Comparing Context-Aware Recommender Systems in Terms of Accuracy and Diversity: Which Contextual Modeling, Pre-filtering and Post-Filtering Methods Perform the Best

Umberto Panniello¹, Alexander Tuzhilin², Michele Gorgoglione¹

¹ Politecnico di Bari, Italy ² New York University, USA

Abstract

Although the area of Context-Aware Recommender Systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable "best bet" when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.

Keywords

Context-aware recommender systems, CARS, pre-filtering, post-filtering, contextual modeling, accuracy, diversity, performance measures.

1. Motivation and introduction

The importance of the contextual information in Recommender Systems (RSes) has been recognized for some time (Adomavicius & Tuzhilin, 2001), and as a result, the Context-Aware Recommender System (CARS) field has been formed. Although there exist several different approaches to incorporating context into the recommendation process, the majority of the CARS papers focus on the *representational* view (Dourish, 2004) that assumes that the context is *a priori* known and is defined by several contextual factors having a known hierarchical structure that does not change significantly over time (Adomavicius & Tuzhilin, 2011).

In (Adomavicius & Tuzhilin, 2008) and (Adomavicius & Tuzhilin, 2011) different representational approaches were categorized into pre-filtering, post-filtering and contextual modeling methods as follows:

- 1. *Contextual pre-filtering (PreF)* assumes that the contextual information is used to filter out irrelevant ratings *before* they are used for computing recommendations with standard (non-contextual) methods.
- 2. *Contextual post-filtering (PoF)* assumes that the contextual information is used *after* the standard non-contextual recommendation methods are applied to the recommendation data.
- 3. *Contextual modeling (CM)* assumes that the contextual information is used *inside* the recommendation-generating algorithms together with the user and item data.

Moreover, (Adomavicius & Tuzhilin, 2011) challenged the CARS community to study these three approaches further and also to compare them to determine which one outperforms the others and under which circumstances. Although there have been some initial studies on comparing these approaches, as described in Section 2, no systematic comparison has been done so far in order to determine which one dominates the others and under which circumstances. Therefore, the challenge of Adomavicius and Tuzhilin (2011) still remains pretty much open.

In this paper, we pursue this challenge and provide a comprehensive comparison of certain types of pre-filtering, post-filtering and contextual modeling methods in terms of the predictive performance and diversity measures in order to identify which of the CARS methods outperform the others and under which circumstances. We also show empirically that, although there are no clear winners among the CARS methods considered in this paper

that uniformly outperform the alternative approaches, some CARS methods provide the best solutions in certain circumstances discussed in the paper.

The issue of comparing different approaches to CARS is important not only to the academic community, but also to the industry for several reasons. First, businesses operate in different and changing conditions, such as the channels through which recommendations are delivered to users or the goals on which recommendations are based. For instance, Amazon delivers product recommendations via its Web site, where many products are displayed, and through the electronic newsletter containing only very few product recommendations emailed to the customers. Therefore, Amazon deploys two different recommendation tasks, a "find all good items" task when delivering recommendations via its Web site and a "top-k" task when using a newsletter. LinkedIn constitutes another example of using different recommendation strategies in different contexts. When a user is actively looking for a job position, all the suitable job opportunities fitting her profile are presented, even including less attractive job postings. When users are not active, however, LinkedIn recommends very few best job opportunities to users in order to avoid bothering them with unattractive recommendations. Therefore, not only LinkedIn deploys both recommendation tasks, but it pursues different objectives that require different performance metrics: increasing recall when users are looking for any good opportunity and may accept less useful recommendations, and increasing precision when users do not want to be bothered with useless recommendations. Therefore, knowing how accurate and diverse CARS methods are in different settings can turn out to be crucial for companies for building effective and lasting relationships with their customers and increasing their competitiveness in the market.

2. Prior research

There has been much work done on Context-Aware Recommender Systems (CARSes) since the early publications on this topic, such as (Adomavicius & Tuzhilin, 2001), and most of this work is reviewed in (Adomavicius & Tuzhilin, 2011) and also in (Adomavicius et al., 2011). Context-aware approaches have become popular in many areas, and applications have been recently explored in several fields, such as music (Reddy & Mascia, 2006; Kaminskas & Ricci, 2011), movies (Said et al., 2011), travel and tourism (Cena et al., 2006; Baltrunas et al., 2011; Ge et al., 2011), mobile recommendations (Ricci, 2011), personalized shopping assistants (Sae-Ueng et al., 2008), conversational and interactional services (Mahmood et al., 2010), learning-related services (Wang & Wu, 2011), social rating services (Feng et al., 2012) and multimedia (Fagà et al., 2009). According to (Adomavicius et al., 2011), various CARS approaches can be categorized based on what is known about the contextual factors and also how fast the available contextual information changes over time. One particularly important case is when the contextual information is fully observable and is static, i.e., does not change significantly over time. This case corresponds to the well-known representational view of contextual information introduced in (Dourish, 2004), and most of the CARS papers follow this representational approach.

Furthermore, (Adomavicius & Tuzhilin, 2008) and (Adomavicius & Tuzhilin, 2011) categorized various representational approaches into pre-filtering, post-filtering and contextual modeling methods and challenged the researchers to compare these three approaches to determine which one outperforms the others and under which circumstances. These three approaches have been studied by various researchers. In particular, the pre-filtering approach was studied by Baltrunas and Ricci (2009) who introduced a pre-filtering technique called "item splitting" and studied it in different settings. Similarly to the itemsplitting idea, Baltrunas and Amatriain (2009) introduce the idea of microprofiling, which splits the user profile into several (possibly overlapping) subprofiles, each representing the given user in a particular context. A post-filtering approach was investigated in (Bader et al., 2011; Cremonesi et al., 2011) and compared to uncontextual recommender systems. A contextual modeling approach based on the SVMs was presented and compared to the uncontextual case in (Oku et al., 2006). All this prior work proposed certain pre-, post-filtering and contextual modeling techniques and compared them with the uncontextual case; but none of these papers compared the CARS approaches among themselves.

The challenge of comparing different CARS approaches was taken in (Panniello et al., 2009), where the pre- and the post-filtering approaches were compared to the uncontextual case, and it was shown that this comparison depends, to a large extent, on the type of the post-filtering method used. This initial study was further extended in (Panniello & Gorgoglione, 2012) where the contextual modeling approach was added to the study, and the three methods were compared among themselves and to the uncontextual case. It was shown that the pre-filtering and contextual modeling methods slightly outperform the uncontextual case while the post-filtering method is implemented. In particular, it was shown that when the post-filtering method is realized in the right way, it constitutes the best-of-breed contextual method. On the contrary,

if it is realized in a poor way, it can be the worst contextual method. Furthermore, (Panniello & Gorgoglione, 2012) proposed an effective way of selecting the best alternative method between various CARS approaches and an uncontextual one.

Although (Panniello et al., 2009; Panniello & Gorgoglione, 2012) shed some light on the tradeoffs between the contextual pre-filtering, post-filtering and contextual modeling approaches, this was still an initial type of work that was limited in the following sense. It (a) provided only the marginal analysis and did not identify the regions where one approach outperforms the others; (b) compared the three approaches only in terms of accuracy and did not consider any diversity measures; (c) made a comprehensive comparison between the CARS methods and the uncontextual method, while the comparison among different CARS methods was fairly basic; (d) did not make any statements whether the observed differences in predictive accuracy where statistically significant or not. In other words, (Panniello et al., 2009; Panniello & Gorgoglione, 2012) provided only the first attempts to compare the pre-filtering, post-filtering and contextual modeling methods and did not fully explain when a CARS approach outperforms the others and under which circumstances. Therefore, the challenge reported in (Adomavicius & Tuzhilin, 2011) remains pretty much open.

In this paper, we pursue the challenge of (Adomavicius & Tuzhilin, 2011) further and strive to provide a much more comprehensive comparison across various contextual pre-filtering, post-filtering and contextual modeling approaches in order to develop a deeper understanding of their tradeoffs. In particular, in this paper we compare the three approaches not only in terms of the predictive accuracy, but also in terms of diversity of recommendations and do this on a significantly more comprehensive data, using a much better "regional" comparison method (vis-a-vis a limited version of marginal comparison, as was done in (Panniello & Gorgoglione, 2012)), and we do this comparison in a statistically much more rigorous fashion. Moreover, after comparing CARS methods in terms of, separately, accuracy and diversity, we also compare them by combining the accuracy and diversity measures. The goal is to identify the CARS methods that provide the better balance of the two performance measures, which we believe is very important issue for industrial applications.

Comparing recommender systems in terms of diversity is not new, and it has been done in prior research including (Mcginty & Smyth, 2003; Ziegler et al., 2005; Zhang & Hurley, 2008; Adomavicius & Kwon, 2009; Hu & Pu, 2011; Adomavicius & Kwon, 2012). Typical

approaches would replace items in the derived recommendation lists to minimize similarity between all items or remove "obvious" items from the list of recommendations, as was done in (Billsus & Pazzani, 2000). Adomavicius and Kwon (2009, 2012) present the concept of aggregated diversity as the ability of a system to recommend across all users as many different items as possible over the whole population while keeping accuracy loss to a minimum, which is achieved by a controlled promotion of less popular items towards the top of the recommendation lists. Furthermore, a trade-off between accuracy and diversity was established in (Adomavicius & Kwon, 2009) and further confirmed in (Gorgoglione et al., 2011), where it was shown that ranking recommendations according to the predicted rating values provides good predictive accuracy but it tends to perform poorly with respect to recommendation diversity. Moreover, Hu and Pu (2011) investigated design issues that can enhance users' perception of recommendation diversity and improve users' satisfaction.

Despite all this research on recommendation diversity, few of the prior publications study diversity of recommendations in the context of CARS. One example of such work is presented in (Gorgoglione et al., 2011) where it was demonstrated that CARSes can increase diversity while preserving accuracy. It was also argued in (Gorgoglione et al., 2011) that just focusing on accuracy alone is not enough, and it is also important to use other measures, such as diversity when studying CARS. In this paper, we pursue this idea further and compare pre-filtering, post-filtering and contextual modeling methods in terms of both accuracy *and* diversity measures.

3. Methodology

As explained before, in this paper we conduct an extensive empirical comparison of the pre-, post-filtering and contextual modeling approaches. As a pre-filtering method, we selected the Exact contextual Pre-Filtering (EPF) (Adomavicius & Tuzhilin, 2011) that uses contextual information for filtering out the ratings not corresponding to the specified context before the recommendation method is launched. As a post-filtering method, we have chosen two approaches, i.e., the Filter Post-Filtering (Filter PoF) and the Weight Post-Filtering (Weight PoF) methods (Panniello et al., 2009). In both of these methods, the recommendations are first generated by using the standard uncontextual recommendation. Then the computed uncontextual ratings are contextualized by estimating the probability with which a user chooses a certain item in a given context. The contextual probability $P_c(i,j)$, with which user *i*

selects item *j* in context *c*, is computed as the number of neighbors who selected the same item in the same context, divided by the total number of neighbors in the neighborhood. While Filter PoF method contextualizes recommendations by filtering out those ratings r_{ij} having probability $P_c(i,j)$ below a certain threshold, the Weight PoF re-computes new contextualized ratings as $r'_{ij} = r_{ij} * P_c(i,j)$ and adjusts contextualized recommendations based on ratings r'_{ij} .

We also consider four types of the Contextual Modeling (CM) approach, i.e., Mdl_1 , Mdl_2 , Mdl_3 , Mdl_4 (Panniello & Gorgoglione, 2012). For these CM methods, we first build a contextual profile Prof(i,c) for the *i*-th user in context *c*, and then use the contextual profiles of all the users to find the *N* nearest neighbors of the *i*-th user in context *c*. The four types of the CM approaches vary in the constraints by which the neighbors are selected. In Mdl_1 there is no constraint in the selection of the *N* neighbors which can be found in any context at any level of the hierarchy. In Mdl_2 we select an equal proportion of neighbors from each context *c* and each level of the context hierarchy. In Mdl_4 we select an equal proportion of neighbors from each context *c* and each level of the same level of context hierarchy. We compare all the three described Context-Aware Recommender System (CARS) approaches across a broad set of experimental conditions. In the next section, we describe the datasets used in our study.

3.1. Datasets

We used three dataset from three different e-commerce Web sites in our experiments. The first dataset (DSet 1) is taken from the study described in (Palmisano et al., 2008). First, a special purpose browser was developed to help users navigate Amazon.com website and purchase products on its site. This browser was made available to a group of students who were asked to navigate and simulate purchases on Amazon.com during a period of four months based on the incentive scheme developed for this study. While navigation was real on Amazon.com, purchasing was simulated. Once a product was selected by a student to be purchased, the browser recorded the selected item, the purchasing price and other useful characteristics of the transaction and this information was stored in the database. In addition, the student was asked at the beginning of each browsing session to specify its context, what was the intent of a purchase in our case, i.e., whether the purchase would be intended for personal purpose or as a gift, for which specific personal purpose, and for whom the gift was

intended. The structure of this contextual variable IntentOfPurchase is presented in Fig. 1(a). Further, the data was pre-processed by excluding the students who made less than 40 transactions and eliminating the students who had any kind of misleading or abnormal behavior. The resulting number of students was 556, and the total number of purchasing transactions for the students was 31,925.

Fig. 1. Hierarchical structure of context: (a) IntentOfPurchase, (b) TimeOfTheYear and (c) Store.

The second dataset (DSet 2) comes from an e-commerce website commercially operating in a certain European country which sells electronic products to approximately 120,000 users and contains about 220,000 purchasing transactions during an observation period of three years. For this dataset, we selected the time of the year as a contextual variable. Its hierarchical structure is presented in Fig. 1(b). The classification into Summer or Winter and Holiday or Not Holiday is based on the experiences of the CEO of the e-commerce website that we used in our study. He defined June, July, August, April, May and September as "Summer". The first three months of this period are considered as "Holiday" while the remaining as "Not Holiday". Also he defined October, November, December, January, February and March as "Winter". The first three months of this period are considered as "Holiday" while the remaining as "Not Holiday". According to this definition, a purchase made, for example, on December 1 is labeled as "Winter Holiday". The data was pre-processed by excluding about 80,000 customers who made only one single transaction (for these customers, it is hard to generate any meaningful recommendations due to the lack of preference data), around 500 customers who had any kind of abnormal behavior such as buying the same product for 1,000 times at the same time (this was probably a retailer), and around 38,000 customers who had transactions either only in the first two years or only in the third year. The reason for this last elimination is that we used the transactions in the first two years as training set and those in the third year as validation set, as explained below. The resulting dataset contained about 1,500 users and about 10,000 transactions.

The third dataset (DSet 3) comes from an e-commerce website which sells comics and comics-related products, such as T-shirts, DVDs and various gadgets. It contains about 50,000 transactions and 5,000 users. In this case, we used the store (i.e., the section in the Web site where products are bought), as a contextual variable, distinguishing whether the product is bought in "Wearing apparel", "DVD", "Miniseries" or "Special issues" section (store) of the website (see Fig. 1(c)). This contextual variable store specifies the immediate browsing activity in which the customer was engaged just before the recommendation by identifying the location of the customer on the website. The importance of this contextual variable comes from the expectation that customers' behavior changes when navigating and buying products in different sections of the Web site. For instance, purchasing behavior of a comics book can be very different from the purchasing behavior of clothes (such as T-shirts). In a real-time recommender system, when a customer enters a specific store of the website, the system should use this context (the store type) to focus mainly on the recommendations pertinent to that store. Feedbacks from users are always implicit, representing the purchasing frequencies.

Each of these three datasets has unique properties, such as certain levels of sparsity of its ratings and heterogeneity of behavior of its customers. Therefore, we characterize each of these three datasets by the levels of its sparsity and customer heterogeneity as follows. In the first dataset (DSet 1) sparsity ranges from 52% (uncontextual matrix) to 71% (on average for the contextual matrices). In the second dataset (DSet 2) it ranges from 82% (uncontextual matrix) to 86% (on average for the contextual matrices). In the third dataset (DSet 3) it ranges from 98% (uncontextual matrix) to 99% (on average for the contextual matrices). To measure heterogeneity of customers' behavior for each dataset, we use the Shannon's Entropy, as defined in Section 3.2 below. We measured the average entropy of each customers' vector of known ratings. In the first dataset, entropy is 65.63%, in the second dataset it is 29.50%, while in the third dataset the entropy is 9.79%. These statistics about the sparsity and heterogeneity properties of the three datasets are summarized in Table 1. The three very different characteristics of these three datasets are due to significant variations of customer's behavior across the three very different e-commerce applications. Customers in the first

dataset buy often and buy various kinds of products. This behavior causes low level of sparsity and high level of heterogeneity (entropy). On the contrary, users in the third dataset buy rarely and tend to purchase the same or similar kinds of products. This behavior causes high level of sparsity and low level of entropy. The second dataset is somewhere in between the other two in terms of its levels of sparsity and entropy.

Type of data	Sparsity (S)	Heterogeneity (H)
DSet 1	52%-71%	65.63%
DSet 2	82%-86%	29.50%
DSet 3	98%-99%	9.79%

Table 1. Type of data represented by sparsity and heterogeneity in the User-Item-Context matrix

3.2. Performance measures

We used recommendation accuracy and diversity measures when comparing performance of pre-filtering, post-filtering and CM methods in our study. The recommendation accuracy is measured by Precision, Recall and F-measure (Herlocker et al., 2004). We computed Precision and Recall as follows. For the "find all good items" strategy, we set the threshold between relevant and irrelevant items equal to 1, thus, assuming that if an item is selected more than once, it is relevant ("good"), and we recommend it; otherwise, we did not. Then, we verified if the recommended item was actually selected in the validation set. If it was, we considered that as a "good" recommendation, otherwise as a "bad" one. For the "recommend top-k items" strategy, we determined the top-k items as "good" items to be recommended to a user. Then we compared those with the actual items selected by the user to compute Precision and Recall in a standard manner. Finally, we divided each dataset into the training and the validation sets, the training set containing 2/3 and the validation set 1/3 of the whole dataset. For the DSet 1 dataset, the first two years were the training set and the third year was the validation set. For the DSet 2 dataset, we randomly split it in 2/3 for the training set and the remaining 1/3 for the validation set (in this case, it was impossible to make a good temporal split because all the transactions were made within a couple of months). For the DSet 3 dataset, the first nine months were the training set and the last three months were the validation set.

We measured the recommendation diversity in our experiments using the classification of diversity metrics in probability-based, logarithm-based and rank-based measures (McDonald et al., 2003) and selecting popular measures from each of the three categories, i.e., the

Simpson's diversity index, the Shannon's entropy and the Tidemann & Hall's index (McDonald et al., 2003) respectively. The normalized Simpson's diversity index (D) is defined as:

$$D = \frac{1 - \sum_{i} p_i^2}{\left(1 - \frac{1}{k}\right)}$$

where p_i is the proportion of recommended items in the *i*-th category and *k* is the number of categories. The denominator of the formula is a normalization factor. Dividing by this factor is needed because we want to compare the diversity in three different datasets, each one characterized by a different number of categories. In this case, the general Simpson's diversity index (the nominator in the previous formula) takes a different maximum value in each dataset, so making a comparison meaningless. On the contrary, the maximum value of the normalized index is 1 independently of the number of categories in each dataset. The normalized Shannon's diversity index (*E*) is computed as:

$$E = -\sum_{i} p_i \log_k p_i$$

where p_i is the proportion of recommended items in the *i*-th category and k is the number of categories. In this case the normalization factor is the base of the logarithm which is set equal to k, i.e. the number of categories. Using the normalized Shannon's index allows us to compare the diversity of the same CARS in different datasets because its maximum value is always equal to 1. The Tidemann & Hall's diversity index (*TH*) is measured as:

$$TH = 1 - \frac{1}{(2\sum_{i} rp_i) - 1}$$

where r is the rank of the *i*-th category (ranked with 1 as the largest category). In order to provide each dataset with a ranking of categories, we used the number of distinct items contained in each category as defined by the relative website. Therefore, the category with the highest number of distinct items is ranked with 1. In the case of TH there is no need to normalize the index because it always tends to 1 when the number of items increases, and therefore 1 is always the maximum value that TH can take.

3.3. Experimental settings

We conducted our experiments across the following three main settings. First, we analyze the CARSes' accuracy and diversity in the two most popular recommendation tasks, "finding all

good items" (Find-all) and "recommending the top-k items" (Top-k). In the "find all good items" approach, the recommender system suggests all the "recommendable" items, i.e., the items having the rating value above a certain threshold. In the "recommend top-k items" approach, only the "top-k" items having the k highest ratings for a particular user are recommended to that user. In our study, we varied the number of top-k recommended items from 1 to 4, however we will show only results referred to k=4 because they do not change significantly when k is lower than 4 and they do not add any significant insight to the results discussion.

Second, we analyze the performance of our methods at the following two levels of contextual granularity. In two out of three datasets context is represented by a 2-level hierarchy (see Fig. 1. At the first level (C_1) the granularity of the contextual information is coarser, at the second level (C_2) the granularity is finer. In the three datasets context represents the "period of the year", the "intent of a purchase", the "store" where items are bought, respectively (additional details are presented in Section 3.1).

Third, we analyze accuracy and diversity of the CARSes approaches varying the type of data used by the recommender systems to generate recommendations. The three datasets are characterized by different structures of the User-Item-Context matrix. We considered two main features to characterize the matrix, the data sparsity and the heterogeneity of customers' behavior. The data sparsity is measured as the number of empty cells in the *User* × *Item* matrix divided by the total number of cells. As it was mentioned above, the heterogeneity of customers' behavior is measured by looking at how many items customers had purchased in each product category, that is by computing the average entropy of each customers' vector of known ratings. High entropy means that the behavior is heterogeneous, while low entropy means that the behavior is homogeneous. The combination of *User* × *Item* × *Context* matrix's entropy and sparsity may describe the type of data used by the recommender system and it may affect recommendations performance. In fact, it was shown that both these parameters affect recommender systems' performance (Herlocker et al., 2004). In the next section, we present the results of our experiments described in this section.

4. Results

In this section we present the results of our empirical study described in Section 3. In particular, we examine the effects of the three main factors considered in our study and

described in Section 3 (i.e., recommendation task, context granularity and the type of data) on the performance of different Context-Aware Recommender Systems (CARS) methods (prefiltering, post-filtering and CM methods) in terms of the accuracy and diversity of recommendations that these methods provide. We start our presentation in Section 4.1 with the marginal analysis that examines how each of the three factors separately affects the performance of the CARS methods. Although it is important to do the marginal analysis and thus to know how each of the factors separately affects the performance of the CARS methods, it is the *regional* analysis that constitutes the determining factor in comparison of various CARS approaches. Unlike the marginal analysis, the regional analysis determines how each region in the 3-dimensional factor space, defined by the combination of the recommendation task, context granularity and the data type, affects the performance of various CARS methods in terms of their accuracy and diversity measures. Therefore, this regional analysis constitutes the core of this section because it answers the main research question of which of the CARS approaches dominates the others and in which circumstances (i.e., regions of the factor space), whereas the marginal analysis provides additional evidence for answering the main research question. For this reason, and due to the space limitation, the results of the marginal analysis are reported briefly in Section 4.1, while the regional analysis is presented in greater detail in Section 4.2.

4.1. Marginal analysis of accuracy and diversity of Context-Aware Recommenders

We first analyze the effect of the two recommendation tasks, "finding all good items" (Findall) vs. "recommending the top-k items" (Top-k), on recommendations accuracy and diversity. Table 2 reports the accuracy of each CARS approach in each recommendation task. We computed the average value of each accuracy metric (Precision, Recall and F-measure) of each CARS across all the experimental settings excluding the recommendation task. For instance, the value of the EPF F-measure in the Find-all task (38.31%) is the average value across the three datasets and the two context granularity levels. We can observe from Table 2 that the recommendation accuracy changes in the two recommendation tasks. The Precision of recommendations slightly increases when moving from "Find-all" to "Top-k". The Recall strongly decreases when moving from "Find-all" to "Top-k". As a combination of these results, the F-measure of CARSes is slightly higher in the "Find-all" task and lower in the "Top-k" task. The second result in that if we rank the CARSes from the most accurate to the least, the ranking does not change for F-measure and Precision, while changes for the Recall.

	Find-all	Top-k	Find-all	Top-k	Find-all	Top-k
	F-measure		Re	call	Precision	
EPF	38.31%	37.52%	59.24%	46.42%	29.72%	32.63%
Filter PoF	47.49%	45.43%	55.91%	49.37%	41.92%	42.54%
Weight PoF	21.92%	21.01%	65.87%	30.42%	14.05%	17.20%
Mdl1	41.34%	40.21%	54.78%	46.03%	35.77%	37.66%
Mdl2	33.41%	32.88%	60.67%	43.87%	25.41%	28.45%
Mdl3	34.57%	33.51%	49.84%	37.37%	28.69%	31.65%
Mdl4	33.33%	32.75%	53.06%	38.13%	26.61%	30.12%

Table 2. Accuracy analyzed by task

The effect of the two recommendation tasks on recommendations diversity is shown in Table 3, where the diversity measures change across the two recommendation tasks as follows. When moving from "Find-all" to "Top-k," the Simpson's D slightly increases, the Shannon's E strongly increases, while the TH index decreases. The ranking of CARSes changes very slightly for D, more strongly for E and TH.

Table 3. Diversity analyzed by task

	Find-all	Top-k	Find-all	Top-k	Find-all	Top-k	
	Simpson's (D)		Shanno	on's (E)	Tidemann & Hall's (TH)		
EPF	87.21%	90.89%	71.56%	89.30%	91.75%	88.71%	
Filter PoF	56.28%	66.57%	34.55%	62.08%	79.52%	76.28%	
Weight PoF	95.37%	96.50%	82.98%	96.47%	93.30%	89.95%	
Mdl1	87.35%	90.31%	70.95%	89.19%	90.58%	84.55%	
Mdl2	90.39%	95.71%	71.41%	95.62%	90.65%	86.89%	
Mdl3	94.62%	96.13%	84.70%	96.16%	90.53%	85.62%	
Mdl4	94.29%	96.13%	83.87%	96.22%	90.48%	86.07%	

The effect of context granularity on accuracy is shown in Table 4 and on diversity in Table 5. The context granularity can be "Coarse" (C_1 in Fig. 1) or "Fine" (C_2 in Fig. 1). The measures are only computed for DSet 1 and DSet 2 in which context is represented by a 2-level granularity hierarchy. DSet 3 is excluded because context can be defined only in C_1 .

	Coarse Fine F-measure		Coarse	Fine	Coarse	Fine
			Re	call	Precision	
EPF	40.20%	28.25%	54.41%	42.82%	34.15%	21.94%
Filter PoF	46.21%	37.69%	53.78%	42.93%	41.79%	34.03%
Weight PoF	34.25%	22.51%	53.97%	46.92%	27.49%	15.67%
Mdl1	47.69%	31.42%	48.62%	40.91%	48.32%	27.74%
Mdl2	45.08%	30.26%	52.64%	45.70%	41.56%	24.56%
Mdl3	41.31%	31.14%	52.24%	40.15%	36.50%	27.64%
Mdl4	44.91%	28.29%	51.31%	43.31%	44.08%	22.08%

Table 4. Accuracy analyzed by context granularity

The results are somehow different with respect to the previous case, because while accuracy changes significantly when context granularity changes, diversity does not. All the accuracy measures decrease when context becomes "Fine", especially for Precision (see Table 4). This behavior is quite expectable in any RS because when context becomes finer, the quantity of information available in each context decreases thus making the prediction problem harder. In fact, sparsity increases when moving from C_1 to C_2 from 70.93% to 84.28% for DSet 1, from 85.68% to 87.44% for DSet 2, respectively. Besides this effect, an interesting observation is that the Filter PoF approach is the least affected by this decrease. The reason is that Filter PoF does not use the contextual information to generate the recommendations, only filters out the recommendations which turn out to be irrelevant in a given context once they are generated. As a result, the decrease in Precision is small. The Weight PoF also generates recommendations without using context, however the contextual information is used to weight and re-rank the final list of recommended items. Therefore, the decrease in Precision is higher. In general, the accuracy of the approaches which use context before or during the generation of recommendations decreases quickly when context becomes more granular.

	Coarse	Fine	Coarse	Fine	Coarse	Fine	
	Simpson's D		Shann	on's E	Tidemann & Hall's TH		
EPF	95.29%	95.16%	90.26%	90.04%	88.88%	89.57%	
Filter PoF	79.01%	65.49%	66.22%	51.68%	79.14%	74.40%	
Weight PoF	95.77%	95.53%	90.89%	91.04%	90.00%	90.82%	
Mdl1	93.39%	95.55%	87.53%	90.72%	85.47%	88.34%	
Mdl2	92.86%	94.59%	85.86%	88.70%	85.17%	87.48%	
Mdl3	95.24%	95.43%	90.10%	90.56%	87.17%	88.43%	
Mdl4	94.86%	95.35%	89.41%	90.30%	86.68%	88.91%	

Table 5. Diversity analyzed by context granularity

On the contrary, diversity changes very little across the two levels of context granularity for

all the CARS approaches (see Table 5). Only Filter PoF changes D and E significantly. The reason is again the different way context is used in the recommendation process. The use of context is what makes CARS approaches more able to produce diversity with respect to other types of RSes. Filter PoF uses the contextual information only in the very last part of the process, and this constraints its ability to generate diverse recommendations due to the context.

Finally, the effects of the type of data on accuracy and diversity of CARSes are reported in Table 6 and Table 7, respectively. These results are very interesting for the following reasons. In general, accuracy increases when moving from DSet 1 to DSet 3, except that for Weight PoF (see Table 6). On the contrary, the diversity generated by all the CARSes decreases when moving from DSet 1 to Dset 3 (see Table 7).

	DSet 1	DSet 2	DSet 3	DSet 1	DSet 2	DSet 3	DSet 1	DSet 2	DSet 3
		F-measure			Recall			Precision	
EPF	30.58%	33.10%	59.80%	47.64%	44.12%	76.26%	24.32%	26.90%	51.31%
Filter PoF	40.50%	39.62%	68.64%	47.31%	44.31%	75.77%	36.35%	36.10%	63.17%
Weight PoF	26.24%	25.35%	6.07%	48.98%	48.88%	45.37%	20.40%	17.25%	3.64%
Mdl1	32.00%	41.50%	57.24%	45.33%	40.16%	75.93%	26.54%	43.05%	47.55%
Mdl2	29.36%	41.35%	28.43%	49.14%	45.74%	68.33%	23.11%	37.82%	18.22%
Mdl3	30.01%	39.42%		45.46%	41.14%		24.10%	38.26%	
Mdl4	29.27%	38.06%		47.81%	42.65%		23.02%	35.49%	

Table 6. Accuracy analyzed by type of dataset

The explanation of this behavior is in the fact that the heterogeneity of customers' behavior decreases from DSet 1 to DSet 3. The first dataset (DSet 1) is the most heterogeneous. The heterogeneity of customers' behavior across contexts is beneficial when the goal is to generate and deliver diverse recommendations, while it is detrimental for accuracy because it decreases the ability of any recommender system to correctly predict the preferences of a user. As a result, the accuracy in DSet 1 is the lowest but diversity is the highest (D and E). In DSet 1, however, sparsity is lower than in other datasets and this contributes to keep accuracy at similar levels of DSet 2 (where heterogeneity is lower than in DSet 1 but sparsity higher). If diversity is measured by the Tidemann & Hall's index (TH) then the diversity generated in DSet 3 is comparable to that generated in the other datasets because DSet 3 is characterized by many more product categories and TH is sensitive to this number. Again, the Filter PoF is the approach which is most sharply affected by the type of data, in different directions. Its

precision quickly increases from DSet 1 to DSet 3, making it the most accurate in DSet 3, while its diversity quickly drops, making it the worst in DSet 3. Therefore Filter PoF should be preferred to other CARSes when sparsity increases, but at the price of generating less diverse recommendations.

	DSet 1	DSet 2	DSet 3	DSet 1	DSet 2	DSet 3	DSet 1	DSet 2	DSet 3	
	S	Simpson's I)	5	Shannon's l	E	Tiden	Tidemann & Hall's TH		
EPF	96.61%	93.32%	67.54%	94.29%	84.52%	46.58%	93.95%	83.27%	93.23%	
Filter PoF	80.67%	54.26%	33.68%	68.46%	39.00%	21.98%	88.39%	58.92%	85.39%	
Weight PoF	96.15%	94.87%	97.09%	93.66%	87.45%	85.29%	92.94%	87.44%	95.26%	
Mdl1	96.63%	92.67%	67.47%	94.57%	83.45%	45.99%	94.11%	78.72%	87.73%	
Mdl2	96.97%	90.25%	89.39%	94.74%	78.75%	68.22%	93.66%	77.70%	95.58%	
Mdl3	96.98%	93.24%		95.00%	84.35%		94.29%	79.78%		
Mdl4	96.70%	93.22%		94.62%	83.95%		93.91%	80.76%		

 Table 7. Diversity analyzed by type of dataset

In conclusion, we examined how various contextual factors, such as recommendation task, context granularity and the type of data, *individually* affect accuracy and diversity of recommendations across different CARS methods. We have shown that the recommendation task affects both accuracy and diversity in a way which depends on the specific measure considered. Context granularity only affect accuracy while not diversity: when context becomes finer, the accuracy of CARSes decreases. The type of data also affects both accuracy and diversity showing an interesting trade-off: if the heterogeneity of customers' behavior increases, the accuracy of a CARS decreases while its diversity increases. In this section, we focused predominantly on the effects of the individual factors on the performance of CARS methods and less on the direct comparison of the CARS methods themselves due to the marginal nature of the analysis. While doing the regional analysis in the next section, we will focus on the direct comparison of the CARS methods across the regions of the factor space because this type of comparison is more natural for the regional analysis.

4.2. Regional analysis: which approach dominates the others and in which conditions

In the previous section we discussed the results of a "marginal" analysis of our experiments in which we analyzed the effects of each factor on CARS performance at a time. In this section, we analyze the effects of all the three factors on the performance of CARS methods *simultaneously*. Again, the three main factors considered in this study are (a) the recommendation task (defined with values Find-all vs. Top-k recommendations), (b) context granularity (coarse vs. fine granularity of contextual variables) and (c) type of data, i.e., datasets DSet 1, DSet 2 and DSet 3 characterized by the combination of different levels of data sparsity and heterogeneity of the users. Collectively, these factors form the 3-dimensional factor space consisting of various *regions* (hence the name "regional" analysis). Since in one of the three datasets (DSet 3, characterized by high sparsity and low heterogeneity) the context hierarchy has only one level (see Fig. 1(c)), the number of the regions in the overall factor space is only ten (and not 12, as it should have been in the completely orthogonal case).

Our regional analysis is structured in three parts. First, we identify which CARS method(s) dominates the others in terms of recommendation accuracy in a statistically significant manner and provide an explanation of these results. Second, we identify which CARS method significantly dominates the others in terms of the diversity of recommendations and provide an explanation of this behavior. Third, we combine the accuracy and the diversity measures to identify which CARS approach(es) provide the best performance for a combination of these two measures. In this study, we combine accuracy and diversity by (a) averaging the standardized measures, (b) combining the ordinal ranking among the approaches and (c) analyzing the Pareto frontier of the two measures in each region.

Regions:	DSet 1	DSet 1	DSet 1	DSet 1	DSet 2	DSet 2	DSet 2	DSet 2	DSet 3	DSet 3
CARS methods:	Find-all Coarse	Find-all Fine	Top-k Coarse	Top-k Fine	Find-all Coarse	Find-all Fine	Top-k Coarse	Top-k Fine	Find-all Coarse	Top-k Coarse
EPF	42.26%	26.17%	42.23%	24.93%	33.56%	30.81%	34.39%	30.77%	41.46%	40.15%
Filter PoF	47.47%	36.82%	40.74%	35.15%	39.49%	33.54%	39.47%	33.54%	54.10%	54.06%
Weight PoF	39.92%	21.91%	35.95%	21.38%	28.14%	22.91%	27.40%	22.58%	6.41%	7.36%
Mdl1	47.92%	26.27%	44.97%	25.41%	39.32%	34.40%	44.14%	36.05%	40.99%	40.99%
Mdl2	40.80%	25.33%	38.99%	24.52%	45.36%	30.90%	45.45%	30.90%	50.29%	50.49%
Mdl3	42.27%	26.27%	42.53%	25.17%	38.00%	36.34%	37.93%	36.14%		
Mdl4	44.08%	25.12%	41.69%	24.96%	42.64%	35.95%	42.71%	35.87%		

Table 8. F-measure of the CARS methods for the ten regions of the factor space

Regions:	DSet 1	DSet 1	DSet 1	DSet 1	DSet 2	DSet 2	DSet 2	DSet 2	DSet 3	DSet 3
CARS methods:	Find-all Coarse	Find-all Fine	Top-k Coarse	Top-k Fine	Find-all Coarse	Find-all Fine	Top-k Coarse	Top-k Fine	Find-all Coarse	Top-k Coarse
EPF	30.98%	18.55%	47.41%	21.79%	28.53%	27.59%	29.43%	27.59%	33.70%	34.47%
Filter PoF	38.68%	34.09%	45.88%	34.81%	39.53%	33.00%	39.53%	33.00%	51.73%	51.87%
Weight PoF	29.14%	14.08%	40.54%	18.75%	20.39%	15.91%	21.13%	16.51%	3.45%	5.96%
Mdl1	30.85%	20.20%	50.44%	22.51%	42.84%	36.04%	51.51%	39.41%	32.93%	32.93%
Mdl2	29.08%	17.83%	43.62%	21.50%	52.13%	27.62%	52.14%	27.62%	53.32%	53.71%
Mdl3	30.85%	20.20%	47.59%	22.49%	36.49%	39.63%	36.48%	39.61%		
Mdl4	34.58%	17.49%	46.84%	21.90%	44.47%	35.11%	44.47%	35.10%		

Table 9. Precision of the CARS methods for the ten regions of the factor space

Table 10. Recall of the CARS methods for the ten regions of the factor space

Regions:	DSet 1	DSet 1	DSet 1	DSet 1	DSet 2	DSet 2	DSet 2	DSet 2	DSet 3	DSet 3
CARS	Find-all	Find-all	Top-k	Top-k	Find-all	Find-all	Top-k	Top-k	Find-all	Top-k
methods:	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse	Coarse
EPF	74.54%	55.45%	40.57%	34.96%	51.71%	41.78%	51.03%	41.51%	75.71%	57.31%
Filter PoF	68.80%	49.64%	38.98%	42.32%	48.60%	40.62%	48.53%	40.62%	65.96%	65.41%
Weight PoF	71.90%	66.16%	34.45%	29.84%	57.90%	51.06%	46.89%	42.25%	74.33%	13.06%
Mdl1	74.24%	50.37%	43.30%	35.26%	43.31%	40.23%	43.95%	37.34%	67.63%	67.63%
Mdl2	75.96%	56.72%	37.64%	34.40%	45.89%	41.03%	45.86%	41.03%	60.62%	58.63%
Mdl3	74.24%	50.37%	40.95%	34.91%	47.65%	38.19%	47.37%	37.30%		
Mdl4	69.53%	59.92%	40.07%	34.99%	49.81%	43.83%	49.75%	43.77%		

We start with comparing different CARS methods in terms of predictive accuracy as determined by the F-, Precision and Recall measures. The results of the comparison in terms of the F-measure and Precision are presented in Table 8 and Table 9 and show that the best-performing CARS methods are shared by the Filter PoF and one of the Contextual Modeling approaches. The results are concordant except for three regions where the most precise approach is not the one with the highest F-measure (see the first column and the last two in Table 8 and Table 9). In contrast, there is no clear winner emerging from such comparison in terms of the Recall measure (Table 10). In particular, the Weight PoF method provides the highest Recall in three regions, EPF in two regions, Filter PoF in one region, and one of the Contextual Modeling approaches in the remaining ones.

Fig. 2 is a graphical representation of the same results, as in Table 8, where we only report the CARS approach which dominates the others in each region in terms of F-measure. We use the F-measure here because it represents the harmonic mean of the Precision and Recall measures, and because using the F-measure in such cases is a common practice in the data mining and the recommender systems communities. We also checked the statistical significance of the difference between the average accuracy of the dominant and the secondbest approaches using the t-test. The cubes with diagonal stripes in Fig. 2 represent the cases in which the difference of the means between the dominant and the second best approaches is not statistically significant (p>0.05). All the other cases are statistically significant with p<0.001. In the regions where the t-tests are not significant, the differences of the means between the second best approach and each one of the remaining CARS methods *are* statistically significant.

Fig. 2. Which CARS approach dominates the others in terms of the recommendations accuracy (as defined by the F-measure)

As commented above, in all the regions the most accurate CARS approach is either Filter PoF or one of the Contextual Modeling approaches. The notation "Mdl" in the figure indicates the "best-of-breed" among the four Contextual Modeling approaches. Fig. 2 shows that the Filter PoF approach dominates the others in accuracy when context is "Fine" and the type of data is characterized by low sparsity and high heterogeneity (DSet 1), regardless of the recommendation task. The Filter PoF approach also dominates (together with Mdl) when the type of data is characterized by high sparsity and low heterogeneity (Dset 3). The reason of this results is that in the regions where context is finer and in those where the type of data is characterized by high sparsity (DSet 3) the prediction problem is made harder due to the lack of information. This is consistent with the marginal analysis provided in Section 4.1. The Filter PoF exploits all the information available by generating the recommendations via the

uncontextual *User x Item* matrix and its accuracy may turn out to be higher than that of other CARS in these regions. When the type of data is characterized by medium levels of sparsity and heterogeneity (DSet 2) the best Contextual Modeling (CM) approach always dominates. However, the best CM approach is not always the same. As shown in Table 8 there may be differences among the four Mdl approaches. Mdl1 is the most accurate CM approach in the region corresponding to DSet 1, "Find-all", "Coarse" (where it shares the dominant position with Filter PoF) and in the region corresponding to DSet 1, "Top-k", "Coarse". Mdl2 is the most accurate CM approach in the regions defined by DSet 2, "Find-all", "Coarse" and DSet 2, "Top-k", "Coarse". Mdl3 is the most accurate CM approach in the regions defined by DSet 2, "Find-all", "Fine" and DSet 2, "Top-k", "Fine". Finally, Mdl4 is never the most accurate approach among those in the CM category.

Table 11 reports similar results for the diversity measure. We computed the average diversity in each region for each of the CARS methods across all the users and the three measures of diversity.

Regions:	DSet 1	DSet 1	DSet 1	DSet 1	DSet 2	DSet 2	DSet 2	DSet 2	DSet 3	DSet 3
CAPS	Find-all	Find-all	Top-k	Top-k	Find-all	Find-all	Top-k	Top-k	Find-all	Top-k
methods:	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse	Coarse
EPF	96.07%	95.86%	94.24%	94.98%	83.98%	81.87%	91.74%	89.92%	69.64%	85.23%
Filter PoF	87.88%	69.22%	94.12%	76.85%	52.49%	45.05%	65.58%	55.20%	47.73%	64.83%
Weight PoF	95.58%	95.25%	94.72%	86.45%	85.20%	85.42%	93.45%	93.79%	90.11%	96.59%
Mdl1	95.03%	96.62%	92.85%	87.96%	81.52%	81.86%	88.84%	89.77%	64.67%	83.65%
Mdl2	95.28%	96.32%	94.32%	87.74%	76.33%	76.34%	89.34%	89.99%	74.51%	92.82%
Mdl3	96.11%	96.53%	94.73%	87.93%	84.11%	81.84%	91.11%	89.70%		
Mdl4	96.12%	96.18%	94.83%	87.37%	82.81%	81.67%	90.37%	91.51%		

Table 11. Average diversity of the CARS methods for the ten regions of the factor space

Fig. 3 is the graphical representation of these results from Table 11, where we only report the CARS approach which dominates the others in each region in terms of diversity. Also in this case the cubes with diagonal stripes are the cases in which the t-test between the means of the dominant approach and that of the second best is not significant. All the other cases are statistically significant with p<0.001. In the three cases where the t-test is not significant, the difference of the means between the second best approach and each one of the remaining CARS methods is significant. This means that although we cannot state that one approach significantly dominates the others in those three regions, we can still state that the two best approaches indeed *statistically* dominate the remaining ones.

Fig. 3.Which CARS approach dominates the others in terms of recommendations diversity (specified as the average of Simpson, Shannon and Tidemann & Hall diversity indexes)

Fig. 3 clearly shows that the Weight PoF approach is the one generating the most diverse recommendations (where diversity is measured as an average among the three metrics presented in Section 3.2) in all the regions defined by DSet 2 and DSet 3. In the regions defined by datasets DSet 1, i.e. when the type of data is characterized by low sparsity and high heterogeneity, Weight PoF dominates only when the recommendation task is "Top-k" and the context is "Coarse" (together with a Contextual Modeling approach). In the remaining regions Contextual Modeling and/or EPF dominate. The reason is that when customers' behavior is heterogeneous (i.e., in DSet 1) and the quantity of information is high (sparsity is low in DSet 1) all the CARSes are able to generate diverse recommendations except Filter PoF which only exploits context to filter out recommendations. When heterogeneity decreases and sparsity increases (i.e., moving to DSet 3) increasing diversity becomes a harder problem, and the best performing CARS is Weight PoF which exploits all the information available to generate recommendations (via the uncontextual *User x Item* matrix) but does not filter out those irrelevant to the context, rather places them at the bottom of the list. This interpretation is confirmed by the marginal analysis (see Section 4.1).

In particular, in the regions defined by DSet 1, "Find-all", "Coarse" Mdl4 is the Contextual Modeling approach providing the highest diversity, as well as in the region defined by DSet 1, "Top-k", "Coarse". In the region defined by DSet 1, "Find-all", "Fine" Mdl1 is the

Contextual Modeling approach providing the highest diversity.

After identifying the regions of the 3-dimensional space in which each approach dominates the others for accuracy and diversity individually, it is important to combine accuracy and diversity measures and to compare the CARS methods in terms of a single combined performance measure for each region. The problem of combining the two measures is not straightforward, however. In fact, accuracy is measured by the F-measure while diversity by the average of three different measures *D*, *E* and *TH*. Although both measures are calculated as percentage values ranging from 0 to 1, they cannot be simply averaged because they represent very different performance metrics and therefore are incompatible, and because the two measures have very different scales. Finally, the relative importance of accuracy and diversity depends on several factors, including the domain, the business application and the specific goals of the company using the recommender system. Therefore, the problem is not only in combining accuracy and diversity into a single concise index and studying which CARS dominates the others but also studying which CARS achieves the best balance between accuracy and diversity in certain conditions.

In order to investigate this problem, and according to the literature, we adopt three strategies. The first is to consider the two metrics as numerical variables expressed in an equal interval ratio scale. Since accuracy and diversity are percentages, they qualify for this type of measure. In this case, the only method needed to combine the variables is to make the scales homogeneous by standardizing the metrics and computing the average. The results of combining the two measures according to this method are plotted in Fig. 4. As Fig. 4 shows, the dominant CARS approach is the CM. In fact, it is the dominant approach in 9 out of 10 regions, while the EPF outperforms all the other approaches only in the region identified by DSet 1, "Fine" and "Top-k. In particular, the Mdl2 is the best CM approach when the type of data is "DSet 3" regardless of the recommendation task used. The Mdl1 is the best contextual modeling approach in all the regions corresponding to DSet 1, "Find-all" regardless of the context granularity. In one region (DSet 1, "Find-all", "Fine") the EPF approach provides the best combined performance, while in the regions defined by DSet 2, the best performing approaches are Mdl2, Mdl3 and Mdl4.

Fig. 4. Which CARS dominates the others in terms of average of standardized accuracy and diversity

The second strategy is based on the hypothesis that the two measures reflect two different properties which cannot be combined in a single index. In this case we can still use the ordinal rankings among the CARS approaches, the first based on the comparison of accuracy and the second on diversity. The rankings can be simply combined by calculating which approach is placed in the best position in both the rankings. Moreover, the Goodman and Kruskal's Gamma index can be computed to compare the ranking. In general, a Gamma index close to 1 means that the two rankings are very similar, while a value close to -1 means the rankings are opposite one another. Fig. 5 reports these results. In most regions, the Gamma index has a negative value. This confirms the fact that the most accurate CARS approach tends to be one of the worst in terms of diversity. Therefore, maximizing both accuracy and diversity is normally impossible, while it is possible to identify a good compromise between the two performance measures. This observation will be confirmed by the analysis of the Pareto frontier. Again, the best balance is provided by the CM approaches, although there are differences among them.

Fig. 5. Which CARS approach dominates the others in terms of combined ordinal ranking of accuracy and diversity (numbers in brackets are the Goodman and Kruskal's Gamma indexes)

The third strategy consists of analyzing the Pareto frontier in each region¹, therefore identifying the dominating approaches (those on the frontiers) and excluding the others. We plotted the CARS approaches in the graphs presented in Fig. 6, 7 and 8 where the accuracy measure is plotted on the *x*-axis and the diversity on the *y*-axis for each one of the 10 regions of the 3-dimensional factor space. Fig. 6 reports the plots for the four graphs for the plan identified by DSet 1 dataset, where sparsity is low and heterogeneity high. In this plan the Pareto frontier always includes at least three CM approaches. The Filter PoF is on the frontier in two regions, as well as the EPF, while the Weight PoF is never on the frontier. The Filter PoF approach is placed in the right-bottom side of the diagram, meaning that in a multi-criteria decision-making problem it would the best approaches, Mdl2 is the one which is not on the frontier in three regions.

¹ Pareto frontier is a very old concept in economics, going back to (Pareto, 1896). In contrast, database researchers introduced a new concept of "skyline queries" (Sharifzadeh & Shahabi, 2006) recently that resembles the Pareto frontier to a large extent.

Fig. 6. Pareto frontiers in the four regions of the plan defined by DSet 1

Fig. 7 presents the plots for the four regions in the vertical plan defined by DSet 2. Also in this case at least three CM approaches are on the frontier. The Filter PoF is never on the frontier, while the EPF is very close to the frontier. Weight PoF is always on the frontier, in the upper-left part of the diagram, meaning that it should be used if the weight of diversity is much higher than that of accuracy.

Fig. 8 presents the plots for the two regions in the vertical plan defined by DSet 3. In this case Mdl2 is on the frontier, while Mdl1 and EPF are not. Filter PoF and Weight PoF are on the frontier, at the extreme of it. Again, Filter PoF would be considered the best if the weight of accuracy is much higher than that of diversity in a multi-criteria decision-making problem. Vice-versa for Weight PoF.

Fig. 7. Pareto frontiers in the four regions of the plan defined by DSet 2

Fig. 8. Pareto frontier in the two regions of the plan defined by DSet 3

As the graphs in Fig. 6 through Fig. 8 show, the Contextual Modeling (CM) approaches are the only ones appearing in each one of the ten regions. This is consistent with the results depicted in Fig. 4 and Fig. 5 which show that in almost all the regions the CM approaches are those providing the best combination of accuracy and diversity, considering both the average of standardized measures and only the ordinal ranking. The only region showing a little

inconsistency is that defined by DSet 1, "Top-k", "Fine", in which EPF would prevail over the CM if the average between standardized accuracy and diversity is used. The reason is that this is the only region in which EPF provides the highest diversity. For this reason, we can state that, in general, the CM approaches are those which provide the best balance between accuracy and diversity. However, as the plots of the Pareto frontiers show, there may be differences among the four CM approaches. Looking at the plots, Mdl1 should be preferred to any other CM approach when the type of data is similar to the cases of DSet 1 and DSet 2. Except one case, Mdl1 provides the highest accuracy while the difference in diversity is minor. When the type of data is similar to DSet 3, i.e., sparsity is around 98% but the users' behavior is quite homogeneous, Mdl2 dominates Mdl1. The EPF approach is also always very close to the frontier, except in the two regions of DSet 3. Considering the EPF is probably the less complex CARS methods, from a practical viewpoint using this approach when the type of data is similar to DSet 1 and DSet 2 is reasonable. The result is confirmed by the fact that EPF is the only non-CM approach appearing in Fig. 4. A different comment has to be done for the post-filtering approaches. They should not be used if the goal is achieving a good balance between accuracy and diversity because they always are at the extreme of the Pareto frontier. Filter PoF is often the most accurate approach but its diversity is significantly (in a statistical way) lower than that of Weight PoF. On the contrary, Weight PoF provides high diversity but poor accuracy. This analysis is confirmed by Fig. 4 and Fig. 5.

5. Conclusions

In this paper, we compared the performance of various pre-filtering, post-filtering and contextual modeling methods in terms of their predictive performance and diversity measures across various experimental conditions to determine which method dominates the others and under which circumstances. We have identified three key factors affecting performance of Context-Aware Recommender Systems (CARSes), including the type of the recommendation task (Find-All vs. Top-k), context granularity (coarse vs. fine granularity of the contextual information) and the type of the data set (DSet 1 characterized by low sparsity and high heterogeneity, DSet 3 characterized by high sparsity and low heterogeneity, DSet 2 with medium levels of sparsity and heterogeneity). Then we have compared the performance of different CARS methods using the marginal and regional analysis techniques. Using the marginal analysis, we have examined how each of the three factors *separately* affects the performance of the CARS methods and concluded that the recommendation task affects both

accuracy and diversity in a way which depends on the specific performance measure considered. Context granularity only affect accuracy: when context becomes finer, the accuracy of CARSes decreases. The type of data affects accuracy and diversity showing a trade-off: if the heterogeneity of customers' behavior increases, the accuracy of CARSes decreases while diversity increases.

Using the regional analysis, we have examined which of the CARS methods dominates the others in each of the regions of the 3-dimensional factor space defined by the recommendation task, context granularity and the data type. It turned out that none of the CARS methods uniformly dominates the others in all the regions for both the recommendation accuracy and diversity measures. However, the Mdl and the Filter PoF methods statistically outperform other CARS alternatives in terms of the accuracy measure across all of the factor space. Similarly, Weight PoF and the EPF methods statistically outperform the other CARS methods in terms of the diversity measure across most of the 10 regions. Finally, the Mdl class of methods outperforms the rest of the CARS methods in terms of the accuracy and the diversity measures.

Based on this analysis, the Mdl-oriented contextual modeling methods constitute a reliable "best bet" when choosing a sound CARS approach because these methods provides a nice performance balance in terms of accuracy *and* diversity measures. However, even such good CARS methods as Mdl do not dominate all other techniques across all the experimental settings, and other methods, such as Filter PoF and even Weight PoF, also constitute viable alternatives for certain regions of the factor space, certain experimental settings and specific performance measures.

Bibliography

Adomavicius, G., R. Sankaranarayanan, S. Sen, and A. Tuzhilin: 2005, "Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach". *ACM Transactions on Information Systems*, 23, pp. 103-145.

Adomavicius, G., and Y. Kwon: 2009, "Toward more diverse recommendations: Item reranking methods for recommender systems". *19th Workshop on Information Technologies and Systems (WITS)*, Phoenix, AZ. Adomavicius, G. and Y. Kwon: 2012, "Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques". *IEEE Transactions on Knowledge and Data Engineering*, in press.

Adomavicius, G. and A. Tuzhilin: 2001, "Extending recommender systems: A multidimensional approach". *IJCAI Workshop on Intelligent Techniques for Web Personalization*, Seattle, pp. 4-6.

Adomavicius, G. and A. Tuzhilin: 2008. "Context-Aware Recommender Systems". ACM *RecSys Tutorial*, pp. 335-336.

Adomavicius, G. and A. Tuzhilin: 2011, "Context-aware Recommender Systems". In: *Handbook on Recommender Systems*, Springer, 217-253.

Adomavicius, G., B. Mobasher, F. Ricci and A. Tuzhilin: 2011, "Context-Aware Recommender Systems". *AI Magazine*, 32 (3), pp. 67-80.

Bader, R., E. Neufeld, W. Woerndl and V. Prinz: 2011, "Context-aware POI recommendations in an automotive scenario using multi-criteria decision making methods". *2011 Workshop on Context-awareness in Retrieval and Recommendation*, Chicago, USA, pp. 23-30.

Baltrunas, L., B. Ludwig, and F. Ricci: 2011, "Matrix factorization techniques for context aware recommendation". *Fifth ACM conference on Recommender systems*, Chicago, USA, pp. 301-304.

Baltrunas, L. and X. Amatriain: 2009, "Towards Time-Dependant Recommendation Based on Implicit Feedback". *First Workshop on Context-Aware Recommender Systems*, New York, USA, pp. 1-5.

Billsus, D. and M. Pazzani: 2000, "User modeling for adaptive news access". *User Modeling and User-Adapted Interaction*, 10(2-3), pp. 147-180.

Brynjolfsson, E., Smith, M. D. and Y. Hu: 2003, "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers". *Management Science*, 49, 11, pp. 1580-1596.

Cena, F., L. Console, C. Gena, A. Goy, G. Levi, S. Modeo and I. Torre: 2006, "Integrating Heterogeneous Adaptation Techniques to Build a Flexible and Usable Mobile Tourist Guide". *AI Communications*, 19, 4, pp. 369–384.

Cremonesi, P., P. Garza, E. Quintarelli and R. Turrin: 2011, "Top-N recommendations on Unpopular Items with Contextual Knowledge", 2011 Workshop on Context-aware Recommender Systems, Chicago, USA. Dourish, P.: 2004, "What we talk about when we talk about context". *Personal and Ubiquitous Computing*, 8, pp. 19-30.

Fagà, R., B. C. Furtado, F. Maximino, R. G. Cattelan, M. da G. C. Pimentel: 2009, "Context information exchange and sharing in a peer-to-peer community: a video annotation scenario".
27th ACM International Conference on Design of Communication SIGDOC2009, Bloomington, USA, pp. 265-272.

Feng, Q., L. Liu and Y. Dai: 2012, "Vulnerabilities and countermeasures in context-aware social rating services". *Transactions on Internet Technology*, 11, 3, pp. 1-27.

Ge, Y., Q. Liu, H. Xiong, A. Tuzhilin and J. Chen: 2011, "Cost-aware Travel Tour Recommendation". *17th ACM SIGKDD International conference on Knowledge Discovery and Data mining*, San Diego, USA, 983-991.

Gorgoglione, M., U. Panniello and A. Tuzhilin: 2011, "The Effect of Context-Aware Recommendations on Customer Purchasing Behavior and Trust". *Fifth ACM Conference on Recommender Systems*, Chicago (USA), pp. 85-92.

Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl: 2004, "Evaluating collaborative filtering recommender systems". *ACM Transactions on Information Systems*, 22(1), pp. 5-53.

Hu, R. and P. Pu: 2011, "Helping Users Perceive Recommendation Diversity". *Workshop on Novelty and Diversity in Recommender Systems (DiveRS 2011)*, October 23, Chicago, USA.

Kaminskas, M. and F. Ricci: 2011, "Location-adapted music recommendation using tags". *19th International conference on User Modeling, Adaption, and Personalization*, Girona, Spain, pp. 183-194.

Mahmood, T., F. Ricci and A. Venturini: 2010, "Improving Recommendation Effectiveness by Adapting the Dialogue Strategy in Online Travel Planning". *International Journal of Information Technology and Tourism*, 11, 4, pp. 285–302.

McDonald, D. and J. Dimmick: 2003, "The Conceptualization and Measurement of Diversity". *Communication Research*, 30(1), pp. 60-79.

Mcginty, L., and B. Smyth: 2003, "On the role of diversity in conversational recommender systems". *Fifth International Conference on Case-Based Reasoning*, pp. 276-290.

Oku, K., S. Nakajima, J. Miyazaki and S. Uemura: 2006, "Context-aware SVM for contextdependent information recommendation", *7th International Conference on Mobile Data Management*, pp. 109.

Panniello, U. and M. Gorgoglione; 2012, "Incorporating Context Into Recommender Systems: An Empirical Comparison Of Context-Based Approaches". *Electronic Commerce*

Research, 12(1), pp. 1-30.

Panniello, U., A. Tuzhilin, M. Gorgoglione, C. Palmisano and A. Pedone; 2009, "Experimental Comparison of Pre- vs. Post-filtering Approaches in Context-Aware Recommender Systems". *Third ACM Conference on Recommender Systems*, New York (USA), pp. 265-268.

Palmisano, C., A. Tuzhilin, and M. Gorgoglione: 2008, "Using Context to Improve Predictive Modeling of Customers in Personalization Applications". *IEEE Transactions on Knowledge and Data Engineering*, 20(11), pp. 1535-1549.

Pareto V.: 1896, "Cours d'économie politique professé à l'université de Lausanne", Lousanne, 3 volumes.

Reddy, S. and J. Mascia: 2006, "Lifetrak: Music in Tune with Your Life". *1st ACM International Workshop on Human-Centered Multimedia*, Santa Barbara, USA, pp. 25–34.

Ricci F.: 2011, "Mobile Recommender Systems". *International Journal of Information Technology and Tourism*, 12, 3, pp. 205-231.

Sae-Ueng, S., S. Pinyapong, A. Ogino and T. Kato: 2008, "Personalized Shopping Assistance Service at Ubiquitous Shop Space". *22nd International Conference on Advanced Information Networking and Applications*, Los Alamitos, USA, pp. 838–843.

Said, A., S. Berkovsky and E. W. De Luca: 2011, "Group Recommendation in Context". 2nd Challenge on Context-Aware Movie Recommendation, Chicago, USA, pp. 2-4.

Sharifzadeh, M., and C. Shahabi: 2006, "The spatial skyline queries". *VLDB '06 Proceedings of the 32nd international conference on Very large data bases*, Seoul, Korea, pp. 751-762.

Wang, S.L. and C.T. Wu: 2011, "Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system". *Expert Systems with Applications*, 38, 9, pp. 10831-10838.

Zhang, M., and N. Hurley: 2008, "Avoiding monotony: Improving the diversity of recommendation lists". *Second ACM Conference on Recommender Systems*, Lausanne, Swiss.

Ziegler, C.N., S. McNee, J. Konstan, and G. Lausen: 2005, "Improving recommendation lists through topic diversification". *14th international conference on World Wide Web*, Chiba, Japan.