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Abstract
Synchronization plays an important role in multimedia systems at various levels of abstraction. In this paper, we
propose a set of powerful abstractions for controlling and synchronizing continuous media streams in distributed
environments. The proposed abstractions are based on a very general computation model, which allows media
streams to be processed (i.e. produced, consumed or transformed) by arbitrarily structured networks of linked
components. Further, compound components can be composed of existing ones to provide higher levels of
abstractions.

The clock abstraction is provided to control individual media streams, i.e. streams can be started, paused or
scaled by issuing the appropriate clock operations. Clock hierarchies are used to hierarchically group related
streams, where each clock in the hierarchy identifies and controls a certain (sub)group of streams. Control and
synchronization requirements can be expressed in a uniform manner by associating group members with control
or sync attributes. An important property of the concept of clock hierarchies is that it can be combined in a natu-
ral way with component nesting.

1 INTRODUCTION

Powerful programming abstractions are a prerequisite for an effective and efficient application
development. Application-specific abstractions are typically provided by development plat-
forms, often referred to as middleware. In the context of multimedia, those platforms close the
gap between the operating system and the communication system on the one hand and the spe-
cific needs of distributed multimedia applications on the other hand. The CINEMA (Configurable
INtEgrated Multimedia Architecture) system [RBH94], which is under development at the Uni-
versity of Stuttgart, is a platform providing system services for the configuration of distributed
multimedia applications and the communication and synchronization of multimedia informa-
tion in distributed environments.

Multimedia synchronization can be considered at different levels of abstraction [MES93]. We
will focus on the control and synchronization of groups of continuous media streams, such as
digital video and audio streams. Media streams themselves may be regarded at different abstrac-
tion levels. At the transport level, a stream usually originates at a single source and ends at one
or more sinks. Further, sinks and sources are adjacent in the sense that each sink of the stream
consumes the data produced by the stream’s source. Therefore, at the transport level end-to-end
relationships are defined between “adjacent” entities connected by a transport connection. If
streams are considered at the application level instead, sources and sinks need not be adjacent
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at all. Application-level streams, which we will assume in this paper, may be processed by a net-
work of linked components. They may have multiple sources as well as multiple sinks, and each
path leading from a source to a sink may involve several intermediate components. Conse-
quently, at the application level an end-to-end relationship may cover any number of interme-
diate components as well as several transport connections at a lower level of abstraction.

We propose programming abstractions for grouping, controlling and synchronizing application-
level streams in distributed environments. Media clocks provide the basic abstraction for con-
trolling the flow of media streams, i.e. by issuing clock operations the controlled streams can be
started, paused or scaled as required. Related streams can be hierarchically grouped by building
up so-called clock hierarchies, where each clock controls either an individual stream or a group
of streams. Within clock hierarchies, two types of relationships can be defined for the members
of a stream group, acontrol or sync relationship. If thecontrol relationship is specified, the
members of the groups are controlled collectively without synchronization of the streams. If the
sync relationship is defined instead, the members of this group are processed (e.g., played out)
synchronously.

Media clocks and clock hierarchies provide a flexible and powerful abstraction for controlling
and synchronizing media streams in distributed applications. These abstractions are indepen-
dent of the underlying synchronization protocols. They allow for the specification of the appli-
cation’s synchronization needs on a rather high level of abstraction without making assumptions
about the applied control mechanisms. Clock hierarchies provide a uniform interface to diffe-
rent synchronization protocols which may be used alternatively. In CINEMA, we have imple-
mented, for example, a simplified version of the protocol proposed by Escobar et al. [EDP92]
and the Adaptive Synchronization Protocol described in [RoHe95].

Clock hierarchies allow for expressing complex relationships among distributed media streams.
Furthermore, dynamic changes of those relationships are supported. Both characteristics make
them a suitable basis for CSCW applications or for viewing (distributed) interactive multimedia
documents. For example, changes in the user community of a CSCW application require to add
or remove streams or alter synchronization relationships during run-time. Interactive viewing
of a document requires the flexibility to control groups and subgroups of streams depending on
user interactions.

An additional advantage of the concept of clock hierarchies is that it can be combined with com-
ponent nesting in a natural way. In order to provide higher levels of abstractions, more complex
components, so-called compound components, can be composed of existing ones. The internal
processing of a compound component is controlled and synchronized by means of included
clock hierarchies, which are an integral part of the compound components.

The remainder of the paper is structured as follows. The next section gives a brief overview of
related work, and then the computation model the proposed abstractions are based upon is
described in Sec. 3. We introduce the concept of a media clock in Sec. 4 and show how it can
be used to control individual streams. The concept of a clock hierarchy, which provides the
means for controlling and synchronizing groups of media streams, is presented in Sec. 5.
Whereas this section mainly considers clocks attached to sink components, Sec. 6 motivates and
treats clocks attached to sources. In Sec. 7, we discuss how the proposed abstractions can be
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applied in the context of component nesting, and then, in Sec. 8, describe how media clocks are
integrated in theCINEMA system. Finally, we conclude with a brief summary.

2 RELATED WORK

As stated above, streams can be considered at different levels of abstraction. Abstractions for
grouping and controlling transport-level streams are provided by the orchestration service
[CCGH92]. This service allows for grouping streams and coordinating the flow of (flat) groups
of streams. In particular, the streams of a group can be started and stopped collectively, while
the flow rate of the streams is regulated individually. The orchestration service itself does not
guarantee stream synchronization but offers a general regulation mechanism that can be used at
higher layers to implement different synchronization policies. On the same level of abstraction
is the concept ofchannel groups [GuMo93]. It allows to express relationships among real-time
connections with regard to resource sharing and jitter tolerance. The approach offers a network-
oriented interface. Synchronization is based on jitter-controlled channels instead of timestamps,
and hence is restricted to streams originating at the same node.

Various abstractions for controlling groups of application-level streams have been proposed in
literature. Some of these proposals apply to non-distributed environments only (e.g., IBM’s
Multimedia presentation manager [IBM992]). Others are tailored to specific configurations
(e.g., ACME [AnHo91] and Tactus [DNNR92]). ACME, for example, is an extension of a net-
work window system supporting streams of digital audio and video data. The clients of the
ACME server use the abstraction of a logical time system to control and synchronize the output
of a (flat) group of ropes. QuickTime [Appl91] in its current version provides a rich set of tools
for developing non-distributed multimedia applications. Several data streams can be grouped
together according to synchronization relationships to form multimedia documents, so-called
movies. The streams are played out synchronously. However, dynamic changes to pre-defined
documents are restricted to some operations (e.g., to muting a stream). In general, the document
has to be edited to change its contents. QuickTime’s run-time environment, upon which the
toolbox is based, provides more flexibility. It offers concepts to model temporal relationships
and implements a general timing service for a single node. However, this service provides low-
level support for the timed activation of functions without offering a uniform stream-oriented
control interface. An implementation of theCINEMA abstractions in a local environment could be
based on these services.

The Multimedia System Services proposed by the Interactive Multimedia Association [Hewl93]
are based on a very general computation model and provide a rich set of abstractions for grou-
ping and controlling media streams. The purpose of these services is to provide an environment
in which a heterogeneous set of multimedia computing platforms cooperates to support distri-
buted, interactive multimedia applications dealing with synchronized, time-based media. In this
environment, the abstraction of a group is used to group related media streams. Group objects,
which may include other group objects, provide an interface for controlling the streams belong-
ing to this group. This means that an entire group of streams can be started, paused or scaled by
issuing single operations at the group interface. However, the streams of a group are not syn-
chronized. In the current proposal, stream synchronization is not yet integrated in the group
mechanism. Moreover, component nesting is not supported.
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3 COMPUTATION MODEL

In this section, we briefly sketch the computation model ofCINEMA (for more details see
[RBH94]). The major concepts of this model are media streams, components, ports, links, ses-
sions and clocks.

A continuousmedia stream is defined to be a sequence of data units, each of which is associa-
ted with a media time stamp (e.g., see [Herr91]).Components are active entities that process
continuous media streams in various ways. We distinguish between source components, which
produce media streams, sink components, which consume media streams, and intermediate
components, which act as both producers and consumers. Components are associated with
typedports. While a producer writes stream data to its output ports, a consumer reads data units
from its input ports.

A client is the entity that establishes and controls an application. Applications are configured
by defininglinks between input and output ports of components. An example configuration
consisting of one intermediate component and three source and sink components is shown in
Fig. 1. This configuration mechanism has proven to be powerful and hence can be found in var-
ious other architectures as well (e.g., Conic project [MKS89], IMA [Hewl93], Quicktime
[Appl91], SUMO project [CBRS93], or the work done by Gibbs [Gibb91]). Following the nota-
tion introduced in [Hewl93], a configuration of linked components is calledflow graph.

While link objects are applied to define the topology of applications,sessions are the abstraction
for resource allocation. Media streams can be processed and communicated only after the cor-
responding sessions have been established. A session may comprise multiple sink and source
components and any number of intermediate components. For controlling the flow of media
streams an extra abstraction, the so-calledmedia clock, is provided. Media clocks are used to
start, pause, or scale media streams.

A unique feature ofCINEMA iscomponent nesting. In other words, basic components can be com-
posed to build more complex components, called compound components. Compound compo-
nents may again be constituents of other components, i.e. arbitrary levels of nesting are possible.
Compound components provide the means for building higher levels of abstraction on the basis
of existing components.

Figure 1: Example Application
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The computation model described above is rather general and has various similarities to other
architectures (e.g., IMA [Hewl93] or SUMO [CBRS93]). Therefore, the concepts presented in
the remainder of the paper are not only relevant in the CINEMA context but are applicable in a
rather broad scope.

4 MEDIA CLOCKS

The temporal dimension of continuous media streams is defined by so-called media time sys-
tems. The media time system associated with a stream is the temporal framework to determine
the media time of the stream’s data units. InCINEMA, media time systems are provided by media
clocks (or clocks for short). A clockC is defined as follows1:

C ::= ( R, M, T, S )

The clock attributes have the following meaning:

• R determines the ratio between real-time and media time:R time units in media time corres-
pond to 1 second in real-time.

• M is the start value of the clock in media time, i.e. the value of the clock at the first clock
tick.

• T is the start time of the clock in real-time, i.e. the real-time of the first clock tick.

• S determines the speed of the clock:S⋅R time units in media time correspond to one second
in real-time. Consequently, media time progresses in normal speed ifS equals 1. A speed
higher than 1 causes the clock to move faster, a speed less than 1 causes it to progress
slower, and a negative speed causes it to move backwards.

It should be noted that the temporal dimension of stored media is inherently bound, i.e. there
exists a lower and upper bound given by the media time of the first and last stream data unit. In
other words, media time for a given stream is only defined in a certain interval. The mechanisms
required to ensure that clock values stay within the defined time range are beyond the scope of
this paper.

Media time systems are a general concept to dimension media time in arbitrary ways. For the
following example, assume a (stored) video stream with a rate of 25 data units per second. If the
ratio R is 25, media time corresponds to frame sequence numbers. If the start valueM is 5,
stream processing is started with the 5th frame in the stream provided the lower bound of its
temporal dimension is 1. If, however, media time is counted in milliseconds,R is set to 1000. In
each case, ratioR defines the “normal” speed of media time, whereas attributeS can be used to
speed up or slow down the progress of media time.

1 The type of clock was proposed in [Herr91], where clocks were used to time the internal processing of data
streams. We will use media clocks in a totally different context. A clock is an abstraction used byclients to con-
trol the play-out of data streams and to express synchronization relationships between streams.
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A clock relates media time to real-time as shown in Fig. 2. Therefore, after a clock has been
started, media timem can be derived from real-timet:

Clocks are the basic abstraction for controlling the flow of media streams. As will be seen
below, clock objects provide methods for starting, pausing, or scaling streams. Clocks may be
attached to components.CINEMA allows arbitrarily structured flow graphs, which may consist of
any number of source, sink and intermediate components.A client ofCINEMAcan control the pro-
cessing of all components in the flow graph by starting, stopping and scaling the streams con-
sumed by the graph’s sinks. As a simple example consider a pipeline consisting of a video
source, some filter component and a video sink. The client may begin to play out the video just
by starting the media clock associated with the sink. Of course, starting the video presentation
requires not only the sink but also the source and filter component to be activated at the proper
time. From a client’s point of view, however, it suffices to control the video output by issuing
the appropriate clock operations at the sink component. Invisible for the client, these clock ope-
rations trigger internal control procedures that orchestrate and monitor the processing of the
entire pipeline. Clocks at source components are primarily used to enable and disable the output
of sources and to define start values for the outgoing streams. Clocks at intermediate compo-
nents are not needed, which simplifies stream control for clients significantly.2

Whereas clocks at source components are optional, they are mandatory at sink components. A
clock attached to a sink component controls the temporal progress of all data streams processed
(e.g., played out) by this component. This is expressed more precisely by the so-calledclock
condition: a data unit having media timem is processed at real-timet only if the controlling
clock is ticking and its value equals m at timet. Conceptually, this means that the presentation
of a stream is started, paused or scaled when the controlling clock is started, halted or the clock
speed is changed, respectively. The semantics of clocks at source components will be introduced
later.

As pointed out above, media time progresses relative to real-time. InCINEMA, real-time is taken
either from a local system clock, a global clock (e.g., see NTP [Mill89]) or is derived from the
temporal behavior of a given output device. Clearly, a media clock based on the timing of an
output device advances in conformance with the device’s natural rate. Those clocks are called
master clocks.

2 Synchronization relationships between streams consumed by the same intermediate component are defined as
part of the specification of intermediate components.

Figure 2: Mapping of Media Time to Real-Time
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Below, the most important clock operations for controlling streams are listed. A clock may enter
two states,ticking (and thus advancing) orsilent (and thus not advancing). The only clock ope-
rations that cause state transitions areStart andHalt. The former moves the clock from
silent to ticking, whereas the latter causes the reverse state transition.

Start(M) This operation starts the clock at media timeM. By starting the clock the con-
trolled stream(s) are started. (Clock attributeT is set to the real-time at which
the clock is actually started).

Halt(M) This operation halts the clock when it reaches clock valueM, i.e. the
stream(s) controlled by this clock are paused. A halted clock can be started
again by the operationStart.

Prepare(M) This operation prepares the event of starting the clock at media timeM. After
Prepare has been performed, the clock can be started immediately when
Start is issued. To achieve this,Prepare preloads the buffers along the
communication paths of the controlled stream(s). If this operation is not
invoked, preloading is done implicitly as part ofStart.

Clear() This operation clears the internal buffers associated with the controlled
stream(s).

Scale(M,S) The default value of the clock speed equals1. This operation changes the
speed of the clock toS when media timeM is reached, i.e. it scales the
stream(s) controlled by the clock.

Lock(O) This operation locks the clock for propagated operations of typeO. This
operation is only applied in the context of clock hierarchies.

Unlock(O) This operation unlocks the clock for propagated operations of typeO.

In the simple scenario shown in Fig. 3, clockC controls the presentation of a 25 frames/sec
video stream.If we assume that clock attributeR equals 25, then play out is started with frame
15, the play out rate is doubled when the presentation reaches frame 3000, and the presentation
is halted after frame 5000 has been played out.

Figure 3: Controlling a Video Stream
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5 CLOCK HIERARCHIES

In this section, we will introduce the notion of a clock hierarchy, which is the basic abstraction
for grouping media streams, controlling groups of streams, and stream synchronization. The
principle idea of this concept has been introduced in [RoDe92].

Related media streams may be grouped by linking clocks in a hierarchical fashion. Remember
that a clock attached to a component controls the streams processed by this component. A num-
ber of streams can be grouped by linking their controlling clocks to a common clock, which then
controls the entire group. Stream groups can be grouped again to groups at a higher level simply
by linking their controlling clocks to the same clock. In the example given in Fig. 4, clockC6
controls streamsS1 and S2, while C7 controlsS4 andS5. C8 controls the subgroups represented
by C6 andC7 as well as streamS3, and thus all streams in the given scenario can be started,
halted or scaled collectively by means of this clock. SinceCINEMA supports arbitrarily structured
clock hierarchies, any type of hierarchical grouping of media streams is possible.

A clock operation issued at a clock not only influences this clock but the entire (sub)hierarchy
of this clock. Conceptually, an operation called at a clock ispropagatedin a root-to-leaf direc-
tion through the clock’s (sub)hierarchy, where it is performed at every clock in this hierarchy.
That is, an operation invoked at a clock is not only performed at this clock but also at every
descendant clock in the hierarchy. In general, clock operations can be issued at every level of
the clock hierarchy. If operationStart is issued atC6 in the example depicted in Fig. 4, this
operation is propagated toC1 andC2, which causes streams S1 and S2 to be started. All streams
in the depicted scenario are started ifStart is invoked atC8 instead. Propagation is a pre-
requisite for component nesting, as will be seen in Sec. 7. Compound components may contain
clock subhierarchies which are invisible for the component’s outside world.

In some scenarios, it is desirable to lock clock subhierarchies in order to prevent propagation.
For that purpose, clocks may belocked andunlocked. If a clock is locked, propagation of ope-
rations issued at ancestor clocks does not take place in the clock’s (sub)hierarchy. Note that only
operations propagated from a locked clock’s ancestors are locked out, while all operations

Figure 4: Grouping Streams
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issued at the locked clock itself or one of its descendant clocks are performed and influence the
hierarchy in the usual way. Propagation is enabled again only when the clock is unlocked.

Locking is done in an operation-specific manner. Each lock is associated with a certain type of
clock operation and only locks out operations of this type. In other words, a lock defines an ope-
ration-specific filter. This is especially useful in those scenarios, where multiple clients are
involved in the same application and hence clock hierarchies typically cover several client
domains. Here, locking provides a means to shield clock subhierarchies located in a given client
domain from propagated clock operations originated in some other client domain. Conse-
quently, by locking clocks a client can dynamically control which types of propagated opera-
tions may influence the data streams in his or her domain.

Clocks may be linked in two different ways: a link may establish either acontrol or asynchro-
nization relationship between two clocks. A control relationship between two clocks enables
the propagation of clock operations without synchronizing the two clocks. Typically, control
relationships are defined in settings, where groups of streams are to be controlled collectively
and a rather loose temporal coupling of the grouped streams is sufficient. A synchronization
relationship goes a step further. In addition to propagation, it ensures that the involved clocks
progress in a synchronized manner.

In CINEMA, stream synchronization is specified by means of sync relationships between clocks.
From the clock condition introduced in the previous section directly follows that two streams
are synchronized if their controlling clocks are synchronized. In the example shown in Fig. 4,
streamsS1 andS2 are played out synchronously ifC1 andC2 are synchronized. This synchroni-
zation requirement can be specified by a sync relationship between C1 andC6 as well as one
betweenC2 andC6. An alternative way to express the same is to define a sync relationship
directly betweenC1 andC2.

Clocks provide individual media time systems, which may relate to each other in various ways.
Clock synchronization and propagation of clock operations (as will be seen below) is done on
the basis of so-calledreference points. A reference point defines the temporal relationship of
two media time systems. More precisely, reference point [C1 : P1, C2 : P2] defines that media
time P1 in C1’s time system corresponds to media timeP2 in C2’s time system, which means
thatP1 andP2 relate to the same point in real-time (see Fig. 5). Given this reference point, media
time can be transformed from one time system to the other as follows:

After having introduced the basic principles, we can now take a closer look at clock hierarchies.
A clock hierarchy is a directed tree structure where the nodes are clocks and the edges represent
control or sync relationships between clocks. The same hierarchy may contain control as well
as sync edges. Eachedge is associated with the following attributes:

• Type of the edge which is eithercontrol or sync.

• A reference point which defines the temporal relationship between the clocks linked by this
edge.

m2 m1 P1–( )
S2 R⋅

2

S1 R⋅
1

---------------- P2+⋅= (E2)
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• A skew attribute ([StEn93], [AnHo91]) which describes the tolerated deviation from the
temporal relationship defined by the reference point. This attribute is only specified for sync
edges.

• A delay attribute that specifies how long an operation propagated along this edge is to be
delayed. In the example shown in Fig. 4 streamsS4 andS5 are started 3 seconds later than
the other streams if theStart operation is delayed by 3 seconds while propagated from
C8 to C7. Obviously, the provision of this delay attribute enhances the flexibility of our
scheme substantially. For the sake of simplicity, we will assume a zero delay in the follow-
ing examples.

Before describing the semantics of control and sync edges more precisely, we have to introduce
functionTrans(Ci, Cj, mi). In a given clock hierarchy, this function transforms media timemi
from Ci’s toCj’s time system according to equation E2.

5.1  Control Relationship

The semantics of a control edge that is directed from a clock, sayC1, to another clock, say C2,
and is associated with a reference pointRP is defined by the following rules:

1. Each clock operation issued atC1 is propagated toC2’s subhierarchy providedC2 is
unlocked3.

2. Whenever a clock operation is propagated, its media time arguments are automatically
transformed fromC1’s toC2’s media time according to reference pointRP. That is, argu-
ment m in a propagated operation is transformed toTrans(C1, C2, m)

3. Each clock operation can be issued at any clock in the control hierarchy.

4. An Start operation issued at clockC2 may be performed immediately independent of
C1’s value or state (ticking orsilent). That is,C2.Start(m) startsC2 immediately with ini-
tial clock valuem.

3 No guarantee is given that a clock operation and its propagated ones are performed at the same point in real-
time. However, they are performed at “approximately” the same time; what this means in practice mainly
depends on the underlying implementation of the control mechanism.

Figure 5: Transforming Media Time

P1
C1

C2P2

Reference Point [C1 : P1, C2 : P2]

m1

m2 = Trans(C1, C2, m1)



5 CLOCK HIERARCHIES 11

It is important to point out that control hierarchies only allow for a very loose coupling of
streams. Although a control hierarchy includes reference points defining the temporal relation-
ship between streams, this information is not used to keep the controlled streams synchronized.
Reference point information is considered only when clock operations are propagated. In par-
ticular, it is used to automatically transform operation arguments from one media time system
to another. For example, when a group of streams is started, the stream’s media start times con-
form to the reference points defined in the corresponding control hierarchy. However, after a
hierarchy has been started, its clocks may drift out of synchronization in an uncontrolled man-
ner. Clocks in a hierarchy may drift, for example, if they are based on different physical time
systems (e.g., system clocks or device-internal clocks). Moreover, in control hierarchies, each
clock may be manipulated without considering the state and value of the parent clock. For
example, two different subhierarchies of the same hierarchy may be scaled in different ways, or
clocks in the hierarchy may be halted and continued at any later time with arbitrary start values.

Due to the fact of potentially drifting clocks, different semantics are conceivable for operations
Halt andScale. If, for example,C.Halt(Now) is performed, then all streams controlled by
the clocks in C’s subhierarchy are halted immediately becauseNow - by definition - corresponds
to the current time in each media time system. IfC.Halt(30) is specified instead, the different
clocks may reach the equivalent of 30 in their media time systems at different points in real-
time. One reasonable semantic of the operation is to pause all streams when the first clock
reaches the given halting time. Due to space limitations, a detailed discussion of this subject is
out of the scope of this paper.

5.2  Sync Relationship

A sync edge is directed from a clock, sayC1, to another clock, sayC2. The edge is associated
with a reference pointRPand a skew attributes. Its semantics is defined by the following rules:

1. Each clock operation issued atC1 is propagated toC2’s subhierarchy providedC2 is
unlocked.

2. If C2 is ticking, both clocks C1 andC2 are progressing in a synchronized manner, where the
sync relationship is defined by reference pointRPand the skew attributes. More precisely:
Assume thatISet denotes the set of real-time intervals during whichC2 is in theticking
state. ThenC1 andC2 are defined to be synchronized if

∀ Ι ∈ ISet∀ t ∈ I : C2(t) = m2 ⇒ C1(t) = Trans(C2, C1, m2) ± s,
whereC(t) denotes the value ofC at timet.4

3. ExceptScale each clock operation can be issued at every clock in the sync hierarchy.
Scale can be issued at the root clock only, i.e. only the entire hierarchy can be scaled.

4 For the sake of simplicity, we assume the skew to be symmetric. Extending the scheme to asymmetric skew
specifications is straight forward.
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4. OperationStart can be issued atC2 only if C1 is in the ticking state. In order to ensure
clock synchronization, the start of C2 has to be synchronized with the progress ofC1’s
media time:C2.Start(m) is delayed untilC1’s clock value equalsTrans(C2, C1, m). An
alternative way of startingC2 is to specify start timeNow in operationStart. In this case
C2 is started immediately, say at real-timet, with clock valueTrans(C1, C2, m1), wherem1
is C1’s clock value at timet.

5. A sync hierarchy may contain at most one master clock, which must be the root of the hier-
archy.

Sync hierarchies are a general and very powerful concept to specify arbitrary synchronization
requirements between media streams. The structure of the sync hierarchy specifies which
streams have to be synchronized, whereas the reference points in the hierarchy define how
streams have to be synchronized, i.e. how the temporal dimension of the streams relate to each
other.

The system guarantees that all streams controlled by the clocks in the sync hierarchy are pro-
cessed (e.g., played out) in a synchronous manner. Processing is started by issuing operation
Start at the root clock of the sync hierarchy. A locked subhierarchy can be started later by
issuingStart at the subhierarchy’s root clock. The start of this subhierarchy is performed in
conformance with the temporal constraints specified by the entire sync hierarchy. The same
holds if a subhierarchy is halted and started once again at a later point in time. As will be seen
later, sync (and control) hierarchies may dynamically grow and shrink even if clocks areticking.
This feature together with the capability of locking, halting and starting individual subhierar-
chies is very important in interactive applications, especially in those where multiple clients
with their individual needs participate in the same (CSCW) application.

5.3  Example

Fig. 6 shows a simple tele-cooperation scenario with two clients. The subject of the cooperation
is an experiment shown in videoV2. We assume that extra speech channels exist that allow the

Figure 6: A Simple Tele-Cooperation Scenario
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clients to talk to each other. The two clients commonly viewV2 and discuss the experiment
while they follow the presentation. To ensure that both clients see the same information at the
same time,V2 must be played out synchronously at both client sites. BesidesV2, client 1 views
videoV1, which shows the same experiment from a different perspective. Consequently, V1 and
V2 are to be synchronized. Client 2 additionally views videoV3, which shows a similar experi-
ment. Since the two experiments roughly correspond to each other in their temporal dimension,
V1 andV3 are grouped by a control relationship. We assume that media time 500 inV3 corre-
sponds to media time 5 inV2. If we assume that media time is equivalent to frame numbers,
frame 5 of video V2 corresponds to frame 500 of video V3 while frames 5 of all other videos
correspond to each other.

The presentation of all video streams can be started by issuingStart at clockC5. Moreover,
this clock can be used to collectively scale, pause and restart the entire configuration. Client 1
may pauseV1 or V2 by haltingC1 or C2, respectively. Halted clocks may be continued in a syn-
chronized fashion, i.e. after restart ofC2, for example, the presentation ofV2 is not only syn-
chronized withV1 but also withV2’s presentation at the site of client 2.

SinceC3 andC4 are linked with a control edge,V3 can be scaled, paused and restarted at any
position independent ofV1’s andV2’s state of the presentation. So, the presentationV3 can be
adjusted manually as needed. At client site 2, haltingC3 implies pausingV3’s presentation. If
this is to be avoided,C4 has to be locked forHalt operations. Note thatScale operations
issued atC5, for instance, are then still propagated toC4.

If another client desires to join the scenario while cooperation already takes place between client
1 and client 2, the clock hierarchy has to be extended dynamically. Assume that the new client
needs to viewV2 only. After the corresponding session has been established, the clock, sayC6,
controllingV2’s presentation at the site of the new client is linked by means of a sync edge hav-
ing a reference point [5,5] to clockC5. When the new client is ready to participate in the
cooperation, it issues C6.Start (Now) to startV2’s presentation synchronous to the ongoing
presentations at the other sites. When a client desires to leave the scenario, the clocks controlling
his or her streams have to be removed from the clock hierarchy.

6 CLOCKS AT SOURCE COMPONENTS

So far, we only considered clocks attached to sink components. The mixer scenario illustrated
in Fig. 7 also gives the motivation for having clocks attached to source components. In general,
substreamsS1, S2 andS3 may have individual start values. For example, if three different sub-
sequences of a stored video clip are to be mixed together, the start values differ from sequence
to sequence. However, with a clock at the sink component only, it is impossible to specify indi-
vidual start values for multiple sources. The solution to this problem is obvious, a clock is
attached to each source component, which then can be started with an individual start value.

As mentioned earlier, clocks at source components are optional. In a configuration without
source clocks, the start of processing of source components is implicitly triggered by starting
the corresponding sink clock, where the start value is determined at the sink clock. However, as
soon as a clock is attached to a source component, processing must be enabled explicitly by
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starting the attached clock. It is important to point out thatStart issued at a source clock only
enables start of processing rather than starting the clock immediately. The moment when the
clock is actually started is mainly determined by the underlying control and communication pro-
tocols.

Like sink clocks, source clocks may be nodes in clock hierarchies. In contrast to sink clocks,
however, source clocks may never be involved in a sync relationship. This is due to the fact that
synchronizing a source clock with some other clock makes no sense with regard to stream syn-
chronization or even is impossible in various cases.

In the scenario of Fig. 7, clockC4 is the root of the control hierarchy. WhenStart is issued at
C4, this operation is propagated to clocksC1 andC2. During propagation, the specified start
value is transformed according to the reference points associated with the control edges. If the
start value specified atC4 is 0, clocksC1 andC2 are started with values 20 and 80, respectively.
Since clockC3 is not part of the control hierarchy, it has to be started explicitly. For example, it
may be started later when the client decides to add S3.

The scenario in Fig. 8 combines sync and control edges. Assume that streamsS1, S2 andS3 are
(stored) video streams with a rate of 25 frames/sec and that clock attributeR is 25 for each clock.
Further assume that media times 20, 80 and 100 ofS1, S2 andS3, respectively, correspond to the
same point in real-time. The depicted configuration mixesS1 andS2 and synchronizes the output
of the mixer withS3. The entire configuration is controlled by clockC3, i.e. the whole process-
ing can be started, paused, scaled by issuing the corresponding operations at clockC3.

1 C3.Start (0)
2 C3.Scale (2000,-2)
3 C3.Halt (0)

The presentation is started at media time 0, which corresponds to start values 20, 80 and 100 at
C1, C2 andC4, respectively. After 2000 frames have been played out, the presentation is con-
tinued in reverse order and double speed.

Looking at the scenario in Fig. 8, we can indicate two points in the configuration where stream
synchronization is required. Not onlyS3 andS4 have to be synchronized but also S1 andS2 if
mixing requires synchronized input streams. The temporal relationship betweenS1 and S2,
which defines how these streams are to be synchronized, is specified by reference point [20,80].

Figure 7: Clocks at Source Components

C1

C4
C2

C3 sink

sources

control, RP[0,20]

S1

S2

S3

control, RP[20,80]



7 NESTING OF COMPONENTS 15

Whether or not a component expects synchronized input streams can be derived from the com-
ponent’s attributes. These attributes together with the sync edges specified by the client are used
by CINEMA to find out where in a given configuration stream synchronization is to be performed.

7 NESTING OF COMPONENTS

In many areas, nesting has turned out to be a very powerful concept for building higher levels
of abstractions. As mentioned earlier, in CINEMA more complex components can be composed
from other components just by linking input and output ports. Compound components again
may be used to build other compound components on even higher levels of abstraction, i.e. arbi-
trary nesting levels are supported.

In the context of synchronization, nesting means that clock hierarchies may be defined within
compound components and thus remain invisible for the components’ outside world. A clock
hierarchy of a compound component is defined at the time the component is composed and spe-
cifies synchronization and control relationships between the streams processed by this compo-
nent. In particular, the internal clock hierarchy of a component specifies sync and control edges
between the clocks defined within this component. In addition to the clocks attached to its inter-
nal components, a compound component may also contain unattached clocks.

A compound component may contain one or more clock hierarchies. (Note that a hierarchy can
consist of a single clock only.) The roots of the internal clock hierarchies are exported and thus
become visible to the component’s outside world. The exported clocks are attached to the com-
ponent and are used to control the component’s stream processing, i.e. they are used to start,
pause or scale the streams processed by the component. Of course, exported clocks may again
be involved in clock hierarchies at higher levels of abstraction.

The compound component shown in Fig. 9 provides the abstraction of a television set, capable
of playing out a video stream and two audio streams in a synchronized fashion. The shown com-
ponent contains two basic components, a video decompression component (D) and a sink com-
ponent implementing a video output window (W). In addition, it includes another compound
component which consists of two filter components (F) and two speaker components (S). The
nested compound component provides the abstraction of an audio output device, whose opera-

Figure 8: A Scenario with Control and Sync Edges
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tion is controlled by clockC2. The TV component exports clockC1 which is used to start, pause
or scale the audio-visual output.

In summary, compound components may contain arbitrary complex clock hierarchies, which
are invisible from the client’s point of view. The operations issued at an exported clock are pro-
pagated through the clock hierarchy and thereby control the internal processing of the exporting
component.

8 IMPLEMENT ATION OF CLOCK HIERARCHIES

8.1  Synchronization Architecture

The abstraction of clock hierarchies has been developed in theCINEMA system, which provides
a development platform for distributed multimedia applications. In particular, CINEMA supports
the configuration of distributed applications, resource management as well as communication
and synchronization of multimedia streams [RBH94].

The main concepts of the synchronization architecture ofCINEMA are depicted in Fig. 10. Its three
layers provide the following functionality:

Clock Management Layer: This layer implements the abstraction of clocks and clock hierar-
chies and provides a programming interface which allows clients to create, manage and access
clock hierarchies. This layer will be described in detail below.

Control and Synchronization Layer: This layer implements the actual synchronization and
control protocols. The major concepts offered by the Control and Synchronization Layer (CS
Layer) are stream groups and controllers. Streams whose play-out is to be synchronized are
grouped into so-called stream groups. Each group is associated with a controller module which
is responsible for synchronizing and controlling the streams of this group. In particular, it offers
operations to create and delete stream groups, to add streams to and remove streams from exist-
ing groups, and to prime, start, halt, scale and lock a set of streams, where the specified set of

Figure 9: Nested Components
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streams may be a subset of a group. The stream groups may consist of one or more members,
where the same operations can be used to control individual streams and multi-member groups.

The temporal parameters of the CS operations are based on a uniform time system which is
called CS time system. For this time system it is assumed thatR=S=1. When a stream is intro-
duced to the controller, the latter is supplied with the information needed to map CS time to the
stream’s media time.

Internally, controllers interact with so-called agents according to a synchronization protocol.
Whereas controllers handle stream groups, agents represent and control individual data streams.
The agents’ interface and functionality strongly depend on the synchronization protocol
applied. Our architecture is extensible in the way that different types of synchronization mech-
anisms can be “plugged in” without affecting the generic controller interface.

For synchronizing data streams we have developed the Adaptive Synchronization Protocol
(ASP) [RoHe95]. ASP supports distributed sinks and sources and is highly adaptive in terms of
the applied synchronization strategy (e.g., shortest delay versus best stream quality).

Stream Layer: This layer provides the basic functionality for transmitting continuous data
streams. In particular, it includes mechanisms for resource reservation, real-time scheduling and
buffer management. For more details refer to [HNR95], [Bart94], [Derm94].

In the next subsection, we will concentrate on aspects of the Clock Management Layer. In par-
ticular, we will describe how distributed clock hierarchies are realized and clock operations are
mapped to the corresponding CS Layer functions.

Figure 10: Distributed Synchronization Service Architecture
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8.2  Management of Clock Hierarchies

In CINEMA, clock hierarchies may be distributed among multiple nodes of a computer network.
Clocks are global objects which are identified by globally unique names. A client may access
local and remote clocks by calling the clocks’ operations, where proxy objects [Shap86] trans-
parently provide access to remote clock objects. Clocks may even be shared by multiple clients
in order to cooperatively control applications. However, mechanisms for synchronizing the
access of concurrent clients are out of the scope of our implementation, and hence must be pro-
vided by the application. A clock attached to a component is located at the component’s node,
whereas all other clock objects are local to their creators.

Before describing our implementation, we have to introduce some terminology. A clock hierar-
chy may contain any number of so-calledsync-subhierarchies, which are spanned by the clock
hierarchy’s sync edges. The root clock of a sync-subhierarchy is calledsync-root clock, which
has no ingoing but at least one outgoing sync edge. In the example depicted in Fig. 11 there is
one sync-subhierarchy consisting of clocksC2, C3, C4 andC5, whereC2 is the sync-root clock.

Clocks attached to components define the temporal characteristics of the data streams consumed
by these components. These clocks, which define the media time system of individual data
streams, are calledstream clocks. Note that the leaves in the clock hierarchy are always stream
clocks, but not vice versa. Stream clocks may be part of a sync-subhierarchy or may beinde-
pendent, i.e., anindependent stream clock has neither an ingoing nor an outgoing sync edge. In
our example in Fig. 11, all shaded clocks are assumed to be stream clocks, where a stream clock
Ci is attached with streamSi. In the depicted hierarchy, onlyC6 andC7 areindependent stream
clocks.

Let us briefly sketch the mapping of clock hierarchies to the concepts provided by the CS Layer.
Remember, the major abstraction of the CS Layer are stream groups, consisting of one or more
streams. Since all streams belonging to the same sync-subhierarchy must be played out in a syn-
chronized manner, they constitute a multi-member stream group at the CS Layer interface. In
contrast, each stream attached to anindependent stream clock can be played-out independently
of any other stream, and thus forms a single-member stream group. For each stream group there
exists one controller function which is responsible for controlling the group member’s play-out.

Figure 11: Example Clock Hierarchy

S3

{  I2 [S3, S4, S5] }

control

C1

C6

{  I2 [S3, S4, S5],  I6 [S6],  I7 [S7] }

sync

S6

{  I6 [S6],  I7 [S7] }

C3
S4

C4
S5

C5
S7

C7

sync

control

C2

sync

{  I7 [S7] }{  I2 (S5) }{  I2 (S4) }{  I2 (S3) }

control



8 IMPLEMENTATION OF CLOCK HIERARCHIES 19

Clearly, all operations concerning the streams of a given stream group must be directed to the
group’s controller. In our example in Fig. 11, we can indicate single-member groups for streams
S6 andS7 and one multi-member group consisting of streamsS3, S4 andS5.

From the clients’ point of view, clock operations are propagated in a root-to-leaf direction
through the clock hierarchy. While this is a simple and powerful model for the client, our imple-
mentation of clock hierarchies internally works without propagation of clock operations in order
to avoid unnecessary message overhead. Each clock in the hierarchy collects information about
its subhierarchy during an initialization phase. After this phase, each clock in the hierarchy
knows all streams attached to the stream clocks in its subhierarchy, i.e., the clock knows all
streams that may be affected when one of its operations is issued. Moreover, it knows the iden-
tity of the responsible controller for each of these streams. When a clock operation is issued, the
clock maps the operation’s temporal parameters to CS time, and then sends the corresponding
CS Layer requests directly to the responsible controllers rather than propagating the clock oper-
ation to its descendants.

Now, we will consider initialization in more detail. The initialization process proceeds in two
phases. While in the first phase, controllers are assigned to sync-subhierarchies andindependent
stream clocks, the second phase derives stream groups from the structure of sync-subhierarchies
and supplies each clock with the necessary information about its descendants. For the sake of
simplicity, we will consider static clock hierarchies only when describing our algorithm below,
although our implementation is also able to handle dynamic hierarchies.

During thefirst phase of initialization, Initialize requests are propagated in a root-to-leaf
direction through the entire clock hierarchy. Controllers are assigned byindependent stream
clocks and sync-root clocks only. When a sync-root clock receivesInitialize, it assigns a (local)
controller function to its sync-subhierarchy. The stream group will only be defined in the second
phase of initialization, in which the clock acquires the knowledge about the members of this
stream group. The identifier of the assigned controller is included in eachInitialize messages
propagated to a clock of this sync-subhierarchy, and hence each of these clocks will eventually
learn about this controller.

When anindependent stream clock receivesInitialize, it assigns a (local) controller and requests
this controller to establish a (single-member) stream group. It does so by defining a group at the
controller’s interface where it delivers a descriptor of the clock’s stream. Then it forwards the
Initialize message to its subordinates if existing.

Additionally, in the first phase of initialization the reference points in each path of the clock hier-
archy are aligned as shown in Fig. 12. Remember, a reference point defined between two clocks
consists of two reference times, one for each clock, where both reference (media) times corre-
spond to the same point in real-time. EachInitialize request includes the sender’s aligned refe-
rence time, the receiving clock aligns its reference time with the one included in the request
according to equation E2. Consequently, after phase 1, the reference times of all clocks in the
hierarchy correspond to the same point in real-time. By convention the CS time system assumed
by controllers is aligned with reference time zero. Having reference points aligned this way has
the great advantage that CS time can be easily mapped to any time system in the clock hierarchy
and vice versa with the knowledge of the time system’s aligned reference time and itsR andS
parameters.
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After the first phase of initialization, each stream clock knows the controller responsible for its
stream, where all clocks belonging to the same hierarchy assume the same controller. Moreover,
independent stream clocks have already established (single member) stream groups for their
streams, and finally, each stream clock has set up a so-called stream descriptor containing the
following information:

• the identifier of the clock’s stream which is meaningful for the CS Layer, and

• temporal parameters of the clock including the clock’s R andS parameters as well as its
aligned reference time.

In our example depicted in Fig. 11, after phase 1 controllersI2, I6 andI7 have been assigned by
clocksC2, C6 andC7, respectively. Furthermore, the controllers assigned byC6 andC7 have
already established single-member groups for streamsS6 andS7.

During phase two of the initialization protocol,stream information is propagated in a leaf-to-
root direction. For the purpose of collecting stream information, each clock in the hierarchy
maintains a so-calledKnownGroups set. A set of this type may contain any number of group
descriptors, each of which consists of a set of stream descriptors. Each group descriptor is asso-
ciated with the identifier of the controller controlling the specified stream group.

Initially, theKnownGroups set of a stream clock contains a single group descriptor. This stream
group only has a single member, the descriptor of the clock’s stream, and it is associated with
the identifier of this stream’s controller. The included group descriptor is markedcomplete if the
stream clock isindependent, and is markedincomplete otherwise. For all other clocksKnown-
Groups is initially empty. In our example illustrated in Fig. 11, we will use the notationI(S1,..,Si)
to denote anincomplete group of streams being controlled by controllerI, whereas the notation
I[S1,..,Si]  is used to denotecomplete groups. In our example, the groups with an underscore
show the initial values of the stream clocks’KnownGroups set.

A leaf clock answers anInitialize request by sending aDone message including itsKnown-
Groups set to its superior clock. Whenever a non-leaf clock receives aDone message from a
subordinate, it includes the group descriptors contained in the received message into its local
KnownGroups set. After having received aDone message from each subordinate, it merges all
group descriptors markedincomplete in its KnownGroups set which results in a singleincom-
plete group descriptor. The succeeding actions depend on the clock’s role.

Figure 12: Alignment of Reference Points
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If the clock is not a sync-root clock, it just transfers aDone message encompassing the clock’s
KnownGroups set to its superior if existing. If, however, the clock is a sync-root clock, the group
descriptor markedincomplete in its KnownGroups, sayG, identifies all streams attached to the
clock’s sync-subhierarchy. To establish the corresponding stream group, the clock requests the
(local) controller associated withG to define a stream group, where the controller is supplied
with the stream descriptors included inG. The clock then marksG complete, includes its
KnownGroups set in theDone message and transfers this message to its superior clock if exist-
ing.

Initialization ends when the root of the clock hierarchy has receivedDone messages from all
subordinates and has finished its local processing. After that, all stream groups of the hierarchy
have been defined and established by controllers of the CS Layer. Furthermore, each clock in
the hierarchy knows from itsKnownGroups set all stream groups (complete or incomplete)
defined by its subhierarchy, and for each of these stream groups it knows the responsible con-
troller. Consequently, when a clock operation is issued, the clock has all information available
to directly contact the controllers of the affected data streams (for more detail see below).

Fig. 11 shows theKnownGroups set for each clock in the hierarchy. The root clock for example,
can derive from its set that streamsS3, S4 andS5 are synchronized by controllerI2 and streams
S6 andS7 are controlled byI6 andI7, respectively. Consequently, it knows all streams that are
affected by a clock operation as well as the controllers responsible for these streams.

After initialization, clock operations can be issued at the clocks of the hierarchy. When an ope-
ration is issued, a clock first transforms the temporal parameters of this operation to CS time by
applying equation E2. Then it requests the corresponding controller operation for each stream
group specified in itsKnownGroups set. The request sent for a stream group is destined to the
controller associated with this group and includes the identifiers of the stream group’s mem-
bers5.

In requests issued to controllers, all temporal parameters, such as the start values of streams, are
given in CS time. Since a controller stores for each stream it controls the stream’s descriptor, it
has all information available to internally map CS time to the time systems of the individual
streams.

Finally, we will briefly discuss the communication cost of the proposed implementation of clock
hierarchies. The initialization protocol requires2(n-1) messages, wheren denotes the number
of clocks in the hierarchy. In the worst case, two messages are needed to map a clock operation
to a controller call for a given stream group. The worst case occurs only if the client accesses a
remote clock, and this clock and the controller reside on different sites. However, we expect that
in most cases clients access local clocks. Remember that stream clocks are local to the end-point
of their streams, whereas all other clocks are local to their creators. Moreover, we expect that
the majority of clock operations is issued at sync-root clocks and atindependent stream clocks,
whose associated stream groups are controlled by local controller functions. The message over-
head for controlling and synchronizing the stream groups in the CS Layer depends on the
applied synchronization and control protocols (see [RoHe95]).

5 Note that the stream groups described inKnownGroupsmay beincomplete.That is why stream identifiers have
to be included in controller requests.
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9 SUMMARY

The abstractions proposed in this paper provide for controlling and synchronizing groups of
continuous media streams. Clock hierarchies can be used to specify nested groups of streams,
where each clock in the hierarchy identifies and controls a certain (sub)group of streams. By
means ofcontrol andsync edges in clock hierarchies, an application can specify its individual
control and synchronization needs in an uniform way. The capability of locking subhierarchies
as well as the possibility of dynamically growing and shrinking clock hierarchies are important
features in the context of interactive applications, especially in those supporting collaborative
work. Clock hierarchies in conjunction with component nesting provide a powerful means for
the simple composition of complex components at higher levels of abstraction. As the compu-
tation model underlying the proposed abstractions is very general and has various similarities
to others, the results reported in this paper are applicable in a rather broad scope.

The reported work has been conducted in the context of theCINEMA project. The implementation
of theCINEMA prototype is in progress. The first version of the proposed architecture of the syn-
chronization management is operational. We use the prototype to gain more practical experience
with the proposed abstractions. Although the abstractions have been applied to model a great
variety of application scenarios, we need to conduct extensive experimentation with applica-
tions in the field to verify the practical value of the work.
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