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Abstract 

 

Due to the serious climatic consequences of CO2 pollution and increasing global 

energy demand, a clean and sustainable energy source is required. Perhaps the 

ideal clean fuel is hydrogen, which would be sustainable if it could be sourced 

efficiently from water. Photocatalysis using metal-semiconductor composites is 

potentially a feasible way to make use of solar energy to drive the water splitting 

reaction to product hydrogen and oxygen. A significant number of studies have 

been reported in recent decades on the development of new photocatalytic 

materials, ion doping, co-catalyst addition and modification of the morphology to 

enhance the light harvesting, and increase the number of active sites in order to 

improve the photocatalytic activity.  

 

In this project, three-dimensional ordered macroporous (3DOM) Ta2O5, TaON and 

Ta3N5 have been prepared and loaded with Pt co-catalyst (0.5 wt% and 3 wt %). 

Subsequently the photocatalytic activities with respect to hydrogen production 

using methanol as a sacrificial reagent were measured and compared with bulk 

analogues. A colloidal crystal templating method using polystyrene (PS) 

monodispersed spheres with diameter 500±20 nm was used for the synthesis of 

the macroporous materials. Characterizing data of the macroporous materials was 

obtained by powder X-ray diffraction (PXRD), scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), BET surface area measurement 

and UV-Vis reflectance and absorbance spectroscopy. Pore sizes of macroporous 

Ta2O5, TaON and Ta3N5 are 370±10, 380±10 and 400±10 nm, respectively. The 

wall thicknesses are 70±5, 60±5 and 60±10 nm, respectively. Spectroscopy 

showed that the macroporous Ta2O5, TaON and Ta3N5 structures are photonic and 

stop bands are observed at 721, 683 and 748 nm, respectively. Surface areas were 

measured to be 11.53, 12.12, 22.98 m2g-1 for macroporous Ta2O5, TaON and 

Ta3N5 respectively whereas bulk materials were between 1.35, 3.22 and 7.91 m2g-1, 

respectively. The microstructure of the macroporous materials was determined by 

PXRD and electron microscopy which showed increasing crystallite 

fragmentation as the level of nitridation increases. Calculated crystallite size as 

determined by PXRD are 60, 36, 35 nm for bulk Ta2O5, TaON and Ta3N5 and 40, 

33, 18 nm for macroporous Ta2O5, TaON and Ta3N5, respectively. Electron 

microscopy of 0.5 wt% Pt loaded Ta2O5 showed evidence for deposition of Pt on 

the surface of the bulk Ta2O5 and on the inner walls of the macroporous Ta2O5, 

respectively, but some aggregation occurred. Comparing the photocatalytic 

activities for hydrogen production showed that Pt addition enhances the activities 
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for both bulk materials and macroporous Ta2O5, however, less activity was 

observed for macroporous TaON and Ta3N5. Normalizing for the increase in 

surface area of macroporous materials Ta2O5 and Ta3N5 show ca 50% less activity 

whereas TaON shows a 40% increase in activity. It should be noted errors have 

not been estimated and the surface chemistry of the materials is at present 

unknown. However, the activities strongly indicate that photocatalysis is 

occurring throughout the porous material.  

 

In addition, because of difficulties comparing photocatalytic reactions in the 

literature a series of calibration experiments was performed using P25 and 

methanol. Activity as a function of photocatalyst mass and concentration were 

performed. The results indicate that the concentration of P25 does not have 

significant effect for the photocatalytic activities and the optimum amount of 

photocatalyst in our reaction system is ca 80 mg (in the system of 100 ml H2O + 

10 ml MeOH solution). 
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Introduction  

Chapter 1 

 

1.1 Catalysis and the Energy Problem 

 

Catalysis is a vital industrial process because it can provide new efficient routes to 

chemical products by reducing the reaction time and energy consumed, whilst 

increasing the yield and ease of purification. Catalysis can be broadly divided into 

two subgroups, homogeneous and heterogeneous, which are differentiated by the 

phase distribution of catalyst, reagents and products. Homogeneous catalysis is 

characterized by having everything in the same phase, for example, the well 

known Wilkinson’s catalyst, [RhCl(PPh3)3], for hydrogenation. In comparison, for 

heterogeneous catalysis the catalyst and reactants are in different phases usually 

with the catalyst in the solid phase, where an example is the alkylation of benzene 

using zeolites. 

 

Photocatalysis is a chemical reaction mediated by a catalytic material via 

photoabsorption. Similarly, it can be divided into homogeneous and 

heterogeneous subgroups. In homogeneous photocatalytic reactions, the excitation 

of an electron to a high energy state of a molecule in solution occurs, followed by 

a chemical reaction via the reduced or oxidized orbital.[1] In heterogeneous 

photocatalysis, the photocatalyst is normally a solid state material where 

excitation can be restricted to a single ion, which is similar to the molecular case, 

or across a band gap generating electron and hole pairs that can perform redox 

reactions.[2-3] The focus of this thesis is heterogeneous photocatalysis mediated by 

electron excitation across a semiconductor benadgap. 

 

In recent years, an average global temperature increase and global environmental 

pollution due to CO2 emissions have been identified. Additionally, global energy 

demand is increasing rapidly (Fig. 1.1) because of increasing population and 

increasing development of countries such as China and India. Therefore, the 

search for clean and sustainable energy resources is becoming increasingly 

important. 
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Fig. 1.1 World energy demand from International Energy Outlook 2010 [4] 

 

Current global energy consumption is estimated at 15 TW and increasing rapidly. 

The greatest potential source of energy by far is from the sun, with about 86000 

TW incident at the surface of the Earth per year. Solar energy is therefore clearly 

sufficient to meet global needs; however irradiation is diffuse and diurnal. 

Technologies used to achieve solar energy conversion include solar furnaces, 

photovoltaics and dye-sensitized solar cells, which generate electricity via heating 

water, excitation across p-n junctions and photoelectrochemically, respectively. 

However, in each case, storage (e.g. via batteries) is expensive, inefficient and 

power output is low. An alternative, which can potentially provide energy on 

demand, is solar fuel production using photocatalysis.[5-9]  

 

1.2 Semiconductors for photocatalytic solar fuel production 

 

Semiconductor photocatalysis has received great interest for both environmental 

cleanup studies to remove polluting organic contaminants from air and water, and 

relevant to this thesis, hydrogen production from water photolysis.[10-11]
 The 

principle of semiconductors is shown in Fig. 1.2. 
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Fig. 1.2 Band structure of a solid state semiconductor 

 

For extended solids, the molecular orbitals within the antibonding/bonding 

manifolds become sufficiently close to be defined as a band. The conduction band 

contains antibonding character and the valence band contains bonding character. 

The band gap is the energy difference between the filled valence band and empty 

conduction band. 

 

The concept for semiconductor photocatalysis is that when a photon of sufficient 

energy is absorbed, an electron is excited from the valence band to the conduction 

band and generates an electron-hole pair. The electron and hole subsequently 

separate and migrate to the surface where redox chemistry occurs. Fig. 1.3 shows 

the principle of hydrogen and oxygen generation. 

 

Fig. 1.3 Principle of semiconductor photocatalytic water splitting 
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Hydrogen is an ideal source that could produce clean energy because its 

combustion product is water; however, the vast majority of current hydrogen 

production is from the steam reforming of hydrocarbons, [12-14] generating CO2 as 

a by-product. The ideal source of hydrogen is water because it is abundant, 

available globally and is truly renewable as the combustion product of hydrogen 

burning is water. Splitting water to hydrogen and oxygen requires energy because 

it is an endoenergetic reaction. Therefore, the solar energy is stored in the 

chemical bonds and, in contrast to photoelectricity, the energy can be stored 

efficiently and used on demand for high power applications, where chemical fuels 

(i.e. hydrocarbons) are currently in use. 

 

Considering Fig. 1.3, the reduction potential of H+ to H2 and the oxidation 

potential of H2O to O2 must be located between the valence band (V.B.) and 

conduction band (C.B.) of the semiconductor photocatalyst and the minimum 

band gap must be 1.23 eV. In reality the minimum gap should be at least 1.4 eV 

due to activation energies associated with overpotentials. Once a photon has been 

absorbed, an electron is excited and the generated electron (e-) and hole (h+) can 

cause water reduction and oxidation respectively after migrating to the surface. H2 

and O2 are then produced at the surface of the photocatalyst.[15] All these 

processes have an associated over potential/activation energy. 

 

1.3 Solar fuel devices 

 

A very similar concept for hydrogen production is to use photovoltaics either in a 

photoelectrochemical cell or from direct light absorption without external 

circuitry.[8] The photovoltaic device is used to produce electricity by absorbing 

and converting the photon energy as shown in Fig. 1.4. 
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Fig. 1.4 Schematic illustration of photovoltaic device 

 

The PV membrane is constructed from semiconductor materials, and on 

absorption of photons, electrons from the valence band will be promoted into the 

conduction band and electrons and holes will migrate to the anode and cathode 

respectively. Water can then be oxidized and generate O2 and H+ at the anode, 

following by transferring H+ to the cathode in order to generate H2. 

 

Photoelectrochemical cells involve the external electrical connection of usually a 

photoanode and cathode with an intervening electrolyte.[9, 16] The direct light 

absorption device is without the formal external connection and uses a proton 

conducting membrane to complete the circuit and overall water splitting 

reaction.[8] Comparing the two concepts of photovoltaics, the direct light 

absorption device has higher development potential because of the relatively 

lower cost and simpler construction.  

 

However, the efficiency of hydrogen production from water splitting materials is 

still low. Therefore, the field of semiconductor photocatalysts for water splitting to 

produce H2 and O2 requires further development. 

 

 

 

 
Light 
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1.4 Efficiency considerations 

 

The low water splitting efficiency may be due to the demanding combination of 

physical and chemical property requirements such as chemical stability, visible 

light harvesting efficiency, corrosion resistance and long-lived e-/h+ generation. 

 

Photocorrosion resistance is important for the photocatalyst to avoid 

photodegradation during reaction. If, the photocatalyst decomposes under light 

irradiation, such as CdS and ZnO shown in eqn (1) [17] and (2), then the 

photocatalyst is corroded. 

 

CdS + 2O2 → Cd2+ + SO4
2-       (1) 

ZnO + H2O → Zn(OH)2 + O2       (2) 

 

The photocatalyst should also have high thermal chemical stability to prevent any 

reaction with the reaction media such as water, acid/base buffer and organic 

solvent (i.e. methanol) if present. High crystallinity of the photocatalyst is 

preferred because defects reduce the electron-hole diffusion length and promote 

electron-hole recombination. It is crucial that the excited electron and hole should 

have sufficiently long lifetime for migration, so that they can be separated and 

diffuse to the surface of the photocatalyst. Furthermore, the surface structure 

should selectively catalyze the desired reduction and oxidation reactions. Clearly 

these are a demanding set of criteria. 

 

1.5 Materials for photocatalysis and related processes 

 

Fujishima and Honda first discovered that the semiconductor TiO2 could be used 

for the photoelectrochemical water splitting reaction.[18] They showed that the 

presence of TiO2 as the anode and platinum as the cathode can separate water into 

dihydrogen and dioxygen under illumination with UV light (Fig. 1.5). Based on 

this, further investigation on the photocatalytic activity of TiO2 and many other 

kinds of metal oxides has occurred in device and powder form without the use of 

an external electrical circuit. 
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Fig. 1.5. Electrochemical cell with TiO2 as the anode and platinum as the cathode  

  

Since the activities of pure oxide materials are low due to the effect of a large 

band gap and efficient electron/hole recombination, ion doping and co-catalyst 

loading (i.e. Pt, NiO) are applied to enhance the photocatalytic activity, by 

changing the band positions to reducing the band gap and acting as a sink for 

photogenerated electrons to enhance electron/hole separation, respectively. Fig. 

1.6 illustrates the ion doping and co-catalyst loading strategies for photocatalytic 

activity enhancement.  

  

  

Fig. 1.6 a) band structure of ion doped photocatalyst; b) co-catalyst loaded 

photocatalyst 

 

In a recent review by Osterloh[19] on photochemical water splitting using 

powdered photocatalysts it was concluded that only d0 or d10 ions such as Ta(V), 

Ti(IV) and Nb(V) (d0) or In(III), Ga(III) and Sn(IV) (d10) etc. can induce the 

photochemical water splitting reaction. Many different types of metal oxides and 

their doped or co-catalyst loaded materials are summarized, for example, titanium 

oxide (TiO2) and its derivatives (e,g. SrTiO3, PbTiO3), tantalum oxide and 

(a) (b) 
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tantalates (e.g. SrTa2O6, K2La2/3Ta2O7) and gallium phosphide (GaP). The best 

materials so far discovered which are active under visible light (λ>400nm) 

without sacrificial reagents are NiO/RuO2-Ni:InTaO4
[20] and Cr/Rh-GaN:ZnO[21]. 

Typical co-catalysts for hydrogen and oxygen production are platinum (Pt), nickel 

oxide (NiO) and ruthenium dioxide (RuO2). However, the evolution of H2 and O2 

from these oxide materials is still low due to the effect of defect states that provide 

recombination centres and cause the rapid recombination of electron/hole pairs 

and lack of absorption in the visible light region. Furthermore, very little is known 

of the catalytic surface chemistry. Therefore, more research on co-catalysts, ion 

doping, crystal morphology and new semiconductor materials is needed to further 

enhance photocatalytic activities. 

 

Because visible light constitutes the majority of solar energy at the Earth’s surface, 

the development of visible light for water splitting photocatalytic activity is 

crucial. Nonetheless, the most studied photocatalysts are large band gap metal 

oxides, which are unable to function under visible light irradiation. Thus, ion 

doping reduces the band gap of oxide materials is an indispensable way for 

harvesting visible light from solar energy. Doping with cations or anions can 

reduce the band gap and achieve visible light absorption (Fig. 1.6a). 

 

However, cation doping introduces defects which could also act as a 

recombination centres and accelerate the electron/hole recombination. Therefore, 

stoichiometric modification of the valence band with other elements (i.e. N, S) has 

also been investigated for visible light absorption, resulting in a higher valence 

band level, which reduces the corresponding band gap as shown in Fig. 1.7. 

 

Fig. 1.7 Valence band modification 

 

 

 



Min Ying Tsang-Master by Research-Chemistry-2010 

Min Ying Tsang-Master by Research-Chemistry-2010 20

Relevant to this thesis, tantalum (oxy)nitride and tantalum nitride have been 

investigated and compared with tantalum oxide using sacrificial agents for 

hydrogen and oxygen generation. Fig. 1.8 illustrates the band energies of Ta2O5, 

TaON and Ta3N5 and Table 1.1 summarizes the photocatalytic activities of metal 

(oxy)nitride and nitride compounds.[22] 

 

 

Fig. 1.8. Band structures of Ta2O5, TaON and Ta3N5 

 

Table 1.1 H2 and O2 evolution using TaON and Ta3N5 in the presence of sacrificial 

reagents under visible light.[22] 

  Activity (µmol/h) 

Photocatalysta Band gap energy 

(eV)b 

H2 evolutionc O2 evolutiond 

TaON 2.5 20 660 

Ta3N5 2.1 10 420 
a
 Reaction conditions: 0.2-0.4 g of catalyst, 200 mL of aqueous solution containing sacrificial 

reagents, 300W xenon lamp light source, Pyrex top irradiation-type reaction vessel with cutoff 

filter(λ<420nm). b
 Estimated from onset wavelength of diffuse reflectance spectra. c

 Loaded with 

nanoparticulate Pt as a cocatalyst; reacted in the presence of methanol (10 vol %) sacrificial 

reagent. d Sacrificial reagent: silver nitrate (0.01 M). [19] 

 

The use of sacrificial agents is a common strategy to determine if a semiconductor 

is capable of generating hydrogen or oxygen. For measuring H2 evolution, the 

sacrificial reagent must have less positive oxidation potential than water, so the 

generated hole (h+) oxidizes the sacrificial reagent irreversibly. The most common 
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sacrificial reagent for H2 evolution measurement is methanol. Similarly, for 

measuring O2 evolution, the sacrificial reagent must have a less negative reduction 

potential than H+, so that the generated electron (e-) would reduce the sacrificial 

reagent instead of H+. The most common sacrificial reagent for O2 evolution 

measurement is silver cations. Since both reactions are at a lower overall potential 

than true water splitting, for a given photon energy, there will be a greater driving 

force for the sacrificial reactions. Fig. 1.9 demonstrates the principle of sacrificial 

reagent usage for photocatalytic gas evolution measurement. 

 

Fig. 1.9 Principle of sacrificial reagent presenting in the photocatalytic reaction 

 

1.6 Modification of morphology to improve efficiency and photonic materials 

 

The activities of many known photocatalysts for water splitting to produce 

hydrogen are still too low even with ion doping and addition of co-catalyst. In 

order to achieve higher catalytic activity, modification of the photocatalyst 

morphology and architecture is another feasible way. Many studies on 

morphology modification synthesize nanoparticles in order to increase the surface 

area of the photocatalyst, so more active sites are be exposed at the surface of the 

material and therefore increase the reactivity of the photocatalyst. Smaller 

particles can also provide shorter electron-hole diffusion pathways to the surface, 

which can reduce electron-hole recombination. A study of nanoparticles of 

tantalum(V) nitride has been reported by Domen.[19-20] The photocatalytic activity 

of hydrogen evolution of the tantalum(V) nitride nanoparticles is two times higher 

than the conventional material as shown in Fig. 1.10.  
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Fig. 1.10 H2 evolution of (a) reference-Ta3N5 and (b) nanoparticle-Ta3N5 with the 

presence of methanol and Pt co-catalyst loaded. [23] 

 

Nevertheless, because of the aggregation of the nanoparticles during reaction, it is 

still not an ideal morphology modification strategy. Hence, increasing the porosity 

of materials can also lead to more active sites (due to a larger surface area), 

capture more photons (due to the light scattering inside voids) and shorten the 

pathway of electron-hole diffusion to the surface of the photocatalyst (due to 

thinner wall thickness), which can result in better photocatalytic activity. 

Mesoporous materials have been studied for the water splitting reaction. For 

example a study of mesoporous TiO2 and InVO4 showed that the photocatalytic 

activities of the mesoporous materials are higher than the non-porous materials 

because of the presence of relatively higher surface area.[24]   

 

Highly ordered macroporous materials have the potential for photocatalytic 

enhancement as well, not only because of the high surface area, short 

electron-hole diffusion pathway and increased photons absorption, but also the 

photonic properties which can potentially suppress the electron-hole 

recombination due to the photonic stop band. There are many studies on 

synthesizing marcoporous materials and determining their optical properties such 

as the stop band position.[25-30] However, the study of photocatalytic activities has 

rarely been investigated. A study by Ozin on methylene blue degradation by TiO2 

with binary sizes of pores improved the photocatalytic activities.[31]  

Macroporous Ti1-xTaxO2+x/2 (x=0.025, 0.05 and 0.075) photocatalytic activities for 

degradation of 4-nitrophenol has been reported by Wang.[32] It shows that the 

macroporous materials can enhance the photocatalytic degradation compare to the 

non-porous Ti0.95Ta0.05O2.025 and Degussa P25. The principle of photonic solid on 

suppressing the electron-hole recombination is illustrated in Fig. 1.11.[33-35] 
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Fig. 1.11. Photonic stop band gap located at the edge of the conduction band which 

inhibits the photon emission and therefore electron-hole pairs’ recombination is inhibited. 

 

When a photon is absorbed by a semiconductor, an electron will be promoted to 

the conduction band. Due to the relative instability due to the large number of 

relaxation pathways, the electron can easily relax back to the valence band 

(electron-hole recombination) and simultaneously emit a photon. If a photonic 

band gap is located at the conduction band edge, then the emitted photon would 

be forbidden and hence, the recombination of electron-hole pairs could be 

inhibited. Different pore sizes of silica (SiO2) have been studied and their relative 

stop bands (reflected wavelength) measured. The stop bands’ wavelengths were 

found to be proportional to the pore size, and relative refractive indices of the 

framework and ‘filling’ medium (eq. 1.1 and 1.2). Therefore, the photonic 

property of porous materials can be tuned by changing the corresponding pore 

size and filling medium to obtain the desired photonic property of the material.[36] 

 

                      λ= 2dhkl/m [φnwall + (1-φ)nvoid]               (1.1) 

                      dhkl=D(2)½/(h2+k2+l2) ½                     (1.2) 

 

λ: wavelength (nm)              nwall: refractive index of wall material 

dhkl: interplanar spacing           nvoid: refractive index of void space (solvent) 

m: order of Bragg diffraction       D: pore spacing 

φ: volume fraction 
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In light of the ease of control and determination of material properties, ordered 

porous materials are desired. There are numerous synthetic strategies for 

generating ordered porous materials, the most common methods are: colloidal 

crystal templating, nanocrystal dispersion and core-shell sphere synthetic 

methods.[37-38] The colloidal crystal method (Fig. 1.12) was applied in this thesis 

and uses a close-packed monodisperse colloid as the template, such as silica, poly 

(methyl methacrylate) (PMMA) or polystyrene (PS). Subsequently, a metal 

precursor solution (e.g. titanium ethoxide in dried ethanol) is impregnated into the 

intersticial spaces of the sphere template and finally calcined to remove 

carbonaceous material. This method can be used to prepare ternary oxides such as 

LaFeO3.
[39] 

 

 

Fig. 1.12 Schematic illustration of colloidal crystal method 

 

The nanocrystal dispersion (Fig. 1.13) method is where suspended nanoparticles 

in an emulsion of the template spheres are deposited on evaporation of the 

volatiles followed by calcination such as for SiO2.
[40]  

 

Fig. 1.13 Schematic illustration of nanocrystal dispersion method 

 

Similarly, for the core-shell sphere synthetic method (Fig. 1.14), the spheres 

would be coated with a polyelectrolyte layer first and followed by coating of the 

precursor material (i.e. titanium isopropoxide). After drying the composite, 

calcination removes the template producing the macroporous material such as 

TiO2.
[41] 
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Fig. 1.14 Schematic illustration of core-shell sphere synthetic method 

 

The most frequently used method is to impregnate a colloidal crystal of 

polystyrene.[38-40] Metal precursors are introduced into the interstitial spaces 

between the spheres as either molecules that can be hydrolysed or nanoparticles. 

Calcination or solvent extraction methods are applied for the removal of the 

organic spheres, resulting in the production of the desired porous material as 

mentioned above. 

 

According to literature studies,[42-43] due to the mechanism of the formation of  

the polystyrene colloid, the diameter of polystyrene can be tuned by changing 

heating temperature, the amount of initiator, stirring speed and solvent. Styrene 

polymerization is typically initiated with potassium persulfate leading to 

oligomers that coagulate to form micelle-like spheres with a solidified core and a 

soft shell. The soft shell keeps growing until no monomer is left or the whole shell 

is solidified; consequently accomplishing the formation of a polystyrene sphere. 

To control the diameter of the polystyrene spheres, increasing the concentration of 

initiator, reaction temperature or decreasing concentration of monomer, the 

diameter of the ball will decrease. Also, it is important that the polystyrene 

spheres are homogeneous to form an ordered template, so high stirring speed is 

necessary to maintain an even dispersion during the polymerization process. 

 

1.7 Considerations for photocatalytic reaction conditions 

 

In recent decades, an increasing number of studies on photocatalytic materials 

have been reported. Since the efficiency of light harvesting is crucial for 

photocatalytic reactions, research has focused on new materials or modification of 

known materials to improve efficiency. Nowadays, many different kinds of new 

semiconductor materials have been developed, to meet criteria such as suitable 

band structure, visible light absorption, high crystallinity, low defect density and 

chemical stability etc., for both environmental applications and hydrogen 

production. For instance, ion doping, valence band and surface area modification 
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and addition of co-catalysts have been applied to enhance the photocatalytic 

activity. However, the operating reaction conditions will also significantly 

influence the photocatalytic activity because of different factors such as pH of the 

reaction environment, amount of photocatalyst, sacrificial reagent types, 

irradiance and scattering. It is therefore very difficult to compare one material to 

another as a defining set of reaction parameters is absent or not possible to 

obtain.[44]  

 

1.7.1 Effect of pH 

 

The pH is a measurement of the acidity of the solution, and its value represents 

the concentration of [H3O
+], where pH = -log [H3O

+]. The pH is an important 

factor that would affect the photocatalytic activity, since the standard potentials of 

species would be changed with respect to pH of the solution due to the Nernst 

equation (1.3) and (1.4). 

 

E = EØ – RT/vF (ln K)       (1.3) 

K = [C]c[D]d/[A]a[B]b       (1.4) 

where, 

E = potential of the system 

EØ = standard potential 

R = constant (8.314JK-1mol-1) 

T = temperature 

v = the number of moles of electron involved in the system 

F = Faraday constant (9.648 x 104 Cmol-1) 

K = equilibrium constant (aA + bB → cC + dD) 
 

Furthermore, changes of the pH also change the surface potential of the 

photocatalyst via protonation of oxide and hydroxide moieties which modify the 

band bending and can increase or decrease the overpotential for redox chemistry. 

Thus, for different type of reactions, the pH can have very different effects. A 

study on TiO2 photodegradation of methyl orange (MO) has been done by Devi[45] 

under different pH conditions. The activity of MO degradation is the highest at pH 

6.6. This is due to the concentration ratio of [MO-], [HMO], [MOOH] and [MO+] 

present in the solution and adsorption to the photocatalyst. However, contrarily, 

for photocatalytic H2 evolution reaction, the photocatalytic activity is higher in 

acidic solution when using acetic acid as an electron donor, which is reflective of 

the different mechanisms that operate in these two reactions.[46] 
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Variation in pH during synthesis can also affect the crystallinity, particle size and 

phase of a photocatalyst.[46-47] Applying hydrothermal synthetic methods for 

nano-titania crystalline powder, acidic conditions favor the formation of the 

brookite phase whereas basic conditions favor the formation of the anatase phase, 

where the activity is brookite > anatase > rutile.[47] The increase of pH also 

increases the crystallinity and purity of titania and as a result has higher 

photocatalytic activity. Similar effect has been observed on the hydrothermal 

synthesis of BiVO4, where increasing the pH improves phase purity.[48] There is 

no evidence to suggest bulk phase transitions of the semiconductor as a function 

of pH, however it is possible surface reconstructions occur that could significantly 

effect catalysis. 

 

1.7.2 Effect of photocatalyst concentration 

 

The amount of photocatalyst used in the reaction would affect the photocatalytic 

activity not only because of the total active sites present, but also because 

attenuation of light absorption occurs as the concentration of photocatalyst 

increases.[49]  For a study of 1%Pt/TiO2 for hydrogen production, at low 

concentration the photocatalytic activity is proportional to the mass of 

photocatalyst whereas at higher concentrations the photocatalytic activity is no 

longer proportional to mass due to increased light scattering and attenuation.[45, 48] 

The photocatalytic hydrogen evolution activity increased from 0.04g/L to 0.31g/L 

but decreases after 0.31g/L. A similar observation has been observed in olive mill 

wastewater (OMW) degradation. It shows that the photocatalytic degradation rate 

by titania increases from 0.5g/L to 2g/L but then is slowed because the turbidity 

scatters the light, thus reducing photon absorption.[50] 

 

1.7.3 Effect of amount of co-catalyst loading and composition 

 

Although the addition of co-catalyst does enhance the photocatalytic activity, the 

amount of loaded co-catalyst has a non-linear effect on the enhancement. 

Theoretically, the greater the cocatalyst loading, the higher the photocatalytic 

activity until the optimum loading is reached. This is because the cocatalyst acts 

as an electron or hole sink to trap the migrated electron or hole and so suppress 

the recombination of electron and hole. Beyond the optimum coverage, the 

photocatalytic activity is no longer proportional to the amount of added cocatalyst, 

which is due to blocking of the light absorption of the semiconductor and/or the 

agglomeration of cocatalyst. These effects are semiconductor dependent. 
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A study on the effect of Pt loading on TiO2 for photocatalytic reaction has been 

reported.[46] Results show that hydrogen production increases in the range of 0.2 

to 1 wt% of Pt loading on titania, but reduces from 1 to 3 wt%. The increase of 

photocatalytic activity is due to the increase in the Schottky barriers arising from 

Pt nanoparticle loading, which rectify the junction current to lower voltage, 

helping to transfer the electron more easily to the cocatalyst from the 

photocatalyst and thus enhance the reactivity. Nevertheless, the depression of the 

photocatalytic hydrogen production activity is due to the coverage by excess Pt on 

the TiO2 surface that blocks the light absorption. 

 

Moreover, different types of metal loaded as cocatalyst would give different 

photocatalytic activity, which means that the optimum metal loading will differ in 

each case. A study on metal loading co-catalyst influence on hydrogen evolution 

has been reported by Puangpetch et al.[51] He suggested that the enhancement of 

the metal cocatalyst added depends on the electrochemical properties. The metal 

cocatalyst would enhance the photocatalytic activity if its electronegativity is 

higher than the metal from the photocatalyst, and vice versa. For example, from 

the study, for TiO2 photocatalyst, Au, Ag, Pt and Ni cocatalyst loading enhance the 

photocatalytic hydrogen evolution, but Ce and Fe loading reduce the 

photocatalytic activity. This is due to the lower electronegativity of Ce and Fe 

compare to Ti. 

  

1.7.4 Effect of sacrificial agents 

 

Sacrificial agents are normally used as electron or hole scavengers to promote 

oxygen or hydrogen evolution respectively (see section 1.5). Scavengers can 

irreversibly react with the electron or hole instead of H+ or H2O, and therefore 

suppress the back reaction and the hydrogen or oxygen evolution can be measured. 

For hydrogen evolution, the effect of a series of alcohols as sacrificial reagents 

has been studied.[52] This study showed that methanol is the most active and gives 

the highest efficiency compared to other alcohols (ethanol, propanol and butanol). 

This is due to the steric hindrance of the larger alcohols, which would affect the 

oxygen lone-pair electron donation at the surface. Moreover, comparing other 

types of sacrificial reagents such as acetone, alcohol has much higher efficiency 

for the H2 evolution reaction.[52]  
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1.7.5 Illumination methods 

 

The light source and the reaction cell design are another important factor that 

would affect the photocatalytic activity. There are two types of common light 

source: xenon (Xe) and mercury (Hg) as they can emit continuous wavelength for 

the whole range of UV and visible light although the later has significantly greater 

UV output. The reaction cell design would also affect the photocatalytic activity 

as the light penetration varies due to the geometry of the reaction cell. In addition, 

for some reaction cell designs, foil is used to cover the whole cell to keep all 

photons in the reaction system, resulting in improved photocatalytic efficiency in 

comparison to a ‘single pass’ design. 

 

For quantitative measurements, corrections should also be made for absorption by 

the reaction medium and scattering. The later can be estimated using similar sized 

particles of a material that does not absorb the wavelengths that induce 

photocatalysis. This is simple for visible light active systems but more 

problematic for UV active systems as most common materials absorb some UV 

photons. 

 

1.8 Project aims 

 

In this project, the aim is to synthesize macroporous solid state photocatalysts of 

metal compounds namely, tantalum oxide, tantalum oxynitride and tantalum 

nitride. Comparison of the photocatalytic activity of macroporous and non-porous 

materials under different conditions (e.g. co-catalysts and sacrificial reagents) will 

be performed. Scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), Powder X-ray diffraction (PXRD), diffuse reflectance UV-Vis, 

diffuse absorbance UV-Vis and surface area measurement (BET) will be used for 

characterization. 

 

According to the factors mentioned above, different conditions lead to very 

different photocatalytic activities for a particular semiconductor or composite. 

Therefore, it is important to clearly define the conditions under which a 

photocatalytic reaction is being performed. As part of this project we wished to 

examine the dependence of photocatalyst (Degussa P25) mass and concentration 

for our reactor.  
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Results and Discussion 

 

Chapter 2 

 

2.1 Synthesis of macroporous photonic crystals 

 

In this thesis, the synthesis of macroporous photonic crystals was achieved using a 

common polystyrene templating method.[53] Briefly, homogeneous polystyrene 

spheres are packed into a face-centred cubic (fcc) opal structure and the interstitial 

sites are impregnated with a metal precursor. Hydrolysis and subsequent 

calcination gives the inverse opal macroporous solid, with pore size reflective of 

the polystyrene template. 

 

Before synthesis of the polystyrene spheres by emulsifier free polymerization, the 

styrene monomer was washed by water and sodium hydroxide solution in order to 

remove the inhibitor which prevents styrene polymerization. The polymerization 

reaction was conducted under anaerobic conditions, as the polymerization is 

radical in nature and the initiator will react with oxygen from air, which will 

inhibit polymerization. 

 

The polystyrene colloidal product was filtered through glass wool to remove 

larger polystyrene aggregates which prevent the formation of the close-packed 

polystyrene colloidal crystal. Centrifugation was applied for template preparation 

not only to accelerate the process, but also to improve the quality of the crystal 

packing. Subsequently, the crystalline polystyrene template is dried lower than its 

glass transition temperature, Tg (>100 oC) to prevent melting and the development 

of a rubbery appearance which prevents metal precursor impregnation. Fig. 2.1 

shows SEM images of the polystyrene template with the (111) face of an fcc 

lattice. 

 

Polystyrene was chosen as the template because of its ease of synthesis, tunable 

particle size and ease of removal at low temperature. The infiltration process of 

Ta(OEt)5 was done under inert conditions using Schlenk techniques, as Ta(OEt)5 is 

easily hydrolyzed in air by water to form insoluble Ta2O5 and impregnation cannot 

be completed. 
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Fig. 2.1 SEM images of (a) PS (high mag.), (b) PS (low mag.) 

 

A relatively high temperature (700 oC) was applied for calcination of the 

PS-precursor composite to ensure complete removal of the PS template and 

increase the crystallinity of the macroporous Ta2O5, as a crystalline oxide can 

increase the robustness of the macroporous structure, and prevent collapse on 

further treatment or modification. It was found that using 500nm PS template 

gave Ta2O5 with pore diameter of c.a. 370nm which is because of the physical 

shrinkage of the material during calcination.  

 

Synthesis of tantalum(V) oxynitride and nitride were both performed under an 

ammonia atmosphere. However, the macroporous structure of Ta2O5 required 

accurate control of reaction conditions for TaON as it is the intermediate material 

between tantalum(V) oxide and tantalum(V) nitride. 

Ta2O5  TaON  Ta3N5 

The formation of TaON relies on the equilibrium between nitridation of the oxide 

and hydrolysis of nitride respectively. An excess of water or ammonia in the 

reaction, leads to mixtures of Ta2O5 –TaON or TaON-Ta3N5 with different ratio. 

3Ta2O5 + 10NH3  2Ta3N5 + 15H2O 
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The synthetic conditions of nitridation for the synthesis of macroporous TaON and 

Ta3N5 were milder in comparison to the bulk materials both in temperature and 

heating duration because of the volume fraction of the macroporous materials is 

much less than the bulk materials, so that the ammonia gas can pass through the 

whole material more easily and efficiently to undergo N3- and O2- ion exchange. It 

is also necessary, to heat the macroporous materials at a lower temperature than 

bulk solids to avoid pore collapse. 

 

2.2 Addition of Pt cocatalyst 

 

Platinum was chosen as the co-catalyst for H2 evolution not only because of its 

high stability under the reaction conditions, but also because of its high 

conductivity that can efficiently trap the electron and act as a sufficient media to 

transfer the electron to the surface for reduction of H+ to H2. The easiest way to 

deposit Pt co-catalyst onto the photocatalyst surface is H2 reduction of dispersed 

H2PtCl6. However, the main drawback is the inhomogeneous dispersion that 

occurs during the drying process under vacuum and aggregation of Pt is 

unavoidable. 

 

Pt-citrate sol is a desirable method for the homogeneous dispersion of Pt 

co-catalyst. The Pt in the resulting Pt-citrate sol is protected by citrate to avoid 

aggregation. When mixing Pt-citrate sol with photocatalyst, sodium chloride 

(NaCl) was added to remove the protecting citrate group from Pt, and the 

photocatalyst must be washed with water to remove chloride ion. To ensure the 

removal of all chloride ion from the photocatalyst, testing by nitric acid and silver 

nitrate were used on the filtrate solution. The presence of chloride ion will cause 

the formation of white AgCl precipitate. The drawback of this deposition method 

is that the citrate sol is not removed from the Pt completely which would affect 

the photocatalytic activity of the materials. Therefore, further reduction by H2 was 

used to ensure the complete removal of citrate sol. 

 

2.3 Photocatalytic testing for H2 evolution 

 

For the measurement of H2 evolution, sacrificial methanol was used because it 

would be oxidized instead of H2O by h+, so formation of O2 would be suppressed 

and the recombination of H2 and O2 would not occur. Furthermore, oxidation of 

water is a difficult reaction which can cause suppression of H2 production due to 

recombination of e- and h+ because the h+ concentration increases. Measurements 
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were performed under Argon in a closed system. Since H2 is much less dense than 

air, a closed system is used to avoid H2 loss before entering the GC machine for 

quantitative measurement. 

 

2.4 Characterization of Materials 

 

2.3.1. Powder X-ray Diffraction 

 

Fig.2.2 shows PXRD patterns of porous and non-porous Ta2O5, TaON and Ta3N5. 

The porous and non-porous materials are the same phases, however the broader 

peaks observed in the PXRD patterns of the porous materials imply that the 

crystallite size is smaller. 

 

 

 

Fig. 2.2 PXRD of conventional and macroporous tantalum(V) oxide, oxynitride and 

nitride. 

 

Comparing bulk to macroporous TaON the later exhibits extra peaks. The bulk 

TaON is the phase pure β-TaON polymorph, whereas macroporous TaON contains 

two phases of TaON, which are identified as the β- and γ-TaON polymorphs.[54] 

The difference is presumably due to the heating time of Ta2O5 to TaON where 

bulk TaON requires 15 hours wet NH3 nitridation, whereas 6 hours are required 

for macroporous TaON. It has been shown that the γ-TaON phase is observed at 

2θ 
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lower temperature, shorter heating time and lower total pressure, although phase 

pure γ-TaON has not been obtained.[54] To investigate the effect of heating 

duration on TaON synthesis, three samples were prepared heating between 4-8 hr 

as shown in Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Synthesis of macroporous TaON for different durations; a) 4 hr; b) 6 hr; c) 8 hr. 

Peaks within the dashed boxes are from γ-TaON; highlighted grey areas 

represent part of the peaks from β-TaON. 

 

As shown in Fig. 2.3, the peak intensity from γ-TaON is reducing with respect to 

longer heating time. 

 

The TaON crystallite size can be estimated from the PXRD using the Scherrer 

equation (2.1) [55]: 

 

                          (2.1) 

where  K is shape factor  

λ is x-ray wavelength 

β is the full width half maximum value (FWHM) in radians 

θ is Bragg angle 
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τ is particle size in nanometre(nm) 

The crystallite size calculation results are shown in the table below: 

 

 β θ τ(particle size 

(nm)) 

Bulk Ta2O5 2.36x10-3
 11.47 59.90 

Macroporous 

Ta2O5 

3.50x10-3
 11.51 40.37 

Bulk TaON 3.88x10-3
 14.54 36.90 

Macroporous 

TaON 

4.27x10-3
 14.57 33.55 

Bulk Ta3N5 3.10x10-3
 12.29 35.47 

Macroporous 

Ta3N5 

7.79x10-3
 12.31 18.23 

 

Table 2.1: Crystallite size calculation results of bulk and macroporous Ta2O5, TaON and 

Ta3N5. Calculation is based on the most intense peak from PXRD with 2θ of 

Ta2O5, TaON and Ta3N5 are 23°, 29° and 25° respectively. 

 

The calculated results show that the crystallite size of bulk and marcroporous 

tantalum compounds decrease across the series Ta2O5 > TaON > Ta3N5. This is 

consistent with ion exchange of the O2- ion by N3- during the Nitridaiton reaction 

which would cause structural strain and lead to fracture of the crystallites. A 

schematic representation is shown in Fig. 2.4.  

 

The crystal structure of Ta2O5, TaON and Ta3N5 are quite different, where Ta2O5 

exhibits an orthorhombic phase, TaON is monoclinic with a structure similar to 

baddeleyite and Ta3N5 is orthorhombic with a structure similar to anisovite.[56] 

Thus, it is a challenge to maintain the macropore structure during synthesis of 

TaON and Ta3N5 from Ta2O5 due to structural strain.   
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Fig. 2.4 Illustration of crystallite size reduction during nitridation of bulk and 

macroporous tantalum compounds. 

 

Comparison between bulk and macroporous tantalum compounds, shows the 

calculated crystallite size of macroporous tantalum compounds is smaller than the 

bulk. This can be explained by the relative size of the precursor Ta2O5 crystallites 

compounds, which for the macroporous materials are prepared in the interstitial 

sites by hydrolysis and relatively low temperature sintering during the calcination 

process. 

 

2.4.2. Electron Microscopy 

 

Fig. 2.5 and 2.6 show SEM images of bulk Ta2O5, TaON and Ta3N5 and their 

macroporous analogues respectively. The SEM images of the bulk materials (Fig. 

2.5) show that the particle size decreases on ion exchange as indicated from the 

crystallite size changes observed in the PXRD. 
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Fig. 2.5 SEM of a) bulk Ta2O5; b) bulk TaON; c) bulk Ta3N5 

 

Fig 2.6 shows that as expected the periodicity of the macroporous structure is 

consistent with the (111) face of an fcc lattice. The relative pore size of Ta2O5 is 

370±10 nm and the wall thickness is 70±5 nm, whereas the pore size and wall 

thickness of TaON and Ta3N5 are 380±10, 400±10, 60±5, and 60±5 nm 

respectively. It can also be seen that similar fragmentation occurred in 

macroporous materials as observed for the bulk examples. 
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Fig. 2.6 SEM images of macroporous a) Ta2O5 (low mag.); b) Ta2O5 (high mag.); c) 

TaON (low mag.); d) TaON (high mag.); a) Ta3N5 (low mag.); b) Ta3N5 (high 

mag.) 

 

Based on the SEM data, the pore size slightly increases on nitridation, whereas the 

wall thicknesses are very similar within error. Measurement errors of pore sizes 

and wall thicknesses can be caused by manipulation errors or non-focussed 

images. To reduce the inaccuracy, wide areas of the materials have been 

investigated with various magnifications. 
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(b) 

200 nm 

(c) 

500 nm 

(d) 

200 nm 

(e) 

500 nm 

(f) 

200 nm 



Min Ying Tsang-Master by Research-Chemistry-2010 

Min Ying Tsang-Master by Research-Chemistry-2010 39

Fig. 2.7 shows TEM images of bulk and macroporous tantalum compounds. High 

resolution images were obtained and fragmentation can be clearly observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 TEM images of bulk a) Ta2O5; b) TaON; c) Ta3N5 and macroporous d) Ta2O5;  

e) TaON; f) Ta3N5 

 

Fig. 2.8 shows the result of Pt co-catalyst deposition on bulk Ta2O5 and 

macroporous Ta2O5 by H2 reduction of a H2PtCl6 dispersion. The diameter of Pt is 

in the range of 5 to 15nm. 

 

(a) (b) (c) 

(d) (f) (e) 

(c) 
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As shown in the images, the Pt distribution is not homogeneous and the particles 

are of various sizes. This is caused by inhomogeneous dispersion during the 

deposition process or aggregation of Pt particles during the reduction process. 

Unfortunately time prevented the extensive use of the Pt citrate sol deposition 

method, which may lead to a more homogeneous dispersion of more 

homogeneous Pt nanoparticles. However this method was used and tested for the 

Ta2O5 samples. 

 

2.4.3. Surface Area Measurement 

 

Table 2.2 shows the surface area of each bulk and macroporous Ta2O5, TaON and 

Ta3N5. From the BET surface area measurement results, the surface area of porous 

Ta2O5 is ca. 10 times higher than the non-porous Ta2O5; porous TaON is ca. 4 

times higher than the non-porous TaON and porous Ta3N5 is ca. 3 times higher 

than the non-porous Ta3N5. 

 

a) b) 

c) d) 

Fig. 2.8 0.5wt% Pt co-catalyst deposit on a&b) bulk Ta2O5; c&d) Macroporous Ta2O5 

which Pt co-catalysts are pointed by grey and white arrows. 
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Table 2.2. Summary table of BET surface area of bulk and macroporous Ta2O5, 

TaON and Ta3N5. 

 

BET surface area measurement (m2/g) 

 Ta2O5 TaON Ta3N5 

Bulk 1.35±0.03 3.22±0.15 7.91±0.17 

Macroporous 11.53±0.13 12.12±0.04 22.98±0.14 

 

In general, the surface areas of tantalum materials follow the trend Ta2O5 < TaON 

< Ta3N5, which is in agreement with the electron microscopy images that show 

increasing fragmentation on nitridation. Much larger surface areas are observed 

for macroporous materials compared to the bulk compounds due to the wall 

thickness of the macroporous materials and lower particle-crystallite size.  

 

BET surface area measurement is based on the relative pressure (P/P0) with 

respect to isothermal adsorption/desorption of materials using nitrogen gas. The 

surface area increase of macroporous materials from Ta2O5 to Ta3N5 (2 times) is 

less than for the bulk compounds (7 times). This observation can be explained by 

retention of the macroporous structure and densification of the walls as suggested 

by SEM, whereas nitridation of the bulk materials results in more extensive 

particle fragmentation. 

 

2.4.4. Diffuse Reflectance and absorbance Uv-Vis Spectroscopy 

 

Photonic stop bands can be observed by solid state diffuse reflectance UV-Vis 

spectroscopy. Using equation (2.1) (see section 1.6), the stop band position, from 

the Uv-Vis, and pore size, from the SEM can be used to determine the wall filling 

fraction φ of the macroporous material. 

 

λ= 2dhkl/m [φnwall + (1-φ)nvoid]     (2.1) 

 

The existence of a stop band was initially investigated by measuring the 

reflectance of macroporous Ta2O5 filled with air and a range of liquids including 

water. Fig. 2.9 shows the clear evidence of three stop bands consistent with a 

periodic photonic structure that shifts on filling of the pores with different fluids. 

The three bands can be indexed to 111, 220 and 311 Bragg reflections 

respectively. 
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As shown in Fig. 2.9, the stop band maxima are shifted to longer wavelengths 

along the series air < H2O < ethanol < CHCl3. According to equation 1, 

wavelength is proportional to nvoid (refractive index of void/solvent filled) and the 

corresponding volume fraction (φ) can be calculated. Table 2.3 shows the 

theoretical refractive index of void/solvent and its related volume fraction. 

  

Table 2.3. Refractive Index of air, water, ethanol and chloroform and the 

corresponding calculated volume fraction (φ) of Macroporous Ta2O5. 

 Refractive Index Ta2O5 

Air 1.00 11.98% 

Water 1.33 10.81% 

Ethanol 1.36 9.63% 

Chloroform 1.45 9.17% 

 

The volume fractions of macroporous Ta2O5 are variable which can be explained 

by the degree of wetting between the surface of macroporous Ta2O5 and solvents. 

Using equation 2.1, φ has been calculated for macroporous Ta2O5, TaON and 

Ta3N5, the results are shown in Table 2.4 

000020202020
4040404060606060
80808080100100100100120120120120140140140140

200200200200 300300300300 400400400400 500500500500 600600600600 700700700700 800800800800 900900900900 1000100010001000wavelength (nm)wavelength (nm)wavelength (nm)wavelength (nm)
Reflectance (
%)
Reflectance (
%)
Reflectance (
%)
Reflectance (
%)

airairairairH2OH2OH2OH2OethanolethanolethanolethanolCHCl3CHCl3CHCl3CHCl3

Fig. 2.9 Macroporous Ta2O5 reflectance filled with air, water, ethanol and chloroform 

respectively (original in colour). 

(111) 

(220) (311) 
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Table 2.4. Volume fraction of macroporous Ta2O5, TaON and Ta3N5 in percentage 

(%). 

 Ta2O5 TaON Ta3N5 

Max. point of stop band 720.64 683.74 748.52 

Refractive index 2.21 2.29 3.80 

Volume fraction φ (%) 15.92 7.89 5.21 

 

The volume fraction of tantalum compounds are: Ta2O5 > TaON > Ta3N5. The 

trend to decreased filling on nitridation is consistent with the PXRD and electron 

microscopy data, where slight pore expansion and wall densification is observed. 

However, possible errors exist in this calculation due to the determination of the 

maximum stop band position and also the value used for the refractive index. To 

reduce the errors, ideally the refractive index as a function of wavelength should 

be measured rather than a single value because the refractive index can change 

with respect to the wavelength of light absorption. 

 

Comparison of the reflectance spectra between bulk and macroporous materials 

are shown in Fig. 2.10 and no stop band can be observed for bulk materials. The 

grey highlighted areas are the energy that is absorbed by the materials. 
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Fig. 2.10 Reflectance of a) Ta2O5; b) TaON and c) Ta3N5 
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It is also possible to determine the electronic band gap from the spectroscopic data 

and Fig. 2.11 shows the absorbance of macroporous Ta2O5, TaON and Ta3N5 and 

the vertical line indicates the wavelength used to calculate the band gap energy. 

 

 

 

 

 

 

 



Min Ying Tsang-Master by Research-Chemistry-2010 

Min Ying Tsang-Master by Research-Chemistry-2010 46

 

 

Fig.2.11 Absorbance of a) Ta2O5, b) TaON and c) Ta3N5. 

 

Table 2.5 Summarizes the experimental values of band gap energy as shown 

below. 

Summary Table 2.5 

 Ta2O5 TaON Ta3N5 

Absorption edge (nm) 325±10 525±10 625±10 

Band gap energy (eV) 3.82±0.12 2.37±0.04 1.99±0.03 

 

The absorption edge of bulk and macroporous Ta2O5, TaON and Ta3N5 are 

measured manually so possible errors are estimated in Table 2.5. The band gap 

energies of those compounds are calculated from the relevant absorption edges 

using the equation E=hc/λ.  

 

The band gap decreases in a trend of Ta2O5> TaON > Ta3N5, this is because of the 

changes of valence band that N 2p is in higher potential energy than O 2p, but 

there is a similar potential energy of Ta 5d conduction band level for all 

compounds. For TaON, hybridization of O 2p and N 2p orbitals cause the overall 

valence band level increase and therefore decrease the band gap. Similarly, for 

Ta3N5, the valence band is purely constructed by N 2p, resulting in higher valence 

band level compared to TaON and hence Ta3N5 has the smallest band gap.  
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2.5 Photocatalytic Testing 

 

As described in section 1.5, Ta based compounds have been shown to be active 

photocatalysts in the bulk phase. Ta2O5 and Ta3N5 have also been prepared as 

mesoporous materials and it was shown that the H2 evolution photocatalytic 

activities of both mesoporous Ta2O5 and Ta3N5 are higher than the bulk 

materials.[57-58] The band gap and position of Ta2O5, TaON and Ta3N5 have been 

determined to span the reduction and oxidation of water and TaON and Ta3N5 can 

mediate both half reactions in the presence of a sacrificial agent. Although overall 

water splitting is not achieved these materials could be used as one component of 

a two component device. In this thesis hydrogen production was studied using 

methanol as the sacrificial agent.  

 

Fig. 2.12 Hydrogen evolution of bulk and macroporous Ta2O5 with/without presence of 

0.5wt% Pt co-catalyst illuminated using Uv-Vis from a 300 W Xe lamp. 

 

Fig.2.12 and Table 2.5 shows the photocatalytic H2 evolution data of bulk Ta2O5, 

macroporous Ta2O5, bulk Pt-Ta2O5 and macroporous Pt-Ta2O5 and it was observed 

that H2 evolution is in the order bulk Ta2O5 < bulk Pt-Ta2O5 < macroporous Ta2O5 

< macroporous Pt-Ta2O5.  
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Table 2.6. H2 evolution of Ta2O5 and Pt-Ta2O5 and the corresponding light 

absorption determined with a power meter. 

Photocatalysta H2 evolution after 4 hour 

photolysis (µmol) 

Irradiance absorbed by 

photocatalyst (mW/cm2)b 

Bulk Ta2O5 4.39 329 

Bulk Ta2O5 + 0.5wt% Pt by H2 

reduction 

17.20 332 

Bulk Ta2O5 + 0.5wt% Pt by Pt 

sol depositon 

14.36 326 

Macroporous Ta2O5 21.27 316 

Macroporous Ta2O5 + 0.5wt% Pt 

by H2 reduction 

67.68 323 

a 10 mg of catalyst in 110 mL of 100:10 water:methanol. b 300W Xe lamp measured with 

a power meter. 

 

 

 

Fig. 2.13 and table 2.7 shows the photocatalytic H2 evolution data of bulk TaON, 

macroporous TaON and macroporous 3 wt% Pt-TaON. 3 wt% of Pt co-catalyst 

used instead of 0.5 wt% and 40mg of samples were tested in order to increase the 

activity. There are several reports by Domen using TaON and several loadings of 

Pt.[59-61] The greatest activity is observed for 3 wt% TaON,[60, 62] which is a very 

large loading in comparison to many other systems that use Pt loadings << 1%. 

TaON has also been reported to exhibit visible light activity above 420 nm.[60-61] 

An analogous experiment with a 400 nm high band pass filter was performed 

which showed no evolution of H2 (Fig. 2.13). It was observed that H2 evolution 

occurs in the order bulk TaON < macroporous Pt-TaON < bulk Pt-TaON < 

macroporous TaON). 
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H2 evolution of 40mg Macroporous and Bulk TaONH2 evolution of 40mg Macroporous and Bulk TaONH2 evolution of 40mg Macroporous and Bulk TaONH2 evolution of 40mg Macroporous and Bulk TaON

-1012
3456
789
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ol) 40mg bulk TaONUV+Vis40mg bulk TaON Vis40mg bulk TaON + PtUV+Vis40mg bulk TaON + PtVis40mg porous TaONUV+Vis40mg porous TaON Vis40mg porous TaON + PtUV+Vis40mg porous TaON + PtVis

Fig. 2.13 Hydrogen evolution of bulk and macroporous TaON with and without 

presence of 3wt% Pt co-catalyst 

 

Table 2.7. H2 evolution of TaON and Pt-TaON and its corresponding light 

absorption 

H2 evolution after 4 hrs 

photolysis (µmol) 

Irradiance absorbed by 

photocatalyst (mW/cm2)b 

40mg Photocatalysta 

UV+Vis Vis UV+Vis Vis 

Bulk TaON 1.23 0.53 300 111 

Bulk TaON + 3wt% Pt by H2 

reduction 

1.92 0.40 306 175 

Macroporous TaON 8.49 0.33 409 189 

Macroporous TaON + 3wt% Pt 

by H2 reduction 

1.63 0.34 384 192 

a 40 mg of catalyst in 110 mL of 100:10 water:methanol. b 300W Xe lamp measured with 

a power meter. 
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Fig. 2.14 and table 2.8 show the photocatalytic H2 evolution data of bulk Ta3N5, 

macroporous Ta3N5 and macroporous Pt-Ta3N5. Similar to TaON, Ta2N5 has also 

been shown to exhibit visible light activity.[60] An analogous experiment was 

performed using a 400 nm high band pass filter. Again no H2 evolution was 

observed under these conditions. It was observed that H2 evolution occurs in the 

order (bulk Ta3N5 < macroporous Pt-Ta3N5< macroporous Ta3N5 < bulk Pt-Ta3N5)  

 

H2 evolution of 40mg Macroporous and Bulk Ta3N5H2 evolution of 40mg Macroporous and Bulk Ta3N5H2 evolution of 40mg Macroporous and Bulk Ta3N5H2 evolution of 40mg Macroporous and Bulk Ta3N5

-2024
681012

141618

0 1 2 3 4 5time (hr)
H2 evolution (
umol)

40mg bulk Ta3N5 UV+Vis40mg bulk Ta3N5 Vis40mg bulk Ta3N5 +3wt% PtUV+Vis40mg bulk Ta3N5 +3wt% Pt Vis40mg porous Ta3N5 UV+Vis40mg porous Ta3N5 Vis40mg porous Ta3N5+Pt UV+Vis40mg porous Ta3N5+Pt Vis
Fig. 2.14 Hydrogen evolution of bulk and macroporous Ta3N5 with/without presence of 

3wt% Pt co-catalyst 

 

Table 2.8. H2 evolution of Ta3N5 and Pt-Ta3N5 

H2 evolution after 4 hrs 

photolysis (µmol) 

Light absorbed by 

photocatalyst (mW/cm2)b 

40mg Photocatalyst a 

UV+Vis Vis UV+Vis Vis 

Bulk Ta3N5 1.95 0.30 472 261 

Bulk Ta3N5 + 3wt% Pt by H2 

reduction 

14.54 0.16 466 284 

Macroporous Ta3N5 3.32 0.13 351 158 

Macroporous Ta3N5 + 3wt% Pt 

by H2 reduction 

1.21 0.22 326 132 

a 40 mg of catalyst in 110 mL of 100:10 water:methanol. b 300W Xe lamp measured with 

a power meter. 
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From the above data it can be seen that the absolute activity of the macroporous 

materials is greater than the analogous bulk materials. However, Pt loading clearly 

leads to a range of results across the three materials in bulk and macroporous form. 

Addition of Pt to all the bulk materials results in an increase in activity, as 

expected from literature reports and in line with Pt being a cocatalyst. The most 

significant enhancement is observed for bulk Ta3N5. For macroporous materials 

addition of 0.5 wt% Pt to Ta2O5 increases the activity whereas for both TaON and 

Ta3N5 3 wt% Pt addition reduce activity. The implication from these data is that 

either the Pt is not dispersed through the macropores but is concentrated at the 

surface partially blocking the inner volume or that the Pt loading process results in 

loss of activity. Unfortunately time prevented the microscopic analysis of the 3 

wt% loaded samples from appearing in this thesis but as seen in Fig 2.8 dispersion 

is not homogeneous and it is likely that much larger Pt particles may be present. 

With respect to the Pt loading process, hydrogen is used to reduce the deposited 

H2PtCl6 which could reduce the nitride surface to Ta3+, which on exposure to 

air/water results in oxide formation. The macroporous materials are less 

crystalline and will therefore have a greater surface energy and reactivity. 

Nevertheless, for TaON the macroporous material is the most active of all the 

TaON based materials indicating that if Pt deposition can be controlled a 

significant increase in activity should be observed. In contrast to literature reports 

we did not observe any visible light activity for TaON or Ta3N5 when loaded with 

Pt cocatalyst. It is not clear why this is the case, although again the Pt loading 

method may be the key. 

 

The surface area of the macroporous materials is greater and the photocatalytic 

results can be normalized against the surface area (Table 2.9). For Ta2O5 and 

Ta3N5, the activity of the macroporous materials per m2 is lower; however, it 

seems reasonable to suggest that H2 is occurring in the pores of all the 

macroporous materials and not just at the particle surface. In contrast to Ta2O5 and 

Ta3N5, for TaON, the activity of macroporous material is higher per m2, which is 

possibly due to the presence of the γ-TaON phase which has not been previously 

tested for photocatalytic activity. 
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Table 2.9. Summary of bulk vs macroporous materials surface area and H2 

generation without Pt co-catalyst additon. 

Bulk vs Macroporous  

Ta2O5 TaON Ta3N5 

Surface area 1 : 10 1 : 4 1 : 3 

H2 evolution 1 : 5 1 : 7 1 : 1.7 

 

Simplistically, in the absence of any photonic effects or differences in the micro- 

and surface structure of the bulk and macroporous materials, the surface area 

normalised H2 evolution should be similar. However, it is unknown if the surface 

chemistry of the bulk and macroporous materials is the same and XPS would be 

useful to examine the surface oxidation composition and Ta oxidation states. 

 

For H2 production, active sites trap the migrated e- on the surface of the 

photocatalyst. Since not all trapping sites exist on the surface, the number of 

active sites is not directly proportional to an increase in surface area and is 

dependent on the crystal quality. For the macroporous materials which are 

prepared at lower temperature, the number of bulk crystal defects may be greater 

resulting in lower activity. 

 

Light absorption by the photocatalyst is also clearly important and for bulk 

materials, the active areas are mostly on the surface of the photocatalyst particles. 

In contrast, for the macroporous materials, a high proportion of the active surface 

area is within the inner part of the photocatalyst, so the light cannot directly 

penetrate to the inner surface area because of light scattering or the internal 

‘shadow effect’. Hence, for bigger particles of the macroporous photocatalyst, a 

higher portion of active surface area would be located at the inner of the 

photocatalyst, so relatively less area would be directly irradiated potentially 

causing a lower photocatalytic activity. The effect of external scattering was 

estimated by preparing a macroporous solid of similar particle dimensions and 

pore size that does not absorb such as SiO2, and measuring the power loss of the 

transmitted light. Figure 2.15 shows the absorbance of SiO2 and Table 2.10 shows 

the light absorbed-scattered with and without a cut off filter (> 400 nm). 
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Absorbance of SiO2
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Figure 2.15. Absorbance of SiO2. 

 

Table 2.10. Light absorbed-scattered of SiO2 and the normalized light 

absorption of bulk and macroporous Ta2O5, TaON and Ta3N5. 

 Light absorbed-scattered (mW/cm2)b 

SiO2
a UV + Vis Vis 

Light absorbed-scattered 

(mW/cm2) 

134 104 

 

Photocatalysts Light absorbed by photocatalyst (mW/cm2)b 

10mg Bulk Ta2O5 329 --- 

10mg Macroporous Ta2O5 316 --- 

40mg Bulk TaON 300 111 

40mg Macroporous TaON 351 158 

40mg Bulk Ta3N5 472 261 

40mg Macroporous Ta3N5 409 189 
a 2mg SiO2 in 110 mL of 100:10 water:methanol. b 300W Xe lamp measured with a power meter.  

 

The light absorbed-scattered value of SiO2 in both UV + Vis and Vis are similar, 

indicating that the majority of photons are being scattered in both cases. The lamp 

output of ca 1500 mWcm-2 indicates that the light absorbed-scattered by SiO2 is 

about 9% and 7% in UV+Vis and Vis range, respectively. 

 

Conversely, internal scattering could lead to an increase in activity as the effective 

path length of the photon would be increased, thus increasing the probability of 

absorption. Measurement of the irradiance loss on passing through the reaction 
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vessel containing macroporous or bulk material respectively, did not show a 

significant difference which implies that the internal surface of the macroporous 

materials is being illuminated.  

 

The band gap locations of Ta2O5, TaON and Ta3N5 are shown in Fig. 2.16. The 

conduction band (C.B.) of tantalum compounds are constructed mainly from the 

5d Ta orbital, and the valence band (V.B.) of Ta2O5 from O 2p, TaON from hybrid 

O and N 2p, and Ta3N5 from N 2p orbital, respectively. 

 

 

Fig. 2.16 Band structure of Ta2O5, TaON and Ta3N5. 

 

 

Since the reduction reaction to produce H2 occurrs at the conduction band, 

according to the location of the conduction band of Ta2O5, TaON and Ta3N5, the 

H2 evolution of those tantalum compounds would be similar. However, the 

experimental results show that the H2 evolution of TaON and Ta3N5 are about an 

order of magnitude lower than Ta2O5. Clearly, without Pt cocatalyst the surface 

catalysis for proton reduction will be different. Using Pt cocatalyst, where the 

reduction step should be identical these observed differences could be due to the 
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defect formation during the nitridation process that produce a Schottky barrier to 

hinder the e- diffusion to the surface of Ta3N5.
[63] Similar defects may also occur 

on TaON that cause its low photocatalytic activity. Besides, Frenkel defect could 

also be one of the defect interference for the low photocatalytic activity of both 

TaON and Ta3N5 during the displacement of O2- by N3- that the ion is lodged in 

the interstitial site of the lattice. As explained, crystallinity is a major factor to 

influence the defect formation, so the low H2 evolution of TaON and Ta3N5 may 

be caused by the low crystallinity of the structures. 

 

Furthermore, from an energetic perspective, the lower the band gap energy, the 

easier the excited electron can relax back to the valence band and recombine with 

the hole. TaON and Ta3N5 have much smaller band gaps compared to Ta2O5, and 

the lifetime of the excited electron is relatively lower, which would lead to a lower 

activity. 
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Chapter 3 

 

There are many published studies describing photocatalytic degradation of organic 

molecules or water splitting experiments using a range of light sources, catalyst 

concentrations, cell geometries and filtering methods. Unfortunately many reports do 

not provide sufficient experimental detail to interpret results rigorously and allow 

comparison of activities from different materials.[44, 64] As part of this project we 

wished to calibrate the photocatalytic cell and understand the effect of various 

experimental parameters to help in the interpretation of future work. Fig 3.1 shows the 

experimental apparatus used in this thesis. The cell is cylindrical and the outer curved 

walls covered with reflective foil. The apparatus is designed to allow measurement of 

any light transmitted through the length of the cell, because ultimately we would like 

to obtain either absolute or apparent quantum efficiencies which can be problematic 

measurements. Experiments were designed so that total attenuation of the light does 

not occur so that all the photocatalyst should be under illumination irrespective of its 

location in the cell. 

 

3.1. Absorption Measurements 

 

Initially a series of measurements were performed to examine the attenuation of the 

light passing through the cell. Fig. 3.1a shows the solid state UV-Vis absorption 

spectrum for P25 and Fig 1b the absorption spectrum of water. 
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Fig. 3.1 shows the absorbance of (a) P25 and (b) water. 

 

Fig. 3.2 shows the light passing through the cell as a function of increasing 

concentration of P25 and it can be seen that as expected there is a decrease due to 

absorption and scattering. Using a power meter, the lamp output is about 1500 

mW/cm2, and the light being absorbed by the blank system without photocatalyst 

(catalytic cell + 100ml water + 10ml MeOH) is about 60 %. The maximum 

percentage of light being absorbed by P25 in the range of 2.5mg to 150mg is about 

37%. 
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Fig. 3.2 pure P25 light absorption in 100ml H2O + 10ml MeOH system. 
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Fig. 3.3 shows the background measurement of light absorption of different water 

volume added into the catalytic cell. The more the water volume, the more light the 

system absorbs. 
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Fig. 3.3 light absorption of water (25ml, 50ml, 75ml and 100ml). 

 

Fig. 3.4 shows the photon absorption of P25 in 50ml or 100ml H2O, respectively. It 

shows that the light absorption is more or less the same for both systems. Comparing 

figures 3.2-3.4 it can be seen that the photocatalyst dominates absorption rather than 

water, indicating that the water does not have significant effect for the light 

absorption. 
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Fig. 3.4 Comparison of photon absorption of P25 in 50 and 100 ml H2O. 
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Fig. 3.5 shows H2 evolution as a function of P25 mass for 5 hours in the range 2.5mg 

to 150mg. It shows that the amount of H2 generated is increasing until 80mg, then 

decreases, although the data is somewhat scattered. The implication is that there are 

an optimum number of photons per TiO2 particle or per m2 of illuminated surface to 

maximize the H2 evolution. 
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Fig. 3.5 A series amount of P25 vs actual H2 evolution photocatalytic activity 

 

 

Fig. 3.6 shows the comparison using 50 and 100 ml H2O with three masses of P25. 

The result shows that for each mass there is no significant concentration effect, 

although again 80 mg shows the greatest evolution indicating an optimum 

photon-particle parameter. Further work would be required to determine if the 

parameter to be optimized is surface area or volume.  
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Fig. 3.6 Comparison of 50ml and 100ml H2O added to the catalytic cell with 10ml MeOH 

at 40 oC. a) The amount of H2 production of the P25 catalytic system; b) amount of H2 

evolution after 5 hours photolysis of P25. 

(a) 

(b) 
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By comparing the H2 evolution activity of different amount of P25 under the same 

condition in Fig. 3.5, in general, the amount of H2 produced keeps increasing up to 

80mg. It is because the amount of P25 is proportional to photon absorption. However, 

after 80mg, the H2 evolution is decreasing, presumably because of light attenuation 

across the system (Fig 3.7) and potentially an optimum photon-particle ratio. Since 

the volume of the cell is fixed, the more photocatalyst is used, the higher the 

concentration of photocatalyst in the system, so less light can penetrate to the bottom 

of the system but is absorbed by the upper layer of the photocatalyst. Thus, the photon 

absorption of the bottom part of the photocatalyst would be blocked. However, if this 

was the case using 50 and 100 ml of water should show for the 80 mg case an 

evolution similar to 150 mg in 100 mL of water. Indeed, there is a drop (Fig 3.6b) but 

considering the inherent error in these measurements as indicated by the scatter in Fig 

3.5 and 3.6a it is difficult to judge if the drop is significant. These experiments need to 

be repeated many times to gain some statistical averaging.   

 

Fig. 3.7 Schematic illustration of the influence of light attenuation, which can prevent some 

of the phootcatalyst from being illuminated. a) low concentration of photocatalyst in system; 

b) high concentration of photocatalyst in the system. 

 

An additional factor could be the requirement for an optimum photon-particle/surface 

area ratio due to the number of electrons generated and their lifetime. H2 evolution is 

formally a two electron-two proton reaction, which is probably not concerted but two 

electrons should be generated approximately at adjacent sites and similar time to 

produce one H2 and minimize non-productive reactions (Fig 3.8). Therefore the 

amount of hydrogen would be expected to increase where more photons are absorbed 

per particle or per m2 generating more electrons. However, it is possible that if the 

illumination is very intense a high concentration of electrons and holes would result in 

recombination and a decrease in H2 evolution, but this is not likely here as intensities 

>> ca. 1 Wcm-2 (our lamp output) are required. 
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For a constant irradiance and assuming a constant particle size, for the case where the 

light is in excess, an increase in photocatalyst concentration would result in an 

increase in the amount of H2 evolved, but the rate per particle (or per m2) would be 

the same. As the concentration of photocatalyst increases, light attenuation becomes 

important and when the light is limited the number of photons absorbed per particle 

would be reduced. When no light passes through the cell, the maximum number of 

photons is being absorbed and the hydrogen evolution may be expected to plateau. 

However, Fig 3.4 and 3.6 show that a decrease is observed indicating a mimimum 

number of photon absorption events are required per particle (or per m2) per second, 

which would be expected for a biphotonic or two electron process.  

 

 

Fig.3.8 Schematic illustration of a) occurrence of e-/h+ recombination; b) H2 formation on 

the surface of photocatalyst by two electrons. 

 

Overall there will probably be an optimum photon-particle (surface area) ratio to 

maximize electron-hole concentration and H2 evolution. 

 

Unfortunately the heterogeneous nature of these reactions means that there are other 

factors that may be significant such as inhomogeneous dispersion of P25 in the 

system, which would influence the photon absorption; as well as the aggregation of 

P25 during photocatalytic reaction that will affect the surface area. Further controlled 

experiments should be done and if possible kinetic analysis. For instance, the 

influence of particle size, would help to define the importance of surface area, and 

immobilisation of a monolayer of particles could be used to study the effect of 

different light intensities and determine the optimum photon concentration.  
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An important point is that comparison of the H2 evolution of different materials by 

calculating the activity per gram (µmol/g) is not accurate, since different amount of 

photocatalyst for the same materials would give various amounts of H2 evolution 

because of the effects mentioned above. Also, different photocatalytic systems would 

give various results as well, because their light absorption and electron-hole lifetimes 

would be different. Therefore, ideally the same conditions and cell configuration 

should be used for the photocatalytic testing of solid state materials, for the purpose of 

comparison, if this is not possible then a comprehensive description of the 

experimental method.
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Experimental 

Chapter 4 

 

4.1 Materials and reagents 

 

Styrene (99%), potassium persulfate, sodium carbonate, sodium chloride, ethanol, 

methanol and 70% nitric acid were supplied by Fisher Scientific. Tantalum (V) 

ethoxide (99%), citric acid, 99.9% metal basis hexachloroplatinic acid, 99% silver 

chloride and tantalum(V) oxide were supplied by Sigma Aldrich. P25 was 

supplied by Degussa. Ammonia gas and 99.995% hydrogen gas were supplied by 

BOC. 

 

4.2 Characterization methods 

 

Powder XRD measurement 

Macroporous tantalum photocatalysts were analyzed on a Bruker-AXS D8 

Advance instrument fitted with a Lynxeye detector. Data was acquired using Cu 

Kα radiation between 5 and 75˚ 2θ, with a step size of 0.01 and time per step of 

0.2 s. 

 

UV-Vis spectroscpy (Reflectance and Absorbance) 

Reflectance and absorbance spectrum of materials were measured by Ocean Optic 

Inc. HR2000+ High Resolution Spectrometer, with scan average of 10, boxcar 

width of 5 and light source from Helium and Deuterium by Photonic Solutions 

Ltd. DH-2000-BAL. 

 

Brunauer-Emmett-Teller (BET) surface area measurement 

Surface areas of materials were measured by Micromeritics Tristar 3000 from the 

nitrogen adsorption isotherm, at the temperature of liquid nitrogen (-195 ℃) and 

samples were pre-dried under nitrogen at 150 ℃ for 6 hours 

 

Scanning Electron Microscopy (SEM) 

SEM images were obtained from FEI Sirion scanning electron microscopy, with 

EDAX Phoenix EDS x-ray spectrometer. Tiny amount of samples were broken 

into powder and put on the carbon tape with an aluminum stand and 

Carbon-coating with 10nm thickness was used for all samples. 
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Transmission Electron Microscopy (TEM) 

TEM images were obtained from JEOL JEM-2010 transmission electron 

microscope, with 200kV ultrahigh resolution analytical electron microscope. 

Small amount of samples were dispersed in acetone and grounded by mortar and 

pestle, following by adding 4-5 drops of dispersed solution on the carbon grid and 

dried in air for a minute. 

 

Photocatalysis equipment 

Illumination was performed using a 300W Xe lamp from LOT-Oriel fitted with a 

15cm IR filter and a wideband AlMgF2 coated mirror. Gas analysis was performed 

using a GC instrument from Shimadzu Corporation with an automated sample 

loop of 50 µL. Gases were separated on a 25 cm long column packed with 5 Å 

molecular sieves and detection was performed using a thermal conductivity 

detector (TCD). The gas samples were analyzed using the following conditions; 

20 mL/min flow rate of Ar gas, 90℃ column temperature and 120℃ detector 

temperature. Under these conditions the retention time of H2 is 1.5 min, O2 2.5 

min and N2 3 min.  

 

4.3 Materials synthesis 

 

4.3.1 Polystyrene (PS) template  

An emulsifier-free emulsion polymerization method was used based on a 

literature report.[53] To a three-necked 3L round-bottomed flask containing 

deionised water (1700 mL) heated to 70oC under N2 was added styrene (200 mL, 

1.745 mol) which had been prewashed with an aqueous NaOH solution (10 mL, 

0.1 M). To this mixture was added potassium persulfate initiator (K2S2O8) (1.989 

g, 7.329 mmol) dissolved in 100 mL of deionised water all at once and the 

mixture was kept at 70oC and stirred at 360 rpm using a Teflon overhead stirrer 

for 28 h. After cooling the colloidal solution was filtered through glass wool to 

remove larger polymer fragments and the milky filtrate stored for future use. To 

obtain the template, the colloidal solution was centrifuged at 4000 rpm for 3 h and 

dried in an oven at 55oC for 12 h, then broken into a powder form using a spatula. 

A sphere diameter of 500±20 nm was estimated by scanning electron microscopy 

(SEM). 

 

4.3.2 Macroporous tantalum(V) oxide (Ta2O5) 

Dried ethanol (10ml) was added to a powdered sample of the PS template (2.5g) 

under argon in a Schlenk flask, and the volatiles were removed from the mixture 
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at 55 oC under vacuum for 30 min. A dried ethanol solution (5 mL) of tantalum(V) 

ethoxide (2 g, 4.92 mmol) was added to the dried PS template and left to stand for 

30 min. The volatiles were then removed at 55 oC under vacuum for an hour. The 

tantatlum/PS composite was then heated in air at 700 oC for 8 hr in a muffle 

furnace. The pore size of the macroporous Ta2O5 is 370±10nm and the wall 

thickness 70±5nm, by SEM. 

 

4.3.3 Macroporous tantalum(V) oxynitrde (TaON) 

Macroporous tantalum(V) oxynitride was prepared from macroporous Ta2O5, and 

required very careful control of the synthetic conditions to minimize impurity 

phases of Ta2O5 or Ta3N5. Ta2O5 powder (0.20 g, 0.452 mmol) was heated in a 

tube furnace under flowing wet NH3 (20 mL/min) where NH3 gas (at a flow rate 

of 20 ml/min) was passed through a round-bottomed flask containing deionized 

water (30 
oC; 50mL) at 825 oC for 6 hr with 1 oC/min heating rate. The reaction 

was then cooled to 25 oC to give the product as a yellowish powder. The pore size 

of macroporous TaON is 380±10nm and the wall thickness is 60±5nm, by SEM. 

 

4.3.4 Macroporous tantalum(V) nitride (Ta3N5) 

Macroporous tantalum(V) nitride was prepared from macroporous Ta2O5. Ta2O5 

powder (0.2 g, 0.452 mmol) was heated in a tube furnace under flowing NH3 (20 

mL/min) at 800 oC for 2 hr with 1 oC/min heating rate. The product is a bright 

orange colour. The pore size of macroporous Ta3N5 is 400±10nm and the wall 

thickness is 60±10nm, by SEM. 

 

4.3.5 Bulk tantalum(V) oxynitride(TaON) 

Bulk tantalum(V) oxynitride was synthesized from bulk Ta2O5 (Aldrich)[65-66]. 

Ta2O5 powder (0.5 g, 1.13 mmol) was heated in a tube furnace under flowing wet 

NH3 (20ml/min) where NH3 gas was passed through a round-bottomed flask 

contained deionized water (30
oC; 50ml) at 825 oC for 15 hr with 5 oC/min heating 

rate. The reaction was then cooled to 25oC to give the product as a dull yellow 

powder. 

 

4.3.6 Bulk tantalum(V) nitride(Ta3N5) 

Bulk tantalum(V) nitride was synthesized from bulk Ta2O5 (Aldrich)[56]. Ta2O5 

powder (0.5 g, 1.13 mmol) was heated in a tube furnace under flowing NH3 

(20ml/min) at 800 oC for 15 hr with 5 oC/min heating rate. The product is a bright 

red colour. 
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4.3.7 Deposition of Pt co-catalyst 

 

Method 1 H2 reduction 

To obtain 0.5wt% and 3wt% Pt deposited photocatalyst composites. An ethanol 

solution of H2PtCl6.xH2O (0.0145 mol L-1) and photocatalyst were stirred for 30 

min and the mixture was dried under vacuum for 30 min (on a Schlenk line), and 

in an oven at 55
oC for 1 hr. The dried mixture was heated under hydrogen at 200

oC 

with 1
oC/min heating rate for 1 hr, to reduce the hexachloroplatinic acid 

(H2PtCl6.6H2O) to Pt. 

 

Method 2 Pt-citrate sol deposition 

To obtain 0.5 wt% Pt deposited photocatalyst composites. Pt-citrate sol was 

prepared from H2PtCl6 (10 mg, 0.019 mmol), sodium citrate aqueous solution 

(10mL, 1 wt% sodium citrate) and deionized water (40 ml).[67] The mixture was 

refluxed for 4 hr and then cooled to room temperature to give a grey liquid. A 

portion of the resulting Pt-citrate sol (2.5 mL) was stirred with photocatalyst (0.1g) 

for 30 min, and then sodium chloride (0.28g, 4.79mmol) was added and the 

mixture was stirred for 6 hr. The mixture was filtered and dried in the oven at 55
oC 

for 30min. The grey photocatalyst residue was washed with water and dried in the 

oven at 55
oC for 30 min and repeated for 3 to 4 times. The solid was then dried for 

12 hrs at 55
oC, following by further reduction under H2 gas at 200

oC for 1 hour. 

Silver nitrate and nitric acid were used to test for removal of chloride from the 

photocatalyst-Pt composite. 

 

4.4 Photocatalytic hydrogen evolution measurements  

 

4.4.1 General procedure 

A pyrex cell with a quartz window was connected to a closed Ar gas circulation 

system. Illumination of the macroporous photocatalyst was carried out in the 

presence of methanol as a sacrificial reagent. 100mL of water, 10mL of methanol 

and the photocatalyst were added to the cell and the reaction was processed at 

600rmp. The whole system was evacuated by a pump and back-filled with Ar as a 

carrier gas. The reaction was maintained at a constant temperature of 40 oC using 

an oil bath and illuminated with a 300 W xenon lamp with an output of ca. 1 

W/cm2. A UV high band pass filter (λ> 400 nm) was used for measuring visible 

light activity. The evolved gases were analyzed by gas chromatography at 15 min 

intervals. 
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Fig. 4.1 experimental setup of Photocatalytic hydrogen evolution measurement 

 

 

4.4.2 P25 calibration experiments 

 

Using the apparatus shown in Fig 1iIllumination of the TiO2 photocatalyst was 

carried out in the presence of methanol as a sacrificial reagent. Various volumes of 

water and methanol and masses of P25 were added to the cell as shown in Table 

4.1. The whole system was evacuated by pump and back-filled with Ar as a carrier 

gas. The reaction was maintained at a constant temperature of 40 oC using an oil 

bath and illuminated with a 300 W xenon lamp with an output of ca. 1 W/cm2. 

The evolved gases were analyzed by gas chromatography at 15 min intervals. 

 

Water volume 

(mL) 

Amount of P25 (mg) 

50 10 80 150         

100 2.5 5 10 40 50 60 70 80 90 100 150 

Table 4.1:  Different amount of P25 in certain volume of water
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Conclusions and Future Work 

Chapter 5 

 

Bulk quantities of macroporous Ta2O5 can be prepared using a polystyrene 

templating technique and DRUVS shows photonic behaviour. Bulk nitridation can 

be achieved, to synthesize TaON and Ta3N5 respectively whilst retaining the 

macroprous structure and photonic properties. Electron microscopy and PXRD 

indicate that nitridation is associated with crystallite size reduction and wall 

densification. Comparison between TaON as a micron sized powder and 

macroporous material indicate that the lower temperatures required to synthesize 

macroporous TaON result in a mixture of γ- and β-TaON, whereas β-TaON is 

formed for the micron sized powder. Surface area measurements showed that the 

macroporous materials have a higher surface area per gram than the bulk powder, 

which is attributed to a smaller crystallite size. Given the relatively small 

difference in size between the crystallites/particles of powder and macroporous 

material for a particular composition, it is likely the walls are permeable to N2, 

which is the gas used for the area measurements. The walls would therefore also 

be permeable to O2 and H2.  

 

Future work should include further characterisation of the surface and wall 

structure of the macroporous materials and XPS would be particularly valuable. It 

is also critical that Pt dispersion be achieved and alternative loading methods from 

sols should be examined more thoroughly. To improve the quality of the photonic 

properties and the macroporous architecture, silica template can be used instead of 

PS to maintain the structure during nitridation process and remove the template by 

leaching, rather than high temperature calcination. Looking toward matching the 

optical and electronic band gaps to increase the electron-hole lifetime the 

pore-size should be tuned. Now that the wall filling factor and shrinkage on 

calcination can be estimated it is possible to calculate the required macropore size. 

It will also be critical to perform time resolved spectroscopy to determine if there 

is any evidence for electron-hole lifetime enhancement in the macroporous 

materials. 

 

Macroporous and powder forms of Ta2O5, TaON and Ta3N5 were also tested for 

photocatalytic hydrogen production under Uv-Vis and visible light (> 400nm) 

illumination using a 300 W Xe source. In addition, hydrogen production was 

measured for Ta2O5 loaded with 0.5wt% Pt and TaON and Ta3N5 loaded with 3 

wt% Pt, which is the optimum loading reported in the literature. It was found that 
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none of the materials exhibit significant visible light activity which is in contrast 

to the literature. All the non-Pt loaded macroporous materials exhibited higher 

activity than the powder analogues and when normalized to surface area 

macroporous-TaON showed a ca 40% enhancement, whereas Ta2O5 and Ta3N5 

showed a ca 50% decrease in activity per m2. As judged by Fig 4.2 large errors are 

likely with these numbers. Nevertheless the reduced activity was not sufficient to 

suggest reaction was not occurring in the inner volume of the macroporous 

particles. On addition of Pt to bulk powder materials and macroporous Ta2O5 an 

enhancement in H2 evolution was observed. However, for macroporous TaON and 

Ta3N5 Pt addition resulted in a drop in activity. This is ascribed to problems 

dispersing the Pt nanoparticle precursors H2PtCl6 throughout the macroporous 

structure, resulting in larger aggregates at the surface that may block the pores or 

surface to light. However, further electron microscopy is required to confirm this, 

which was unfortunately prevented by time. 

 

Future work should focus on achieving good nanoparticle dispersion, and proving 

this by Fast-Ion Bombardment (FIB) modified samples to examine the inner 

regions by electron microscopy. Determination of surface composition after 

photocatalytic reaction would also indicate if hydrolysis of the nitride surface is 

occurring. The photocatalytic reactions also need to be repeated to reduce the 

errors involved, although this does not explain why these materials are not active 

under visible light as reported in the literature. In order to understand important 

parameters in photocatalytic testing using our apparatus a short study on the effect 

of mass and concentration of photocatalyst showed that the concentration did not 

show significant influence on the photocatalytic activity, but the mass of 

photocatalyst did have a significant effect where for Degussa TiO2 the optimum 

amount of photocatalyst used in our reaction system is 80mg. The results 

indicated that there is an optimum photon incidence per particle or per unit of 

surface area for solar hydrogen production from a water-methanol mixture. 

 

Overall, there is enough in this study to suggest further work is warranted. If Pt 

homogeneous nanoparticle metal deposition can be achieved in macroporous 

materials then enhancement on Pt addition should be achieved. Furthermore 

reaction appears to be occurring inside the pores and therefore ultimately these 

materials could find use in monolithic type devices. A key question still to be 

answered is if photonic enhancement can be achieved but materials are now 

available to answer this question in the near future. 
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Appendices 

 

 

 

Appendix A  Photonic Stop band calculation data 

 

 

Appendix B  Scanning Electron Microscope (SEM) images 
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Appendix A 

 

 

Photonic Stop band calculation data[68]  

Materials Refractive Index Band Gap 

Ta2O5 2.21 3.9 

TaON 2.29 2.1 

Ta3N5 3.80 2.4 

Air 1.00 --- 

Water 1.33 --- 

Ethanol 1.36 --- 

Chloroform 1.45 --- 

 

λ= 2dhkl/m*[φnwall + (1-φ)nvoid]                   (1) 

dhkl=D(2)½/(h2+k2+l2) ½                         (2)  

 

 

 

For example:  

By calculating the stop band position of macroporous Ta2O5 with m=1, pore size 

370nm, nwall = nTa2O5 =2.21, nvoid = nair = 1, and materials in {111} phase, assuming the 

volume fraction is 10%. 

 

dhkl  = (370)(2)1/2/(12 + 12 + 12)1/2 

 = 302.10        (3) 

 

By substituting (3) into (1) 

 

λ= (2*302.10/1)*(0.1)[0.1*2.21 + (1-0.1)*1] 

 = 677.32nm 

 

Therefore, the stop band position of macroporous Ta2O5 in air is at about 677nm. 
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Appendix B

 

Scanning Electron Microscope (SEM) images at different magnifications (5000x, 

10000x, 20000x 40000x, 80000x and 160000x) for Polystyrene (PS) template, PS and 

precursor composite, bulk and macroporous Ta2O5, TaON and Ta3N5. 

 

Polystyrene packed template 

  

  

 

Polystyrene packed template with tantalum ethoxide precursor 
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Bulk Ta2O5 and Macroporous Ta2O5 
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Bulk TaON and Macroporous TaON 
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Bulk Ta3N5 and Macroporous Ta3N5 

  

  

500nm 500nm 

200nm 200nm 

2µm 2µm 

500nm 500nm 

385nm 

378nm 

379nm 

58.8nm 

363nm 

383nm 

53.1nm 

52.5nm 

50nm 

57.9nm 374nm 

368nm 

382nm 

405nm 



Min Ying Tsang-Master by Research-Chemistry-2010 

Min Ying Tsang-Master by Research-Chemistry-2010 77
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Appendix C 

 

Transmission Electron Microscope (TEM) images at different magnifications for bulk 

and macroporous Ta2O5, TaON and Ta3N5; Pt-deposition bulk Ta2O5 and macroporous 

Ta2O5. 

 

Bulk and Macroporous Ta2O5 
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Bulk and Macroporous TaON 
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Bulk and Macroporous Ta3N5 
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Pt-deposition of Bulk and Macroporous Ta2O5 
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Appendix D 

 

Brunauer-Emmett-Teller (BET) Surface Area nitrogen desorption and absorption 

graphs for bulk and macroporous Ta2O5, TaON and Ta3N5. 

 

Bulk and Macroporous Ta2O5 
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Bulk and Macroporous TaON 
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Bulk and Macroporous Ta3N5 
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