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Essais critiques | Review essays

What Foundations for Statistical Modeling
and Inference?

Ian Hacking, Logic of Statistical Inference
Cambridge: Cambridge University Press, 1965, Reprinted in
2016, 226 pages, ISBN 978-131650814-5

Deborah G. Mayo Statistical Inference as Severe Testing: How to
Get Beyond the Statistics Wars
Cambridge: Cambridge University Press, 2018, 500 pages,
ISBN 978-110766464-7

Aris Spanos∗

The primary aim of this article is to review the above books in
a comparative way from the standpoint of my perspective on
empirical modeling and inference.

These two books pertaining to the nature and justification
of statistical inference were written by two philosophers of sci-
ence more than 50 years apart. What they have in common is
the critical eye of a philosopher of science scrutinizing the sta-
tistical reasoning employed by statisticians and practitioners in
different fields, and endeavoring to provide answers to certain
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foundational issues that emerge from such a philosophical in-
vestigation. They differ in so far as Hacking does not venture
too far away from his philosophical ground and focuses pri-
marily on the early pioneers of statistics, staying above the fray
of the conflicts and disputes among statisticians in the 1960s.
In contrast, Mayo dares to get into the current disputes per-
taining to the replication crisis and the trustworthiness of em-
pirical evidence with a view to delineate the issues and make
progress by using a philosopher’s perspective to redress the
balance between heat and light.

1 Hacking (1965). Logic of Statistical In-
ference

Hacking’s (1965) perspective consists in scrutinizing statistical
inference using formal logic based on axiomatic foundations sup-
plemented with probabilities. In chapter 1, Hacking discusses
the notion of a ‘long run frequency’, which he considers the
quintessential concept of frequentist inference. In summariz-
ing chapter 1 Hacking argues: “Statistical inference is chiefly
concerned with a physical property, which may be indicated
by the name of long run frequency. The property has never been
well defined. Because there are some reasons for denying that
it is a physical property at all, its definition is one of the hard-
est of conceptual problems about statistical inference—and it
is taken as the central problem in this book.”(v)

After tracing the development of the notion of the ‘long run
frequency’ to Cournot, Ellis and Venn, he adopts the notion as
framed by von Mises in the form of a collective: an infinite se-
quence {xk}∞k=1 of Bernoulli outcomes of 0’s and 1’s, represent-
ing the occurrence of event A=(Xk=1), P (A)=pA, where Xk

denotes the random variable and xk its observed value, that
satisfies two conditions:

Convergence : lim
n→∞

[
1

n

∑n

k=1
xk]=pA

Randomness : lim
n→∞

[
1

n

∑n

k=1
ϕ(xk)]=pA
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where ϕ(.) is a mapping of admissible place-selection
sub-sequences {ϕ(xk)}∞k=1 .

As argued below his adopting of von Mises notion of the
long run frequency undermines Hacking’s perspective on the
nature and justification of frequentist inference.

In his attempt to avoid the notion of ‘sampling from pop-
ulations’ as the hypothetical engine that generates long run
frequencies, Hacking introduces in chapter 2 his notion of a
chance set-up: “A chance set-up is a device or part of the world
on which might be conducted one or more trials, experiments,
or observations; each trial must have a unique result which is
a member of a class of possible results.”(12)

His supporting argument is that the notion of a chance set-
up also avoids the problems associatedwith Fisher’s (1922) no-
tion of a ‘hypothetical infinite population: “the object of statis-
tical methods is the reduction of data... This object is accom-
plished by constructing a hypothetical infinite population, of
which the actual data are regarded as constituting a sample. ...
The postulate of randomness thus resolves itself into the ques-
tion, ‘Of what population is this a random sample?’”(313).

Explaining the potential vicious circle Hacking (1965, 14)
argues: “Fisher’s remark recalls that when frequency is taken
as a characteristic of populations investigated by sampling, the
sampling is generally supposed to be random. But randomness
in this context can only be explained by frequency in the long
run. So there is some danger of a silly circle. The danger is
skirted by a study of chance set-ups.”

Thiswas an insightful change of concepts byHacking (1965),
but it turns out that his chance set-up did not go far enough
to formalize the notion of a ‘chance process’ giving rise to data
x0:=(x1, ..., xn)mentioned below: “Chance set-ups at least seem
a natural and general introduction to the study of frequency.
Especially since they lend themselves naturally to the idea of a
chance process; to describe a chance process in terms of sam-
pling from populations, you probably need an hypothetical in-
finite array of hypothetical populations. Chimaeras are bad
enough, but a chimaera riding on the back of a unicorn can-
not be tolerated.” (24)

Œconomia – History | Methodology | Philosophy, 9(4): 833-860
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In chapter 3, Hacking argues that Kolmogorov’s axiomatic
approach to probability, grounded on the abstract probabil-
ity space (S,F, P(.)) with P(.): F → [0, 1] satisfying the three
well-known axioms, is inadequate for the purpose of establish-
ing support for statistical hypotheses by data x0. With that in
mind, he adopts the axioms in Koopman’s (1940) ‘logic of intu-
itive probability’ and appends to those axioms the Law of Like-
lihood: Data x0 support hypothesis H0 over hypothesis H1 if
and only if L(H0;x0) > L(H1;x0), where L(.; .) denotes the
likelihood function.

For Hacking the law of likelihood provides a logic of com-
parative support stemming from evidence e for pairs of proposi-
tions h and g that belong to a Boolean algebra of propositions;
a set that is closed with respect to negation and disjunction
(chapter 5). In chapter 4 he considers the question of relating
his notion of comparative support to the frequentist long run in-
terpretation of probability (‘chance’ in his terminology), but af-
ter discussing the various problems of this interpretation con-
cludes that no such definite link can be established. Hence, he
argues that his law of likelihood “will serve as a foundation
not only for guessing by frequency, but also for what is more
commonly called statistical inference.” (47).

Despite his spirited defence of the Law of Likelihood (LL)
throughout this book, soon afterwards Hacking backed away
from it in no uncertain terms. In his review of Edward’s (1972)
book entitled “Likelihood”, conveys serious doubts about the
LL: “... Birnbaum has given it up and I have become pretty
dubious.” (137)

InHacking (1980) he rejects outright his perspective on ‘logi-
cism’ and his Law of Likelihood: “It may be tempting to sum
up this opinion in the words, ‘There is no such thing as a logic
of statistical inference.’ But to say that is to grant too much to
the logicist, for it is to suppose that (1) The probability ofH on
A is p, and (2) His more probable on A than H∗ on A∗ and the
like are the province of inductive logic. On the contrary they
are grounded on a false analogy with deductive logic. ... I do
not mean that there is no role for likelihood or significance lev-
els etc., but only that these fundamental concepts should not

Œconomia – Histoire | Épistémologie | Philosophie, 9(4): 833-860
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be understood in a logicist way.” (145).
Hacking’s (1980) rejection of the Law of Likelihood (LL)

and his ‘logic of statistical inference’ puts his discussion of fre-
quentist inference in the 1965 book in a very different light alto-
gether. In particular, his change of mind renders void his crit-
icisms of the Neyman-Pearson (N-P) testing and Confidence
Intervals (CIs) in chapters 6-7, as well as his reinterpretation
of Fisher’s ‘fiducial probability’ to render it consistent with his
LL in chapter 9.

Does this render his 1965 discussion of frequentist inference
in general, and N-P testing in particular, irrelevant? No. He
raises several issues that are as relevant today as they were in
1965.

One of his most perceptive comments in chapter 7 pertains
to the role of pre-data error probabilities (significance level and
power) for the post-data evaluation of testing results: “thewhole
point of testing is usually to evaluate the hypotheses after a trial
on the set-up has been made. And although size and power
may be the criteria for before-trial betting, they need not be the
criteria for after-trial evaluation.”(88)

This is especially relevant for this review because the con-
cept of a post-data severity evaluation, discussed in Mayo (2018)
aims to addresses this very issue.

Another important point made by Hacking in explaining
the notion of support for a hypothesis (chapter 3) is the differ-
ence between inference and decision:

to conclude that an hypothesis is best supported
is, apparently, to decide that the hypothesis in ques-
tion is best supported. Hence it is a decision like
any other. But this inference is fallacious. Deciding
that something is the case differs from deciding to
do something. ... Hence deciding to do something
falls squarely in the province of decision theory, but
deciding that something is the case does not. (29)

This gem of an argument calls into question any claims that
decision theory provides all the answers to problems of infer-
ence; see Spanos (2017).

Œconomia – History | Methodology | Philosophy, 9(4): 833-860



838 Revue des livres/Book review |

Another highly insightful argument that Hacking articu-
lates in chapter 11 is on point estimation. He argues that es-
timator θ̂(X) of θ, however optimal, does not justify the infer-
ential claim that θ̂(x0) ' θ∗,where ‘'’ denotes ‘approximately
equal to’ and θ∗ denotes the true value of θ; the value that could
have generated data x0. His discussion of why, however, does
not explain adequately the fact that θ̂(x0) represents just a single
value from an infinite range of possible values in the parame-
ter space Θ (θ∈Θ) as it relates to the sampling distribution of
θ̂(X).What is more, interval estimation and hypothesis testing
rectify this problem by taking into account the sampling distri-
bution of an estimator θ̂(X) when deriving the relevant error
probabilities; type I, II and coverage. Having said that, opti-
mal interval estimation and hypothesis testing begin with an
optimal estimator to ensure their own effectiveness (optimal-
ity) in learning from data about θ∗; a point not emphasized by
Hacking (1965). Instead, he focuses on ‘uniform bestness’ for
point estimates and discusses admissibility of estimators which
runs afoul the primary aim of frequentist inference: learning
from data about the ‘true’ value θ∗ that could have generated
data x0. This is because the idea an estimator which is ‘best’
for all values θ∈Θ is at odds with how well an estimator θ̂(X)
pinpoints θ∗; see Spanos (2017).

Where Hacking is led astray by his comparative support
notion is when he argues: “An hypothesis should be rejected
if and only if there is some rival hypothesis much better sup-
ported than it is”(81). But as pointed out by Barnard (1972)
“there always is such a rival hypothesis, viz. that things just
had to turn out the way they actually did.”(129), i.e. the Max-
imum Likelihood (ML) estimate θ̂ML(x0). This is relevant for
the discussion that follows because Mayo (2018) uses this to
question both the likelihoodist and the Bayesian approach to
testing based on Bayes factors.

The biggest weakness of the case pertaining to the founda-
tions of statistical induction articulated inHacking (1965) is his
view of ‘long run frequency’ (chapters 1 and 4). The discus-
sion relies primarily on the philosophical literature based on

Œconomia – Histoire | Épistémologie | Philosophie, 9(4): 833-860
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von Mises’ frequentist interpretation of probability anchored
on his notion of a ‘collective’ and the associated idea of enumer-
ative induction: if m/n observed A’s are B’s, infer (inductively)
that approximatelym/n of all A’s are B’s; see Salmon (1967).

Although informative, the discussion ignores the proba-
bilistic formulation associated with model-based frequentist in-
terpretation of probability, grounded on the Strong Law of
Large Numbers (SLLN), that is clearly articulated in Cramer
(1946, 332) and Neyman (1952):

The application of the theory [of probability] in-
volves the following steps: (i) If wewish to treat cer-
tain phenomena bymeans of the theory of probabil-
ity wemust find some element of these phenomena
that could be considered as random, following the
law of large numbers. This involves a construction
of a mathematical model of the phenomena involv-
ing one ormore probability sets. (ii) Themathemat-
ical model is found satisfactory, or not. This must
be checked by observation. (iii) If the mathematical
model is found satisfactory, then it may be used for
deductions concerning phenomena to be observed
in the future. (27)

Model-based induction revolves around the concept of a
statistical model:

Mθ(x)={f(x; θ), θ∈Θ⊂Rm}, x∈Rn
X , n>m, (1)

where f(x; θ), x∈Rn
X denotes the joint distribution of the sam-

ple X:=(X1, . . . , Xn) and Θ and Rn
X denote the parameter and

sample spaces, respectively. This formalization stems directly
from the Kolmogorov axiomatization of probability based on
an abstract probability space (S,F, P(.)) with P(.) satisfying
the three axioms. The link between (S,F, P(.)) andMθ(x) is
provided by the concept of a random variable X :

(S,F, P(.))
X(.): S→R−→ Mθ(x)={f(x; θ), θ∈Θ}, x∈Rn

X .

Mθ(x),x∈Rn
X comprises the probabilistic assumptions imposed

on stochastic process {Xt, t∈N}underlying the data x0.That is,

Œconomia – History | Methodology | Philosophy, 9(4): 833-860
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Mθ(x) represents the stochastic mechanism assumed to have
given rise to x0.
Example 1. Consider the simple Bernoulli model:

Mθ(x): XkvBerIID(θ, θ(1−θ)), xk=0, 1, θ∈[0, 1],
k=1, 2, . . . n, ...,

(2)

where ‘BerIID(θ, θ(1−θ))’ stands for Bernoulli, Independent and
Identically Distributed (IID), withmean θ and variance θ(1−θ);
k is an index that denotes the ordering of the sample, say the
first trial, second trial, etc. In this case the distribution of the
sample f(x; θ), x∈Rn

X , takes the form:

f(x; θ)
IID
=
∏n

k=1 f(xk; θ)=θ
∑
xk(1−θ)

∑
(1−xk)

=θy(1−θ)n−y, x∈{0, 1}n,
(3)

where Y=
∑n

k=1Xk is Binomially (Bin) distributed:
Y=

∑n
k=1Xk v Bin (nθ, nθ(1−θ);n)) , y=0, 1, 2, ..., n, (4)

whose density function is: f(y; θ, n)=
(
n
y

)
θy(1−θ)n−y,

y=0, 1, 2, ..., n;
(
n
y

)
= n!

(n−y)!y! .

The probabilistic assumptions of the model, encapsulated in
f(x; θ), x∈Rn

X , determine the likelihood function via:

L(θ;x0) ∝ f(x0; θ), θ∈Θ, (5)

For the simple Bernoulli model in (3), the likelihood is:

L(θ;x0) ∝ θy(1−θ)n−y, θ∈[0, 1]. (6)

The model-based frequentist interpretation of probability
has certain distinct features that render it very different from
the von Mises interpretation (Spanos, 2013):
(a) It revolves around the concept of a statistical modelMθ(x),
broadly viewed to accommodate non-IID samples.
(b) It is firmly anchored on the SLLN. In the case of (3):

P( lim
n→∞

( 1
n

∑n
k=1Xk)=θ)=1. (7)

That is, asn→∞ the stochastic sequence {Xn= 1
n

∑n
k=1Xk}∞n=1,

converges to a constant θ with probability one or almost surely
(a.s.) [Xn

a.s.→ θ]. It is a measure-theoretic result (Williams,

Œconomia – Histoire | Épistémologie | Philosophie, 9(4): 833-860
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2001, 111) that does not involve any form of convergence of
{xn= 1

n

∑n
k=1 xk}∞n=1 to θ, where x0={xk}nk=1; recall that Xk de-

notes the random variable and xk a particular value of Xk.

Unfortunately, the line betweenprobabilistic (a.s.) andmath-
ematical convergence was blurred by von Mises’s (1928) collec-
tivewhich was defined in terms of infinite realizations {xk}∞k=1

whose partial sums {xn}∞n=1 converge to θ. It turns out that any
attempt to make rigorous the convergence limn→∞ xn=θ is ill-
fated for mathematical reasons; see Williams (2001, 25).
(c) The ‘long-run’ is just a metaphor relating probabilities to
relative frequencies and can be rendered operational by vali-
datingMθ(x) and using it to simulate faithful replicas of the
original data x0. This model-based framing draws a clear dis-
tinction between ‘probability’ in terms of which the inductive
premises of inference (Mθ(x)) is specified and ‘relative frequen-
cies’ associated with the long-run metaphor. The latter repre-
sents an intuitive way to visualize and understand ‘probabili-
ties’ in terms of ‘relative frequencies’ that relate to data x0.
(d) The link between the mathematical (measure-theoretic) re-
sults and real-world phenomena is provided by viewing data
x0:=(x1, ..., xn) as a ‘typical realization’ of the stochastic pro-
cess {Xt, t∈N} underlyingMθ(x). Hence, it is justified on em-
pirical grounds, establishing the validity of the probabilistic
assumptions ofMθ(x).

Admittedly, the concept of a statistical model Mθ(x) is a
form of a chance set-up, as envisioned by Hacking, but the lat-
ter is too vague to serve as the cornerstone of statistical model-
ing and inference. What is needed is a more precisely defined
concept, such asMθ(x), that describes ‘a stochastic generating
mechanism’ in terms of the stochastic process {Xt, t∈N} un-
derlying data x0.

The vague generality of a chance set-up in conjunctionwith
von Mises’ notion of a collective create a number of problems
because they replace the precisely defined and easily testable
set of probabilistic assumptionswith notions like ‘randomsam-
ples’ stemming from (a) the “uniformity” of nature (popula-
tion) and (b) the “representativeness” of the sample. These,
in turn raise additional issues, including the reference class and

Œconomia – History | Methodology | Philosophy, 9(4): 833-860
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the single case problems; see Salmon (1967). The key difference
between enumerative and model-based induction is that latter
revolves aroundMθ(x) whose premises are specified in terms
of probabilistic assumptions that are testable vis-à-vis data x0.
The model-based perspective sheds very different light on the
single case and reference class problems; see Spanos (2013).

Worse, in defining the most crucial concept in his book, the
likelihood function, Hacking ends up with a very cumbersome
notation for a functionwith six arguments: “a joint proposition
is onewhich states, ‘the distribution of chances on trials of kind
K on set-up X is a member of the class ∆; outcome E occurs
on trial T of kind K ′. Here K ′ might be K, but need not be. A
joint proposition is represented: < X,K,∆;T,K ′, E >”(52)

Moreover, his framing of a chance set-up requires one to
distinguish between discrete and continuous probability distri-
butions, which is a completely unnecessary distinction because
L(θ;x0) is a function of θ and not x, and Θ is usually an un-
countable subset of the real line R. Instead of (6), Hacking de-
fines the likelihood as:

L(θ;x0) ∝
(
n
y

)
θy(1−θ)n−y, θ∈[0, 1], (8)

which coincideswith the sampling distribution of Y as defined
in (4); see also Royal (1997, 19). That is, for evaluating a con-
tinuous function of θ (L(θ;x0), θ∈Θ) he uses a discrete distri-
bution in conjunction with specific values of θ. This works in
practice because both (6) and (8) comply with (5) and the pro-
portionality factor

(
n
y

)
is free of θ.

In relation to Hacking’s (1965) doubts on whether the no-
tion of relative frequency in the context of model-based induc-
tion is “a physical property at all,” Cramer (1946, 332), gave
an affirmative answer almost 20 years earlier. After his change
of mind, Hacking (1980) adopts the same answer: “Probabil-
ity in this sense [objective] does not mean ‘relative frequency’,
but probabilities are typically manifested by stable frequen-
cies.” (150). His revised view all but echoes Neyman (1952, 27)
quoted above.

The last two chapters of Hacking (1965) provide a philo-
sophical scrutiny of Bayesian statisticswhen examined from the
viewpoint of formal logic and relates that to his proposed logic

Œconomia – Histoire | Épistémologie | Philosophie, 9(4): 833-860
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of statistical support. Chapter 12 brings out explicitly several
assumptions underlying Bayes’ theory in an attempt to place
Bayes’ original problem in a formal framework with a view to
relate it to Hacking’s logic of statistical support. The proposed
Bayesian framework is extended to include Jeffreys’ (1938) The
Theory of Probability by adding an additional assumption per-
taining to the uniqueness of prior probabilities. Although both
Bayesian formulations are consistent with Hacking’s logic of
statistical support, he rejects them as formalways to learn from
data primarily because of the lack of any persuasive arguments
to render logical the choice of different types of prior distri-
butions, including the uniform and Jeffrey’s parameterization
invariant priors. These two chapters include a number of in-
sightful and discerning arguments that have not been pursued
further by Bayesians or their critics.

In light of Hacking’s change of mind on the merits of his
approach to comparative support of hypotheses (propositions)
anchored on his Law of the Likelihood, one might conclude
that his 1965 book is mostly of historical interest. That will be a
rushed judgment because the book includes several insightful
comments and suggestions pertaining to both frequentist and
Bayesian statistical inference alluded to above.

On the question posed by the title of this review, Hacking
(1965) proposes founding statistical induction on formal logic,
but Hacking (1980) reverses course: “My Logic of Statistical In-
ference took vigorous issue with Neyman. This essay is a re-
traction. I now believe that Neyman, Peirce and Braithwaite
were on the right lines to follow in the analysis of inductive
arguments.” (141).

2 Mayo (2018). Statistical Inference as Se-
vere Testing: How to Get Beyond the
Statistics Wars

The sub-title of Mayo’s (2018) book provides an apt descrip-
tion of the primary aim of the book in the sense that its focus is

Œconomia – History | Methodology | Philosophy, 9(4): 833-860
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on the current discussions pertaining to replicability and trust-
worthy empirical evidence that revolve around the main fault
line in statistical inference: the nature, interpretation and uses
of probability in statistical modeling and inference. This un-
derlies not only the form and structure of inductive inference,
but also the nature of the underlying statistical reasonings as
well as the nature of the evidence it gives rise to.

A crucial theme inMayo’s book pertains to the current con-
fusing and confused discussions on reproducibility and repli-
cability of empirical evidence. The book cuts through the enor-
mous level of confusion we see today about basic statistical
terms, and in so doing explains why the experts so often dis-
agree about reforms intended to improve statistical science.

Mayo makes a concerted effort to delineate the issues and
clear up these confusions by defining the basic concepts accu-
rately and placing many widely held methodological views in
the best possible light before scrutinizing them. In particular,
the book discusses at length themerits and demerits of the pro-
posed reformswhich include: (a) replacing p-valueswith Con-
fidence Intervals (CIs), (b) using estimation-based effect sizes
and (c) redefining statistical significance.

The key philosophical concept employed by Mayo to dis-
tinguish between a sound empirical evidential claim for a hy-
pothesis H and an unsound one is the notion of a severe test:
if little has been done to rule out flaws (errors and omissions) in
pronouncing that data x0 provide evidence for a hypothesisH ,
then that inferential claim has not passed a severe test, rendering
the claim untrustworthy. One has trustworthy evidence for a
claim C only to the extent that C passes a severe test; see Mayo
(1983; 1996). A distinct advantage of the concept of severe test-
ing is that it is sufficiently general to apply to both frequentist
and Bayesian inferential methods.

Mayo makes a case that there is a two-way link between
philosophy and statistics. On one hand, philosophy helps in
resolving conceptual, logical, andmethodological problems of
statistical inference. On the other hand, viewing statistical in-
ference as severe testing gives rise to novel solutions to cru-
cial philosophical problems including induction, falsification

Œconomia – Histoire | Épistémologie | Philosophie, 9(4): 833-860
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and the demarcation of science from pseudoscience. In addi-
tion, it serves as the foundation for understanding and getting
beyond the statistics wars that currently revolves around the
replication crises; hence the title of the book, Statistical Infer-
ence as Severe Testing.

Chapter (excursion) 1 of Mayo’s (2018) book sets the scene
by scrutinizing the different role of probability in statistical in-
ference, distinguishing between:
(i) Probabilism. Probability is used to assign a degree of confir-
mation, support or belief in a hypothesisH , given data x0 (Baye-
sian, likelihoodist, Fisher (fiducial). An inferential claim H is
warranted when it is assigned a high probability, support, or
degree of belief (absolute or comparative).
(ii) Performance. Probability is used to ensure the long-run
reliability of inference procedures; type I, II, coverage probabil-
ities (frequentist, behavioristic Neyman-Pearson). An inferen-
tial claimH is warranted when it stems from a procedure with
a low long-run error.
(iii) Probativism. Probability is used to assess the probing ca-
pacity of inference procedures, pre-data (type I, II, coverage prob-
abilities), as well as post-data (p-value, severity evaluation). An
inferential claimH is warranted when the different ways it can
be false have been adequately probed and averted.

Mayo argues that probativism based on the severe testing
account uses error probabilities to output an evidential inter-
pretation based on assessing how severely an inferential claim
H has passed a test with data x0. Error control and long-run
reliability is necessary but not sufficient for probativism. This
perspective is contrasted to probabilism (Law of Likelihood
(LL) and Bayesian posterior) that focuses on the relationships
betweendatax0 andhypothesisH, and ignores outcomesx∈Rn

X

other than x0 by adhering to the Likelihood Principle (LP): given
a statisticalmodelMθ(x) anddatax0, all relevant sample infor-
mation for inference purposes is contained in L(θ;x0), ∀θ∈Θ.
Such a perspective can produce unwarranted results with high
probability, by failing to pick up on optional stopping, data
dredging and other biasing selection effects. It is at odds with
what is widely accepted as the most effective way to improve
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replication: predesignation, and transparency about how hy-
potheses and data were generated and selected.

Chapter (excursion) 2 entitled ‘Taboos of Induction and Fal-
sification’ relates the various uses of probability to draw cer-
tain parallels between probabilism, Bayesian statistics andCar-
napian logics of confirmation on one side, and performance,
frequentist statistics and Popperian falsification on the other.
The discussion in this chapter covers a variety of issues in phi-
losophy of science, including, the problem of induction, the
asymmetry of induction and falsification, sound vs. valid ar-
guments, enumerative induction (straight rule), confirmation
theory (and formal epistemology), statistical affirming the con-
sequent, the old evidence problem, corroboration, demarca-
tion of science and pseudoscience, Duhem’s problem and nov-
elty of evidence. These philosophical issues are also related
to statistical conundrums as they relate to significance testing,
fallacies of rejection, the cannibalization of frequentist testing
known asNull Hypothesis Significance Testing (NHST) in psy-
chology, and the issues raised by the reproducibility and repli-
cability of evidence.

Chapter (excursion) 3 on ‘Statistical Tests and Scientific In-
ference’ provides a basic introduction to frequentist testing pay-
ing particular attention to crucial details, such as specifying
explicitly the assumed statistical modelMθ(x) and the proper
framing of hypotheses in terms of its parameter space Θ, with
a view to provide a coherent account by avoiding undue for-
malism. The Neyman-Pearson (N-P) formulation of hypothe-
sis testing is explained using a simple example, and then re-
lated to Fisher’s significance testing. What is different from
previous treatments is that the claimed ‘inconsistent hybrid’
associated with the NHST caricature of frequentist testing is
circumvented. The crucial difference often drawn is based on
theN-P emphasis on pre-data long-run error probabilities, and
the behavioristic interpretation of tests as accept/reject rules.
By contrast, the post-data p-value associated with Fisher’s sig-
nificance tests is thought to provide amore evidential interpre-
tation. In this chapter, the two approaches are reconciled in the
context of the error statistical framework. TheN-P formulation
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provides the formal framework in the context of which an op-
timal theory of frequentist testing can be articulated, but in its
current expositions lack a proper evidential interpretation.

Example 2. Consider the case of the simple Normal model:

Mθ(x): Xt v NIID(µ, σ2), xt∈R, µ∈R, σ2>0,
t∈N:=(1, 2, . . . n, ...),

(9)

where σ2 is assumed known. An optimal N-P test for the hy-
potheses:

H0: µ ≤ µ0 vs. H1: µ > µ0,

is defined by Tα:={d(X), C1(α)},where d(X)=
√
n(Xn−µ0)

σ
,

Xn= 1
n

∑n
t=1Xt is the test statistics and C1(α)={x: d(x) > cα},

the rejection region with the sampling distributions for evalu-
ating the relevant error probabilities taking the form:

(i) d(X)
µ=µ0v N (0, 1) , (ii) d(X)

µ=µ1v N (δ1, 1) , δ1=
√
n(µ1−µ0)

σ
,

for all µ1>µ0.
(10)

The pre-data power function at each µ1 is defined by:
P(µ1)=P(d(X) > cα; µ=µ1), for all µ1>µ0.

Fisher’s p-value aspired to provided an evidential interpreta-
tion: “The actual value of p ... indicates the strength of evi-
dence against the hypothesis”(Fisher, 1925, 80). It fell short of
that goal because of two crucial weakness:
(a) The p-value p(x0)=P(d(X)>d(x0);H0) depends crucially on
the particular statistical context that comprises four components:

(i)Mθ(x),
(ii) H0: θ∈Θ0 vs. H1: θ∈Θ1,
(iii) Tα:={d(X), C1(α)},
(iv) data x0.

(11)

(b) By itself the p-value cannot provide sufficient information
for or against H0 since the sampling distribution of d(X) is
evaluated only underH0.One would need additional informa-
tion pertaining to discrepancies from H0 and the test’s power
to detect them. That is, a p-value p(x0) < α indicates ‘some’
discrepancy from θ=θ0, but contains no information about its
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magnitude. Indeed, since the 1930s it is known that there is al-
ways a large enough n to reject H0, however small (θ∗−θ0) 6=0
and a threshold c>0, such that p(x0) →

n→∞
0; the large n problem.

This happens because the power of a consistent test increases
with n. In example 2, the power of the test increases with δ1 in
(10)(ii), which increases monotonically with

√
n.

As argued inMayo (2018), the post-data severity evaluation of
the testing results can be used to shed light on (a)-(b) as well as
provide the missing evidential interpretation. This is achieved
by particularizing the notion of severity to frequentist testing
within Mθ(x). If a hypothesis H0 passes a test Tα that was
highly capable of finding discrepancies from it, were they to
be present, then the passing result indicates some evidence for
their absence. The resulting evidential result comes in the form
of themagnitude of the discrepancy γ fromH0 warrantedwith
test Tα and data x0 at different levels of severity. The intuition
underlying the post-data severity is that a small p-value or a
rejection of H0 based on a test with low power (e.g. a small n)
for detecting a particular discrepancy γ provides stronger ev-
idence for the presence of γ than if the test had much higher
power (e.g. a large n).

The post-data severity evaluation outputs the discrepancy γ
stemming from the testing results and takes the probabilistic
form:

SEV (θ ≶ θ1;x0)=P(d(X) ≷ d(x0); θ1=θ0+γ), for all θ1∈Θ1,

where the inequalities are determined by the testing result and
the sign of d(x0). When the relevant N-P test result is ‘accept
(reject) H0’ one is seeking the smallest (largest) discrepancy γ,
in the form of an inferential claim θ ≶ θ1=θ0+γ, warranted by
Tα and x0 at a high enough probability, say .8 or .9. The severity
evaluations are introduced by connecting them to more famil-
iar calculations relating to observed confidence intervals and
p-value calculations. Amore formal treatment to the post-data
severity evaluation is given in chapter (excursion) 5.

Mayo uses the post-data severity perspective to scorch sev-
eral misinterpretations of the p-value, including the claim that
the p-value is not a legitimate error probability. She also calls
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into question any comparisons of the tail areas of d(X) under
H0 that vary with x∈Rn, with posterior distribution tail areas
that vary with θ∈Θ, pointing out that this is tantamount to
comparing apples and oranges!

The real life examples of the 1919 eclipse data for testing the
General Theory of Relativity, as well as the 2012 discovery of
the Higgs particle are used to illustrate some of the concepts in
this chapter.

The discussion in this chapter sheds light on several impor-
tant problems in statistical inference, including several howlers
of statistical testing, Jeffreys’ tail area criticism, weak condi-
tionality principle and the likelihood principle.

Chapter (excursion) 4 entitled ‘Objectivity and Auditing’
discusses ‘error statistics’, which can be viewed as a refine-
ment/extension of the Fisher-Neyman-Pearson (F-N-P) fram-
ing of frequentist modeling and inference. Error statistics ex-
tends the F-N-P approach by supplementing it with a post-data
severity evaluation that goes beyond the testing results to pro-
vide an evidential interpretation in the form of the warranted
discrepancy from H0; see Mayo and Spanos (2006; 2011). It
refines the F-N-P framing by proposing a broader framework
wherein the modeling and inference facets are separated. The
modeling facet includes specification (initial choice ofMθ(x)),
Mis-Specification (M-S) testing and respecificationwith a view to
secure statistical adequacy: the validity of the probabilistic as-
sumptions comprising the statistical modelMθ(x) (Mayo and
Spanos, 2004; Spanos, 2018). Only when the statistical ade-
quacy ofMθ(x) is established, should one proceed to the in-
ference facet since the latter assumes the validity ofMθ(x).

In error statistics particular emphasis is placed on specify-
ing a statistical model in terms of a complete, internally con-
sistent and testable set of probabilistic assumptions in terms of
the observable process {Xt, t∈N} underlying data x0, and not
an unobservable error term process. A quintessential example
of such a specification is that of the Linear Regression model
in table 1 comprising a statistical GeneratingMechanism (GM),
assumptions [1]-[5] and the statistical parametrization.

WhenMθ(x) is statistically misspecified–certain assumptions
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are invalid for data x0–Mθ̂(x) will give rise to untrustworthy
evidence since both f(x; θ), x∈Rn

X and the likelihood function
L(θ;x0)∝f(x0; θ), θ∈Θ are erroneous. That, in turn distorts the
sampling distribution f(yn; θ) of any statistic (estimator, test
statistic) Yn=g(X1, X2, ..., Xn), rendering it erroneous since its
derivation is based on f(x; θ), x∈Rn

X . Hence, statistical mis-
specification could easily give rise toinconsistent estimators and
or sizeable discrepancies between the actual error probabilities
(type I, II, p-values, coverage) and the nominal (assumed) ones,
rendering any inferences based on such statistics unreliable;
see Spanos (2019).

Table 1: Normal, Linear Regression model

Statistical GM: Yt=β0 + β1xt + ut, t∈N:=(1, 2, ..., n, ...)

[1] Normality: (Yt|Xt=xt) v N(., .),

[2] Linearity: E (Yt|Xt=xt)) =β0 + β1xt,

[3] Homoskedasticity: V ar (Yt|Xt=xt) =σ2,

[4] Independence: {(Yt|Xt=xt) , t∈N} indep. process,
[5] t-invariance: (β0, β1, σ

2) are not changing with t,


t∈N.

β0=E(Yt)−β1E(Xt)∈R, β1=
(
Cov(Xt,Yt)
V ar(Xt)

)
∈R,

σ2=V ar(Xt)− [Cov(Xt,Yt)]2

V ar(Xt)
∈R+.

These refinements/extensions render the error statistical ap-
proach more transparent and allows for third parties to repro-
duce/replicate the results with a view to independently af-
firm/deny the reported inferential claims. While knowledge
gaps leave room for biases and inappropriate choices in em-
pirical modeling, the error statistical approach brings out such
choices and demands that they should be checked against the
data before drawing any inferences. In error statistics a statis-
tical method’s objectivity requires the ability to audit an infer-
ence: check assumptions, pinpoint blame for anomalies, falsify,
and directly register how biasing selection effects (p-hunting,
multiple testing and cherry-picking) undermine its error prob-
ing capacities. This calls into question Bayesian claims, such
as “likelihoods are as subjective as priors” or “statistical infer-
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ence is just a matter of subjective choices and beliefs”, in their
attempt to deflect criticisms away from their favored approach.

M-S testing constitutes a form of significance testing that
differs from N-P testing primarily because the latter is testing
withinMθ(x) and the former is testing outside it. The default
H0 in M-S testing pertains to the validity ofMθ(x) as a whole,
i.e. H0: f(x; θ∗)∈Mθ(x), but the default H1: f(x; θ∗)/∈Mθ(x)
is non-operational and there are many different ways to opera-
tionalize it based on different ways to parameterize departures
from the model assumptions; see Spanos (2018).

A particularly misleading slogan that is widely invoked as
an alibi for ignoring the validation of the inductive premises
defined byMθ(x) is ‘all models are wrong, but some are use-
ful’ attributed to George Box (1979). Glancing at Box (1979),
however, reveals that the slogan is referring to the ‘realistic-
ness’ of the estimated model: “Now it would be very remark-
able if any system existing in the real world could be exactly
represented by any simple model.”(202), and thus to substan-
tive and not statistical misspecification. Indeed, Box proceeds
to emphasize the importance of viewing modeling as an itera-
tive process where testing the validity of the probabilistic as-
sumptions is an invaluable guide to more reliable models!

This chapter also addresses a number of foundational prob-
lems in empirical modeling, including conciliating substantive
subject matterwith statistical information aswell asDuhem’s prob-
lem: a scientific hypothesis cannot be empirically tested in iso-
lation because such a test requires additional auxiliary assump-
tions whose validity cannot be evaluated separately; it can in
the context of error statistics.

The error statistical approach is then used to shed light on
several confusions and problems relating to the current litera-
ture on replication, including the large n problem, the fallacy
of rejection, claims that the p-values exaggerate evidence, the
Jeffreys-Lindley paradox, Bayes factors and the use of spiked
priors, randomized control trials (RCTs), bootstrapping and
nonsense correlations/regressions.

Chapter (excursion) 5, entitled ‘Power and Severity’, pro-
vides an in-depth discussion of power and its abuses or mis-
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interpretations, as well as scotch several confusions permeat-
ing the current discussions on the replicability of empirical ev-
idence.
Confusion 1: The power of a N-P test Tα:={d(X), C1(α)} is
a pre-data error probability that calibrates the generic (for any
sample realization x∈Rn

X) capacity of the test in detecting dif-
ferent discrepancies fromH0, for a given type I error probabil-
ity α. As such, the power is not a point function one can evalu-
ate arbitrarily at a particular value θ1. It is defined for all values
in the alternative space θ1∈Θ1.
Confusion 2: The power function is properly defined for all
θ1∈Θ1 only when (Θ0,Θ1) constitute a partition of Θ. This is to
ensure that θ∗ is not in a subset of Θ ignored by the compar-
isons since the main objective is to narrow down the unknown
parameter space Θ using hypothetical values of θ. Ideally, the
narrowing reducesMθ(x) to a single pointM∗(x)={f(x; θ∗)},
x∈Rn

X , where θ∗ denotes the ‘true’ value of θ in Θ; shorthand
for saying f(x; θ∗),x∈Rn

X , could have generateddatax0. In prac-
tice, this ‘ideal’ situation is unlikely to be reached, except by
happenstance. This, however, does not prevent ‘learning from
data’ x0. Hypothesis testing poses questions as to whether a
hypothetical value θ0 is close enough to θ∗ in the sense that the
difference (θ∗−θ0) is ‘statistically negligible’; a notion defined
using error probabilities.

Confusion 3: Hacking (1965) raised the problem of using pre-
data error probabilities, such as the significance level α and
power, to evaluate the testing results post-data. As mentioned
above, the post-data severity aims to address that very prob-
lem, and is extensively discussed in Mayo (2018), excursion 5.

Confusion 4: Mayo and Spanos (2006) define “attained power”
by replacing cα with the observed d(x0). But this should not be
confused with replacing θ1 with its observed estimate θ̂(x0), as
inwhat is often called “observed” or “retrospective” power. To
compare the two in example 2, contrast:

Attained power: P(µ1)=P(d(X) > d(x0); µ=µ1),
for all µ1>µ0,
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with what Mayo calls Shpower which is defined at µ=xn:

Shpower: P(xn)=P(d(X) > d(x0); µ=xn).

Shpowermakes very little statistical sense, unless point estima-
tion justifies the inferential claim xn ' µ∗, which it does not,
as argued above. Unfortunately, the statistical literature in psy-
chology is permeated with (implicitly) invoking such a claim
when touting the merits of estimation-based effect sizes. The
estimate xn represents just a single value of Xn v N(µ, σ

2

n
),

and any inference pertaining to µ needs to take into account
the uncertainty described by this sampling distribution; hence,
the call for using interval estimation and hypothesis testing to
account for that sampling uncertainty. The post-data severity
evaluation addresses this problem using hypothetical reason-
ing and taking into account the relevant statistical context (11).
It outputs the discrepancy from H0 warranted by test Tα and
data x0, with high enough severity, say bigger than .85. Invari-
ably, inferential claims of the form µ ≷ µ1=xn are assigned low
severity of .5.

Confusion 5: Frequentist error probabilities (type I, II, cover-
age, p-value) are not conditional on H (H0 or H1) since θ=θ0
or θ=θ1 being ‘true or false’ do not constitute legitimate events
in the context ofMθ(x); θ is an unknown constant. The clause
‘givenH is true’ refers to hypothetical scenarios under which the
sampling distribution of the test statistic d(X) is evaluated as
in (10).

This confusion undermines the credibility of Positive Pre-
dictive Value (PPV):

PPV= Pr(F |R)= Pr(R|F ) Pr(F )

Pr(R|F )P (F )+Pr(R|F )P (F )
,

where (i) F=H0 is false, (ii) R=test rejects H0, and (iii) H0: no
disease, used by Ioannidis (2005) to make his case that ‘most
published research findings are false’ whenPPV= Pr(F |R)<.5.
His case is based on ‘guessing’ probabilities at a disciplinewide
level, such asPr(F )=.1,Pr(R|F )=.8 andPr(R|F )=.15, and pre-
suming that the last two relate to the power and significance
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level of a N-P test. He then proceeds to blame the wide-spread
abuse of significance testing (p-hacking, multiple testing, cher-
ry-picking, low power) for the high de facto type I error (.15).
Granted, such abuses do contribute to untrustworthy evidence,
but not via false positive/negative rates since (i) and (iii) are
not legitimate events in the context ofMθ(x), and thusPr(R|F )
and Pr(R|F ) have nothing to dowith the significance level and
the power of a N-P test. Hence, the analogical reasoning relat-
ing the false positive and false negative rates in medical detecting
devices to the type I and II error probabilities in frequentist
testing is totally misplaced. These rates are established by the
manufacturers of medical devices after running a very large
number (say, 10000) of medical ‘tests’ with specimens that are
known to be positive or negative; they are prepared in a lab.
Known ‘positive’ and ‘negative’ specimens constitute legitimate
observable events one can condition upon. In contrast, fre-
quentist error probabilities (i) are framed in terms of θ (which
are not observable events inMθ(x)) and (ii) depend crucially
on the particular statistical context (11); there is no statistical
context for the false positive and false negative rates.

A stronger case can bemade that abuses andmisinterpreta-
tions of frequentist testing are only symptomatic of a more ex-
tensive problem: the recipe-like/uninformed implementation of sta-
tistical methods. This contributes in many different ways to un-
trustworthy evidence, including: (i) statistical misspecification
(imposing invalid assumptions on one’s data), (ii) poor imple-
mentation of inference methods (insufficient understanding of
their assumptions and limitations), and (iii) unwarranted evi-
dential interpretations of their inferential results (misinterpret-
ing p-values and CIs, etc.).

Mayo uses the concept of a post-data severity evaluation
to illuminate the above mentioned issues and explain how it
can also provide the missing evidential interpretation of test-
ing results. The same concept is also used to clarify numerous
misinterpretations of the p-value throughout this book, as well
as the fallacies:
(a) Fallacy of acceptance (non-rejection). No evidence against
H0 is misinterpreted as evidence for it. This fallacy can easily
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arise when the power of a test is low (e.g. small n problem) in
detecting sizeable discrepancies.
(b) Fallacy of rejection. Evidence againstH0 is misinterpreted
as evidence for a particular H1. This fallacy can easily arise
when the power of a test is very high (e.g. large n problem) and
it detects trivial discrepancies; see Mayo and Spanos (2006).

In chapter 5 Mayo returns to a recurring theme throughout
the book, the mathematical duality between Confidence Inter-
vals (CIs) and hypothesis testing, with a view to call into ques-
tion certain claims about the superiority of CIs over p-values.
Thismathematical duality derails any claims that observedCIs
are less vulnerable to the large n problem and more informa-
tive than p-values. Where they differ is in terms of their infer-
ential claims stemming from their different forms of reasoning,
factual vs. hypothetical. That is, themathematical duality does
not imply inferential duality. This is demonstrated by contrast-
ing CIs with the post-data severity evaluation.

Indeed, a case can be made that the post-data severity eval-
uation addresses several long-standing problems associated
with frequentist testing, including the large n problem, the ap-
parent arbitrariness of the N-P framing that allows for simple
vs. simple hypotheses, say H0: µ= − 1 vs. H1: µ=1, the arbi-
trariness of the rejection thresholds, the problem of the sharp
dichotomy (e.g. rejectH0 at .05 but acceptH0 at .0499), and dis-
tinguishing between statistical and substantive significance. It
also provides a natural framework for evaluating reproducibil-
ity/replicability issues and brings out the problems associated
with observedCIs and estimation-based effect sizes; see Spanos
(2019).

Chapter 5 also includes a retrospective view of the disputes
between Neyman and Fisher in the context of the error sta-
tistical perspective on frequentist inference, bringing out their
common framing and their differences in emphasis and inter-
pretation. The discussion also includes an interesting sum-
mary of their personal conflicts, not always motivated by sta-
tistical issues; who said the history of statistics is boring?

Chapter (excursion) 6 of Mayo (2018) raises several impor-
tant foundational issues and problems pertaining to Bayesian
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inference, including its primary aim, subjective vs. default Ba-
yesian priors and their interpretations, default Bayesian infer-
ence vs. the Likelihood Principle, the role of the catchall factor,
the role of Bayes factors in Bayesian testing, and the relation-
ship between Bayesian inference and error probabilities. There
is also discussion about attempts by ‘default prior’ Bayesians to
unify or reconcile frequentist and Bayesian accounts.

A point emphasized in this chapter pertains to model vali-
dation. Despite the fact that Bayesian statistics shares the same
concept of a statistical modelMθ(x) with frequentist statistics,
there is hardly any discussion on validatingMθ(x) to secure
the reliability of the posterior distribution:
π(θ|x0) ∝ π(θ)·L(θ|x0), ∀θ∈Θ, uponwhich all Bayesian infer-
ences are based. The exception is the indirect approach tomodel
validation in Gelman et al (2013) based on the posterior predic-
tive distribution:

m(x)=
∫
θ∈Θ f(x; θ)π(θ|x0)dθ, ∀x∈Rn

X . (12)

Sincem(x) is parameter free, one can use it as a basis for simu-
lating a number of replications x1,x2, ...,xN to be used as indi-
rect evidence for potential departures from the model assump-
tions vis-à-vis data x0, which is clearly different from frequen-
tist M-S testing of theMθ(x) assumptions. The reason is that
m(x) is a smoothed mixture of f(x; θ) and π(θ|x0) and one has
no way of attributing blame to one or the other when any de-
partures are detected. For instance, in the case of the sim-
ple Normal model in (9), a highly skewed prior might con-
tribute (indirectly) to departures from the Normality assump-
tion when tested using simulated data using (12). Moreover,
the ‘smoothing’with respect to the parameters in derivingm(x)
is likely to render testing departures from the IID assumptions
a lot more unwieldy.

On the question posed by the title of this review,Mayo’s an-
swer is that the error statistical framework, a refinement or ex-
tension of the original Fisher-Neyman-Pearson framing in the
spirit of Peirce, provides a pertinent foundation for frequentist
modeling and inference.
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3 Conclusions

A retrospective view of Hacking (1965) reveals that its main
weakness is that its perspective on statistical induction adheres
too closely to the philosophy of science framing of that pe-
riod, and largely ignores the formalism based on the theory of
stochastic processes {Xt, t∈N} that revolves around the con-
cept of a statistical model Mθ(x). Retrospectively, its value
stems primarily from a number of very insightful arguments
and comments that survived the test of time. The three that
stand out are: (i) an optimal point estimator θ̂(X) of θ does
not warrant the inferential claim θ̂(x0) ' θ∗, (ii) a statistical
inference is very different from a decision, and (iii) the distinc-
tion between the pre-data error probabilities and the post-data
evaluation of the evidence stemming from testing results; a dis-
tinction that permeates Mayo’s (2018) book. Hacking’s change
of mind on the aptness of logicism and the problems with the
long run frequency is also particularly interesting. Hacking’s
(1980) view of the long run frequency is almost indistinguish-
able from that of Cramer (1946, 332) and Neyman (1952, 27)
mentioned above, or Mayo (2018), when he argues: “Proba-
bilities conform to the usual probability axioms which have
among their consequences the essential connection between
individual and repeated trials, the weak law of large numbers
proved by Bernoulli. Probabilities are to be thought of as theo-
retical properties, with a certain looseness of fit to the observed
world. Part of this fit is judged by rules for testing statistical hy-
potheses along the lines described by Neyman and Pearson. It
is a “frequency view of probability” in which probability is a
dispositional property...” (Hacking, 1980, 150-151).

Probability as a dispositional property’ of a chance set-up
alludes to the propensity interpretation of probability associated
with Peirce and Popper, which is in complete agreement with
the model-based frequentist interpretation; see Spanos (2019).

The main contribution of Mayo’s (2018) book is to put for-
ward a framework and a strategy to evaluate the trustworthi-
ness of evidence resulting from different statistical accounts.
Viewing statistical inference as a form of severe testing eluci-
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dates the most widely employed arguments surrounding com-
monly used (and abused) statistical methods. In the severe
testing account, probability arises in inference, not to measure
degrees of plausibility or belief in hypotheses, but to evalu-
ate and control how severely tested different inferential claims
are. Without assuming that other statistical accounts aim for
severe tests, Mayo proposes the following strategy for evalu-
ating the trustworthiness of evidence: begin with a minimal
requirement that if a test has little or no chance to detect flaws
in a claimH , thenH’s passing result constitutes untrustworthy
evidence. Then, apply thisminimal severity requirement to the
various statistical accounts as well as to the proposed reforms,
including estimation-based effect sizes, observed CIs and re-
defining statistical significance. Finding that they fail even the
minimal severity requirement provides grounds to question
the trustworthiness of their evidential claims. One need not
reject some of these methods just because they have different
aims, but because they give rise to evidence that fail the mini-
mal severity requirement. Mayo challenges practitioners to be
much clearer about their aims in particular contexts and dif-
ferent stages of inquiry. It is in this way that the book inge-
niously links philosophical questions about the roles of prob-
ability in inference to the concerns of practitioners about com-
ing up with trustworthy evidence across the landscape of the
natural and the social sciences.
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