale was that

conversation tags would allow participants to benefit from the work of previous users, and

so the metrics were the usage of the conversation tags, the performance on the task and

the distance travelled. These are outlined in more detail in Chapter 6.
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1.4 Overview

This chapter has introduced collaborative interaction in general, and provided some ex-

amples of computer supported cooperative work (Section 1.1). A taxonomy classified

various methods of collaboration, and showed how the work in this thesis fits within that

framework (Table 1.1).

Chapter 2 introduces collaborative virtual environments in more detail. This includes

a description of the many ways these can be implemented (technology, software and hard-

ware, network architecture), and the application areas are provided with reference to re-

lated work. A literature review follows on group dynamics, (the forming of groups and

performing of activity), and a background is given on the new concept of virtual time

(VT: a paradigm for asynchronous interaction in CVEs). The background is given on

CVE evaluations, and the scenario used for experimentation in later chapters is provided

to set the scene.

Chapter 3 details the technical implementation of the CVE software used for the eval-

uations in subsequent chapters. Novel techniques to support synchronous interaction are

evaluated in Chapter 4 (MGDs), and two main areas for improvement are identified in

Chapter 5. New functionality (teleporting, awareness and multiple views) is evaluated to

address these issues. Chapter 6 explains the concept of virtual time (VT), and discusses

its implementation and evaluation. Finally, overall conclusions to the research are drawn

in Chapter 7, and possibilities are outlined for future work.



Chapter 2

Background

2.1 Introduction

This thesis describes techniques to support synchronous and asynchronous teamwork in

virtual environments (VEs). The work fits within a more general framework of collab-

orative interaction, communication and working, outlined in Section 1.1. The following

sections outline collaborative virtual environments (CVEs), the technologies (hardware

and software) and techniques used to generate and interact with CVEs, the applications,

and ethical issues. Following this, a background is provided for group dynamics, which

takes Tuckman’s model of group processes (Section 2.3) and uses it as a framework for

a discussion of related work in supporting group dynamics in CVEs, and the different

possibilities for group interaction. This is followed by an introduction to asynchronous

collaboration, and methods for evaluating groupwork. Finally, the scenario used for the

evaluations in later chapters is introduced.

2.2 Collaborative virtual environments

Collaborative virtual environments (CVEs) are three dimensional electronic worlds that

combine shared information (e.g. 3D design models) with mechanisms that allow mul-

tiple people to co-exist, be aware of each other’s presence (e.g. through avatars) and

communicate. CVEs allow collaboration to take place within the context of a large-scale

7
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‘space’. Section 2.2.4 details the applications of CVEs, and Section 2.2.6 defines large-

scale space.

CVEs can use standard desktop monitors with ordinary peripherals for interaction

(mouse, keyboard), or alternatively they can use sophisticated immersive virtual environ-

ment technology. The experimental research reported in this thesis used desktop systems,

although the principles could be applied to immersive technology in future.

More detailed descriptions of VE technologies can be found in [40] (including a

chronology) and [16] (3D interaction), and an overview of the field as a whole can be

found in [108].

2.2.1 Interface devices

CVEs can use ordinary peripherals for interaction such as a mouse and keyboard, or a

gaming control pad. A typical gaming control pad (e.g. PlayStation 3, Xbox 360) will

have two analogue sticks, a digital direction pad and numerous input buttons.

A glove interface wraps around your hand to allow interaction. One of the earliest

examples of a glove interface is from Zimmerman et al. in 1987, [127]. Their gloves

tracked position and orientation of the hand, and the flexing of the fingers. In addition,

tactile feedback was provided when the user’s virtual hand overlapped a virtual object.

Not long after, Fakespace developed pinch gloves, which could detect combinations of

the wearer’s fingers and thumbs pressed together [35].

Haptic interaction devices use the sense of touch. This could be achieved using tactile

feedback (see above), an exoskeleton allowing measurement and restricting of hand/arm

movement (e.g. [42] [60]), or a robotic arm controlling force feedback (e.g. the Phantom

from SensAble Technologies [98]). A brief history of haptic technology can be found

in [111].

Motion tracking can be performed using a variety of techniques, including magnetic

tracking, inertial tracking, and optical tracking [16]. Examples of devices used for mo-

tion tracking are Ascension’s Flock of Birds magnetic tracking system [5], the Precision

Position Tracker from WorldViz [119], Vicon’s optical tracking [117], the Moven inertial

tracking suits from Xsens [121], and the Nintendo Wii Remote designed for the games

industry [76]. There are also devices to track eye movement, such as the EyeLink from

SR Research [107].

A touchscreen display can allow for interaction using hands or a stylus, e.g. a Tablet

PC, the multitouch ‘city wall’ project [80], which is useful for naturalistic manipulation

of objects.
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2.2.2 Interaction techniques

Interaction techniques in general are designed and evaluated with respect to a particular

subset of interaction requirements (e.g. selection, positioning), or for application specific

tasks [16].

For example, selection tasks can be achieved using ray casting techniques, where the

position and orientation of a user’s hand is tracked, and a ray is drawn originating from the

hand and extending along the direction it is pointing. Objects that intersect with the ray

are selected. Positioning can be done using a virtual hand, where the users hand is tracked

and rendered into the environment, and moving objects is done in a naturalistic fashion,

or alternatively using a function of the coordinates of the real hand (e.g. positioning the

virtual hand twice as far away from the body as it is in reality to allow the selection of

distant objects).

A detailed account of interaction techniques for a variety of VE platforms and tech-

nologies can be found in [16]. The research in this thesis focused on interaction using

desktop CVEs.

2.2.3 Software and network architecture

An interactive VE application receives input (e.g. from devices outlined above) and gen-

erates output to the graphics hardware for visualisation, using techniques from the field

of computer graphics (e.g. texture mapping, illumination models). An overview of the

field of computer graphics can be found in [37], [48], and the latter demonstrates how to

produce graphics using OpenGL, an industry standard application programming interface

(API) specification.

A CVE system extends VE technology (graphics, input devices) to enable interaction

across a network. Notable CVE implementations include SIMNET [99], NPSNET [67],

MASSIVE [43] and DIVE [20].

This section focuses on design decisions common to all collaborative (networked,

multiuser, shared) virtual environments, specifically the network architecture and the

methods used for maintaining a shared state (cf. [99, ch. 4 and 5]).

The network architecture can be peer-to-peer or client-server based. SIMNET was one

of the first collaborative virtual environment systems, and it used a peer-to-peer architec-

ture [99]. Each active object in the environment (e.g. vehicle, destructible scenery) was

controlled by a different host machine, and each host transmitted the state of its object

using Ethernet multicasting (which reduced network traffic compared to point-to-point

communication). No single host maintained the overall ‘master’ state of the environment.
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This architecture has the advantage of being fault-tolerant (host-failure does not bring

the whole system down), but it creates difficulties when objects interact. For example, one

host may perceive that a collision between two objects has taken place, and another may

not. A more complex scenario would be when two hosts detect slightly different versions

of the same collision event, where each version would lead to a different outcome. For

example, consider two vehicles colliding and a physics engine that generates realistic

responses. If two hosts detected the collision occurring with slightly different parameters

(coordinates, orientation, velocity) then the vehicles would end up in different positions,

thus affecting their subsequent interaction with other objects (e.g. other cars on the road).

This is a major problem for the system designer.

One solution would be to change the network architecture. A client-server model

creates a hierarchy, where the server maintains the shared state of the environment. In

an ideal lag-free world each host could transmit its input to the server (or primary host),

which would change the state of the environment accordingly and respond with the new

state. This would avoid any conflict between hosts. Object interaction can be dealt with

using a locking mechanism, so that only one host can update an object at a time. However,

in reality this is not very scalable, since it places greater load on the network (all updates

and object locks need to be transmitted) and the network lag delays feedback for the user.

Designing the architecture to maintain consistency and allow dynamic interaction is a

balancing act known as the ‘consistency-throughput trade-off’ [99, p. 102]. On the one

hand we have a system that maintains absolute consistency, achieved by transmitting all

events to the server and waiting for a response that confirms the new state of the envi-

ronment. This requires methods to reduce the network load, to maintain a fast response

rate and make the system scalable. DIVE deals with this by sub-dividing the environment

into smaller sections which are only communicated to a small number of subscribers [41].

The network load is further reduced by using multicast.

On the other extreme is a system with a high frequency of state changes and a fast re-

sponse to user input. Such a system cannot wait for each state change from the server, and

typically not all changes are transmitted. Each host attempts to predict the current state

of the environment based on infrequent updates from the server. For example, predic-

tions of object locations can be based on their initial direction and velocity (a procedure

known as ‘dead-reckoning’ [99]). This type of system can provide direct feedback to the

user (when they press a button on a movement control device, they move straight away

without waiting for a response from the server). Local copies of objects can continue

their movement/behaviour during the time gap between state updates. However, such a

system must be able to deal with each client having a different local representation of the
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environment. The longer the time gap between state updates from the server, the more the

clients’ representations will differ.

Many CVE systems use a mid-way approach, allowing each client to have their own

local copy of the environment (faster response to user input) and having frequent state

updates from the server (better consistency). In order to do this, extra methods have

been developed to help reduce the network load. For example, MASSIVE [43] uses a

spatial model so that each object has an aura (how visible they are to others) and a nimbus

(their area of interest). A source object only transmits to a destination object when its

aura intersects with the destination’s nimbus. MASSIVE-3 [46] deals with inconsistency

between hosts by using sequence numbers for events, including separate counters for non-

important events that do not require guaranteed transmission (e.g. position updates). The

transmission of events also includes a list of sequence numbers that must be processed

before the new event can be carried out (otherwise it might not make any logical sense in

the out-of-date environment).

There is a special case where allowing each host to maintain a local representation of

the environment can cause further problems. This is when users perform shared object

manipulation, and they manipulate the same attribute of the same object. Concurrent

object manipulation is beyond the scope of this research, but methods to deal with this can

be found in [82] (academic CVEs) and [31] (using techniques from the games industry,

from libraries that have recently been released as open source).

2.2.4 Applications

CVEs have a wide range of applications, including social communication, entertainment,

visualisation, military training, and product design.

CVEs are used for social communication in systems such as Second Life [65] and

There [70]. Second Life is an environment that uses standard desktop technologies con-

nected via the Internet. It allows user-generated content, such as the designing and script-

ing of objects (e.g. clothes, vehicles). Participants can buy and sell items, including land

on which they can build. There are no specific objectives in Second Life, but one has the

freedom to explore, meet people and even set up a business earning virtual money that

has real world value.

Online games use similar CVE technologies to Second Life, but the content would

usually be created by full-time system developers (as opposed to the participants them-

selves), and they have a measure of progress, e.g. the level system in World of Warcraft

[14]. World of Warcraft is a massively multiplayer online role playing game (MMORPG).
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Participants pay a subscription fee to use the game. They can form teams (guilds) and

work together for fun or to help progress in the game.

Virtual environment technologies are used in a subset of visualisation work. For exam-

ple, medical data acquired from MRI or CT scans can be visualised in a 3D environment.

A series of images are generated from the scans, and these are grouped together to make a

three-dimensional ‘volume’ data set. Each discreet point in this data set is called a volume

element, or voxel. These voxels are rendered onto a 2D display using computer graphics

techniques such as volume rendering (each voxel is assigned a colour and alpha value and

rendered to the display), or an ‘isosurface’ (data points of similar properties are joined

up to create a 3D contouring surface). For example, Cohen and colleagues used volume

rendering to visualise medical data, and provided neurosurgeons with a tool to help them

understand the nature of brain aneurysms [25].

Some visualisation applications benefit from collaborative and distributed interaction

(i.e. interaction across a computer network). Consider a scenario where a patient needs

urgent diagnosis, but the limited number of qualified personnel (or simply the geography

of the country) means that waiting for a medical consultant to arrive in person takes too

long. Medical decisions could be made using collaborative systems (e.g. a shared volume

rendering). An example of a collaborative visualisation system is [120].

Another example of collaborative visualisation is the pollution demonstrator (proof

of concept) from Brodlie et al. [17]. This visualises pollution spreading across a map

of the UK using a grid-enabled IRIS Explorer (visualisation system) application. The

concept is one of disaster control, where the path of a pollutant is predicted and decisions

are made as to where evacuations need to take place. The simulation parameters can be

modified based on data provided by a meteorologist, and this is done by a scientist while

the simulation is in progress (a process known as ‘computational steering’). The steering

and visualisation operations are done collaboratively, so the scientists, meteorologists and

decision-making officials involved do not need to be collocated (distributed collaboration

saves valuable time).

CVEs have been used for many years for military training [99]. A real or hypothetical

environment is mapped out in 3D, and military personnel are given a variety of simulated

operations to perform. The collaborative nature allows multiple people to learn to work

together as a team in a safe environment, before being deployed in the real world.

In the field of design, VEs allow the ‘virtual prototyping’ of products before they are

physically built in the real world. This helps with problems such as manufacturing vari-

ation, where material properties and manufacturing process mean that measurements on

the final product do not always conform to exact specifications. This application is tackled
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by Juster and coworkers in [57]. They begin with a tolerance level: the amount of accept-

able manufacturing variation. Their software allows designers to visualise the worst-case,

best-case and most likely outcomes of different tolerance levels in the design, and can then

work out the trade-off between tolerance and cost (a low tolerance level is more likely to

produce aesthetically pleasing results, but will increase the cost of manufacturing).

2.2.5 Ethical issues

Social systems and games are used by large numbers of participants who spend a sub-

stantial amount of time connected to the environments. Blizzard Entertainment released a

press statement at the beginning of 2008 saying that it had reached ten million subscribers

to World of Warcraft [13] (note that this does not represent the number of players that are

simultaneously connected). Online surveys ran by Yee, [123], collected data on the usage

of MMORPGs over a three year period, and the results showed an average usage of 22

hours per week among respondents.

These data highlight ethical concerns with the design of entertainment CVEs. For

example, if large numbers of people are using these systems for long periods of time, it is

important to consider and study the effects of these environments on real world behaviour.

It is known that some psychological and behavioural changes induced in the virtual world

have transferred to the real world in lab-based studies [125] (see Section 2.3.2.1). To what

extent do social and gaming environments induce certain types of behaviour on partici-

pants? Perhaps a more common question would be ‘do games cause violent behaviour

in the real world?’ However, progress on this is likely to be as slow as other areas (film,

television), due to the number of parameters involved [95, pp. 710–711].

Environments like Second Life raise some social, ethical and legal issues, due to the

virtual currency having real world value. Users can create objects that can be bought and

sold. This leads to people working in the environment for real money with a grey area

of legality, and throws up issues of ownership rights and the responsibility of the system

developers to maintain suitable software security [68].

Ethical issues also occur in environments with a small user base. Milgram’s contro-

versial obedience experiment was replicated in a virtual environment, in which users had

to give electric shocks to a virtual human. The results showed that users responded with

distress even though they knew that the avatar receiving the electric shocks was not a real

person [101]. The motivations for some experiments may be more positive, such as one

designed to provide help with social phobia (e.g. [78]). However, with knowledge that

the environment may affect people (even though they know it’s not real), care must be
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taken to avoid unhelpful side-effects, e.g. could the exposure to the virtual environment

have negative effects on the participant? Some participants felt so uncomfortable in the

virtual Milgram experiment that they used their right to withdraw. If the ‘real’ Milgram

experiment can not be carried out due to ethical concerns, then should we be allowing

virtual Milgram experiments when the participants are reacting as if it is real?

The study of collaborative interaction presented in this thesis focused on groupwork

in virtual environments. It used a custom environment developed by the author and par-

ticipants gave their informed consent in writing prior to taking part. The environment

was not designed to be uncomfortable to participants in any way, and the studies were

approved by the Faculty of Engineering Ethics committee.

2.2.6 Large-scale space

Large-scale spaces are those in which ‘Multiple vantage points must be occupied in order

for the space to be visually apprehended in its entirety.’ [118, p. 42]. An example of a

large-scale space is a city or a building. In contrast, small-scale space can be apprehended

by rotating the field of view from any vantage point, e.g. a room or a park.

Historically, the majority of CVE research used small-scale spaces (e.g. [9], [51],

[102], [66]). An example of early work designed to accommodate large-scale interaction

is [44], which worked to reduce network bandwidth by changing the representation of

groups of objects (see section 2.3.1.4). More recently, online social environments and

games such as Second Life and World of Warcraft (Section 2.2.4) provide large-scale

interaction and researchers have used these environments to study behaviour (e.g. social

norms in Second Life, [126], and avatar manipulation in World of Warcraft, [73]).

Large-scale space introduces extra challenges for groupwork, because not only do

individuals get easily disoriented when they navigate a large-scale VE, it is also all too

easy to lose track of the whereabouts of one’s collaborators. Therefore, the related work in

the following sections (the forming of groups and the performing of activity) is considered

with respect to the size of the space and the number of collaborators involved.

2.3 Group dynamics

Collaboration has long been studied within a socially driven context in real life (group

dynamics, [64]). The model of forming, storming, norming and performing has been

constructed to describe group processes [116]. Storming and norming are the processes by

which individuals’ roles within a group become refined, whereas forming and performing
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govern the creation of groups and their ability to do work. It is these latter two processes

that are most relevant for supporting groupwork using technology: how are groups formed

and how do they perform activity?

2.3.1 Forming

Four key points about group formation need to be considered. These are the method of

joining (implicit vs. explicit), how members are identified, the structure of the group (e.g.

subgroups/hierarchy), and the way that the group is represented (e.g. aggregate views of

the group as a whole).

2.3.1.1 Method of joining

When people meet and communicate informally in the real world they gather together into

circles to hear each other. The groups are organised using spatial positioning so member-

ship is implicit, and social etiquette applies when people join or leave. For example, new

members may be invited to join by existing members’ body language (e.g. stepping back

to allow a newcomer into the circle), and when members leave the group they would often

give an appropriate verbal indication or gesture (e.g. say or wave goodbye).

Active Worlds [2] is a chat-based CVE in which users form implicit groups. If users

are too far apart, the chat text isn’t displayed, so they are forced to gather together into

rough circles to ‘hear’ each other. Groups can make themselves open to new members by

gathering around the entrances to the worlds, or groups can govern themselves by agreeing

a time and place to meet. The environments are large enough for this to provide privacy

from users who were not invited because a group is unlikely to be found by accident.

However, a disadvantage of this implicit approach is that the system maintains no record

of the makeup of each group, so members may be unaware if they met by chance in

another part of the CVE. Furthermore, forcing users to collocate into groups limits the

scalability as large groups would clutter the visible space.

On the other hand, people can be part of explicit groups, for example a guest list for a

wedding, a university society or sports club. Explicit groups maintain a formal record of

their membership. In some cases membership is open (any student can join a society, they

just need to sign up) but in others it is dictated by members who have special privileges

(e.g., a couple deciding who they will invite to their wedding).

Social networking sites such as Facebook [34] use explicit groups. Membership can

be decided by a group administrator (as in the guest list example) or it can be open to

anyone (as in a society or club). Second Life [65] and There [70] are chat-based CVEs
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that implement explicit groups in a similar way to social networking sites. They use

a menu based interface to allow the forming and joining of groups for people with a

particular common interest.

2.3.1.2 How members are identified

‘There’ has no way of identifying who belongs to one of the groups by using the 3D envi-

ronment (e.g. from the appearance of users’ avatars). The only way to identify members

is by consulting the group membership lists. Second Life provides limited help by writing

group member ‘titles’ beneath the avatar names (the titles are not predefined, but could

be something like Treasurer or Secretary), which is useful if you are aware of the titles

within a particular group.

Group members can also be identified by spatial positioning or colour schemes. The

former approach is used by a second type of group in There. A group is started after

one user has chatted with another for a short period of time and the camera automatically

switches to a special ‘chat mode’ that shows the users’ two avatars aligned side-by-side,

giving a better view of the group. New members can join by walking up to the group,

clicking on an icon associated with it, and selecting the join option from a menu that

appears. As more people join the avatars are arranged into a semi-circle, so each user can

see all the group members in one view on screen (Figure 2.1). The disadvantages are that

group members are immobilised for the sake of visual clarity, and only a small number

can join.

A soccer team provides a good example of the real-world use of colour schemes.

Membership is decided explicitly before the match starts, and it is communicated by the

players wearing their team’s colours. There is no question who is on which team, and

it is straightforward to identify who is a member from a distance. A similar approach is

used in entertainment CVEs such as Wolfenstein: Enemy Territory [106] where members

of the two opposing armies can be identified from the uniform worn by users’ avatars.

Identification using colour schemes or uniforms is appropriate for scalability and means

that people are free to move around the environment while both remaining a member and

being identified as part of their group.

2.3.1.3 The structure of the group

Groups may change structure. For example, consider an office meeting. The people

present may divide themselves into subgroups to carry out certain tasks, or someone may

talk to the person next to them, using ‘side-channels’ of communication [12] rather than
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Figure 2.1: A group of users in There, a chat-based CVE. When users join together in a

chat group, their avatars are positioned into a semi-circle, and the camera is automatically

positioned to show all the avatars.

addressing the group as a whole.

There are three options for changing group structure. It can be (1) decided by the

people involved (e.g. a product design team decide to divide up into subgroups and work

on different parts of the product), (2) dictated by a leader (e.g. infantry divided up into

‘fireteams’ by their commanding officer), or (3) in the case of computer supported coop-

erative work it may be automatically carried out by the software application.

Investigations into the changing of group structure in CVEs are rare, but an excep-

tion is a study by Linebarger et al. that added functionality to a CVE to support explicit

changes of group structure, and looked at the difference between manual and automatic

sub-grouping [66] (see options 1 and 3 above). Subgroups could be formed using menu-

based selection (manual), or by the system itself that formed subgroups when people were

detected as working on different parts of the task (automatic). Automatic sub-grouping

was seen to be disruptive (3), but manual sub-grouping was a success (1). The effects

of option 2 in CVEs remains open to research, but if Linebarger’s conclusions are cor-

rect then it is the cognitive processes of participants breaking down the task and forming

themselves into subgroups that are important, and these are not present in options 2 and

3, which each impose a divide from outside the group.
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2.3.1.4 Representation

The way a group is represented can change. This is specific to CVEs. For example,

MASSIVE-2 [44] implemented a concept of ‘third party objects’—objects that affect the

awareness between other objects (i.e. users). In their ‘Arena’ work, they used third party

objects to hold crowds of users. Members of a crowd could see other individual members,

but non-members saw an aggregate view instead (a large avatar). One application of this

concept was to improve scalability (save on rendering and network bandwidth). However,

groups were formed based on spatial positioning and so were limited to a small-scale

space (they had to fall within the boundary of the third party object).

2.3.2 Performing

Performing is the stage in which a group carry out a task. The task can be performed by

an individual, or a group of people collaborating together.

People carry out activity at an individual level by making use of the information avail-

able to them. An individual’s awareness of the current state of the environment (known as

their ‘situation awareness’) guides their decision making, which leads to the performance

of actions, which in turn changes the state of the environment and the process repeats

itself [33].

When people work together as a team, the objects in the environment and the team

members themselves form a distributed cognitive process [52]. For example, in an air-

plane cockpit the pilot and co-pilot make use of the instruments available to interpret

their situation. They need to communicate their comprehension of the information that

surrounds them as they coordinate their activity. Section 2.3.2.1 gives details on commu-

nication processes.

In other scenarios, team members need to travel around the environment to perform

a task, such as in military training. They still need to communicate in some way (e.g.

radio)—communication is relevant to all collaborative activity—but in a large-scale space

they need to move around the environment too. Section 2.3.2.2 discusses the issues in-

volved with movement in the real and virtual world.

When a team has formed and begins to carry out activity, we want them to work

together efficiently and effectively. Section 2.5 considers how group performance can be

measured and what methods might be used to increase productivity.
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2.3.2.1 Communication

When a group of people work together as a team, information is taken from the environ-

ment (e.g. objects and context, such as the position of the ball in a soccer game) and then

communicated between the group members to form a behavioural response (e.g. pass-

ing the ball and scoring a goal). Communication can be verbal or non-verbal (different

modes), and is influenced by appearance (of self and others) and perspective (one’s own

interpretation of the information available).

Mode When we communicate face-to-face in the real world, different sensory modali-

ties work in parallel and using more than one makes interaction easier. Simple things like

mimicking the body language of another participant increases social rapport in real and

virtual systems [6]. Study of Second Life has found that real world social norms such as

those found with eye gaze and interpersonal distance does transfer to CVEs [126].

The control interface for gestures and facial expressions has long been a problem in

virtual environments [9]. Moore et al. describe the problem with respect to MMORPGs:

‘the industry and the player base is already realising that most current massively multi-

player worlds place too much burden on the players’ hands as they must be used to “talk,”

walk, gesture, interact with objects and access menus.’ [73, p. 301]. The ‘burden’ on the

users’ hands can be reduced by using voice communication as opposed to text, and the

vision is that one day we will have affordable real time motion capture for gestures (this

is currently being researched and promoted in the games industry using computer vision

techniques, e.g. PlayStation Eye, Nintendo Wii Remote).

Technology can overcome the ‘natural’ limits of real world verbal communication.

For example, distance attenuation of verbal communication is removed when using a

mobile phone. The Robust Audio Tool (RAT) used in the COVEN project [109] is the

equivalent of a mobile phone for virtual environments, or a telephone conference when

there are multiple users. This has limited scalability because the sound is ‘broadcast’ to

everyone in the environment, and it does not allow for ‘side-channels’ of communication

(i.e. private communication within subgroups, see Section 2.3.1.3 [12]).

A CVE can provide a real-world 3D distance model for audio, such as the Binaural

sound model used by Tsingos et al. in [115]. The audio communication is mapped to

the position of the speaker’s avatar, attenuated by distance and given a calculated phase

difference for each stereo channel, which is approximate to naturalistic verbal commu-

nication. The OpenAL API provides a simplified model of naturalistic communication,

with distance attenuation and stereo sound [50]. The advantages of an environment using

3D audio include helping the user comprehend who is talking (because one can mentally
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map the source of the sound to the visual avatar), and reducing noise from multiple users

by culling the distant sound sources, so that listeners only hear their neighbours.

Appearance There are two aspects important to appearance: how people look (clothes,

embodiment) and how people behave (body language, eye contact).

In the real world people change their appearance (their clothes, hairstyle) to communi-

cate, celebrate, and control how they are perceived by others. In the virtual world people

want to control the design of their avatar [94], and this can be done in many existing

environments (e.g. Second Life, There).

Avatar appearance has important implications for the user themselves. Yee and Bailen-

son constructed a virtual mirror, in which a user (who was in first-person perspective)

could see their own avatar. It was found that changing this avatar changed the user’s self-

perception, which affected their behaviour in the environment [124] and also in the real

world after the experiment [125]. For example, participants given taller avatars performed

better in a negotiation task than participants with shorter avatars, and this transferred to

subsequent face-to-face interaction. The research was extended to online games, where it

was found that ‘tall attractive avatars are most likely to be the highest level’, [125, p. 25],

where ‘level’ is the measure of progress in the game.

Avatars can be animated to create behavioural realism using body language and ges-

tures, and this has been shown to have an effect on other participants in the environment.

For example, Slater and Steed’s virtual audiences reacted in positive or negative ways,

which affected the participant giving a presentation [103]. Blascovich showed how an

avatar’s behavioural realism changed how close participants walked to the avatar. They

didn’t walk as close if it was behaving in a realistic manner, in a similar way to how we

respect personal space in face-to-face interaction [11].

Perspective Participants in desktop VEs experience two kinds of problems understand-

ing the actions of others. (1) ‘Fragmented views’, where another participant refers to an

object or point of interest in the environment, but their avatar and the point of interest are

not simultaneously visible in the viewport [51]. (2) What you see is not what I see, which

makes it difficult to understand another’s perspective.

Problem 1 is likely to happen because of a narrow field of view. This is inherent

in desktop VEs wanting to minimise distortion to keep realism [39]. Problem 2 is due

to a removal of real world sensory data, such as eye movements and depth perception.

This problem tends to be compensated for by a large increase in the amount of verbal

communication that takes place [90].
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A combination of these two problems occurs if two users wish to meet at a point of

interest. This is a ‘Come here! Look at this’ scenario (see [122, p. 136]), where the

respondent needs to know the location of the user who is talking (they are unlikely to be

within the viewport, see problem 1), and what they are referring to (problem 2).

Hindmarsh and colleagues experimented with extending the field of view to help with

problem 1 [51]. They used ‘lenses’ either side of the viewport that rendered a distorted

view of the peripheral environment. They made the view frustum of participants visible

for everyone to see to help with problem 2.

Murray and Roberts made an avatar’s eye movements match those of the participant

by using an eye tracker, so that others could determine their gaze direction [74]. This is

a useful solution for problem 2 when using large displays. The eye movements of par-

ticipants would lose their meaning in all but a small range of values with small displays,

where large values would imply they are looking outside the display at something in the

physical world.

Wössner et al. took a different approach in [120], and provided a What You See

Is What I See (WYSIWIS) view in their CVE, which would eradicate problem 2 en-

tirely. They designed two CVE interfaces, one of which provided a master/slave style

view (where one participant had complete control), and the other which provided a more

flexible approach where participants still had some independence (they could change ori-

entation). However, it was found that users preferred the independent viewpoint, so they

didn’t interfere with the other participant. Sonnenwald et al. found that users saw a benefit

in both independent views and shared perspectives [105]. Users liked to be able to figure

things out on their own and then discuss them collaboratively.

A WYSIWIS view shows the environment from another participant’s perspective.

However, even if two participants were stood at exactly the same point in the environ-

ment, there is no reason it should look the same. Technically speaking, the environment

could be rendered differently to each participant, providing a subjective representation.

Jää-Aro and Snowdon, in [55], argue that CVEs should make use of this. They sug-

gest changing information for each participant (e.g. translating text into the participant’s

own language) and filtering content (e.g. reducing clutter in a CAD model by removing

some information that the user does not require). Additional information can be provided

for expert users. For example, an urban planning application could provide all partici-

pants with 3D representations of proposed developments (so members of the public could

view them), and provide additional information to planning officials, such as 2D diagrams

showing the layout of the proposed buildings. These diagrams could be integrated in the

3D environment itself, overlaid on top of the viewport, or positioned next to the viewport
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to augment the original display.

The key requirement for solving problem 2 is being able to easily interpret what oth-

ers are seeing, and Smith et al. explain this as the ‘What You See Is What I Think You

See’ principle, WYSIWITYS, [104]. This implies that participants can have their own

independent view and auxiliary information that is unique to them, provided that others

can come to a logical conclusion as to what they are seeing.

2.3.2.2 Movement

Movement around an environment in the real world can be individual (people split up

and divide the task between them), as a group (to get a shared understanding), or require

meeting at a point of interest [122]. Moving as individuals or as a group both have their

advantages. Dividing the environment up between group members is a quicker way of

covering the space, but navigating together allows the sharing of ideas—‘two heads are

better than one’—and mistakes in the task are less likely to go unnoticed. The group can

take a hybrid approach and divide into subgroups, increasing speed of task performance

and still benefiting from a small amount of groupwork.

Textures and landmarks can help individual navigation in the virtual world [63]. In

addition, navigational aids help people know where they are in a large-scale space. Most

used is simply a map, using visual momentum to indicate one’s momentary position and

orientation [4] [89], but bird’s-eye views are also effective for seeing beyond one’s imme-

diate surroundings [27].

Moving as a group in a virtual world is a non-trivial task, due to the small field of

view in desktop environments (it is easy to lose track of where other users are). An over-

the-shoulder perspective helps when compared to a first-person perspective: users can see

others relative to their avatar [22]. However, moving the camera behind the avatar just

provides a bit more context, not a larger field of view, and difficulties still occur [51]. One

solution is to use an abstract device to provide an indication of where others are (e.g. a

radar, or 3D arrows pointing to targets [24]).

Moving to a point of interest in a virtual world presents communication and navigation

problems. First, there is a combination of problems 1 and 2 from Section 2.3.2.1—when

someone says ‘come here and look at this’, you need to know where they are, and what

they are looking at. Second, you need to navigate to the point they are looking at, which

will be helped by navigational aids outlined above.
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2.4 Asynchronous collaboration

People benefit from working together asynchronously in real life. For example, someone

who is out of their office can be sent a message by leaving a note on their desk, or a

letter in their pigeon hole. Some types of asynchronous working are supported with tech-

nology, using tools such as email, wiki, voicemail. In any type of asynchronous system,

participants don’t need to be working at the same time, they have time to think about their

decisions before responding, and information can remain for future reference.

Traditional CVEs bring together people for synchronous communication (they are

logged onto the system at the same time), but by recording users’ movements and con-

versations and providing access to this for future participants, CVEs can be extended to

provide asynchronous, remote collaborations (Table 1.1).

There are few examples of asynchronous collaborations being implemented in CVEs,

but exceptions are ‘temporal links’ to playback recorded content (e.g., 3D flashbacks to

tell a story), which in some cases was activated by a production crew working behind the

scenes [10], and in a second example the links were represented as virtual objects that a

user could interact with to playback a recording or send messages to other users [45].

Chapter 6 describes a general framework for asynchronous collaborations in VEs. A

new concept is introduced called virtual time (VT), which is designed for asynchronous

working, and a description of how VT fits within the general framework is given. (The

framework also highlights other possibilities for the design of VT.) Finally, an empirical

evaluation of VT is carried out and the results are analysed.

2.5 Evaluating groupwork

The analysis of groupwork can be divided into two categories: taskwork and teamwork

[7]. Taskwork measures the productivity of the group with regard to the task they were

given, and teamwork describes the group processes involved in achieving the productivity.

For example, a group’s high performance may be due to a minority of individuals (as

opposed to the result of them all working together), or on the other hand a group’s low

performance may be the result of poor team cohesion (as opposed to substandard team

members). The following sections give examples of the two types of work, and how they

can be evaluated.
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2.5.1 Taskwork

Most tasks have some measure of performance. For example, a football game (goals

scored, position in the league), an exam (marks awarded), or a dance contest (judges

award points). Some tasks require teamwork (football), other tasks don’t, such as a busi-

ness project that could be collaborative or alternatively could be carried out by people

working individually. With the latter type of task, one would expect a benefit of people

working together (‘two heads are better than one’).

However, as Kerr and Tindale discuss in [58], groups usually fall short of their poten-

tial in terms of performance. They note that group performance loss is due to problems

such as poor resource management (e.g. not making use of the members with the most

expertise), and social loafing, where individual group members do not pull their weight in

the group. According to their review, efforts have been made to tackle poor resource man-

agement by helping people identify the group’s most expert members (e.g. by providing

performance feedback, or training as a group), and these ideas could be implemented in

CVEs.

Social loafing is a well-known problem in organisational psychology, [58], and has

been found to occur in technology supported teams, e.g. [113]. If individual effort is

not recognised, then individuals can get away with less effort and have less incentive

to increase their effort. One solution, therefore, is to recognise individual contributions,

but that is not always easy. For example, it is hard to work out which football players

contributed the most to a team’s success (it is not necessarily the ones that scored).

Previous work in CVEs has measured performance using time taken to finish the task,

[97] (solving a puzzle), [83] (building a gazebo). Another performance measure has been

the quality of the final product in design or repair tasks. The way of determining the

level of quality depends on the task. For example, Linebarger et al. told participants they

were measuring the quality of their roller coaster designs by the number of loops and hills

which matched the specification provided [66]. In another example, this time from the

field of CSCW, Kraut et al. measured the quality of a physical bicycle repair job using

a checklist of requirements [61]. Measuring performance is straightforward in problem

solving or quiz type tasks, where the performance can be scored using the number of

correct answers (e.g. a comparison between chat room collaboration and face-to-face is

made using a problem solving task in [92]).

An analysis of individual performance may help us make predictions of team poten-

tial, e.g. [49] (comparing individuals and pairs of users), but the complexities of teamwork

make predictions difficult (teammates could potentially be a hindrance rather than a help).

Further analysis is required to give us insight into the teamwork taking place, to determine
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ways to make teams more efficient and effective when working in CVEs.

2.5.2 Teamwork

Schroeder and colleagues suggest quantitative and qualitative methods for the analysis of

teamwork [96]. For example, Section 2.3.2 discussed how communication and movement

are the building blocks for performing activity in a large-scale space. A qualitative anal-

ysis of communication would be done by observing patterns and trends in the choice of

words and the use of language, cf. [91]. An analysis of the movement behaviours of partic-

ipants in a CVE would also be qualitative, e.g. looking for typical patterns of movement,

such as periods of time where people navigate together versus times when they split up

and each explore separate parts of the environment. An example of a quantitative method

is an analysis of the amount of communication, i.e. the number of utterances that took

place. The utterances could be coded based on the topic of conversation (e.g. greetings,

task-related or idle chat), and the number of each topic could be used in a quantitative

analysis to get an understanding of what people were talking about.

The combination of qualitative and quantitative methods takes the raw data and draws

up a picture of the teamwork that is taking place. Within this there are two levels of infor-

mation that is useful to us: (1) what people were doing, and (2) why they behaved in this

way (taken from levels 2 and 3 in [88]). The first level is an explanation of how people

used the system, and how they went about performing the task. The second level gives a

more in depth analysis into the reasons behind the participants’ actions, and looks at the

meaning of the participants’ behaviour. For example, participants in a CVE might spread

out and navigate the environment separately. This could be seen in a qualitative anal-

ysis (observation), and then quantified by computing the distance from each participant

to their nearest neighbour within the environment (this could be calculated programmat-

ically for the full duration of the study). This quantitative analysis would provide infor-

mation about what people were doing in the environment (level 1)—it would report that

they were spread out and the quantification would allow a comparison to other groups of

participants. However, this does not become useful until the question of why they were

behaving this way is considered (level 2). It might be discovered from a conversation

analysis that they agreed to split up and divide the task due to a strict time constraint. Or,

there might have been very limited communication between the participants, which would

indicate that they were spread out because they weren’t working together—they were ac-

tually performing the task as individuals and very little teamwork was taking place.

Evaluations of teamwork in related studies apply similar principles. For example,
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Slater et al. used questionnaires to evaluate the effects of asymmetric technology in CVEs

(desktop versus HMD). They found that the participant using the HMD became the group

leader [102] (a level 1 analysis). A more in depth analysis is required to determine why

this happened despite the desktop participants not knowing that someone else was using

immersive technology. Hindmarsh et al. carried out a quantitative analysis on the commu-

nication in their CVE, and the amount of conversation was relatively high (level 1) [51].

A further qualitative analysis looked at what the participants were saying, and determined

that the reason for the large quantity of communication was due to lack of sensory infor-

mation in the CVE when compared to real life (level 2)—participants were compensating

for problems like narrow field of view by explicitly stating things that would be obvious

in the real world (‘making the implicit explicit’).

2.6 Scenario

The research in this thesis developed techniques to facilitate teamwork in CVEs. An

urban planning scenario was created for the techniques to be evaluated. There were other

possibilities for the scenario that could have been used, e.g. virtual tourism, emergency

evacuation/response (e.g. fire safety training), or a gaming environment. Urban planning

was chosen because it is a genuine application for CVEs that is useful for the real world

(participants can review developments before they are built), and it is compatible with

non-naturalistic interface elements (it can have functionality that is not available in the

real world, unlike training environments which typically intend to mimic the real world

as closely as possible).

Urban planning is an area that would benefit from 3D representations of real envi-

ronments (e.g. parts of a city) combined with 3D models of proposed developments.

Presently, urban planning officials make use of diagrams of proposed developments and

photographs of the site to be developed. Unfortunately, it is difficult to understand how

the proposed developments will relate to the surrounding area, and many planning ap-

plications are deferred for at least one site visit. A 3D representation would provide a

realistic representation of the developments that everyone could understand (including

members of the public), and it could also provide context by showing the surroundings.

A collaborative virtual environment would fit nicely into the public consultation phase

of the application process, where neighbours are asked if they would like to support or

object to the proposals.

In the evaluation described in Chapters 4 to 6, the participants’ task was to review

a residential estate by answering a set of questions, and illustrating their answers with
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screenshots of the environment (to help prevent ambiguity).

The questions were adapted from UK urban planning guidelines in [19] and [29], see

Appendix A. The questions were as follows:

• Question 1, Permeability: (a) How many entrance and exit points are there around

the estate? What are these for (i.e. cars or pedestrians)? (b) What reduces the

speed/volume of traffic? (c) Are there suitable pedestrian routes around the envi-

ronment? (d) Are the blocks small enough or do you have to walk too far before

you reach a choice of direction?

• Question 2, Character: (a) Which parts of the environment follow the same pat-

tern/building structure? (b) Find a part of the environment that is not consistent

with the layout of the estate. (c) Is this acceptable or should it be changed? (d)

Does the estate have character?

• Question 3, Safety & Security: (a) Comment on the safety and security of the

estate based on your own thoughts, the information in the guidelines and your dis-

cussion with other participants. (b) Find examples of where public and private space

is clearly distinguished and where it isn’t. (c) Discuss which part(s) of the estate

you think are least safe. (d) Can you find any blank walls that you think should

be overlooked to improve the feeling of safety and help prevent graffiti? (e) Try to

suggest some improvements with regard to the safety and security of the estate.

The environment was based on a real estate in Leeds. The estate was chosen after a

murder took place which highlighted one way in which the estate’s design didn’t follow

present UK urban planning guidelines. It occurred in a private space that was only par-

tially enclosed—it was not separated from a public footpath that ran along side it, and on

the other side of the footpath was a public park. This broke the following guideline:

‘Clearly defining and enclosing private space at the back of buildings pro-

vides for better privacy and security.

• Back yards or inner courtyards that are private or communally shared

space are best enclosed by the backs of buildings.

• The rear gardens of houses are more secure if they back on to other

gardens, rather than side roads, service lanes or footpaths.’ [29, p. 23].

The incident served as a reminder of the importance of good design. Unfortunately,

the pressures for short term financial savings have been known to compromise good de-

sign, and mistakes remain for years to come [26]. An annotated map of the estate is shown

in Figure 2.2.
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Figure 2.2: A map of the estate. The estate had an entrance road in the middle (point A),

which acted as a dividing line between two styles of building. On the left-hand side of

the entrance road, there were brown-bricked terraced houses, which were mostly horse-

shoe shapes creating partially enclosed private space (e.g. point B). The front gardens

were bordered by high fences, and there were six garages in the road (C). There was an

archway under one of the terraces (D). On the right-hand side of the entrance road there

were red-bricked bungalows (single story buildings) along the edge of the curved road,

with gardens bordered by low brick walls (e.g. E). There was a single-story care home for

elderly people (F), with a car park to the left with space for six cars (G), and a hedge-row

above it partly separating private land around the care home from public parkland (H).
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2.7 Summary

This chapter has introduced collaborative interaction in general, and provided some ex-

amples of computer supported cooperative work. A taxonomy classified various methods

of collaboration, and showed how the work in this thesis fits within that framework (Table

1.1).

Collaborative virtual environments were introduced, with a description of the many

ways these can be implemented (display technology, devices and techniques for inter-

action, software and network architecture). The application areas of CVEs were given,

along with specific examples, and consideration was given to potential ethical issues in-

volved. A distinction was made between large- and small-scale space, with examples

from previous research, and the extra difficulties involved in large-scale interaction were

given along with a definition of what constitutes large-scale.

A discussion followed about group dynamics, the processes by which people form

themselves into groups and operate. Methods of forming groups and performing team-

work were analysed, and examples were given from related work. Following this, a back-

ground was given on the concept of virtual time, in the context of asynchronous interac-

tion in general. Finally, explanations were given of the evaluation process for two types of

groupwork: taskwork and teamwork. The scenario used for experimentation in Chapters

4 to 6 was provided to set the scene.

Chapter 3 details the technical implementation of the CVE system used to carry out

the research in later chapters. Chapter 4 explains the development of an initial set of

MGDs techniques designed to help groups of people work together as they travel around

the environment performing the urban planning task, and it presents an evaluation of these

techniques. Chapter 5 identifies two main areas for improvement from the original tech-

niques, and implements and evaluates new functionality to address these issues. Chapter

6 explains the new paradigm for asynchronous interaction known as virtual time, and

discusses its implementation and evaluation. Finally, Chapter 7 discusses overall conclu-

sions from both synchronous and asynchronous interaction in CVEs, and outlines research

questions for future work.
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Technical Implementation

3.1 Introduction

This chapter describes the custom software application that was written to enable the tech-

niques in later chapters to be implemented and evaluated. Custom software was used to

create an ‘engine’ for the CVE system, on top of which the environment and functionality

could be built. This was done to make it easy to have complete control over the system and

add new functionality. Alternative approaches would have been to build the environment

on top of a commercial game engine, or using a VR engine (e.g. XVR [21]). However, the

principles described in this chapter apply to any implementation (e.g. using photographic

textures, hypothetical vs. accurate construction, audio capture and processing).

The software was written in C++ using OpenGL and OpenAL. The technical im-

plementation of the CVE system is broken down into four components: map building,

collision detection, networking and communication. This creates a conventional collabo-

rative virtual environment. The functionality that was added to this to aid collaboration is

described in the subsequent chapters.

3.2 Map building

The term ‘map’ is from the widely used gaming terminology, which refers to the visual 3D

representation of an environment, either real or hypothetical, in which a user can navigate.
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A CVE system can contain several maps, e.g. they could each represent different parts

of a city, or different urban planning proposals. This section describes the creation of the

maps for two environments used in the later research: a training environment used to get

participants familiar with the system, and the environment for review in the context of

urban planning.

There were three options for map building. (1) A real environment could be accurately

reconstructed in the CVE system. (2) A hypothetical environment could be produced. (3)

A hybrid of a real environment with hypothetical elements could be produced.

Accurate virtual reconstruction of a real location (option 1) is possible using laser

scanning. A laser scanner fires light photons and measures how much time they take

to return, to calculate the distance to the nearest surface. The scanner can be rotated

and the distance data can be combined with the knowledge of the laser’s position and

orientation. The resulting data generate a point cloud (a series of data points that lie on

surfaces within a direct line of sight from the laser’s position). A series of scans can be

taken from different perspectives, and polygons can be drawn onto the surfaces found in

the resulting point clouds. Finally, photographic textures of each surface can be mapped

onto the polygons. This technique is used by [3] and [81].

A hypothetical environment (option 2) could be constructed using map editing soft-

ware (i.e. the map is hand crafted). This was the option used for the design of the training

environment. The main part of the experiments involved participants reviewing the en-

vironment in the context of urban planning (i.e. does the environment fit with urban

planning guidelines?) In this case there was a danger of creating a hypothetical envi-

ronment where the arguments for and against the design of the estate were too obvious

(they were put in deliberately by the designer). However, very accurate representation of

a real environment was not required. Therefore, the hybrid approach (option 3) was taken

for the main environment used in the studies. The main environment was based on a real

estate, followed the pattern and contained the features from the real place, but it was mod-

elled by hand without the use of laser scanning technology. The choice of environment is

explained in Section 2.6, and Figure 2.2 contains a 2D plan view of the map, with labels.

A map editor was developed so that the two environments could be drawn using the

mouse. Users could draw the outline of a building, and then raise it up out of the ground

to a chosen height, and place a roof on top. Figure 3.1(a) shows the user drawing the

outline of some buildings, and raising them to different heights. The buildings could then

have textures applied to them, by selecting the walls using the mouse. Ceilings could be

optionally added, to create indoor spaces, an example of which is shown in Figure 3.1(b).

The training environment was constructed using hand-drawn textures. The main envi-
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(a) Some blocks created and raised to

varying heights, shown with plain shading.

(b) Indoor areas. The textures in the envi-

ronment shown were all hand-drawn, with

the exception of the door.

Figure 3.1: The map editor.

ronment used photographs from the real location as textures, which provided extra detail

to participants.

Figure 3.2 shows some thumbnails of the original photos that were turned into textures

for the main environment (photos of walls, fences, garage doors, windows, paving stones,

hedges). A total of 170 photos were taken and were made into 70 textures which were

used for the final version of the map. Photos of clouds were taken for the texture mapping

of the sky. A panoramic photo of the Leeds skyline was taken for the background. Figure

3.3 shows a close-up of some of the textures mapped onto one of the buildings in the

environment.

The sky and background photos were wrapped around the scene and were always a

fixed distance from the camera, to create the illusion that the buildings in the texture were

a large distance away. This technique is known as a skybox (Figure 3.4).

Photographs of people who participated in the studies were taken for their avatars.

Photographic avatars meant that everyone had realistic, and recognisable representations

of themselves in the environment (the importance of this is outlined in Section 2.3.2.1).

Participants had four photos taken of them (front, back, left, right), and an example is

shown in Figure 3.5. Each avatar was rendered to participants differently, by choosing a

different texture depending on their perspective in the environment. If one was looking at

someone face on, then one would see the ‘front’ photo, and as one moved around to the

participant’s right-hand side, one would see the texture image change to the ‘right’ photo.

This was implemented as follows. Each participant’s local instance of the CVE ap-

plication calculated the avatar appearances (avatars were rendered with respect to the

participant’s viewpoint). The participant’s orientation (an angle from 0−360◦) was sub-



Chapter 3 34 Technical Implementation

Figure 3.2: Thumbnails of some of the original photographs that were made into textures

for the 3D environment.

Figure 3.3: The textures used for ‘Burley Willows’, the care home for elderly people.
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Figure 3.4: The skybox: the background is permanently wrapped around the scene to

provide orientation cues to participants.

tracted from the orientation of each avatar, to calculate the difference. Let d represent the

difference, mapped to an angle from 0−360◦. For each avatar:

• 315 < d ∨ 0≤ d ≤ 45 ⇒ the back texture was used

• 45 < d ≤ 135 ⇒ right texture

• 135 < d ≤ 225 ⇒ front texture

• 225 < d ≤ 315 ⇒ left texture

Figure 3.6 shows an example of some of the avatars within the environment. The final

version of the 3D environment, complete with textures and skybox, is shown in Figure

3.7.

3.3 Collision detection

When a participant moved their avatar around the environment, the CVE system checked

for collisions with an object (e.g. buildings, fences), and stopped them from passing

through it. To make interaction easier, the system allowed people to ‘slide’ across sur-

faces. A basic collision detection algorithm works as follows:
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Figure 3.5: The four photos used for the avatar of one participant (left, back, right and

front).

Figure 3.6: The photographic avatars of three participants, in front of some terraced

houses.
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Figure 3.7: The environment used in the urban planning review.

(1) Every frame that a user moves, a ray is calculated from the position of the user’s

avatar in the previous frame (the ray start) and the attempted new position (which gives

the ray direction). This ray is checked to see if it intersects with a collision surface.

(2) If it intersects between the old and attempted new position of the avatar, then there

is a collision. A new ray is calculated from the attempted position of the avatar (the ray

start) and the normal of the collision surface (the ray direction). The avatar’s coordinates

are changed to the point where this new ray intersects with the collision surface. This

causes the avatar to slide along the collision surface as the user attempts to move against

the collision plane (Figure 3.8).

The problem with this method, however, is that it does not take into account the width

of the avatar. The avatar would be restricted from moving through surfaces, and would

slide along them, but half of the avatar would intersect with the wall (the collision would

only be detected when their centre point crossed the surface). This problem was tackled

by moving the collision surfaces out along their normal by half the width of the avatar,

before checking if they have moved across it (Figure 3.9). This meant that collision took

place before the avatar rendering intersected with the wall.

Figure 3.9 highlights a further problem. Moving the collision surfaces out along their

normal leaves a gap between the collision surfaces at the edge of objects. The system

dealt with this by extending surfaces to cover this gap.
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Figure 3.8: The collision detection algorithm. When an avatar moved across a collision

surface, it was repositioned by moving it along the normal, to the point of collision. The

black and red filled circles represent the centre point of the avatar, and the hollow circle

shows the avatar’s size.

Figure 3.9: The collision surfaces were moved along their normals to account for the

width of the avatar. This figure shows that the hollow circle representing the avatar no

longer intersects with the visual surface. A gap appeared between the collision surfaces

after they had been moved, and the system implementation extended the collision surfaces

to account for this.
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3.4 Networking

The different possibilities for network architecture and potential problems (e.g. consis-

tency vs. throughput) are outlined in Section 2.2.3. This section describes the networking

implementation chosen for the CVE system used in this research.

There are four types of information that need to be sent across the network in a con-

ventional CVE. (1) The position and orientation of participants’ avatars, (2) the text com-

munication, (3) the audio communication, (4) system events such as a participant logging

into the system or leaving the environment. Functionality introduced in later chapters

added other categories to this, such as participants forming/joining/leaving a group, and

these were implemented using the same principles as the other four types of information.

The architecture chosen for the CVE system was a client-server model, where the

server maintains the shared state of the environment. This avoided conflict between clients

(the server had the ‘master’ state), and a network throughput of 10Hz was used for type

1 data to keep every client updated. Type 2 data was transmitted one character at a time,

to reduce the delay between participants starting typing and others receiving the text,

and backspace characters were transmitted so that receiving clients could update their

representations of the text accordingly (participants could see the typing corrections of

others). Type 3 data was transmitted when participants held down their ‘talk’ key. The

talk key operated like a ‘push-to-talk’ button on a two-way radio. This meant audio data

was not being transmitted unless participants had something to say (this saved on network

bandwidth). Type 4 data was transmitted when events occurred, such as a participant

logging into the system, and this type of data was used to bring new clients up to date with

the current shared state of the environment. For example, when a new participant logged

on, their client application needed to know how many other participants were connected,

where their avatars were positioned, and any text that was currently being displayed in

speech bubbles. This information only needed to be transmitted by the server once to each

new client—after this only changes to the state needed to be transmitted. For example, if

no participants were moving, no type 1 data was transmitted. Type 2 data was only sent

when someone typed a new character, and type 4 data when someone else logged on or

off. The overall state of the environment was not transmitted every frame, because this

would take up unnecessary network bandwidth.

A participant’s avatar movement on their local machine appeared smooth, updating

every frame. If the client positioned the other participants’ avatars at the coordinates re-

ceived from the network, it would give slightly ‘jumpy’ movement (the movement would

be updated at a lower frequency, since movement data was not transmitted every frame
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to save network bandwidth). CVEs deal with this problem by using dead reckoning al-

gorithms (Section 2.2.3) which predict where objects are going to be at the next frame

based on the most recent position and velocity data received from the network. This cre-

ates smoother movement, but may mean the prediction is incorrect, and simply placing

the object at the correct place when an update is received from the network would cause

it to ‘jump’ to the new location. The CVE system used in the research for this thesis

dealt with this problem in a simple way. It interpolated avatar positions and orientations

between the last two most recent updates received from the network. This meant that the

movement was smooth and no corrections needed to be made. A consequence of this was

that avatar positions were slightly out of date, but this was not important in the context of

urban planning, and was countered by a relatively high update rate from the server (10Hz

for type 1 data, see above).

All information that is sent across a network is represented as a sequence of bits (0s

or 1s) [38]. When the data was transmitted by the CVE system, the instance of the appli-

cation at the receiving end needed to know what the bits represented. The data was put

together into units, inspired by the Protocol Data Units (PDUs) from the IEEE standard

for Distributed interactive simulation (DIS) [1]. Each unit contained a different type of

data (from the types 1–4, above).

A data unit started with a byte containing the ID of the object that the data related to

(e.g. if the bit sequence described type 1 information, then this byte would have contained

an identification number for the avatar it referred to). This was followed by a byte speci-

fying the type of the data. Each type of data had a specified size. For example, type 1 data

was always five floating point numbers: two for orientation (heading and pitch), and three

for position (x, y, z). In the case of type 3 data, the audio was broken down into blocks of

0.1 seconds in length, and each audio data unit contained one block (Section 3.5 explains

the audio communication in more detail).

The Transmission Control Protocol (TCP/IP) was used to deal with problems of data

packets going missing or arriving out of sequence, and with flow control [38]. TCP is a

useful protocol for dealing with congestion on the network, but the application developer

should be careful not to cause congestion. Type 3 data takes up the most bandwidth,

so this was sent using UDP/IP, and the CVE system only transmitted audio data when

a participant pressed their ‘talk’ key, to help reduce network congestion. The following

section gives more detail on the audio processing.

The server recorded all the data transmitted to a log file, with timestamps so that

sessions could be played back at their original speed. This was used for analysis of the

experiments described in the following chapters.
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3.5 Communication

It is common for desktop CVEs to allow text communication using the keyboard, e.g. [2]

[70] [65]. Many CVEs use audio communication too (i.e. users have headsets), which in

some cases has been implemented using a telephone connection (e.g. [93]), and in other

studies has been implemented using Voice over Internet Protocol (VoIP). For example,

the Robust Audio Tool (RAT) used in the COVEN project uses VoIP [84] [109]. Skype

is a VoIP tool which provides an API for developers [100]. The OpenAL API [50] pro-

vides audio capture functionality, and developers can transmit the captured data across

the network.

For the CVE system being developed, text communication was implemented by trans-

mitting each character as it was pressed, and each character appeared in a speech bubble

above the corresponding avatar as the participant typed (Figure 3.10). When participants

pressed their ‘enter’ key, the text remained for a further 10 seconds, before being removed.

New text could still be added during this time: a new speech bubble would appear, and

this would ‘push’ the old one higher up. This way a chain of speech bubbles could be

created, and each would expire after 10 seconds of display, reducing the chain from the

top down.

Figure 3.10: The text communication above a participant’s avatar.

Audio communication was implemented using OpenAL 1.1. This was chosen because

other systems such as RAT and Skype broadcast the sound to all users, and OpenAL

allows the developer to deal with transmission and specify different playback parameters
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for each user. Transmission could be controlled so that only certain users received the

audio, and a 3D sound model was used for audio playback. Functionality was added to

the system later to support groups, and playback parameters were set differently for group

members (they heard communication from their fellow group members without distance

attenuation). This is described fully in Chapter 4.

The sound model used was the ‘inverse distance clamped’ model, a reference distance

(refdist) of 30m and a roll-off factor (rolloff) of 6. This means that for distances (dist) of

up to 30m the gain was 1.0, between 30 and 85m the gain was defined by the equation
re f dist

re f dist+rollo f f (dist−re f dist) [50]. This gave a gain of 0.08 at 85m, and beyond this the gain

was set to zero.

The stereo channels were used to help participants pinpoint the sound source. If a

source was to the right of the listener or central, then the gain of the right stereo channel

was kept the same (the gain calculated by the attenuation model). As the source moved

to the left of the listener, the right channel gain was reduced from 100% (central) to 0%

(directly to the left of the listener), and vice-versa for the left channel. This is calculated

by the OpenAL implementation. Further, an icon was placed above a participant’s avatar

when they spoke, as a visual cue to help others identify who was talking.

The captured audio data was processed in blocks of 0.1 seconds of audio. Each sample

was stored using 16 bits (mono) and samples were taken at a frequency of 20kHz. So a

0.1 second block of audio was 32kbit of data (4kB). This amounts to a rate of 320kbit/s.

(For comparison, a Fast Ethernet LAN is nominally 100Mbit/s). The blocks of audio data

described in the rest of this section are referred to in terms of the amount of time captured,

for the sake of clarity.

The OpenAL implementation has an internal ring buffer which stores the audio being

captured. The CVE system waited until 0.1 seconds of audio had been written to the

internal ring buffer before requesting it. The data was then copied to a buffer in the

application memory, ready for processing.

The OpenAL implementation’s internal ring buffer size is specified by the application,

and needs to be large enough so that new audio data can be received while the data is being

copied to the application. Otherwise, some audio data would be lost, explained as follows.

Suppose 0.1 seconds of audio data has been stored by the OpenAL implementation. There

will be a short time delay before the application detects this and requests the data. During

this time more audio data would have been received from the microphone input and been

dropped by the OpenAL implementation.

When the CVE was running, some data processing was involved in transmission of

audio data (splitting into data units and adding IDs to indicate which person was talking),
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but the majority took place upon the receiving end. The audio data was received by the

server, and put into ring buffers ready to be sent to every client except the originating

one. Each client then received the audio data from the server, and put it on a ring buffer

for processing. Each data unit was parsed to find the avatar that the audio needed to be

associated with. An OpenAL sound source was positioned over the corresponding avatar,

and the audio data was queued to this source. The sound source was set to ‘play’ when

enough audio data had been received (0.2 seconds), and new data units were appended

to the queue when they were received. The reason for clients buffering the data before

starting playback—waiting until they had 0.2 seconds, which is an amount that could

be changed by the system designer—was to allow for network congestion. If playback

started straight away and the next packet was delayed, then a gap would be heard in the

sound, and the repetition of this would cause sound playback to be poor quality. The

consequence of the buffering was a small lag (0.2 seconds seemed acceptable), but the

main benefit was the increased probability of smooth audio playback.

The processing time was limited. If 10 people were talking at once, then 1 second

of data was being received every 0.1 seconds. If this second of data took more than 0.1

seconds to process, then the next second of data would have arrived before the processing

was finished, and the amount of data queued for processing would have increased. A large

space in memory could be allocated to account for this, but if people carried on talking

it would overflow in the end. A recovery system was developed to deal with overflow so

that the CVE system would be robust even with large numbers of users.

As specified above, audio data received from the server was stored on a ring buffer for

processing (before being queued on a source by the OpenAL implementation). The audio

data was dropped if this ring buffer was full. It was important to drop the whole data unit:

a policy of ‘all or nothing’. Otherwise, some would remain on the ring buffer, and when

the next bytes were added to the ring buffer the data unit would be misinterpreted in two

ways. First, the system would assume the header bytes of the next data unit were actually

audio data from the preceding data unit, and it would try to play them. Second, the system

would assume the following bytes were the header bytes of the next data unit, when they

were actually audio data, and this would lead to unpredictable behaviour.

The CVE system (including audio communication) was tested and ran successfully

on Linux and Windows platforms across the Internet on a home broadband connection

(2Mbit/s). It was deployed on a Linux platform across a LAN (100Mbit/s) for the pur-

poses of the evaluations described in the following chapters.
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Mobile Group Dynamics

4.1 Introduction

This chapter describes the implementation and evaluation of techniques called Mobile

Group Dynamics (MGDs), which helped groups of people to work together synchronously

while they travelled around large-scale collaborative virtual environments. The tech-

niques were evaluated using an urban planning scenario in which one group of partici-

pants were provided with MGDs functionality and another (‘control’) group were not.

4.2 Designing and implementing MGDs

The goal was to develop techniques that helped people work together over an extended

period of time, in a large-scale space. This was achieved by designing MGDs to support

the forming and performing stages of Tuckman’s model of group activity (Section 2.3). In

other words, the MGD techniques were designed to make it easier for groups to form in

the CVE, and to support their operation as they performed the task. The MGD techniques

differed from prior work by using a novel ‘group graph’ metaphor for users to keep track

of each other (Section 4.2.1) and an easy mechanism for switching between moving as

individuals vs. a group (Section 4.2.2). The techniques are described here, in the context

of forming and performing, and Section 4.4.1.4 gives full details of the interface controls.

The design of MGDs was an iterative process. Ideas were sketched out and reviewed
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by presenting them to the Visualization and Virtual Reality research group at the School

of Computing, University of Leeds. The questions and comments from the research group

were fed back into the design of the system, and the process was repeated.

4.2.1 Forming

There were four key decisions for the forming of groups outlined in Section 2.3.1. These

were method of joining, how members are identified, the structure of the group, and the

way the group is represented.

4.2.1.1 Method of joining

Participants in CVEs can form implicit groups by gathering together into circles, in a

similar way to how people meet and communicate informally in the real world (Section

2.3.1.1). The MGD techniques were designed to provide functionality for explicit groups,

and the reason for this was that it allowed groups to continue to function when they were

spatially separated in the environment, and functionality was combined with this to enable

group members to remain in contact at all times (Section 4.2.2.2).

Explicit groups were implemented by making the server maintain a record of group

membership (there was no ambiguity), and the groups were made identifiable to partic-

ipants in the environment so that they could locate fellow group members and get back

together again after periods apart (Section 4.2.1.2). However, the method of joining the

group could be both implicit (using spatial positioning) or explicit (using selection), and

this is detailed below. The implicit option was implemented so that participants who

gathered together into circles would be automatically placed into a group by the server,

to encourage people to use the grouping system. The explicit option was provided so that

participants did not have to be spatially collocated in the environment to form or join a

group—they could select an avatar from a distance.

Forming or joining a group could be done implicitly or explicitly, under one of the

following conditions:

• Implicit: Moving within 1m of another participant’s avatar.

• Explicit: Selecting another participant’s avatar.

A new group was formed if neither participant was already in a group. The group was

joined if one participant was not in a group and the other was. If both participants were in

different groups, then the implicit condition had no effect. For the explicit condition, one
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selection would move the participant out of their current group, and a second selection (or

satisfying the implicit condition) was required to move them into the other’s group.

4.2.1.2 How members are identified

A prototype of the system represented the groups using a side-bar covering a sixth of the

screen width. Each participant in the CVE had an icon representing them, which was

displayed in this bar. When two or more participants formed a group, their icons were

moved so that they were adjacent, and a box was placed around them to indicate group

membership (Figure 4.1). The icons were updated when new participants joined or when

a group member left.

Figure 4.1: The prototype system, with groups shown on a side-bar on the left-hand side

of the screen.

This prototype system did not represent groups within the 3D environment itself.

When a participant saw an avatar, they would have to look up its corresponding icon

on the side-bar to determine which group it belonged to, which was relatively time con-

suming. Feedback on this suggested that it could be much simpler (with fewer cognitive

overheads) if something in the 3D environment itself could represent group membership.

This was achieved by allocating a unique colour to each group, and it was decided that

avatars would have something of that colour to denote membership to that group.

It was also suggested that it would be beneficial to have an easy way of locating fellow

group members within the environment, so that collaboration could continue when mem-

bers were spatially separated. An idea was presented of a separate map screen, which
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would show a plan view of the environment, and connect group members using lines of

their group’s colour. In other words, the avatars of each group would form a graph (the

avatars being the vertices and the edges denoting group membership), which tracked them

as they travelled around the environment. The edges of each graph would be coloured ac-

cording to the colour of that group, so each graph would have a unique colour. This

would mean participants could follow lines from their avatar, and easily locate the where-

abouts of fellow group members. Further, it would provide interesting information about

the spatial positioning of groups (collocated vs. distributed across the environment, and

any members travelling around a separate part of the environment on their own would be

easily identifiable by a line that connected them to the ‘core’ of the group).

However, the idea of a separate map screen would have caused problems of disembod-

iment: people would be removed from the perspective of their avatar and ‘pulled’ out of

the 3D environment view. Participants could be in the main view of the 3D environment,

or in a separate view using the map, but not both simultaneously. Would participants try to

navigate using the map alone, and lose the feel for the environment? Would participants

miss text communication because they were too busy looking at the map, and would miss

the speech bubbles above other’s avatars? How do you represent to others that they are

looking at the map, and not at what they are doing in the 3D environment?

It was decided to leave out the map at this stage, but the idea of the group graph

would still be used. The graph would be shown on the avatars themselves. This was

particularly clear in a bird’s-eye view, when the groups could be seen as independently

coloured graphs, with the names of participants at the nodes. The bird’s-eye view of the

group graph is shown in Figure 4.2. (The bird’s-eye view was provided to participants).

This meant that groups were explicitly represented within the environment using colours

and by following the lines they could find group members. With the introduction of the

group graph, the side-bar was no longer so important, and so it was reduced to a small

transparent overlay, using a Head-up display (HUD) metaphor, to save on screen real

estate.

Delaunay triangulation was used to determine which edges in the group graph should

be drawn, thereby reducing clutter in the environment (Figure 4.3). The consequences of

this were that participants didn’t necessarily have a line from their avatar to every group

member, and the edges changed as participants moved.

4.2.1.3 The structure of the group

The group system was hierarchical, and this worked with explicit selection only. A sub-

group was formed if selection occurred and both participants were already in the same



Chapter 4 49 Mobile Group Dynamics

Figure 4.2: A screenshot from MGDs condition, showing two groups from a bird’s-eye

view. One group is tracked by a green graph and the other by a blue graph. The two graphs

have had Delaunay triangulation applied (this is how a participant would see them). Group

membership is listed on the HUD at the top left-hand side of the screen.

(a) Without triangulation. (b) With triangulation.

Figure 4.3: An example of the appearance of a graph if all vertices are connected (a

complete graph), compared to after Delaunay triangulation has been applied. Delaunay

triangulation was used in this context to reduce clutter in the environment, while keeping

the graphs connected.
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Figure 4.4: A flowchart showing the possible outcomes when participant A selects partic-

ipant B. Each selection gradually moves A towards B’s group, until they are in a group

together.

group. Leaving the group happened one step at a time. First participants would be re-

turned to their parent level of the hierarchy if they were in a subgroup, and they would be

removed from their group altogether if they were at the top-level. The grouping system is

illustrated with a flowchart in Figure 4.4.

Subgroups were displayed by using a different colour in the group graph, with partic-

ipants still connected to the graph of their parent group. The parent group’s graph was

made semi-transparent, so that it could be distinguished from the graphs of the low-level

groups.

4.2.1.4 Representation

The way the group is represented refers to different ways the group appears for different

participants, and in related work it has primarily been used to reduce rendering require-

ments and network load (Section 2.3.1.4). Representation was the same for participants

in the first study, but perspectives were changed in the next, Chapter 5, where different in-
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formation and different views were provided for each participant (cf. awareness, multiple

views).

4.2.2 Performing

MGD functionality was designed to support groups in the performing of activity. When

a group of people work together in a large-scale space in the real world, they communi-

cate and move around the environment (Section 2.3.2). MGDs were designed to facilitate

intra-group communication, and to help groups of people move together in the environ-

ment, and regroup after periods of separation. The functionality is described below, in

the context of the two categories: movement and communication. Related work in these

categories is outlined in Sections 2.3.2.1 and 2.3.2.2.

4.2.2.1 Movement

There were two metaphors for moving as a group: the magnetic metaphor and the elastic

metaphor. The magnetic metaphor was based on the idea of the CVE system automatically

pulling fellow group members together, as if each member generated their own magnetic

field. It was implemented as a test, and found that problems occurred depending on the

strength of the magnetic pull towards group members. If the pull was too high it was

frustrating when one wanted to move apart from the group (movement away was slow),

and if it was too low it left one trailing behind when people started to try and move

together. If one wanted to stay still it was awkward regardless of the strength of the pull,

since other members interfered with one’s position. The observations were comparable

to the research carried out by Linebarger et al., where they found that users did not like

it when external forces interfered with their actions, even if it was the system trying to

help [66]. The problem was not in the functionality itself, but in the way the system tried

to make changes automatically—the users with manual control found it useful.

This was solved in two ways. First, the functionality was improved: it was noted that

to help users move together as a group, the magnetic pull should be towards the mean

location of the group, and not the nearest group member (so one is pulled towards the

group core, not those who straggle behind). Second, it was made a manual operation.

Participants could press a button to activate the magnetic metaphor. This meant it did

not interfere with the participant as they travelled around the environment (their position

was not affected by the movements of others). Instead, a single button press pulled the

participant to the mean location of the group, and the magnetic force was switched off

when they arrived close to the mean location, or when they pressed a movement key (i.e.
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as soon as they wanted to travel elsewhere they were ‘released’).

The original prototype for the elastic metaphor was designed so that participants could

automatically follow a group member. A participant could be automatically carried along

with someone, but with the freedom to change orientation and move away from them.

The metaphor was that they were attached to the other participant’s avatar by a piece of

elastic, so following was easy (automatic) but they had the flexibility to stretch the elastic

and move away to take a look at something in the environment.

On paper, the elastic metaphor worked in three steps. (1) Participants selected a group

member to automatically follow, (2) participants moved away from them (e.g. to look

at a point of interest that they were passing by), and (3) participants could automatically

be returned to the location of the person they were following, and continue being carried

along with them. It was noticed that the first and third steps of this were very similar, and

in order to achieve step 3, a participant could just use step 1 again.

In the final implementation, the system was designed to work as follows. First,

step 1 was implemented so that the user could make the selection from any part of the

environment—they didn’t have to be close to the avatar they selected. When a participant

selected an avatar to follow, they were rapidly moved to their location. Therefore, the

need for step 3 was eliminated: step 1 could be repeated instead. Second, the concept of

any kind of interfering elastic ‘pull’ was removed when participants walked away to look

at something in the environment (users don’t like interference, see above). A participant

could perform step 2 simply by pressing a movement key, so manually moving in the en-

vironment stopped the automatic movement functionality—they were released in a way

that was consistent with the magnetic metaphor. Unfortunately, without the elastic pull

back to the person they were following, the elastic metaphor no longer fits. The metaphor

is instead simply one of leader/follower, where one participant says ‘follow me!’ and

any volunteers are led to another part of the environment. More than one participant can

follow the same leader.

In summary, a suite of functionality was provided to assist movement as a group.

Participants could automatically follow a group member (leader/follower) or move to the

mean location of their group (magnetic), and another benefit of this functionality was

that it could be used to rapidly move to a group member’s location. During automatic

movement participants still had full control of their orientation, so they could look around

while being ‘taken’ somewhere. This meant that they could get an understanding of where

they were heading, and continue to look at things in the environment while the automatic

movement carried them along. To stop the automatic movement (e.g. to stop following

someone), participants simply pressed one of their movement keys.
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Collision detection remained enabled during the movement to the mean location of

the group because the mean location might have resided in an out of bounds area (e.g. a

building). A sliding algorithm smoothly moved participants along walls/fences (Section

3.3).

4.2.2.2 Communication

The communication model in the environment provided 3D audio communication (Sec-

tion 3.5). This had the benefit of providing participants with a clearer indication of the the

location of someone who was talking, which they could work out from the ‘direction’ that

the sound was perceived to be coming from. This was particularly helpful if the avatar

associated with the participant that was speaking was out of sight.

MGD functionality was implemented so that the volume level of audio communication

was not affected by the distance between people, when they were members of the same

group. This helped collaboration continue even when the speaker and listener were far

apart in the environment. However, distance attenuation was implemented for inter-group

communication (as per Section 3.5), to reduce the overall noise levels.

There were initial ideas to help participants communicate their findings to others in

the environment, by enabling view sharing. This would solve the two communication and

perspective problems outlined in Section 2.3.2.1. However, this was left out of this first

study, so that functionality would be introduced and evaluated in stages. The design and

implementation of view sharing, and other new techniques, can be found in Chapter 5.

The rest of this chapter discusses the first study of the participants behaviour in the

CVE—a study to see the effects of the new functionality (the MGDs condition) when

compared to a conventional environment (the control condition).

4.3 Hypothesis

The MGD techniques were designed to improve synchronous teamwork in CVEs, as de-

tailed in Section 4.2. Teamwork was measured using the methods outlined in Section

2.5.2, and the metrics were the amount and type of communication between participants,

the spatial positioning of participants within the VE, and the forming of explicit groups

using MGD functionality. In addition, the movements of participants were recorded to a

log file by the server, and the CVE software used this to provide an automatic drawing of

the participants’ paths around the environment, which were used for a qualitative analysis.

It was predicted that there would be more teamwork taking place in the MGDs con-
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dition. Participants in the MGDs condition were predicted to communicate more about

the task, and to be in closer spatial proximity. It was expected that participants in the

control condition would work together to a lesser extent due to the problems inherent in

interaction in conventional CVEs (Section 2.3.2).

Participants in the MGDs condition were predicted to collaboratively navigate using

the automatic leader/follower mechanisms, and a level 2 qualitative analysis of their paths

would determine if teamwork was taking place (i.e. they were deliberately moving to-

gether and regrouping vs. their close proximity was incidental — see levels 1 and 2 in

Section 2.5.2).

4.4 Experiment

Participants were asked to review a 3D representation of a residential estate that was

presented in a CVE system, and complete an urban planning report (Section 2.6). The

experiment was carried out in two batches. Participants in the first batch were provided

with the MGD functionality that we’d developed to aid collaboration in large-scale VEs

(MGDs condition, Section 4.2), whereas in the second batch MGDs were disabled so

functionality was typical of current CVEs (a ‘control’ condition).

4.4.1 Method

The experiment took place in an undergraduate computing laboratory. Each participant

used two adjacent computers, one for the CVE, and the other for the write-up of their

urban planning report. Participants were spaced out across the laboratory so they could

only communicate using audio and text communication from within the environment.

4.4.1.1 Participants

All participants were undergraduate students from the School of Computing. Ten par-

ticipants were recruited for each run, but two participants for the MGDs condition were

unavailable on the day of the experiment. The remaining eight participants (5 men and 3

women) had a mean age of 20.8 (SD = 2.0). The ten participants (9 men and 1 woman)

in the control condition (MGDs disabled) had a mean age of 22.0 (SD = 3.5).

All the participants volunteered for the experiment, gave informed consent and were

paid an honorarium for their participation.
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4.4.1.2 CVE application

The system allowed multiple participants to connect simultaneously to the environment,

be aware of the position and orientation of each other, and communicate using audio

and text mediums. The server recorded all activity to a log file (e.g. avatar movements,

audio and text communication), with timestamps so sessions could be played back at their

original speed, and this playback was used for analysis.

The stereo channels were used to help participants pinpoint the source of audio com-

munication (using a 3D sound model, described in Section 3.5), and an icon was placed

above a participant’s avatar when they were talking, as a visual cue. Audio volume was

attenuated as distance increased between the listener and speaker, to mimic the way verbal

communication works in the real world.

Distance attenuation was turned off for communications between members of the

same group in the MGDs condition. This helped group members communicate as they

travelled to different parts of the estate.

The experiment took place on a Linux platform across a 100 Mbit/s LAN. The CVE

system is described fully in Chapter 3. The user interface controls are described in Section

4.4.1.4.

4.4.1.3 Avatar

All participants were represented in the environment with a photographic avatar (using

four photos: front, back, left and right, see Figure 4.5). Participants were given an over-

the-shoulder perspective, with the option of switching to and from a bird’s-eye view. An

over-the-shoulder perspective meant that participants could see each other relative to their

avatar, and be more aware of how others perceived them [22].

4.4.1.4 User Interface

The participants used desktop workstations, and a two-handed control method, with one

hand on the keyboard and the other hand on a 3-button mouse. By holding down ap-

propriate arrow keys a participant could move forward/backward/left/right at 6 m/s, and

heading and pitch could be changed by moving the mouse. This is a common gaming

control method (e.g. [18]).

The ‘Insert’ key was used to take screenshots, the ‘Home’ key to toggle between over-

the-shoulder and bird’s-eye views, and holding down the ‘Page Down’ key allowed the

participant to use voice communication.
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Figure 4.5: The avatars of two participants from the MGDs condition.

Text communication was achieved by simply typing letters or numbers, which were

transmitted the moment each was typed, appearing in a speech bubble above the partici-

pant’s avatar. The text expired after approximately ten seconds from the moment the enter

key was pressed. Each participant was provided with a stereo headset for audio communi-

cation. The default recording and playback volumes were automatically set using a shell

script.

MGD functionality used three mouse buttons, and the ‘Delete’ key to move up one

level in the group hierarchy. The display had a crosshair in the middle used for selection.

Selecting an avatar with the left mouse button formed/joined a group. Selecting the avatar

of a fellow group member with the right mouse button rapidly moved to their location and

automatically followed them. Pressing the middle mouse button anywhere moved to the

mean location of the group.

The keyboard and mouse controls are illustrated in Figure 4.6.

4.4.1.5 Procedure

The experiment used an urban planning scenario, outlined in Section 2.6. Several days

before the experiment, each participant attended a ten minute preparation meeting, to have

photos taken for their avatar, ask questions about the experiment, and read an introductory

sheet containing extracts from government urban planning guidelines (Appendix A).
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(a) Keyboard controls for both conditions, with the

exception of ‘Delete’ which was not used in the con-

trol condition.

(b) Three-button mouse controls for MGD

functionality. Moving the mouse con-

trolled heading and pitch.

Figure 4.6: The user interface controls. The navigation control method was two-handed:

participants placed one hand on the arrow keys for movement and the other hand on the

mouse to change heading and pitch.

The experiment itself lasted one hour. At the start of the experiment, each partici-

pant was provided with three information sheets: another copy of the introductory sheet,

instructions that described the CVE’s interface (Appendix B), and a schedule for the ex-

periment. They were also provided with an electronic copy of an urban planning report.

The questions contained in the report were adapted from urban planning guidelines in [19]

and [29], and are listed in Section 2.6.

The first 15 minutes of the experiment were used for training. Participants were in-

structed to experiment with all the controls available to them, with the experimenter and

assistant on hand to clarify anything if necessary. Participants logged into a training envi-

ronment. This contained a 3D representation of a city, of which an area of approximately

75x75m could be explored. There was a main road area, surrounded by large tower-

blocks, with small alley ways around the back of them. Two of the tower-blocks could be

entered, one from the road, and the other by descending some steps and going under the

road in a subway. There was a lift up to the top of one of the blocks. Two screenshots

from the training environment are shown in Figures 4.7(a) and 4.7(b).

The next 35 minutes were allocated for the main task—the review of the residential

estate (Figure 2.2). Participants logged into the main environment and travelled around the

estate to answer the questions and complete their urban planning report. If a participant

came across something relevant to the report, they could take a screenshot of it. The
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(a) Outside, looking across at one of the

tower blocks.

(b) A storage room inside one of the build-

ings.

Figure 4.7: The training environment.

screenshot would simply capture what they were looking at, in the same view that the

participant had (i.e. over-the-shoulder, or bird’s-eye).

The participants received verbal warnings when there were 10 minutes and 5 minutes

remaining on the main task, to encourage them to finish writing up the report. The final 10

minutes were allocated to submitting the report, filling in a questionnaire, and receiving

payment.

4.5 Results

The data collected can be divided into two categories, taskwork and teamwork—‘the work

of working together’ [7] (Section 2.5). The sources of data were the participants’ urban

planning report sheets, the questionnaires and the server’s recording of everything that

took place in the environment (text and audio communication, movement, and the makeup

of the teams). The report sheets provided data about the taskwork, and the questionnaires

and server’s recording provided data about the teamwork.

The server’s recording was in the form of a log file. It could be played back, either

forwards or backwards (rewinding) at various speeds, and with the ability to move the

viewpoint around the environment to view the playback at any position or orientation.

Statistical analyses were performed using independent samples t-tests to compare par-

ticipants who had been provided with the MGD functionality with those who had not.
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4.5.1 Taskwork

The reports were marked like an exam, according to a mark scheme with example an-

swers.

The mean marks were 16.9 out of 24 (SD = 5.1) for the MGDs condition, and 17.3

(SD = 4.0) for the control condition. An independent samples t-test showed there was not

a significant difference in the taskwork scores of the two groups of participants, t(16) =

0.20, p > .05.

The task itself was only of modest difficulty, so it was to be expected that performance

would not differ between the two conditions. However, the primary interest lay in how

MGDs affected the way in which participants tackled the task.

4.5.2 Teamwork

The analysis of teamwork consisted of a combination of two methods based on those

in [96]. The first method was quantitative, in which the communication and spatial po-

sitioning between participants were analysed, and the results for the MGDs and control

conditions were compared. The second method was qualitative, an ‘analysis of interaction

fragments’ [96, p. 661], in which the paths of the core participants in the MGDs condition

were analysed to draw out patterns of interaction.

4.5.2.1 Quantitative analysis

For the MGDs condition, each explicit group of participants was given a unique colour.

This ‘team’ colour remained the same despite changes in the combinations of participants

who belonged to that team. The teams are shown in Figure 4.8. The participants are

shown on the y axis, and given a colour depending on which team they belong to at each

point in time, where time is shown on the x axis. The time of zero represents the time that

the server was started. Teams were formed from scratch five times, four times implicitly

(pairs of participants walked within 1m of each other) and once explicitly (one participant

selected another). The chart shows that for the majority of the experiment there were two

teams, one blue and the other green, with participants occasionally switching from one to

the other.

The data about participants’ movements through the environment were used to cal-

culate how far each participant was from their nearest neighbour every second during

the experiment. This was then used to determine the percentage of time participants spent

separated by given distances from the other participants (see Figure 4.9). These data show
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Figure 4.8: A chart showing which team the MGD participants were in over time. Each

team is shown in a different colour.
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that participants spent nearly twice as much time within 10m of others when MGDs were

provided.

The mean distance to the nearest neighbour was calculated for each participant in both

conditions. The overall means were 19.7m for the MGDs condition (SD = 4.2) and 25.4m

for the control condition (SD = 3.8). An independent samples t-test showed that there was

a significant difference in the distances to the nearest neighbour for the two conditions,

t(16) = 3.05, p < .01.

The questionnaire was used to gather data on the use of MGDs. In particular, the auto-

matic following mechanism could be used to rapidly move to a group member’s location.

Six out of the eight participants said they used the functionality in this way.

Figure 4.9: Proportion of time participants spent within given distance of their nearest

neighbour.

For each batch of participants (the MGDs and control conditions), participant’s spoken

and text communication was transcripted and analysed using a communication coding

approach [15] to classify each utterance as one of the following:

(a) Greetings (e.g. ‘Hello R!’, ‘How you doing?’)

(b) Functionality – communication regarding the system and the groups (e.g. ‘D are

you following me?’, ‘Press home to get a better view’, ‘Can everyone hear me even

though we’re in different groups?’)
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(c) Environment – discussion about the 3D world, but not in relation to the task (e.g.

‘So is this meant to be an actual part of Leeds?’, ‘There’s Leeds city council bins’)

(d) Task related (e.g. ‘What do you think reduces the speed round here?’, ‘I’ve found

a bit of the estate that doesn’t really match the rest’)

(e) Idle chat (e.g. ‘D I can actually read what’s on your T-shirt!’)

Overall there were 133 utterances in the MGDs condition (mean 16.6, SD = 14.1), of

which 40 were text-based and 93 were spoken. The utterances occurred in 22 blocks of

conversation and in 15 of these, all the speakers were in the same team. There were 18

utterances in the control condition (mean 1.8, SD = 1.5), of which 16 were text-based and

2 were spoken. These utterances occurred in 3 blocks of conversation.

Levene’s test showed the variances were significantly different, F(1,16) = 21.1, p <

.001, and therefore a non-parametric test (Mann-Whitney) was chosen as most suitable

for comparing the data from these two conditions. The Mann-Whitney test showed there

were significantly more utterances in the MGDs condition (Mdn = 15.5) than the control

condition (Mdn = 2.0), U = 10.5, p = .006.

There were 88 task related utterances in the MGDs condition, (mean 11.0, SD = 9.7),

and 4 task related utterances in the control condition, (mean 0.4, SD = 0.5). Levene’s

test showed the variances were significantly different, F(1,16) = 17.0, p = .001, and a

Mann-Whitney test showed there were significantly more task related utterances in the

MGDs condition (Mdn = 12.0) than the control condition (Mdn = .0), U = 9.0, p = .004.

These data show that there was much more communication in the MGDs condition,

and most of it was task-related (see Figure 4.10).

4.5.2.2 Paths during teamwork

In the MGDs condition, the most persistent combination of team members was D, K and

G, in the green team, and P, I, R, B and J, in the blue team (see Figure 4.8).

D and K were identified as the core members of the green team because they commu-

nicated the most. D spoke 29 utterances, K spoke 22 but G (the third member) only spoke

12 utterances.

R and B were identified as the core members of the blue team. R spoke 41 utterances

and B spoke 19, which was far greater than the other members P, I and J who spoke 5, 0

and 5 utterances respectively.

The paths of these core participants from the MGDs condition were analysed in detail

and showed that they sometimes moved together around the environment answering a



Chapter 4 63 Mobile Group Dynamics

Figure 4.10: The number of utterances in each communication category for the two con-

ditions.

question, and on other occasions split up to explore their surroundings, and then regrouped

to discuss their findings. By contrast, participants in the control condition communicated

far less and spent little time in close proximity (see section 4.5.2.1).

The following paths and communication from the green team illustrate the types of

behaviour that occurred when MGDs were provided. Figure 4.11(a): The two core mem-

bers of the green team started at the entrance to the estate (shown with a timestamp

[00:00] in the diagram), navigated around the environment together in a clockwise direc-

tion, and returned to the starting point. D was following K using the automatic following

MGD functionality. Their conversation was based on the functionality of the system (the

leader/follower mechanism), and the real world location of the virtual environment. The

points at which the conversation took place are shown by timestamps on the diagrams and

in the extracts below.

[01:38] K: D are you following me?

[01:42] D: I am, yes!

[01:45] K: Wicked!

[01:50] R: I think I can see my house from here!

[02:00] D: So is this meant to be an actual part of Leeds?

Figure 4.11(b): The core members returned to their starting point [03:00]. They split

up [03:50] and navigated one side of the estate each, until they regrouped again in the

middle [05:00].
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(a) 0-3 mins (b) 3-5 mins

(c) 5-9 mins (d) 17-20:12 mins

Figure 4.11: Paths of the core members K and D from the green team. K and D are

represented by green and red lines respectively.
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Figure 4.11(c): The core members split up again, D navigated the perimeter of the

environment and K stuck to the roads. K met the two core participants R and B from the

blue team and joined in their conversation [06:07].

[05:47] R: What do you reckon stops the volume of traffic?

[05:57] B: I don’t know

[06:03] R: Could it be that it’s so windy?

[06:07] K: Dead ends as...

[06:11] R: Was that... was that J?

[06:14] K: No that was K!

The two core members of the green team regrouped at time [07:46]. One of the core

members of the blue team, R, was with them and joined in their conversation. R reported

the findings from the blue team.

[07:46]/Text D: Hadn’t we better start answering some of the questions?

[08:07]/Text K: i already ahve

[08:10]/Text K: haahhha

[08:18]/Text G: probably

[08:36]/Text R: we did the first two!

[08:38]/Text G: how many exits are there?

[08:46] D: I’ve only found one.

[08:49] R: One what?

[08:52] D: One exit.

[08:54] R: We found four pedestrian and one for cars.

[09:05] R: It’s a small world.

[09:08] D: Too true.

The time from [09:08] to [17:00] has been omitted because there was little communi-

cation between the core members of the green team throughout this time (two utterances

from D and one from K).

Figure 4.11(d): The two core members of the green team split up, D found something

of interest [17:45], they regrouped [18:39], D showed the rest of the team the point of

interest from a distance using the bird’s-eye view [19:18].

[18:39] D: I’ve found a bit of the estate that doesn’t really match the rest.

[18:42] K: Yeah. So have I.

[18:46] D: What have you put for that?

[18:49] K: One of the two level houses has got a different colour wall to the

[K is referring to the brown fence around the terraced houses (determined from

K’s report)]

[18:55] D: Oh, is that it?

[18:57] K: Yeah. Why? What have you got?

[19:00] D: If you press ‘Home’ and follow me I’ll show you.

[19:03] K: OK.

D led K (and G who was listening in) to the large building, and stopped by the side of

it to talk [19:18]. (Pressing the ‘Home’ key toggled bird’s-eye view).
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[19:18] D: If you all look to my left now, and have a look with ‘Home’...

[19:23] K: OK.

[19:24] D: It’s laid out a completely different way and there’s a dead end in

the middle.

[19:33]/Text G: ah yeah i see

[19:34] K: Oh yeah!

K and G then followed D to the point of interest.

[20:12] K: I see what you mean.

4.6 Discussion

The goal was to develop techniques for Mobile Group Dynamics that helped people work

together over an extended period of time, in a large-scale space. MGDs had a neutral

effect on task performance (the task was achievable by oneself) but did produce funda-

mental changes in the way participants went about performing the task and the quantity

of teamwork that took place. In particular, this was shown by the amount of time that

participants spent near each other, the way they continued to collaborate after periods of

separation, and the amount of communication that took place.

Participants in the MGDs condition spent much more time in close proximity (within

10m of their nearest neighbour for 40% of the experiment) than participants in the control

condition (21%), and two aspects of MGDs contributed to this. Firstly, participants could

easily identify fellow group members because lines between group members indicated the

location of others and each group was given a unique colour (see soccer team analogy in

Section 2.3.1.2). Secondly, the automatic following functionality helped people remain

together while they travelled, and also provided an easy way of regrouping with one’s

fellow members (75% of the MGDs participants used the functionality in this way).

It is suggested that ‘cognitive ease’ as well as functionality affects group behaviour

in CVEs [8], and this may explain why MGDs were so successful at helping participants

collaborate over an extended time that included periods of separation. Firstly, allowing

groups to form automatically via spatial proximity minimised the effort involved of ini-

tially forming a collaboration with other participants (80% of groups were formed in this

way). Secondly, the explicit indication of who was in each team (see above) and the

fact that audio communication within a group was not attenuated by distance meant that

participants did not lose contact if they wandered away from their fellow group mem-

bers. Thirdly, leaving or switching groups had to be done explicitly and, therefore, was

effortful.
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There were over seven times the number of utterances in the MGDs condition, com-

pared to the control condition. The low number of utterances in the control condition

could lead to speculation that the participants in the control condition were not willing

to talk to each other, e.g. maybe there was conflict amongst the mutual acquaintances,

maybe they were not comfortable talking to each other, or perhaps they were experiencing

technical difficulties. However, further investigation showed this was not the case. The

conversation in the training environment reported a total of 116 utterances in the control

condition, with 23 of these being of the greetings category, 46 discussion of functional-

ity, 3 environment and 44 idle chat. For comparison, participants in the MGDs condition

made 57 utterances in their training session, 17 of which were greetings, 3 functionality,

3 environment, and 34 idle chat. One participant did have faulty headphones in the con-

trol condition training session (which explained the large discussion of functionality as

people asked each other if their microphones were working) but spare headsets were on

hand and the faulty one was replaced during training and before the actual urban planning

review session began. A qualitative analysis of the conversation in the training session for

the control condition showed that participants were comfortable talking together, as they

laughed, joked and tried to sell tickets for the university summer ball, illustrated by the

following extract from the conversation transcript:

[14:30] A: So tell me, C, tell the lovely people, how much is the summer ball

ticket?

[14:35] C: A, radio personality of the year, 2007.

[14:39] A: That’s right, great babe.

[14:41] C: Smashing.

This large increase in communication was the result of the suite of techniques as a

whole. It could be argued that the very presence of MGDs would have given participants

an idea of how to work together effectively [66] and, with 66% of the conversation being

task related, this was representative of the extra teamwork taking place.

Finally, although participants could communicate with group members wherever they

were in the environment, they still preferred to spatially regroup to discuss their findings.

When there was a point of interest, it seemed important for everyone to see it from the

same viewpoint and get a shared understanding of it (see the dialogue in Section 4.5.2.2,

for Figure 4.11(d)). This issue is addressed in the following chapter by improving aware-

ness of who can hear you and who is talking, allowing rapid movement to another loca-

tion by teleporting, and providing multiple views so participants can see what their group

members are looking at.





Chapter 5

Teleporting, Awareness and Multiple

Views

5.1 Introduction

Techniques called Mobile Group Dynamics (MGDs) were developed and evaluated (Chap-

ter 4), and they helped groups of people work together while they travelled around large-

scale collaborative virtual environments (CVEs). Compared to a conventional CVE, these

techniques led to a seven-fold increase in the amount of communication that took place

between participants, and participants with MGDs spent nearly twice as much time in

close proximity (within 10m of their nearest neighbour). However, two major areas for

improvement were also identified.

First, participants tended to spatially regroup to discuss their findings, even though

MGDs allowed communication over an infinite distance (there was no distance attenu-

ation for audio communication between group members). This meant that unnecessary

amounts of time were spent travelling to meeting places.

Second, if participants wanted to see what others were looking at (e.g., a point of

interest that was being discussed) then they had to ‘walk’ to the appropriate location.

These shortcomings were tackled by adding new functionality to MGDs, taking ad-

vantage of the fact that CVEs do not need to be bound by real world constraints [79]

[39]. Three types of functionality were implemented: teleporting, awareness and multiple
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views, and the functionality and rationale is outlined in the following sections.

5.1.1 Teleporting

‘Walking’ is time consuming, so teleporting functionality was added. The teleporting was

implemented as rapid but visually continuous movement, rather than a sudden ‘jump’ to

the new location. This was to help prevent disorientation associated with an instantaneous

change of location [86]. The teleporting algorithm took its inspiration from [69], with the

addition of gradual acceleration as well as deceleration, and to avoid problems caused

by travelling through walls and hedges, raised a participant to a birds-eye view so they

could clearly see where they were being taken. Teleporting was achieved by clicking on

the appropriate place in the VE scene. If participants had multiple views functionality

(described below, Section 5.1.3), they could click on a thumbnail view to teleport to be

next to that person.

5.1.2 Awareness

The hypothesis was that participants collocated to communicate with group members

because, given that the CVE used directional sound, participants assumed that the audio

was also distance attenuated. In fact, distance attenuation was disabled for intra-group

communication, as was explicitly stated in participants’ verbal and written instructions.

To overcome this, ‘awareness’ functionality was developed that provided visual feedback

about who was receiving audio at a given moment in time, and who was speaking.

The awareness functionality used a Head-Up Display (HUD) to display the faces of

all participants who were within hearing range of you at a given moment in time (this

included all participants in one’s own group because there was no distance attenuation for

intra-group audio communication). These faces were photographs of the participants (ex-

tracted from their photographic avatars), so they could be easily recognised (Figure 5.2).

This was designed to make the participant aware that they could be heard by all the par-

ticipants shown on their HUD, even if some of them were fellow group members whose

avatars were a considerable distance away. When another person was talking, their face

was highlighted on the HUD, with a speech icon next to it. This gave participants addi-

tional information as to who was speaking, which was particularly useful if the associated

avatar was out of sight.
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Figure 5.1: The basic MGDs condition from Chapter 4, shown in the over-the-shoulder

perspective. The group graph was used to identify groups.

Figure 5.2: The teleport condition, shown in the over-the-shoulder perspective. The red

teleporting arrow can be seen above the centre of the screenshot. This condition added

awareness functionality, where photographs of participants within hearing range were

displayed on the left-hand side of the screen using a HUD metaphor. The speech icon

can be seen above the avatar of the participant who was talking, and also next to the

participant’s photograph on the HUD, useful for when their avatar was out of sight.
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5.1.3 Multiple Views

Participants in CVEs often find it difficult to understand what others are looking at [51].

To overcome this, an idea was developed to allow participants to see the viewpoints of

fellow group members.

Figure 5.3: The prototype system, with the tabs for switching views across the top of the

screen.

There are advantages of both independent and shared (What You See Is What I See,

WYSIWIS) perspectives (Section 2.3.2.1). For example, two participants with a shared

perspective can understand what each other is referring to, and participants with an in-

dependent perspective can explore the environment without interfering with anyone else.

The CVE design from Chapter 4 provided participants with their own independent view

of the world, for both the control and MGDs conditions. This was extended by providing

participants with multiple views.

The original design for multiple views used the tab metaphor (Figure 5.3), which

is commonly used in graphical user interfaces (GUIs). The tab metaphor would have

allowed the switching from one view (a participant’s own view) to another (the view

of a fellow group member), much like the tab system used in modern web browsers.

However, this would have led to the problem of ‘disembodiment’, where the avatar’s

position and orientation would no longer represent what the participant was seeing, and

the participant may miss text conversation if they are looking in the wrong window (this

problem is introduced in Section 4.2.1.2). To solve this problem, the multiple views were

all displayed on the same screen, with no need to switch from one to the next. The

participants’ own main viewports were augmented with live (real-time) thumbnail views



Chapter 5 73 Teleporting, Awareness & Multiple Views

of their fellow group members (Figure 5.4). If a participant wanted to take a closer look at

something nearby another user, they could click on their thumbnail view to teleport to that

location (Section 5.1.1), and look around from that position. This means that participants’

perspectives were shared with other users but controlled independently (other users could

not interfere).

Figure 5.4: The multiple views condition, shown in the bird’s-eye view. The group graph,

teleporting arrow, and faces on the HUD (from the previous conditions) can be seen here,

and this condition added thumbnail views of fellow group members across the bottom of

the screen. Note that the text communication was displayed above the thumbnail views,

so that it could be read even if the associated avatar was a large distance away. The

speech icon was also shown on the thumbnail view to indicate that they were using audio

communication.

5.1.4 Hypothesis

The hypothesis was that the teleporting, awareness and multiple views functionality would

improve teamwork by tackling the shortcomings found in the original MGDs study (Chap-

ter 4). In the MGDs condition, participants collocated to communicated (which was un-

necessary given that MGDs allowed participants in the same group to communicate over

an infinite distance), and this was specifically tackled using the awareness functionality,

which was designed to provide awareness of this basic MGD functionality (that allowed
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intra-group communication) by making explicit the participants who could hear you at

any given moment.

Further, the qualitative analysis of the MGDs condition showed that understanding

another’s perspective (e.g. a point of interest they were referring to) was difficult and time

consuming, and related to the well known difficulties from previous research — problems

1 and 2 in Section 2.3.2.1. The multiple views functionality was designed to specifically

tackle these perspective problems.

The server recorded everything that took place in the environment to a log file (e.g.

audio communication, participants movements, usage of teleporting). Most metrics used

for evaluation were calculated automatically from this log, and in addition the conversa-

tion was transcripted by hand. The metrics were the amount and type of communication

between participants, the spatial positioning between participants while communicating,

the usage of teleporting and the movements of participants for the qualitative analysis.

It was predicted that communication would increase (an indication of more teamwork

taking place), and the distance between group members while communicating would in-

crease (group members would be made ‘aware’ of the MGDs functionality provided, and

not spend unnecessary amounts of time collocating to communicate). It was difficult to

predict the affect that teleporting would have on teamwork, other than to say it would

increase the efficiency of navigation around the environment and to points of interest. A

qualitative analysis of teleporting was required for further investigation.

5.2 Experiment

The experiment used the urban planning scenario outlined in Section 2.6. This was the

same scenario as the one used for the experiment in Chapter 4. Participants were asked

to use the CVE system (detailed in Chapter 3) to review the design of the housing estate.

An annotated map of the estate is shown in Figure 2.2. Participants were run in two

batches. In the first of these (the teleporting condition), participants had all the basic

MGD functionality from Chapter 4, and new MGD functionality to provide awareness of

who was talking, who was within hearing range and teleporting. Participants in the second

batch were provided with multiple views (the multiple views condition), in addition to all

the functionality that was provided to the other batch of participants.
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5.2.1 Method

The experiment took place in an undergraduate computing laboratory. Each participant

was provided with a headset, and they were spread out across the laboratory so they could

only communicate using audio and text communication from within the environment.

Participants used two adjacent computers, one for the CVE and the other for the urban

planning report write-up. The CVE application, environment and experimental procedure

were the same as in Chapter 4.

5.2.1.1 Participants

All participants were undergraduate students from the School of Computing, who had

not taken part in the previous study. Eight participants were recruited for each run, but

one participant in the teleporting condition was unavailable on the day of the experiment.

The remaining seven participants in the teleporting condition (6 men and 1 woman) had

a mean age of 21.7 (SD = 5.2). The eight participants in the multiple views condition (5

men and 3 women) had a mean age of 21.8 (SD = 4.1).

All the participants volunteered for the experiment, gave informed consent and were

paid an honorarium for their participation.

5.2.1.2 CVE application

The software application and 3D sound model are described in Chapter 3.

Distance attenuation was turned off for communications between members of the

same group. This was clarified by displaying photographs of the faces of participants

who would receive any transmitted audio (the ‘awareness’ functionality). These faces

were displayed on the HUD, and were added and removed appropriately as participants

changed their position in the environment and switched groups. In addition, an icon was

placed above a participant’s avatar, and by the side of their face on the HUD, when they

were talking.

5.2.1.3 User Interface

The participants used desktop workstations, and a two-handed control method, with one

hand on the keyboard and the other hand on a 3-button mouse. The user interface for

the movement and basic MGD functionality (the MGDs from Chapter 4) was the same as

before, outlined in Section 4.4.1.4. Figure 5.5 shows a reminder of the keyboard controls,

with the addition of the ‘numpad zero’ key for the new functionality. The mouse move-
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Figure 5.5: The keyboard controls for the teleporting and multiple views conditions. The

new control is the ‘numpad zero’ key.

ment controlled heading and pitch, and the mouse buttons were used for basic MGDs

techniques as per Section 4.4.1.4.

Holding down the numpad zero key released the mouse from controlling heading and

pitch, and allowed it to control the position of the red teleporting arrow. Once the arrow

was positioned in the desired location, a left mouse click teleported the participant there.

This was designed to make it easier for participants to travel around the environment

quickly (walking is time consuming).

The multiple views condition was designed to help participants understand their group

members’ perspectives. In addition, participants in the multiple views condition could po-

sition the teleporting arrow over one of their group member’s views, and clicking the left

mouse button would teleport them to that group member’s location. This was particularly

useful if that group member had seen something of interest—participants could take a

closer look by teleporting to that group member, and seeing the point of interest in the

main viewport. By default, the participant’s subsequent movements were tethered to that

group member (the automatic following functionality in basic MGDs) but the participant

could ‘free’ themselves simply by pressing a movement key.

The multiple views took up the bottom quarter of the screen. A limit was imposed of

three views, each taking up a quarter of the horizontal space, with the remaining quarter

reserved for displaying the faces of any other group members (Figure 5.6). These could be

selected using the numpad zero key to release the mouse pointer. Selecting them showed

their view in one of the existing viewports, swapping out the member whose view had
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been replaced. The member who was replaced changed each time a swap was made—the

system cycled through the group members in turn.

Figure 5.6: The multiple views condition, shown with a group of 5 participants. Three

thumbnail views are shown, and the face of the remaining participant is displayed in

the bottom-right. Clicking on this photograph showed their view in one of the existing

viewports, and swapped out the member whose view had been replaced.

5.2.1.4 Procedure

The experiment used an urban planning scenario, outlined in Section 2.6. A 10 minute

meeting was held with participants a few days before the experiment. They received a

verbal explanation of the experiment, a single-sided A4 sheet containing extracts from

UK urban planning guidelines (Appendix A), and a consent form. They also had photos

taken for their avatar during this time.

The experiment itself lasted one hour. At the start participants were provided with

another copy of the urban planning guidelines sheet, an instruction sheet for using the

CVE (Appendix B), an experiment schedule, and an electronic copy of an urban planning

report which they had to complete during the experiment. The questions for the report

and the training process were the same as the previous study (Section 4.4.1.5), and the

questions are listed in Section 2.6.
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5.3 Results

There were two types of work that took place in the experiment: taskwork and teamwork

[7], Section 2.5. Taskwork refers to the answers given in participants’ reports, whereas

data about teamwork were provided by the server’s log of the movements, communication

and groups that participants formed.

The urban planning reports were marked like an exam. Participants names were on

the reports, marking wasn’t blind. An independent samples t-test showed no significant

difference between the teleporting and multiple views conditions, t(13) = 1.49, p = .16.

Participants in the teleport condition had a mean mark of 18.7 (SD = 3.3) out of 24, and

16.3 (SD = 3.1) in the multiple views condition. The focus, however, was on how partici-

pants went about doing the task (i.e. the teamwork), and how different MGD functionality

affected participants’ behaviour. This was analysed both quantitatively and qualitatively.

5.3.1 Quantitative Analysis

For each batch of participants, the spoken and text communication was transcripted and

analysed using a communication coding approach [15] to classify each utterance as in

Section 4.5.2.1.

These data were analysed in terms of the quantity of communication that took place,

and where participants were relative to each other when they communicated. For com-

parison, data are provided from the previous study (Chapter 4) when other participants

had performed the same urban planning task either in a conventional CVE (‘control’ in

Figure 5.7) or with basic MGDs functionality (see Figures 5.7 and 5.8). Note that the

average group size in the basic MGDs, teleport and multiple views conditions was 3.5,

2.5 and 3.0 respectively.

The total number of utterances made by participants in the basic MGDs (data from

Chapter 4), teleport and multiple views conditions (data from the present study) was anal-

ysed using a univariate analysis of variance (ANOVA). The Kolmogorov-Smirnov test

showed that the data in the three conditions were from normally distributed populations,

D(8) = .171, p > .05 (basic MGDs condition), D(7) = .255, p > .05 (teleport condition),

D(8) = .209, p > .05 (multiple views). Levene’s statistic showed that variances between

the conditions were significantly different, F(2,20) = 7.71, p = .003, and so a Brown-

Forsythe F-ratio was used for the ANOVA (the Brown-Forsythe F-ratio was derived to be

robust when the data do not have homogeneity of variance).

This showed that there was a significant difference between the conditions, FBF(2,13.6)=

3.92, p = .045. The mean amount of communication increased by 226% from the basic
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Figure 5.7: Mean number of utterances made by the participants in each condition. The

control and basic MGDs conditions are from Chapter 4. The error bars are shown for task

related utterances and idle chat.

MGDs to the teleport condition, and by another 27% from the teleport to the multiple

views condition. Within this, task related communication increased by a factor of two

from basic MGDs to the teleport and multiple views conditions, but this was not signifi-

cant. Idle chat more than doubled from the teleport to the multiple views condition (see

Figure 5.7).

One of the limitations identified in the previous study (Chapter 4) was that partici-

pants tended to assemble in one place in the CVE before communicating, even though

this was unnecessary with the basic MGDs functionality that was provided (Section 5.1).

To determine whether the new functionality provided in the present study overcame this

limitation, each time a participant made an utterance the distance to their nearest group

member was calculated, and the mean for each participant in the basic MGDs, teleport

and multiple views conditions was analysed using a univariate ANOVA. The two partici-

pants who didn’t speak at all during the experiment were excluded from the analysis, one

was from the basic MGDs condition and the other was from the multiple views condi-

tion. The ANOVA showed that there was a significant difference between the conditions,

F(2,18) = 3.56, p = .05. Tukey HSD posthoc tests showed that the difference between

basic MGDs and multiple views was significant (p = .04) but the other pairwise compar-

isons were not (see Figure 5.8).
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Figure 5.8: Mean distance to the nearest group member at the time of each participant’s

utterances. The basic MGDs condition was from Chapter 4.

5.3.2 Qualitative Analysis

The quantitative analyses show that teleporting and multiple views increased both the

quantity of communication that took place and the distance over which participants com-

municated. The purpose of the qualitative analysis was to understand the underlying

behavioural changes that cause these increases, and how teleporting was used in general.

The server log allowed the distances participants travelled while teleporting and walk-

ing to be calculated and showed that, overall, 16% of travel was by teleporting. Further

investigation showed that there were two distinct uses of teleporting. First, teleporting

was used to speed up exploration of the environment, particularly when participants first

entered the environment (see Figure 5.9). Second, teleporting was used to reach points

of interest. For example, at one point during the experiment the some participants’ con-

versation was about blank walls, which was relevant to one of the questions in the task.

The blank walls were at the ends of the horseshoe-shaped buildings. Participant O, rep-

resented by a green line in Figure 5.10, teleported across the building on the left to view

the blank walls (timestamp [26:20]). O then teleported up to the top of the map to see the

walls that I and R were talking about.

In order to teleport to a point of interest, a participant must first know its location

within the environment. This is sometimes difficult, as the following conversation extract
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Figure 5.9: Path showing the first 5 minutes of movement of a participant who used tele-

porting to speed up their exploration of the environment. A solid line represents walking,

and a dotted line represents teleportation.

from the teleport condition shows:

[09:25] O: Look, show me, M, show me the two entry points then, the road ones

at least.

[09:29] M: Alright well, are you where I am now?

[09:35] O: Where are you?

The multiple views condition helps with this by allowing participants to teleport to the

location of a group member by clicking on their viewport:

[39:42] C: That’s useful!

[39:43] S: Yeah! Where are you? I’ll show you!

[39:49] C: I’ll teleport to you! Hang on!

Each component of the new MGDs functionality (awareness of who could hear one’s

communication, multiple views and teleporting) that was provided in the present study

had the potential to increase the distance over which participants communicated. The

data indicate that multiple views made the greatest contribution (see Figure 5.8). To iden-

tify whether awareness or teleporting was the most important secondary cause a detailed

analysis was made of the communication and movement of the two participants (I and O)

who spoke the most in the most persistent group in the teleport condition.
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I and O both spoke in 18 conversation blocks, but used teleporting in only four of

these blocks. On all four of these occasions, I and O used teleporting to collocate within

the environment. In the other blocks I and O either were together (5 blocks), remained

separated (2 blocks), separated without teleporting (3 blocks) or collocated without tele-

porting (4 blocks). This suggests that the awareness functionality was more important

than teleporting for increasing the distance over which participants communicated.

Figure 5.10: Paths taken by participants O (green line), I (purple line) and R (red line)

when talking about blank walls (a point of interest). The solid lines representing walking,

and dotted lines represent teleporting (participant O teleports to points of interest at the

ends of the horseshoe-shaped buildings). To place participants’ movement in context, the

paths are labelled with timestamps and conversation utterances.

5.4 Discussion

It is well known that in conventional CVEs users often have difficulty understanding the

context of what each other is talking about (see problems 1 & 2 in Section 2.3.2.1). The

previous research into MGDs (Chapter 4) showed how a group graph metaphor could help

users find each other, since the graph ‘tracked’ participants and the nodes corresponded to

avatars, with edges denoting group membership (see Figure 5.1). One could find a group

member by following a line from their avatar until they reached a node. In the present

study, the teleporting and multiple views functionality took this a step further. It allowed

participants to teleport directly to a group member of their choice by selecting the appro-

priate viewport, and the qualitative data gave an example of how this helped participants
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(see the conversation extract in Section 5.3.2). Furthermore, providing participants with

multiple views specifically tackled the problem of understanding another’s perspective.

The qualitative data showed that teleporting was used in two ways: increasing the

speed of movement (in particular, an initial speed search) and movement to points of in-

terest. This is a simple method of time-saving functionality, however potential drawbacks

must not be overlooked. Firstly, as with any new functionality, a potential problem might

be making the system over complicated. Other features may be forgotten about and may

not be used to their full potential. Secondly, and perhaps more subtly, teleporting could

mean people lose the feel for distance. In an urban planning context, it is important that

participants in the CVE get a feel for the scale of the environment, in particular the size of

buildings and proposed developments. One of the questions for the urban planning report

was asking participants if they thought the blocks of houses were the right size. Financial

savings are made by building the houses joined together in blocks, but a large block size

decreases permeability of the estate, making it bad for transport and pedestrians (they

have to go further before they can change direction). Teleportation may mean participants

lose a sense of scale and large blocks could go unnoticed.

One of the places where the original MGDs techniques fell short of their goals was in

facilitating communication when participants were spatially separated within the environ-

ment. The fact that participants tended to collocate to communicate in the basic MGDs

condition was a sign of inefficient groupwork—participants were either taking time to

collocate when they wanted to communicate, or they were waiting until they were coin-

cidentally collocated before they said anything. Providing functionality to communicate

with group members from a distance, and informing the participants of this in the in-

structions, was not enough to make their behaviour more efficient. This study indicates

that by providing feedback to the participants, they became more aware of how the sys-

tem works. The quantitative data showed that in both the teleporting and multiple views

conditions, participants communicated across greater distances than in the basic MGDs

condition (see Section 5.3.1). The interesting thing about this feedback from the system is

it’s not specifically new functionality in the sense of a new tool at the users’ disposal, like

teleporting and multiple views are. Instead it provides awareness of existing functionality:

the ability to communicate with group members from a distance. As Schroeder et al. re-

flect, does one improve usability ‘by means of improving the systems and features of the

environment, or by improving the users’ awareness of their activities and settings?’ [96, p.

666].

Finally, in previous research, participants communicated a great deal to overcome the

lack of sensory information that CVEs provided [51] [90]. However, in the present study
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participants communicated much more than in conventional CVEs because they were

provided with more sensory information (e.g. awareness of who could hear you and who

was speaking, and multiple views providing an ‘extra pair of eyes’). The quantitative data

showed that the amount of conversation increased 4 times from the basic MGDs condition

to the multiple views condition. This increase in communication was indicative of more

teamwork taking place.



Chapter 6

Virtual Time

6.1 Introduction

Collaborative work can be synchronous (where participants are working at the same time)

or asynchronous (e.g. shift work, leaving voicemail messages, communicating by email,

see Section 1.1).

Chapter 4 describes the implementation and evaluation of techniques that support syn-

chronous group work in CVEs. These techniques are known as Mobile Group Dynamics

(MGDs). Chapter 5 addresses the shortcomings in the original MGDs and discussed the

development of new functionality to improve teamwork when people were collaborating

over extended distances—that is, they were spatially separated in the virtual world.

This chapter describes the implementation and evaluation of a new concept called Vir-

tual Time (VT), that facilitates asynchronous collaboration. VT allows (to a certain extent)

virtual synchronisation of people who are physically separated in time. Taken together,

the MGDs and VT techniques allow both synchronous and asynchronous collaborations

in large-scale CVEs.

6.2 Methods for Virtual-time Collaboration

Traditional CVEs bring together people who are physically remote, and adding VT makes

it easier for people to collaborate even if they are not in the CVE at the same time. In other
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words, combining VT with a CVE allows asynchronous, remote collaboration. Section

2.4 discusses related work regarding asynchronous collaboration in virtual environments.

If one considers a spoken or written utterance to be the basic unit of collaboration,

a basic VT system would just contain what was said in that CVE, but nothing about

who said them, what they were talking about, where they were in the CVE, or when.

At the other extreme, a sophisticated VT system would allow you to travel through a

virtual world, walking with people who had been there in the past, chipping in to their

conversations as if they were still there, to the extent that an observer who came along

later still would be unable to determine who were the original inhabitants versus who was

the impostor who’d been added later?

Analysis of these examples highlights a rich complexity of possible functionality for

VT. Therefore, the following sections present a framework of VT, and then describe the

practicalities of implementation.

6.2.1 A framework for virtual time

Given that utterances are the basic building blocks of collaboration and communication in

virtual worlds, then a key challenge for virtual time is determining how those utterances

should be organised and associated. The primary methods for doing this are in terms

of: (a) people, (b) time, (c) space and (d) topic. Each method has several levels (see

Table 6.1), which can provide context to help us understand the meaning of what was

said, influence where we choose to go next in the CVE, and help users control the number

of utterances that are visible/audible at any given time so the VT system is scalable.

Adding people’s identity to the utterances in a VT CVE allows users to discriminate

everything that was said by a particular person, for example, someone who provided

particularly insightful comments. Allowing people to choose their virtual appearance

will have other effects on whose utterances a given user chooses to listen to, as outlined

in Section 2.3.2.1.

Statistics terminology is adopted for the levels of time. At the nominal level, a future

user would have no clue as to when, or in what order, different utterances were spoken.

Ordinal information would allow utterances to be listened to in the sequence that they

originally occurred, and the time interval (either absolute or rebased to when the speaker

entered the environment) would allow sets of utterances that took place in quick succes-

sion to be distinguished from those that were separated by a lengthy delay.

Indicating the point in space where each utterance was spoken would help a future

listener understand what was being talked about, and reduce the need for users in CVEs
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to devote much more effort to making the ‘implicit explicit’ than is the norm in real

life [51], [90]. Linking utterances by the path the speaker had taken would provide the

listener with even more information about the things the speaker had seen and which led

them to a particular conclusion.

Organising and associating utterances can be done according to certain topics (or

subtopics), for example defining whether greetings were due to users meeting or depart-

ing, whether idle chat was humorous or not, or which part of a task a given conversation

was based on. Natural Language Processing (NLP) algorithms could be used to process

utterances into topics, to which user-supplied quality ratings could be added by borrowing

techniques from recommender systems and search engines.

Method Level 1 Level 2 Level 3

a) People Anonymous Identity Appearance

b) Time Nominal Ordinal Interval

c) Space Amorphous Point Path

d) Content Undefined Topic Quality

Table 6.1: Four methods for organising/associating utterances. Level 1 corresponds to a

basic VT system, with Levels 2 and 3 providing ever richer possibilities for virtual time.

Finally, there are many possible combinations of the above methods. For example,

combining point (space) and topic (content) would allow the main items of interest in

a given area to be quickly determined, adding interval (time) to identity (people) would

allow the conversations of a group of people to be followed, and adding path (space) to

interval/identity would help a future listener comprehend the bigger picture of a conver-

sation that took place after a group of people had split up to explore an area and then

regrouped to discuss their findings.

6.2.2 Implementing virtual time

For the evaluation described in this chapter, virtual time was implemented using level 3

utterance association for people (appearance) and level 2 association for time (ordinal),

space (point) and content (topic) (see Table 6.1). Details of the implementation are as

follows.

First, all of the utterances from the two previous studies of synchronous teamwork in

CVEs (Chapters 4 and 5) were divided into blocks of communication and categorised as

either task-specific or not. The latter were discarded to avoid cluttering the CVE with

irrelevant utterances (e.g., idle chat). The task-specific blocks were classified using key-

words from the 13 questions on the urban planning report that participants were asked
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to complete (see Section 2.6) and, although this was performed manually in the present

study, it could have been done using NLP techniques.

The classification used a two level hierarchy, with the 13 questions (subtopics) grouped

according to three topics (permeability, character, and safety and security) that were used

on the urban planning report. The topics were rendered with different hues (yellow, cyan

and magenta), using a different lightness for each subtopic (Figure 6.1). A colour-coded

tick box was provided for users to choose which utterance subtopic(s) were displayed

(Figure 6.2), allowing related comments to be identified even if they are separated in

space and time. In addition, tags flashed when they were being played, and were visually

caged in black stripes when they had been viewed (Figure 6.3).

Figure 6.1: All of the utterance tags used in the VT study. The ‘Audio tag filters’ was a list

of tick boxes, shown in the top right hand corner of the screen, that allowed the utterances

associated with each of the 13 questions to be toggled on/off.

The point where each utterance commenced was represented with a hemispherical

visual object known as a tag, which put the conversations into context by showing where

they took place (Figure 6.4). To reduce clutter, all utterances in a given block that were

within line of sight of each other were represented by a single tag that was at the mean

position of the individual utterance tags (Figure 6.5). This reduced the overall number

of visual tags from 160 to 96. These tags represented 67 conversation blocks (some

conversations had more than one tag associated with them, e.g. speakers at different parts
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(a) The first main topic (‘Permeability’).

(b) The second main topic (‘Character’).

(c) The third main topic (‘Safety and security’).

Figure 6.2: The utterance tags shown with filters applied to show the three main topics.



Chapter 6 90 Virtual Time

Figure 6.3: The utterance tags shown from an over-the-shoulder perspective, with three

subtopics selected. Utterances that a pair of participants had already listened to were

visually caged in black stripes.

Figure 6.4: The utterance tags were positioned at the point where each utterance com-

menced, which was designed to allow participants to put the conversations into context.

This screenshot gives an example of a conversation on the subtopic of ‘public/private

spaces’, which was put into context by its position in the front gardens of some terraced

houses.
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(a) The subtopic ‘Traffic’ without line of sight reduction applied. This is

shown for comparison with (b) (the utterance tags were not presented in

this way to participants).

(b) The subtopic ‘Traffic’ with line of sight reduction (as the participants

in the study saw them). The tags that had been listened to by participants

were visually caged in black stripes.

Figure 6.5: The utterance tags, shown with the filter applied to only show the subtopic

‘Traffic’. The tags are shown here with and without line of sight reduction, for a compari-

son. In the environment used for the study, the tags that referred to the same conversation

and were within line of sight of each other, were replaced by a single tag at the mean

position, to reduce clutter. Utterances that a pair of participants had already listened to

were visually caged in black stripes (b).
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of the environment without line of sight would have each been given a separate tag object

at their location).

The system was tested using a pilot study and refined in response to participants’

feedback. The main improvements were:

• Making tag selection explicit (instead of walking into a tag to play it, the users

wanted to be able to select a tag with the mouse).

• Allowing users to pause/resume/stop tags, instead of always playing the whole of a

tag.

• Providing more time for the task than was allowed in the previous studies (Chapters

4 and 5), because there were a lot of recorded utterances that the users wanted to

watch and listen to.

6.3 Hypothesis

Due to the exploratory nature of this work (few observations of asynchronous teamwork

in virtual environments), it was difficult to generate meaningful hypotheses for the way

participants would use the VT system and the changes it would make to their behaviour.

Conversation tags were designed to improve teamwork by making available the activities

and conversations of others to help them. The metrics used were the usage of the con-

versation tags, the performance on the task and the distance travelled. Whilst differences

between the conditions were expected, it was difficult to predict the direction of change:

would participants communicate more now they had more information available to them,

or less now that they could just listen to the tags? Would participants travel further as they

were visiting all the tags, or not as far, since they did not have to spend as much time nav-

igating the environment for themselves when the answers were on-hand? The experiment

was a first step in analysing asynchronous collaboration in CVEs, and the results will help

researchers make more informed design decisions and predictions in future work.

6.4 Virtual-time collaboration

The experiment used the same urban planning context and the same environment as the

previous studies (Section 2.6). Participants were run in pairs, and had access to all the

task-related conversations of 23 people who had previously done the same task in the

environment (the 8 participants in the basic MGDs condition from Chapter 4, and the
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15 participants of the teleporting/awareness and multiple views conditions in Chapter 5).

These previous conversations were embedded in the environment using the tags described

in Section 6.2.2.

6.4.1 Method

The method was similar to that of the previous studies (Chapters 4 and 5, see Section

4.4.1). A total of 10 participants (5 pairs) took part. There were 7 men and 3 women, with

a mean age of 22.2 (SD = 3.3). They had not taken part in any of the previous studies.

Each pair communicated with each other and had access to the task-related conversations

of 23 participants who had done the task in the previous real-time MGDs experiments.

After pilot testing, the total time for the experiment was increased to 90 minutes from

the 60 minutes used in the previous studies. The time in the training environment was

extended from 15 minutes to 30 minutes, and the time in the residential environment from

35 minutes to 45 minutes. The final 15 minutes were allocated for a semi-structured

interview.

The grouping interface and functionality were identical to that of the multiple views

condition (Chapter 4, see Figure 5.4), however each pair was placed into a group to-

gether and could not join the groups of participants from the past. Participants could

select a conversation tag by positioning the crosshair with the mouse and pressing the left

mouse button. Participants could stop conversation tags by pressing the ‘Escape’ key, and

pause/resume the playback with the ‘F1’ key.

6.4.2 Results

As in the previous studies (Chapters 4 and 5), the urban planning reports were marked like

an exam, and participants had a mean mark of 17.9 out of 24 (SD = 3.9). An indepen-

dent samples t-test showed no significant difference between the teleporting and multiple

views conditions, t(16) = 0.978, p = 0.343. However, the main interest lay in how par-

ticipants used VT and the effect it had on their behaviour in the CVE. To investigate this,

participants’ communication, movement and tag usage were analysed. Statistical com-

parisons were made with the multiple views condition from Chapter 5, whose interface

was the same except for the VT functionality. In considering the findings, readers should

bear in mind obvious differences between the experiments (especially the number of live

participants at any given time), which could have affected the results.

Each participant’s rate of communication was calculated by dividing the number of

utterances they made by the time they spent working in the CVE (the difference between
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the time they first and last moved). This took account of the extra time allowed for the

VT study as a whole (45 vs. 35 minutes) and the fact that some participants remained ‘in’

the CVE (but not moving) while they finished writing their report.

Figure 6.6 shows the mean rate of communication for task-related and non-task-

related utterances for the multiple views (Chapter 5) and virtual time (VT) groups. An in-

dependent samples t-test was carried out on the task-related communication, and showed

that the difference between the groups was significant, t(16) = 3.258, p = 0.005.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Multiple views Virtual time

M
e

a
n

 u
tt

e
ra

n
c
e

s
 p

e
r 

m
in

u
te

Task related

Non-task related

Figure 6.6: The mean utterances per minute for the multiple views and virtual time con-

ditions.

The distances that participants covered as they walked and teleported around the envi-

ronment were calculated from the server log. The rate of travel was calculated by dividing

the distance each participant travelled by the time they spent working in the CVE (calcu-

lated as above). Independent samples t-tests showed that the multiple views group walked

significantly further in unit time than the VT group, t(16) = 2.790, p = 0.013. The differ-

ence in rate of travel for teleporting was not significant, t(16) = 0.578, p = 0.571.

The paths of two participants were plotted as a qualitative analysis of the usage of

teleporting. The two participants chosen had the median percentage distance teleported.

The paths are shown in Figures 6.8(a) and 6.8(b). The paths show examples of how

teleporting was used: to cover large distances and to ‘jump’ over buildings.

There were a total of 67 conversations tagged. All of participants’ usage of the tags,

and the tag filter menu, was recorded in the server log. Analysis of this log showed

that pairs of participants typically selected one subtopic in the menu at a time, allowing

participants to focus on VT utterances that were relevant to the question being answered at
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Figure 6.7: The mean rate of travel for the multiple views and virtual time conditions.

a given time, and went through the tags in a logical order (subtopic by subtopic, matching

the order in which the questions appeared in the urban planning report).

The mean number of tags played by each pair was 20.0 (SD = 6.6), and the breakdown

by (sub)topic is shown in Table 6.2 (note: the playback was shared across the network,

so both participants in a pair heard the same utterances). The distribution of the utterance

tags and the frequency with which each was played is represented in Figure 6.9.

6.5 Discussion

In this study, VT was implemented via a system of conversation tags (Sections 6.2.1 and

6.2.2) so participants could take advantage of the comments their predecessors had made.

Participants used the environment in pairs, so each had one other real-time collaborator

to communicate with and the conversations of 23 previous inhabitants to listen to. The

results showed that the VT system led to a significant increase in task related communi-

cation between the ‘live’ pair when compared to the same interface without the VT (the

multiple views condition). In other words, virtual time stimulated communication be-

tween the live participants. Further, the results showed significantly less travel around the

environment.

The reduced travel suggests that the points of interest were found by watching and

listening to the conversations from the past: the usage results showed that on average a

quarter of the conversation tags available for each subtopic were played. There is one
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Figure 6.8: The paths of two participants who had the median percentage distance tele-

ported. The solid lines represent walking and the dotted lines represent teleporting.
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Figure 6.9: The environment with the utterance tags. The tags are coloured based on

how many pairs of participants played them: white = never played, blue = played by the

minority of pairs, and red = played by the majority (3+).

Topic Subtopic Total tags Mean tags

played

SD %

Permeability Exit points 18 4.80 3.49 26.7 %

Traffic 10 4.20 2.39 42.0 %

Pedestrians 0 0.00 0.00 0.0 %

Block size 4 2.00 1.58 50.0 %

Character Buildings 3 1.40 0.89 46.7 %

Inconsistent 5 0.80 0.84 16.0 %

Acceptable? 0 0 0 0.0 %

Character 4 2.00 1.41 50.0 %

Safety & security Security 10 1.40 1.52 14.0 %

Public/private 3 1.00 1.22 33.3 %

Least safe 2 0.40 0.55 20.0 %

Graffiti 4 0.80 1.30 20.0 %

Improvements 4 1.20 1.30 30.0 %

Table 6.2: The mean number and SD of utterance tags in each subtopic that were played

by each pair of participants.
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drawback to this, however, as identified from the participant’s comments in the semi-

structured interviews. They were concerned about the quality of content of the tags, since

they were using the information from past participants to perform the task. Assuming the

past work was thorough and correct, VT provides a large pool of ideas to be shared from

one group of participants to the next, thus focusing their conversation on the task. This

highlights the importance of a measure of quality of content, level 3 in the VT framework,

Section 6.2.1. For example, tags could be user-generated, so that participants could ex-

plicitly request that particular conversations be recorded and tagged, a user-rating system

would allow participants playing back the conversations to contribute to the quality con-

trol, and methods from recommender systems (e.g., Amazon’s ‘people who bought X also

bought Y’) could be incorporated.



Chapter 7

Conclusions

Collaborative interaction can be classified in terms of time and space (Section 1.1, [56]).

CVEs typically allow synchronous interaction (time), between people who are physically

separated (space). However, this thesis describes the development of techniques to sup-

port both synchronous and asynchronous interaction in CVEs.

The overall goal was to make collaborative interaction in virtual environments more

effective, more like that of face-to-face interaction, without necessarily imitating reality,

or unnecessarily limiting ourselves to naturalistic constraints (cf. [79], [39]). Potentially,

a virtual environment is so flexible it could be a more effective place for teamwork to be

carried out than the ‘real world’ (a hypothesis shared by Linebarger et al. in [66]). In

addition, CVEs can enable collaboration from a distance (over the Internet), and if the

technology was good enough it would reduce the need to travel large distances in the real

world (saving businesses time and money, helping distributed communities stay in touch,

and reducing our impact on the world’s environment). There are limits, of course, and

some problems caused by distance cannot be eradicated with technology (e.g. time zone,

cultural differences [77]).

The research began with a suite of techniques called Mobile Group Dynamics (MGDs).

These techniques supported the first and last stages of Tuckman’s forming, storming,

norming and performing model [116]. MGDs enabled people to form explicit groups

(using spatial positioning and selection), and these groups were represented using a novel

graph metaphor (the avatars of each group were connected by lines that tracked them as

they moved around the environment). Each graph was given a unique colour to identify

99
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that group (Section 4.2.1, Figure 4.2).

MGDs provided functionality to aid the performing of activity in three ways. First,

by allowing people to select a group member to automatically follow, so that participants

could travel around the environment together. Second, a group member could remain in

communication with the rest of their group over any distance (other audio communication

was distance attenuated to simulate real world verbal communication). Third, the group

graph was designed to provide an awareness of fellow group members’ activities, since

they could be located by following a line that connected your avatar to theirs.

The functionality was evaluated by comparing an urban planning task performed with

the MGDs techniques to a CVE with conventional functionality (avatars, audio/text com-

munication, but no explicit groups, and no automatic following mechanisms). The MGDs

techniques produced fundamental changes in participants’ behaviour: with MGDs they

communicated seven times more and spent twice as much time in close proximity (Fig-

ures 4.9 and 4.10).

A qualitative analysis looked at patterns of interaction by drawing the paths of par-

ticipants and listening to their conversations at that time. (The software application was

programmed to automatically draw the paths of participants onto a map of the environ-

ment, and the conversations were timestamped and transcribed by hand). The resulting

images showed evidence of real world behaviour, and participants were observed to be

moving together (using the automatic MGDs functionality), splitting up to explore the

environment separately, regrouping, and navigating together to a point of interest (Sec-

tion 4.5.2.2, Figure 4.11).

The group graph and the automatic following functionality specifically helped with

the observed imitation of real world group dynamics, since these techniques made it eas-

ier for groups to be identified (the group graph), remain together while they travelled (the

automatic movement), and regroup after periods of separation (an alternative way of using

the automatic following functionality). This behaviour contrasted with the control condi-

tion, where participants had larger spatial separation and relatively low communication,

which is evidence that they primarily worked as individuals when they weren’t provided

with MGDs (a level 2 analysis, Section 2.5.2).

MGDs allowed communication over an infinite distance between group members, but

despite this participants tended to spatially regroup to discuss their findings. In addition,

if they wanted to talk about a particular point of interest in the environment, they had to

‘walk’ to the appropriate location. Regrouping and navigating to a point of interest take

unnecessary amounts of time. Chapter 5 describes three improvements on the original

MGDs techniques that were developed to tackle these issues.
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First, participants were allowed to teleport to any part of the environment by clicking

on it.

Second, participants were provided with ‘awareness’ of existing functionality, by plac-

ing the faces of participants who were within hearing range onto their view of the envi-

ronment, using a HUD metaphor. This allowed participants to see who would hear them

when they spoke—the faces of people nearby would appear and those out of range would

be removed as participants travelled around the environment, but the faces of fellow group

members would always remain. A speech icon was placed next to the face of a person

who was talking to provide further visual feedback, useful for when their avatar was out

of sight.

Third, participants were provided with multiple views of the environment. Participants

had their own main view, and this was augmented with thumbnail views of their fellow

group members. This enabled participants to see what others were looking at in real-time,

and in addition they could click on a thumbnail view to teleport to be next to that person.

These additional techniques were evaluated by dividing new participants (they had

not used the basic MGDs from the previous study) into two batches. The first batch of

participants had all the basic MGDs techniques from the previous study, with the addi-

tion of teleporting and awareness functionality (the ‘teleporting’ condition). The second

batch had all the functionality of the first batch, with the addition of multiple views (the

‘multiple views’ condition).

The paths of participants were plotted to provide a qualitative analysis, and the travel

by teleporting was distinguished from walking. The resulting images showed that tele-

porting was used for initial speed searches of the environment, and moving to points of

interest (Section 5.3.2, Figures 5.9 and 5.10).

Teleporting is an obvious time-saver to have in a CVE system. A disadvantage might

be that users lose a sense of scale (which might be a problem in the context of reviewing an

urban planning design, see Section 5.4). Further research would be required to determine

if that is a genuine problem.

A quantitative analysis showed that the new functionality helped facilitate commu-

nication when participants were spatially separated within the environment. The mean

distance between participants and their nearest group member at the time of each of their

utterances increased with the new functionality, and was statistically significant between

the basic MGDs and multiple views conditions. Further, the mean amount of communi-

cation increased significantly (see Figure 5.7).

These results showed that the new functionality helped participants take full advantage

of the system (saving time by not collocating to communicate). The ability to communi-
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cate across large distances was already there, but the new functionality provided aware-

ness of it (identifying who was within hearing range and who was talking). The multiple

views provided awareness of the activities of fellow group members (were they moving,

teleporting, in bird’s-eye view, over-the-shoulder view, what were they looking at?) and

solved the problems of understanding another’s perspective (problems 1 and 2, Section

2.3.2.1).

Chapter 6 introduces a new concept called Virtual Time (VT), which was designed

to facilitate asynchronous collaboration in CVEs. The movements and conversations of

participants who had performed the urban planning task in the previous studies had been

recorded to disk. The task-related conversations were given a hemispherical tag in the

environment, and labelled with the topic of conversation (the urban planning question

they were discussing). Figure 6.1 shows these tags, and people using the VT system

could filter them by topic to reduce clutter (Section 6.2.2).

Participants could click on these tags using the mouse. Upon doing so, the avatars of

previous participants that they referred to appeared in the environment, and their move-

ments and conversations were played back as if they were there in real-time.

With VT participants chose to listen to a quarter of the conversations of their prede-

cessors while performing the task. The embedded VT conversations led to a reduction in

the rate at which participants travelled around, but an increase in live communication that

took place. Taken together with the MGDs, the studies show how CVE interfaces can be

improved for synchronous and asynchronous collaborations, and highlight a number of

possibilities for future research.

7.1 Future work

The evaluations in this thesis used an urban environment based on a real residential estate.

However, as Harrison and Dourish argue, one cannot simply replicate a space from the

real world in a CVE and expect real world behaviour to emerge [47]. The technology

and functionality collectively form a part of the space, and contribute to the emergence

of a sense of ‘place’ within the environment. Put simply, the functionality provided to

participants has an affect on their behaviour.

CVE designers must not think of their work as designing a space for users to inter-

act, but need to construct a combination of functionality that allows more versatile flows

of information (e.g. navigation, communication), and feedback provided to the user to

give them awareness of the functionality available to them (Chapter 5). The flexibility

afforded by the CVE designer allows for many possibilities for future work, and these are
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discussed in the following sections in the context of MGDs (synchronous interaction) and

VT (asynchronous collaborations).

7.1.1 Mobile group dynamics

Chapters 4 and 5 researched a variety of techniques to support synchronous interaction.

There are several ways future work can build on this. First, the task performance in the

studies in this thesis did not improve significantly, and it could be argued that this is due

to the task being subjective. The techniques could be applied to new application areas,

such as safety training, or online games. Both of these application areas can have objective

goals (e.g. time taken to evacuate a building), and would provide an objective measure for

performance. The hypothesis would be that MGDs would improve the task performance

due to the improvements in teamwork evident from the studies in this thesis.

Would the MGDs results generalise to other application areas? Generalisability is a

problem in psychological studies of interaction in a controlled setting, since the psychol-

ogists want to know if the results generalise to the real world, outside of the laboratory

conditions. In the case of the type of experiments described in this thesis, Schroeder et

al. point out that the results are not meant to transfer to the real world (from a controlled

environment to one with lots of new parameters), but to transfer from one controlled en-

vironment to another (one CVE to another CVE with similar constraints) [96]. When

viewed in this context the problem of generalisability is not as complex as it might origi-

nally sound—the hypothesis (above) remains intact.

Second, the experimental studies could be improved by learning about the effects of

different variables, such as familiarity of participants to each other, and expertise with

the technology. Participants were allocated randomly to each condition, so these extra-

neous variables were already controlled for statistically speaking [36, p. 274]. However,

it would be interesting to work out what the effect of these variables would be, e.g. by

using them as independent variables, and allocating participants accordingly. Previous

studies have looked at the impact of participant’s familiarity with others in immersive set-

tings, [110], and although their findings were that mutual history didn’t have an impact on

participants behaviour, it would be interesting to see if this is the case for larger numbers

of participants (e.g. ten participants, like in the desktop studies reported in this thesis).

7.1.2 Virtual time

Chapter 6 took a first step into researching Virtual Time (VT), an asynchronous collabo-

ration method that provides new possibilities for CVE interaction. There are two major
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research questions remaining for the study of VT: (1) How does it scale? (2) How does

the user interact?

The following sections elaborate on these questions, along with possible solutions and

ideas for future experimentation.

7.1.2.1 How does it scale?

Imagine a scenario with lots of users interacting in a large-scale CVE over an extended

period of time, listening to conversation tags and contributing their own. The possible

methods of contributing/recording a conversation tag are discussed in Section 7.1.2.2.

There are also fundamental scalability issues from a system’s perspective and a human’s

perspective.

System’s perspective The system would need sufficient storage for the audio conversa-

tions that are referred to by the tags, and enough bandwidth to transmit the conversations

and movements to the real-time users that are present. There are then two possibilities for

the interconnectivity of conversation tags.

First, tags could be hierarchical. That is, if a new group of participants made a con-

versation tag in which they listened to a conversation from the past (and presumably

contributed to it in some way), then the playback of the original tag would be nested

within the new tag. The tags could be organised in a tree-like structure equivalent to that

of Usenet news postings. A tree-like structure would mean the new tag would be a child

of the original tag, in the same way a reply to a news posting would be shown as a sub-

post beneath the original (and may quote the original within it). Future participants could

choose to reply to either the original tag or the child tag.

Alternatively, a flat structure could be imposed by the system. This would mean new

participants could extend existing conversation tags, by chipping in and adding comments

of their own. However, this would not be stored as a hierarchy. Instead, the amount of

conversation contained within each tag would get longer over time.

There are many unanswered questions here. What if two tags are played at once?

What problems might be caused by malicious users (e.g. spam, extending tags with ir-

relevant conversation) and how do these relate to problems with existing asynchronous

systems (e.g. going ‘off-topic’ in an online forum)?

Human’s perspective When a human participant enters a VT-enabled environment,

they will have a limited time to perform their task and will be presented with a poten-

tially large number of conversation tags containing activity that might take a long time
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to play back in full. A good design of system will be required to ensure that these tags

become a help rather than a hindrance.

First, there is the question of how many users are interacting in real-time? A large

number of users could lead to a conflict of interest (two people want to listen to different

tags at the same time), but richer conversation being contributed to the environment. Per-

haps tag playback could be local to each user to remove conflict, or perhaps users could

switch between a private and shared view of the environment.

Second, there is a decision making problem. The user is surrounded by conversation

tags: where do they start? The existing system provides a menu based filter that allows

each topic of conversation to be hidden or made visible. Additional solutions would be to

use techniques from search engines (allow users to search for keywords), or recommender

systems. For example, Amazon’s ‘customers who bought X also bought Y’ could become

‘participants who liked conversation X also liked these other related conversations: Y

and Z’. How is the recommendation represented in a CVE? How do participants navigate

through the recommendations and try different ones?

An alternative would be to provide cues to help people navigate the information rich

environment. This would draw on existing spatial cognition work, to determine the use-

fulness of different cues, e.g. signs vs. maps [53], and maps vs. verbal instructions [71].

7.1.2.2 How does the user interact?

New conversation tags in a VT system can be created, and existing conversation tags can

be played back.

In the current implementation of VT, the conversation tags were created manually

from the conversations and movements of previous participants in the environment. Key-

words were used to determine which conversations to tag (only task-related ones) and the

keywords also defined the topic of the tag. In theory, this could have been done using

NLP techniques. However, an alternative would be to let users create the tags themselves.

For example, suppose a group of users have found something of interest in the envi-

ronment. They could explicitly decide to leave a tag about it, and by pressing a ‘record’

button they could talk about, and look at, the point of interest. The tag would remain for

future participants, who could explicitly decide to add to it (the system designer could

allow appending or inserting conversation, or a new tag could become a child of the orig-

inal tag to make a hierarchical structure, see Section 7.1.2.1), or they could make their

own new tag. One problem with this would be the potential lack of contributions from

participants. What would motivate them to create conversation tags?

Principles from CSCW and organisational psychology could be applied to encourage
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contributions to the system. For example, recognising the effort of each user and their

contributions, [58]. Also, a new task could be chosen to provide an objective measure of

performance, and motivation to contribute conversation tags.

An example of a potential task would be virtual tourism, where participants could

leave comments about the different places that they have visited. The VT system would

record the spatial positioning of participants to put their comments into context. For

example, if someone wanted to share their favourite must-see place, or the best restaurant

hidden away in the maze of a city, they could lead people there in a virtual representation

of the world, show visitors around, leave verbal (audio) comments, and leave a trail for

future participants. A task could be set up as a virtual ‘treasure hunt’, where participants

must use the VT system to track down certain information from the environment. People

could be divided into teams who must work asynchronously, i.e. they are not all present

at the same time and need to leave clues for each other in the form of conversation tags.

A reward could be given as a task incentive (e.g. a prize for the best team).

The main objective of the research would be to draw out the principles that are im-

portant for collaborative interaction. The same task could be performed in three types

of conditions, the latter two being most suited to research. First, to a certain extent, the

task could be performed in the real world (e.g. walking around the real historic town

or place of interest). However, this would limit the possibilities of asynchronous col-

laboration (the VT system requires a display unit to show the movements of previous

participants). Second, the task could be carried out in a tracking lab (e.g. using one of

the motion tracking systems outlined in Section 2.2.1), with a head-mounted display to

show the asynchronous VT information—it could show the avatars of previous partici-

pants and their conversations (using audio playback). Third, the task could be performed

in a desktop CVE, using standard peripherals (mouse, keyboard) for interaction.

A comparison between the second and third conditions could be made: high fidelity

movement (tracked) vs. low fidelity movement (desktop). Research has been done by

Ruddle and Lessels comparing movement fidelity with respect to navigation [87]. The fo-

cus of the VT research would be on collaboration, not navigation, but the metrics provided

by Ruddle and Lessels would provide a good foundation for the evaluation [88]. Level 2

and 3 metrics would be most relevant, which are participants’ behaviour, and participants’

rationale, respectively.

Do people behave differently when they are physically moving around the space, com-

pared to when they are moving in a conventional CVE? The ‘joint action’ work carried out

by Streuber and Chatziastros made a first step in analysing this [112]. Taken as a proof

of concept, their study showed that a detailed analysis of the movement and behaviour
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of participants can be carried out using the motion tracking data. An experimental com-

parison could be made using a log from a desktop CVE. Would people perform the task

better when they were physically moving in the space? If so, could functionality be im-

plemented to replace the benefits of high fidelity movement, so that interaction methods

are different (e.g. non-naturalistic), but collaboration is equally effective, or more effec-

tive? If interaction methods could be improved it would allow effective collaboration to

extend to ubiquitous desktop technologies. Finally, there is the hybrid approach: what if

the new interaction methods were combined with the high fidelity movement? What if

the non-naturalistic approach was taken to the tracking lab?

The explosion of use of 3D worlds like Second Life and the technical capacity of

Internet infrastructure means that all the above are research challenges for today.
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Appendix A

Urban planning guidelines

The following information sheet was provided to all participants of the experiments, with

references to mobile group dynamics and virtual time removed for participants in condi-

tions where that functionality was not available.
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Appendix A 122 Urban planning guidelines

Virtual Environment Study

The purpose of this study is to investigate the use of ‘mobile group dynamics’ and ‘virtual time’ to improve

upon traditional collaborative interaction in virtual environments. The environment is a 3D representation of a

residential estate. Users should work together, discuss the points outlined below (adapted from guidelines in

documents1,2) and fill in their own ‘urban planning report’ sheet.

Guideline 1 – ‘Permeability’ – An accessible environment with a choice of routes

Consider first the development as a whole. Identify entry and exit points to the estate, and routes around the

environment.

• How many entrance and exit points are there around the estate? What are these for (i.e. cars or pedestrians)?

• Discuss ease of movement for cars and pedestrians. What reduces the speed/volume of traffic? Are there

suitable pedestrian routes around the environment?

• Consider the block size. This should be small enough to create a variety of routes around the environment

and make it permeable. Are the blocks small enough or do you have to walk too far before you reach a

choice of direction?

Guideline 2 – ‘Character’ – A place with its own identity

An environment should provide a sense of place. For example, some parts of cities have landmarks and buildings

of civic importance, or natural features (rivers and canals). In the absence of these, the character of an environment

is defined by appearance (e.g. the size of buildings and the choice of building materials) and layout.

• Which parts of the environment follow the same pattern/building structure?

• Find a part of the environment that is not consistent with the layout of the estate. Is this acceptable, or

should it be changed?

• Does the estate have character?

Guideline 3 – ‘Safety and security’ – A place where public places are overlooked and

private spaces are enclosed

Read the following extracts from urban planning literature:

‘Buildings with live edges, such as shopfronts, doors directly to the street, or residential upper floors,

enable people to keep an eye on public space and make it feel safer.’

‘Gaps between buildings reduce the degree to which the street is overlooked, as do blank walls (which

also encourage graffiti).’

‘Clearly defining and enclosing private space at the back of buildings provides for better privacy

and security. Back yards or inner courtyards that are private or communally shared space are best

enclosed by the backs of buildings. The rear gardens of houses are more secure if they back on to

other gardens, rather than side roads, service lanes or footpaths.’ – (ODPM, 2000)

• Discuss the safety and security of the estate based on your own thoughts and the information above. Find

examples of where public and private space is clearly distinguished and where it isn’t.

• Discuss which part(s) of the estate you think are least safe. Can you find any blank walls that you think

should be overlooked to improve the feeling of safety and help prevent graffiti?

• Discuss any improvements you think could be made with regard to the safety and security of the estate.

1CABE Education and Oxford Brookes University. Making better places - walkabout analysis checklist.

http://www.makingbetterplaces.org.uk/, 2004. (Accessed 21/8/2006).

2ODPM. Urban design in the planning system: Towards better practice. http://www.odpm.gov. uk/index.asp?id=1145239, 2000. (Accessed

8/2/2006).



Appendix B

User interface controls

The following sheets were provided to the participants for the basic MGDs condition and

multiple views conditions respectively. Other conditions had similar instructions with the

relevant modifications.
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Appendix B 124 User interface controls

How to use the urban planning review system

• Movement – Move using the arrow keys. Look around using the mouse. Raise/lower your viewpoint

with the Home key.

• Group movement – Right-click on people in your group to follow them. Move (press an arrow key)

to stop following them. Press the middle mouse button to automatically move to your group’s mean

location.

• Communication – Hold Page Down to talk using the mic. Type some text and press return to talk

using text.

• Screenshot – Press Insert to take a screenshot.

You can hear your group/subgroup members wherever you are in the environment. Other people will get

quieter as they walk away.

Groups are shown with coloured lines between members (left screenshot). Subgroups are shown a different

colour, with the parent group semi-transparent (right screenshot). The group/subgroup makeup is shown in

the corner of the screen, showing the group number, its colour, and a list of all the group’s members (right

screenshot).



Appendix B 125 User interface controls

How to use the urban planning review system

• Movement – Move using the arrow keys. Look around using the mouse. Raise/lower your viewpoint

with the Home key.

• Group movement – Right-click on people in your group to follow them. Move (press an arrow key)

to stop following them. Press the middle mouse button to automatically move to your group’s mean

location.

• Communication – Hold Page Down to talk using the mic. Type some text and press return to talk

using text.

• Screenshot – Press Insert to take a screenshot.

• Teleport – Hold Numpad 0 to free the mouse pointer. Position the teleport destination by moving the

mouse, left-click to teleport. Click a thumbnail view of a group member to move to their location.

You can hear your group members wherever you are in the environment. You will hear other users in 3D

(i.e. stereo sound getting quieter as they move further away, until they reach a cut-off point). People within

hearing range are listed down the left-hand side of the screen.

Groups are shown with coloured lines between members (left screenshot). Subgroups are shown a different

colour, with the parent group semi-transparent (right screenshot).

You can see thumbnails of your group member’s views across the bottom of the screen. A maximum of

three thumbnails will be shown. Extra group members are shown in the bottom-right section of the screen

(left screenshot). Click on them with the mouse (by holding down Numpad 0) to swap them into a thumbnail

space.
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Mobile Group Dynamics in Large-Scale Collaborative Virtual

Environments

Trevor J. Dodds∗ Roy A. Ruddle†

Visualization and Virtual Reality Research Group
School of Computing, University of Leeds, UK.

ABSTRACT

We have developed techniques called Mobile Group Dynamics
(MGDs), which help groups of people to work together while they
travel around large-scale virtual environments. MGDs explicitly
showed the groups that people had formed themselves into, and
helped people move around together and communicate over ex-
tended distances. The techniques were evaluated in the context
of an urban planning application, by providing one batch of par-
ticipants with MGDs and another with an interface based on con-
ventional collaborative virtual environments (CVEs). Participants
with MGDs spent nearly twice as much time in close proximity
(within 10m of their nearest neighbor), communicated seven times
more than participants with a conventional interface, and exhibited
real-world patterns of behavior such as staying together over an ex-
tended period of time and regrouping after periods of separation.
The study has implications for CVE designers, because it shows
how MGDs improves groupwork in CVEs.

Keywords: Collaborative interaction, experimental methods, dis-
tributed VR, usability

Index Terms: C.2.4 [Computer-Computer Communication Net-
works]: Distributed Systems—Distributed applications; H.1.2
[Models and Principles]: User/Machine Systems—Human factors;
Software psychology; H.5.1 [Information Interfaces and Presen-
tation]: Multimedia Information Systems—Artificial, augmented
and virtual realities; H.5.3 [Information Interfaces and Presenta-
tion]: Group and Organization Interfaces—Collaborative comput-
ing; Computer-supported cooperative work; Synchronous interac-
tion; I.3.7 [Computer Graphics]: Three Dimensional Graphics and
Realism—Virtual Reality

1 INTRODUCTION

Collaborative virtual environments (CVEs) are three dimensional
electronic worlds that combine shared information (e.g. 3D design
models) with mechanisms that allow multiple people to co-exist, be
aware of each other’s presence (e.g. through avatars) and communi-
cate. CVEs are used for games and social communication, but more
general usage is inhibited by current mechanisms for collaborative
interaction.

Our goal is to allow people to interact in CVEs as effectively
as they do in the real world. We aim to achieve this by devel-
oping techniques that support ‘group dynamics’ (the processes by
which people form themselves into groups and operate), as people
travel around (i.e. are mobile) and work together in a large-scale
shared space. Large-scale spaces are those in which ‘Multiple van-
tage points must be occupied in order for the space to be visually
apprehended in its entirety.’ [20] (p. 42). This introduces extra

∗e-mail: trev@comp.leeds.ac.uk
†e-mail: royr@comp.leeds.ac.uk

challenges, because not only do individuals get easily disoriented
when they navigate a large-scale VE, it is also all too easy to lose
track of the whereabouts of one’s collaborators.

This paper describes the implementation of mobile group dy-
namics (MGDs), and its evaluation using an urban planning sce-
nario in which one group of participants were provided with MGD
functionality and another (‘control’) group were not. First, how-
ever, aspects of group dynamics that we often take for granted in the
real world are reviewed along with methods used to support group
work in both publicly accessible CVEs and research applications.

2 BACKGROUND

The field of group dynamics has long been studied within a socially
driven context in real life (e.g. [12]), and the much-cited model of
forming, storming, norming and performing has been constructed
to describe group processes that are involved [19]. Storming and
norming are the processes by which individuals’ roles within a
group become refined, whereas forming and performing govern the
creation of groups and their ability to do work. It is these latter two
processes that are most relevant to implementing MGDs.

2.1 Forming

Four key points about group formation need to be considered.
These are the method of joining (implicit vs. explicit), how
members are identified, the structure of the group (e.g. sub-
groups/hierarchy), and the way that the group is represented (e.g.
aggregate views of the group as a whole).

When people meet and communicate informally in the real world
they gather together into circles to hear each other. The groups are
organized using spatial positioning so membership is implicit, and
social etiquette applies when people join or leave. For example,
new members may be invited to join by existing members’ body
language (e.g. stepping back to allow a newcomer into the circle),
and when members leave the group they would often give an appro-
priate verbal indication or gesture (e.g. say or wave goodbye).

Active Worlds1 is a chat-based CVE in which users form im-
plicit groups. If users are too far apart, the chat text isn’t displayed,
so they are forced to gather together into rough circles to ‘hear’
each other. Groups can make themselves open to new members by
gathering around the entrances to the worlds, or groups can govern
themselves by agreeing a time and place to meet. The environ-
ments are large enough for this to provide privacy from users who
were not invited because a group is unlikely to be found by acci-
dent. However, a disadvantage of this implicit approach is that the
system maintains no record of the makeup of each group, so mem-
bers may be unaware if they met by chance in another part of the
CVE.

On the other hand, people can be part of explicit groups for ex-
ample a guest list for a wedding, a university society or sports club.
Explicit groups maintain a formal record of their membership. In
some cases membership is open (any student can join a society,
they just need to sign up) but in others it is dictated by members

1http://www.activeworlds.com/ (Accessed 2 August 2007)



who have special privileges (e.g., a couple deciding who they will
invite to their wedding).

Social networking sites such as Facebook2 use explicit groups.
Membership can be decided by a group administrator (as in the
guest list example) or it can be open to anyone (as in a society or
club). There3 is a chat-based CVE that implements explicit groups
in a similar way to social networking sites. It uses a web based in-
terface to allow the forming and joining of groups for people with
a particular common interest. However, there is no way of identify-
ing who belongs to one of these groups from the 3D environment,
or from the appearance of users’ avatars. The only way to identify
members is by consulting the group membership lists.

Group members can also be identified by spatial positioning or
color schemes. The former approach is used by real-time chat
groups in There. A group is started after one user has chatted with
another for a short period of time and the camera automatically
switches to a special ‘chat mode’ that shows the users’ two avatars
aligned side-by-side, giving a better view of the group. New mem-
bers can join by walking up to the group, clicking on an icon associ-
ated with it, and selecting the join option from a menu that appears.
As more people join the avatars are arranged into a semi-circle, so
each user can see all the group members in one view on screen.
The disadvantage of this approach is it only works when the group
remains in one location.

A soccer team provides a good example of the real-world use of
color schemes. Membership is decided explicitly before the match
starts, and it is communicated by the players wearing their team’s
colors. There is no question who is on which team, and it is straight-
forward to identify who is a member from a distance. A similar
approach is used in entertainment CVEs such as Wolfenstein: En-
emy Territory4 where members of the two opposing armies can be
identified from the uniform worn by users’ avatars.

Even if there is only one group in the environment, it may change
structure. For example, consider an office meeting. The people
present may divide themselves into subgroups to carry out certain
tasks, or someone may talk to the person next to them, using ‘side-
channels’ of communication [3] rather than addressing the group
as a whole. Functionality to support changes to a group’s structure
have rarely been implemented in CVEs, but a recent exception was
[13], who allowed users to form subgroups explicitly using menu-
based selection.

Finally, the way a group is represented can change. This is spe-
cific to CVEs. For example, MASSIVE-2 [9] implemented a con-
cept of ‘third party objects’ – objects that affect the awareness be-
tween other objects (i.e. users). In their ‘Arena’ work, they used
third party objects to hold crowds of users. Members of a crowd
could see other individual members, but non-members saw an ag-
gregate view instead (a large avatar).

2.2 Performing

Performing is the stage in which the group carry out the task. When
a group of people work together in a large-scale space in the real
world, they communicate and move around the environment. Com-
munication can take place when members are collocated, or when
they are physically separated (e.g. communicating using a mobile
phone). The Robust Audio Tool (RAT) used in the COVEN project
is an example of an audio system that is independent of the spatial
positioning of users in a CVE [17]. All users hear each other at all
times, as in a typical audio conference. Other CVEs use much more
realistic audio, such as the binaural sound system used by Tsingos
et al. [18] in which a user wearing headphones can pinpoint the
source of each sound. The advantage of RAT style audio is that

2http://www.facebook.com (Accessed 1 August 2007)
3http://www.there.com (Accessed 1 August 2007)
4http://www.splashdamage.com/ (Accessed 2 August 2007)

users can continue communicating wherever they are in the envi-
ronment. However, this type of audio doesn’t scale well because
of the noise of users talking over each other. The advantages of an
environment using 3D audio include helping the user comprehend
who is talking (because one can mentally map the source of the
sound to the visual avatar), and reducing noise from multiple users
by culling the distant sound sources, so that listeners only hear their
neighbors.

Movement around an environment in the real world can be in-
dividual (people split up and divide the task between them), as a
group (to get a shared understanding), or require meeting at a point
of interest [21]. Moving as individuals or as a group both have their
advantages. Dividing the environment up between group members
is a quicker way of covering the space, but navigating together al-
lows the sharing of ideas – ‘two heads are better than one’ – and
mistakes in the task are less likely to go unnoticed. The group can
take a hybrid approach and divide into subgroups, increasing speed
of task performance and still benefiting from a small amount of
groupwork.

Moving as a group in a virtual world is a non-trivial task, due to
the small field of view in desktop environments (it is easy to lose
track of where other users are). An over-the-shoulder perspective
helps when compared to a first-person perspective: users can see
others relative to their avatar [6]. However, moving the camera
behind the avatar just provides a bit more context, not a larger field
of view, and difficulties still occur [11]. One solution is to use an
abstract device to provide an indication of where others are (e.g. a
radar, or 3D arrows pointing to targets [7]).

3 IMPLEMENTING MOBILE GROUP DYNAMICS

The MGD techniques were designed to make it easier for groups to
form in the CVE, and to support their operation as they performed
the task. They differed from prior work by using a novel ‘group
graph’ metaphor for users to keep track of each other (Section 3.1)
and an easy mechanism for switching between moving as individu-
als vs. a group (Section 3.2). We describe the techniques here, and
Section 4.1.4 gives full details of the interface controls.

3.1 Forming

Forming or joining a group could be done implicitly or explicitly,
under one of the following conditions:

• Implicit: Moving within 1m of another participant’s avatar.

• Explicit: Selecting another participant’s avatar.

A new group was formed if neither participant was already in a
group. The group was joined if one participant was not in a group
and the other was. If both participants were in different groups,
then the implicit condition had no effect. For the explicit condition,
one selection would move the participant out of their current group,
and a second selection (or satisfying the implicit condition) was
required to move them into the other’s group.

The group system was hierarchical, and this worked with ex-
plicit selection only. A subgroup was formed if selection occurred
and both participants were already in the same group. Leaving the
group happened one step at a time. First participants would be re-
turned to their parent level of the hierarchy if they were in a sub-
group, and they would be removed from their group altogether if
they were at the top-level.

To help groups function over extended time periods, and encour-
age group members to get back together again after periods apart,
the composition of groups at any given moment was identified ex-
plicitly by: (a) a group graph that linked participants with a unique
color for each group (see Figure 2), and (b) a list of the participants
in each group displayed using a Head-up Display (HUD) metaphor
(i.e. a transparent overlay).



The lines between avatars in each group graph provided an indi-
cation of where others were in the environment (e.g. the location
of fellow group members). This was particularly clear in a birds-
eye view, when the groups could be seen as independently colored
graphs, with the names of participants at the nodes. Delaunay trian-
gulation was used to determine which graph edges should be drawn,
thereby reducing clutter in the environment. The consequences of
this were that participants didn’t necessarily have a line from their
avatar to every group member, and the edges changed as partici-
pants moved.

3.2 Performing

Techniques were implemented to support groups as they communi-
cated and moved around the environment.

A suite of functionality was provided to assist movement as a
group. Participants could automatically follow a group member or
move to the mean location of their group, and another benefit of
this functionality was that it could be used to rapidly move to a
group member’s location. During automatic movement participants
still had full control of their orientation, so they could look around
while being ‘taken’ somewhere. This meant that they could get an
understanding of where they were heading, and continue to look
at things in the environment while the automatic movement carried
them along. To stop the automatic movement (e.g. to stop following
someone), participants simply pressed one of their movement keys.

Collision detection remained enabled during the movement to
the mean location of the group because the mean location might
have resided in an out of bounds area (e.g. a building). A sliding
algorithm smoothly moved participants along walls/fences.

Finally, the communication model provided 3D audio communi-
cation (see Section 4.1.2). This had two benefits. Firstly, partici-
pants had a clearer indication of the the location of someone who
was talking, from the direction of the sound (particularly helpful
if their avatar was out of sight). Secondly, for people in the same
group, the volume level was not affected by the distance between
people, which helped collaboration continue even when they were
far apart in the environment. However, distance attenuation was
implemented for inter-group communication, to reduce the overall
noise levels.

4 EXPERIMENT

Participants were asked to review a 3D representation of a resi-
dential estate that was presented in a CVE system, and complete
an urban planning report. The experiment was carried out in two
batches. Participants in the first batch were provided with the MGD
functionality that we’d developed to aid collaboration in large-scale
VEs (MGDs condition), whereas in the second batch MGDs were
disabled so functionality was typical of current CVEs (a ‘control’
condition).

4.1 Method

The experiment took place in an undergraduate computing labora-
tory. Each participant used two adjacent computers, one for the
CVE, and the other for the write-up of their urban planning report.
Participants were spaced out across the laboratory so they could
only communicate using audio and text communication from within
the environment.

4.1.1 Participants

All participants were undergraduate students from the School of
Computing. Ten participants were recruited for each run, but two
participants for the MGDs condition were unavailable on the day
of the experiment. The remaining eight participants (5 men and 3
women) had a mean age of 20.8 (SD = 2.0). The ten participants (9
men and 1 woman) in the control condition (MGDs disabled) had a
mean age of 22.0 (SD = 3.5).

All the participants volunteered for the experiment, gave in-
formed consent and were paid an honorarium for their participation.

4.1.2 CVE application

The software was written in C++ using OpenGL and OpenAL, pro-
grammed by the first author. The system allowed multiple partic-
ipants to connect simultaneously to the environment, be aware of
the position and orientation of each other, and communicate using
audio and text mediums.

The software used a client-server architecture, using UDP/IP for
voice communication and TCP/IP for all other data (e.g. movement,
MGD information, text communication). The method for sending
data was based on the Protocol Data Unit (PDU) system from the
Distributed Interactive Simulation (DIS) protocol [16]. Each data
unit had a header identifying the user that the unit originated from
and the type of data being sent, followed by the data itself (e.g.
positional data consisted of 5 floating point numbers: x, y and z
coordinates followed by heading and pitch). The server recorded all
the data to a log file, with timestamps so sessions could be played
back at their original speed.

Audio communication was implemented using OpenAL 1.1, us-
ing the ‘inverse distance clamped’ model, a reference distance
(refdist) of 30m and a roll-off factor (rolloff) of 6. This means that
for distances (dist) of up to 30m the gain was 1.0, between 30 and

85m the gain was defined by the equation
re f dist

re f dist+rollo f f (dist−re f dist)

[10]. This gave a gain of 0.08 at 85m, and beyond this the gain was
set to zero.

The stereo channels were used to help participants pinpoint the
sound source. If a source was to the right of the listener or central,
then the gain of the right stereo channel was kept the same (the gain
calculated by the attenuation model). As the source moved to the
left of the listener, the right channel gain was reduced from 100%
(central) to 0% (directly to the left of the listener), and vice-versa
for the left channel. This is calculated by the OpenAL implementa-
tion.

Distance attenuation was turned off for communications between
members of the same group in the MGDs condition. This helped
group members communicate as they traveled to different parts of
the estate.

To further help participants identify who was talking, an icon
was placed above a participant’s avatar when they were talking, as
a visual cue.

The experiment took place on a Linux platform across a 100
Mbit/s LAN. However, the system (including audio transmission)
was tested and ran successfully on Linux and Windows platforms
across the Internet on a home broadband connection (2Mbit/s).

4.1.3 Environment

The environment was a residential estate that was based on a real
estate in Leeds. The estate was chosen after a murder took place
which highlighted one way in which the estate’s design didn’t fol-
low present UK urban planning guidelines. It occurred in a private
space that was only partially enclosed – it was not separated from
a public footpath that ran along side it, and on the other side of the
footpath was a public park. This broke the following guideline:

‘Clearly defining and enclosing private space at the
back of buildings provides for better privacy and secu-
rity.

• Back yards or inner courtyards that are private or
communally shared space are best enclosed by the
backs of buildings.

• The rear gardens of houses are more secure if they
back on to other gardens, rather than side roads,
service lanes or footpaths.’ [14]



The incident served as a reminder of the importance of good de-
sign. Unfortunately, the pressures for short term financial savings
have been known to compromise good design, and mistakes remain
for years to come [8].

All participants were represented in the environment with a pho-
tographic avatar (using four photos: front, back, left and right, see
Figure 3). Participants were given an over-the-shoulder perspec-
tive, with the option of switching to and from a bird’s-eye view.
An over-the-shoulder perspective meant that participants could see
each other relative to their avatar, and be more aware of how others
perceived them [6].

Figure 1: A map of the estate. The estate had an entrance road in the
middle (point A), which acted as a dividing line between two styles
of building. On the left-hand side of the entrance road, there were
brown-bricked terraced houses (see Fig 3), which were mostly horse-
shoe shapes creating partially enclosed private space (e.g. point B).
The front gardens were bordered by high fences, and there were six
garages in the road (C). There was an archway under one of the
terraces (D). On the right-hand side of the entrance road there were
red-bricked bungalows (single story buildings shown in Fig 2) along
the edge of the curved road, with gardens bordered by low brick walls
(e.g. E). There was a single-story care home for elderly people (F,
the large building in Fig 2), with a car park to the left with space for
six cars (G), and a hedge-row above it partly separating private land
around the care home from public parkland (H). Points 2 & 3 show
the position and direction of view used for Figs 2 & 3, respectively.

4.1.4 User Interface

The participants used desktop workstations, and a two-handed con-
trol method, with one hand on the keyboard and the other hand on a
3-button mouse. By holding down appropriate arrow keys a partici-
pant could move forward/backward/left/right at 6 m/s, and heading
and pitch could be changed by moving the mouse. This is a com-
mon gaming control method (e.g. [5]).

The ‘Insert’ key was used to take screenshots, the ‘Home’ key to
toggle between over-the-shoulder and bird’s-eye views, and hold-
ing down the ‘Page Down’ key allowed the participant to use voice
communication.

Text communication was achieved by simply typing letters or
numbers, which were transmitted the moment each was typed, ap-
pearing in a speech bubble above the participant’s avatar. The text
expired after approximately ten seconds from the moment the enter
key was pressed. Each participant was provided with a stereo head-
set for audio communication. The default recording and playback
volumes were automatically set using a shell script.

Figure 2: A screenshot from MGDs condition, showing two groups,
each linked by different colored lines

MGD functionality used three mouse buttons, and the ‘Delete’
key to move up one level in the group hierarchy. The display had a
crosshair in the middle used for selection. Selecting an avatar with
the left mouse button formed/joined a group. Selecting the avatar of
a fellow group member with the right mouse button rapidly moved
to their location and automatically followed them. Pressing the
middle mouse button anywhere moved to the mean location of the
group.

Figure 3: A screenshot showing a close-up of the avatars of three
participants from the control condition, in front of some terraced
houses

4.1.5 Procedure

Several days before the experiment, each participant attended a ten
minute preparation meeting, to have photos taken for their avatar,
ask questions about the experiment, and read an introductory sheet
containing extracts from government urban planning guidelines.

The experiment itself lasted one hour. At the start of the experi-
ment, each participant was provided with three information sheets:
another copy of the introductory sheet, instructions that described
the CVE’s interface, and a schedule for the experiment. They were
also provided with an electronic copy of an urban planning report.
The report contained the following questions for participants:



Figure 4: A chart showing which team the MGD participants were in over time. Each team is shown in a different color.

• Question 1, Permeability: (a) How many entrance and exit
points are there around the estate? What are these for (i.e.
cars or pedestrians)? (b) What reduces the speed/volume of
traffic? (c) Are there suitable pedestrian routes around the
environment? (d) Are the blocks small enough or do you have
to walk too far before you reach a choice of direction?

• Question 2, Character: (a) Which parts of the environment
follow the same pattern/building structure? (b) Find a part
of the environment that is not consistent with the layout of the
estate. (c) Is this acceptable or should it be changed? (d) Does
the estate have character?

• Question 3, Safety & Security: (a) Comment on the safety
and security of the estate based on your own thoughts, the
information in the guidelines and your discussion with other
participants. (b) Find examples of where public and private
space is clearly distinguished and where it isn’t. (c) Discuss
which part(s) of the estate you think are least safe. (d) Can
you find any blank walls that you think should be overlooked
to improve the feeling of safety and help prevent graffiti? (e)
Try to suggest some improvements with regard to the safety
and security of the estate.

The first 15 minutes of the experiment were used for training.
Participants were instructed to experiment with all the controls
available to them, with the experimenter and assistant on hand to
clarify anything if necessary. Participants logged into a training en-
vironment. This contained a 3D representation of a city, of which
an area of approximately 75x75m could be explored. There was a
main road area, surrounded by large tower-blocks, with small alley
ways around the back of them. Two of the tower-blocks could be
entered, one from the road, and the other by descending some steps
and going under the road in a subway. There was a lift up to the top
of one of the blocks.

The next 35 minutes were allocated for the main task – the re-
view of the residential estate. Participants logged into the test envi-
ronment and traveled around the estate to answer the questions and
complete their urban planning report. If a participant came across
something relevant to the report, they could take a screenshot of it.
The screenshot would simply capture what they were looking at, in
the same view that the participant had (i.e. over-the-shoulder, or
bird’s-eye).

The participants received verbal warnings when there were 10
minutes and 5 minutes remaining on the main task, to encourage
them to finish writing up the report. The final 10 minutes were
allocated to submitting the report, filling in a questionnaire, and
receiving payment.

5 RESULTS

The data collected can be divided into two categories, taskwork and
teamwork – ‘the work of working together’ [1]. The sources of

data were the participants’ urban planning report sheets, the ques-
tionnaires and the server’s recording of everything that took place
in the environment (text and audio communication, movement, and
the makeup of the teams). The report sheets provided data about the
taskwork, and the questionnaires and server’s recording provided
data about the teamwork.

The server’s recording was in the form of a log file. It could
be played back, either forwards or backwards (rewinding) at vari-
ous speeds, and with the ability to move the viewpoint around the
environment to view the playback at any position or orientation.

Statistical analyzes were performed using independent samples
t-tests to compare participants who had been provided with the
MGD functionality with those who had not.

5.1 Taskwork

The reports were marked like an exam, according to a mark scheme
with example answers.

The mean marks were 16.9 out of 24 (SD = 5.1) for the MGDs
condition, and 17.3 (SD = 4.0) for the control condition. An in-
dependent samples t-test showed there was not a significant dif-
ference in the taskwork scores of the two groups of participants,
t(16) = 0.20, p > .05.

The task itself was only of modest difficulty, so it was to be ex-
pected that performance would not differ between the two condi-
tions. However, our primary interest lay in how MGDs affected the
way in which participants tackled the task.

5.2 Teamwork

The analysis of teamwork consisted of a combination of two meth-
ods based on those in [15]. The first method was quantitative, in
which the communication and spatial positioning between partic-
ipants were analyzed, and the results for the MGDs and control
conditions were compared. The second method was qualitative, an
‘analysis of interaction fragments’ [15] (p. 661), in which the paths
of the core participants in the MGDs condition were analyzed to
draw out patterns of interaction.

5.2.1 Quantitative analysis

For the MGDs condition, each explicit group of participants was
given a unique color. This ‘team’ color remained the same despite
changes in the combinations of participants who belonged to that
team. The teams are shown in Figure 4. The participants are shown
on the y axis, and given a color depending on which team they be-
long to at each point in time, where time is shown on the x axis. The
time of zero represents the time that the server was started. Teams
were formed from scratch five times, four times implicitly (pairs
of participants walked within 1m of each other) and once explic-
itly (one participant selected another). The chart shows that for the
majority of the experiment there were two teams, one blue and the
other green, with participants occasionally switching from one to
the other.



The data about participants’ movements through the environ-
ment were used to calculate how far each participant was from their
nearest neighbor every second during the experiment. This was then
used to determine the percentage of time participants spent sepa-
rated by given distances from the other participants (see Figure 5).
These data show that participants spent nearly twice as much time
within 10m of others when MGDs were provided.

The mean distance to the nearest neighbor was calculated for
each participant in both conditions. The overall means were 19.7m
for the MGDs condition (SD = 4.2) and 25.4m for the control con-
dition (SD = 3.8). An independent samples t-test showed that there
was a significant difference in the distances to the nearest neighbor
for the two conditions, t(16) = 3.05, p < .01.

The questionnaire was used to gather data on the use of MGDs.
In particular, the automatic following mechanism could be used to
rapidly move to a group member’s location. Six out of the eight
participants said they used the functionality in this way.

Figure 5: Proportion of time participants spent within given distance
of their nearest neighbor

For each batch of participants (the MGDs and control con-
ditions), participant’s spoken and text communication was tran-
scripted and analyzed using a communication coding approach [4]
to classify each utterance as one of the following:

(a) Greetings (e.g. ‘Hello R!’, ‘How you doing?’)

(b) Functionality – communication regarding the system and the
groups (e.g. ‘D are you following me?’, ‘Press home to get
a better view’, ‘Can everyone hear me even though we’re in
different groups?’)

(c) Environment – discussion about the 3D world, but not in re-
lation to the task (e.g. ‘So is this meant to be an actual part of
Leeds?’, ‘There’s Leeds city council bins’)

(d) Task related (e.g. ‘What do you think reduces the speed
round here?’, ‘I’ve found a bit of the estate that doesn’t re-
ally match the rest’)

(e) Idle chat (e.g. ‘D I can actually read what’s on your T-shirt!’)

Overall there were 133 utterances in the MGDs condition, of
which 40 were text-based and 93 were spoken. The utterances oc-
curred in 22 blocks of conversation and in 15 of these, all the speak-
ers were in the same team. There were 18 utterances in the control
condition, of which 16 were text-based and 2 were spoken. These
utterances occurred in 3 blocks of conversation. These data show
that there was much more communication in the MGDs condition,
and most of it was task-related (see Figure 6).

Figure 6: The number of utterances in each communication category
for the two conditions

5.2.2 Paths during teamwork

In the MGDs condition, the most persistent combination of team
members was D, K and G, in the green team, and P, I, R, B and J,
in the blue team (see Figure 4).

D and K were identified as the core members of the green team
because they communicated the most. D spoke 29 utterances, K
spoke 22 but G (the third member) only spoke 12 utterances.

R and B were identified as the core members of the blue team. R
spoke 41 utterances and B spoke 19, which was far greater than the
other members P, I and J who spoke 5, 0 and 5 utterances respec-
tively.

The paths of these core participants from the MGDs condition
were analyzed in detail and showed that they sometimes moved to-
gether around the environment answering a question, and on other
occasions split up to explore their surroundings, and then regrouped
to discuss their findings. By contrast, participants in the control
condition communicated far less and spent little time in close prox-
imity (see section 5.2.1).

The following paths and communication from the green team il-
lustrate the types of behavior that occurred when MGDs were pro-
vided. Figure 7(a): The two core members of the green team started
at the entrance to the estate (shown with a timestamp [00:00] in the
diagram), navigated around the environment together in a clockwise
direction, and returned to the starting point. D was following K us-
ing the automatic following MGD functionality. Their conversation
was based on the functionality of the system (the leader/follower
mechanism), and the real world location of the virtual environment.
The points at which the conversation took place are shown by times-
tamps on the diagrams and in the extracts below.

[01:38] K: D are you following me?

[01:42] D: I am, yes!

[01:45] K: Wicked!

[01:50] R: I think I can see my house

from here!

[02:00] D: So is this meant to be an

actual part of Leeds?

Figure 7(b): The core members returned to their starting point
[03:00]. They split up [03:50] and navigated one side of the estate
each, until they regrouped again in the middle [05:00].

Figure 7(c): The core members split up again, D navigated the
perimeter of the environment and K stuck to the roads. K met the
two core participants R and B from the blue team and joined in their
conversation [06:07].



(a) 0-3 mins

(b) 3-5 mins

(c) 5-9 mins

(d) 17-20:12 mins

Figure 7: Paths of the core members K and D from the green team.
K and D are represented by green and red lines respectively

[05:47] R: What do you reckon stops the

volume of traffic?

[05:57] B: I don’t know

[06:03] R: Could it be that it’s so

windy?

[06:07] K: Dead ends as...

[06:11] R: Was that... was that J?

[06:14] K: No that was K!

The two core members of the green team regrouped at time
[07:46]. One of the core members of the blue team, R, was with
them and joined in their conversation. R reported the findings from
the blue team.

[07:46]/Text D: Hadn’t we better start

answering some of the questions?

[08:07]/Text K: i already ahve

[08:10]/Text K: haahhha

[08:18]/Text G: probably

[08:36]/Text R: we did the first two!

[08:38]/Text G: how many exits are there?

[08:46] D: I’ve only found one.

[08:49] R: One what?

[08:52] D: One exit.

[08:54] R: We found four pedestrian and

one for cars.

[09:05] R: It’s a small world.

[09:08] D: Too true.

The time from [09:08] to [17:00] has been omitted because there
was little communication between the core members of the green
team throughout this time (two utterances from D and one from K).

Figure 7(d): The two core members of the green team split up,
D found something of interest [17:45], they regrouped [18:39], D
showed the rest of the team the point of interest from a distance
using the bird’s-eye view [19:18].

[18:39] D: I’ve found a bit of the estate

that doesn’t really match the rest.

[18:42] K: Yeah. So have I.

[18:46] D: What have you put for that?

[18:49] K: One of the two level houses

has got a different color wall to the [K

is referring to the brown fence around

the terraced houses (determined from K’s

report)]

[18:55] D: Oh, is that it?

[18:57] K: Yeah. Why? What have you

got?

[19:00] D: If you press ‘Home’ and follow

me I’ll show you.

[19:03] K: OK.

D lead K (and G who was listening in) to the large building, and
stopped by the side of it to talk [19:18]. (Pressing the ‘Home’ key
toggled bird’s-eye view).

[19:18] D: If you all look to my left

now, and have a look with ‘Home’...

[19:23] K: OK.

[19:24] D: It’s laid out a completely

different way and there’s a dead end in

the middle.

[19:33]/Text G: ah yeah i see

[19:34] K: Oh yeah!

K and G then followed D to the point of interest.

[20:12] K: I see what you mean.



6 DISCUSSION

Our goal was to develop techniques for Mobile Group Dynamics
that helped people work together over an extended period of time, in
a large-scale space. MGDs had a neutral effect on task performance
(the task was achievable by oneself) but did produce fundamental
changes in the way participants went about performing the task and
the quantity of teamwork that took place. In particular, this was
shown by the amount of time that participants spent near each other,
the way they continued to collaborate after periods of separation,
and the amount of communication that took place.

Participants in the MGDs condition spent much more time in
close proximity (within 10m of their nearest neighbor for 40% of
the experiment) than participants in the control condition (21%),
and two aspects of MGDs contributed to this. Firstly, participants
could easily identify fellow group members because lines between
group members indicated the location of others and each group was
given a unique color (see soccer team analogy in Section 2.1). Sec-
ondly, the automatic following functionality helped people remain
together while they traveled, and also provided an easy way of re-
grouping with one’s fellow members (75% of the MGDs partici-
pants used the functionality in this way).

It is suggested that ‘cognitive ease’ as well as functionality af-
fects group behavior in CVEs [2], and this may explain why MGDs
were so successful at helping participants collaborate over an ex-
tended time that included periods of separation. Firstly, allowing
groups to form automatically via spatial proximity minimized the
effort involved of initially forming a collaboration with other par-
ticipants (80% of groups were formed in this way). Secondly, the
explicit indication of who was in each team (see above) and the fact
that audio communication within a group was not attenuated by dis-
tance meant that participants did not lose contact if they wandered
away from their fellow group members. Thirdly, leaving or switch-
ing groups had to be done explicitly and, therefore, was effortful.

There were over seven times the number of utterances in the
MGDs condition, compared to the control condition. This is the
result of the suite of techniques as a whole. It could be argued
that the very presence of MGDs would have given participants an
idea of how to work together effectively [13] and, with 66% of the
conversation being task related, this was representative of the extra
teamwork taking place.

Finally, although participants could communicate with group
members wherever they were in the environment, they still pre-
ferred to spatially regroup to discuss their findings. When there
was a point of interest, it seemed important for everyone to see it
from the same viewpoint and get a shared understanding of it (see
the dialog in Section 5.2.2, for Figure 7(d)). We plan to address this
by further research into techniques to improve awareness of who
can hear you and who is talking, allow rapid movement to another
location by teleporting, and provide multiple views so participants
can see what their group members are looking at.
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Abstract

Mobile Group Dynamics (MGDs) are a suite of techniques that help people work together in large-scale col-

laborative virtual environments (CVEs). The present paper describes the implementation and evaluation of three

additional MGDs techniques (teleporting, awareness and multiple views) which, when combined, produced a 4

times increase in the amount that participants communicated in a CVE and also significantly increased the extent

to which participants communicated over extended distances in the CVE. The MGDs were evaluated using an

urban planning scenario using groups of either seven (teleporting + awareness) or eight (teleporting + awareness

+ multiple views) participants. The study has implications for CVE designers, because it provides quantitative and

qualitative data about how teleporting, awareness and multiple views improve groupwork in CVEs.

Categories and Subject Descriptors (according to ACM CCS): C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems – Distributed applications; H.1.2 [Models and Principles]: User/Machine Systems – Human
factors; Software psychology; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems
– Artificial, augmented and virtual realities; H.5.3 [Information Interfaces and Presentation]: Group and Organiza-
tion Interfaces – Collaborative computing; Computer-supported cooperative work; Synchronous interaction; I.3.7
[Computer Graphics]: Three Dimensional Graphics and Realism – Virtual Reality

1. Introduction

Previous research developed techniques called Mobile
Group Dynamics (MGDs), which helped groups of people
work together while they traveled around large-scale collab-
orative virtual environments (CVEs) [DR08]. Compared to
a conventional CVE, these techniques led to a seven-fold in-
crease in the amount of communication that took place be-
tween participants. However, two major areas for improve-
ment were also identified.

First, participants tended to spatially regroup to discuss
their findings, even though MGDs allowed communication
over an infinite distance (there was no distance attenuation
for audio communication between group members). This
meant that unnecessary amounts of time were spent traveling
to meeting places.

† e-mail: trev@comp.leeds.ac.uk
‡ e-mail: royr@comp.leeds.ac.uk

Second, if participants wanted to see what others were
looking at (e.g., a point of interest that was being discussed)
then they had to ‘walk’ to the appropriate location.

The present paper describes how these shortcomings were
tackled by adding new functionality to MGDs. We were re-
minded that ‘CVEs...do not necessarily need to reflect or em-
body the characteristics of conventional environments to en-
able them to support particular forms of activity or interac-
tion’ [FGV∗00], and ‘This is the trap VR often falls into; VR
tries to imitate reality...’ [Pek02]. Therefore, the new func-
tionality took advantage of the fact that CVEs do not need to
be limited to real world constraints. Three types of function-
ality were implemented.

First, our hypothesis was that participants collocated to
communicate with group members because, given that the
CVE used directional sound, participants assumed that the
audio was also distance attenuated. In fact, distance atten-
uation was disabled for intra-group communication, as was
explicitly stated in participants’ verbal and written instruc-

c© The Eurographics Association 2008.
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tions. To overcome this, we developed ‘awareness’ function-
ality that provided visual feedback about who was receiving
audio at a given moment in time, and who was speaking.

Second, it is well known that in CVEs participants of-
ten find it difficult to understand what each other is looking
at [HFH∗00]. To overcome this, a participant’s own (main)
view was supplemented by small viewports that showed the
views of fellow group members.

Third, ‘walking’ is time consuming, so teleporting func-
tionality was added. This allowed participants to move di-
rectly to any point in the environment by clicking on the ap-
propriate location on the display, or move directly to another
participant’s position by clicking on ‘their’ viewport.

The following sections describe further background re-
search, the implementation of the new MGDs functionality,
and its evaluation using an urban planning scenario.

2. Background

This section briefly reviews research relevant to teleporting,
promoting awareness of others and the use of multiple views
in virtual environments. People often wish to spend large
amounts of time exploring an environment, be it virtual or
real. To minimize the amount of time spent traveling in the
real world people may choose to drive rather than wait for a
bus, or run instead of walk. In electronic environments, how-
ever, we can make use of non-naturalistic forms of move-
ment. For example, using a search engine we can generate
hyperlinks that jump straight to task-related pages.

An evaluation of the use of hyperlinks in virtual envi-
ronments showed that there was a speed-accuracy trade-
off when compared to conventional navigation (walking)
[RHPJ00]. Put simply, participants found their target loca-
tions faster with hyperlinks, but visited more locations in the
process. This suggests that the efficiency of teleporting is
in the speed, so CVE designers might infer from this that
instantaneous teleportation should be implemented to get
the most out of the speed increase. However, [RHPJ00] also
highlights the importance visual continuity. This is some-
thing that instant teleportation can lose, e.g. teleporting be-
tween self-contained areas in chat-based VEs such as There†

and Second Life‡.

Elvins et al. [ENSK01] helped overcome visual disconti-
nuity by providing ‘worldlets’, or small 3D thumbnails, of
landmarks which the user could teleport to. This was more
useful to users than a 2D image or textual description of the
destinations. These worldlets overcame the visual disconti-
nuity that can occur when a user teleports from one place to
another, but other techniques are needed to provide informa-
tion about the spatial relationship of the two places and the

† http://www.there.com (Accessed 23/1/2008)
‡ http://www.secondlife.com (Accessed 23/1/2008)

rapid controlled movement used to implement teleporting in
the present study is one method of achieving this.

Participants in desktop VEs experience two kinds of prob-
lems understanding the actions of others. 1) ‘Fragmented
views’, where another participant refers to an object or point
of interest in the environment, but their avatar and the point
of interest are not simultaneously visible in the viewport
[HFH∗00]. 2) What you see is not what I see, which makes
it difficult to understand another’s perspective.

Problem 1 is likely to happen because of a narrow field of
view. This is inherent in desktop VEs wanting to minimize
distortion to keep realism [FGV∗00]. Problem 2 is due to a
removal of real world sensory data, such as eye movements
and depth perception. This problem tends to be compensated
for by a large increase in the amount of verbal communica-
tion that takes place [RSJ02].

A combination of these two problems occurs if two users
wish to meet at a point of interest. This is a ‘Come here!
Look at this’ scenario (see [YO02], p. 136), where the re-
spondent needs to know the location of the user who is talk-
ing (they are unlikely to be within the viewport, see problem
1), and what they are referring to (problem 2).

To overcome these problems, Wössner et al. [WSWL02]
provided a ‘what you see is what I see’ (WYSIWIS) view
in their CVE, which would eradicate problem 2. They de-
signed two CVE interfaces, one of which provided a mas-
ter/slave style view (where one participant had complete
control), and the other which provided a more flexible ap-
proach where participants still had some independence (they
could change orientation). However, it was found that users
preferred the independent viewpoint, so they didn’t inter-
fere with the other participant. Sonnenwald et al. [SWM03]
found that users saw a benefit in both independent views
and shared perspectives – users liked to be able to figure
things out on their own and then discuss them collabora-
tively. Therefore, our hypothesis was that by providing mul-
tiple viewports to the user, MGDs would provide the best of
both worlds.

Real time views of other users’ perspectives have been
used many times in multiplayer games, such as console
games that are designed to be played together on a single
display. In this case, however, the views are aimed at differ-
ent people (e.g. looking at another person’s view could be
considered cheating). The ‘split screen’ is used to provide a
cheap alternative to the players, instead of requiring that they
have multiple visual display units. The present study investi-
gated the provision of multiple views to each user, via a main
window and thumbnail views of other participants. Partici-
pants were allowed to click on these thumbnails to teleport
to the appropriate person.
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3. Implementing Mobile Group Dynamics

The basic MGDs techniques incorporated an explicit hierar-
chical grouping system, represented using a ‘group graph’
metaphor, and methods to assist movement as a group. For
this study, we added awareness of who was talking and who
would receive audio (i.e. participants within hearing range;
this included all participants in one’s own group because
there was no distance attenuation for intra-group audio com-
munication), teleporting functionality and multiple views
(including the ability to teleport to a fellow group member
by clicking on their view). This new functionality, along with
the group graph, can be seen in Figure 1.

(a) Teleport condition, shown in the over-the-shoulder perspective

(b) Multiple views condition, shown in the bird’s-eye view

Figure 1: Screenshots of the environment in the two con-

ditions: teleport and multiple views. The graph metaphor,

speech icon, teleporting arrow and participants within hear-

ing range can be seen in both figures. The views of fellow

group members can be seen in (b)

The faces of all participants who were within hearing
range were displayed on the Head-Up Display (HUD). These
faces were photographs of the participants (extracted from

their photographic avatars), so they could be easily recog-
nized. When a participant spoke, the faces were highlighted.
This was designed to make the participant aware that they
could be heard by all the participants shown on their HUD,
even if some of them were fellow group members whose
avatars were a considerable distance away. When another
person was talking, their face was highlighted on the HUD,
with a speech icon next to it. This gave participants addi-
tional information as to who was speaking, which was par-
ticularly useful if the associated avatar was out of sight.

The teleporting functionality took place as rapid con-
trolled movement, to help prevent disorientation associated
with an instantaneous change of location (see Section 2). It
utilized the same algorithm as the automatic following func-
tionality from the original MGDs which could also be used
to rapidly move to another’s location (even if the other was
a moving target). Inspiration for the algorithm was taken
from [MCR90], with the addition of gradual acceleration
as well as deceleration. To avoid breaks in visual continu-
ity caused by teleporting through walls, our implementation
raised a participant to a birds-eye view during teleportation,
so the participant could clearly see where they were being
taken.

4. Experiment

The experiment used the context of urban planning, with par-
ticipants asked to use a CVE to review the design of a new
housing estate. Participants were run in two batches. In the
first of these (the teleporting condition), participants had all
the basic MGD functionality from [DR08], and new MGD
functionality to provide awareness of who was talking, who
was within hearing range and teleporting. Participants in the
second batch were provided with multiple views (the multi-
ple views condition), in addition to all the MGD functional-
ity that was provided to the other batch of participants.

4.1. Method

The experiment took place in an undergraduate computing
laboratory. Each participant was provided with a headset,
and they were spread out across the laboratory so they could
only communicate using audio and text communication from
within the environment. Participants used two adjacent com-
puters, one for the CVE and the other for the urban planning
report write-up. The CVE application, environment and ex-
perimental procedure were the same as in [DR08].

4.1.1. Participants

All participants were undergraduate students from the
School of Computing, who had not taken part in the previ-
ous study. Eight participants were recruited for each run, but
one participant in the teleporting condition was unavailable
on the day of the experiment. The remaining seven partici-
pants in the teleporting condition (6 men and 1 woman) had
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a mean age of 21.7 (SD = 5.2). The eight participants in the
multiple views condition (5 men and 3 women) had a mean
age of 21.8 (SD = 4.1).

All the participants volunteered for the experiment, gave
informed consent and were paid an honorarium for their par-
ticipation.

4.1.2. CVE application

The software application and 3D sound model are described
in the previous study [DR08].

Distance attenuation was turned off for communications
between members of the same group. This was clarified
by displaying photographs of the faces of participants who
would receive any transmitted audio. These faces were dis-
played on the HUD, and were added and removed appropri-
ately as participants changed their position in the environ-
ment and switched groups. In addition, an icon was placed
above a participant’s avatar, and by the side of their face on
the HUD, when they were talking.

4.1.3. Environment

The environment was a residential estate that was based on a
real estate in Leeds. An annotated map of the estate is shown
in Figure 2.

All participants were represented in the environment with
a photographic avatar (using four photos: front, back, left
and right). Participants were given an over-the-shoulder per-
spective, with the option of switching to and from a bird’s-
eye view. An over-the-shoulder perspective meant that par-
ticipants could see each other relative to their avatar, and be
more aware of how others perceived them [CFS02].

4.1.4. User Interface

The participants used desktop workstations, and a two-
handed control method, with one hand on the keyboard
and the other hand on a 3-button mouse. By holding
down appropriate arrow keys a participant could move for-
ward/backward/left/right at 6 m/s, and heading and pitch
could be changed by moving the mouse. This is a common
gaming control method (e.g. [BB04]).

The ‘Insert’ key was used to take screenshots, the ‘Home’
key to toggle between over-the-shoulder and bird’s-eye
views, and holding down the ‘Page Down’ key allowed the
participant to use voice communication.

Text communication was achieved by simply typing let-
ters or numbers, which were transmitted the moment each
was typed, appearing in a speech bubble above the partici-
pant’s avatar. The text expired after approximately ten sec-
onds from the moment the enter key was pressed. Each par-
ticipant was provided with a stereo headset for audio com-
munication. The default recording and playback volumes
were automatically set using a shell script.

Figure 2: A map of the estate. The estate had an entrance

road in the middle (point A), which acted as a dividing line

between two styles of building. On the left-hand side of the

entrance road, there were brown-bricked terraced houses,

which were mostly horse-shoe shapes creating partially en-

closed private space (e.g. point B). The front gardens were

bordered by high fences, and there were six garages in the

road (C). There was an archway under one of the terraces

(D). On the right-hand side of the entrance road there were

red-bricked bungalows (single story buildings) along the

edge of the curved road, with gardens bordered by low brick

walls (e.g. E). There was a single-story care home for elderly

people (F), with a car park to the left with space for six cars

(G), and a hedge-row above it partly separating private land

around the care home from public parkland (H).

The basic MGD functionality used three mouse buttons,
and the ‘Delete’ key to move up one level in the group
hierarchy. The display had a crosshair in the middle used
for selection. Selecting an avatar with the left mouse button
formed/joined a group. Selecting the avatar of a fellow group
member with the right mouse button rapidly moved to their
location and automatically followed them. Pressing the mid-
dle mouse button anywhere moved to the mean location of
the group.

Holding down the numpad zero key released the mouse
from controlling heading and pitch, and allowed it to control
the position of the red teleporting arrow. Once the arrow was
positioned in the desired location, a left mouse click tele-
ported the participant there.

Participants in the multiple views condition could position
the teleporting arrow over one of their group members views,
and clicking the left mouse button would teleport them to
that group member’s location. By default, the participant’s
subsequent movements were tethered to that group member
(the automatic following functionality in basic MGDs) but
the participant could ‘free’ themselves simply by pressing a
movement key.
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The multiple views took up the bottom quarter of the
screen. A limit was imposed of three views, each taking up
a quarter of the horizontal space, with the remaining quarter
reserved for displaying the faces of any other group mem-
bers. These could be selected using the numpad zero key to
release the mouse pointer. Selecting them showed their view
in one of the existing viewports, swapping out the member
whos view had been replaced.

4.1.5. Procedure

A 10 minute meeting was held with participants a few days
before the experiment. They received a verbal explanation of
the experiment, a single-sided A4 sheet containing extracts
from UK urban planning guidelines and a consent form.
They also had photos taken for their avatar during this time.

The experiment itself lasted one hour. At the start partic-
ipants were provided with another copy of the urban plan-
ning guidelines sheet, an instruction sheet for using the CVE,
an experiment schedule, and an electronic copy of an urban
planning report which they had to complete during the exper-
iment. The report contained the following questions, which
participants were asked to illustrate using screenshots:

• Question 1, Permeability: (a) How many entrance and
exit points are there around the estate? What are these
for (i.e. cars or pedestrians)? (b) What reduces the
speed/volume of traffic? (c) Are there suitable pedestrian
routes around the environment? (d) Are the blocks small
enough or do you have to walk too far before you reach a
choice of direction?

• Question 2, Character: (a) Which parts of the environ-
ment follow the same pattern/building structure? (b) Find
a part of the environment that is not consistent with the
layout of the estate. (c) Is this acceptable or should it be
changed? (d) Does the estate have character?

• Question 3, Safety & Security: (a) Comment on the
safety and security of the estate based on your own
thoughts, the information in the guidelines and your dis-
cussion with other participants. (b) Find examples of
where public and private space is clearly distinguished
and where it isn’t. (c) Discuss which part(s) of the estate
you think are least safe. (d) Can you find any blank walls
that you think should be overlooked to improve the feel-
ing of safety and help prevent graffiti? (e) Try to suggest
some improvements with regard to the safety and security
of the estate.

5. Results

There were two types of work that took place in the exper-
iment: taskwork and teamwork [BGG02]. Taskwork refers
to the answers given in participants’ reports, whereas data
about teamwork were provided by the server’s log of the
movements, communication and groups that participants
formed.

The urban planning reports were marked like an exam.
Participants names were on the reports, marking wasn’t
blind. An independent samples t-test showed no significant
difference between the teleporting and multiple views con-
ditions, t(13) = 1.49, p = .16. Participants in the teleport
condition had a mean mark of 18.7 (SD = 3.3) out of 24,
and 16.3 (SD = 3.1) in the multiple views condition. Our fo-
cus, however, was on how participants went about doing the
task (i.e. the teamwork), and how different MGD function-
ality affected participants’ behavior. This was analyzed both
quantitatively and qualitatively.

5.1. Quantitative Analysis

For each batch of participants, the spoken and text communi-
cation was transcripted and analyzed using a communication
coding approach [BJSB98] to classify each utterance as one
of the following:

(a) Greetings (e.g. ‘Hey M!’, ‘Hi G!’)
(b) Functionality – communication regarding the system

and the groups (e.g. ‘Think we need smaller groups than
all of us!’, ‘You do realize that if you just press ‘Home’
you get a bird’s-eye view and it’s a lot easier to see!’)

(c) Environment – discussion about the 3D world, but not
in relation to the task (e.g. ‘I swear you should be able
to see uni from here.’, ‘I kind of might have figured out
where the pictures were taken of, you know the Leeds
skyscrapers ones.’)

(d) Task related (e.g. ‘Which part’s the least safe?’, ‘I’d say
where we’re stood now, J.’)

(e) Idle chat (e.g. ‘Party at my flat. Come on, let’s go!’)

These data were analyzed in terms of the quantity of com-
munication that took place, and where participants were rel-
ative to each other when they communicated. For compari-
son, data are provided from a previous study [DR08] when
other participants had performed the same urban planning
task either in a conventional CVE (‘control’ in Figure 3) or
with basic MGDs functionality (see Figures 3 and 4). Note
that the average group size in the basic MGDs, teleport and
multiple views conditions was 3.5, 2.5 and 3.0 respectively.

The total number of utterances made by participants in
the basic MGDs (data from [DR08]), teleport and multi-
ple views conditions (data from the present study) was ana-
lyzed using a univariate analysis of variance (ANOVA). This
showed that there was a significant difference between the
conditions, F(2,20) = 3.91, p = .04. Tukey HSD posthoc
tests showed that the difference between basic MGDs and
multiple views was significant (p = .03) but the other pair-
wise comparisons were not. The mean amount of communi-
cation increased by 226% from the basic MGDs to the tele-
port condition, and by another 27% from the teleport to the
multiple views condition. Within this, task related commu-
nication increased by a factor of two from basic MGDs to
the teleport and multiple views conditions, but this was not
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Figure 3: Mean number of utterances made by the partici-

pants in each condition. The control and basic MGDs con-

ditions are from [DR08]. The error bars are shown for task

related utterances and idle chat.

significant. Idle chat more than doubled from the teleport to
the multiple views condition (see Figure 3).

One of the limitations identified in our previous research
was that participants tended to assemble in one place in the
CVE before communicating, even though this was unneces-
sary with the basic MGDs functionality that was provided
(see Introduction). To determine whether the new function-
ality provided in the present study overcame this limitation,
each time a participant made an utterance the distance to
their nearest group member was calculated, and the mean
for each participant in the basic MGDs, teleport and multiple
views conditions was analyzed using a univariate ANOVA.
The two participants who didn’t speak at all during the ex-
periment were excluded from the analysis, one was from the
basic MGDs condition and the other was from the multi-
ple views condition. The ANOVA showed that there was
a significant difference between the conditions, F(2,18) =
3.56, p = .05. Tukey HSD posthoc tests showed that the dif-
ference between basic MGDs and multiple views was signif-
icant (p = .04) but the other pairwise comparisons were not
(see Figure 4).

5.2. Qualitative Analysis

The quantitative analyses show that teleporting and multi-
ple views increased both the quantity of communication that
took place and the distance over which participants commu-
nicated. The purpose of the qualitative analysis was to un-
derstand the underlying behavioral changes that cause these
increases, and how teleporting was used in general.

The server log allowed the distances participants traveled
while teleporting and walking to be calculated and showed
that, overall, 16% of travel was by teleporting. Further inves-
tigation showed that there were two distinct uses of teleport-

Figure 4: Mean distance to the nearest group member at

the time of each participant’s utterances. The basic MGDs

condition was from [DR08].

ing. First, teleporting was used to speed up exploration of the
environment, particularly when participants first entered the
environment (see Figure 5). Second, teleporting was used to
reach points of interest. For example, at one point during the
experiment the some participants’ conversation was about
blank walls, which was relevant to one of the questions in
the task. The blank walls were at the ends of the horseshoe-
shaped buildings. Participant O, represented by a green line
in Figure 6, teleported across the building on the left to view
the blank walls (timestamp [26:20]). O then teleported up to
the top of the map to see the walls that I and R were talking
about.

Figure 5: Path showing the first 5 minutes of movement of

a participant who used teleporting to speed up their explo-

ration of the environment. A solid line represents walking,

and a dotted line represents teleportation.

In order to teleport to a point of interest, a participant must
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first know its location within the environment. This is some-
times difficult, as the following conversation extract from the
teleport condition shows:

[09:25] O: Look, show me, M, show me the two

entry points then, the road ones at least.

[09:29] M: Alright well, are you where I am now?

[09:35] O: Where are you?

The multiple views condition helps with this by allowing
participants to teleport to the location of a group member by
clicking on their viewport:

[39:42] C: That’s useful!

[39:43] S: Yeah! Where are you? I’ll show you!

[39:49] C: I’ll teleport to you! Hang on!

Each component of the new MGDs functionality (aware-
ness of who could hear one’s communication, multiple views
and teleporting) that was provided in the present study had
the potential to increase the distance over which participants
communicated. The data indicate that multiple views made
the greatest contribution (see Figure 4). To identify whether
awareness or teleporting was the most important secondary
cause a detailed analysis was made of the communication
and movement of the two participants (I and O) who spoke
the most in the most persistent group in the teleport condi-
tion.

I and O both spoke in 18 conversation blocks, but used
teleporting in only four of these blocks. On all four of these
occasions, I and O used teleporting to collocate within the
environment. In the other blocks I and O either were together
(5 blocks), remained separated (2 blocks), separated without
teleporting (3 blocks) or collocated without teleporting (4
blocks). This suggests that the awareness functionality was
more important than teleporting for increasing the distance
over which participants communicated.

Figure 6: Paths taken by participants O (green line), I (pur-

ple line) and R (red line) when talking about blank walls (a

point of interest). The solid lines representing walking, and

dotted lines represent teleporting (participant O teleports to

point of interests at the ends of the horseshoe-shaped build-

ings). To place participants’ movement in context, the paths

are labeled with timestamps and conversation utterances.

6. Discussion

We identified problems in conventional CVEs of finding
other participants in relation to points of interest and under-
standing their perspective (see problems 1 & 2 in Section 2).
The group graph metaphor could help with finding others,
since the graph ‘tracked’ participants and the nodes corre-
sponded to avatars, with edges denoting group membership
(see Figure 1). One could find a group member by following
a line from their avatar until they reached a node. However,
the teleporting and multiple views functionality took this a
step further. It allowed participants to teleport directly to a
group member of their choice by selecting the appropriate
viewport, and the qualitative data gave an example of how
this helped participants (see the conversation extract in Sec-
tion 5.2). Furthermore, providing participants with multiple
views specifically tackled the problem of understanding an-
other’s perspective.

The qualitative data showed that teleporting was used in
two ways: increasing the speed of movement (in particular,
an initial speed search) and movement to points of interest.
This is a simple method of time-saving functionality, how-
ever potential drawbacks must not be overlooked. Firstly,
as with any new functionality, a potential problem might be
making the system over complicated. Other features may be
forgotten about and may not be used to their full potential.
Secondly, and perhaps more subtly, teleporting could mean
people lose the feel for distance. In an urban planning con-
text, it is important that participants in the CVE get a feel
for the scale of the environment, in particular the size of
buildings and proposed developments. One of the questions
for the urban planning report was asking participants if they
thought the blocks of houses were the right size. Financial
savings are made by building the houses joined together in
blocks, but a large block size decreases permeability of the
estate, making it bad for transport and pedestrians (they have
to go further before they can change direction). Teleportation
may mean participants lose a sense of scale and large blocks
could go unnoticed.

One of the places where the original MGDs techniques
fell short of their goals was in facilitating communication
when participants were spatially separated within the envi-
ronment. The fact that participants tended to collocate to
communicate in the basic MGDs condition was a sign of
inefficient groupwork – participants were either taking time
to collocate when they wanted to communicate, or they were
waiting until they were coincidentally collocated before they
said anything. Providing functionality to communicate with
group members from a distance, and informing the partici-
pants of this in the instructions, was not enough to make their
behavior more efficient. This study indicates that by provid-
ing feedback to the participants, they became more aware of
how the system works. The quantitative data showed that in
both the teleporting and multiple views conditions, partici-
pants communicated across greater distances than in the ba-
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sic MGDs condition (see Section 5.1). The interesting thing
about this feedback from the system is it’s not specifically
new functionality in the sense of a new tool at the users’
disposal, like teleporting and multiple views are. Instead
it provides awareness of existing functionality: the ability
to communicate with group members from a distance. As
Schroeder et al. reflect, do we improve usability ‘by means
of improving the systems and features of the environment,
or by improving the users’ awareness of their activities and
settings?’ [SHT06] (p. 666).

Finally, in previous research, participants communicated
a great deal to overcome the lack of sensory information that
CVEs provided [HFH∗00] [RSJ02]. However, in the present
study participants communicated much more than in conven-
tional CVEs because they were provided with more sensory
information (e.g. awareness of who could hear you and who
was speaking, and multiple views providing an ‘extra pair of
eyes’). The quantitative data showed that the amount of con-
versation increased 4 times from the basic MGDs condition
to the multiple views condition. This increase in communi-
cation was indicative of more teamwork taking place.
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a b s t r a c t

Mobile group dynamics (MGDs) assist synchronous working in collaborative virtual environments

(CVEs), and virtual time (VT) extends the benefits to asynchronous working. The present paper

describes the implementation of MGDs (teleporting, awareness and multiple views) and VT

(the utterances of 23 previous users were embedded in a CVE as conversation tags), and their

evaluation using an urban planning task. Compared with previous research using the same scenario, the

new MGD techniques produced substantial increases in the amount that, and distance over which,

participants communicated. With VT participants chose to listen to a quarter of the conversations of

their predecessors while performing the task. The embedded VT conversations led to a reduction in the

rate at which participants traveled around, but an increase in live communication that took place. Taken

together, the studies show how CVE interfaces can be improved for synchronous and asynchronous

collaborations, and highlight possibilities for future research.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Collaborative applications in general may be classified in terms
of time (synchronous vs. asynchronous) and space (co-located vs.
remote) [1]. For example, applications using shared tables and
shared wall displays provide for co-located and synchronous

interaction. Leaving post-it notes in a shared space (or using
software which provides the digital equivalent on a single shared
display) is an example of co-located and asynchronous interaction.
Collaborative virtual environments (CVEs) are one way of enabling
remote collaboration. They allow virtual co-location of people
who are physically remote, by providing a 3D virtual spatial world
for people to co-exist in.

Historically, users have had difficulty in understanding the
actions of others in CVEs [2,3], and the problems mushroom in a
large-scale environment (e.g., a virtual building or city) because
of the extra challenges of navigating and locating the whereabouts
of one’s collaborators. To help with this we have developed
techniques called mobile group dynamics (MGDs), which helped
groups of people work together while they traveled around large-
scale CVEs [4].

This paper: (a) addresses shortcomings in MGDs, which
centered on the time it took users to regroup in a place to discuss
or see what each other was interested in, and (b) implements the

concept we call virtual time (VT) that allows (to a certain extent)
virtual synchronization of people who are physically separated in
time. Taken together, our techniques allow both synchronous and
asynchronous collaborations in large-scale CVEs. The following
sections describe the background and implementation of both
suites of techniques (our updated version of MGDs and VT), and
then experiments evaluate both. The MGDs work was previously
reported in [5], but the VT research is entirely new. Our hypothesis
was that the teleporting, awareness and multiple views function-
ality would improve teamwork. To analyze teamwork, we looked
for improvements in two specific areas. First, we wanted to tackle
problems of participants spending time collocating to commu-
nicate (or waiting until they are collocated before they talk to each
other). Second, we wanted to help people work as a team by
providing an awareness of the actions and perspectives of others
(multiple views tackling problems 1 and 2). These were analyzed
using the quantitative data provided by the server’s log of activity,
and a conversation transcript.

2. Methods for real-time collaboration

Previous research showed how even a basic set of MGDs
techniques helped users communicate while they traveled
around a virtual urban development and reviewed its design [4].
However, two major areas for improvement were also identified.
First, participants tended to spatially regroup to discuss their
findings, even though MGDs allowed communication over an
infinite distance (there was no distance attenuation for audio
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communication between group members). This meant that
unnecessary amounts of time were spent traveling to meeting
places. Second, if participants wanted to see what others were
looking at (e.g., a point of interest that was being discussed) then
they had to ‘walk’ to the appropriate location.

These shortcomings in real-time (i.e., synchronous) collabora-
tion were tackled by adding new functionality to MGDs, taking
advantage of the fact that CVEs do not need to be bound by real
world constraints [6]. This new functionality: (1) used visual
feedback to provide ‘awareness’ about who was receiving audio at
a given moment in time and who was speaking, (2) supplemented
a participant’s own (main) view by small viewports that showed
the views of fellow group members, and (3) implemented
teleporting so participants could move directly to any point in
the environment by clicking on it (‘walking’ is time consuming).

The basic MGDs techniques incorporated an explicit hierarch-
ical grouping system, represented using a ‘group graph’ metaphor,
and methods to assist movement as a group. The awareness
functionality (see Fig. 1) used a head-up display (HUD) to display
the faces of all participants who were within hearing range of you
at a given moment in time (this included all participants in one’s
own group because there was no distance attenuation for intra-
group audio communication). These faces were photographs
of the participants (extracted from their photographic avatars),
so they could be easily recognized. This was designed to make the
participant aware that they could be heard by all the participants
shown on their HUD, even if some of them were fellow group
members whose avatars were a considerable distance away. When
another person was talking, their face was highlighted on the

HUD, with a speech icon next to it. This gave participants
additional information as to who was speaking, which was
particularly useful if the associated avatar was out of sight.

In VEs, users experience two kinds of problems understanding
the actions of others. (1) ‘Fragmented views’, where another
participant refers to an object or point of interest in the
environment, but their avatar and the point of interest are not
simultaneously visible in the viewport [2]. (2) What you see is not

what I see, which makes it difficult to understand another’s
perspective. A combination of these two problems occurs if two
users wish to meet at a point of interest. This is a ‘Come here!
Look at this’ scenario (see [7, p. 136]), where the respondent needs
to know the location of the user who is talking (they are unlikely
to be within the viewport, see problem 1), and what they are
referring to (problem 2).

To overcome these problems, Wössner et al. [8] provided a
‘what you see is what I see’ (WYSIWIS) view in their CVE, which
would eradicate problem 2. They designed two CVE interfaces,
one of which provided a master/slave style view (where one
participant had complete control), and the other which provided a
more flexible approach where participants still had some
independence (they could change orientation). However, it was
found that users preferred the independent viewpoint, so they did
not interfere with the other participant. Sonnenwald et al. [9]
found that users saw a benefit in both independent views and
shared perspectives—users liked to be able to figure things out on
their own and then discuss them collaboratively. Therefore, we
provided each participant with a main window (their own view of
the world) and thumbnails showing the view of each of their
fellow group members (see Fig. 1).

The teleporting was implemented as rapid but visually
continuous movement, rather than a sudden ‘jump’ to the new
location. This was to help prevent disorientation associated with
an instantaneous change of location [10]. The teleporting algo-
rithm took its inspiration from [11], with the addition of gradual
acceleration as well as deceleration, and to avoid problems caused
by traveling through walls and hedges, raised a participant to a
birds-eye view so they could clearly see where they were being
taken. Teleporting was achieved either by clicking on a particular
place in the VE scene, or on a fellow group member’s thumbnail
view (this teleported you to be next to that person). Our
hypothesis was that the teleporting, awareness and multiple
views functionality would improve teamwork. To analyze team-
work, we looked for improvements in two specific areas. First,
we wanted to tackle problems of participants spending time
collocating to communicate (or waiting until they are collocated
before they talk to each other). Second, we wanted to help people
work as a team by providing an awareness of the actions and
perspectives of others (multiple views tackling problems 1 and 2).
These were analyzed using the quantitative data provided by the
server’s log of activity, and a conversation transcript.

3. Methods for VT collaboration

Traditional CVEs bring together people who are physically
remote, and adding VT makes it easier for people to collaborate
even if they are not in the CVE at the same time. In other words,
combining VT with a CVE allows asynchronous, remote collabora-
tion. There are few examples of VT being implemented in CVEs,
but exceptions are ‘temporal links’ to playback recorded content
(e.g., 3D flashbacks to tell a story), which in some cases was
activated by a production crew working behind the scenes [12],
and in a second example the links were represented as virtual
objects that a user could interact with to playback a recording or
send messages to other users [13].

ARTICLE IN PRESS

Fig. 1. Screenshots of the environment in the two conditions: teleport and

multiple views. The graph metaphor, speech icon, teleporting arrow, and

participants within hearing range can be seen in both figures. The views of fellow

group members can be seen along the bottom of the screen in (b). (a) Teleport

condition, shown using an over-the-shoulder view. (b) Multiple views condition,

shown using a bird’s-eye view.
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We consider a spoken or written utterance to be the basic unit
of collaboration, a basic VT system would just contain what was
said in that CVE, but nothing about who said them, what they
were talking about, where they were in the CVE, or when. At the
other extreme, a sophisticated VT system would allow you to
travel through a virtual world, walking with people who had been
there in the past, chipping in to their conversations as if they were
still there, to the extent that an observer who came along later
still would be unable to determine who were the original
inhabitants vs. who was the impostor who has been added later?

Analysis of these examples highlights a rich complexity of
possible functionality for VT. Therefore, the following sections
present a framework of VT, and then describe the practicalities of
implementation.

3.1. A framework for VT

Given that utterances are the basic building blocks of
collaboration and communication in virtual worlds, then a key
challenge for VT is determining how those utterances should be
organized and associated. The primary methods for doing this are
in terms of: (a) people, (b) time, (c) space and (d) topic. Each
method has several levels (see Table 1), which can provide context
to help us understand the meaning of what was said, influence
where we choose to go next in the CVE, and help users control the
number of utterances that are visible/audible at any given time so
the VT system is scalable.

Adding people’s identity to the utterances in a VT CVE allows
users to discriminate everything that was said by a particular
person, for example, someone who provided particularly insight-
ful comments. Allowing people to choose their virtual appearance
will have other effects on whose utterances a given user chooses
to listen to, as found in real-time collaborative worlds [14].

Statistics terminology is adopted for the levels of time. At the
nominal level, a future user would have no clue as to when, or in
what order, different utterances were spoken. Ordinal information
would allow utterances to be listened to in the sequence that they
originally occurred, and the time interval (either absolute or
rebased to when the speaker entered the environment) would
allow sets of utterances that took place in quick succession to be
distinguished from those that were separated by a lengthy delay.

Indicating the point in space where each utterance was spoken
would help a future listener understand what was being talked
about, and reduce the need for users in CVEs to devote much more
effort to making the ‘implicit explicit’ than is the norm in real life
[2,3]. Linking utterances by the path the speaker had taken would
provide the listener with even more information about the things
the speaker had seen and which led them to a particular
conclusion.

Organizing and associating utterances can be done according
to certain topics (or subtopics), for example defining whether
greetings were due to users meeting or departing, whether idle
chat was humorous or not, or which part of a task a given
conversation was based on. Natural language processing (NLP)

algorithms could be used to process utterances into topics, to
which user-supplied quality ratings could be added by borrowing
techniques from recommender systems and search engines.

Finally, there are many possible combinations of the above
methods. For example, combining point (space) and topic
(content) would allow the main items of interest in a given area
to be quickly determined, adding interval (time) to identity
(people) would allow the conversations of a group of people to be
followed, and adding path (space) to interval/identity would help
a future listener comprehend the bigger picture of a conversation
that took place after a group of people had split up to explore an
area and then regrouped to discuss their findings.

3.2. Implementing VT

For the evaluation described in Experiment 2, we implemented
VT using level 3 utterance association for people (appearance) and
level 2 association for time (ordinal), space (point) and content
(topic) (see Table 1). Details of the implementation are as follows.

First, all of the utterances from two previous studies of
synchronous teamwork in CVEs [4,5] were divided into blocks of
communication and categorized as either task-specific or not. The
latter were discarded to avoid cluttering the CVE with irrelevant
utterances (e.g., idle chat). The task-specific blocks were classified
using keywords from the 13 questions on the urban planning
report that participants were asked to complete (see Section 4)
and, although this was performed manually in the present study,
it could have been done using NLP techniques.

The classification used a two level hierarchy, with the 13
questions (subtopics) grouped according to three topics (perme-
ability, character, and safety and security) that were used on the
urban planning report. The topics were rendered with different
hues (yellow, cyan and magenta), using a different lightness for
each subtopic. In addition, tags flashed when they were being
played, and were visually caged in black stripes when they had
been viewed. A color-coded checkbox was provided for users to
choose which utterance subtopic(s) were displayed (see Fig. 2),
allowing related comments to be identified even if they are
separated in space and time.

The point where each utterance commenced was represented
with a hemispherical visual object known as a tag, which put the
conversations into context by showing where they took place. To
reduce clutter, all utterances in a given block that were within line
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Table 1
Four methods for organizing/associating utterances.

Method Level 1 Level 2 Level 3

(a) People Anonymous Identity Appearance

(b) Time Nominal Ordinal Interval

(c) Space Amorphous Point Path

(d) Content Undefined Topic Quality

Level 1 corresponds to a basic VT system, with Levels 2 and 3 providing ever richer

possibilities for virtual time.

Fig. 2. All of the utterance tags used in the VT study (Experiment 2). The ‘Audio tag

filters’ was a list of checkboxes, shown in the top right hand corner of the screen,

that allowed the utterances associated with each of the 13 questions to be toggled

on/off. Utterances that a pair of participants had already listened to were visually

caged in black stripes (see ‘Exit points’ on left-hand side of the image).
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of sight of each other were represented by a single tag that was at
the mean position of the individual utterance tags.

The system was tested using a pilot study and refined in
response to participants’ feedback. The main improvements were:

� Making tag selection explicit (instead of walking into a tag to
play it, the users wanted to be able to select a tag with the
mouse).
� Allowing users to pause/resume/stop tags, instead of always

playing the whole of a tag.
� Providing more time for the task than was allowed in

Experiment 1, because there were a lot of recorded utterances
that the users wanted to watch and listen to.

Due to the exploratory nature of this work, it was difficult to
generate meaningful hypotheses for the way participants would
use the VT system and the changes it would make to their
behavior. Experiment 2 was a first step in analyzing asynchronous
collaborations in CVEs, and the results will help us make more
informed design decisions and predictions in future work.

4. Experiment 1: real-time collaboration

The experiment used the context of urban planning, with
participants asked to use a CVE to review the design of a new
housing estate. Participants were run in two batches. In the first of
these (the teleporting condition), participants had all the basic
MGD functionality from [4], and new MGD functionality to
provide awareness of who was talking, who was within hearing
range and teleporting. Participants in the second batch were
provided with multiple views (the multiple views condition), in
addition to all the MGD functionality that was provided to the
other batch of participants.

4.1. Method

The experiment took place in an undergraduate computing
laboratory. Each participant was provided with a headset, and
they were spread out across the laboratory so they could only
communicate using audio and text communication from within
the environment. Participants used two adjacent computers, one
for the CVE and the other for the urban planning report write-up.
The CVE application, environment and experimental procedure
were the same as in [4].

4.1.1. Participants

All participants were undergraduate students from the School
of Computing, who had not taken part in the previous study. Eight
participants were recruited for each run, but one participant in the
teleporting condition was unavailable on the day of the experi-
ment. The remaining seven participants in the teleporting
condition (6 men and 1 woman) had a mean age of 21.7
(SD ¼ 5:2). The eight participants in the multiple views condition
(5 men and 3 women) had a mean age of 21.8 (SD ¼ 4:1).

All the participants volunteered for the experiment, gave
informed consent and were paid an honorarium for their
participation.

4.1.2. CVE application

The software application and 3D sound model are described in
the previous study [4].

Distance attenuation was turned off for communications
between members of the same group. This was clarified by
displaying photographs of the faces of participants who would

receive any transmitted audio. These faces were displayed on the
HUD, and were added and removed appropriately as participants
changed their position in the environment and switched groups.
In addition, an icon was placed above a participant’s avatar, and by
the side of their face on the HUD, when they were talking.

4.1.3. Environment

The environment was a residential estate that was based on a
real estate in Leeds. An annotated map of the estate is shown in
Fig. 3.

All participants were represented in the environment with a
photographic avatar (using four photos: front, back, left and right).
Participants were given an over-the-shoulder perspective, with
the option of switching to and from a bird’s-eye view. An over-the-
shoulder perspective meant that participants could see each other
relative to their avatar, and be more aware of how others
perceived them [15].

4.1.4. User interface

The participants used desktop workstations, and a two-handed
control method, with one hand on the keyboard and the other
hand on a 3-button mouse. By holding down appropriate arrow
keys a participant could move forward/backward/left/right at
6 m/s, and heading and pitch could be changed by moving the
mouse. This is a common gaming control method (e.g. [16]).

The ‘Insert’ key was used to take screenshots, the ‘Home’ key to
toggle between over-the-shoulder and bird’s-eye views, and
holding down the ‘Page Down’ key allowed the participant to
use voice communication.

Text communication was achieved by simply typing letters or
numbers, which were transmitted the moment each was typed,
appearing in a speech bubble above the participant’s avatar.
The text expired after approximately 10 seconds from the moment
the enter key was pressed. Each participant was provided with a
stereo headset for audio communication. The default recording
and playback volumes were automatically set using a shell script.

The basic MGD functionality used three mouse buttons, and
the ‘Delete’ key to move up one level in the group hierarchy. The
display had a crosshair in the middle used for selection. Selecting
an avatar with the left mouse button formed/joined a group.
Selecting the avatar of a fellow group member with the right
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Fig. 3. A map of the estate. The estate had an entrance road in the middle

(point A), which acted as a dividing line between two styles of building. On the

left-hand side of the entrance road, there were brown-bricked terraced houses,

which were mostly horse-shoe shapes creating partially enclosed private space

(e.g. point B). The front gardens were bordered by high fences, and there were six

garages in the road (C). There was an archway under one of the terraces (D). On the

right-hand side of the entrance road there were red-bricked bungalows (single

story buildings) along the edge of the curved road, with gardens bordered by low

brick walls (e.g. E). There was a single-story care home for elderly people (F), with

a car park to the left with space for six cars (G), and a hedge-row above it partly

separating private land around the care home from public parkland (H).
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mouse button rapidly moved to their location and automatically
followed them. Pressing the middle mouse button anywhere
moved to the mean location of the group.

Holding down the numpad zero key released the mouse from
controlling heading and pitch, and allowed it to control the
position of the red teleporting arrow. Once the arrow was
positioned in the desired location, a left mouse click teleported
the participant there.

Participants in the multiple views condition could position
the teleporting arrow over one of their group members views,
and clicking the left mouse button would teleport them to that
group member’s location. By default, the participant’s subsequent
movements were tethered to that group member (the automatic
following functionality in basic MGDs) but the participant could
‘free’ themselves simply by pressing a movement key.

The multiple views took up the bottom quarter of the screen.
A limit was imposed of three views, each taking up a quarter
of the horizontal space, with the remaining quarter reserved for
displaying the faces of any other group members. These could be
selected using the numpad zero key to release the mouse pointer.
Selecting them showed their view in one of the existing
viewports, swapping out the member whose view had been
replaced.

4.1.5. Procedure

A 10 minute meeting was held with participants a few days
before the experiment. They received a verbal explanation of the
experiment, a single-sided A4 sheet containing extracts from UK
urban planning guidelines and a consent form. They also had
photos taken for their avatar during this time.

The experiment itself lasted one hour. At the start participants
were provided with another copy of the urban planning guidelines
sheet, an instruction sheet for using the CVE, an experiment
schedule, and an electronic copy of an urban planning report
which they had to complete during the experiment. The report
contained the following questions, which participants were asked
to illustrate using screenshots:

� Question 1, Permeability: (a) How many entrance and exit
points are there around the estate? What are these for (i.e. cars
or pedestrians)? (b) What reduces the speed/volume of traffic?
(c) Are there suitable pedestrian routes around the environ-
ment? (d) Are the blocks small enough or do you have to walk
too far before you reach a choice of direction?
� Question 2, Character: (a) Which parts of the environment

follow the same pattern/building structure? (b) Find a part
of the environment that is not consistent with the layout of the
estate. (c) Is this acceptable or should it be changed? (d) Does
the estate have character?
� Question 3, Safety and security: (a) Comment on the safety and

security of the estate based on your own thoughts, the
information in the guidelines and your discussion with other
participants. (b) Find examples of where public and private
space is clearly distinguished and where it is not. (c) Discuss
which part(s) of the estate you think are least safe. (d) Can you
find any blank walls that you think should be overlooked to
improve the feeling of safety and help prevent graffiti? (e) Try
to suggest some improvements with regard to the safety and
security of the estate.

5. Results

There were two types of work that took place in the
experiment: taskwork and teamwork [17]. Taskwork refers to
the answers given in participants’ reports, whereas data about

teamwork were provided by the server’s log of the movements,
communication, and groups that participants formed.

The urban planning reports were marked like an exam.
Participants names were on the reports, marking was not blind.
An independent samples t-test showed no significant difference
between the teleporting and multiple views conditions, tð13Þ ¼
1:49;p ¼ 0:16. Participants in the teleport condition had a mean
mark of 18.7 (SD ¼ 3:3) out of 24, and 16.3 (SD ¼ 3:1) in the
multiple views condition. Our focus, however, was on how
participants went about doing the task (i.e. the teamwork), and
how different MGD functionality affected participants’ behavior.

For each batch of participants, the spoken and text commu-
nication was transcripted and analyzed using a communication
coding approach [18] to classify each utterance as one of the
following:

(a) Greetings (e.g. ‘Hey M!’, ‘Hi G!’).
(b) Functionality—communication regarding the system and the

groups (e.g. ‘Think we need smaller groups than all of us!’,
‘You do realize that if you just press ‘Home’ you get a bird’s-
eye view and it’s a lot easier to see!’).

(c) Environment—discussion about the 3D world, but not in
relation to the task (e.g. ‘I swear you should be able to see
uni from here.’, ‘I kind of might have figured out where the
pictures were taken of, you know the Leeds skyscrapers
ones.’).

(d) Task related (e.g. ‘Which part’s the least safe?’, ‘I’d say where
we’re stood now, J.’).

(e) Idle chat (e.g. ‘Party at my flat. Come on, let’s go!’).

These data were analyzed in terms of the quantity of commu-
nication that took place, and where participants were relative to
each other when they communicated. For comparison, data
are provided from a previous study [4] when other participants
had performed the same urban planning task either in a con-
ventional CVE (‘control’ in Fig. 4) or with basic MGDs functionality
(see Figs. 4 and 5). Note that the average group size in the basic
MGDs, teleport and multiple view conditions was 3.5, 2.5, and 3.0,
respectively.

The total number of utterances made by participants in
the basic MGDs (data from [4]), teleport and multiple views
conditions (data from the present study) was analyzed using a
univariate analysis of variance (ANOVA). This showed that there
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was a significant difference between the conditions, Fð2;20Þ ¼
3:91; p ¼ 0:04. Tukey HSD posthoc tests showed that the differ-
ence between basic MGDs and multiple views was signifi-
cant (p ¼ 0:03) but the other pairwise comparisons were not.
The mean amount of communication increased by 226% from the
basic MGDs to the teleport condition, and by another 27% from the
teleport to the multiple views condition. Within this, task related
communication increased by a factor of 2 from basic MGDs to
the teleport and multiple views conditions, but this was not
significant. Idle chat more than doubled from the teleport to the
multiple views condition (see Fig. 4).

One of the limitations identified in our previous research was
that participants tended to assemble in one place in the CVE
before communicating, even though this was unnecessary with
the basic MGDs functionality that was provided (see Introduc-
tion). To determine whether the new functionality provided in the
present study overcame this limitation, each time a participant
made an utterance the distance to their nearest group member
was calculated, and the mean for each participant in the basic
MGDs, teleport and multiple views conditions was analyzed using
a univariate ANOVA. The two participants who did not speak at all
during the experiment were excluded from the analysis, one was
from the basic MGDs condition and the other was from the
multiple views condition. The ANOVA showed that there was
a significant difference between the conditions, Fð2;18Þ ¼ 3:56;
p ¼ 0:05. Tukey HSD posthoc tests showed that the difference
between basic MGDs and multiple views was significant (p ¼ 0:04)
but the other pairwise comparisons were not (see Fig. 5).

6. Discussion

It is well known that in conventional CVEs users often have
difficulty understanding the context of what each other is talking
about (see problems 1 and 2 in Section 2). Our previous research
into MGDs [4] showed how a group graph metaphor could help
users find each other, since the graph ‘tracked’ participants and
the nodes corresponded to avatars, with edges denoting group

membership (see Fig. 1). One could find a group member by
following a line from their avatar until they reached a node. In
Experiment 1 of the present study, the teleporting and multiple
views functionality took this a step further. It allowed participants
to teleport directly to a group member of their choice by selecting
the appropriate viewport, and providing participants with multi-
ple views specifically tackled the problem of understanding
another’s perspective.

One of the places where the original MGDs techniques fell
short of their goals was in facilitating communication when
participants were spatially separated within the environment [4].
The fact that participants tended to collocate to communicate in
the basic MGDs condition was a sign of inefficient group-
work—participants were either taking time to collocate when
they wanted to communicate, or they were waiting until they
were coincidentally collocated before they said anything.

The present study indicates that by providing feedback to the
participants, they became more aware of how the system works
and communicated across greater distances than in the basic
MGDs condition (see Section 5). The interesting thing about this
feedback from the system is it is not specifically new functionality
in the sense of a new tool at the users’ disposal, like teleporting
and multiple views are (in the previous research it was possible
for participants to communicate at a distance, because distance
attenuation was turned off for within-group audio communica-
tion). Instead it boosts awareness of existing functionality.
As Schroeder et al. reflect, do we improve usability ‘by means
of improving the systems and features of the environment, or by
improving the users’ awareness of their activities and settings?’
[19, p. 666].

Finally, in previous research, participants communicated a
great deal to overcome the lack of sensory information that CVEs
provided [2,3]. By contrast, in the present study substantially
more communication took place when extra sensory information
was provided (e.g. awareness of who could hear you and who was
speaking, and multiple views providing an ‘extra pair of eyes’).
This increase in communication was indicative of more teamwork
taking place.

7. Experiment 2: VT collaboration

The second experiment used the same urban planning context
and the same environment as Experiment 1. Participants were run
in pairs, and had access to all the task-related conversations
of 23 people who had previously done the same task in the
environment (the 15 participants of Experiment 1, and the
8 MGDs participants from [4]). These previous conversations
were embedded in the environment using the tags described in
Section 3.2.

7.1. Method

The method was similar to that of Experiment 1. A total of
10 participants (5 pairs) took part. There were 7 men and
3 women, with a mean age of 22.2 (SD ¼ 3:3). They had not
taken part in any of the previous studies. Each pair communicated
with each other and had access to the task-related conversations
of 23 participants who had done the task in previous real-time
experiments.

After pilot testing, the total time for Experiment 2 was
increased to 90 minutes from the 60 minutes used in Experiment
1. The time in the training environment was extended from 15
to 30 minutes, and the time in the residential environment
from 30 to 45 minutes. The final 15 minutes were allocated for a
semi-structured interview.

ARTICLE IN PRESS

80

60

40

20

Basic MGDs Teleport Multiple views
Condition

M
ea

n 
di

st
an

ce
 (m

)

Fig. 5. Mean distance to the nearest group member at the time of each

participant’s utterances. The basic MGDs condition was from [4].

T.J. Dodds, R.A. Ruddle / Computers & Graphics 33 (2009) 130–138 135



The grouping interface and functionality were identical to that
of the multiple views condition in Experiment 1, however, each
pair was placed into a group together and could not join the
groups of participants from the past. Participants could select a
conversation tag by positioning the crosshair with the mouse and
pressing the left mouse button. Participants could stop conversa-
tion tags by pressing the ‘Escape’ key, and pause/resume the
playback with the ‘F1’ key.

7.2. Results

As in Experiment 1, the urban planning reports were marked
like an exam, and participants had a mean mark of 17.9 out of 24
(SD ¼ 3:9). An independent samples t-test showed no significant
difference between the teleporting and multiple views conditions,
tð16Þ ¼ 0:978; p ¼ 0:343. However, our main interest lay in how
participants used VT and the effect it had on their behavior in the
CVE. To investigate this, participants’ communication, movement
and tag usage were analyzed. Statistical comparisons were made
with the multiple views condition from Experiment 1, whose
interface was the same as the one used in Experiment 2 except for
the VT functionality. In considering the findings, readers should
bear in mind obvious differences between the experiments
(especially the number of live participants at any given time),
which could have affected the results.

Each participant’s rate of communication was calculated by
dividing the number of utterances they made by the time they
spent working in the CVE (the difference between the time they
first and last moved). This took account of the extra time allowed
for Experiment 2 as a whole (45 vs. 30 minutes) and the fact that
some participants remained ‘in’ the CVE (but not moving) while
they finished writing their report.

Fig. 6 shows the mean rate of communication for task-related
and non-task-related utterances for the multiple views (Experi-
ment 1) and VT (Experiment 2) groups. An independent samples
t-test was carried out on the task-related communication, and
showed that the difference between the groups was significant,
tð16Þ ¼ 3:258; p ¼ 0:005.

The distances that participants covered as they walked
and teleported around the environment were calculated from
the server log. The rate of travel was calculated by dividing the
distance each participant traveled by the time they spent working
in the CVE (calculated as above). Independent samples t-tests
showed that the multiple views group walked significantly further
in unit time than the VT group, tð16Þ ¼ 2:790; p ¼ 0:013 (Fig. 7).

The difference in rate of travel for teleporting was not significant,
tð16Þ ¼ 0:578; p ¼ 0:571.

The paths of two participants were plotted as a qualitative
analysis of the usage of teleporting. The two participants chosen
had the median percentage distance teleported. The paths are
shown in Figs. 8(a) and (b). The paths show examples of how
teleporting was used: to cover large distances and to ‘jump’ over
buildings.

There were a total of 67 tags containing ‘VT’ communication.
All of participants’ usage of the tags, and the tag filter menu, was
recorded in the server log. Analysis of this log showed that pairs of
participants typically selected one subtopic in the menu at a time,
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allowing participants to focus on VT utterances that were relevant
to the question being answered at a given time, and went through
the tags in a logical order (subtopic by subtopic, matching the
order in which the questions appeared in the urban planning
report).

The mean number of tags played by each pair was 20.0
ðSD ¼ 6:6Þ, and the breakdown by (sub)topic is presented in
Table 2 (note: the playback was shared across the network,
so both participants in a pair heard the same utterances). The
distribution of the utterance tags and the frequency with which
each was played is represented in Fig. 9.

7.3. Discussion

In this study, VT was implemented via a system of conversa-
tion tags (Sections 3.1 and 3.2) so participants could take
advantage of the comments their predecessors had made.
Participants used the environment in pairs, so each had one other
real-time collaborator to communicate with and the conversa-
tions of 23 previous inhabitants to listen to. The results showed
that the VT system led to a significant increase in task related
communication between the ‘live’ pair when compared to the

same interface without the VT (the multiple views condition).
Furthermore, the results showed significantly less travel around
the environment.

The reduced travel suggests that the points of interest were
found by watching and listening to the conversations from the
past: the usage results showed that on average a quarter of the
conversation tags available for each subtopic were played. There is
one drawback to this, however, as identified from the participant’s
comments in the semi-structured interviews. They were con-
cerned about the quality of content of the tags, since they were
using the information from past participants to perform the task.
Assuming the past work was thorough and correct, VT provides a
large pool of ideas to be shared from one group of participants to
the next, thus focusing their conversation on the task. This
highlights the importance of a measure of quality of content, level
3 in the VT framework, Section 3.1.

8. Conclusions

Our goal was to develop techniques to support synchronous and
asynchronous collaborations in large-scale CVEs. For synchronous
collaboration we identified problems in conventional real-time
CVEs and built upon our existing MGDs functionality by add-
ing teleporting and multiple view conditions. For asynchronous
collaboration we presented a framework for VT and used the data
from the real-time studies to implement VT, so live participants
could benefit from their predecessors’ comments.

The results from the real-time experiment (Experiment 1)
showed that the awareness MGDs functionality produced a
significant increase in communication, and an increase in the
distance over which participants communicated, making partici-
pants behavior more efficient. In the VT experiment, participants
listened to an average of 27% of their predecessors’ conversations,
spent more time talking about the task themselves and traveled
significantly less. In other words, VT stimulated communication
between the live participants.

Finally, future developments of VT systems could take many
directions within the various levels of associations identified in
Table 1. In particular, research is needed into the issue of quality of
content of the conversation tags (level 3 of content). For example,
tags could be user-generated, so that participants could explicitly
request that particular conversations be recorded and tagged, a
user-rating system would allow participants playing back the
conversations to contribute to the quality control, and methods
from recommender systems (e.g., Amazon’s ‘people who bought X
also bought Y’) could be incorporated.
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