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Abstract

Importance

During pandemics Agent Based Models (ABMs) can model complex, fine-grained beha-

vioural interactions occurring in social networks, that contribute to disease transmission by

novel viruses such as SARS-CoV-2.

Objective

We present a new agent-based model (ABM) called the Discrete-Event, Simulated Social

Agent based Network Transmission model (DESSABNeT) and demonstrate its ability to

model the spread of COVID-19 in large cities like Sydney, Melbourne and Gold Coast. Our

aim was to validate the model with its disease dynamics and underlying social network.

Design

DESSABNeT relies on disease transmission within simulated social networks. It employs

an epidemiological SEIRD+M (Susceptible, exposed, infected, recovered, died and man-

aged) structure. One hundred simulations were run for each city, with simulated social

restrictions closely modelling real restrictions imposed in each location.

Main outcome(s) and measure(s)

The mean predicted daily incidence of COVID-19 cases were compared to real case inci-

dence data for each city. Reff and health service utilisation outputs were compared to the lit-

erature, or for the Gold Coast with daily incidence of hospitalisation.
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Results

DESSABNeT modelled multiple physical distancing restrictions and predicted epidemiologi-

cal outcomes of Sydney, Melbourne and the Gold Coast, validating this model for future sim-

ulation work.

Conclusions and relevance

DESSABNeT is a valid platform to model the spread of COVID-19 in large cities in Australia

and potentially internationally. The platform is suitable to model different combinations of

social restrictions, or to model contact tracing, predict, and plan for, the impact on hospital

and ICU admissions, and deaths; and also the rollout of COVID-19 vaccines and optimal

social restrictions during vaccination.

Introduction

Agent-based modelling (ABM) is an approach to simulating complex systems including the

COVID-19 pandemic [1]. ABMs consist of a simulated system of agents (people), the network

of relationships (contact) between them, and where they simulate disease transmission, the

disease dynamics that inform disease spread.

They can thus model social networks and complex behavioural interactions in a granular

fashion, as well as stochastic processes which shape disease transmission in pandemics such as

COVID-19 [2]. This work focuses on describing a Discrete-Event, Simulated Social Agent-

Based Network Transmission (DESSABNeT) platform. DESSABNeT builds life-like social net-

works for a population of agents based on demographic data and models the transmission of a

communicable disease throughout a network of agents producing simulated epidemiological

and medical outcomes and an effective reproductive number (Reff).

Underlying the model is a SEIRD+M (Susceptible, exposed, infected, recovered, died and

managed) structure, with heterogeneous mixing that can be affected by non-pharmacological

interventions (NPIs). Interactions between the societal structure, the NPI’s and disease

dynamics result in 1) Epidemiological curves for the SEIRD+M compartments; 2) Reff for the

simulation and 3) Outputs such as hospitalisations, intensive care unit (ICU) admissions and

deaths. We demonstrate simulated transmission of COVID-19 in three outbreaks in Austra-

lian cities: Melbourne and Sydney, which saw substantial outbreaks and Gold Coast, which

saw a more limited COVID-19 outbreak. We also demonstrate the effect of non-pharmacolog-

ical interventions on the outputs of this model.

Methods

This work was assessed by the Gold Coast Hospital and Health Service Human Research Ethics

Committee and received a formal waiver for full ethical review (LNR/2020/QGC/65664).

Agents

DESSABNeT, programmed in MATLAB [3], models disease spread through social networks.

ABMs simulate artificial societies composed of “agents” which in this context represent cyber

individuals with particular demographic characteristics and an initial disease state [4]. DES-

SABNeT agents 1) belong to predetermined social networks where each agent is linked to
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other agents in family relationships, friendship and kin relationships and work or education

relationships and 2) have predetermined but changeable (for different restrictions) weekly

schedules that determine not only the frequency of family, social and workplace contacts, but

also separate random contacts in large, medium and small contact groups. The ability to

change these schedules multiple times during a simulated outbreak allows a wide range of

social restrictions to be modelled. The number of agents was set to the population size of each

city, with no births or competing causes of death (non-COVID-19 deaths) modelled.

Containers

Each individual agent in a population is given a unique identity based on actual demographic

data for a given city (e.g. Sydney, Melbourne, Gold Coast). Agents become nodes in a social

network including aforementioned key family, friendship and kin, and primary activity sub-

networks (the latter comprising pre-school, school or vocational education, work or retire-

ment) based on discrete random probabilities informed by census data [5–9]. These sub-net-

works are termed Containers (Cx; see Table 1) and in total represent family units (C1), friend/

social network units (C4), primary activity units (C2), public transport units (C3), essential

activities units (food shopping, medical visits) (C5), medium leisure gathering units (C6), and

large public gathering units (C7). Each container has a unique identification code which is

assigned to each agent within that container. Containers have varying sizes, some allowing

random interaction for public leisure activities and small, medium and large group gatherings.

Agents cannot interact with agents outside their current container. Each container has a

specific transmission probability (Table 1).

Family containers (C1) were created using the discrete probability distribution based on

household sizes for each city of interest [5–7]. The friend and kin container (C4) was populated

with the understanding that 97% of persons have approximately 25 or fewer very strong social

ties or 40 somewhat strong social ties [11]. We chose a total of 30 agents for these containers

(suggestive of 10 kin, 15 friends and 5 friends from work). Work containers (C2) were popu-

lated using a discrete probability distribution of workplace and classroom sizes based on the

literature [12,13].

In their work time agents either attend a primary activity (work or education) container

whereas retired agents pursue leisure activities or remain at home. While work/education con-

tainers may represent an entire workplace or educational campus, the size of the workplace

container only represents the small proportion of those agents coming into regular contact

with each other (as defined for contact tracing) [14].

Agents may have several daily encounters in groups of different sizes. The public transport

container (C3) is populated with up to 20 agents, recognizing that similar agents are likely to

use the same transport on the way to and from work. However, absolute numbers of public

transport users are determined by demographic data [5–7]. Essential activities containers (C5)
represent shopping for food and other essentials, pharmacy and medical visits with potential

contact with up to 100 agents. Medium groups (C6) are containers with up to 100 agents and

represent people gathering in large stores, pubs or restaurants. Large public gathering contain-

ers (C7) represent substantial gatherings during sports and entertainment events, or large

shopping venues, with up to 500 agents. We restricted the size of C7 to 500 as the outbreak

events we modelled had a restriction on gatherings of over 500 people as a very early measure.

Weekly schedules

DESSABNeT creates itineraries based on three periods of activity per day loosely correspond-

ing to time-periods of morning, afternoon and evening. For this simulation, the entering of a
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container is more important than the time spent in the container, as each activity is associated

with a transmission probability determined by the container in which that activity occurs,

rather than the duration of contact. Itineraries for each agent were established for a 7-day

week, with work, leisure and social activities cumulatively corresponding to demographic data

and the literature. Each agent’s weekly schedule is repeated for the duration of the simulation,

however changes in government-imposed restrictions can alter agent schedules, affecting dis-

ease transmissibility or Reff.
The morning period (work time), was allocated to children attending school, pre-school or

day-care, and most adults going to work. To simulate shift work, agents could work during the

“morning” or “afternoon” period. Adults already working from home pre-pandemic were

modelled [15]. Afternoons (discretionary time) were allocated for essential activities (C5),
family time (C1), social visits (C4), medium (C6) and large (C7) group activities according to

Table 1. Containers used to build the social network.

Container Examples Container Size Age

Group

Transmission

Probability

C1 Family Unique family groups (N = 1–6) 0 to 19 0.0748

20 and

older

0.0748

C2 Classroom/educational

and work

Daycare, kindergarten, school classrooms, working teams,

office staff

Educational groups (M = 25, SD = 2),

Work groups (M = 10, SD = 4)

0 to 4 0.00391

5 to 19 0.00391

20 and

older

0.034

C3 Public transport Bus, train or tram, ride-share service, etc. Small Exposure Groups, N = 20 Fixed 0 to 4 0.0121975

5 to 19 0.0121975

20 and

older

0.0121975

C4 Social contacts (friends,

kin)

Social visits by friends or kin (extended family) Agents belonging to unique social

groups (M = 30, SD 2)

0 to 4 0.068

Visits M = 3, SD = 1 5 to 19 0.068

20 to 64 0.068

64 and

older

0.068

C5 Essential activities Medical and pharmacy visits, food shopping, other essential

activities

Medium Exposure Groups, N = 100

Fixed

0 to 4 0.009758

5 to 19 0.009758

20 to 64 0.009758

64 and

older

0.009758

C6 Medium-sized group

leisure activities

Eating out, playing sport or going to the cinema Medium Exposure Groups, N = 100

Fixed

0 to 4 0.009758

5 to 19 0.009758

20 to 64 0.009758

64 and

older

0.009758

C7 Large-group leisure

activities

Visiting professional sporting events, large exhibitions,

attending large clubs, amusement parks or shopping centres

Large Exposure Groups, N = 500 Fixed 0 to 4 0.0004879

5 to 19 0.0004879

20 to 64 0.0004879

64 and

older

0.0004879

(Transmission probability is expressed in C1 as the infective agent being aged 0–19 and 20 and over. All other transmission probabilities are expressed in terms of the

receiving agent being exposed to transmission, as per Chao et al. [10].

https://doi.org/10.1371/journal.pone.0251737.t001
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statistics for daily activities [16,17]. Evenings and nights (social time) were allocated to mixing

in family or social containers (C1, C4) but typically only allowing on average 3 people from the

social network of approximately 30 friendship and kin to visit at any one time, with 1 to 5

social visits per week [11,18]. Further complexities were introduced in the model: Agents

using public transport (determined by public transport statistics for each city) travelled on the

days that they worked (the public transport container being implemented during discretionary

time) [5–7,19]. If children were not attending school, vocational or educational institutes (e.g.

on weekends), they were allocated to the same (non-work) activity as one of their carers/

parents, thus simulating children accompanying an adult on an outing.

Modelling physical distancing

Modelling physical distancing was implemented by either altering agent schedules (e.g.

restricting access to work containers when working from home) or introducing a factor to

modify transmission probability [20], which was used to simulate wearing masks in Mel-

bourne. Schedule changes such as agents working from home reduces the number of people in

workplace and public transport containers. Modifying discretionary time allocations can also

simulate restrictive measures, e.g. reducing the percentage of time spent at medium or large

group activities. DESSABNeT can model school closures or alter the number of friend and

social visits. The number of essential activities per week was kept constant throughout social

restrictions, as reflected in Google mobility data [21].

DESSABNeT compartment model (SEIRD+M)

DESSABNeT employs a S, E1, E2, Ia, Is, R, D, M (Susceptible, exposed (latent un-infectious and

latent infectious), infected (asymptomatic and symptomatic), recovered, died and managed)

structure (Fig 1). We modelled a closed system with no births or general mortality. Modelling

social restrictions (i.e. working from home) changes the contact rates between agents, thus

changing the transmission rate over time, hence: f(βt). The following ordinary differential

Fig 1. The flow of agents through the different SEIRD+M compartments. All agents are assumed to be susceptible at the start, and quarantine

restrictions come into force based on when formal quarantine was announced in the city being modelled.

https://doi.org/10.1371/journal.pone.0251737.g001
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equation would closely represent our ABM, except that various particulars are simplified here

(e.g. the managed compartment is split into numbers of persons isolating at home, in hospital

or ICU).

dS
dt
¼ �

f ðbtÞIS
N

dE1

dt
¼
f ðbtÞIS
N

� a1E1 � d1E1

dE2

dt
¼ a1E1 � a2E2 � d2E2

dIa
dt
¼ ð1 � kÞa2E2 � g1aIa

dIs
dt
¼ ka2E2 � g1sIs � m1sIs � d3Is

dR
dt
¼ g1aIa þ g1sIs þ g2M

dD
dt
¼ m1sIs þ m2M

dM
dt
¼ d1E1 þ d2E2 þ d3Is � g2M � m2M

• a1E1 represents the transfer from the latent non-infectious phase to the latent infectious

(pre-symptomatic infectious) compartment.

• a2E2 represents the transfer rate from the exposed (latent and latent infectious) compart-

ments to the infective compartment.

• Ia, Is are the asymptomatic and symptomatic infected containers. We follow Buitrago-Garcia

[22] in modelling 15% of agents as asymptomatic, which impacts on their transmission rate

(not parametrized here for simplicity). Asymptomatic infected agents (Ia) do not enter the

managed compartment and do not die.

• δ1E1, δ2E2, δ3Es represents the transfer rate from the E1, E2, or Is compartments respectively

into the managed compartment. Typically, those leaving the E compartments are due to the

efforts of contact tracing.

• γ1, γ2 represents the transfer rates from the infection compartment to the recovered

compartment.

• μ1, μ2 represents the transfer rates from the asymptomatic infected (μ1a), symptomatic

infected (μ1s) and managed (μ2) compartments to the dead compartment.
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The parameters α, γ and μ could be replaced by the parameters of a different distribution

such as Erhlang or log-normal distribution, which may better represent the distributions seen

in the transfer between compartments.

Transmission probabilities

As a key point of difference with differential equation-based compartment models, this plat-

form estimates a society and disease-specific net transmission rate through simulation, rather

than using an a priori assumption. Heterogeneous mixing occurs in a variety of container

types, with specific transmission probabilities (TP)s for each infected-to-susceptible agent

encounter (see Table 1).

TPs govern the transfer of agents from S to E1. TPs represent the probability that one agent

in E2 or I will transmit the disease to a susceptible agent. Other COVID-19 ABM’s have used

TPs from the influenza literature [1]. We aimed to generate TPs that were model and COVID-

19 specific, based on an overall basic reproductive number of 2.5. We divided 2.5 by the num-

ber of containers entered by one infected agent during the mean infective period (E2 + I; 5.807

days), multiplied by 3 containers per day, which is 17.4 containers per infective period, or

0.143 transmissions per container. The transmission probability for a container type, was

0.143 divided by the average number of agents in that container. In some contexts, we slightly

modified TPs to ensure that transmission scenarios resembled real life situations. For example,

school transmissions were derived from the literature (0.0023), and medium group container

TP was multiplied by a factor of 4 to better represent closer social contact (e.g. café, bars or

dining scenarios with friends) [23]. Finally, a scaling factor of 1.7 was applied to all TPs (simi-

larly done by Chang et al. and others [1], resulting in the final values seen in Table 1.

We show the flow of agents through the SEIRD+M compartments in Fig 1 and the disease

dynamics that govern the transfer of agents between compartments, or within the managed

compartment, in Table 2. The managed compartment models quarantine (as imposed by

regulations for returning travellers or contact tracers), self-isolation for symptomatic persons

recovering at home, and hospitalisation. The duration of transmission, or infectivity period, is

the duration of E2 + I −M.

Agents in the managed container of the model do not transmit disease. The time from first

symptom to diagnosis represents the time from the start of the agent’s time in the infectious (I)
compartment to the time of entering the managed compartment (M). Within the managed

compartment agents were allocated to treatment at home, hospitalised status, ICU admission

and death based on age-based probabilities derived from the literature and detailed in Table 2.

The transmission rate (contact frequency multiplied by the transmission probability) is an

emergent output of the simulation, dependent on input demographic and societal parameters

(e.g. number of persons per household or workplace sizes), stochastic social network interac-

tions (e.g. attending large gatherings) and disease dynamics.

Basic/effective reproduction numbers and transmission rates

The basic reproduction number and effective reproductive number in the presence of non-

pharmacological interventions is calculated using a Who Acquires Infection from Whom or

WAIFW matrix. The dominant eigenvalue of the matrix represents the basic or effective repro-

duction number for the simulated system (e.g. Sydney without restrictions).

The overall next generation matrix for a population setup in this system begins with a social

contact matrix (H). Each container (C1−7) has unique contact patterns represented by Hij.

Matrix Hij represents the number of daily contacts a person of age category i has with persons

of age category j. The transmission rate (βij) also known as age category specific Ro, is the
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contact rate (Hij) multiplied by the TP of the infectee resulting in a matrix (Gij):

Gij ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

2

6
4

3

7
5

In this ABM, each agent will spend time in three different containers each day. The resul-

tant transmission rate matrix per day is the sum of the transmission rates for each active con-

tainer (containers that people enter), divided by the total number of active containers at each

of the three time periods. For example, matrix Gij uses 3 age categories (3 types of infectors

and infectees), and β12 represents the number of infections a single agent of age category 1

Table 2. Disease dynamics parametrisation of disease course and characteristics of COVID-19.

Description Value

Percentage asymptomatic cases in the population [1,22] 15%

Percentage asymptomatic transmission relative to symptomatic transmission [1] 30%

Exposed duration (E1 + E2) (days, log-normal distribution) [24–26] 5 (SD 3), max

14

Exposed duration 2 (E2) (days) [27] 2

Infectivity duration (I) (days) [28] 5 (SD 3), max

10

Delay from symptom onset to medical assessment and COVID-19 testing (days, log-normal

distribution) [24]

4.6 (SD 1.3)

Average length of stay in medical ward beds (days) [28] 11

Average length of stay in ICU (days) [28] 8

Average additional length of ICU stay with subsequent inpatient mortality (days) [28,29] 2

Mean percentage of symptomatic infected requiring hospitalisation for age 0–4 (SD = 1.2, log-

normal distribution) [28,29]

0.06

Mean percentage of symptomatic infected requiring hospitalisation for age 5–19 (SD = 1.2, log-

normal distribution) [28,29]

0.06

Mean percentage of symptomatic infected requiring hospitalisation for age 20–64 (SD = 1.2, log-

normal distribution) [28,29]

5.874

Mean percentage of symptomatic infected requiring hospitalisation for age over 65 (SD = 1.2, log-

normal distribution) [28,29]

44.63

Mean percentage of admitted cases requiring ICU for age 0–4 (SD = 1.2, log-normal distribution)

[28,29]

33.333

Mean percentage of admitted cases requiring ICU for age 5–19 (SD = 1.2, log-normal distribution)

[28,29]

33.333

Mean percentage of admitted cases requiring ICU for age 20–64 (SD = 1.2, log-normal

distribution) [28,29]

29.385

Mean percentage of admitted cases requiring ICU for age over 65 (SD = 1.2, log-normal

distribution) [28,29]

29.363

Mean percentage mortality in those admitted to ICU for age 0–4 (SD = 1.2, log-normal

distribution) [28,29]

0.001

Mean percentage mortality in those admitted to ICU for age 5–19 (SD = 1.2, log-normal

distribution) [28,29]

0.1

Mean percentage mortality in those admitted to ICU for age 20–64 (SD = 1.2, log-normal

distribution) [28,29]

3.544

Mean percentage mortality in those admitted to ICU for age over 65 (SD = 1.2, log-normal

distribution) [28,29]

31.9

For the purposes of our simulation we used a 15% asymptomatic infection rate and the relative infectiousness of

asymptomatic carriers was 30% compared to symptomatic cases [22].

https://doi.org/10.1371/journal.pone.0251737.t002
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causes on average in persons of age category 2, e.g. a child infecting an adult, and averaged

over the course of a week.

The basic reproduction number is the dominant eigenvalue of the WAIFW matrix Gij mul-

tiplied by the infectivity period of the system. The effective reproduction number is calculated

similarly, except that NPI’s will change the mixing of agents (e.g. working from home), and

the infectivity period. The duration of the infectivity period is altered as E2 + I is reduced when

persons enter the managed compartment as a result of contact tracing, self-isolation and hos-

pitalization, where no transmission occurs.

The emergent transmission rate is calculated daily. The emergent transmission rate is the

total number of transmissions per day, divided by the number of agents who could transmit

the illness minus agents in the managed compartment where transmissions cannot occur

(total of agents in: E2 + Is + Ia −M). The daily transmission rate multiplied by the infectivity

period (duration of E2 until person enters the managed compartment) also represents the

emergent reproduction number (Remerg):

Remerg ¼
Total Transmissions
E2 þ Is þ Ia � Mð Þ

� duration of infectiousness

In the ABM, a person can be in the Is compartment and be self-isolating in the managed M
compartment.

Outputs

The model produces daily prevalence and incidence values for each of the SEIRD+M compart-

ments. For the managed compartment, daily incidence and prevalent COVID-19-positive

agents treated at home, hospitalisations, ICU admissions and deaths are recorded, as well as

daily prevalence and incidence of agents quarantined. Daily overall, and container specific,

incidence of transmissions and cumulative transmissions are recorded. Pandemic outbreak

was simulated in each city 100 times and the median values for these simulations were used to

present outputs.

Medical outcomes were calculated using estimates of the fraction of symptomatic infected

hospitalised, hospitalised people admitted to ICU and deaths as a fraction of those admitted to

ICU, derived from Moss at al. and Zhou et al. [28,29] and presented in Table 2.

Symptomatic infected agents enter the medical portion of the Managed container after a

specified number of days to seeking medical attention as quantified by Li et al. [24], calculated

as a log normal distribution for each agent. The percentage of symptomatic infected admitted

is based on age, and is calculated based a log normal probability distribution with a mean of

0.060 (age 0–19), 5.874 (age 20–64) and 44.630 (aged 65 and over), derived from [28,29].

Those not admitted have home-based care but remain in the managed container. Agents

admitted to ICU are selected from hospital admissions with based a log normal probability dis-

tribution with means per age group shown in Table 2. Deaths are selected from ICU admis-

sions, with probabilities shown in Table 2. The probability of mortality can be expressed as:

Pr Deathð Þ ¼ Pr Death ICU admissionj jHospitalizationð Þ

Average lengths of stay in medical beds (11 days) [28], and ICU beds (8 days) [28], and

additional length of ICU stay with agents who die (2 days) [28,29], were taken from the litera-

ture (Table 2).
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Real world simulation and comparisons

We compared predicted outputs from simulation to real daily incidence cases for Sydney, Mel-

bourne and Gold Coast, to demonstrate a discrete outbreak, a ‘multi-wave’ outbreak, and a

very limited or controlled outbreak without sustained community transmission. Tests of distri-

butional assumptions (Kolmogorov-Smirnov Tests) were used to assess goodness-of-fit in the

presence of non-linear relationships. P-values greater than 0.10 were used to indicate observed

vs simulated estimates drawn from similar distributions. We then estimated hospitalizations,

ICU bed requirements and deaths (per 100,000 population).

The Sydney outbreak (March 2020) disease dynamic parameters were used to calibrate the

DESSABNeT COVID-19 model, with validation on Melbourne and Gold Coast data (see

Table 3). The naïve system (no restrictions) had a next generation R0 value of 1.45. This

decreased to 0.88 in stage 4 restrictions. The settings for each phase result in differing R0

derived using the next generation operator method.

Melbourne was simulated from March 2020 to September 2020, across 8 simulated social

restriction phases (Table 4), including the relaxation of restrictions in early May and their

re-introduction in June and July 2020. The naïve system (no restrictions) had a median next

generation R0 value of 1.41 (see Table 4). This decreased to 0.75 during the most aggressive

Table 3. Social restrictions for the Sydney simulation.

Variable Phase 1 (Normal

Social Network)

Phase 2 (SR 1) Phase 3 (SR 2) Phase 4 (SR 3)

Day Number 1 to 16 17 to 23 24 to 30 31 to 80

Dates 1 March—16

March, 2020

17 March—23 March, 2020 24 March—30 March, 2020 31 March to 19 May, 2020

Sydney Restrictions Nil Public events > 500 people cancelled

Overseas travellers must self-isolate 14

days

Pubs, hotels, clubs, restaurants

and recreation facilities closed.

People must not leave their

residence except for essential

purposes.

Restrictions in

DESSABNeT

Nil� All returning travellers placed in 14 day

quarantine

"HLT, "WFH, #MGA, # LGA,

# PTU, # FKV

""HLT, ""WFH, 0% MGA, 0%

LGA, ## PTU, ## FKV

Essential visits per week (N) 3 3 3 3

% large-group activity in

leisure time

11.4 11.4 0 0

% medium-group leisure

activity in leisure time

40.4 40.4 23 0

% solitary home activity in

leisure time

48.2 48.2 77 100

% of agents working from

home

30.2 30.2 47.1 64

% of agents using public

transport

32.9 32.9 14.1 8

Friend and Kin Contacts

per Week (N)

5 5 3 2

School attendance Schools Open Schools Open Schools Open Schools Open

Median Phase R0 (95% CI) 1.447 (0.208, 6.546) 1.447 (0.208, 6.546) 1.104 (0.142, 5.885) 0.881 (0.088, 5.480)

�Maximum large group exposure set at 500 agents from beginning of simulation.

HLT = Home Leisure Time, WFH = Work From Home, MGA = Medium Group Activity, LGA = Large Group Activity, PTU = Public Transport Use, FKV = Friend

and Kin Visits.

Changing social network parameters are shown with different restrictions being introduced or lifted. Median phase R0 using the next generation operator represents the

median basic reproduction number for the contact network with or without social restrictions in place. The 95% CI uses the 2.5th and 97.5th percentile of contact matrix

values to provide a range of next generation operator R0 values.

https://doi.org/10.1371/journal.pone.0251737.t003
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Table 4. Social restrictions for the simulation of two Melbourne outbreaks.

Variable Phase 1

(Normal

Social

Network)

Phase 2 (SR 1) Phase 3 (SR 2) Phase 4 (First

Lifting of SR)

Phase 5 (Mixed) Phase 6 (SR 4) Phase 7 (SR 5) Phase 8 (SR 6)

Day Number 1 to 19 20 to 24 25 to 72 73 to 86 87 to 130 131 to 144 145 to 153 154 to 195

Dates 1 March—

19 March,

2020

20 March—24

March, 2020

24 March—11

May, 2020

12 May to 25

May, 2020

26 May to 8 July,

2020

9 July to 22 July,

2020

23 July to 31 July,

2020

1 August to 11

September, 2020

Melbourne

Restrictions

Nil Public

events > 500

people cancelled

Overseas

travellers must

self-isolate 14

days

Only four

reasons to be

out: essential

activities, care

and caregiving,

exercise, and

study or work.

Schools closed

24 March, 2020

First lifting of

restrictions:

Visiting friends

and family

allowed with a

maximum

gathering of up to

10 outdoors and

5 indoors.

Lifting of

Restrictions 2:

Publicly accessible

outdoor communal

activity. However, a

small number of

Melbourne

postcodes return to

Stage 3 Stay at

Home restrictions 2

July to 21 July, 2020

(Day 124 to 130).

Metropolitan

Melbourne

returns to Stage

3 Stay at Home

restrictions.

Metropolitan

Melbourne or

Mitchell Shire

residents must

wear a face

covering outside

of the home.

Only four reasons

to be out:

essential

activities, care

and caregiving,

exercise, and

study or work.

Many businesses

are required to

close.

Restrictions in

DESSABNeT

Nil� All returning

travellers placed

in 14-day

quarantine

""HLT, ""

WFH, 0% MGA,

0% LGA, ##

PTU, ## FKV

""HLT, ""

WFH, 0% MGA,

0% LGA, ## PTU,

" FKV

#HLT, #WFH, "

MGA, " LGA, "

PTU, " FKV

"HLT, "WFH,

#MGA, # LGA,

# PTU,!FKV

Change to beta

values��
"" HLT, ""

WFH, 0% MGA,

0% LGA, ##

PTU, ## FKV

Essential visits

per week (N)

3 3 3 3 3 3 3 3

% large-group

activity in

leisure time

11.4 11.4 0 0 10 10 10 0

% medium-

group leisure

activity in

leisure time

40.4 40.4 0 0 39 27 27 0

% solitary

home activity

in leisure time

48.2 48.2 100 100 51 63 63 100

% of agents

working from

home

30.2 30.2 64 64 35 41 41 64

% of agents

using public

transport

37 37 18.5 18.5 30 25 25 18.5

Friend and

Kin Contacts

per Week (N)

5 5 2 4 5 5 5 2

School

attendance

Schools

Open

Schools Open Schools Closed Schools Closed Schools open

between Day 100

and 113.

Schools Closed Schools Closed Schools Closed

Median Phase

R0 (95% CI)

1.408

(0.204,

6.394)

1.408 (0.204,

6.394)

0.775 (0.078,

5.075)

0.825 (0.091,

5.162)

1.330 (0.198, 6.118) 1.144 (0.153,

5.894)

1.106 (0.147,

5.809)

0.775 (0.078,

5.075)

�Maximum large group exposure set at 500 agents from beginning of simulation.

�� Beta values in each container, except Family containers multiplied by a “physical distancing/ mask wearing factor” of 0.95.

HLT = Home Leisure Time, WFH = Work From Home, MGA = Medium Group Activity, LGA = Large Group Activity, PTU = Public Transport Use, FKV = Friend

and Kin Visits.

Changing social network parameters are shown as different restrictions are introduced or lifted. Median phase R0 using the next generation operator represents the

median basic reproduction number for the contact network, with or without social restrictions in place, for both outbreaks. The 95% CI uses the 2.5th and 97.5th

percentile of contact matrix values to provide a range of next generation operator R0 values.

https://doi.org/10.1371/journal.pone.0251737.t004
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restrictions. One challenge was how to simulate the mixing of people in quarantine with mem-

bers of the community, that occurred around mid-May (and were the subsequent subject of an

inquiry) [30]. This was achieved by not placing agents who arrived from overseas in quaran-

tine between day 85 and 104 (24 May, 2020–12 June, 2020, 3 weeks) of the simulation, repre-

senting the reported interaction of returned travellers with the community around this time. A

further challenge was simulation of the effects of contact tracing in reducing time to enter the

managed container and simulating contact tracing capability being placed under pressure. We

reduced the infective period by 27% when contact tracing during all simulation phases, except

during Melbourne’s second wave, assuming a reduced capacity to contact trace during this

time [31,32].

We also note the use of modified transmission probabilities from day 145 (23 July, 2020)

onwards in the simulation to represent the directive to wear masks. We did not explicitly

model the restrictions introduced across only 10 postcodes on 2 July, but adopted global

restriction values based on Google Mobility data for the whole of Melbourne.[21]

Similarly, Table 4 demonstrates the setup parameters for the various Gold Coast phases.

The naïve system (no restrictions) had a median next generation R0 value of 1.41. This

decreased to 0.75 during the most aggressive restrictions. Due to the opportunity to access

good quality admissions data for the Gold Coast, we were also able to compare estimates of

hospitalizations and ICU admissions.

Results

Simulations of Sydney, Melbourne and the Gold Coast

The Sydney outbreak with a population of 5,312,000 agents was simulated for 80 days (1

March to 19 April), with data obtained from publicly available sources (Fig 2) [33]. Table 3

shows the 4 different restrictions simulated. The observed vs simulated estimates were drawn

from the same distribution (p = 0.44). The median, 75th and 95th percentile of the maximum

Reff for each of the 100 simulations was 1.87, 1,94 and 2. Similarly, the median, 75th and 95th

percentile of the maximum daily incidence for the 100 simulations was 123, 133 and 143,

respectively, which is above what was seen in the Sydney outbreak (maximum daily commu-

nity transmissions was 72).

Fig 3 shows plots of mean values (of 100 Sydney simulations) for hospitalisations and ICU

admissions, showing the spread of results seen over 100 runs with the stochasticity inherent in

DESSABNeT. Fig 4 shows SEIRD transmissions (susceptible compartment not shown), again

demonstrating the stochasticity seen in simulation. Transmission in different containers is

also shown in Fig 4, with most transmission occurring in families, workplaces and medium-

sized gatherings.

The Melbourne outbreak (population 4,967,730) was simulated for 195 days, comprising

the first outbreak in March 2020, and the second wave of predominantly sustained community

transmission from June 2020 through to 11 September 2020 (see Fig 5) [34]. The observed vs

simulated estimates were drawn from the same distribution (p = 0.17). The median, 75th and

95th percentile of the maximum Reff for each of the 100 simulations was 1.91, 2.17 and 3.26

respectively. Similarly, the median, 75th and 95th percentile of the maximum daily incidence in

each of the 100 simulations was 578, 708 and 975, respectively.

The Gold Coast outbreak with a population of 620,520 agents was simulated for 70 days

(16 February– 25 April, 2020), with three social restriction phases. The fit was poorer with

observed vs simulated estimates likely drawn from a different distribution statistically signifi-

cant (p = 0.02), likely due to low case numbers) (see Fig 6). The median, 75th and 95th percen-

tile of the maximum Reff for each of the 100 simulations was 1.94, 1.96 and 1.98. Similarly, the
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median, 75th and 95th percentile of the maximum daily incidence in each of the 100 simula-

tions was 16, 18.2 and 25, respectively.

For the Gold Coast simulation, the incidence of hospitalisations, ICU admissions and

deaths were compared with real data. In Gold Coast, 100 simulations saw a median peak of 3

daily hospitalisations, compared to a peak of 7 real daily hospitalisations to Gold Coast hospi-

tals and a simulated median peak of 1 daily ICU admission compared to 2 real ICU admissions

to Gold Coast hospitals. Lastly, we saw median of 0 simulated deaths, while 0 actual deaths

were recorded.

Table 5 presents the median of the maximum emergent Reff values. Note that the emergent

Reff values lie within the bounds of the next generator operator R0 values for their respective

cities, as seen in Tables 3–6. Melbourne saw the greatest median peak of simulated incidence,

hospitalizations, ICU admissions and deaths per 100,000 population.

Discussion

We demonstrate a novel ABM designed to simulate the spread of communicable diseases in

different population centres and have modelled the imposition and lifting of various social

Fig 2. Sydney daily incidence of COVID-19 cases (bars) and simulated daily incidence of symptomatic community transmission cases (line), with

the simulated daily Reff shown in the middle plot. The line in the top plot is the simulated total incidence. The rates of working from home used in our

simulation corresponds to Google mobility (workplace) measures.

https://doi.org/10.1371/journal.pone.0251737.g002
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restrictions, demonstrating the effect of changing the connectivity of a social network (through

social restrictions) on emergent outcomes such as Reff, hospitalization, ICU admissions and

deaths. The emergent Reff occurs within the bounds of a social network specific next generation

operator R0. Calculated Reff peaks compared well with recent Reff estimates for March 2020 out-

breaks in Australia [35].

The strengths of our system include the flexibility and granularity to accurately model a

wide range of social restrictions and their easing, fluidly transitioning between different types

and combinations of social restrictions within the same simulation. Though the fit was poorer,

we were able to provide reasonable estimates in low incidence settings such as the Gold Coast.

Secondly, the DESSABNeT platform has a large number of modifiable parameters. The abil-

ity to alter network connectivity as well as disease dynamics (such as TP) allows modelling of

different social restrictions, but also different (and even multiple) strains of SARS-CoV-2. Dif-

ferent vaccination strategies can also be simulated, modelling different efficacy and effective-

ness parameters.

Thirdly, the software is able to run using widely available, modest computing resources, in

contrast to other ABMs [1].

Fig 3. Simulated hospital occupancy in Sydney. The simulated prevalence of occupied medical and ICU beds is modelled as a function of the

likelihood of requiring admission to hospital and subsequently requiring ICU care. The delayed peak in the ICU curve is demonstrative of the disease

course, i.e. ICU requirements lag behind medical bed requirements. Each simulation is composed of 100 runs (each data point represents one day of

simulation) which generates the spread of results seen here and the stochasticity that is inherent to ABMs.

https://doi.org/10.1371/journal.pone.0251737.g003
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Limitations

We acknowledge over-simplifications and assumptions in our model, many of which are com-

mon to ABMs. As a simplification, this system is an entirely closed system, with no births or

deaths. In addition, we do not model geospatial networks.

ABMs use discrete time periods for modelling agent interactions, during which agents are

usually devoted to one activity, so only one type of interaction can occur (attending school

or work, being home or using public transport). While other systems use only two 12 hour

time periods [1], DESSABNeT uses three time periods (approximately 8 hours each). Despite

the detailed weekly agent schedules and entry into different containers creating a complex

network of agent interactions, we acknowledge that persons within a container will mix

homogenously.

Simplifications have also been introduced into disease dynamics: Infectivity during the

infective period is of a uniform distribution (i.e. no crescendo-decrescendo infectivity as

would be expected in real life). No agent can die without being hospitalized and then admitted

to ICU.

We note that while our percentage of admissions from symptomatic infections and ICU

admissions as a percentage of medical admissions were derived from Moss et al. and Zhou

et al. [28,29], these have also been estimated for Australian data by others such as Price [35].

Price et al have hospitalisation rates from confirmed cases ranging from 10.81%–14.75% (age

0–18), 5.04%–15.29% (age 19–69), up to 38.15% (age 80+ years), and ICU admission rates

Fig 4. Four of the six SEIRD+M compartments shown with transmission counts within each of the containers. Container C2 (work and education)

comprises three sub-containers (work, preschool and school).

https://doi.org/10.1371/journal.pone.0251737.g004
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from hospital cases of 0%-8.33% (age 0–18), 1.39%-20.80% (age 19–69), 22.87% (age 70–79)

and 12.11% (age 80+), only some of which are comparable to the rates used here (Table 2).

Price et al. have noted limitations in making their estimates, including that 31% and 58% of

examined cases in their analysis had no information recorded under hospitalisation or ICU

status, respectively. We recommend that future versions of DESSABNeT use multiple age

bands and that variables used for medical outcomes be adjusted as further literature comes to

light.

Simulation and prediction

DESSABNeT simulations provide a range of outputs and outcomes. By altering input parame-

ters, the effect of contact tracing, super-spreader events and social restrictions on the Reff can

be estimated. This platform allows modelling of different social restrictions, but also different

(and even multiple) strains of SARS-CoV-2.

Modelling of COVID-19 vaccination is a priority—e.g. assessing individual protection in

any given city or region as determined by number of individuals vaccinated as compared with

putative herd immunity thresholds, based on vaccine properties of efficacy and effectiveness.

We propose using DESSABNeT to address complex questions such as the optimal non-

Fig 5. Melbourne daily incidence of COVID-19 cases (bars) vs simulated daily incidence of symptomatic cases (lines), with the simulated daily

Reff shown in the middle plot. The line in the top plot is the simulated total incidence. The rates of working from home used in our simulation is

similar to observations in Google mobility (workplace) measures.

https://doi.org/10.1371/journal.pone.0251737.g005
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pharmaceutical interventions in the presence of differing vaccination strategies and SARS-

CoV-2 strains, with impact on medical sequelae such as ICU admissions and deaths.

The effects of a communicable disease and non-pharmaceutical interventions on vulnerable

or unique population groups (e.g. nursing homes, elderly or mining sites) can also be simu-

lated. Of specific interest is simulating disease spread in rural communities which are geo-

graphically spread out but still connected by social and occupational networks. In addition, the

Fig 6. Gold Coast daily incidence of SARS-COV-2 cases (bars) vs simulated daily incidence of symptomatic cases (lines), with the simulated daily

Reff shown in the middle plot. The line in the top plot is the simulated total incidence. The rates of working from home used in our simulation is

similar to measures performed by Google mobility (workplace) measures.

https://doi.org/10.1371/journal.pone.0251737.g006

Table 5. Summary counts (and per 100,000 population estimate) of each simulation.

City Emergent Reff Incidence Hospitalizations ICU Admissions Deaths

Sydney 1.87 94 (1.8) 25 (0.5) 7 (0.1) 2 (<0.1)

Melbourne 1.91 577.5 (11.65) 58 (1.15) 17 (0.3) 4 (0.1)

Gold Coast 1.94 16 (2.6) 3 (0.5) 1 (0.2) 0 (0)

Each simulation is composed of 100 simulations of 180 days. Each number represents the median value of the maximums or peak incidence of each simulation.

Hospitalization, ICU admission and deaths are presented as daily incidences. The median of 100 peaks of Sydney’s Reff was 1.87, indicating that the 50th percentile of the

peak Reff for 100 simulations was 1.87. Pr(Death) = Pr(Death | ICU admission | Hospitalization).

https://doi.org/10.1371/journal.pone.0251737.t005
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system provides key outputs that can be used for strategic workforce purposes such as health

resource utilisation requirements and contact tracing workforce requirements.
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Table 6. Social restrictions for the Gold Coast simulation.

Variable Phase 1 (Normal

Social Network)

Phase 2 (SR 1) Phase 3 (SR 2)

Day Number 1 to 37 38 to 42 43 to 70

Dates 16 February—23

March, 2020

24 March—28 March, 2020 29 March—25 April, 2020

Melbourne Restrictions Nil Large gatherings cancelled. Pubs, hotels,

clubs, restaurants and recreation facilities are

closed.

26 March: Border closure, interstate travellers must self-quarantine

for 14 days.

27 March: Queenslanders cannot have more than 10 people in their

house at any one time. People are asked to stay at home where

possible.

28 March: Overseas travellers must self-isolate for 14 days.

Schools closed as of Monday 30 March, 2020

Restrictions in

DESSABNeT

Nil� "HLT, "WFH, #MGA, # LGA, # PTU, #

FKV

"" HLT, ""WFH, 0% MGA, 0% LGA, ## PTU, ## FKV

Essential visits per week

(N)

3 3 3

% large-group activity in

leisure time

11.4 0 0

% medium-group leisure

activity in leisure time

40.4 23 0

% solitary home activity in

leisure time

48.2 77 100

% of agents working from

home

30.2 47.1 64

% of agents using public

transport

4.1 1.8 1.1

Friend and Kin Contacts

per Week (N)

5 3 3

School attendance Schools Open Schools Open Schools Closed 30 March

Median Phase R0 (95% CI) 1.459 (0.234, 6.417) 1.049 (0.149, 5.639) 0.754 (0.093, 4.953)

�Maximum large group exposure set at 500 agents from beginning of simulation.

HLT = Home Leisure Time, WFH = Work From Home, MGA = Medium Group Activity, LGA = Large Group Activity, PTU = Public Transport Use, FKV = Friend

and Kin Visits.

Demonstrates the changing social network parameters as different restrictions are placed or lifted. Median phase R0 using the next generation operator represents the

median basic reproduction number for the contact network with or without social restrictions in place. The 95% CI uses the 2.5th and 97.5th percentile of contact matrix

values to provide a range of next generation operator R0 values.

https://doi.org/10.1371/journal.pone.0251737.t006
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