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Abstract

Recently, it has become increasingly accepted that thermal fluctuations take active part
in functional tasks of biological molecules. We employ a set of coarse-grained models
to investigate the mechanism of transmission of allosteric signal via spatial fluctuations.
Our models are coarser than those in computational techniques established in molecular
biology, but allow for both the identification of candidates for the essential physical
structures and also the analytical determination of thermodynamic quantities that define
ligand binding. The models are constructed for general classes of macromolecules and

are validated through parameterisation from experiments and atomistic simulations.

In the first part of this thesis we investigate the “dynamic allostery” in dimeric pro-
teins composed of two identical subunits. We demonstrate that cooperative effects upon
binding of two identical ligands can arise purely through modification of slow global
vibrational modes of the protein. We parameterise the model on a test case, the CAP
homodimer. Finally, we explain the role of local, fast vibrations in the allosteric effect
and propose a general protocol for interpreting thermodynamic parameters of dynami-

cally allosteric homodimers.

The second part of this thesis considers allosteric effects in DNA, an example of nearly
uniform elastic medium. The DNA is modeled as an elastic rod and substrate binding
as local increase of its bending and twisting rigidity. This results in altered structure of
normal modes and leads to qualitatively different type of dynamic allostery compared
to that of the discrete models previously employed to study allosteric effects in proteins.
Dynamic allostery in DNA is found always to be negative, due to an anti-correlated
amplitude of thermal fluctuations at the binding site and around it. This allows us to
draw conclusions about general design rules of allosteric molecules and highlight the
controlling feature that biological molecules evolved to optimize their dynamics for their

function.
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Chapter 1

Introduction

Proteins, frequently dubbed the building blocks of life, are large molecules involved in
nearly every cellular process. The vast majority of proteins in their functional state
are folded into complicated, yet delicate and precisely defined three dimensional struc-
tures. This has been recognised since John C. Kendrew and Max F. Perutz resolved the
structure of myoglobin in 1958 [1]. Not long after their discovery it became clear that
proteins constantly unfold and refold, but critically they can function fully only in the
folded state. This led to the hypothesis that function is determined by the structure,

widely accepted until recently.

The hypothesis has been substantially supported by the privileged position and great
success of X-ray crystallography in molecular biology. The technique, pioneered by
Kendrew and Perutz, measures the average positions of each atom in the protein and
produces static three dimensional structures. For a long time scientists focused on
creating a database of all protein structures believing that together with a description

of reaction pathways it would constitute a complete understanding of molecular biology.

Confidence in this approach began to be shaken during the 1970s when biophysicists
first pointed out the importance of dynamics in function [2]. Three decades later, it
has become an accepted concept that dynamics, or thermally excited vibrations, of the
protein are just as important to its function as is the structure. Furthermore, the “new
view” suggests that proteins have evolved to harness thermal motion along with its
structure to fulfill their role within the cell [3]. Recent publications have highlighted the

key role of protein dynamics in many aspects of protein function: intramolecular signal
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transmission [4, 5], inter-protein signaling [6, 7], ligand recognition [8], enzyme catalysis
[9], protein folding [10], complex assembly [7], chaperonin assisted protein folding [11],
ion channel selectivity [12] and ATP synthesis [13]. In this thesis we study the role of

thermal motions in intramolecular signal transmission, commonly referred to as allostery.

Biological systems are complex networks whose operation is achieved through an ac-
curate regulation. Proteins, the main constituents of the network, play their part by
participating in concerted sequences of binding events. These sequences often involve
binding of multiple ligands to the protein’s distinct binding sites. By a ligand we mean
any molecule that associates with the protein in question. The size of a ligand can vary
dramatically - ranging from a single ion, through a small organic compound to another
protein or DNA. In most cases the binding events are not independent, binding of one

ligand influences the affinity for the second ligand - a phenomenon known as allostery.

Allostery is a very intriguing effect, not only because it allows proteins to assume the
role of components in logical circuits, but also because it generally involves a long-range
communication through the protein body. The binding sites can be more than a hundred
Angstroms apart, separated by a jungle of protein folds and/or solvent molecules [11].
The mechanism of the communication has long been investigated but many aspects
still remain unclear. In accordance with the above-introduced theory, experts used to
associate allostery purely with changes in the protein structure. Under that hypothesis
the ligand binding must initiate some type of conformational change in the protein, such
as a pocket opening, which in turn modifies the affinity for the second ligand. This may
be the primary mechanism for many allosteric systems but as we know now it is not for
all. Allosteric binding, like all chemical reactions is a complex thermodynamic event in
which structural and dynamical changes contribute equally. In a more formal language,
the equilibrium of an allosteric reaction is determined by the free energy of binding

which is composed of an enthalpic and entropic term
AG=AH-TAS. (1.1)

The enthalpic term corresponds, in the first approximation, to changes in structure and

the entropic to changes in dynamics.

The allosteric reactions are assumed to occur under constant pressure and the volume
changes associated with them are assumed to be negligible. This allows us to use the

Gibbs and Helmholtz free energy interchangeably. Because the Gibbs free energy is
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standard in biochemistry and in the field of allostery, we denote the free energy by G in
the whole thesis.

The significance of dynamics in allosteric events is generally acknowledged but the de-
tailed mechanism that proteins use to take advantage of thermal motion is disputed
[7]. Several lines of thought, hypothesising the mechanism, have emerged recently. One
of them suggests that dynamics provides a route to conformational transition [14, 15].
The protein uses its thermal energy to explore its conformational space or free energy
landscape. Ligand binding can alter this landscape resulting in different preferred con-
formations with modified affinity for the second ligand. An alternative line of thought is
that only a small fraction of the protein atoms or residues, directly linking the binding

sites, is involved in the propagation [16, 17].

In this thesis we investigate an alternative mechanism whereby a change in average
position of atoms in the protein is not required and the signal is propagated through
change in the average fluctuation amplitude. The main difference from the linked residue
model is that a large proportion of the atoms is involved in the propagation. The
information is communicated mainly through changes in low frequency, global, modes
that move large protein domains in a concerted fashion. This alternative mechanism
was suggested nearly 30 years ago by Cooper and Dryden who also coined the term
dynamic allostery for it [18]. They, however, have not expanded on their original paper
and their ideas remained purely theoretical. Beginning in 2004, Hawkins and McLeish
produced a series of studies in which they developed Cooper and Dryden’s ideas into

concrete models of particular classes of proteins.

It is known that low frequency, global motions are the most relevant motions for al-
lostery [19]. These modes lie currently, and in the foreseeable future, out of reach of
routine atomistic simulations. In order to evaluate the contribution of the slow modes
to dynamic allostery, Hawkins and McLeish had to identify the appropriate level of
coarse-graining. They chose a very crude level, which nevertheless captures the desired
effect. In their models whole domains or subdomains are treated as rigid bodies whose
motion is governed by a set of harmonic potentials. They applied this concept to two
diverse classes of proteins: the rigid dimers, a structure often adopted by DNA binding

proteins, and coiled-coils seen commonly amongst molecular motors.

In this thesis we draw on their efforts with the aim to increase the arsenal of models

applicable to real systems. This is a part of the long term goal to develop a systematic
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coarse-graining method able to explain and/or predict allostery in an arbitrary system.
We first focus on a model of proteins with two symmetrical binding sites (homodimers).
After a thorough study of this system and illustration of the model’s applicability on
an example protein (CAP) we suggest an expansion to a general oligomer (protein with

multiple binding sites).

The second part of the thesis addresses dynamic allostery in a somewhat unusual al-
losteric system - DNA. Allostery as a concept is usually presented in biochemistry text-
books as a fundamental regulation mechanism of proteins, although it is well known that
DNA too can act as a mediator of allosteric signals [20]. This role of DNA has always
been considered secondary and has received less attention. DNA’s role as a medium
for allosteric signals is in my opinion underestimated, as it plays part in important
processes, such as regulation of gene expression or DNA crowding through unspecific
binding related to the much debated chromatin properties [21]. DNA is also a common
target of pharmaceutical research and our findings may have implications for the vibrant

field of drug discovery.

DNA constitutes an ideal model system because of its well known mechanical proper-
ties and relatively simple structure. This enables us to use coarse-grained models that
have been many times tested experimentally and to parameterise them from molecular

dynamics simulations.

In the remainder of this chapter we introduce the basic thermodynamic principles of
ligand binding. We explain where the protein dynamics come into picture and why
dynamics cannot be discounted in the considerations of the cooperative binding. We ex-
pand on the topic of protein dynamics in general and list several experimental techniques

capable to directly measure this effect.

In the following chapter we address the philosophy and the hierarchy of coarse-graining.
We summarize several basic approaches and highlight those employed in this thesis.
We finish by introducing and justifying our coarse-graining methodology. Three results
chapters that follow focus on the cases of symmetric homodimer and DNA in detail.
Each of these chapters begins with a detailed introduction to the particular system, the
reasons for choosing it and the justification of the method of coarse-graining. Finally

the last chapter summarizes the findings of this work and concludes with future plans.

In broader context, the aim of this work is to demonstrate that both structure and

dynamics of a protein carry information on its function, and that mathematical modeling
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in combination with physical laws can be useful when addressing questions in biology.
We recognize that it is important to convey our message in such a fashion that the
benefits of the theoretical approach and of the resulting models become obvious to
wider biological and scientific circles. We therefore try to explain them in as simple and

understandable terms as possible.

1.1 Thermodynamics of Ligand Binding

The function of the vast majority of biological molecules rests on their interaction with
their environment. This calls, in turn, for selective binding of molecules of different
types and sizes. If the selectivity or sensitivity for a particular molecule is disrupted
the consequences can be severe, ranging from minor dysfunctions to the cell death.
Understanding the way molecules interact is therefore of crucial importance and has

been widely explored for more than a century.

For the sake of simplicity let us focus the following discussion on the thermodynamics of

binding to a protein. The same conclusions apply to all macromolecules, in particular
DNA.

Molecules that commonly associate with a protein range from single ions or small organic
molecules to large molecules such as proteins and DNA. Irrespective of its size and type
we refer to the molecule interacting with the protein as a ligand. The protein with the

ligand bound is known as the holo form, the unbound state as the apo form.

The reaction between the protein and its ligand is determined by the affinity of the two
for each other. High affinity signifies that the protein is likely to be in its holo form
and vice versa. The measure of affinity is provided by the association constant K,. The

equilibrium state of a reaction of a protein P with a ligand L is described by the equation
P+L=P-L (1.2)

with the double ended arrow signifying equilibrium. The affinity is usually expressed in

the form of the association constant K,

K, = (1.3)
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where [P] is concentration of P. The greater association constant corresponds to a greater

affinity. The association constant has units of (concentration)™.

The term constant
may be slightly misleading, since all association constants depend on temperature and
pressure (or volume). In literature the reciprocal of association constant, the dissociation
constant, is sometimes used. The dissociation constant K; has units of concentration

and is thus for many more intuitive.

The association constant can also be expressed in terms of the rate constants k, and kg
defined as

ka
P+L=P-L. (1.4)
kq
Then
K, -t (1.5)
" .

Another useful measure of affinity is the dimensionless saturation fraction Y

P-L
Y = # (1.6)
[P]+[P-L]
The association constant is related to the Gibbs free energy of binding
AGping = -RTIn K, (1.7)

where R is the gas constant and 7' the absolute temperature. As seen from Eq. (1.3),
K, has units of concentration and therefore the value of AGy;,q depends on the units

used (i.e. the standard state).

The binding data are usually obtained by titrating together known quantities of reactants
and measuring the concentration of either of the chemical species in the mixture. Various
experimental techniques can be used for the concentration measurements, e.g. isothermal

titration calorimetry, spectrophotometric methods, chemical shift in NMR and others.

The resulting data are commonly analysed graphically, illustrated in Fig.1.1. The most
natural displaying method is shown in Fig. 1.1 a,b, where the concentration of the bound
ligand is plotted against the free ligand concentrations. The observed curved binding
plots used to be difficult to analyze before the computer fitting programs. Scatchard
therefore suggested a way to linearise the data by plotting the concentration of the

bound ligand weighted by the concentration of the free ligand as a function of the
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FIGURE 1.1: Examples of graphical methods used to analyse binding data. (a) The
most natural way of displaying the data where the concentration of the bound ligand
is plotted against the concentration of the free ligand. The usually observed hyperbolic
relationship is shown. (b) A logarithmic scale is used for the free ligand concentration
to display the whole binding range. (c¢) Scatchard plot. The negative slope yields the
value of association constant and the intercept with the horizontal axis the value of
maximal binding. (d) Hill plot used mainly for analyzing allosteric data (for details see
Fig.1.4). Here pictured for non-cooperative interaction. Adapted from [22].

bound ligand concentration; a method used until present time. The intercept of the
Scatchard plot with the z-axis corresponds to the extent of maximal binding and the
slope to negative association constant (—K,). When there is more than one binding site
the Scatchard plot becomes nonlinear. Interpretation of the data in this case is explained
later in this chapter (1.1.1). A particularly useful graph for analysing allosteric binding
is the so called Hill plot (Fig.1.1d), because it provides a way to quantify the extent of

cooperativity as we shall see later.

The mechanism of ligand binding to a protein was first dealt with by Fisher in 1894
[23]. He introduced a key-lock theory, which remained unquestioned for almost 60 years.
This theory considers molecules as rigid structures. In order to bind a ligand the protein

binding site must be a negative shape of the ligand so that the ligand fits into it like
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FIGURE 1.2: Schematic drawing of the key-lock (a) and induced fit model (b). (a) The

ligand must be of exactly the negative shape of the protein binding site, (b) the binding
site adapts its shape to better fit the ligand.

a key into a lock. The theory explained well the steric repulsion observed in organic

reactions.

The key-lock theory was challenged by Koshland in 1958 [24] who introduced the concept
of induced fit as an explanation of the specificity of the enzyme reactions. He came to
the conclusion that a protein is more of a pliable rather than a rigid structure and the
substrate binding may cause a substantial change in the three dimensional structure
of the active site. A schematic illustration of the difference between the two models is

shown in Fig. 1.2.

The ligand binding indeed commonly results in a modified 3d structure of the protein
but it is now accepted that the process is lot more complicated still. Protein ligand
association, like any other chemical reaction is a complex thermodynamic phenomenon
with the equilibrium determined by the free energy. The Gibbs free energy is composed

of an entropic and an enthalpic part
AG=AH-TAS. (1.8)

Changes in the structure described in the induced fit model contribute to the enthalpic
part. More generally, we refer to a reaction as enthalpically favourable if AH < 0,
which corresponds to the lower internal energy of the product than of the reactant. An
enthalpically favourable reaction simplistically involves creation or reinforcement of the

interactions between the ligand and the protein and within the protein itself.

An entropically favourable reaction is such that AS > 0. Entropy is a measure of the

disorganization of the system and nature usually favours more disorganised systems.
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Entropy can be calculated from the number of microstates available to the system
S=-kp) P;InP, (1.9)
i

where index ¢ runs over all accessible microstates and F; is the probability of occupation
of the particular microstate. Entropy is increased if the number of visited microstates
increases. A ligand binding to a protein generally influences the thermal fluctuations of
the protein, by either stiffening or softening the protein. The more commonly observed
stiffening corresponds to reduced amplitude of fluctuations and thus implies a smaller
number of significantly occupied microstates and reduced or unfavourable entropy. The
entropic contributions are not accounted for in the induced fit model and are still oc-
casionally disregarded in binding studies. They are, however, as equally relevant as

enthalpic contributions, in particular in biochemical reactions involving macromolecules.

The enthalpy and entropy terms are intimately connected. An attractive interaction
between two molecules is always, at least partly, compensated by an entropic cost of
bringing the two molecules together. An entropic penalty is also paid for any loss of
internal rotations and vibrations of the molecule and thus an enthalpically favourable
reaction characterised by tight binding, that stabilises the protein structure is generally

reflected in unfavourable entropy due to the loss of mobility.

The term enthalpy-entropy compensation is widely spread in literature but has to be re-
garded with caution. The effect is often observed as an artifact of wrong interpretation
of data, in particular of the Arrhenius plots [25]. It can nevertheless play an impor-
tant role in the reaction equilibrium and reliable methods, such as isothermal titration
calorimetry, exist that can determine the thermodynamic parameters accurately. The
methods most commonly employed to investigate details of ligand binding are reviewed
in Sec. 1.4.

1.1.1 Multiple Binding Sites

Macromolecules often have more than one binding site and interact with multiple ligands.
Association with multiple ligands can lead to a very complex behavior. In the simplest
case the multiple sites are identical and have the same intrinsic affinities for each binding.
There may also be distinct sites with different, and independent binding constants. But

most intriguingly one ligand binding may influence the subsequent affinity for another
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ligand. This cooperative effect is commonly referred to as allostery and constitutes the
main focus of this thesis. Let us however begin our review with the simple case of

independent binding sites.

Identical independent sites are common in proteins composed of several symmetrically
arranged subunits. The observed binding curves are generally identical to the single
ligand case, but the interpretation varies slightly. In particular, if we replace the con-
centration of the protein/ligand complex [L-P] in the Scatchard plot with the average
number of ligand molecules bound per protein v then the plot remains linear. The in-
tercept with the vertical axis now however corresponds to nK, and the intercept with
the horizontal axis to n, where n is the number of binding sites and K, is the intrinsic

association constant (Fig.1.3a).

The association constant of multiple binding can be reported as an overall constant K,
or stepwise (intrinsic) constant of the j-th binding step KI. The first ligand binding to
a protein has n binding sites available and thus the association constant of the 1st step

K} is
nk,

g
&

(1.10)

The n-th ligand has only one site available, but there are n ways a ligand can dissociate.
Thus

=
e 3
[
[
|

= = . 1.11
nkg n ( )
When binding sites are independent but non-identical the Scatchard plots become more
complex (Fig.1.3b). The stoichiometries and affinities of the bindings can be extrap-
olated, but the extrapolation has to be done cautiously. More complicated binding
models in combination with multiple titration ITC experiments or NMR are usually

used in order to obtain a complete picture.

A useful measure of relative affinity of two ligands is the Gibbs free energy

K,
AAG = RTIn 5. (1.12)

a quantity independent of the chosen units of the association constants.
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FIGURE 1.3: Scatchard plots of binding of a ligand L to a protein P, where v is the

average number of ligand molecules bound per protein and [L] is the concentration of

free ligand. (a) Scatchard plot of two independent sites. The slope of the binding curve

is —K,, intercept with the horizontal axis is the number of ligands bound n and the

intercept with the verical axis is nK,. (b) Scatchard plot in the case of cooperative

binding. For analysis of cooperative binding other methods such as the Hill plot are
usually used. Adapted from [22].

1.2 Cooperative Binding

The affinity for a particular ligand can be changed by other ligands binding to the
protein. This effect is known as cooperativity or more commonly allostery. The word
allostery comes from greek allos (aAX\os) meaning “other”, and stereos (oTepeos),“solid
(object)” referring to the fact that the bindings occur at different sites of the protein
(or other macromolecule). It constitutes a crucial mechanism of regulation in biological
systems. Biological systems are complex networks where abundant external inputs have
to be amplified or conversely nullified in order to maintain the organism’s optimal per-
formance. Allosteric effects provide a mean to tune individual steps and thus regulate

the overall reaction pathways.

Binding of a ligand (so called effector) to a protein can result in increased or decreased
affinity for the second ligand (so called substrate). The former is referred to as positive
allostery (or cooperativity), the latter as negative allostery (or anti-cooperativity). The
two ligands can be identical, the allostery is then said to be homotropic or non-identical

resulting in heterotropic allostery.

The sign (positive or negative) and extent of allostery is defined by the allosteric free

energy AAG (Eq. (1.12)). For the homotropic allostery AAG is alternatively defined as
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the difference between the free energy cost of each binding
AAG = (G2 - G1) - (G1 - Go), (1.13)

where G is the free energy of the free protein, GG; of singly and G2 of doubly bound. If
the cost of the second binding is higher than of the first, i.e. if first binding inhibits the
second the resulting allosteric free energy is positive and vice versa. We preserve this

sign notation throughout the thesis

if AAG > 0 = negative cooperativity (1.14)
if AAG <0 = positive cooperativity (1.15)

The absolute value of the allosteric free energy corresponds to the strength of the al-
losteric cooperativity. The larger values correspond to the larger influence of the first

binding event on the second.

In the case of heterotropic allostery typically a different notation is adopted. A protein
with an effector bound is called the holo-protein and the protein without the effector
bound the apo-protein. The allosteric free energy is then the difference between the free

energy cost of the holo-protein and apo-protein binding the substrate
AAG = AGholo — AGapo- (1.16)

The same sign convention applies. If the effector increases the affinity for the substrate

then AAG <0 and vice versa.

The history of allostery is intimately connected with discovering and explaining the
oxygen binding properties of haemoglobin, the most famous allosteric system. Many
models originally created for this system have been found to have implications for all

allosteric systems and are widely used until today.

The first report of cooperative reaction was published in 1904 by Christian Bohr, father
of atomic physicist Niels Bohr, who observed the association of oxygen with haemoglobin
[26, 27]. Bohr carefully measured the dependence of fractional saturation of haemoglobin
with oxygen on the oxygen pressure and observed a sigmoidal curve, in contrast with the
usually observed hyperbola-like shape (Fig.1.4). He reasoned that this shape must be

a sign of cooperative binding, i.e. the affinity for the oxygen increases with the number
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of oxygens already bound. In the same article Bohr reported that presence of carbon

dioxide lowers the oxygen affinity.

The earliest attempt to explain the sigmoidal nature of the curve came from Archibald
Hill in 1910 [28]. Hill assumed that haemoglobin binds n molecules in all-or-none fashion.

The equilibrium is then described by

P+nL=P-L, (1.17)
and the association constant [ !
P-L
K, =—"14 1.18
“= PIL (19

By combining Eq. (1.6) and (1.18) the saturation fraction of the protein molecule (e.g.
haemoglobin) with the ligand (e.g. O2) can be written as

KL
1+ K [L]™ Kg+[L]™

(1.19)

The more commonly used version with the dissociation constant (the right hand side)
is known as the Hill equation. In order to plot the binding data in the form of the Hill

plot we express the ratio on the vertical axis in terms of the saturation fraction

[P-L.] Y n
= =K, L]|". 1.20
el - L) (1.20)
Taking the logarithm results in
Y
log(ﬁ) =log K, + nlog[L]. (1.21)

In the hypothetical case of infinite cooperativity, assumed by Hill, the Hill plot would
be linear with slope equal n. The binding, however, can never be totally cooperative.
But the factor n may be taken as non-integral parameter describing the extent of co-
operativity. This parameter is known as the Hill coefficient and provides a quantitative
measure of degree of cooperativity. The resulting Hill plot is composed of several seg-
ments (Fig. 1.4). The steepest part has slope equal to n and occurs in the middle of
the free ligand concentration range. The outer segments have slope equal to unity and
correspond to the first and last ligand binding. Negative cooperativity results in Hill

plots with slopes of less than unity.
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FIGURE 1.4: Binding curves for positively cooperative binding. (a) A typical sigmoidal

curve observed when Y, the average saturation fraction, is plotted as a function of

ligand concentration. (b) Hill plot with a Hill coefficient n = 2.9, measured for human
haemoglobin. Adapted from [22].

The next major contribution to understanding of the physiological properties of haemoglobin

came from Gilbert Adair in 1925 [29]. He determined the molecular weight of haemoglobin
and calculated that there are four binding sites for oxygen. He presented a model of
allostery based on equilibrium constants that increase with the number of associated
oxygen molecules. The Adair equation relates the degree of oxygen saturation Y and

the partial pressure of oxygen p (used instead of concentration for gases)

_ K1p+3K1K2p2 +3K1K2K3p3+K1K2K3K4p4
144K p+ 6K Kop? + AK Ko Kap3 + K1 Ko K3 K 4p*

(1.22)

where K,..., K4 are the individual equilibrium constant for steps 1 to 4 respectively.

1.2.1 The Monod-Wyman-Changeux Model of Allostery

The intriguing problem of haemoglobin sparked interest in Jacques Monod, Jeffries
Wyman and Jean-Pierre Changeux who suggested a model of allostery known as the
two state concerted model, or simply as the MWC model [30]. They took inspiration
from the induced fit ideas and refined them for the allosteric systems. Despite their
simplified and, as later experiments revealed, imprecise assumptions about allosteric
systems, their work became a cornerstone of modeling and understanding allostery. Due

to its relative simplicity and direct interpretation of experimental data the MWC model
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has enjoyed a wide spread popularity from its first publication in 1965 [30] until present

times.

They assumed that allosteric systems are composed of two or more identical subunits
with at least one axis of symmetry. Each subunit can exist in two (or more) conforma-
tional states, which have different affinity for the ligand binding and different quaternary
structure (i.e. the intersubunit bonds). The states are denoted as T (tense) and R (re-
laxed) where R has higher affinity for the ligand. The two states with j ligands bound
are denoted R; and T;. The main postulate is that the symmetry of the system has to
be conserved, that is, all subunits have to be in the same state at all times. The switch
between the conformations therefore must be concerted, hence the name of the model.
In the absence of the ligand, the two states Ty and Ry exist in equilibrium defined by
the equilibrium constant L. The T state with low affinity for the ligand is favoured
(L < 1). The affinity of the R state for the ligand is higher than of the T state by factor
¢ (¢>1). The equilibrium of the states Ry and Ty is therefore shifted towards R; and
is determined by the constant Lc. The unligated sites of the R; state therefore have
increased affinity for the ligand. The full scheme of this model is shown in Fig. 1.5.

Importantly, L and ¢ are the only two parameters of the model. They can be extracted

relatively easily from the experiments and fully characterise the allosteric system.

The model was primarily aimed at explaining homotropic allostery. The authors suggest
that heterotropic ligands can use the same mechanism by stabilizing either the T or the

R state to produce positive or negative cooperativity.

In 1965 when this model was published it was a major success. Allostery had been only
observed for symmetric oligomers and even the fact that the model did not account
for negative homotropic cooperativity (a ligand inhibiting binding of a second identical
ligand) did not matter, because no example of such behaviour was known at that time.
Later observations however challenged these and other limitations and slowly forced a

new view on the mechanism of allostery.

1.2.2 The Koshland-Nemethy-Filmer Model of Allostery

Shortly after the publication of the MWC model Koshland, Nemethy and Filmer pro-
posed an alternative explanation of allostery, usually referred to as the KNF or the

sequential model [31]. It has been created for allosteric proteins composed of two or
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FIGURE 1.5: Schematic drawing of the MWC and KNF models. (a) The conserved

symmetry of the protein within the MWC model requires all subunlts being always

in the same state, either in the T state (brown) or R state (blue). The R state is

characterised by higher affinity for the ligand. (b) The KNF model: each ligand induces

a conformational change in the subunit to which it is bound and in the neighboring

subunits. The affinity for the ligand thus increases sequentially. The geometry is defined
by allowed interactions rather than by the protein structure.

more subunits. It assumes that binding of a ligand can directly influence the tertiary
structure of the neighbouring subunit and thus the affinity of this subunit for the ligand.
The neighbour is defined by the allowed interactions between the subunits rather than

by their position in space.

The model predicts the average number of molecules of substrate bound per protein Ng
as a function of ligand concentration and four parameters: the equilibrium constant Kg
for binding of the substrate S to the individual subunit, the equilibrium constant for the
conformational change K; and interaction constants K 4p and Kpgp between the confor-
mations A and B. The exact expression for Ng however depends on the arrangement of
the subunits within the protein, the original article gives formulae for tetrahedral, square
and linear arrangement of 4 subunits. The propagation of conformational changes in

the square arrangement of subunits is illustrated in Fig.1.5.

The MWC and KNF models are both based on the idea of conformational change. The
conformational change in the KNF model, occurs only as a consequence of ligand binding

and extends directly to the other subunits. The extent of conformational change is thus
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proportional to the number of ligands bound. The MWC model is, on the other hand,
founded on the idea of two symmetric quaternary structures, present in equilibrium even
in the absence of a ligand. The conformational change from the low affinity T-state to
the high affinity R-state then tends to take place when Lc! becomes greater than unity,

which can in principle occur after any binding step.

Clearly, the KNF model is mathematically more complicated, the equation for Ng de-
pends on the interaction model and 4 parameters, but less restrictive than the MWC
model. The restrictions that the MWC model imposes are advantageous in that only
two parameters need to be fitted, but the model does not account for negative coopera-
tivity, cannot explain changes in tertiary structure and preferential binding to a specific

subunit, all of which have been observed in numerous proteins.

Even though one can argue the KNF model is better as it explains wider range of
effects, thanks to its mathematical complexity it has never achieved as much success as
the MWC model.

1.2.3 Current View Of Allostery

The previous two models represent classical examples of the static view of allostery.
They assume that conformational change provides the only means of communication
between the two binding sites. This change in the three dimensional structure of the
protein is triggered by the first binding, or in the case of more than two binding sites
by any subsequent binding. Thermodynamically this corresponds to a purely enthalpic
effect. However, as we explained before, the entropic contributions may play just as
important role in the ligand binding. This observation was first made by Weber in
1972 [2]. He pointed out that every protein constantly fluctuates between a number of
conformations and we only measure the average one. He argued that binding of a ligand

can stabilise a certain conformation and thus aid binding of another molecule.

A different approach was taken by Cooper and Dryden who in 1984 introduced the notion
of dynamic allostery and evaluated its potential importance based on basic statistical
thermodynamics principles of ligand binding, very similar to the ones we use in this work.

They focused on binding of identical ligands to distant sites for which the allosteric free
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energy can be expressed as

(1.23)

AAG:—kBTln(ZOZ2),

4

where Z; is a partition function of state i; i = 0 refers to free, i = 1 to singly and i = 2 to

doubly liganded protein.

They argued that of the number of physical phenomena that may contribute to the
allosteric effect, only the changes in vibrations and conformational states of the protein
result in significant allosteric free energy. Contributions from more subtle changes in
the dynamics that may occur due to redistribution of conformational substates can be
important too, but arise through similar mechanisms as the vibrational contribution.
Let us review here only the outcome of their calculations on the previously neglected

changes in vibrational spectra.

The internal motion of a protein can be decomposed into a spectrum of vibrational
normal modes. The classical partition function of a single thermally excited normal

mode with frequency v is
kT

hy '

where h is the Planck constant. If this low frequency normal mode undergoes a frequency

Z(v) = (1.24)

shift vy - v1 — 15 as a result of the sequential ligand binding the allosteric free energy
becomes )
AAGyi, = —kpTIn (”—1) . (1.25)

240
The fraction on the right hand side can differ from unity, resulting in finite allosteric
free energy. This demonstrates that an alternative communication pathway between the

binding sites exists and conformational change is not required for allosteric effects.

The result also provides a condition for the sign of allostery; if v? > va14 then the
allosteric effect is positive and vice versa. Additionally, the equation can be used to
estimate the extent of this effect in proteins. Assuming 10% increase in frequency
upon each binding, the allosteric free energy per mode equals ~ 0.01 k7. In a average
protein, there are hundreds of classical normal modes and the effect can thus give rise

to biologically relevant free energies of several kpT'.

This insightful article has however not resulted in a radical change in attitude towards

allosteric effects. It instead took many years till their demonstration had been seriously
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FI1GURE 1.6: Increase in annual number of citations of the article “Allostery without
conformational change” by Cooper and Dryden [18].

acknowledged by at least a part of the scientific community (Fig.1.6). This delay was
partly due to the lack of experimental techniques able to verify their hypothesis. It took
a decade for experimental techniques to advance enough to be able to reliably observe
that structural fluctuations can become modified upon ligand binding [32] and even

longer to connect this phenomenon with allostery [4].

The new view of allostery that emerged from the novel experimental techniques was
summarized in 1999 by Freire in the so called dynamic population shift model [14]. In his
article he describes a protein as a statistical system, undergoing permanent fluctuations.
The fluctuations can be regarded as local unfolding events and their probability is given
by the Boltzmann factor. A change in the protein conditions, such as binding of a ligand
is reflected in the most probable distribution of the states. The redistribution of the
states can affect also regions distant from the ligand binding site. Thus the ”pre-existing
equilibrium” favouring binding of a substrate can be stabilised. The communication
proceeds only via a few residues, the so called cooperative pathway, connecting the two
binding sites. Although his ideas were not completely original they were supported by
much experimental [33-35] and computational evidence [36, 37| and therefore meant a
substantial departure from the traditional understanding of ligand binding as an induced

fit event.
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Molecular flexibility has become accepted as crucial to allostery but only as providing
a route to conformational change. In the view of the population shift model, flexibility
gives rise to population of conformational states between which the protein fluctuates.
The rates of fluctuations depend on the binding state of the protein and a ligand binding
can stabilize certain conformation. But as Cooper and Dryden pointed out this is not
the only role of flexibility. Dynamics can contribute to allostery even in absence of
observable change in average conformation. In the early 2000s it became increasingly
more apparent that signals can indeed be transmitted through proteins by changes in
dynamics [15, 38, 39]. If a last piece of evidence was needed it was provided by Popovych
et al. [4]. They presented a complete study of an allosteric protein (CAP) that performs
its cooperative binding without a substantial conformational change. This means that
an alternative mechanism of communication between the sites is taking place and it can
only be provided by altered dynamics. In other words the allostery is entropy driven in
the way described by Cooper and Dryden. We tried to gain a deeper understanding of
the mechanism of allostery in CAP by using a coarse-grained model; the results of our

calculations along with details of the experiments are presented in Chap.2.

The example of the CAP protein is an extreme case where structural change plays no part
in the propagation of the signal. However, dynamics and structure are of comparable
importance to the allostery and a majority of proteins uses both means of communication
to a certain degree. Tsai et al. suggested a classification scheme where they divided
allosteric proteins into three classes (Type I, IT and IIT) based on where is their allostery
located on the spectrum with the extremes of enthalpic and entropic effect [40]. Type I
is governed by entropy, i.e. there is no or only subtle conformational change observed,
Type II is driven by both entropy and enthalpy and Type III is predominantly driven
by enthalpy.

Cooper and Dryden formulated the general principles of allostery propagation through
modified dynamics but did not apply their formalism on any specific systems. Hawkins
and McLeish have expanded their ideas into the form of concrete models of two classes
of proteins: rigid dimers with application to the lac repressor [38] and coiled coils [41].
They also elaborated on the role of fast, localized motions and suggested how these may
become coupled to the slow global motions. They concluded that the resulting effect
can be amplification of the entropic allostery and can give rise to compensating entropic
and enthalpic terms. They exemplified the model on the DNA binding met repressor
protein [42].
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Another view of allostery that has gained significant popularity is based on the idea that
the two binding sites are linked by a set of residues, the so-called allosteric pathway,
along which signals are communicated [7, 16, 17]. Communication can proceed via struc-
tural changes and/or altered vibrations of the linked residue. The networks commonly
consist of evolutionary conserved residues and are very sensitive to single mutations ren-
dering them popular amongst biologists and computational scientists alike. However,
the majority of these studies concentrate on detecting the pathways rather than the

mechanism by which the interaction proceeds.

Not only has the understanding of the mechanism of cooperativity progressed, but so has
the perception of an allosteric system. The traditional view of an allosteric protein as
oligomer with multiple identical domains has been overthrown by Volkman et al. in 2001
[35] who proved the existence of allostery in a single domain protein. Gunasekaran et
al. [39] went a step further and suggested that allostery may be an intrinsic property of
all non-fibrous proteins. In the opinion of Gunasekaran et al., using appropriate ligands,
point mutations or external conditions may result in allosteric behaviour in any protein.
Such a hypothesis has large potential implications for pharmaceutical industry and the
shift in focus in new drug development toward allosteric mechanisms has already been
noticeable [17, 43, 44].

We have explained why both the enthalpic and the entropic parts of the free energy play
a key role in allosteric effects. This has now become widely accepted, but the mechanism
by which is the communication established remains elusive. It is precisely those systems,
where entropy plays a major role, that are not well understood and therefore offer a great

opportunity for substantial advances in understanding.

1.3 Protein Dynamics

It has been nearly 200 years since the botanist Robert Brown systematically described
thermal motion of pollen granules and over 100 years since Albert Einstein explained
it. Yet it had taken a long time to accept that thermal motion plays an essential role
at the intramolecular level in biochemistry. Weber in 1972 was possibly first to point
out that macromolecules undergo permanent fluctuations that can be essential for their

function [2]. In 1975 Austin et al. supported the hypothesis by showing that an ensemble
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of protein molecules in the same conformational states is not homogeneous, i.e. some

molecules occupy different conformational substates [45].

The potential significance of protein dynamics was occasionally mentioned in literature
during the 70s and 80s, but attention then was focused on determining the macromolec-
ular structure. This was partly due to the absence of an experimental technique able
to observe protein dynamics directly. X-ray crystallography can identify flexible regions
but the results are rarely conclusive. A revitalisation came in the form of the discovery

of a method able to interpret NMR data in terms of protein dynamics.

Lipari and Szabo [46, 47] noticed that NMR may be the right method for the protein
dynamics investigation because it is very sensitive to protein motions, can resolve in-
dependently the dynamics of different residues on the protein because of their chemical
shifts, and can be carried out in a solution and at room temperature. They developed
their ideas into a practical tool, and in a few years NMR has become the most popular
method for investigating protein dynamics. The revelation of the functional importance
of flexible regions with NMR had a large impact on modern protein science, as has been
stressed, e.g., in recent special thematic issues of the journal Science: (1) Biochemistry:
Tools for New Frontiers published on 14 April 2006 and (2) Protein Dynamics released
on 10 April 2009.

The less intuitive and less well understood entropic part of the free energy of protein-
ligand association comprises terms associated with the protein, the ligand and the sol-
vent. The latter two can be seen as the entropic cost related to the transformation of
the ligand from the free to the structured (bound) state and the accompanying solvent
release from the binding site. These may contribute significantly to the free energy [48],
but are of secondary significance in the studies of allostery, in particular homotropic
allostery, because the entropic cost is nearly identical for the two binding events. The
least understood part of the entropic term is associated with the protein and is usually
referred to as the conformational entropy. It involves the entropic cost of changes in the
protein internal dynamics induced by the ligand binding. Here we focus on the processes

occurring in the macromolecule that lead to modification of its dynamical behavior.

Macromolecular dynamics is a very vague and often misused term. When referring
to dynamics we choose to follow definition introduced by Henzler-Wildman and Kern,
that “protein dynamics is any time-dependent change in atomic coordinates” [49]. This

definition includes both, equilibrium fluctuations and non-equilibrium phenomena. Here
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FIGURE 1.7: Tlustration of protein dynamics timescales. (a) One dimensional crossec-

tion through a free energy landscape of a protein shows the classification of local minima

into three tiers. Motion within tiers 1 and 2 is referred to as fast dynamics and motion

between different wells of tier 0 are denoted slow. (b) A time line describing protein

dynamics and experimental techniques that can access motions on respective timescale.
Adapted from [49].

we however only discuss the equilibrium fluctuations since they appear to govern the

majority of biological processes including allosteric effects [49].

The equilibrium fluctuations are conventionally divided into slow and fast. Let us adhere
to the formalism of Henzler-Wildman and Kern who define these terms based on the
depth of the local minima of the free energy landscape in which the fluctuations occur
(Fig. 1.7).

Slow fluctuations can be seen as conformational transitions between tier-0 wells which are
separated by free energy barriers of several kgT. They occur at us-s timescales and are
considered biologically very relevant because many functional processes such as protein
folding, protein docking and allosteric transitions take place on similar timescales. The

motions on these timescales are collective, involving the whole protein domains.

Fast fluctuations are defined as fluctuations within the tier-0 wells. These motions
are characterised by smaller amplitude and ps-ns timescales. Physically they involve
motions of small groups of atoms such as side chains or loops. We note that even

faster fluctuations are present in proteins, such as atomic bond stretching that occurs
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on femtosecond timescales. These motions are however not thermally excited and thus

lie beyond the interest of this thesis.

In this thesis, we are primarily interested in collective motions occurring at ns-us
timescales but also in faster motions such as the side chain vibrations and loop mo-
tions happening with ps-ns frequency. The collective motions are particularly important
since their perturbation is felt at large distances, in contrast with fast modes which are
localised (involve only a few atoms) and thus unlikely to transmit the allosteric sig-
nal across large distances. Daniel et al. [50] reviews several experimental results and
concludes that motions on timescales shorter than 100 ps are not required for enzyme
function. Which motions are active in the allosteric signaling is disputed [4, 35, 51, 52],
but the most likely answer is that to a certain extent motions from all parts of the

spectrum play a certain role.

The motion of individual atoms or even concerted motion of larger biomolecular domains
still cannot be observed directly. A number of sophisticated experimental techniques has
however been developed able to measure certain physical properties as a function of time
from which the dynamics can be inferred. We introduce some of these methods along

with most important and influential experiments in the following section.

Computational simulations provide a prominent set of techniques capable of observing
and studying protein motion directly. They open the window into the atomistic world
of the molecules and allow for the observation of the macromolecular machines at work.
Some of the techniques developed to perform and analyze the computer simulations are

reviewed in the next chapter.

1.4 Experimental Techniques for Protein Dynamics and

Allostery Investigation

The number of experimental techniques able to probe protein dynamics has grown
rapidly over the past 20 years and it is beyond the scope of this thesis to review them
all. Let us therefore focus on the major ones used to assess the role of dynamics in

ligand binding.

The two most common techniques are isothermal titration calorimetry (ITC) and nuclear

magnetic resonance (NMR). ITC is probably the only techniques where the free energy
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(AG), enthalpy (AH) and entropy (AS) of the reaction are measured in one experiment,
rendering it very useful for allostery consideration. However, the entropic term however
includes the contributions associated with ligand and desolvation of the binding pocket
and is thus not a direct measurement of the protein dynamics. NMR, on the other hand,
is in principle able to measure protein dynamics directly. The particular techniques are

however substantially complicated and the interpretation debated.

1.4.1 Nuclear Magnetic Resonance (NMR)

The major advantage of NMR is that the experiment is conducted in solution at room
temperature and many different techniques can be employed to access a wide range of
timescales. Some methods are well established but many have been developed only re-
cently with the aim to both, widen the range of timescales measured and improve the
quality of the data collected. Most biological processes, such as ligand binding, allostery,
protein-protein interactions or folding happen on us-s timescales. The techniques ac-
cessing these and slightly faster backbone motions are crucial in addressing the research
questions of this thesis. However fast, side chain, motions may in many cases be tightly

correlated with the slow motions [42] and therefore are of high interest to us too.

Here we briefly introduce the physical principles of NMR and point out a few techniques
that specialize in dynamics measurements. We also review several applications illustrat-
ing the scope of use of these techniques. For the purposes of this thesis, we will treat the
review of NMR techniques at a classical level. While a quantitative and accurate imple-
mentation of the techniques requires a quantum-mechanical analysis, the corresponding

classical picture serves to illustrate the abilities and scope.

A protein or any other molecule is a system of atoms each of which have a nucleus with
intrinsic spin S and magnetic moment p. In equilibrium the nuclear magnetic moments
point in all possible directions; the distribution of the directions is isotropic. When
placed in external magnetic field Bg, the nuclear magnetic moments interact with the
field and start to precess around the field with a characteristic frequency called the
Larmor frequency (Fig. 1.8). Furthermore the entire sample acquires a small net nuclear
magnetic moment along the field. When the magnetic field is switched off the net nuclear
magnetic moment relaxes. The relaxation of each nucleus depends on the fluctuations
and distance of the neighboring nuclei and the overall tumbling of the molecule. This

relaxation time, called the longitudinal relaxation time or 77, is measured
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FIGURE 1.8: The precession cone of nuclear spins in the external magnetic field Byg.

The distribution of the spins in x and y direction is isotropic. The external magnetic

field causes an alignment of the spins in the z direction resulting in the net magnetic

moment of the sample M. The relaxation of My is referred to as the longitudinal
relaxation.

and in combination with the other relaxation parameters interpreted in terms of protein

structure and protein dynamics.

In order to gain more detailed information about the sample, additional parameters
sensitive to different physical processes are measured. First is the transverse relaxation
or Ty, which describes the relaxation in direction orthogonal to the external field. This
relaxation process is rather complex consisting of gradual loss of coherence in the phase
of spin precession. Since this only occurs due to interaction of magnetic fields of different
spins it is commonly referred to as the spin-spin relaxation time. In contrast, the
longitudinal relaxation occurs due to energy exchange with its surroundings, the lattice,

and is thus often referred to as the spin-lattice relaxation.

A third parameter, called the Nuclear Overhauser Effect (NOE) completes the set of
parameters measured in a typical NMR experiment. It consists of applying a weak radio
frequency field at the Larmor frequency of one of the spins of the system. The resonance
has a strong effect on the spatially proximate spins and thus the measurement yields
information on the local distances over time. In some specific applications other parame-
ters are measured. These and the traditionally measured parameters and the techniques

used to interpret them are explained in much greater detail elsewhere, e.g. [53].
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A number of physical factors influence the relaxation: (1) dipole-dipole interactions
strongly dependent on the distance between the nuclei, (2) chemical shift anisotropy, a
result of shielding of a nuclei by the neighboring molecules, (3) quadrupolar interactions

that influence only nuclei with spin > 1 and (4) conformational exchange.

Evaluating individual contributions from the above factors to the overall relaxation pro-
vides the sought-after information on structure and dynamics of the molecule. However,
it is a complicated task. In order to facilitate the decomposition of the NMR signal spe-
cialists have developed a string of techniques, generally involving various radio frequency

pulses.

The methods are conventionally divided into three categories according to the timescales
they are able to observe: fast dynamics (motions on ps-ns timescales), slow dynamics
(us-ms timescales) and very slow dynamics (>>ms) that is generally referred to as the

hydrogen-deuterium exchange. For a recent review of the methods see [54].

The most commonly used methods to investigate fast backbone motions are the reduced
spectral density mapping (RSDM) [55] and “model free method” of Lipari and Szabo
[46, 47]. These two methods measure dynamics of 1°N by evaluating the relaxation times
T; for the spin pair 'H- '°N. The model free formalism is preferred over RSDM because it
provides information on the nature of the motion in addition to the timescale. Recently
the field has been expanded by new techniques that yield complementary information
to the N measurements, e.g. techniques measuring carbonyl-C,, bonds dynamics [56]

or correlated motions of successive protein residues [57].

The side chain dynamics can be probed by several labeling techniques [58]. They measure

primarily the quadrupolar interactions of deuterium, used as a label.

The methods investigating the pus-ms (slow) dynamics make use of the large amplitudes
of the fluctuations causing the chemical shift to be distinct in each conformation. They
are collectively referred to as the relaxation dispersion measurements. By applying a
cleverly constructed sequence of radio frequency pulses the difference between the shift
becomes amplified and can be easily detected. The most common sequence is the Carr-
Purcell-Meiboom-Gill (CPMG) sequence. Other sequences can be used to improve the
quality of the data [59].

The CPMG sequence yielded the key results for example in the experiments of Eisen-

messer et al. who showed the importance of slow dynamics in catalytical function of the
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protein CypA [9]. Other groups have measured both slow and fast dynamics to charac-
terize the role of dynamics in ligand binding. Allostery-related examples include a study
of Malmendal et al. of calmodulin cooperatively binding calcium [33]. They showed
that conformational change is accompanied by a significant reduction in the backbone
motions on the ps-ms time scale upon Ca?* binding. In another study Volkman [35]
measured slow and fast motions of the signaling protein NtrC and observed that fast
motions remain nearly unchanged but the slow motions get suppressed upon NtrC ac-
tivation. Other studies showed that binding can be accompanied by modification of
fast dynamics only [8, 51]. The majority of these methods were employed to address
the change of dynamics during the allosteric event of a small cAMP molecule binding
to the CAP protein [4]. This system constitutes a main example in Chap.3 and the

experimental results are thus reviewed in greater detail there.

One way to observe the very slow dynamics exemplified by the conformational transi-
tions of a protein is to dissolve the protein in a deuterated buffer. The exchange rates
between hydrogen and deuterium then depend on the amide exposure to the solvent.
Several experimental methods are available to measure the exchange rates, such as mass
spectroscopy but the most accurate is the site-specific NMR. Hydrogen-deuterium ex-
change rates have been measured with NMR for multiple proteins and yielded a high

resolution dynamic measurements across a wide range of timescales (e.g. [4, 60]).

From our point of view, however, all NMR methods have a common drawback; they
do not provide information on modal dynamics and instead report on local, spatial
dynamics. Typically the result of an NMR dynamics experiment is a relative measure
of mobility of individual residues within a certain frequency range (see e.g. the results
of NMR experiments on the CAP protein performed by the group of Kalodimos and
reproduced in Figs. 3.8, 3.9).

A first attempt to provide this, for most purposes, more meaningful description in terms
of collective modes and uncorrelated local motions within a protein was recently re-
ported by the group of Emsley [61]. They argued that solid state, or more precisely
microscrystalline NMR is better suited for determination of the modal dynamics than
the traditional solution experiments because the overall tumbling of the molecule is
missing. They showed that small amplitude collective motions contribute to the solid
state NMR relaxation rates and are detectable. They use the global modes obtained
from computer simulations and show that they can explain a large part of the relaxation

rates determined. They however have not yet developed a method that unambiguously
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determines the nature of the motions, partly due to the lack of observables in the solid
state NMR [62].

1.4.2 TIsothermal Titration Calorimetry (ITC)

The starting point for analysing an allosteric system is the knowledge of the thermody-
namical parameters of the reactions. These are most reliably provided by the technique
of isothermal titration calorimetry (ITC). In a single experiment ITC measures the free
energy, entropy and enthalpy of the reaction. ITC is also well suited for determining
stoichiometry of the reaction, rendering it ideal for observing systems involving multiple
binding events, such as allosteric systems. An ITC measurement is performed under

physiological conditions and the reactants do not require any chemical modification.

In a typical ITC experiment small doses of a ligand solution (~ 10ul) are regularly added
into a pool of dissolved protein (~ 10 ml). Upon adding the ligand, binding occurs, and
a certain amount of heat ¢ is released or absorbed, depending on the nature of reaction.

The heat released is related [63] to the enthalpy of binding AH by

q=VAHAL, (1.26)

where V' is volume of the reaction cell, AL is the increase of concentration of bound
ligand upon adding of the dose of ligand. The amount of free protein decreases upon
each successive injection and so does the amount of heat absorbed or released. The
produced heat is non-zero even after saturation due to dilution and mechanical effect.

This residual heat needs to be subtracted from the previous results.

In order to determine the value of AL and consequently the correct thermodynamic
parameters, an appropriate binding model has to be selected. This model relates AL
to the association constant of the ligand, which in turn gives the value of AG. The
binding model depends on number of binding sites per macromolecule and the presence
of cooperativity. For an overview of binding models for single and multiple binding event
see [64].

Analysis of the data results in value for AG and AH; the entropy change can be calcu-
lated from AG = AH -TAS.
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By repeating the experiment at different temperatures the change in heat capacity can
be obtained too

OAH
A =57

(1.27)
ITC has been successfully used to study cooperative binding of many systems [64].
Examples include study of entropically driven negative allostery upon binding two zinc
molecules Zn?* to CzrA homodimer by Grossoehme and Giedrock [65] or enthalpically
cooperative inhibition of assembly of a ternary complex of ferredoxin NADP* reductase,
NADP™ and ferrodoxin electron donor protein by NADP™* [66].

It may be advantageous to combine ITC with NMR as has been shown by Tochtrop et
al. [67]. The authors investigated an extremely cooperative binding of glycocholate to
human ileal bile acid. The calorimetry data were unable to define the enthalpy accu-
rately. However, in combination with NMR, the binding affinities could be determined
for each binding site separately with high accuracy. Popovych et al. also used both
techniques to analyze the CAP-cAMP system [4].

1.4.3 X-ray Crystallography

X-ray crystal diffraction is predominantly used for macromolecular structure determi-
nation. Over 85% of currently known protein structures have been determined with this
method [68]. Along with the structure the diffraction pattern carries information on the
protein dynamics, albeit in the crystalline state. It can be extracted by measuring the

so-called B-factors or related Debye-Waller factors.

The main difficulty of a crystallographic experiment is that a protein has to be crys-
tallized. It can take months to grow a sufficiently large crystal (~ 0.5 mm) [69]. An
X-ray beam is then scattered from the crystal and the diffraction pattern recorded. The
diffraction pattern carries information on the structure factors and the electron density
of the molecule. The atom positions are fitted into the reconstructed electron density
map. A resolution in Angstrém is given for each structure determined with X-ray crys-
tallography. A resolution of 2 A means that two objects that are at least 2 A apart can
be distinguished and in practice this means that different residue side chains can be
resolved. In order to distinguish individual atoms a resolution of 1 A is required but

such resolution is achieved only very rarely.
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Flexible regions of a macromolecule are best indicated by ”missing” electron density.
Sometimes a region of the map has very low and even electron density meaning that
atom positions cannot be resolved. This is usually explained by a high flexibility of the

part of the molecule resulting in no average structure.

Atoms undergo thermal motions even within crystals and X-ray crystallography provides
a method to measure their mean square displacement (x?). The values of (z?) are
commonly reported together with the structural data in the form of B-factors sometimes
also called the Debye-Waller factor. The B-factor is directly proportional to the mean
square displacement and is defined as B = 87%(2?) [70]. The B-factors however have at
least four contributing factors, thermal vibrations, conformational variation, the defects
in crystal lattice and errors in crystallographic phases. To separate the contributions
and draw conclusions about the flexibility of the protein at physiological temperature
is very difficult. We should therefore consider B-factors only with caution and try to

employ other techniques for the determination of dynamics.

The B-factors have nevertheless found their application. For example, Wooll and cowork-
ers used the B factors to point out that dynamics may be responsible for the allosteric
mechanism of mammalian pyruvate kinase [71]. Hawkins and McLeish used B factors to
parameterise their coarse-grained model of the lac repressor [38]. Other examples may

be found in literature, although lately NMR data have been preferred.

1.4.4 Neutron Scattering

X-rays scatter from atoms proportionally to the density of electrons in the cloud sur-
rounding the nuclei. This leads to poor resolution of atoms with low atomic number.
Neutrons are, on the other hand, scattered by atomic nuclei and the scattering does
not increase with the atomic number. Neutron scattering therefore offers an alternative
route to structure determination, but is complicated by technical difficulties such as the
need of a neutron reactor or neutron source and long exposure of the crystals to the

neutron beams.

Flexibility of the proteins can be measured with neutrons too. Neutron scattering is in

principle able to measure three types of scattering [72]:

1. Elastic scattering which reports on atomic motions with Angstém amplitudes and

timescales of 10712 - 1077 s;
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2. Quasielastic scattering, from which correlation times of diffusion motions can be

calculated;

3. Inelastic scattering, reflecting fast vibrational modes.

Typically the elastic experiment is performed because it is most reliable and easiest to
interpret. The mean square displacement (x?) is calculated from the angular dependency
of the scattered elastic incoherent intensity [73]. (z?) is then recorded as a function of
temperature. The slope of the curve is used to calculate the effective mean force constant

(k'), defining mean molecular rigidity.

Neutron scattering is also used to study dynamical transitions. It has been observed that
proteins undergo an abrupt change in dynamical behaviour at a certain low temperature,
generally in the range of 180-220 K [50]. Below the transition temperature atoms are
considered to vibrate purely harmonically while above anharmonic motions occur. This
is sometimes used as evidence that anharmonic motions are required for protein function

[50].

Inelastic neutron scattering has been used to demonstrate that dynamics of a protein
can vary upon ligand binding [74]. Small angle neutron scattering was used by Con-
sler et al. to study the radius of gyration of pyruvate kinase and in combination with
simulation techniques pointed to a dynamical mode crucial for the allosteric effect [75].
Neutron scattering has also been employed to elucidate structural origins of allostery,
e.g. Li et al. demonstrated that ezrin binding to a scaffolding protein NHERF1 induces
a conformation change that reaches across 120 A and allostericaly regulates binding of
C-CFTR to its two distant PDZ domains.

1.4.5 Fluorescence Resonance Energy Transfer (FRET)

Many fluorescence techniques have been developed and are suited for dynamics measure-
ments and allostery analysis, most notable the fluorescence (Forster) resonance energy
transfer (FRET) [76]. FRET is a process that occurs between two fluorophores, a donor
and an acceptor. An energy source is used to excite the donor, which then transfers its
energy via dipole-dipole coupling to the acceptor if they are sufficiently close to each
other. The FRET signal is sensitive to distance between the donor and the acceptor and

can provide accurate information on distances in the 1-10 nm range [77]. The limitation
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of traditional FRET stems from background fluorescence of the assay components such

as the buffer and the protein.

The background fluorescence is typically very short-lived (ns range) and can be overcome
by time resolved FRET (tr-FRET). Additionally tr-FRET offers a mean to measure the
protein flexibility. In a tr-FRET experiment the donor emission is measured after a short
exciting pulse. In the absence of an acceptor this emission is very short (ps-ns range)
and decays exponentially with the intrinsic life-time of the donor. In the proximity
of the acceptor the decay becomes modified and the distance can be inferred. The
measurements can be repeated with ns-us frequency depending on the intrinsic lifetime
of the donor’s fluorescence. The data yield a distribution with the width reflecting the
flexibility of the macromolecule. For details of the FRET techniques see e.g. [76, 78].

Steady state FRET is frequently used for folding studies [76] but has been also a key
tool in some flexibility measurements, e.g. of nucleic acids [78, 79]. Allosteric proteins
have been subjected to FRET studies too, e.g. Polit et al. investigated the two level
allosteric mechanism of CAP [80] (see Chap.3 below).






Chapter 2

Coarse-Graining Methods in

Biophysics

In biophysics we use physical methods to shed light on problems in biology. The scientific
method of physics consists of interaction between theory and experiments. A problem
is understood from a physics point of view if a theory exists and its predictions have
been verified experimentally. In the previous chapter we described many experimental
techniques able to investigate allostery and probe protein dynamics. In this chapter we

describe the theoretical methods suitable to confront this body of data.

Allostery and protein dynamics are classical problems of molecular biology. The ideal
theoretical approach needs to take into consideration the atomistic details of the molecule.
Computational methods such as molecular dynamics or Monte Carlo are in principle able
to investigate molecules and their dynamics in atomistic detail but suffer from a com-
mon problem that they cannot simulate the system for sufficiently long periods of time.
In practice this means that in a fully atomistic simulation the captured component of
protein’s dynamics is limited to the high frequency modes. The low frequency motions,

crucial for allostery, are currently out of reach of atomistic simulations.

Centuries of research in natural phenomena suggest that some fine details of the atomistic
structure may not be required to answer questions concerning low frequency motions.
After all, these motions involve large, structurally compact structures that move in
a concerted fashion. The role of a physicist is to identify the crucial features of the

structure and construct a model at the appropriate degree of coarse-graining with the

35
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redundant details averaged out. Such model is considered appropriate if it captures the

phenomenon in question and also has predictive power.

In this chapter we discuss different levels of coarse-graining and what biophysics prob-
lems they are appropriate for. The finest and most accurate simulations use quantum
theories to model interactions within the molecules. Since such modeling is limited to
small molecules and very short time scales we do not consider it in this thesis. The next
level of computational techniques has atomistic resolution. The most common method
is molecular dynamics (MD), reviewed in greater detail below. A Monte Carlo tech-
nique is theoretically capable of simulating biomolecules in atomistic details but due to
technical difficulties is rarely used in such studies [81]. It is more commonly employed
in combination with more coarse-grained models of molecules, such as worm like chain
model for DNA [82], protein folding [83] or bioinformatics [84]. Since we do not consider
any results of Monte Carlo simulations in this thesis we do not detail this technique any

further.

An MD simulation produces a trajectory of the molecule that contains a vast amount of
information on the molecular dynamics. However, extracting a quantitative description
of the dynamics is not trivial. Many methods have been developed for this purpose and

we introduce some of them in Sec. 2.2.

There are two ways to overcome the problem with the short timescales accessed by the
traditional molecular dynamics. Firstly, the biomolecule can be coarse-grained struc-
turally. In this approach a certain number of atoms is grouped together and represented
as a single point with extrapolated properties, such as mass, charge etc. In the other ap-
proach the fairly complex interaction potential of a typical MD simulation (see Eq.(2.1))
is simplified. In practice both approaches are used, often in combination. We discuss
these more coarse-grained models in section 2.3 and 2.4 and focus on models used in
this thesis. Finally we introduce the methodology developed by Hawkins and McLeish
[38, 42] and used in this thesis, and explain where it fits in the broad picture.

2.1 Molecular Dynamics

Molecular dynamics (MD) is currently the most popular method for atomistic modeling

of biomolecules. The result of an MD simulation is a trajectory of every atom of the
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system during a set amount of time. The trajectories are found by solving Newton’s

equations of motion at discrete time steps.

The atoms of the system interact through an empirical pairwise potential commonly
referred to as the force field. There are many molecular dynamics software packages
available that differ in the implementation of the algorithm but the functional form
of the force field is well preserved amongst all of them. The parameters for the field
are found from quantum mechanical calculations and differ slightly between different

programs. The most common form of the potential is composed of four terms [85]

Etotal = Z KT(T_Teq)2+ Z KG(H_‘geq)2+ Z %[14_005(”@1)_’7)]

bonds angles dihedrals
A B -
o3| - R ], @)
i<j L1Yij ij g

The first term sums over all covalently bonded atoms representing their bonded inter-
actions by harmonic springs. The second term defines the bond angle potential that is
dependent on the geometry of electron orbitals of the involved atoms. The third term
sums over all torsional angles to account for energy of twisting of a bond. Finally the
fourth term consists of Van der Waals and electrostatic potentials to account for the
non-bonded interactions between all atom pairs. The most commonly used programs
include CHARMM [86], AMBER [85], and GROMACS [87]; the references state the

values of the parameters and describe the way they have been obtained.

Molecular dynamics requires an input of a three dimensional structure of the biomolecule.
The structure is typically obtained with an experimental technique, such as X-ray crys-
tallography or NMR. In the simulation the molecule is submerged in a solvent, which can
be either implicit (the molecule is surrounded by a continuum with average properties of
a solvent) or explicit where each solvent molecule is defined atomistically. At the start,
every atom of the system is assigned a pseudo-random velocity so that the kinetic energy

of the system corresponds to the set temperature through the equipartition theorem.

The velocity and the force obtained from integrating the force field is used to calculate
the position of every atom at the next time step. This process is repeated at every time
step resulting in large requirements on the computer power. The current MD simulations
typically cover tens to hundreds of nanoseconds with a common time step of 1fs. This

is usually not long enough to capture the slowest modes.
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Apart from the limitations connected with simulation time and system size the technique
has another weakness: the empirical pairwise interaction potential. Within the potential
the covalent bonds are represented by harmonic springs, a good approximation around
the equilibrium position of the bond but very inaccurate when bonds are highly strained
or breaking [88]. The second major approximation is the pairwise nature of the potential.
The simplification of the many body interaction to pairwise usually results in a correctly
reproduced structure but can lead to a wrong internal energy and thermodynamic values
[89].

Despite of its shortcomings, MD is currently employed as a main investigation tool or
as a complementary techniques in a large number of problems in molecular biology.
The modern MD programs are equipped with a relative friendly user interface and the
visualisation packages provide a window into the atomistic world of molecules rendering
the technique exceptionally attractive. MD serves a number of tasks ranging from its
microscope-like function to its role in molecular structure refinement. For our purposes
the most important feature is the large amount of information about the dynamics of

the studied molecule contained in the MD trajectory.

2.2  Analysis of a Simulated Trajectory

An MD trajectory can be visualised with molecular graphics software, e.g. VMD or
Chimera used in this work. The software produces an animation of the molecular mo-
tion and flexible regions can be observed. However in order to extract quantitative
description analytical tools have to be used. Our primary interests are thermodynamic
properties (free energy, enthalpy and entropy), decomposition of the complex motions
into uncorrelated components and mechanical properties, such as local rigidities. Here
we review the major methods suitable for the thermodynamic and dynamic mode anal-
ysis. The protein rigidities are best extracted from the normal mode and principal
component analysis. For DNA a different technique, known as the base pair step anal-
ysis is commonly used. Due to the extensive, DNA-specific introduction required and

little general interest we explain this technique in chapter 4.

Allosteric reactions are thermodynamic in nature and thus the minimal quantitative
description consists of the free energy differences of each binding step and its decompo-

sition into enthalpic and entropic terms. However, calculation of the free energy and its
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components from a computer simulation is an extremely difficult task. Despite substan-
tial progress in this field most methods are limited with inaccuracies and inefficiency
[90].

The main difficulty lies in the calculation of the absolute values of the thermodynamic
parameters. In particular the evaluation of absolute entropies is a notoriously difficult.
The situation is much improved when only the difference in free energy (entropy) between
two microstates AF (AS) is sought after. However, the methods used in this case
(e.g. the counting approach and the coupling parameter approach) are reliable only in
cases when the two microstates lie very close on the free energy landscape and thus
are not suitable for large structural and dynamical changes. Since this is the case for
the majority of allosteric systems we concentrate mainly on the methods designed to
determine the absolute values of F' and S and only briefly review the methods for AF
calculations. Other methods for AF' determination, such as adaptive integration method

or methods based on Jarzynski identity, are reviewed in [90].

2.2.1 Calculation of Relative Thermodynamic Parameters
2.2.1.1 The Counting Approach

The counting approach provides the most straight-forward method for the calculation
of the free energy difference between two microstates. The amount of time a system
spends in a certain microstate relative to the total simulation time is proportional to the
probability of the microstate. The free energy difference between two microstates (1 and

2) can therefore be found by counting the number of visits in the particular microstates

AF = kpTln 2L, (2.2)
n2

¢

where ny and ns is the number of times the simulation “visits” the state 1 and 2 respec-

tively.

The obvious requirement for this method is that the MD trajectory is long enough
to “visit” the microstates in statistically significant amounts. Ligand binding however

occurs on very slow timescales rendering this method unsuitable for our purposes.
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2.2.1.2 Thermal Integration (TI)

This method has similarly been designed for calculating differences in free energy and
entropy between two states. The states have to lie in close proximity on the free energy
landscape, but are not required to fluctuate naturally between the two as in the counting
approach. In TI a parameter that couples the two states is found. The system is then
driven along this reaction coordinate from one state to the other. The integration can
be performed over a wide variety of parameters such as energy, temperature, pressure
or non-physical quantities through so called “alchemical mutation” that allows small
groups of atoms to be substituted [90]. The method is therefore suited for slightly
different problems, e.g. calculation of the free energy difference between binding two
ligands very similar to each other to an identical binding site [91] or the free energy

penalty for introducing a charge [92].

Thermal integration has many variations which are summarised e.g. in the recent review

of Meirovitch [90]. All the variations share the same basic principle, which is embodied

AF =-kgTlIn (exp(i(x))) , (2.3)
1

in Zwanzig’s formula

kT

where AFE is the energy difference between the two states and the index 1 signifies that
the average is taken with respect to the first state. Energy is easy to measure in an
MD simulation and therefore the equation is a very straight-forward way to obtain AF.
The Zwanzig formula is only applicable though if AFE is small, due to computational
limitations. The usual trick is to divide the energy into little “windows” defined by the
interval (A — AX A+ A)X) around values of reaction coordinate A, running a simulation

in each A-window. The total AF is then obtained from Kirkwood’s relation

o (e, N)
AF Ve dA (2.4)

The main advantage of this method is that it enables us to calculate small free energy

differences in large systems.

Entropy can then be obtained in several ways, the most reliable is to run the simulations

at several temperatures and use the relation
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There are two obvious disadvantages of this method. First of all it is computationally
very expensive as we need to run a whole MD simulation for each A window. And
secondly this method is practically feasible only in cases with small variance in structure

and dynamics of the two systems.

2.2.2 Calculating Absolute Entropies

The approaches that calculate free energy and entropy difference are all hampered by
the same problems: the two states have to be very close on the free energy landscape.
This problem can in principle be overcome by calculating the absolute values of the
thermodynamic parameters in each state. Whilst the enthalpy can be evaluated from the
potential energy, the extraction of an (within the limits of the simulation methodology
employed) exact value of the entropic component of the free energy is principally an
impossible task, because it requires sampling of the whole phase space and thus an
infinitely long simulation. Statistical thermodynamics comes to the rescue and offers a

means to estimate the entropy from an incomplete sampling.

2.2.2.1 Quasiharmonic Analysis

The general approach is to estimate the entropy based on an analytical approximation of
the conformational probability distribution of the system. The currently most employed
method, the quasiharmonic analysis, known also as the principal component analysis,
was proposed by Karplus and Kushick in 1981 [93]. The method assumes that the local
potential function can be expressed as a quadratic function of the internal coordinates
of the atoms. This leads to a multivariate Gaussian distribution of the configurational

probability, a distribution associated with a classical harmonic oscillator.

The entropy of a one-dimensional harmonic oscillator in the classical limit (kg7 > hw)
is

hw
S=kpll-1In—— 2.6
B( %BT)’ (2.6)

where w is the angular frequency of the oscillator.

Although MD is a classical approach, some of the MD frequencies, in particular the bond
stretching and bond-angle bending vibrations, are high enough for the classical approx-

imation to break down. The formula for entropy of a quantum mechanical harmonic
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oscillator [94], or more commonly a semi-classical approximation derived by Schlitter

[95] therefore has to be used.

The Schlitter semi-classical approximation of entropy reads

T 2
S = %B In (det [I + th; a']), (2.7)

where I is the identity matrix and the mass weighted covariance matrix o’ is defined as
o' =M'"eM'2. (2.8)

The inertia matrix M is a diagonal matrix with the elements Mj; = Mo = M33 =

mi,...,Msn3n =mpy, where m; denotes the mass of the atom 4.

The covariance matrix o is defined as

oij = ((@i = (i) (z; = (2;))) (2.9)
where x1,...,x3y are the Cartesian coordinates of the atoms.

In the article Schlitter also demonstrated that this formula provides an upper bound of

the real entropy of the system.

The entropies obtained by the Schlitter method have been shown to produce inconsistent
results in some cases, predominantly due to the incorrectly treated anharmonicities and
correlations among the probability distributions. For a detailed discussion on this topic

and a suggested partial solution see [96].

The mass weighted covariance matrix Eq. (2.8) can also be used for another purpose:
principal component analysis (PCA). Diagonalisation of the matrix yields eigenvalues A,
that are related to the quasiharmonic frequencies w; = \/k:BT/)\Z- . Six of these frequencies
correspond to the translation and rotation of the whole molecule and are therefore zero.
The remaining eigenvalues can be used to find the eigenvectors and to reconstruct the

quasiharmonic modes around the average system conformation.

Harris and Laughton have shown that PCA provides a very good reduced representation
of the dynamics of DNA [97]. The highest frequency modes correspond to the bond
vibrations and the slowest modes are reminiscent of normal modes, such as bending and

twisting of the entire helix. DNA is known to behave as a semiflexible polymer [98] and as
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such has a relatively smooth free energy landscape. The application of PCA to globular
proteins is much more complicated. Proteins contain highly flexible as well as very rigid
regions and the slow and fast modes are nontrivially coupled [99]. Together with the
complication of short simulation timescales this may result in a poor representation of
the dynamics [100]. Quasiharmonic analysis has been used by Harris et al. to study
dynamic allostery in DNA [101]. They concluded that the dynamics is entropy driven
and that all modes contribute to the total effect. PCA was used to illustrate how a drug
binding affects the global modes. More details on their results is given in Chap.4.

Stacklies et al. used principal component and quasiharmonic analysis to investigate the
mechanism of dynamic allostery in methionine receptor [102]. The authors identified
low frequency cooperative modes and quantified their changes upon binding. They also
used the Schlitter formula to calculate entropy but with mixed results. The values of
entropy are qualitatively correct: binding of a ligand always decreases the entropy of the
repressor, but the presence of DNA leads to a 20 fold smaller value. This is considered

a rather large and probably unphysical result [102].

2.2.2.2 Normal Mode Analysis

MD in combination with quasi-harmonic analysis are computationally expensive and are
thus unsuitable for many larger systems. One way to characterise large systems and/or
to speed up the procedure of dynamic analysis of the smaller system is to use normal
mode analysis (NMA). Normal mode analysis assumes that the displacement of the
atoms around their equilibrium position is small enough that the interaction potential
(Eq. (2.1)) can be approximated by a harmonic potential. In more formal language this
corresponds to performing the Taylor expansion of the potential around the equilibrium
position and then neglecting third and higher order terms. The complex motion of the

molecule can then be decomposed into a set of decoupled normal modes.

A standard NMA is a two step process. In the first step, MD is used to find a local
minimum on the free energy landscape. This step may be time consuming but constitutes
a substantial reduction of computer time compared to the PCA technique. In the second
step, a quadratic expansion around the minimum is found. This allows the Newton’s

equation of motion to be written as

M = —Hx, (2.10)
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where x are the Cartesian coordinates of the atoms in the local minimum, M the mass

matrix defined in 2.2.2.1 and H the Hessian matrix defined as

2
_ 0 Eiota

H.. =
" 89026% ’

(2.11)
evaluated at the local minimum. The potential Ej.; is the typical potential function of

molecular dynamics (Eq. (2.1)) but can in principle be any intraction potential.

The mass weighted Hessian matrix H' = M- 12HM1/2 is diagonalised to yield eigenval-
ues related to the frequencies of the normal modes. The first six eigenvalues equal zero
and correspond to the translation and rotation of the whole molecule. The eigenvectors

of H' define the motion of the atoms within the individual normal modes.

The reconstructed normal modes can be used to yield a wide range of interesting param-
eters such as the crystallographic B-factors, RMS fluctuations or dynamic correlation
maps [103].

The frequencies obtained with NMA can also be used to obtain the entropy of the
system. However, NMA only probes vibrations associated with a single structure, i.e. a
very small region of the phase space. A good estimate of the entropy can only be obtained
by sampling a substantial part of accessible configurational space. NMA can only access
a significant region of the phase space of a very stiff and thus highly harmonic molecule.

Solvated macromolecules however do not belong to this category and the quasi-harmonic

Quasiharmonic Normal Mode
approximation Analysis

FIGURE 2.1: A schematic comparison of quasiharmonic approximation and normal
mode analysis. The rugged free energy landscape (black) is better approximated by the
quasiharmonic potential.
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analysis is a more suitable tool for the entropy determination. For schematic comparison

of the two methods see Fig.2.1.

2.3 Elastic Network Models

Although not suitable for entropy calculations in biological problems, normal mode anal-
ysis (NMA) provides an illustrative and very useful description of the normal modes of
the molecule. Collaborative efforts of the biological community resulted in a very useful
database of known structures of different biomolecules. It has become recognized that
it would be desirable to complement this database with information on the molecules’
dynamics. Standard NMA however requires too much computer time to make it feasible

to obtain such description of all known macromolecules.

In 1996 Tirion proposed a revolutionary solution to this key problem of the field. She
noticed that the complex MD potential could be substituted by a single-parameter har-
monic potential and most importantly that when this is done, the low frequency modes
remain nearly unaffected [104]. Furthermore she observed that these collective motions
are insensitive to detailed molecular structure and therefore the minimization previously
required before the normal mode analysis can be avoided. This constitutes a radical re-
duction in computer time and enables full dynamic analysis to be performed in order of

minutes.

The Tirion’s pairwise potential is defined as

2
E(I’i, I'j) = (|ri,j| — |I'?7j|) . (212)

C
2
The vector r; ; = r; — r; denotes a vector connecting atoms ¢ and j, the superscript 0
the initial configuration. The constant C' is an empirical constant and is identical for all

atom pairs rendering the evaluation of the Hessian matrix substantially faster.

The total potential energy is found as a sum of the energies from Eq. (2.12) over all
pairs of atoms separated by less than a cutoff distance. Tirion argues that the best
results are obtained for low cutoff values and recommends the use of 2A. The value of
the phenomenological constant C' is adjusted so that CR? ~ kT, where R is the cutoff

distance.
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Alternative potentials have been proposed, e.g. an exponential potential proposed by
Hinsen [105], and have been shown to yield very similar results. In fact, several studies
showed that slow, collective motions of a protein are insensitive to detailed molecular
structure and the force field so long the large-scale geometry of the structure is accurately
modeled. The higher frequency modes are more sensitive to the details of the structure

and potential and are thus not well represented in the elastic network model.

Since its original discovery, several groups worldwide took advantage of the speed and
simplicity of this method and released software that performs the NMA analysis with
different coarse-grained potentials. Many of these programs are available on web servers
open to the public so that anybody can submit a protein structure and within a few
minutes obtains a full analysis. There are only very few servers that perform the analysis
as originally suggested by Tirion, e.g. NOMAD-Ref [106]. The technique has developed
since with new implementations of the Hessian matrix and more coarse-grained versions.
We mention these alongside the explanation of the techniques over the next paragraphs.
An extensive review of large number of the public web instruments has been recently
published by Liu and Karimi [107].

2.3.1 Gaussian Network Model

Bahar et al. took the coarse-graining a step further by showing that the lowest frequency
modes are well represented in an elastic network model where the protein is modeled
by a reduced set of mass points each representing a whole residue [108]. The mass
points are located in place of C,, atoms (backbone atom attached to each residue) and
are connected with identical springs. For the implementation of the spring network
the authors took inspiration in Flory’s theory of polymer networks, where junctions of
the network undergo Gaussian-distributed fluctuations [109]. This version of the elastic

network model became known as the Gaussian network model (GNM).

In the protein model the Flory junctions (here the C, atoms) are connected by springs
with a uniform force constant « if closer than a cutoff distance. An example of such

representation is shown in Fig.2.2. The exact form of the potential is

g
U= 9 Z(rm - rzo,j) (T - r?,j), (2.13)
Z?J
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FIGURE 2.2: Glutamine-binding protein in the elastic network model representation.
Adapted from [110].

where r; j = r; — r; denotes a vector connecting atoms ¢ and j, the superscript 0 refers

to the initial configuration.

The principle of constructing the network is identical to the ENM but the Hessian matrix
is replaced by the Kirchhoff or connectivity matrix I'. The elements of the Kirchhof

matrix are found as follows

-1 ifi#jand r; <r.
T, = 0 ifi+jand ry>re (2.14)
- E Fik)a ifi= .7
kizk

where r;; is the distance between the atoms ¢ and j, and 7. is the cutoff distance. The

neighboring C,, atoms are ~ 3.8 A apart and the cutoff distance is typically chosen as

7A.

The inverse of the Kirchhoff matrix is related to the equilibrium correlation between

fluctuations Ar; and Ar;
kT
(Ar;- Arj) = 222171, (2.15)
Y
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This allows for a direct comparison with the B-factor with ~y as the only fitting parameter.
The B-factors obtained with this method were found to agree well with the values
reported from the X-ray crystallography [111]. GNM calculates only amplitudes and
frequencies of the normal modes but does not provide information on the direction of

motion.

GNM is implemented on the web server iGNM (http://ignm.ccbb.pitt.edu). iGNM
calculates 20 slowest, 20 fastest modes, correlation between fluctuations and performs

several other analyses (for details see [112]).

NMA has recently been implemented with single site per residue level of coarse-graining
too. Web servers that provide such coarse-graining include WEBnm
(http://services.cbu.uib.no/tools/normalmodes) and AD-ENM/DC-ENM
(http://enm.lobos.nih.gov).

It soon became clear that the coarse-graining can be taken even further for large systems.
NMA computation time scales as N® where N is the number of beads representing
the structure. Thus a reduction of the number by an order of magnitude reduces the
computation time by three orders of magnitude. Several coarse-graining methods have
been developed [113]; here we review only the most popular rotation-translation-block

(RTB) method implemented at the web server ElNemo.

2.3.2 Rotation Translation Block Approximation

Tama et al. performed a systematic analysis of the low frequency modes obtained by
different levels of coarse-graining [114]. Based on a set of 12 proteins with sizes ranging
between 46 and 858 residues, they concluded that when 6 amino acids are coarse-grained
into a single rigid block, the normal modes are nearly identical to the modes obtained
from all atom NMA.

In the rotation translation block (RTB) approach the Hessian matrix required for the
normal mode calculation is expressed in a new set of coordinates, the rotations and

translations of the ny blocks. The projected Hessian is given by

H, = P'HP (2.16)
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where P is a 3N x 6n; matrix containing the rotations and translations of each block and
H is the all atom 3N x 3N Hessian matrix. Diagonalization of Hy, yields the frequencies

of the normal modes and the atomic displacements are given by
Ap =PA,, (2.17)

where Ay, is the matrix of eigenvectors of Hy,.

The RTB method is implemented on the server EINemo

(http://igs-server.cnrs-mrs.fr/elnemo/) which calculates up to 100 slowest modes.
It outputs the eigenvalues and eigenvectors together with a graphical representation of
the modes. The website offers several options for more detailed analysis of the results,

details can be found in [115].

The simplified potential of elastic network models provides a very attractive opportunity
to study protein dynamics. It enables a full dynamic analysis to be performed in order of
seconds to minutes and in combination with coarse-graining techniques such as the RTB
poses practically no limitations on the system size. Moreover, it has been confirmed
many times since the original proposition that the low frequency modes are in excellent

agreement with other techniques and experiments [104, 105, 113].

The low frequency modes are nearly independent of the level of coarse-graining and the
interaction potential suggesting that the contact topology determines the nature and
the frequency of these functional modes and not the detailed chemistry. Assuming that
proteins have evolved to an optimal biological function leads to the conclusion that these
robust modes must carry a part of the functional tasks. The relative ease of describing
these modes only underlines the need to understand what role they play in the cell and

through what intricate mechanisms.

ENM has been used on numerous examples in the allostery investigations. Williams uses
ENM to study protein kinase PDK1 and finds that effector binding activates correlated
motions in the region of the substrate binding site [116]. Keskin et al. use the GNM
to investigate the allosteric mechanism in the GroEL-GroES complex. They identify
the motions that are most affected by the effector binding and thus shed light onto this

extremely long range (> 100 A) allosteric mechanism [11].



Chapter 2: Coarse-Graining in Biophysics 50

Elastic network models are predominantly used for protein dynamics analysis but can
also be used for DNA. Only two servers offer a model of nucleic acids, in particular
iGNM and AD-ENM/DC-ENM. On these servers each nucleotide is represented by 1-3
beads that are connected by uniform springs. These coarse-grained models are however
typically only applied to DNA-protein complexes mainly because the motion of DNA on
a small scale is better described by quasi-harmonic approximation and on a large scale

the worm like chain model. For details see chapter 4.

Several attempts have been made at improving the elastic network models, most notably
Ming and Wall suggest that strengthening interactions between backbone neighbors
significantly improves the density of states distribution, in particular the high frequency
C, vibrations [117]. Since the elastic network models are mainly employed for the
low frequency mode determination this model has never become widely used in the

community:.

2.4 FIRST and FRODA

The elastic network models we have introduced so far use coarse-grained representations
of proteins consisting of arbitrarily selected atoms along the backbone (e.g. every C,
atom) justifying the choice by showing that the structure of the lowest modes is inde-
pendent of the selection (e.g. [113, 114]). FIRST/FRODA adopts a different approach
where atoms that naturally form rigid regions are grouped together to form the basis
of the coarse-grained mechanical model. A Monte Carlo geometrical simulation is then
performed with this model to generate a trajectory in a conformational space of the

molecule.

FIRST (Floppy Inclusions and Rigid Substructure Topography) is an algorithm that
offers a rigorous way of finding rigid domains of a protein. The technique, first introduced
by Jacobs et al. in 2001, uses tools from graph theory to analyze a bonded network
obtained from the 3D structure of the protein [118]. The protein is modeled as a network
where atoms correspond to the vertices of the graph and edges represent bonds. Only
covalent, hydrogen and salt bridges bonds are considered. The bond distances and angles
are kept fixed (constrained) and only dihedral angles constitute degrees of freedom. This
type of network is known in mathematics as the bond-bending network and its stability

can be determined [118].
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FIRST uses the so called pebble game to determine which bonds are rotatable within
the defined constraints. The pebble game is an algorithm that simplifies the search from
O(N?) to linear scaling; rendering it fast enough for every day use (an average protein
can be analysed in the order of seconds). Rigid clusters are found by counting the number
of constraints and degrees of freedom of all bonds. When the number of constraints
exactly matches the number of degrees of freedom such region is called isostatically rigid,
if there are abundant constraints the region is over-constrained or stressed, otherwise
the region is flexible. The result of the FIRST analysis is the division of the protein
into rigid (stressed) and flexible regions the size of which depends on the user-defined
energy cutoff that determines which bonds to include. Rigid regions contain anywhere
between three and hundreds of atoms. The cutoff ranges from 0 to -10kcal/mol, the

default value is -1kcal/mol.

FIRST determines the flexible and rigid regions statically; it does not determine the
motion but the potential to move. FRODA (Framework Rigidity Optimized Dynamic
Algorithm) has been developed to examine the actual motions of the coarse-grained
protein. It performs a geometrical simulation where conformers are generated within
the defined constraints using Monte Carlo. Trajectories in conformational space are

obtained instead of dynamical trajectories [119].

FIRST and FRODA are freely available on the web server Flexweb
(http://flexweb.asu.edu).

2.5 QOur Methodology

The coarse-graining method we use in this work has been developed by Hawkins and
McLeish [38, 41, 42]. It is motivated solely by the objective to explain the role of

thermally excited motions in allosteric effects.

Thermal fluctuations of the macromolecular native environment excite a whole spec-
trum of internal vibrations. Of these, mainly the slow internal motions are believed to
contribute to long-range allosteric signaling [19]. A slow, global mode involves a whole
structural unit such as a helix or a domain. The perturbation of such motion there-
fore directly influences distant binding sites. Conversely, fast motions are localized and

consequently only affect a few atoms within their localization length.
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The slow global modes are practically impossible to observe with all atom simulations.
Yet from the study of elastic network models we learned that the slowest modes are very
robust, i.e. independent of the atomistic detail and their interaction potential and can
thus be simulated with coarse-grained techniques. In particular we know that harmonic
potentials and rigid blocks containing several residues provide a good enough approxi-
mation and result in slow modes nearly identical to those obtained from fully atomistic

molecular dynamics [114].

Although ENMs may seem an ideal tool for studying allostery they have a few draw-
backs. Firstly they require crystal structure for all binding states and these are often
not available. Furthermore we show in chapter 3 that on occasions where there is very
little structural change activated by a small ligand binding to the macromolecule, elas-
tic network models fail to observe experimentally reported substantial changes in the

macromolecular dynamics.

Because of the limitations of this class of theoretical models Hawkins and McLeish
chose a different methodology and constructed models aimed at explaining the allosteric
behavior in systems with limited structural change [38, 41, 42]. The objective was to
find an appropriate level of coarse-graining, ideally simple enough to allow for analytical
treatment, and yet able to capture the desired allosteric effect. They selected a class of
proteins with relatively obvious low frequency modes and then systematically found the
appropriate model. This model is for obvious reasons much coarser than any of those

introduced above.

In the model whole domains are treated as rigid bodies that interact through a harmonic
potential. As an example a model of the lac repressor is shown in Fig.2.3. Lac repressor
is composed of two relatively rigid identical monomers connected with soft hinges. In
the model of Hawkins and McLeish the repressor is coarse-grained into two rigid plates
representing each monomer, connected by a minimal set of harmonic potentials forming
the interaction between the monomers. The model of the repressor has only six degrees
of freedom corresponding to the lowest six modes of the protein. Binding of a ligand is

modeled as a change of stiffness of the local spring constant.

The authors have demonstrated that the six global modes can contribute significantly
to the allosteric free energies and that the model describes both positive and negative

cooperativity in a general dimer of rigid monomers. They successfully parameterised this
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FIGURE 2.3: Lac repressor dimer coarse-grained into two rigid plates corresponding to
the two monomers and a minimal set of springs representing the interaction between
the monomers. The repressor is shown bound to DNA (in green). Adapted from [38].

model from simulations and experiments for the case of lac repressor and thus presented

a protocol for parameterisation of the model for other dimers [38].

The two coarse-grained models introduced in this thesis are also built for general classes
of macromolecules, specifically symmetric homodimers and DNA oligomers. For the ho-
modimers we follow the somewhat ad hoc coarse-graining method introduced by Hawkins
and McLeish and confirm the appropriateness of the model retrospectively. In the case
of DNA we first adopt a generally accepted coarse-grained model: an elastic rod. How-
ever, we find this model insufficient to explain positive cooperativity observed in DNA

and have to extend the model in order to account for it.

Regardless of the exact form of the coarse-grained model the thermodynamic quantities
are calculated in the following way. The system is described by a Hamiltonian H with
a harmonic potential related to the chosen springs

1

H=3

1
pTM p+ §XTKX (2.18)
where p and x are the momentum and coordinate vectors, M is the inertia matrix and
K the elasticity matrix. We assume that the variations in mass are negligible during

the binding and we can thus leave the inertia part of the Hamiltonian out of all our
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calculations. The elements of the elasticity matrix are related to the spring constants

and generally change upon the ligand binding.

In the next step we calculate the partition function using the theorem for multidimen-

sional gaussian integrals. For a symmetric positive definite matrix A this theorem says
f e XA (27)" | A ])3. (2.19)

The partition function is then

1
H(xy,- 2rkpT)™ | M |2
Z:f...fdxl...dxndpl...dpnexp(— (21, 20, P1, ’p”)):(ﬂ B )1| 2
kT K[
(2.20)
and the free energy

1
G=-kpTlhZ= §kBTln|K| + const., (2.21)
where |K| denotes the determinant of K.

We perform this calculation for each binding state and evaluate the allosteric free energy,
a suitable measure of the cooperativity (Sec.1.2). In this thesis we only investigate
homotropic allostery, i.e. the ligands associating with the macromolecule are identical.

In this case the allosteric free energy is defined as
AAG = (G2 - G1) - (G1 - Go), (2:22)

where G is the free energy of the free protein, GG; of singly and G2 of doubly bound. If
the first binding inhibits the second, i.e. in case of negative cooperativity the resulting

allosteric free energy is positive and vice versa.
Substituting Eq. (2.21) into (2.22) results in

IKo|[Ks|

1
AAG = kT In ——=.
250 PR P

(2.23)

The allosteric entropy can be obtained from standard relations between thermodynamic

potentials

(2.24)

_ (0(AAG)
AAS - - (T)
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Consequently if the allosteric free energy is proportional to temperature the effect is

purely entropic. Enthalpy is given by

olnZz
H=kpT? . 2.2
kT —= (2.25)

The underlying principle of dynamic allostery can be understood from Eq. (2.21), which
relates the free energy logarithmically to the effective stiffness. Let us explain the prin-
ciple on a simple example of two identical ligands binding to the protein each of which
decreases the flexibility of a single mode. The situation is sketched in Fig.2.4. The lig-
and binding affects a single internal breathing mode of the protein pictured as a scissor
like motion of two rods. We note that the scissor like motion has been chosen arbitrarily
only for the illustration purpose. The general result will be independent of the actual
geometry of the global mode. Each binding modifies the local constant k& by a factor
« > 1. This stiffening is reflected in the free energy penalty, which as we will see, is

always larger for the first step due to the logarithmic nature of the free energy.

The situation is pictured in Fig. 2.5 a. Tightening of a stiff protein is entropically cheaper

than that of the soft protein, a crucial result for dynamic allostery.

More formally the allosteric free energy connected with this twofold loss of conforma-

tional entropy is calculated from Eq. (2.23) and yields

1 2k(2ak) 1 4oy
AAG = ~kpTn 22— % < 2.26
2 B M v ak)? T2 P M a2 © (226)

The resulting free energy is negative for all values of a (Fig.2.5b), corresponding to

positive cooperativity.

k
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FIGURE 2.4: A sketch of a basic example of homotropic allostery. The ligand (in red)

binding affects a single internal breathing mode of the protein (in blue) represented

by scissor like motion of two rods. Each binding modifies the local spring constant by
factor a.
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FIGURE 2.5: (a) Logarithmic dependence of free energy on the stiffness results in nega-

tive AAG for the case of sequential identical tightening. (b) Allosteric free energy of the

simple example of homotropic allostery shown in Fig.2.4 as a function of enhancement
parameter o.

A rise of negative cooperativity as a consequence of modified fluctuations is more subtle

and will be discussed in greater detail in this thesis.

As mentioned previously, fast modes, such as side-chain movements, are typically lo-
calised in proteins [120], and consequently only affect a few residues within their local-
ization length. However, as Hawkins and McLeish pointed out they can couple to slow

modes and become involved in the communication indirectly [42].

The reasoning that fast modes may be involved in dynamic allostery was largely moti-
vated by experimental results on the methionine repressor MetJ showing that despite the
fact that MetJ displays allosteric behavior without a significant conformational change,
large compensatory entropic and enthalpic allosteric energies are observed [121, 122].
In particular the enthalpic energies cannot be accounted for either by the associated

structural changes or existing (slow mode) model of Hawkins and McLeish [42].

Hawkins and McLeish studied the consequences of coupling fast modes to the slow modes
and concluded that the coupling can in a special case result in large compensatory
entropic and enthalpic allosteric energies. Let us go through their calculation in more

detail since we will use their approach on two occasions in this thesis.

We can picture the situation as shown in Fig.2.6. The slow global mode of the protein
is represented as a scissor-like movement of the two rods. Fast motions of smaller
structures such as side chains are represented as vibrations of little protrusions attached

to the rods.
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FIGURE 2.6: Schematic drawing of enslaved fast modes. Slow mode is pictured as a

scissor like movement of the rods controlled by spring constants k1 and k_;. Little

protrusions fluctuate at higher frequencies but can become coupled by the slow mode.

The two rods can represent e.g. two alpha helices and the little protrusions side chains.
Adapted from [42].

The coupling is based on the idea that the flexibility of the fast modes increases with the
amplitude of the slow mode. Physically, local structures have more room for movement
when their environment is disrupted, i.e. when the large rods are far apart. We assume
therefore that the rigidity of the fast mode depends on the displacement |xs| of the
larger structure within the slow mode. If |z4| is small, the localized structures are in
their native environment, experience a deep, narrow potential, and move only slightly
about the equilibrium position. If the slow mode becomes more flexible and thus |z
larger, the fast mode environment becomes disrupted, and the corresponding potential

becomes flatter.

Mathematically this idea is expressed by modifying the Hamiltonian of the system
N
'H='H5+2Vfi($fi,$s), (2.27)
i=1

where H; is the Hamiltonian of the slow, global mode (scissor motion) and the sum
adds up the contributions from N fast modes. The slow mode Hamiltonian is found
from Fig. 2.6

M= Vg + 5 (kn + ke (2.28)

where the spring constants k; and k_y are affected by the effector and the substrate

binding and Vj, is the minimum of the slow potential.
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The fast modes without any coupling are assumed to be harmonic too, so that
1 2

where Vy, is the minimum of the fast potential, here for simplicity assumed to be identical

for all fast modes.

If the fast mode is coupled to the slow this potential becomes

1
sz‘(xfi’xS) = _Vfofi(xé‘) + §gi(x5)kf¢x?”iv (2'30)

where f;(xzs) and g;(xs) are arbitrary real continuous functions that couple the fast
modes to the slow. We choose these functions so that they mathematically define our
physical requirements on the coupling, i.e. so that the fast mode potential becomes

shallower and flatter with the increasing |z|.

Hawkins and McLeish made the following choice of the functions f and g, assuming

them identical for all fast modes

1 1
Jwe) = —r 9(xs) = —5az
Qk’BT 2]”v‘BT

(2.31)

The coupling parameters k, and ks have dimensions of force constants. In this thesis we
prefer slightly different functions for the reason of analytical simplicity. The functions

used in this thesis are following

kya? 1
f(xs) = —kv Ji +1 9(ws) = ———5 (2.32)
B EXP 55T

In order to calculate the partition function with this complex Hamiltonian Hawkins and
McLeish used the method of steepest decent. In case of functions (2.32) no approxi-
mation is required to calculate the partition function. Hawkins and McLeish evaluated
the allosteric free energy for two cases. Firstly, for f(zs) =1, corresponding to constant
fast potential depth, the authors showed that assuming N/2 > kg/k; the allosteric free

energy equals
AAG coupl = (N + 1) AAG 5100 (2.33)

In other words the allosteric free energy arising from slow modes only is amplified (N +1)

fold by enslaving N fast modes.
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If both the minumim of the fast potential and its width are affected by the slow mode,
that is if f(xs) # 1 and g(zs) # 1, the resulting free energy is
Vieko ki

1
G = EkBTln(k's-i-N(kB—T z))-FCOHSt. (234)

Hawkins and McLeish assume Vy k,/kpT > k/4. If Vi ky/kpT > ki/4 the resulting
absolute allosteric free energy is smaller than in non-enslaved case. If Vy k,/kpT = ki, [4
the resulting allosteric free energy is identical to non-enslaved result but this energy
contains enthalpic and entropic terms affected by the enslaved modes. The case of
Vigko/kBT < ky/4 is studied in Chap.5. Enthalpy is found from Eq.(2.25) and in the

general case yields

1 NE,V
H:5 ‘;;]jo . + const. (2.35)
ke N (o7 - %)

Clearly even for the special case of Vy k,/kpT = kj/4 this enthalpic contribution is

substantial.

Thus the enslaving of fast modes can result firstly in substantial amplification of the
allosteric free energy but also in compensating enthalpic and entropic terms seen in the
example of the Met repressor. We apply this type of coupling in both our models - the
homodimer and the DNA model. Details of the coupling functions and the results are

shown in the individual results chapters.

Throughout this thesis we use the classical harmonic approximation of the potential be-
tween the interacting coarse-grained structures. The classical approximation has been
shown to break down for individual covalent bond vibrations, but these fluctuate at sig-
nificantly higher frequencies than the structures we focus on. The choice of a harmonic
approximation is on one hand the most straightforward and has been shown to work
well for elastic network models but is it valid for the larger coarse-grained structures?
Hawkins and McLeish tested it on the example of lac dimer with a technique based
on the fully atomistic MD. Starting with the crystal structure of the dimer they fixed
all the atoms in each monomer in order to emulate the rigid body approximation and
then allowed the subunits to move with respect each other. The motion was performed
in incremental steps and the energy for each structure was recorded. The result corre-
sponds to the potential between the subunits and is very close to the exact harmonic
approximation (Fig.2.7). They studied nine lowest frequency modes and all displayed

the same quadratic dependence but with different spring constants.
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Potential/kBT
-

Displacement/A

FIGURE 2.7: An example measurement of potential energy between two subunits of

lac repressor. The two curves show the difference in spring constant of the repressor

with and without bound inducer. Both curves are nearly parabolic corresponding to
approximately harmonic potential between the subunits. Adapted from [123].

Another point worth noting is that the slow modes we study are not vibrational but over-
damped. The overdamped motions are however repeatedly thermally excited. Thermo-
dynamically we can treat the constantly re-excited modes in the same way as vibrational

modes since their entropy is identical.

We outlined the coarse-graining procedure we apply in this thesis. The models are very
general, meaning they can be in principle applied to any molecule from a particular target
class (homodimers or DNA oligomers). The way to make these models specific is through
their parameterization. This can be achieved through several methods. We mentioned
that Hawkins and McLeish used crystallographic B factors, the technique based on all
atom potential and elastic network models. Similarly we use the elastic network model
and results from NMR for the homodimers and fully atomistic simulations for DNA.
The details of the parameterization techniques are given in the corresponding results

chapters.

Until now we have been discussing three types of interactions potentially contributing
to the allosteric effect: 1) direct interactions, 2) structural changes and 3) changes in
thermal fluctuations. Electrostatic interactions have been implicitly included into the
direct interactions. However, they can affect binding at large distances, determined by
the Debye screening length. The Debye screening length defines a distance beyond which

a charge is effectively screened in the salt solution of concentration ¢. The Debye length,
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[ 2e2c
AD = T 2.36
p €]~€BT’ ( )

where e is the elementary charge and e the absolute permittivity, is approximately equal

defined as

to 1 nm in physiological salt concentration of 0.1 M. The permittivity of a protein is
however substantially lower (~ 3 [124]) than that of water (~ 80) resulting of a Debye
length of 5 nm.

In this thesis we investigate closely two experimental systems: the dimeric protein CAP
and a DNA oligomer binding a drug Hoechst 33258. In both cases the ligands are sep-
arated by approximately 1 nm and electrostatic interactions thus cannot be excluded.
The focus of this thesis is nevertheless on dynamic allostery and the possibility of elec-

trostatic interaction is discussed only briefly for each system.






Chapter 3

Dynamic Allostery in Oligomeric

Proteins

Allostery was for a long time believed to occur purely in oligomeric proteins. Although
Volkman showed in 2001 that monomeric proteins can display allostery too [35], the
vast majority of known allosteric systems are oligomeric [125]. The ultimate target of
us researchers, interested in allosteric effects, is a general theory of cooperative binding.
A systematic investigation of individual groups or classes of allosteric systems provides
building blocks for such a theory. A study of oligomeric proteins naturally begins with

the simplest representatives, proteins with two identical units or homodimers.

The potential contribution of thermal fluctuations to allosteric effects in dimers was first
theoretically investigated by Hawkins and McLeish [38]. They focused on heterotropic
allostery in dimers consisting of relatively rigid monomers with binding sites located at
the dimer interface. The binding was assumed to affect only the interaction between

monomers.

Another large group of dimers displays homotropic allostery with the identical bind-
ing sites located inside each monomer [125]. Binding to these sites is likely to affect
the rigidity of the monomer itself, an effect unaccounted for by the previous model of
Hawkins and McLeish [38]. In this chapter we construct a coarse-grained model of a
symmetric dimer such that each monomer is assigned one or more internal degrees of
freedom and the monomers are elastically coupled. In the first version this model in-

cludes only global, low frequency modes. Fast modes may however become coupled to

63
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the slow modes and become involved in the signaling [42]. In order to find possible
implications of such coupling and to construct a more realistic model we incorporate
fast modes into the model. An analysis of the model at different levels of complexity

then elucidates the role of motions on different timescales.

In order to illustrate the application of the model we apply it to a challenging test
case, the catabolite activator protein (CAP). CAP displays negative cooperativity upon
association with two identical ligands. The conformation of CAP is not affected by the
binding, but its vibrational spectrum undergoes a strong modification. Intriguingly the
first binding enhances thermal fluctuations yet the second quenches them. We show
that this counter-intuitive behaviour is in fact necessary for an optimal anti-cooperative
system, and captured within a well-defined region of the model’s parameter space. From
analyzing the experimental results we conclude that fast local modes take an active part
in the allostery of CAP, coupled to the more global slow modes. By including them into
the model we elucidate the role of the modes on different timescales. We conclude that
such dynamic control of allostery in homodimers may be a general phenomenon and
that our model framework can be used for extended interpretation of thermodynamic

parameters in other systems.

In the second part of this chapter we demonstrate that the homodimer model can be
extended to account for proteins composed of more than two subunits. We first focus on
a tetramer (protein composed of four subunits) and exemplify the model on a test case,
human haemoglobin. We then outline the generalization of the approach to an oligomer

composed of N subunits.

Major part of the work on homodimers presented in this chapter has been published in
[126].

3.1 Dynamic Allostery in Homodimers

Proteins with two-fold symmetry constitute a large and important group of proteins.
Many DNA-binding proteins, antibodies and receptors are either present in the cell as
dimers or are composed of two identical domains [125]. Homotropic allostery has been

observed in many homodimers [127-131].



Chapter 3: Dynamic Allostery in Oligomeric Proteins 65

Additionally, it is common in nature that two identical ligands are required to bind
to a dimer in order to activate or inhibit its function. Typically only the activation or
inhibition is subjected to experimental study, due to its greater biological relevance. The
first step of this process, i.e. the binding of the two identical effectors is however likely to
be allosteric too, at least in some cases. Popovych et al., investigated one such system:
association of two identical effectors called cAMP to a homodimer known as catabolic
activator protein (CAP) and showed that the binding is strongly negatively cooperative.
This system constitutes the main model system of this chapter and is detailed in Sec. 3.3.
Other homodimers are activated or inhibited in similar fashion and we believe that the
two identical effectors commonly bind in a cooperative way. Examples of such dimers
include trp repressor associating with L-Trp (see Fig.3.1) [132], PYL protein binding
abscisic acid [133] and chorismate mutase binding tryptophan or tyrosine [134, 135].

Because allosteric homodimers are usually large molecules a wide variety of experimental
techniques have been used to obtain the experimental evidence. For example, Eaton and
Stewart used fluorescence monitored titration to investigate cooperative binding of ATP
to a protein histidine kinase CheA homodimer [130], the groups of Kalodimos [4] and
of Zuiderweg [129] employed NMR to study negative allostery of the CAP and GCT

dimers.

(a) (b)

FIGURE 3.1: Three dimensional crystal structure of (a) effector free (pdb-id: TWRT)
and (b) doubly bound (pdb-id: 1TWRS) trp repressor. The two monomers of the re-
pressor are shown in different shades of blue, the ligand Trp-L in red.
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Distinct changes in chemical shift with respect

to the ligand free GCT occur only in the vicin-

ity of the bound ligand and are depicted in blue.

Residues colored black are unassigned. (c) The

second ligand binding results in more signifi-

cant change in chemical shift in particular at the
dimer interface. Taken from [129].

respectively, various groups have used x-ray crystallography to probe cooperativity in
the aspartate receptor [128] and a mixture of techniques such as equilibrium dialysis, gel
permeation chromatography, and kinetic enzyme assays was used to measure negatively

cooperative binding of several folate substrates to thymidylate synthase dimer [136].

Some experiments indicate that the effectors influence flexibility of the dimer [135] or
directly participate in allostery [4, 129]. For example, Stevens et al. suggested involve-
ment of dynamics in negatively cooperative binding of a small ligand CTP to the enzyme
glycerol-3-phosphate:CTP transferase (GCT) [129]. In their study the NMR spectra re-
vealed that the first binding has negligible influence on the structure of the unliganded
binding site (Fig.3.2). Additionally the authors demonstrated that there is negligi-

ble electrostatic interaction between the two negatively charged ligands. Namely, the
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titration of the Na™ ion into the CTP-saturated protein solution resulted in unmodified
NMR spectra. The suggestion that protein dynamics may play a certain role appeared
amongst the speculations about the allosteric mechanism. The NMR dynamic analysis
was somewhat hampered by limited stability of the unliganded protein but nevertheless
yielded interesting results. The first binding step could be mapped only in a sporadic
way but seemed to have little impact on the protein dynamics. The second step was
however found to be accompanied by a significant rigidification of the whole structure.
The authors did leave an open discussion for the allostery mechanism. Several years
later the same pattern of dynamic changes was observed in CAP and was concluded to

give rise to entropically driven allostery [4].

Catabolite activator protein (CAP) has been shown to display negative cooperativity
without a significant conformational change upon binding two identical ligands called
cAMP [4]. NMR measurements revealed that CAP’s fluctuations undergo a counter-
intuitive change upon binding, whereby binding of the first cAMP molecule slightly
enhanced, and the second completely suppressed the amplitude of global motions. Due
to much larger amount of data available on this protein we select CAP over GCT as our

model system.

3.2 Model of a Homodimer

As mentioned earlier, a protein undergoes thermal fluctuations with frequencies span-
ning several orders of magnitude. Out of these the lowest frequency modes are mainly
responsible for communication of the allosteric signal across large distances whilst fast
modes are localized and can only amplify or quench the signal. Hence we start by con-
structing a model of slow modes only and analyse the dynamical parameter space for
configurations yielding positive and negative allostery. In this model we first assign a
single internal breathing mode to each monomer and elastically couple the monomers.
Later we increase the number of internal modes and add the fast modes to reflect the
complexity of real homodimers and to obtain biologically relevant values of allosteric
free energy. An important assumption is that the monomeric effective spring stiffnesses
can only be altered locally, and not distantly, by a ligand binding. Fast modes are added

in the same way as described in Sec. 2.5.
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3.2.1 Single Slow Mode

A homodimer in this context is a protein consisting of two identical subunits, each
of which binds a ligand. In the first and simplest approximation of the equilibrium
dynamics of such protein we assign one internal, “breathing”, mode to each subunit
and then elastically couple the subunits. This very simple and coarse-grained model is
designed to explore only the qualitative features of dynamic allostery in the system. For
the unliganded protein the internal mode and coupling strength are characterized by
spring constants k and k. respectively. Binding of a ligand is modeled as changes of the

spring constants.

We concentrate on the symmetric case where the two ligands and their binding sites
are identical. We make two assumptions on the effect of the ligand binding. The first
follows from the symmetry of the system and requires that both binding events have the
same effect on the spring constant representing the protein. In the second we assume
locality: the effect of binding is not directly propagated to the distant subunit. At
this level of model, locality means that ligand binding to one subunit affects only the
stiffness of its own internal mode and the coupling to the other subunit, but no direct
effect on the internal stiffness of the other subunit. The ligand binding alters chemical
bond structure locally and therefore only the spring constants that directly derive from
these bonds are likely to change. However the subunits are elastically coupled and thus
the thermal motions of the distant subunit are indirectly modified too, leading to the
dynamic allosteric effect. The assumptions are demonstrated in Fig.3.3. We define
non-dimensional parameters describing the effect of substrate binding as follows: the
first binding event changes the local subunit spring constant by a factor § and the
coupling spring constant by a factor a. Introduction of the second ligand evokes the

same alteration in the other subunit.

The system is mathematically described by a Hamiltonian

1

=3

1
pTMp+ §XTKX. (3.1)

The inertia matrix M is approximately constant during the binding events and therefore

can be left out from the subsequent calculations. For the unliganded protein the elastic
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+ cAMP

FIGURE 3.3: Residues 1-138 of crystallographic structure of CAP (PDB entry 1G6N)

binding the ligand cAMP (red) and a sketch of the corresponding coarse-grained model

of the system. The large X represents the backbone of one subunit whose one internal

mode is simulated by a scissor like movement of the rods. The little protrusions rep-

resent small structures moving fast relative to the slow scissor like motion of the rods.

The internal mode of each subunit and the coupling is defined by the elastic constant
k and k. respectively. The constants are altered upon binding by factors o and g3

part of the Hamiltonian reads

1 x k+ke ke \([z
KX—— 1T , 3.2
2 o 2)( ke kke) \2 32

where x1 and x5 are the generalised amplitudes of the internal modes in each of the
individual subunits. The partition function of the coarse-grained dimer undergoing

structural fluctuations is obtained from the Hamiltonian and reads

|M| )1/2

X (3.3)

Z =27 kBT) (
where kp is the Boltzman constant. The free energy is then, G = —-kpT'In Z. We are only
interested in the free energy differences between the ligation states and therefore all terms
that stay constant during the binding can be ignored. We wish to calculate only the
dynamic contributions and therefore other contributions such as entropy of desolvation

or hydrophobicity of the binding pockets are not included in this calculation.

The requirements for the two constraints of symmetry and locality of binding are imple-
mented by introducing coefficients o and [ into the matrix K as illustrated in Fig. 3.3.

The singly bound protein is thus described by a Hamiltonian with the elastic part equal
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to

%XTKX = % (21 @2) (ﬁk ake ok ) (xl) : (3.4)

—ak, k+ak.) \zoy

The Hamitonian of the doubly liganded protein is found analogously.

The difference between the free energy change of each binding step (AAG) measures
the degree of cooperativity (see Sec.2.5); AAG = (G211 —G1:1) — (G111 —Gapo), 2:1 refers
to doubly liganded and 1:1 to singly liganded protein. Let us recall the sign convention,
AAG # 0 indicates cooperativity, AAG < 0 corresponds to a positively and AAG > 0
to negatively cooperative system. A larger absolute value of AAG signifies a more

cooperative system. The evaluation yields

(3.5)

AAG = %kBTln ( (32 +20%6K.) (1 +2K.,) ) |

(B+aK.+aBK,)?

where the crucial quantity AAG is now expressed using three dimensionless parameters:
K. = k./k the ratio between the subunit and the coupling spring constant, a, the di-
mensionless enhancement of the coupling strength on binding and 8 the dimensionless
enhancement on the local subunit mode stiffness (Fig.3.3). The dimensionless charac-
ter of the equation is advantageous for the parameterisation from experimental results,
because only relative changes in the spring stiffness contribute to AAG. We look for
areas in the parameter space yielding AAG # 0. To picture the three parameter space
we make two fixed choices in each of two qualitatively regimes for the parameter o and

plot AAG as a function of the remaining two parameters (Fig.3.4 top).

The parameter space is divided into two subspaces: « > 1 which corresponds to stiffening
of the coupling between subunits on binding of a ligand and « < 1 corresponding to
coupling loosening. The shape of the AAG landscape is non-trivial for « # 0; regions
of positive and negative cooperativity are observed in both subspaces. The qualitative
character of the landscape is independent of the choice of the value of o within each
subspace, however there are substantial differences between the two subspaces (Fig. 3.4).
In the case where coupling stiffens, positive or negative cooperativity is achieved by
carefully choosing f; if the coupling loosens, K. becomes the critical parameter instead.
The second major difference is that as « tends to 0, AAG becomes more positive.
When « > 1 the values in the area where AAG > 0 are slightly enhanced, however for
larger values of § the landscapes cross and the system becomes increasingly cooperative

(Fig. 3.4). This suggests that positively cooperative systems are exploring the subspace
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Ficure 3.4: Top: allosteric free energy landscapes for a single slow mode. Bottom:

allosteric free energy landscape for one (blue), two (yellow) and three (red) slow modes.

The plane AAG =0 is shown to highlight the border between positive (AAG < 0) and
negative cooperativity (AAG > 0).

a > 1 and negatively allosteric system the subspace ao < 1. The borderline case of o =1

does not result in negative cooperativity for any choice of the remaining parameters.

The allosteric free energy (Eq. 3.5) is directly proportional to the temperature implying
(see Eq. (2.24)) that the slow mode change gives rise to purely entropic allostery (in the

isothermal case).

A good measure of slow mode amplitudes is provided by the mean relative fluctuations

((x1 - 22)?)

((z1-22)) = % f doy dzo (71 — 2)? eXP(—%)- (3.6)
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This mean is evaluated for each ligation state and yields

2y 1 ke
(@1 =22 e = 5000w 20
) _1 ak,.
((z1 - 22) )1:1  2k(Bk + ak. + afk,)
2 _ EL
((@1-22)%),, = 2 Bk(Bk202ke) o0

The results are stated in terms of the original spring constants.

The ratios of the mean relative fluctuations are dimensionless and are used to evaluate
the evolution of the fluctuations during the sequential binding. Four types of behaviour
are observed: 1) and 2) sequential increase and decrease of fluctuation amplitude respec-
tively, 3) fluctuations are amplified upon the first ligand binding but quenched upon the
second binding. The fluctuation amplitude of the doubly liganded state is smaller than
that of the unliganded protein, 4) increase in the amplitude is followed by decrease,
however the fluctuation amplitude of the doubly liganded state is now larger than that
of the unliganded system. The four types of behviour are mapped onto the allosteric
free energy surface in Fig.3.5. We observe that for o < 1 all four types of behaviour
are present for large regions of the parameter space. The most interesting observation
however is that in order to maximize negative cooperativity (AAG > 0) the loosening-
tightening effect is required (case 3). In the case of a > 1 the fluctuations tend to be
sequentially quenched upon the binding, in particular this is the case for a positively
cooperative system. However a negatively cooperative system whose coupling would get

stronger upon binding is again likely to display the loosening-tightening effect.

2

The monomeric average fluctuations (:c

; ), 1 = 1,2 are evaluated analogously to the rel-

ative fluctuations Eq. (3.6). The resulting landscapes are relatively complex but several
general observations can be made. Let us focus on the more common case where the
ligand binding has a local stiffening effect (3 > 1). If additionally o > 1 then the average
fluctuations decrease upon each ligand binding. When however a < 1 then more complex
situations arise, where for some parameter choices motions are activated either in the
unliganded monomer or throughout the whole dimer. We discuss the monomeric average

fluctuations in detail on the example of CAP in Sec. 3.3.

Even the simplest level of coarse-grained model shows that allosteric effects can arise

in coupled dimers purely from spatial fluctuations. The evaluation of the fluctuations
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a) o=

AAG / KT

FIGURE 3.5: Four regions with different change in fluctuations mapped onto the AAG
Color code: in the red region the
loosening-tightening effect is observed. The fluctuations of the doubly liganded system
are smaller than that of the apo-protein.
weak loosening-tightening effect, whereby the doubly liganded system moves more than
the apo-protein, but less than the 1:1 system. The green region is characterized by
sequential stiffening of the protein upon binding.
increases the fluctuations. The green region for e > 1 is hidden behind the peak in this
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In the grey region each binding

demonstrates that the loosening-tightening effect is required to produce strong negative

cooperativity, whereas strong positive cooperativity is accompanied by sequential tight-

ening of the system. However the allosteric free energy is of purely entropic origin and

its values of AAG match the generally observed values of few kT only for limiting

cases of parameters tending to 0 or co. That represents unphysical conditions and we

conclude, as might be expected on physical grounds, that more modes naturally present

in the system must take part in the allosteric signaling. These fall into two classes: fast

local modes and additional, global, slow modes.

The effect of fast modes on the allostery have been investigated before [42] and it has

been shown that the net values of AAG are not amplified but that the free energy is split

into compensating entropic and enthalpic part, which themselves do acquire enhanced

absolute values. The effect of including fast modes in the model of a homodimer will be

discussed at the end of this section.
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3.2.2 Multiple Slow Modes

We extend our model to include M slow modes per subunit. We assume that the modes
are harmonically coupled to each other across the subunits. This corresponds to a

Hamiltonian

9 M , &M )
Ho=2" 3 kigaij+ > > Mgk (Tig = Tra)” (3.8)
1=17=1

j i,k=17<l
where x; ; is a coordinate of j-th mode on the i-th subunit with the respective spring
stiffness k; j. The coupling constants A[; jjx, are in principle different for all modes and
can be parameterised from experiments or simulations. At this level in order to probe the
properties of the model, while avoiding a proliferation of arbitrary parameters, we con-
strain their value by reasonable simplifying assumptions. We set all coupling and internal
subunit constants equal to each other for the free symmetric protein, i.e. A jjr,] = ke,

and k; j = k, Vi,j,k,l. The Hamiltonian reduces to

M=

2 M
H = Z kx?,j"‘ > ch(xi,j_$k,l)2- (3.9)

2
i=1j=1 ik=1j<l

We further assume that as in the one mode case: (i) ligand binding affects only the local
elastic constants plus the coupling constants, (ii) binding of the ligand to either subunit
has the same effect, all internal subunit stiffnesses change by a factor 5 and coupling
constants by a factor a. The resulting Hamiltonian of the apo-protein in matrix form is

H = xTKyx where
Kom. = (k?-‘rQMkic)(;i,j —kﬁc, ’L',j = 1,...,2M, (310)

and 0 denotes the Kronecker delta. The matrix K; of the singly liganded complex has
alternating terms Ok + «(2M — 1)k, and k + «(2M - 1)k, on the diagonal and the off-
diagonal terms are equal to —ak.. The diagonal terms of the matrix Ko of the doubly
liganded complex are Bk + o®(2M — 1)k, off-diagonal —a?k.. The allosteric free energy

is obtained from the partition function as previously described,

(3.11)

AAG = %kBTln(|KO||K2|),

Ky |2
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and yields

B(B+2Ma2i )™M (1+ 2M K )P

(B+2MaK )M 2 (1+2MaK )™ 2 (3 + MafK, + MaK,)? |
(3.12)

AAG = %kBTln

We observe that AAG is a function of four dimensionless parameters «, (6, K. and
number of modes M. The central result is that the free energies are indeed modified

with increasing number of slow modes as is shown in Fig. 3.4.

In particular, this extension confirms that negatively allosteric systems are likely to live
in the a < 1 subspace and positively cooperative in « > 1 subspace. In these subspaces
including extra slow modes leads to the amplified allosteric effect in question. In the
subspace « > 1 this amplification is observed also in the region with AAG > 0 but is
much less pronounced than in the other subspace. AAG values of +5 kT are observed
for as few as 5-10 slow modes. The values in connection to experiments will be discussed

in more detail in section 3.3.

The fluctuation changes are evaluated in the form of the fluctuation matrix C
Cij = (21, —22,5)°). (3.13)

As more slow modes are added to the system, the fluctuation amplitude per mode

# Z%:1 C;; decreases while the total fluctuations Z%:1 C;j increase (Fig.3.6). The
comparison of the fluctuations of three ligation states yields again the same four types
of behavior as the simple-mode case depending on the parameter choice (Fig.3.5). This
is observed for any number of modes M. The mapping onto the allosteric free energy
landscape results in an analogous picture to the simple-mode case too, the four classes

of behaviour span the same regions of the AAG landscape.

3.2.3 Fast modes

In contrast to the slowest modes, fast modes are typically localized (involve only a few
atoms) and are therefore unlikely to transmit allosteric signal across large distances by
themselves [120]. However they can couple to the slow modes and so become involved in
the transmission, modifying its amplitude. Here we draw on previous work [42] to couple

several fast modes to the global, slow ones in the way explained in the Methodology
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FIGURE 3.6: Slow mode fluctuations as a function of number of slow modes M for

chosen parameters K. = 1 and 8 = 20. Fluctuations per mode decrease whereas the

total fluctuations increase with number of slow modes included in the model. The
loosening-tightening effect becomes stronger with M.

section 2.5. We can picture the situation as shown in Fig. 3.3. The slow breathing mode
of the subunit is represented as a scissor-like movement of the two rods. Fast motions of
smaller structures within the subunit such as side chains are represented as vibrations
of little protrusions attached to the rods. Here we derive the results for one slow and
multiple fast modes and then generalize the result for multiple slow and fast modes in

the next section.

The principle of coupling was explained in Sec.2.5. It is based on the idea that the
flexibility of the fast modes increases with the amplitude of the slow mode. We assume
therefore that the rigidity of the fast mode depends on the absolute displacement |
where x; stands for x1 or zs, the coordinate of the larger structure within the slow mode
of the individual monomer. A further physically-motivated assumption made is that the
fast modes are only coupled to the local slow mode (Fig.3.3) and that the fast mode

potential becomes shallower and flatter with the increased |z|.
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We implement the idea by modifying the Hamiltonian to

2N
H=Hs+ Vp, (3.14)
=1

where H is the Hamiltonian of the slow modes (Eq.3.2) and the sum adds up the fast
modes. N fast modes are enslaved to each subunit, the i-th enslaved mode experiences
a potential Vy,. If the fast mode is not coupled to the slow mode its effective potential

is the harmonic approximation

Li (3.15)

the potential depth V}  and the mode stiffness k; are assumed as in the previous work
[42] to be the same for all fast modes. The width and depth of the potential are assumed
to be affected by the slow mode in the coupled case. The increased flexibility of the slow

mode corresponds to a flatter and wider potential V, for which we take the functional

parametrization
k2 1 k
Vi, ==Vy, (—ﬁ + 1) + 3 # .’L'?ci’ (3.16)
B exp (ngST)

Ts = 1,2 is the slow mode coordinate, xy, the i-th fast mode coordinate, k,, k; and
ky. are coupling constants (given, without loss of generality, the dimensions of a spring
constant). The choice of coupling functions is arbitrary, the only requirement is smooth
widening and flattening of the potential with increasing |z5|. We select these functions
over those used by Hawkins and McLeish [42] because no approximation is required to
obtain the partition function. We repeat the statistical mechanics calculation with the

modified Hamiltonian and find

2 2 _ 472 2 _ 72
AAGZlkBTlD[(5+a K.+ AN)* -o*KZ][(1+ K.+ AN) QKC], (3.17)
2 [(B+aK,+AN)(1+aK.+ AN) - a?2K?]
where vk
fokv kg
A= -—. 3.18
kkpT 4k (3.18)

The parameters «, ( and K, define the slow mode during the two binding steps (see
Fig.3.3).

Including fast modes has a relatively complex effect on the values of allosteric free energy.

In particular if A <0, i.e. when the coupling of the slow potential width is significantly
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stronger than coupling to the potential depth, the situation is difficult to generalize. For
some special choices of the parameters the maximum of AAG is slightly increased but

generally the values of AAG are smaller than in non-enslaved case.

If A > 0 then the region of the parameter space «, (3, K. yielding AAG > 0 increase.
However the absolute maximal value of AAG is always slightly lower than in the non-
enslaved case. The structure of the coupled model is most clearly seen if we make the
simplifying choice of A = 0 which would correspond to a system at a fixed special temper-
ature. Now AAG is identical to the non-enslaved case. However the free energy is now
composed of compensating entropic and enthalpic terms. This enthalpic contribution
arises naturally from the coupling between the mean energy adopted within the local
mode potentials and the amplitude of the global dynamics, and can be calculated by

standard application of thermodynamic relations to our model. For isothermic changes

olnZ
H=kgT? 3.19
B oT ( )
and thus
B+a’K, 1+ 3+ 20K, 1+ K,
AAH =NV, K, - . 3.20
fo (62+2a26Kc B+ afk, + oK,  1+2K, (3.20)

The allosteric enthalpy can be positive or negative, however for a > 1 the negative values
of AAH occur only in a very small region of the parameter space and are of very small
absolute value. In the case of a < 1 on the other hand this region and the values become
significantly larger. In order to compare the values of enthalpy to the values of entropy
and find the region of parameter space in which the enthalpy entropy compensation
is taking place we would need to know the values of coupling parameters and the fast

potential depth.

3.3 An Example: Catabolite Activator Protein

To illustrate the utility of our model we apply it to an example homodimer, the catabo-
lite activator protein (CAP). This transcriptional activator in E. Coli, consists of two
identical subunits each of which binds a small activator called cAMP (cyclic adenosine
monophosphate). The cAMP molecules serve as an allosteric activator that greatly in-
creases the CAPs affinity for DNA. The binding of the two cAMP molecules to the
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protein is itself allosteric and negatively cooperative; the binding of the first cAMP
molecule reduces the affinity for the second by nearly two orders of magnitude [137].
The distance between the two cAMP ligands is 10 A [138] excluding electrostatic or any

other direct interactions.

Each subunit of CAP is composed of two distinct domains, the cAMP binding domain
(residues 1-138) and the DNA binding domain (residues 139-209). The negative coop-
erativity upon cAMP binding takes place independently of the presence of the DNA
binding domain and according to Heyduk et al. becomes even stronger in its absence
[139]. Popovych et al. studied the allosteric binding of cAMP in the truncated version
of CAP (CAPYN, residues 1-138) [4]. They recorded NMR spectra of all three ligation
states (Apo-CAPN, cAMP;-CAPYN and cAMP,-CAPY) and extracted information on

the protein structure and dynamics.

Structural changes were assessed from chemical shift mapping. Chemical shifts are
extremely sensitive to the environment (see Sec. 1.4.1 for explanation) and thus report on
very subtle changes in the average protein structure. Figure 3.7 shows the chemical shift
changes during the individual binding steps mapped onto the structure of the protein.
We observe that each binding results in a pronounced change in the average structure of

the interacting monomer but the other monomer’s structure remains practically intact.

The dynamics of the system was probed across a wide range of timescales. The slow,

>0.7

Ad (p.p.m.)

cAMP,—CAPN cAMP,~CAPN

FiGUre 3.7: Change in chemical shifts during the two cAMP binding steps mapped

onto the structure of CAPN reports on locally modified protein conformation. Large

values of the shift (in yellow) indicate large changes in structure, zero values signify

region intact by the binding. The cAMP ligand is shown as green sticks. Taken from
[4].
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FIGURE 3.8: Effect of cAMP binding on the slow (us-ms) motions of CAPY mapped

onto the structure of the protein. The color scale ranges from dark blue corresponding

to rigid areas to yellow corresponding to flexible residues. The ligand cAMP is shown
as green sticks. Taken from [4].

us-ms motions were obtained by relaxation measurements: both 75-CPMG and rotating
frame data were recorded. The excess transverse relaxation rate R., was extracted from
both experiments. R, denotes the contribution to the relaxation time 75 arising from
fluctuations between different conformations (states with a different chemical shift). The
first cAMP binding results in a pronounced and widely spread increase in R, signifying
activation of the slow motions. Notably, the motions are activated in both subunits.
The second cAMP binding, on the other hand, completely quenches the ps-ms motions.
The change in R., upon the individual binding is shown in Fig.3.8. The relaxation
dispersion measurements further indicate that large portions of the protein move in a

concerted fashion.

The fast backbone motions on ps-ns timescale were characterised in the same work [4] by
reduced spectral density mapping (RSDM). Details of this technique can be found e.g. in
ref. [140]. Briefly, the spectral density function at a special frequency (0.87wg, where
wyr is the 'H angular Larmor frequency) is calculated because it reports effectively on
the fluctuations of internuclear vectors. The data from these measurements are shown in
Fig. 3.9 and indicate that fast motions are affected substantially less by cAMP binding
than the slow modes. They display sequential tightening, but the first binding has less

pronounced effect than the second.

In summary, the NMR relaxation measurements of Popovych et al. rule out ligand-
induced conformational change in the binding site of the second ligand but indicate that

a substantial modification in the dynamic behavior takes place. The slow backbone
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cAMP, -CAP" cAMP, -CAP"

FIGURE 3.9: Effect of cAMP binding on the fast (ns-ps) backbone motions of CAPN.
Values of the spectral density function are mapped onto the structure of the protein
with the following colour coding: low values (in blue) mark rigid areas and high values
(in yellow) flexible areas. The ligand cAMP is shown as green sticks. Taken from [4].

motions (us-ms time scale) exhibit a non-intuitive pattern whereby binding of the first
cAMP molecule slightly enhances, and the second completely suppresses the amplitude
of these global motions. Fast motions of the backbone on the ps-ns timescale change far

less than the slow motions.

Thermodynamic potentials of the individual binding steps were obtained by the same
group [4] from calorimetric measurements. The measured positive value of the allosteric
free energy AAG = 4.7kpT confirms negative cooperativity, yet the enthalpic term
(AAH = -1.8kpT) actually favors binding of the second cAMP ligand. The authors
concluded that the strongly unfavorable entropy (TAAS = -6.5kgT) drives the negative

cooperativity.

In the previous section we derived the structure of the allosteric free energy landscape
arising from ligand induced change in slow motions for a coupled dimer. The main
assumptions were that the individual ligand bindings have local and identical effect on
the slow modes of the protein. In order to check the validity of these assumptions for
the case of CAP we used a selection of elastic network models and other freely available

programs and analysed the crystal structure of the protein. The programs used were

e iGNM - Gaussian network model that uses C, representation of the protein.

e ElNemo - elastic network model that uses rotation translation block (RTB) rep-

resentation of the protein.

e WEBnm - elastic network model that uses C, representation of the protein.
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FIGURE 3.10: Cross correlation map, A;j, between residue ¢ and j, for three ligation
states of CAPY, obtained from Gaussian network model implemented on the webserver
iGNM. A pair subjected to a fully correlated motion (A;; = 1) is colored dark red, fully
anti-correlated motions (A;;) are not present and moderately correlated motions are
colored dark blue. cAMP binding disturbs correlations in the liganded monomer (top
left corner of the middle picture) but introduces correlation between the central helices
and the liganded monomer. Binding of the second cAMP reestablishes symmetry in the
motion pattern and removes correlations of the central helices to the 3-sheet structures.
Main parts of the secondary structure of CAP are shown above the apo-CAP map, a-
helices are represented as magenta cylinders and (-sheets as grey rectangles.

e FIRST/FRODA - a module for rigidity analysis of a protein that produces a
coarse-grained model of the molecule and then performs a Monte Carlo simulation

of the protein dynamics using this model.

These methods are introduced in Sec. 2.3 and 2.4.

These methods appear ideally suited for study of low frequency protein dynamics. In
reality problems arise when e.g. effect of small ligand binding on these low frequency
modes is studied. The models are coarse-grained in such a way that binding of a small
ligand is sometimes not well reflected in the calculated motions. From the comparison
of the above programs we concluded that only iGNM is of practical use in the question

of allostery of CAP. The detailed results from all programs are shown in Appendix A.

We conducted a systematic study of CAPY in its three ligation states using the Gaussian
network model [108], implemented on the webserver iGNM [112]. All simulations were
performed on CAPYN; the atomic model was obtained from the crystal structure of the
doubly liganded full length protein (pdb entry 1G6N) by selecting desired residues (1-
138) and stripping off cAMP ligands for the singly liganded and unliganded version.
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FIGURE 3.11: Residue mobilities (square displacements of the individual residues)
induced by (a) 1st mode and (b) average of 1st-3rd mode obtained from the iGNM
server. The three ligation states of CAP: apo-CAP (in black), singly liganded CAP (in
green) and doubly liganded protein (in blue) are shown. In the singly liganded protein
cAMP is associated with the first monomer (residues 1-138), mobilities of cAMP itself
are not shown. (a) The prominent peaks at residues 1-7 and 139-145 correspond to the
small « helices at the N-terminus. A discrepancy is observed between several iGNM files
as some show the fluctuations of these helices substantially smaller. The remaining data
agree. (b) Increased mobility is observed also at the C-terminus of each chain (residues
125 -138) corresponding to the random coil at the end of the central helices.

iGNM is a beads-and-springs model that represents every residue as a bead located at
the C, atom. We modified the pdb file so that a bead is also placed in the middle of
each cAMP ligand. For more details see Appendix A.

The evolution of the dynamic behaviour is best manifested dynamical cross-correlation
maps, Ajj = (AR; - AR;) between residues ¢ and j (Fig. 3.10). We observe that the two
main subunits of CAP are very little correlated in the apo-protein which implies that
subunits move as weakly coupled individual units. ¢cAMP binding strengthens corre-
lation between the central helices and the (-sheet structure of the liganded monomer,
confirming that communication between the two subunits does not proceed directly but
only through the interface (central helices). The dynamical pattern of the unliganded
subunit is approximately unperturbed, which also motivates the assumption we make

on the coarse-grained effect of coupling.

The dynamical changes can be also well observed from the mobilities (square displace-
ments) of the individual residues induced by the low frequency modes. The displace-
ments induced by the 1st mode and those averaged over lowest three modes are plotted
in Fig.3.11. In Appendix A these mobilities are also shown mapped onto the structure

of CAPN and confirm that each subunit consists of two rigid domains (the central helix
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and the (-sheet structure) that move with respect to each other. The most interesting
observation is made on the effect of ligand binding. The first cAMP binding intro-
duces an obvious asymmetry to the dynamic pattern of CAP. The liganded monomer
becomes much stiffer, the ligand provides an anchor between the previously loosely at-
tached (3-sheet structure and the central helix. The unliganded monomer’s motions on
the other hand become activated upon this binding. The entropic penalty for suppress-
ing the amplified motions in the second monomer is thus higher, resulting in negative

cooperativity.

This observation we make from the GNM is however slightly different from the NMR
results that show activated motions throughout the whole protein upon the first binding.
Later in this section we evaluate the average fluctuations of individual monomers within

our model and show that this also suggests that the dynamics evolves in the way see in
the iGNM model.

From the derived structure of the AAG landscape we concluded that negative coopera-
tivity can arise in a coupled dimer for a particular choice of parameters. We inferred that
for negative cooperativity to arise the parameter « is most likely to be smaller than one.
This corresponds to coupling between subdomains weakening upon the ligand binding.
We also found from our exploration of the general model that AAG is maximal when
the loosening-tightening effect is present, suggesting that optimal design of a negatively
cooperative system displays such a change in fluctuation amplitudes. Experiments have
demonstrated that the loosening-tightening effect indeed occurs in CAP during the co-
operative binding, strongly supporting our hypothesis [4]. In the following we want to
use the remaining experimental results to determine if the dynamical structure of CAP
is captured by our model, and if it is, to further localise CAP in the parameter space

and gain more insight into the mechanism of its cooperativity.

We showed that the experimental value of AAG = 4.7kgT can be recovered by in-
cluding additional slow modes. In order to account for the favourable enthalpy change
(AAH = -1.8kpT) we need to add fast modes as reviewed above. Enthalpy has been
experimentally found in the CAP system to favor the second ligand binding, which cor-
responds to AAH < 0. By plotting Eq. 3.20 we can find the region of the parameter

space with negative enthalpy.

The amplitude of the slow mode fluctuations are also identical to the non-enslaved case

if A=0 (Eq. 3.18). We localize the part of the parameter space with properties matching
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FIGURE 3.12: The allosteric free energy landscapes in the case of a single slow mode

is coupled to a set of identical fast modes, for « = 1/2, 2 with the area displaying the

loosening-tightening effect plus AAH < 0 highlighted in red. The projection of the area
into the K, - (8 plane is shown in orange.

experimental results: AAG >0, AAH <0 and displaying the loosening-tightening effect
upon binding. This parameter subspace also coincides with high allosteric free energy
(see Fig. 3.12).

Fast fluctuations (xi) evaluated from our model cannot be compared directly to the
experiment because the NMR experiments only measured fast motions of the backbone.
Our model incorporates small structures such as side chains into (x% ). A 40 ns molecular
dynamics simulation performed by Li et al., however reports on the fast motions of the
whole molecule [141]. The rms deviation of the whole structure was found to decrease
upon binding. This measure accounts for both side chain and backbone motions but is
the best guideline available to us. We therefore add the decreasing fast fluctuations to
the desired properties of our model. The fast mode fluctuations (xi) calculated with
our model display a sequential tightening during the two binding steps for 8 > 1 and
sequential loosening for 5 < 1. Only in the case of o < 1 does the area with AAH < 0 and
the loosening-tightening effect stretch to large values of 5 (Fig. 3.12). This supports the
hypothesis that the coupling between the CAP subunits is weakened upon the ligand
binding.

As mentioned above, the results from iGNM indicate that the first cAMP binding

quenches the motions in the interacting monomer but activates the motions in the



Chapter 3: Dynamic Allostery in Oligomeric Proteins 86

unbound monomer (Fig.3.11). This contrasts with the NMR results of the group of

Kalodimos showing that slow fluctuations increase evenly throughout the whole dimer

[4].

We calculate mean fluctuations of the individual monomers (xf) from our coarse-grained
model for comparison. The functions are relatively complex so in order to make the
analysis more transparent we focus only on the case of o < 1. Furthermore we assume
that the ligand binding has local stiffening effect (G > 1), i.e. the internal monomeric
spring constant becomes stiffer upon ligand binding. This effect is indicated by the

elastic network models as well as by our own.

As expected if > 1 then the mean fluctuations of the liganded monomer of the 1:1 state
are smaller than of the unliganded monomer (1:1 refers to a singly liganded protein).
The dimensionless ratio between the fluctuations of the individual monomers in the

singly liganded state

(3.21)

is plotted in Fig.3.13. The ligand is bound to the monomer 1.

The amplitude of the fluctuations of the individual monomers increases when the first
ligand binds for some values of parameters and decrease for others. The increase only
occurs for a < 1. In a small region of the parameter space motions in both monomers
become larger. The dual increase may lead to the conclusion that we located the cor-
rect parameter subspace for CAP. However this region is characterised by small values
of AAG (Fig.3.12) and the fluctuation amplitude of the doubly liganded protein is
larger than any of the singly liganded protein. These two observations motivate further

exploration of the parameter space.

Outside of this region the fluctuations of the liganded subunit of the 1:1 complex are
reduced in amplitude compared to the apo state (as seen in iGNM). The amplitude of
the motions of unliganded subunit are however increased in much larger subspace. In
order to compare this subspace with the area of negative cooperativity we calculate the
ratio of the average fluctuations of the unliganded monomer of the 1:1 state to the same

monomer in the apo state, i.e.

C.71:1,0Lp0:< 2 : s (322)
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FIGURE 3.13: (a) The ratio ¢i.1 of the average fluctuations in the unliganded and

liganded monomer of the singly liganded protein. (b) Allosteric free energy landscape

of a coupled dimer (in red) and the ratio gi:1,qpo (Eq. (3.22)) plotted in blue. The region

of positive AAG is highlighted by the bottom grey plane and the region with increased

fluctuations in the unliganded monomer of the 1:1 state is highlighted by the top grey
plane. Both figures are plotted for a = 1/2.

where the ligand is bound to the monomer 1. We observe that if gi.1,4po > 1 then
AAG > 0, in other words if the average fluctuations in the unliganded monomer of
the 1:1 state increase compared to the apo state then negative cooperativity occurs
(Fig. 3.13).

In the next step we compare the region of the parameter space with gi.1,4po > 1 to the
region of the parameter space identified previously as the location of CAP, i.e. the region
with AAG >0, AAH <0 and the loosening tightening effect (red stripe in Fig.3.12a).
Figure 3.14 a reveals that the CAP subspace completely falls into the area with g1:1,4po > 1
(behaviour seen in iGNM). The fluctuations in the liganded subunit are also activated
in a small region that is hidden in this view behind the red peak and is highlighted in a
2d plot in Fig.3.14b.

In conclusion, both iGNM and our model suggest that binding of the fir