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Abstract

Synchonization plays an importanble in multimedia systems at various levels of abstraction. In this,paper
propose a set of powerful abstractions for collitmng and synchonizing continuous media exms in distributed
envionments. The pposed abstractions arbased on a very general computation model, which allows media
streams to be prcessed (i.e. pduced, consumed or transformed) by arbitrarily strustunetworks of linked
components. Furtherompound components can be composed of existing onesvidephigher levels of
abstractions.

The clock abstraction is prided to conwl individual media stams, i.e. sstams can be started, paused or
scaled by issuing the ampriate clock operations. Clock hiehies ae used to hierahically goup elated
streams, whex each clock in the hierelny identifies and cordls a certain (sub)gup of steams. Conol and
synchpnization equirements can be exggssed in a uniform manner by associatingugr members with cormtr

or sync attributes. An importantgerty of the concept of clock hiecaies is that it can be combined in a natu-
ral way with component nesting.

1 INTRODUCTION

Powerful programming abstractions are a prerequisite forfactiee and dfcient application
development. Application-specific abstractions are typically provided by development plat-
forms, often referred to as middleware. In the context of multimedia, those platforms close the
gap between the operating system and the communication system on the one hand and the spe-
cific needs of distributed multimedia applications on the other handCifilheén (Configurable
INtEgrated Multimedia Architecture) system [RBH94], which is under development at the Uni-
versity of Stuttgart, is a platform providing system services for the configuration of distributed
multimedia applications and the communication and synchronization of multimedia informa-
tion in distributed environments.

Multimedia synchronization can be considered deght levels of abstraction [MES93].eW

will focus on the control and synchronization of groups of continuous media streams, such as
digital video and audio streams. Media streams themselves may be regardeckat dibstrac-

tion levels. At the transport level, a stream usually originates at a single source and ends at one
or more sinks. Furthesinks and sources are adjacent in the sense that each sink of the stream
consumes the data produced by the streaotirce. Therefore, at the transport level end-to-end
relationships are defined between “adjacent” entities connected by a transport connection. If
streams are considered at the application level instead, sources and sinks need not be adjacent
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at all. Application-level streams, which we will assume in this papay be processed by a net-
work of linked components. They may have multiple sources as well as multiple sinks, and each
path leading from a source to a sink may involve several intermediate components. Conse-
quently at the application level an end-to-end relationship may cover any number of interme-
diate components as well as several transport connections at a lower level of abstraction.

We propose programming abstractions for grouping, controlling and synchronizing application-
level streams in distributed environments. Media clocks provide the basic abstraction for con-
trolling the flow of media streams, i.e. by issuing clock operations the controlled streams can be
started, paused or scaled as required. Related streams can be hierarchically grouped by building
up so-called clock hierarchies, where each clock controls either an individual stream or a group
of streams. Whin clock hierarchies, two types of relationships can be defined for the members

of a stream group, eontrol or syncrelationship. If thecontrol relationship is specified, the
members of the groups are controlled collectively without synchronization of the streams. If the
syncrelationship is defined instead, the members of this group are processed (e.g., played out)
synchronously

Media clocks and clock hierarchies provide a flexible and powerful abstraction for controlling
and synchronizing media streams in distributed applications. These abstractions are indepen-
dent of the underlying synchronization protocols. They allow for the specification of the appli-
cation’s synchronization needs on a rather high level of abstraction without making assumptions
about the applied control mechanisms. Clock hierarchies provide a uniform interfade-to dif
rent synchronization protocols which may be used alternatiirelZinema, we have imple-
mented, for example simplified version of the protocol proposed by Escobar et al. [EDP92]
and the Adaptive Synchronization Protocol described in [RoHe95].

Clock hierarchies allow for expressing complex relationships among distributed media streams.
Furthermore, dynamic changes of those relationships are supported. Both characteristics make
them a suitable basis for CSCW applications or for viewing (distributed) interactive multimedia
documents. For example, changes in the user community of a CSCW application require to add
or remove streams or alter synchronization relationships during run-time. Interactive viewing
of a document requires the flexibility to control groups and subgroups of streams depending on
user interactions.

An additional advantage of the concept of clock hierarchies is that it can be combined with com-
ponent nesting in a natural wai order to provide higher levels of abstractions, more complex
components, so-called compound components, can be composed of existing ones. The internal
processing of a compound component is controlled and synchronized by means of included
clock hierarchies, which are an integral part of the compound components.

The remainder of the paper is structured as follows. The next section gives a brief overview of
related work, and then the computation model the proposed abstractions are based upon is
described in Sec. 3. \introduce the concept of a media clock in Sec. 4 and show how it can

be used to control individual streams. The concept of a clock hieravbigh provides the

means for controlling and synchronizing groups of media streams, is presented in Sec. 5.
Whereas this section mainly considers clocks attached to sink components, Sec. 6 motivates and
treats clocks attached to sources. In Sec. 7, we discuss how the proposed abstractions can be
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applied in the context of component nesting, and then, in Sec. 8, describe how media clocks are
integrated in th&€inema system. Finallywe conclude with a brief summary

2 RELATED WORK

As stated above, streams can be consideredfetatit levels of abstraction. Abstractions for
grouping and controlling transport-level streams are provided by the orchestration service
[CCGH92]. This service allows for grouping streams and coordinating the flow of (flat) groups
of streams. In particulathe streams of a group can be started and stopped collectidly

the flow rate of the streams is regulated individudllye orchestration service itself does not
guarantee stream synchronization bigisfa general regulation mechanism that can be used at
higher layers to implement dé&rent synchronization policies. On the same level of abstraction
is the concept afhannel goups[GuMo093]. It allows to express relationships among real-time
connections with regard to resource sharing and jitter tolerance. The appfeexh akttwork-
oriented interface. Synchronization is based on4dtertrolled channels instead of timestamps,
and hence is restricted to streams originating at the same node.

Various abstractions for controlling groups of application-level streams have been proposed in
literature. Some of these proposals apply to non-distributed environments only (e.g, IBM’
Multimedia presentation manager [IBM992]). Others are tailored to specific configurations
(e.g., ACME [AnH091] and dctus [DNNR92]). ACME, for example, is an extension of a net-
work window system supporting streams of digital audio and video data. The clients of the
ACME server use the abstraction of a logical time system to control and synchronize the output
of a (flat) group of ropes. Quickie [Appl91] in its current version provides a rich set of tools

for developing non-distributed multimedia applications. Several data streams can be grouped
together according to synchronization relationships to form multimedia documents, so-called
movies The streams are played out synchronoudbwever dynamic changes to pre-defined
documents are restricted to some operations (e.g., to muting a stream). In general, the document
has to be edited to change its conte@sickTime’s run-time environment, upon which the
toolbox is based, provides more flexibility. It offers concepts to model temporal relationships
and implements a general timing service for a single rtédoeever this service provides low-

level support for the timed activation of functions withodeohg a uniform stream-oriented
control interface. An implementation of t@eema abstractions in a local environment could be
based on these services.

The Multimedia System Services proposed by the Interactive Multimedia Association [Hewl93]
are based on a very general computation model and provide a rich set of abstractions for grou-
ping and controlling media streams. The purpose of these services is to provide an environment
in which a heterogeneous set of multimedia computing platforms cooperates to support distri-
buted, interactive multimedia applications dealing with synchronized, time-based media. In this
environment, the abstraction of a group is used to group related media streams. Group objects,
which may include other group objects, provide an interface for controlling the streams belong-
ing to this group. This means that an entire group of streams can be started, paused or scaled by
issuing single operations at the group interface. Howdverstreams of a group are not syn-
chronized. In the current proposal, stream synchronization is not yet integrated in the group
mechanism. Moreovecomponent nesting is not supported.



3 COMPUTATION MODEL 4

3 COMPUTATION MODEL

In this section, we briefly sketch the computation modeCeEva (for more details see
[RBH94]). The major concepts of this model are media streams, components, ports, links, ses-
sions and clocks.

A continuougnedia streamis defined to be a sequence of data units, each of which is associa-
ted with a media time stamp (e.g., see [Herr@Pmponentsare active entities that process
continuous media streams in various ways.détinguish between source components, which
produce media streams, sink components, which consume media streams, and intermediate
components, which act as both producers and consumers. Components are associated with
typedports. While a producer writes stream data to its output ports, a consumer reads data units
from its input ports.

A client is the entity that establishes and controls an application. Applications are configured
by defininglinks between input and output ports of components. An example configuration
consisting of one intermediate component and three source and sink components is shown in
Fig. 1. This configuration mechanism has proven to be powerful and hence can be found in var-
ious other architectures as well (e.g., Conic project [MKS89], IMA [Hewl93], Quicktime
[Appl91], SUMO project [CBRS93], or the work done by Gibbs [Gibb91]). Following the nota-
tion introduced in [Hewl93], a configuration of linked components is cld@dgraph.

r T )

Component and Ports

= ca
™ Media Clock@ Session
»-(

Figure 1: Example Application

(@)

While link objects are applied to define the topology of applicatsassionsre the abstraction

for resource allocation. Media streams can be processed and communicated only after the cor-
responding sessions have been established. A session may comprise multiple sink and source
components and any number of intermediate components. For controlling the flow of media
streams an extra abstraction, the so-catiedia clock is provided. Media clocks are used to

start, pause, or scale media streams.

A unique feature ofinema iscomponent nesting. In other words, basic components can be com-
posed to build more complex components, called compound components. Compound compo-
nents may again be constituents of other components, i.e. arbitrary levels of nesting are possible.
Compound components provide the means for building higher levels of abstraction on the basis
of existing components.
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The computation model described above is rather general and has various similarities to other
architectures (e.g., IMA [Hewl93] or SUMO [CBRS93]). Therefore, the concepts presented in
the remainder of the paper are not only relevant irCthkeva context but are applicable in a
rather broad scope.

4 MEDIA CLOCKS

The temporal dimension of continuous media streams is defined by so-called media time sys-
tems. The media time system associated with a stream is the temporal framework to determine
the media time of the streasndata units. II€inema, media time systems are provided by media
clocks (or clocks for short). A clod® is defined as follows

C:=(RM,TS)
The clock attributes have the following meaning:

* Rdetermines the ratio between real-time and media Rtigie units in media time corres-
pond to 1 second in real-time.

« M is the start value of the clock in media time, i.e. the value of the clock at the first clock
tick.

* Tis the start time of the clock in real-time, i.e. the real-time of the first clock tick.

* Sdetermines the speed of the clo8IR time units in media time correspond to one second
in real-time. Consequentlynedia time progresses in normal speesiaefjuals 1. A speed
higher than 1 causes the clock to move fastespeed less than 1 causes it to progress
slower and a negative speed causes it to move backwards.

It should be noted that the temporal dimension of stored media is inherently bound, i.e. there

exists a lower and upper bound given by the media time of the first and last stream data unit. In

other words, media time for a given stream is only defined in a certain interval. The mechanisms

required to ensure that clock values stay within the defined time range are beyond the scope of
this paper

Media time systems are a general concept to dimension media time in arbitrary ways. For the
following example, assume a (stored) video stream with a rate of 25 data units per second. If the
ratio R is 25, media time corresponds to frame sequence numbers. If the stamivislie

stream processing is started with the 5th frame in the stream provided the lower bound of its
temporal dimension is 1. If, howeyenedia time is counted in millisecon@sis set to 1000. In

each case, ratig defines the “normal” speed of media time, whereas attriboéa be used to

speed up or slow down the progress of media time.

L The type of clock was proposed in [Herr91], where clocks were used to time the internal processing of data
streams. W will use media clocks in a totally fifent context. A clock is an abstraction usedlmntsto con-
trol the play-out of data streams and to express synchronization relationships between streams.
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A clock relates media time to real-time as shown in Fig. 2. Therefore, after a clock has been
started, media time can be derived from real-tinte

m=M+S[R(t-T) (E1)

Clocks are the basic abstraction for controlling the flow of media streams. As will be seen
below clock objects provide methods for starting, pausing, or scaling streams. Clocks may be
attached to componentineva allows arbitrarily structured flow graphs, which may consist of

any number of source, sink and intermediate compon&itent of Cinema can control the pro-
cessing of all components in the flow graph by starting, stopping and scaling the streams con-
sumed by the graph’sinks. As a simple example consider a pipeline consisting of a video
source, some filter component and a video sink. The client may begin to play out the video just
by starting the media clock associated with the sink. Of course, starting the video presentation
requires not only the sink but also the source and filter component to be activated at the proper
time. From a cliens point of view however it sufices to control the video output by issuing

the appropriate clock operations at the sink component. Invisible for the client, these clock ope-
rations trigger internal control procedures that orchestrate and monitor the processing of the
entire pipeline. Clocks at source components are primarily used to enable and disable the output
of sources and to define start values for the outgoing streams. Clocks at intermediate compo-
nents are not needed, which simplifies stream control for clients signifiéantly

T
?Tu_u

Figure 2: Mapping of Mediaiime to Real-ime

>Media Time

I » Real-Time
1 sec

Whereas clocks at source components are optional, they are mandatory at sink components. A
clock attached to a sink component controls the temporal progress of all data streams processed
(e.g., played out) by this component. This is expressed more precisely by the scloaked
condition: a data unit having media tinme is processed at real-timtenly if the controlling

clock is ticking and its value equatsat timet. Conceptuallythis means that the presentation

of a stream is started, paused or scaled when the controlling clock is started, halted or the clock
speed is changed, respectivélile semantics of clocks at source components will be introduced
later.

As pointed out above, media time progresses relative to real-tirGewehm, real-time is taken
either from a local system clock, a global clock (e.g., see NTP [Mill89]) or is derived from the
temporal behavior of a given output device. Clealynedia clock based on the timing of an
output device advances in conformance with the devitafural rate. Those clocks are called
master clocks.

2 Synchronization relationships between streams consumed by the same intermediate component are defined as
part of the specification of intermediate components.
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Below, the most important clock operations for controlling streams are listed. A clock may enter
two statesticking (and thus advancing) silent(and thus not advancing). The only clock ope-
rations that cause state transitions @&trart andHal t . The former moves the clock from
silentto ticking, whereas the latter causes the reverse state transition.

Start(M This operation starts the clock at media tivh®y starting the clock the con-
trolled stream(s) are started. (Clock attribliis set to the real-time at which
the clock is actually started).

Halt (M This operation halts the clock when it reaches clock vaue.e. the
stream(s) controlled by this clock are paused. A halted clock can be started
again by the operatiost art .

Prepare(M This operation prepares the event of starting the clock at medidtiAfeer
Pr epar e has been performed, the clock can be started immediately when
St art isissued. To achieve thiBr epar e preloads the buffers along the
communication paths of the controlled stream(s). If this operation is not
invoked, preloading is done implicitly as partSifart .

G ear () This operation clears the internal buffers associated with the controlled
stream(s).

Scal e(M S) The default value of the clock speed equald his operation changes the
speed of the clock t& when media timeéM is reached, i.e. it scales the
stream(s) controlled by the clock.

Lock( O This operation locks the clock for propagated operations of @pEhis
operation is only applied in the context of clock hierarchies.

Unl ock( O This operation unlocks the clock for propagated operations ofQype

_ Video c . C. Start(15)
Video Stream (E Video C. Scal e( 3000, 2)
Sourc Sink C. Hal t (5000)

Figure 3: Contolling a Mideo Steam

In the simple scenario shown in Fig. 3, cla@lcontrols the presentation of a 25 frames/sec
video streamlf we assume that clock attribuReequals 25, then play out is started with frame

15, the play out rate is doubled when the presentation reaches frame 3000, and the presentation

is halted after frame 5000 has been played out.
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5 CLOCK HIERARCHIES

In this section, we will introduce the notion of a clock hierare#ich is the basic abstraction
for grouping media streams, controlling groups of streams, and stream synchronization. The
principle idea of this concept has been introduced in [RoDe92].

Related media streams may be grouped by linking clocks in a hierarchical fashion. Remember
that a clock attached to a component controls the streams processed by this component. A num-
ber of streams can be grouped by linking their controlling clocks to a common clock, which then
controls the entire group. Stream groups can be grouped again to groups at a higher level simply
by linking their controlling clocks to the same clock. In the example given in Fig. 4, Cjpck
controls stream$§,; andS,, while C; controls$, andSs. Cg controls the subgroups represented

by Cg andC; as well as strear§;, and thus all streams in the given scenario can be started,
halted or scaled collectively by means of this clock. SGweva supports arbitrarily structured

clock hierarchies, any type of hierarchical grouping of media streams is possible.

S5 C; C;

Figure 4: Gouping Steams

A clock operation issued at a clock not only influences this clock but the entire (sub)hierarchy
of this clock. Conceptuallyan operation called at a clockpisopagatedin a root-to-leaf direc-

tion through the clock’ (sub)hierarchywhere it is performed at every clock in this hierarchy
That is, an operation invoked at a clock is not only performed at this clock but also at every
descendant clock in the hierarcly general, clock operations can be issued at every level of
the clock hierarchyif operationSt ar t is issued aCg in the example depicted in Fig. 4, this
operation is propagated @ andC,, which causes strearBgandS, to be started. All streams

in the depicted scenario are starte®tifar t is invoked atCg instead. Propagation is a pre-
requisite for component nesting, as will be seen in Sec. 7. Compound components may contain
clock subhierarchies which are invisible for the composemitside world.

In some scenarios, it is desirable to lock clock subhierarchies in order to prevent propagation.
For that purpose, clocks may loeked andunlocked. If a clock is locked, propagation of ope-
rations issued at ancestor clocks does not take place in thesdkdab)hierarchyNote that only
operations propagated from a locked clsclhcestors are locked out, while all operations
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issued at the locked clock itself or one of its descendant clocks are performed and influence the
hierarchy in the usual wajPropagation is enabled again only when the clock is unlocked.

Locking is done in an operation-specific maniech lock is associated with a certain type of
clock operation and only locks out operations of this type. In other words, a lock defines an ope-
ration-specific filter This is especially useful in those scenarios, where multiple clients are
involved in the same application and hence clock hierarchies typically cover several client
domains. Here, locking provides a means to shield clock subhierarchies located in a given client
domain from propagated clock operations originated in some other client domain. Conse-
guently by locking clocks a client can dynamically control which types of propagated opera-
tions may influence the data streams in his or her domain.

Clocks may be linked in two dérent ways: a link may establish eithexaatrol or asynchro-

nization relationship between two clocks. A control relationship between two clocks enables
the propagation of clock operations without synchronizing the two clogkscally, control
relationships are defined in settings, where groups of streams are to be controlled collectively
and a rather loose temporal coupling of the grouped streamdicsesif A synchronization
relationship goes a step furthér addition to propagation, it ensures that the involved clocks
progress in a synchronized manner

In Cinema, stream synchronization is specified by means of sync relationships between clocks.
From the clock condition introduced in the previous section directly follows that two streams
are synchronized if their controlling clocks are synchronized. In the example shown in Fig. 4,
streamsS; andS; are played out synchronouslydf andC, are synchronized. This synchroni-
zation requirement can be specified by a sync relationship betWeamdCg as well as one
betweenC, andCg. An alternative way to express the same is to define a sync relationship
directly betweerC,; andC,.

Clocks provide individual media time systems, which may relate to each other in various ways.
Clock synchronization and propagation of clock operations (as will be seen below) is done on
the basis of so-calleteference points A reference point defines the temporal relationship of
two media time systems. More preciseBference pointd, : P4, C, : P,] defines that media
time P, in C;’s time system corresponds to media tiPgen C,'s time system, which means
thatP; andP, relate to the same point in real-time (see Fig. 5). Given this reference point, media
time can be transformed from one time system to the other as follows:

R

m, = (m,-P,) D—Z —2+P, (E2)
1

After having introduced the basic principles, we can now take a closer look at clock hierarchies.

A clock hierarchy is a directed tree structure where the nodes are clocks and the edges represent
control or sync relationships between clocks. The same hierarchy may contain control as well
as sync edges. Eaeldgeis associated with the following attributes:

* Type of the edge which is eitheontrol or sync

» Areference point which defines the temporal relationship between the clocks linked by this
edge.
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* A skew attribute ([StEn93], [AnH091]) which describes the tolerated deviation from the
temporal relationship defined by the reference point. This attribute is only specified for sync
edges.

« A delay attribute that specifies how long an operation propagated along this edge is to be
delayed. In the example shown in Fig. 4 stre&asndS; are started 3 seconds later than
the other streams if tH&t art operation is delayed by 3 seconds while propagated from
Cg to C,. Obviously the provision of this delay attribute enhances the flexibility of our
scheme substantiallifor the sake of simplicityve will assume a zero delay in the follow-

ing examples.
my P
I l I I ' I I —» C;
4 ¢Reference Point [C: P;, G 1 Py]
i J I I I I - C
m, = Trans(G, C,, my) P, 2

Figure 5: Transforming Media ime

Before describing the semantics of control and sync edges more pregeshive to introduce
function Trang(C;, G, my). In a given clock hierarchyhis function transforms media tinne
from Cj’s toCj's time system according to equation E2.

5.1 Control Relationship

The semantics of a control edge that is directed from a clocki,;s&y another clock, sa@,,
and is associated with a reference pBiRtis defined by the following rules:

1. Each clock operation issued @ is propagated t&,’'s subhierarchy provide@, is
unlocked.

2. Whenever a clock operation is propagated, its media tignarents are automatically
transformed fronC,’'s toC,’s media time according to reference p@ift That is, agu-
mentmin a propagated operation is transformediremgC,, C,, m)

3. Each clock operation can be issued at any clock in the control hierarchy

4. An Start operation issued at clod® may be performed immediately independent of
C,'s value or statdi¢king orsilenf. That is,C,.St ar t (m) startsC, immediately with ini-
tial clock valuem.

3 No guarantee is given that a clock operation and its propagated ones are performed at the same point in real-
time. Howeverthey are performed at “approximately” the same time; what this means in practice mainly
depends on the underlying implementation of the control mechanism.
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It is important to point out that control hierarchies only allow for a very loose coupling of
streams. Although a control hierarchy includes reference points defining the temporal relation-
ship between streams, this information is not used to keep the controlled streams synchronized.
Reference point information is considered only when clock operations are propagated. In par-
ticular, it is used to automatically transform operatioguanents from one media time system

to anotherFor example, when a group of streams is started, the stre@dia start times con-

form to the reference points defined in the corresponding control hier&totwever after a
hierarchy has been started, its clocks may drift out of synchronization in an uncontrolled man-
ner. Clocks in a hierarchy may drift, for example, if they are based &areatit physical time
systems (e.g., system clocks or device-internal clocks). Morgaveontrol hierarchies, each
clock may be manipulated without considering the state and value of the parent clock. For
example, two dierent subhierarchies of the same hierarchy may be scaletkiredifways, or

clocks in the hierarchy may be halted and continued at any later time with arbitrary start values.

Due to the fact of potentially drifting clocks, fdifent semantics are conceivable for operations

Hal t andScal e. If, for exampleC. Hal t (Now) is performed, then all streams controlled by

the clocks in & subhierarchy are halted immediately bec&lme- by definition - corresponds

to the current time in each media time syster@.Hal t (30) is specified instead, the féifent

clocks may reach the equivalent of 30 in their media time systemdeatdifpoints in real-

time. One reasonable semantic of the operation is to pause all streams when the first clock
reaches the given halting time. Due to space limitations, a detailed discussion of this subject is
out of the scope of this paper

5.2 Sync Relationship

A sync edge is directed from a clock, $ay to another clock, sa@,. The edge is associated
with a reference poirRPand a skew attribute Its semantics is defined by the following rules:

1. Each clock operation issued @f is propagated t&,’'s subhierarchy provide@, is
unlocked.

2. If C,isticking, both clocksC; andC, are progressing in a synchronized majweere the
sync relationship is defined by reference pBiRtand the skew attribute More precisely:
Assume thatSetdenotes the set of real-time intervals during wiighs in theticking
state. TherC, andC, are defined to be synchronized if

HrdisetdtUl: Co(t)y=mpy 0 Cy(t) = TranyCy, Cqy, Mp) £ S,
whereC(t) denotes the value @ at timet.

3. ExceptScal e each clock operation can be issued at every clock in the sync hierarchy
Scal e can be issued at the root clock gmlg. only the entire hierarchy can be scaled.

4 For the sake of simplicityve assume the skew to be symmetric. Extending the scheme to asymmetric skew
specifications is straight forward.
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4. OperationSt art can be issued &, only if C; is in the ticking state. In order to ensure
clock synchronization, the start @ has to be synchronized with the progres€gb
media time:C,.St ar t (m) is delayed untiC,’s clock value equalfranyC,, C;, m). An
alternative way of startinG, is to specify start timblowin operatiorSt ar t . In this case
C, is started immediatelpay at real-timg with clock valuelranygC,, C,, m), wherem
is C;’s clock value at time

5. A sync hierarchy may contain at most one master clock, which must be the root of the hier-
archy

Sync hierarchies are a general and very powerful concept to specify arbitrary synchronization
requirements between media streams. The structure of the sync hierarchy specifies which
streams have to be synchronized, whereas the reference points in the hierarchy define how
streams have to be synchronized, i.e. how the temporal dimension of the streams relate to each
other

The system guarantees that all streams controlled by the clocks in the sync hierarchy are pro-
cessed (e.g., played out) in a synchronous mammecessing is started by issuing operation

St art at the root clock of the sync hierarcidylocked subhierarchy can be started later by
issuingSt ar t at the subhierarchy’root clock. The start of this subhierarchy is performed in
conformance with the temporal constraints specified by the entire sync hierBinehgame

holds if a subhierarchy is halted and started once again at a later point in time. As will be seen
later, sync (and control) hierarchies may dynamically grow and shrink even if clodkskarg.

This feature together with the capability of locking, halting and starting individual subhierar-
chies is very important in interactive applications, especially in those where multiple clients
with their individual needs participate in the same (CSCW) application.

Cj@sync RP[5,5] ]
v, L] Cs| Client,
C
© ynG
v L 1 RP[5,5 _
2
C synG RP[5,5]
& ‘
control, :
C, [5,500] Client,
Vs [ ]

Figure 6: A Simple dle-Cooperation Scenario

5.3 Example

Fig. 6 shows a simple tele-cooperation scenario with two clients. The subject of the cooperation
is an experiment shown in vid&. We assume that extra speech channels exist that allow the
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clients to talk to each othefhe two clients commonly vieW, and discuss the experiment
while they follow the presentationoensure that both clients see the same information at the
same timeY, must be played out synchronously at both client sites. Begjdetent 1 views
videoV;, which shows the same experiment from ed#nt perspective. Consequentty and

V, are to be synchronized. Client 2 additionally views vidgowhich shows a similar experi-

ment. Since the two experiments roughly correspond to each other in their temporal dimension,
V; andVj3 are grouped by a control relationshipe \Assume that media time 500Mgcorre-

sponds to media time 5 M. If we assume that media time is equivalent to frame numbers,
frame 5 of videdV, corresponds to frame 500 of videg while frames 5 of all other videos
correspond to each other

The presentation of all video streams can be started by isSuarg at clockCs. Moreover

this clock can be used to collectively scale, pause and restart the entire configuration. Client 1
may pausé/; orV, by haltingC, or C,, respectivelyHalted clocks may be continued in a syn-
chronized fashion, i.e. after restart@f, for example, the presentation\¥f is not only syn-
chronized withv, but also withV,'s presentation at the site of client 2.

SinceCz andC, are linked with a control edg¥z can be scaled, paused and restarted at any
position independent &f;’s andV,'s state of the presentation. So, the presentstjaan be
adjusted manually as needed. At client site 2, hallipgnplies pausing/s's presentation. If
this is to be avoided;, has to be locked fdral t operations. Note th&cal e operations
issued aCs, for instance, are then still propagatejo

If another client desires to join the scenario while cooperation already takes place between client
1 and client 2, the clock hierarchy has to be extended dynamisafiyme that the new client

needs to view, only. After the corresponding session has been established, the clo€lg, say
controllingV,'s presentation at the site of the new client is linked by means of a sync edge hav-
ing a reference point [5,5] to clo®s. When the new client is ready to participate in the
cooperation, it issuesg. St art (Now) to startV,'s presentation synchronous to the ongoing
presentations at the other sites. When a client desires to leave the scenario, the clocks controlling
his or her streams have to be removed from the clock hierarchy

6 CLOCKS AT SOURCE COMPONENTS

So far we only considered clocks attached to sink components. The mixer scenario illustrated
in Fig. 7 also gives the motivation for having clocks attached to source components. In general,
substream§,;, S, andS; may have individual start values. For example, if threferdint sub-
sequences of a stored video clip are to be mixed togdhleestart values dédr from sequence

to sequence. Howevewith a clock at the sink component grityis impossible to specify indi-

vidual start values for multiple sources. The solution to this problem is obvious, a clock is
attached to each source component, which then can be started with an individual start value.

As mentioned earlierclocks at source components are optional. In a configuration without
source clocks, the start of processing of source components is implicitly triggered by starting
the corresponding sink clock, where the start value is determined at the sink clock. Hawever
soon as a clock is attached to a source component, processing must be enabled explicitly by
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starting the attached clock. It is important to point out$hair t issued at a source clock only
enables start of processing rather than starting the clock immedigtelynoment when the
clock is actually started is mainly determined by the underlying control and communication pro-
tocols.

Like sink clocks, source clocks may be nodes in clock hierarchies. In contrast to sink clocks,
however source clocks may never be involved in a sync relationship. This is due to the fact that
synchronizing a source clock with some other clock makes no sense with regard to stream syn-
chronization or even is impossible in various cases.

Cy contmol, RP[0,20]

Cl:lo—>§|jo—>o|:|
3 sink
%A: |
sources

Figure 7: Clocks at Soae Components

In the scenario of Fig. 7, cloek, is the root of the control hierarchhenSt ar t is issued at

C,, this operation is propagated to clogksandC,. During propagation, the specified start
value is transformed according to the reference points associated with the control edges. If the
start value specified &I, is 0, clocksC, andC, are started with values 20 and 80, respectively
Since clockC; is not part of the control hierarchihas to be started explicitlifor example, it

may be started later when the client decides toSgdd

The scenario in Fig. 8 combines sync and control edges. Assume that Se8nandS; are
(stored) video streams with a rate of 25 frames/sec and that clock afXib@® for each clock.
Further assume that media times 20, 80 and 180 86 andS;, respectivelycorrespond to the
same point in real-time. The depicted configuration nmsesdS, and synchronizes the output
of the mixer withS;. The entire configuration is controlled by claCk i.e. the whole process-
ing can be started, paused, scaled by issuing the corresponding operations@j. clock

1 Cs Start (0)
2 C3. Scale (2000, -2)
3 GCg. Halt (0)

The presentation is started at media time 0, which corresponds to start values 20, 80 and 100 at
C,, C, andCy, respectivelyAfter 2000 frames have been played out, the presentation is con-
tinued in reverse order and double speed.

Looking at the scenario in Fig. 8, we can indicate two points in the configuration where stream
synchronization is required. Not onB§ andS, have to be synchronized but alSpandsS; if

mixing requires synchronized input streams. The temporal relationship beSyveern S,

which defines how these streams are to be synchronized, is specified by reference point [20,80].
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Whether or not a component expects synchronized input streams can be derived from the com-
ponents attributes. These attributes together with the sync edges specified by the client are used
by Cinema to find out where in a given configuration stream synchronization is to be performed.

C, control, RP[0,20]
contol, S Cs
RP[20.80] CD\ S

S, synG RP[0,100]
A

]
Figure 8: A Scenario with Cordland Sync Edges

7 NESTING OF COMPONENTS

In many areas, nesting has turned out to be a very powerful concept for building higher levels
of abstractions. As mentioned earligr Cinema more complex components can be composed
from other components just by linking input and output ports. Compound components again
may be used to build other compound components on even higher levels of abstraction, i.e. arbi-
trary nesting levels are supported.

In the context of synchronization, nesting means that clock hierarchies may be defined within
compound components and thus remain invisible for the components’ outside world. A clock
hierarchy of a compound component is defined at the time the component is composed and spe-
cifies synchronization and control relationships between the streams processed by this compo-
nent. In particularthe internal clock hierarchy of a component specifies sync and control edges
between the clocks defined within this component. In addition to the clocks attached to its inter-
nal components, a compound component may also contain unattached clocks.

A compound component may contain one or more clock hierarchies. (Note that a hierarchy can
consist of a single clock on)yThe roots of the internal clock hierarchies are exported and thus
become visible to the componentutside world. The exported clocks are attached to the com-
ponent and are used to control the comporesiteam processing, i.e. they are used to start,
pause or scale the streams processed by the component. Of course, exported clocks may again
be involved in clock hierarchies at higher levels of abstraction.

The compound component shown in Fig. 9 provides the abstraction of a television set, capable
of playing out a video stream and two audio streams in a synchronized fashion. The shown com-
ponent contains two basic components, a video decompression com@reamd & sink com-

ponent implementing a video output windoW)( In addition, it includes another compound
component which consists of two filter componeffsand two speaker componen$. (The

nested compound component provides the abstraction of an audio output device, whose opera-
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tion is controlled by clock,. The TV component exports clo€k which is used to start, pause
or scale the audio-visual output.

In summary compound components may contain arbitrary complex clock hierarchies, which
are invisible from the clierd’point of view The operations issued at an exported clock are pro-
pagated through the clock hierarchy and thereby control the internal processing of the exporting
component.

C,
Video>
T
Audio 1 2
——a—a{F} {3
dio 2 (@ ' [SYNC
AudioZd 4 {Fp  »dS]

Figure 9: Nested Components

8 IMPLEMENT ATION OF CLOCK HIERARCHIES

8.1 Synchponization Architecture

The abstraction of clock hierarchies has been developed @nthe system, which provides

a development platform for distributed multimedia applications. In partjcilama supports

the configuration of distributed applications, resource management as well as communication
and synchronization of multimedia streams [RBH94].

The main concepts of the synchronization architectu@neiia are depicted in Fig. 10. Its three
layers provide the following functionality:

Clock Management Layer. This layer implements the abstraction of clocks and clock hierar-
chies and provides a programming interface which allows clients to create, manage and access
clock hierarchies. This layer will be described in detail below

Control and Synchionization Layer: This layer implements the actual synchronization and
control protocols. The major conceptsenéd by the Control and Synchronization Layer (CS
Layer) are stream groups and controllers. Streams whose play-out is to be synchronized are
grouped into so-called stream groups. Each group is associated with a controller module which
is responsible for synchronizing and controlling the streams of this group. In parttcffars
operations to create and delete stream groups, to add streams to and remove streams from exist-
ing groups, and to prime, start, halt, scale and lock a set of streams, where the specified set of
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streams may be a subset of a group. The stream groups may consist of one or more members,
where the same operations can be used to control individual streams and multi-member groups.

The temporal parameters of the CS operations are based on a uniform time system which is
called CS time system. For this time system it is assume&#&t1 When a stream is intro-

duced to the controllethe latter is supplied with the information needed to map CS time to the
stream$ media time.

Internally, controllers interact with so-called agents according to a synchronization protocol.
Whereas controllers handle stream groups, agents represent and control individual data streams.
The agents’ interface and functionality strongly depend on the synchronization protocol
applied. Our architecture is extensible in the way th&trdift types of synchronization mech-
anisms can be “plugged in” withoutf@fting the generic controller interface.

Client(s)
A
Clock Management Layer C?/%\C?
Controller
Control and
Synchronization Synchronization \
Layer ; Protoco \
Agent Agent
Data

Stream Layer | > |
Source Sink

Figure 10: Distributed Syncbnization Service Ahitectue

For synchronizing data streams we have developed the Adaptive Synchronization Protocol
(ASP) [RoHe95]. ASP supports distributed sinks and sources and is highly adaptive in terms of
the applied synchronization strategy (e.g., shortest delay versus best stream quality).

Stream Layer: This layer provides the basic functionality for transmitting continuous data
streams. In particulait includes mechanisms for resource reservation, real-time scheduling and
buffer management. For more details refer to [HNR95], [Bart94], [Derm94].

In the next subsection, we will concentrate on aspects of the Clock Managementri_pger
ticular, we will describe how distributed clock hierarchies are realized and clock operations are
mapped to the corresponding CS Layer functions.
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8.2 Management of Clock Hierachies

In Cinema, clock hierarchies may be distributed among multiple nodes of a computer network.
Clocks are global objects which are identified by globally unique names. A client may access
local and remote clocks by calling the clocks’ operations, where proxy objects [Shap86] trans-
parently provide access to remote clock objects. Clocks may even be shared by multiple clients
in order to cooperatively control applications. Howewaechanisms for synchronizing the
access of concurrent clients are out of the scope of our implementation, and hence must be pro-
vided by the application. A clock attached to a component is located at the congpaondef’
whereas all other clock objects are local to their creators.

Before describing our implementation, we have to introduce some terminAlatpck hierar-
chy may contain any number of so-calsehc-subhierarhies which are spanned by the clock
hierarchys sync edges. The root clock of a sync-subhierarchy is lterdoot clock which
has no ingoing but at least one outgoing sync edge. In the example depicted Intkege is
one sync-subhierarchy consisting of clo€ksCs, C, andCs, whereC, is the sync-root clock.

{12(S)} { 12(Sy) } { 12(S9) } €) {17[5]1}
Figure 11: Example Clock Hierahy

Clocks attached to components define the temporal characteristics of the data streams consumed
by these components. These clocks, which define the media time system of individual data
streams, are callestream clocksNote that the leaves in the clock hierarchy are always stream
clocks, but not vice versa. Stream clocks may be part of a sync-subhierarchy or indg+ be
pendenti.e., anndependenstream clock has neither an ingoing nor an outgoing sync edge. In
our example in Fig.1, all shaded clocks are assumed to be stream clocks, where a stream clock
C; is attached with strea®. In the depicted hierarchgnly Cqg andC; areindependenstream

clocks.

Let us briefly sketch the mapping of clock hierarchies to the concepts provided by the CS Layer
Rememberthe major abstraction of the CS Layer are stream groups, consisting of one or more
streams. Since all streams belonging to the same sync-subhierarchy must be played out in a syn-
chronized mannethey constitute a multi-member stream group at the CS Layer interface. In
contrast, each stream attached tinalependenstream clock can be played-out independently

of any other stream, and thus forms a single-member stream group. For each stream group there
exists one controller function which is responsible for controlling the group menpibeey-out.
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Clearly, all operations concerning the streams of a given stream group must be directed to the
group’s controllerIn our example in Fig.1l, we can indicate single-member groups for streams
S andS; and one multi-member group consisting of stre&n$, andSs.

From the clients’ point of viewclock operations are propagated in a root-to-leaf direction
through the clock hierarchWhile this is a simple and powerful model for the client, our imple-
mentation of clock hierarchies internally works without propagation of clock operations in order
to avoid unnecessary message overhead. Each clock in the hierarchy collects information about
its subhierarchy during an initialization phase. After this phase, each clock in the hierarchy
knows all streams attached to the stream clocks in its subhieraechyhe clock knows all
streams that may befa€ted when one of its operations is issued. Moreavenows the iden-

tity of the responsible controller for each of these streams. When a clock operation is issued, the
clock maps the operatiantemporal parameters to CS time, and then sends the codegpon

CS Layer requests directly to the responsible controllers rather than propagating the clock oper-
ation to its descendants.

Now, we will consider initialization in more detail. The initialization process proceeds in two
phases. While in the first phase, controllers are assigned to sync-subhierarcimds@artient

stream clocks, the second phase derives stream groups from the structure of sync-subhierarchies
and supplies each clock with the necessary information about its descendants. For the sake of
simplicity, we will consider static clock hierarchies only when describing our algorithm below
although our implementation is also able to handle dynamic hierarchies.

During thefirst phase of initialization, Initialize requests are propagated in a root-to-leaf
direction through the entire clock hierarci@ontrollers are assigned bydependenstream
clocks and sync-root clocks onl/hen a sync-root clock receiviestialize, it assigns a (local)
controller function to its sync-subhierarcfiyne stream group will only be defined in the second
phase of initialization, in which the clock acquires the knowledge about the members of this
stream group. The identifier of the assigned controller is included inl pdichize messages
propagated to a clock of this sync-subhierarelmgl hence each of these clocks will eventually
learn about this controller

When arindependenstream clock receivésitialize, it assigns a (local) controller and requests

this controller to establish a (single-member) stream group. It does so by defining a group at the
controllers interface where it delivers a descriptor of the closkieam. Then it forwards the

I nitialize message to its subordinates if existing.

Additionally, in the first phase of initialization the reference points in each path of the clock hier-
archy are aligned as shown in Fig. 12. Remen@exference point defined between two clocks
consists of two reference times, one for each clock, where both reference (media) times corre-
spond to the same point in real-time. Ehaiialize request includes the sentealigned refe-

rence time, the receiving clock aligns its reference time with the one included in the request
according to equation E2. Consequerdliyer phase 1, the reference times of all clocks in the
hierarchy correspond to the same point in real-time. By convention the CS time system assumed
by controllers is aligned with reference time zero. Having reference points aligned this way has
the great advantage that CS time can be easily mapped to any time system in the clock hierarchy
and vice versa with the knowledge of the time systaatigned reference time and RandS
parameters.
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After the first phase of initialization, each stream clock knows the controller responsible for its
stream, where all clocks belonging to the same hierarchy assume the same cdninatarer
independenstream clocks have already established (single member) stream groups for their
streams, and finallyeach stream clock has set up a so-called stream descriptor containing the
following information:

» the identifier of the clock’stream which is meaningful for the CS Layard

* temporal parameters of the clock including the clo&andS parameters as well as its
aligned reference time.

In our example depicted in Figl lafter phase 1 controllers | andl; have been assigned by
clocksC,, Cg andC-, respectivelyFurthermore, the controllers assigneddgyandC; have
already established single-member groups for str&rasdS;.

210 210

| | - C; | | ' - C;
20 21¢ RP[C;:210,C,:21] RP[C1-210,Cz-21]¢ 21
I ' . i C, - —| I - C,
RP[C,:20,C3:2] RP[Cy:21,C5:2.1]
C 2.1
| | > &3 | | = Cs
RP[C3:2.1, CS Tme:0] ¢
| I . |_p CSTime

Figure 12: Alignment of Refence Points

During phase two of the initialization protocol, stream information is propagated in a leaf-to-

root direction. For the purpose of collecting stream information, each clock in the hierarchy
maintains a so-callednownGoupsset. A set of this type may contain any number of group
descriptors, each of which consists of a set of stream descriptors. Each group descriptor is asso-
ciated with the identifier of the controller controlling the specified stream group.

Initially, theKnownGoupsset of a stream clock contains a single group descrit stream
group only has a single memp#re descriptor of the clock'stream, and it is associated with
the identifier of this streamcontroller The included group descriptor is markesnpletdaf the
stream clock isndependentand is markechcompleteotherwise. For all other clockaown-
Groupsis initially empty In our example illustrated in Figl lwe will use the notatiofS;,..,S)

to denote amcompletegroup of streams being controlled by controllevhereas the notation
I[S;,..,S] is used to denoteompletegroups. In our example, the groups with an underscore
show the initial values of the stream clocKsiownGoupsset.

A leaf clock answers amitialize request by sending Bone message including itsnown-
Groupsset to its superior clock. Whenever a non-leaf clock receixmna message from a
subordinate, it includes the group descriptors contained in the received message into its local
KnownGpoupsset. After having received@one message from each subordinate, itgaerall

group descriptors markadcompletein its KnownGoupsset which results in a singiecom-
pletegroup descriptofThe succeeding actions depend on the ctoake.
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If the clock is not a sync-root clock, it just transfei3a@e message encompassing the cleck’
KnownGpoupsset to its superior if existing. If, howeyére clock is a sync-root clock, the group
descriptor markethcompletein its KnownGoups sayG, identifies all streams attached to the
clock’s sync-subhierarchyfo establish the corresponding stream group, the clock requests the
(local) controller associated with to define a stream group, where the controller is supplied
with the stream descriptors included @ The clock then mark& complete includes its
KnownGpoupsset in theDone message and transfers this message to its superior clock if exist-

ing.

Initialization ends when the root of the clock hierarchy has recé&opg messages from all
subordinates and has finished its local processing. After that, all stream groups of the hierarchy
have been defined and established by controllers of the CS Eay#rermore, each clock in

the hierarchy knows from itKknownGoupsset all stream groupsdgmpleteor incomplete

defined by its subhierarchgnd for each of these stream groups it knows the responsible con-
troller. Consequentlywhen a clock operation is issued, the clock has all information available

to directly contact the controllers of thdeated data streams (for more detail see below).

Fig. 11 shows th&nownGoupsset for each clock in the hierarcfiyne root clock for example,
can derive from its set that streaBysS, andS; are synchronized by controllerand streams

S andS; are controlled byg andl;, respectivelyConsequentlyit knows all streams that are
affected by a clock operation as well as the controllers responsible for these streams.

After initialization, clock operations can be issued at the clocks of the hier&lvtieyn an ope-

ration is issued, a clock first transforms the temporal parameters of this operation to CS time by
applying equation E2. Then it requests the corresponding controller operation for each stream
group specified in it&knownGoupsset. The request sent for a stream group is destined to the
congoller associated with this group and includes the identifiers of the streamsgramp-

bers.

In requests issued to controllers, all temporal parameters, such as the start values of streams, are
given in CS time. Since a controller stores for each stream it controls the stdesariptqrit

has all information available to internally map CS time to the time systems of the individual
streams.

Finally, we will briefly discuss the communication cost of the proposed implementation of clock
hierarchies. The initialization protocol requi®®-1) messages, wheredenotes the number

of clocks in the hierarchyn the worst case, two messages are needed to map a clock operation
to a controller call for a given stream group. The worst case occurs only if the client accesses a
remote clock, and this clock and the controller reside derdiit sites. Howevewe expect that

in most cases clients access local clocks. Remember that stream clocks are local to the end-point
of their streams, whereas all other clocks are local to their creators. Moneevexpect that

the majority of clock operations is issued at sync-root clocks andegiendenstream clocks,

whose associated stream groups are controlled by local controller functions. The message over-
head for controlling and synchronizing the stream groups in the CS Layer depends on the
applied synchronization and control protocols (see [RoHe95]).

5 Note that the stream groups describeldnownGoupsmay beincompleteThat is why stream identifiers have
to be included in controller requests.
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9 SUMMARY

The abstractions proposed in this paper provide for controlling and synchronizing groups of
continuous media streams. Clock hierarchies can be used to specify nested groups of streams,
where each clock in the hierarchy identifies and controls a certain (sub)group of streams. By
means otontrol andsyncedges in clock hierarchies, an application can specify its individual
control and synchronization needs in an uniform.Wéne capability of locking subhierarchies

as well as the possibility of dynamically growing and shrinking clock hierarchies are important
features in the context of interactive applications, especially in those supporting collaborative
work. Clock hierarchies in conjunction with component nesting provide a powerful means for
the simple composition of complex components at higher levels of abstraction. As the compu-
tation model underlying the proposed abstractions is very general and has various similarities
to others, the results reported in this paper are applicable in a rather broad scope.

The reported work has been conducted in the context Qinbea project. The implementation

of theCinema prototype is in progress. The first version of the proposed architecture of the syn-
chronization management is operationad. Wge the prototype to gain more practical experience
with the proposed abstractions. Although the abstractions have been applied to model a great
variety of application scenarios, we need to conduct extensive experimentation with applica-
tions in the field to verify the practical value of the work.
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