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Abstract 

 

Although the area of Context-Aware Recommender Systems (CARS) has made a significant 

progress over the last several years, the problem of comparing various contextual pre-

filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this 

paper, we address this problem and compare several contextual pre-filtering, post-filtering 

and contextual modeling methods in terms of the accuracy and diversity of their 

recommendations to determine which methods outperform the others and under which 

circumstances. To this end, we consider three major factors affecting performance of CARS 

methods, such as the type of the recommendation task, context granularity and the type of the 

recommendation data. We show that none of the considered CARS methods uniformly 

dominates the others across all of these factors and other experimental settings; but that a 

certain group of contextual modeling methods constitutes a reliable “best bet” when choosing 

a sound CARS approach since they provide a good balance of accuracy and diversity of 

contextual recommendations.  
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1. Motivation and introduction 

The importance of the contextual information in Recommender Systems (RSes) has been 

recognized for some time (Adomavicius & Tuzhilin, 2001), and as a result, the Context-

Aware Recommender System (CARS) field has been formed. Although there exist several 

different approaches to incorporating context into the recommendation process, the majority 

of the CARS papers focus on the representational view (Dourish, 2004) that assumes that the 

context is a priori known and is defined by several contextual factors having a known 

hierarchical structure that does not change significantly over time (Adomavicius & Tuzhilin, 

2011).  

 

In (Adomavicius & Tuzhilin, 2008) and (Adomavicius & Tuzhilin, 2011) different 

representational approaches were categorized into pre-filtering, post-filtering and contextual 

modeling methods as follows: 

1. Contextual pre-filtering (PreF) assumes that the contextual information is used to 

filter out irrelevant ratings before they are used for computing recommendations with 

standard (non-contextual) methods. 

2. Contextual post-filtering (PoF) assumes that the contextual information is used after 

the standard non-contextual recommendation methods are applied to the 

recommendation data. 

3. Contextual modeling (CM) assumes that the contextual information is used inside the 

recommendation-generating algorithms together with the user and item data. 

Moreover, (Adomavicius & Tuzhilin, 2011) challenged the CARS community to study these 

three approaches further and also to compare them to determine which one outperforms the 

others and under which circumstances. Although there have been some initial studies on 

comparing these approaches, as described in Section 2, no systematic comparison has been 

done so far in order to determine which one dominates the others and under which 

circumstances. Therefore, the challenge of Adomavicius and Tuzhilin (2011) still remains 

pretty much open.  

 

In this paper, we pursue this challenge and provide a comprehensive comparison of certain 

types of pre-filtering, post-filtering and contextual modeling methods in terms of the 

predictive performance and diversity measures in order to identify which of the CARS 

methods outperform the others and under which circumstances. We also show empirically 

that, although there are no clear winners among the CARS methods considered in this paper 
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that uniformly outperform the alternative approaches, some CARS methods provide the best 

solutions in certain circumstances discussed in the paper.  

 

The issue of comparing different approaches to CARS is important not only to the academic 

community, but also to the industry for several reasons. First, businesses operate in different 

and changing conditions, such as the channels through which recommendations are delivered 

to users or the goals on which recommendations are based. For instance, Amazon delivers 

product recommendations via its Web site, where many products are displayed, and through 

the electronic newsletter containing only very few product recommendations emailed to the 

customers. Therefore, Amazon deploys two different recommendation tasks, a “find all good 

items” task when delivering recommendations via its Web site and a “top-k” task when using 

a newsletter. LinkedIn constitutes another example of using different recommendation 

strategies in different contexts. When a user is actively looking for a job position, all the 

suitable job opportunities fitting her profile are presented, even including less attractive job 

postings. When users are not active, however, LinkedIn recommends very few best job 

opportunities to users in order to avoid bothering them with unattractive recommendations. 

Therefore, not only LinkedIn deploys both recommendation tasks, but it pursues different 

objectives that require different performance metrics: increasing recall when users are 

looking for any good opportunity and may accept less useful recommendations, and 

increasing precision when users do not want to be bothered with useless recommendations. 

Therefore, knowing how accurate and diverse CARS methods are in different settings can 

turn out to be crucial for companies for building effective and lasting relationships with their 

customers and increasing their competitiveness in the market.  

 

2. Prior research 

There has been much work done on Context-Aware Recommender Systems (CARSes) since 

the early publications on this topic, such as (Adomavicius & Tuzhilin, 2001), and most of this 

work is reviewed in (Adomavicius & Tuzhilin, 2011) and also in (Adomavicius et al., 2011). 

Context-aware approaches have become popular in many areas, and applications have been 

recently explored in several fields, such as music (Reddy & Mascia, 2006; Kaminskas & 

Ricci, 2011), movies (Said et al., 2011), travel and tourism (Cena et al., 2006; Baltrunas et 

al., 2011; Ge et al., 2011), mobile recommendations (Ricci, 2011), personalized shopping 

assistants (Sae-Ueng et al., 2008), conversational and interactional services (Mahmood et al., 

2010), learning-related services (Wang & Wu, 2011), social rating services (Feng et al., 
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2012) and multimedia (Fagà et al., 2009). According to (Adomavicius et al., 2011), various 

CARS approaches can be categorized based on what is known about the contextual factors 

and also how fast the available contextual information changes over time. One particularly 

important case is when the contextual information is fully observable and is static, i.e., does 

not change significantly over time. This case corresponds to the well-known representational 

view of contextual information introduced in (Dourish, 2004), and most of the CARS papers 

follow this representational approach.  

 

Furthermore, (Adomavicius & Tuzhilin, 2008) and (Adomavicius & Tuzhilin, 2011) 

categorized various representational approaches into pre-filtering, post-filtering and 

contextual modeling methods and challenged the researchers to compare these three 

approaches to determine which one outperforms the others and under which circumstances. 

These three approaches have been studied by various researchers. In particular, the pre-

filtering approach was studied by Baltrunas and Ricci (2009) who introduced a pre-filtering 

technique called “item splitting” and studied it in different settings. Similarly to the item-

splitting idea, Baltrunas and Amatriain (2009) introduce the idea of microprofiling, which 

splits the user profile into several (possibly overlapping) subprofiles, each representing the 

given user in a particular context. A post-filtering approach was investigated in (Bader et al., 

2011; Cremonesi et al., 2011) and compared to uncontextual recommender systems. A 

contextual modeling approach based on the SVMs was presented and compared to the 

uncontextual case in (Oku et al., 2006). All this prior work proposed certain pre-, post-

filtering and contextual modeling techniques and compared them with the uncontextual case; 

but none of these papers compared the CARS approaches among themselves.  

 

The challenge of comparing different CARS approaches was taken in (Panniello et al., 2009), 

where the pre- and the post-filtering approaches were compared to the uncontextual case, and 

it was shown that this comparison depends, to a large extent, on the type of the post-filtering 

method used. This initial study was further extended in (Panniello & Gorgoglione, 2012) 

where the contextual modeling approach was added to the study, and the three methods were 

compared among themselves and to the uncontextual case. It was shown that the pre-filtering 

and contextual modeling methods slightly outperform the uncontextual case while the post-

filtering method outperforms the uncontextual one depending on how the post-filtering 

method is implemented. In particular, it was shown that when the post-filtering method is 

realized in the right way, it constitutes the best-of-breed contextual method. On the contrary, 
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if it is realized in a poor way, it can be the worst contextual method. Furthermore, (Panniello 

& Gorgoglione, 2012) proposed an effective way of selecting the best alternative method 

between various CARS approaches and an uncontextual one.  

 

Although (Panniello et al., 2009; Panniello & Gorgoglione, 2012) shed some light on the 

tradeoffs between the contextual pre-filtering, post-filtering and contextual modeling 

approaches, this was still an initial type of work that was limited in the following sense. It (a) 

provided only the marginal analysis and did not identify the regions where one approach 

outperforms the others; (b) compared the three approaches only in terms of accuracy and did 

not consider any diversity measures; (c) made a comprehensive comparison between the 

CARS methods and the uncontextual method, while the comparison among different CARS 

methods was fairly basic; (d) did not make any statements whether the observed differences 

in predictive accuracy where statistically significant or not. In other words, (Panniello et al., 

2009; Panniello & Gorgoglione, 2012) provided only the first attempts to compare the pre-

filtering, post-filtering and contextual modeling methods and did not fully explain when a 

CARS approach outperforms the others and under which circumstances. Therefore, the 

challenge reported in (Adomavicius & Tuzhilin, 2011) remains pretty much open. 

 

In this paper, we pursue the challenge of (Adomavicius & Tuzhilin, 2011) further and strive 

to provide a much more comprehensive comparison across various contextual pre-filtering, 

post-filtering and contextual modeling approaches in order to develop a deeper understanding 

of their tradeoffs. In particular, in this paper we compare the three approaches not only in 

terms of the predictive accuracy, but also in terms of diversity of recommendations and do 

this on a significantly more comprehensive data, using a much better “regional” comparison 

method (vis-a-vis a limited version of marginal comparison, as was done in (Panniello & 

Gorgoglione, 2012)), and we do this comparison in a statistically much more rigorous 

fashion. Moreover, after comparing CARS methods in terms of, separately, accuracy and 

diversity, we also compare them by combining the accuracy and diversity measures. The goal 

is to identify the CARS methods that provide the better balance of the two performance 

measures, which we believe is very important issue for industrial applications.  

 

Comparing recommender systems in terms of diversity is not new, and it has been done in 

prior research including (Mcginty & Smyth, 2003; Ziegler et al., 2005; Zhang & Hurley, 

2008; Adomavicius & Kwon, 2009; Hu & Pu, 2011; Adomavicius & Kwon, 2012). Typical 
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approaches would replace items in the derived recommendation lists to minimize similarity 

between all items or remove “obvious” items from the list of recommendations, as was done 

in (Billsus & Pazzani, 2000). Adomavicius and Kwon (2009, 2012) present the concept of 

aggregated diversity as the ability of a system to recommend across all users as many 

different items as possible over the whole population while keeping accuracy loss to a 

minimum, which is achieved by a controlled promotion of less popular items towards the top 

of the recommendation lists. Furthermore, a trade-off between accuracy and diversity was 

established in (Adomavicius & Kwon, 2009) and further confirmed in (Gorgoglione et al., 

2011), where it was shown that ranking recommendations according to the predicted rating 

values provides good predictive accuracy but it tends to perform poorly with respect to 

recommendation diversity. Moreover, Hu and Pu (2011) investigated design issues that can 

enhance users’ perception of recommendation diversity and improve users’ satisfaction.  

 

Despite all this research on recommendation diversity, few of the prior publications study 

diversity of recommendations in the context of CARS. One example of such work is 

presented in (Gorgoglione et al., 2011) where it was demonstrated that CARSes can increase 

diversity while preserving accuracy. It was also argued in (Gorgoglione et al., 2011) that just 

focusing on accuracy alone is not enough, and it is also important to use other measures, such 

as diversity when studying CARS. In this paper, we pursue this idea further and compare pre-

filtering, post-filtering and contextual modeling methods in terms of both accuracy and 

diversity measures. 

 

3. Methodology 

As explained before, in this paper we conduct an extensive empirical comparison of the pre-, 

post-filtering and contextual modeling approaches. As a pre-filtering method, we selected the 

Exact contextual Pre-Filtering (EPF) (Adomavicius & Tuzhilin, 2011) that uses contextual 

information for filtering out the ratings not corresponding to the specified context before the 

recommendation method is launched. As a post-filtering method, we have chosen two 

approaches, i.e., the Filter Post-Filtering (Filter PoF) and the Weight Post-Filtering (Weight 

PoF) methods (Panniello et al., 2009). In both of these methods, the recommendations are 

first generated by using the standard uncontextual recommendation methods on the User × 

Item matrix without any references to the contextual information. Then the computed 

uncontextual ratings are contextualized by estimating the probability with which a user 

chooses a certain item in a given context. The contextual probability Pc(i,j), with which user i 
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selects item j in context c, is computed as the number of neighbors who selected the same 

item in the same context, divided by the total number of neighbors in the neighborhood. 

While Filter PoF method contextualizes recommendations by filtering out those ratings ri j 

having probability Pc(i,j) below a certain threshold, the Weight PoF re-computes new 

contextualized ratings as r′i j = ri j * Pc(i,j) and adjusts contextualized recommendations based 

on ratings r′i j.  

 

We also consider four types of the Contextual Modeling (CM) approach, i.e., Mdl1, Mdl2, 

Mdl3, Mdl4 (Panniello & Gorgoglione, 2012). For these CM methods, we first build a 

contextual profile Prof(i,c) for the i-th user in context c, and then use the contextual profiles 

of all the users to find the N nearest neighbors of the i-th user in context c. The four types of 

the CM approaches vary in the constraints by which the neighbors are selected. In Mdl1 there 

is no constraint in the selection of the N neighbors which can be found in any context at any 

level of the hierarchy. In Mdl2 we select an equal proportion of neighbors from each context c 

regardless of the context hierarchy. In Mdl3 we select N neighbors from each context c and 

each level of the context hierarchy. In Mdl4 we select an equal proportion of neighbors from 

each context c at the same level of context hierarchy. We compare all the three described 

Context-Aware Recommender System (CARS) approaches across a broad set of experimental 

conditions. In the next section, we describe the datasets used in our study. 

 

3.1. Datasets 

We used three dataset from three different e-commerce Web sites in our experiments. The 

first dataset (DSet 1) is taken from the study described in (Palmisano et al., 2008). First, a 

special purpose browser was developed to help users navigate Amazon.com website and 

purchase products on its site. This browser was made available to a group of students who 

were asked to navigate and simulate purchases on Amazon.com during a period of four 

months based on the incentive scheme developed for this study. While navigation was real on 

Amazon.com, purchasing was simulated. Once a product was selected by a student to be 

purchased, the browser recorded the selected item, the purchasing price and other useful 

characteristics of the transaction and this information was stored in the database. In addition, 

the student was asked at the beginning of each browsing session to specify its context, what 

was the intent of a purchase in our case, i.e., whether the purchase would be intended for 

personal purpose or as a gift, for which specific personal purpose, and for whom the gift was 
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intended. The structure of this contextual variable IntentOfPurchase is presented in Fig. 1(a). 

Further, the data was pre-processed by excluding the students who made less than 40 

transactions and eliminating the students who had any kind of misleading or abnormal 

behavior. The resulting number of students was 556, and the total number of purchasing 

transactions for the students was 31,925.  

 

 
Fig. 1. Hierarchical structure of context: (a) IntentOfPurchase, (b) TimeOfTheYear and (c) Store.  

 

The second dataset (DSet 2) comes from an e-commerce website commercially operating in a 

certain European country which sells electronic products to approximately 120,000 users and 

contains about 220,000 purchasing transactions during an observation period of three years. 

For this dataset, we selected the time of the year as a contextual variable. Its hierarchical 

structure is presented in Fig. 1(b). The classification into Summer or Winter and Holiday or 

Not Holiday is based on the experiences of the CEO of the e-commerce website that we used 

in our study. He defined June, July, August, April, May and September as “Summer”. The 

first three months of this period are considered as “Holiday” while the remaining as “Not 

Holiday”. Also he defined October, November, December, January, February and March as 

“Winter”. The first three months of this period are considered as “Holiday” while the 

remaining as “Not Holiday”. According to this definition, a purchase made, for example, on 

December 1 is labeled as “Winter Holiday”. The data was pre-processed by excluding about 

80,000 customers who made only one single transaction (for these customers, it is hard to 

generate any meaningful recommendations due to the lack of preference data), around 500 

customers who had any kind of abnormal behavior such as buying the same product for 1,000 

times at the same time (this was probably a retailer), and around 38,000 customers who had 

transactions either only in the first two years or only in the third year. The reason for this last 
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elimination is that we used the transactions in the first two years as training set and those in 

the third year as validation set, as explained below. The resulting dataset contained about 

1,500 users and about 10,000 transactions. 

 

The third dataset (DSet 3) comes from an e-commerce website which sells comics and 

comics-related products, such as T-shirts, DVDs and various gadgets. It contains about 

50,000 transactions and 5,000 users. In this case, we used the store (i.e., the section in the 

Web site where products are bought), as a contextual variable, distinguishing whether the 

product is bought in “Wearing apparel”, “DVD”, “Miniseries” or “Special issues” section 

(store) of the website (see Fig. 1(c)). This contextual variable store specifies the immediate 

browsing activity in which the customer was engaged just before the recommendation by 

identifying the location of the customer on the website. The importance of this contextual 

variable comes from the expectation that customers’ behavior changes when navigating and 

buying products in different sections of the Web site. For instance, purchasing behavior of a 

comics book can be very different from the purchasing behavior of clothes (such as T-shirts). 

In a real-time recommender system, when a customer enters a specific store of the website, 

the system should use this context (the store type) to focus mainly on the recommendations 

pertinent to that store. Feedbacks from users are always implicit, representing the purchasing 

frequencies.  

 

Each of these three datasets has unique properties, such as certain levels of sparsity of its 

ratings and heterogeneity of behavior of its customers. Therefore, we characterize each of 

these three datasets by the levels of its sparsity and customer heterogeneity as follows. In the 

first dataset (DSet 1) sparsity ranges from 52% (uncontextual matrix) to 71% (on average for 

the contextual matrices). In the second dataset (DSet 2) it ranges from 82% (uncontextual 

matrix) to 86% (on average for the contextual matrices). In the third dataset (DSet 3) it ranges 

from 98% (uncontextual matrix) to 99% (on average for the contextual matrices). To measure 

heterogeneity of customers’ behavior for each dataset, we use the Shannon’s Entropy, as 

defined in Section 3.2 below. We measured the average entropy of each customers’ vector of 

known ratings. In the first dataset, entropy is 65.63%, in the second dataset it is 29.50%, 

while in the third dataset the entropy is 9.79%. These statistics about the sparsity and 

heterogeneity properties of the three datasets are summarized in Table 1. The three very 

different characteristics of these three datasets are due to significant variations of customer’s 

behavior across the three very different e-commerce applications. Customers in the first 
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dataset buy often and buy various kinds of products. This behavior causes low level of 

sparsity and high level of heterogeneity (entropy). On the contrary, users in the third dataset 

buy rarely and tend to purchase the same or similar kinds of products. This behavior causes 

high level of sparsity and low level of entropy. The second dataset is somewhere in between 

the other two in terms of its levels of sparsity and entropy.  

 

Table 1. Type of data represented by sparsity and heterogeneity in the User-Item-Context matrix 

Type of data Sparsity (S) Heterogeneity (H) 
DSet 1 52%-71% 65.63% 
DSet 2 82%-86% 29.50% 
DSet 3 98%-99% 9.79% 

 

3.2. Performance measures 

We used recommendation accuracy and diversity measures when comparing performance of 

pre-filtering, post-filtering and CM methods in our study. The recommendation accuracy is 

measured by Precision, Recall and F-measure (Herlocker et al., 2004). We computed 

Precision and Recall as follows. For the “find all good items” strategy, we set the threshold 

between relevant and irrelevant items equal to 1, thus, assuming that if an item is selected 

more than once, it is relevant (“good”), and we recommend it; otherwise, we did not. Then, 

we verified if the recommended item was actually selected in the validation set. If it was, we 

considered that as a “good” recommendation, otherwise as a “bad” one. For the “recommend 

top-k items” strategy, we determined the top-k items as “good” items to be recommended to a 

user. Then we compared those with the actual items selected by the user to compute Precision 

and Recall in a standard manner. Finally, we divided each dataset into the training and the 

validation sets, the training set containing 2/3 and the validation set 1/3 of the whole dataset. 

For the DSet 1 dataset, the first two years were the training set and the third year was the 

validation set. For the DSet 2 dataset, we randomly split it in 2/3 for the training set and the 

remaining 1/3 for the validation set (in this case, it was impossible to make a good temporal 

split because all the transactions were made within a couple of months). For the DSet 3 

dataset, the first nine months were the training set and the last three months were the 

validation set. 

 

We measured the recommendation diversity in our experiments using the classification of 

diversity metrics in probability-based, logarithm-based and rank-based measures (McDonald 

et al., 2003) and selecting popular measures from each of the three categories, i.e., the 
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Simpson’s diversity index, the Shannon’s entropy and the Tidemann & Hall’s index 

(McDonald et al., 2003) respectively. The normalized Simpson’s diversity index (D) is 

defined as: 
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where pi is the proportion of recommended items in the i-th category and k is the number of 

categories. The denominator of the formula is a normalization factor. Dividing by this factor 

is needed because we want to compare the diversity in three different datasets, each one 

characterized by a different number of categories. In this case, the general Simpson’s 

diversity index (the nominator in the previous formula) takes a different maximum value in 

each dataset, so making a comparison meaningless. On the contrary, the maximum value of 

the normalized index is 1 independently of the number of categories in each dataset. The 

normalized Shannon’s diversity index (E) is computed as: 
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where pi is the proportion of recommended items in the i-th category and k is the number of 

categories. In this case the normalization factor is the base of the logarithm which is set equal 

to k, i.e. the number of categories. Using the normalized Shannon’s index allows us to 

compare the diversity of the same CARS in different datasets because its maximum value is 

always equal to 1. The Tidemann & Hall’s diversity index (TH) is measured as: 
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where r is the rank of the i-th category (ranked with 1 as the largest category). In order to 

provide each dataset with a ranking of categories, we used the number of distinct items 

contained in each category as defined by the relative website. Therefore, the category with 

the highest number of distinct items is ranked with 1. In the case of TH there is no need to 

normalize the index because it always tends to 1 when the number of items increases, and 

therefore 1 is always the maximum value that TH can take.  

 

3.3. Experimental settings 

We conducted our experiments across the following three main settings. First, we analyze the 

CARSes’ accuracy and diversity in the two most popular recommendation tasks, “finding all 
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good items” (Find-all) and “recommending the top-k items” (Top-k). In the “find all good 

items” approach, the recommender system suggests all the “recommendable” items, i.e., the 

items having the rating value above a certain threshold. In the “recommend top-k items” 

approach, only the “top-k” items having the k highest ratings for a particular user are 

recommended to that user. In our study, we varied the number of top-k recommended items 

from 1 to 4, however we will show only results referred to k=4 because they do not change 

significantly when k is lower than 4 and they do not add any significant insight to the results 

discussion.  

 

Second, we analyze the performance of our methods at the following two levels of contextual 

granularity. In two out of three datasets context is represented by a 2-level hierarchy (see Fig. 

1. At the first level (C1) the granularity of the contextual information is coarser, at the second 

level (C2) the granularity is finer. In the three datasets context represents the “period of the 

year”, the “intent of a purchase”, the “store” where items are bought, respectively (additional 

details are presented in Section 3.1).  

 

Third, we analyze accuracy and diversity of the CARSes approaches varying the type of data 

used by the recommender systems to generate recommendations. The three datasets are 

characterized by different structures of the User-Item-Context matrix. We considered two 

main features to characterize the matrix, the data sparsity and the heterogeneity of customers’ 

behavior. The data sparsity is measured as the number of empty cells in the User × Item 

matrix divided by the total number of cells. As it was mentioned above, the heterogeneity of 

customers’ behavior is measured by looking at how many items customers had purchased in 

each product category, that is by computing the average entropy of each customers’ vector of 

known ratings. High entropy means that the behavior is heterogeneous, while low entropy 

means that the behavior is homogeneous. The combination of User × Item × Context 

matrix’s entropy and sparsity may describe the type of data used by the recommender system 

and it may affect recommendations performance. In fact, it was shown that both these 

parameters affect recommender systems’ performance (Herlocker et al., 2004). In the next 

section, we present the results of our experiments described in this section. 

 

4. Results  

In this section we present the results of our empirical study described in Section 3. In 

particular, we examine the effects of the three main factors considered in our study and 



13 
 

described in Section 3 (i.e., recommendation task, context granularity and the type of data) on 

the performance of different Context-Aware Recommender Systems (CARS) methods (pre-

filtering, post-filtering and CM methods) in terms of the accuracy and diversity of 

recommendations that these methods provide. We start our presentation in Section 4.1 with 

the marginal analysis that examines how each of the three factors separately affects the 

performance of the CARS methods. Although it is important to do the marginal analysis and 

thus to know how each of the factors separately affects the performance of the CARS 

methods, it is the regional analysis that constitutes the determining factor in comparison of 

various CARS approaches. Unlike the marginal analysis, the regional analysis determines 

how each region in the 3-dimensional factor space, defined by the combination of the 

recommendation task, context granularity and the data type, affects the performance of 

various CARS methods in terms of their accuracy and diversity measures. Therefore, this 

regional analysis constitutes the core of this section because it answers the main research 

question of which of the CARS approaches dominates the others and in which circumstances 

(i.e., regions of the factor space), whereas the marginal analysis provides additional evidence 

for answering the main research question. For this reason, and due to the space limitation, the 

results of the marginal analysis are reported briefly in Section 4.1, while the regional analysis 

is presented in greater detail in Section 4.2. 

 

4.1. Marginal analysis of accuracy and diversity of Context-Aware Recommenders  

We first analyze the effect of the two recommendation tasks, “finding all good items” (Find-

all) vs. “recommending the top-k items” (Top-k), on recommendations accuracy and 

diversity. Table 2 reports the accuracy of each CARS approach in each recommendation task. 

We computed the average value of each accuracy metric (Precision, Recall and F-measure) of 

each CARS across all the experimental settings excluding the recommendation task. For 

instance, the value of the EPF F-measure in the Find-all task (38.31%) is the average value 

across the three datasets and the two context granularity levels. We can observe from Table 2 

that the recommendation accuracy changes in the two recommendation tasks. The Precision 

of recommendations slightly increases when moving from “Find-all” to “Top-k”. The Recall 

strongly decreases when moving from “Find-all” to “Top-k”. As a combination of these 

results, the F-measure of CARSes is slightly higher in the “Find-all” task and lower in the 

“Top-k” task. The second result in that if we rank the CARSes from the most accurate to the 

least, the ranking does not change for F-measure and Precision, while changes for the Recall.  
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Table 2. Accuracy analyzed by task 

 Find-all Top-k Find-all Top-k Find-all Top-k 
 F-measure Recall Precision 

EPF 38.31% 37.52% 59.24% 46.42% 29.72% 32.63% 
Filter PoF 47.49% 45.43% 55.91% 49.37% 41.92% 42.54% 

Weight PoF 21.92% 21.01% 65.87% 30.42% 14.05% 17.20% 
Mdl1 41.34% 40.21% 54.78% 46.03% 35.77% 37.66% 
Mdl2 33.41% 32.88% 60.67% 43.87% 25.41% 28.45% 
Mdl3 34.57% 33.51% 49.84% 37.37% 28.69% 31.65% 
Mdl4 33.33% 32.75% 53.06% 38.13% 26.61% 30.12% 

 

The effect of the two recommendation tasks on recommendations diversity is shown in Table 

3, where the diversity measures change across the two recommendation tasks as follows. 

When moving from “Find-all” to “Top-k,” the Simpson’s D slightly increases, the Shannon’s 

E strongly increases, while the TH index decreases. The ranking of CARSes changes very 

slightly for D, more strongly for E and TH.  

 
Table 3. Diversity analyzed by task 

 Find-all Top-k Find-all Top-k Find-all Top-k 
 Simpson’s (D) Shannon’s (E) Tidemann & Hall’s (TH) 

EPF 87.21% 90.89% 71.56% 89.30% 91.75% 88.71% 
Filter PoF 56.28% 66.57% 34.55% 62.08% 79.52% 76.28% 

Weight PoF 95.37% 96.50% 82.98% 96.47% 93.30% 89.95% 
Mdl1 87.35% 90.31% 70.95% 89.19% 90.58% 84.55% 
Mdl2 90.39% 95.71% 71.41% 95.62% 90.65% 86.89% 
Mdl3 94.62% 96.13% 84.70% 96.16% 90.53% 85.62% 
Mdl4 94.29% 96.13% 83.87% 96.22% 90.48% 86.07% 

 

The effect of context granularity on accuracy is shown in Table 4 and on diversity in Table 5. 

The context granularity can be “Coarse” (C1 in Fig. 1) or “Fine” (C2 in  Fig. 1). The measures 

are only computed for DSet 1 and DSet 2 in which context is represented by a 2-level 

granularity hierarchy. DSet 3 is excluded because context can be defined only in C1.  
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Table 4. Accuracy analyzed by context granularity 

 Coarse Fine Coarse Fine Coarse Fine 
 F-measure Recall Precision 

EPF 40.20% 28.25% 54.41% 42.82% 34.15% 21.94% 
Filter PoF 46.21% 37.69% 53.78% 42.93% 41.79% 34.03% 

Weight PoF 34.25% 22.51% 53.97% 46.92% 27.49% 15.67% 
Mdl1 47.69% 31.42% 48.62% 40.91% 48.32% 27.74% 
Mdl2 45.08% 30.26% 52.64% 45.70% 41.56% 24.56% 
Mdl3 41.31% 31.14% 52.24% 40.15% 36.50% 27.64% 
Mdl4 44.91% 28.29% 51.31% 43.31% 44.08% 22.08% 

 

The results are somehow different with respect to the previous case, because while accuracy 

changes significantly when context granularity changes, diversity does not. All the accuracy 

measures decrease when context becomes “Fine”, especially for Precision (see Table 4). This 

behavior is quite expectable in any RS because when context becomes finer, the quantity of 

information available in each context decreases thus making the prediction problem harder. 

In fact, sparsity increases when moving from C1 to C2 from 70.93% to 84.28% for DSet 1, 

from 85.68% to 87.44% for DSet 2, respectively. Besides this effect, an interesting 

observation is that the Filter PoF approach is the least affected by this decrease. The reason is 

that Filter PoF does not use the contextual information to generate the recommendations, only 

filters out the recommendations which turn out to be irrelevant in a given context once they 

are generated. As a result, the decrease in Precision is small. The Weight PoF also generates 

recommendations without using context, however the contextual information is used to 

weight and re-rank the final list of recommended items. Therefore, the decrease in Precision 

is higher. In general, the accuracy of the approaches which use context before or during the 

generation of recommendations decreases quickly when context becomes more granular. 

 

Table 5. Diversity analyzed by context granularity 

 Coarse Fine Coarse Fine Coarse Fine 
 Simpson’s D Shannon’s E Tidemann & Hall’s TH 

EPF 95.29% 95.16% 90.26% 90.04% 88.88% 89.57% 
Filter PoF 79.01% 65.49% 66.22% 51.68% 79.14% 74.40% 

Weight PoF 95.77% 95.53% 90.89% 91.04% 90.00% 90.82% 
Mdl1 93.39% 95.55% 87.53% 90.72% 85.47% 88.34% 
Mdl2 92.86% 94.59% 85.86% 88.70% 85.17% 87.48% 
Mdl3 95.24% 95.43% 90.10% 90.56% 87.17% 88.43% 
Mdl4 94.86% 95.35% 89.41% 90.30% 86.68% 88.91% 

 

On the contrary, diversity changes very little across the two levels of context granularity for 
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all the CARS approaches (see Table 5). Only Filter PoF changes D and E significantly. The 

reason is again the different way context is used in the recommendation process. The use of 

context is what makes CARS approaches more able to produce diversity with respect to other 

types of RSes. Filter PoF uses the contextual information only in the very last part of the 

process, and this constraints its ability to generate diverse recommendations due to the 

context. 

 

Finally, the effects of the type of data on accuracy and diversity of CARSes are reported in 

Table 6 and Table 7, respectively. These results are very interesting for the following reasons. 

In general, accuracy increases when moving from DSet 1 to DSet 3, except that for Weight 

PoF (see Table 6). On the contrary, the diversity generated by all the CARSes decreases 

when moving from DSet 1 to Dset 3 (see Table 7). 

 
Table 6. Accuracy analyzed by type of dataset 

 DSet 1 DSet 2 DSet 3 DSet 1 DSet 2 DSet 3 DSet 1 DSet 2 DSet 3 
 F-measure Recall Precision 

EPF 30.58% 33.10% 59.80% 47.64% 44.12% 76.26% 24.32% 26.90% 51.31% 

Filter PoF 40.50% 39.62% 68.64% 47.31% 44.31% 75.77% 36.35% 36.10% 63.17% 

Weight PoF 26.24% 25.35% 6.07% 48.98% 48.88% 45.37% 20.40% 17.25% 3.64% 

Mdl1 32.00% 41.50% 57.24% 45.33% 40.16% 75.93% 26.54% 43.05% 47.55% 

Mdl2 29.36% 41.35% 28.43% 49.14% 45.74% 68.33% 23.11% 37.82% 18.22% 

Mdl3 30.01% 39.42%  45.46% 41.14%  24.10% 38.26%  

Mdl4 29.27% 38.06%  47.81% 42.65%  23.02% 35.49%  

 

The explanation of this behavior is in the fact that the heterogeneity of customers’ behavior 

decreases from DSet 1 to DSet 3. The first dataset (DSet 1) is the most heterogeneous. The 

heterogeneity of customers’ behavior across contexts is beneficial when the goal is to 

generate and deliver diverse recommendations, while it is detrimental for accuracy because it 

decreases the ability of any recommender system to correctly predict the preferences of a 

user. As a result, the accuracy in DSet 1 is the lowest but diversity is the highest (D and E). In 

DSet 1, however, sparsity is lower than in other datasets and this contributes to keep accuracy 

at similar levels of DSet 2 (where heterogeneity is lower than in DSet 1 but sparsity higher). 

If diversity is measured by the Tidemann & Hall’s index (TH) then the diversity generated in 

DSet 3 is comparable to that generated in the other datasets because DSet 3 is characterized 

by many more product categories and TH is sensitive to this number. Again, the Filter PoF is 

the approach which is most sharply affected by the type of data, in different directions. Its 
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precision quickly increases from DSet 1 to DSet 3, making it the most accurate in DSet 3, 

while its diversity quickly drops, making it the worst in DSet 3. Therefore Filter PoF should 

be preferred to other CARSes when sparsity increases, but at the price of generating less 

diverse recommendations.  

 
Table 7. Diversity analyzed by type of dataset 

 DSet 1 DSet 2 DSet 3 DSet 1 DSet 2 DSet 3 DSet 1 DSet 2 DSet 3 
 Simpson’s D Shannon’s E Tidemann & Hall’s TH 

EPF 96.61% 93.32% 67.54% 94.29% 84.52% 46.58% 93.95% 83.27% 93.23% 

Filter PoF 80.67% 54.26% 33.68% 68.46% 39.00% 21.98% 88.39% 58.92% 85.39% 

Weight PoF 96.15% 94.87% 97.09% 93.66% 87.45% 85.29% 92.94% 87.44% 95.26% 

Mdl1 96.63% 92.67% 67.47% 94.57% 83.45% 45.99% 94.11% 78.72% 87.73% 

Mdl2 96.97% 90.25% 89.39% 94.74% 78.75% 68.22% 93.66% 77.70% 95.58% 

Mdl3 96.98% 93.24%  95.00% 84.35%  94.29% 79.78%  

Mdl4 96.70% 93.22%  94.62% 83.95%  93.91% 80.76%  

 

In conclusion, we examined how various contextual factors, such as recommendation task, 

context granularity and the type of data, individually affect accuracy and diversity of 

recommendations across different CARS methods. We have shown that the recommendation 

task affects both accuracy and diversity in a way which depends on the specific measure 

considered. Context granularity only affect accuracy while not diversity: when context 

becomes finer, the accuracy of CARSes decreases. The type of data also affects both 

accuracy and diversity showing an interesting trade-off: if the heterogeneity of customers’ 

behavior increases, the accuracy of a CARS decreases while its diversity increases. In this 

section, we focused predominantly on the effects of the individual factors on the performance 

of CARS methods and less on the direct comparison of the CARS methods themselves due to 

the marginal nature of the analysis. While doing the regional analysis in the next section, we 

will focus on the direct comparison of the CARS methods across the regions of the factor 

space because this type of comparison is more natural for the regional analysis.  

 

4.2. Regional analysis: which approach dominates the others and in which conditions 

In the previous section we discussed the results of a “marginal” analysis of our experiments 

in which we analyzed the effects of each factor on CARS performance at a time. In this 

section, we analyze the effects of all the three factors on the performance of CARS methods 

simultaneously. Again, the three main factors considered in this study are (a) the 

recommendation task (defined with values Find-all vs. Top-k recommendations), (b) context 
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granularity (coarse vs. fine granularity of contextual variables) and (c) type of data, i.e., 

datasets DSet 1, DSet 2 and DSet 3 characterized by the combination of different levels of 

data sparsity and heterogeneity of the users. Collectively, these factors form the 3-

dimensional factor space consisting of various regions (hence the name “regional” analysis). 

Since in one of the three datasets (DSet 3, characterized by high sparsity and low 

heterogeneity) the context hierarchy has only one level (see Fig. 1(c)), the number of the 

regions in the overall factor space is only ten (and not 12, as it should have been in the 

completely orthogonal case).  

 

Our regional analysis is structured in three parts. First, we identify which CARS method(s) 

dominates the others in terms of recommendation accuracy in a statistically significant 

manner and provide an explanation of these results. Second, we identify which CARS 

method significantly dominates the others in terms of the diversity of recommendations and 

provide an explanation of this behavior. Third, we combine the accuracy and the diversity 

measures to identify which CARS approach(es) provide the best performance for a 

combination of these two measures. In this study, we combine accuracy and diversity by (a) 

averaging the standardized measures, (b) combining the ordinal ranking among the 

approaches and (c) analyzing the Pareto frontier of the two measures in each region.  

 
Table 8. F-measure of the CARS methods for the ten regions of the factor space 

Regions: 

CARS 
methods: 

DSet 1 
Find-all 
Coarse 

DSet 1 
Find-all 

Fine 

DSet 1 
Top-k 
Coarse 

DSet 1 
Top-k 
Fine 

DSet 2 
Find-all 
Coarse 

DSet 2 
Find-all 

Fine 

DSet 2 
Top-k 
Coarse 

DSet 2 
Top-k 
Fine 

DSet 3 
Find-all 
Coarse 

DSet 3 
Top-k 
Coarse 

EPF 42.26% 26.17% 42.23% 24.93% 33.56% 30.81% 34.39% 30.77% 41.46% 40.15% 

Filter PoF 47.47% 36.82% 40.74% 35.15% 39.49% 33.54% 39.47% 33.54% 54.10% 54.06% 

Weight PoF 39.92% 21.91% 35.95% 21.38% 28.14% 22.91% 27.40% 22.58% 6.41% 7.36% 

Mdl1 47.92% 26.27% 44.97% 25.41% 39.32% 34.40% 44.14% 36.05% 40.99% 40.99% 

Mdl2 40.80% 25.33% 38.99% 24.52% 45.36% 30.90% 45.45% 30.90% 50.29% 50.49% 

Mdl3 42.27% 26.27% 42.53% 25.17% 38.00% 36.34% 37.93% 36.14%   
Mdl4 44.08% 25.12% 41.69% 24.96% 42.64% 35.95% 42.71% 35.87%   
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Table 9. Precision of the CARS methods for the ten regions of the factor space 
Regions: 

CARS 
methods: 

DSet 1 
Find-all 
Coarse 

DSet 1 
Find-all 

Fine 

DSet 1 
Top-k 
Coarse 

DSet 1 
Top-k 
Fine 

DSet 2 
Find-all 
Coarse 

DSet 2 
Find-all 

Fine 

DSet 2 
Top-k 
Coarse 

DSet 2 
Top-k 
Fine 

DSet 3 
Find-all 
Coarse 

DSet 3 
Top-k 
Coarse 

EPF 30.98% 18.55% 47.41% 21.79% 28.53% 27.59% 29.43% 27.59% 33.70% 34.47% 

Filter PoF 38.68% 34.09% 45.88% 34.81% 39.53% 33.00% 39.53% 33.00% 51.73% 51.87% 

Weight PoF 29.14% 14.08% 40.54% 18.75% 20.39% 15.91% 21.13% 16.51% 3.45% 5.96% 

Mdl1 30.85% 20.20% 50.44% 22.51% 42.84% 36.04% 51.51% 39.41% 32.93% 32.93% 

Mdl2 29.08% 17.83% 43.62% 21.50% 52.13% 27.62% 52.14% 27.62% 53.32% 53.71% 

Mdl3 30.85% 20.20% 47.59% 22.49% 36.49% 39.63% 36.48% 39.61%   
Mdl4 34.58% 17.49% 46.84% 21.90% 44.47% 35.11% 44.47% 35.10%   

 

Table 10. Recall of the CARS methods for the ten regions of the factor space 
Regions: 

CARS 
methods: 

DSet 1 
Find-all 
Coarse 

DSet 1 
Find-all 

Fine 

DSet 1 
Top-k 
Coarse 

DSet 1 
Top-k 
Fine 

DSet 2 
Find-all 
Coarse 

DSet 2 
Find-all 

Fine 

DSet 2 
Top-k 
Coarse 

DSet 2 
Top-k 
Fine 

DSet 3 
Find-all 
Coarse 

DSet 3 
Top-k 
Coarse 

EPF 74.54% 55.45% 40.57% 34.96% 51.71% 41.78% 51.03% 41.51% 75.71% 57.31% 

Filter PoF 68.80% 49.64% 38.98% 42.32% 48.60% 40.62% 48.53% 40.62% 65.96% 65.41% 

Weight PoF 71.90% 66.16% 34.45% 29.84% 57.90% 51.06% 46.89% 42.25% 74.33% 13.06% 

Mdl1 74.24% 50.37% 43.30% 35.26% 43.31% 40.23% 43.95% 37.34% 67.63% 67.63% 

Mdl2 75.96% 56.72% 37.64% 34.40% 45.89% 41.03% 45.86% 41.03% 60.62% 58.63% 

Mdl3 74.24% 50.37% 40.95% 34.91% 47.65% 38.19% 47.37% 37.30%   

Mdl4 69.53% 59.92% 40.07% 34.99% 49.81% 43.83% 49.75% 43.77%   

 

We start with comparing different CARS methods in terms of predictive accuracy as 

determined by the F-, Precision and Recall measures. The results of the comparison in terms 

of the F-measure and Precision are presented in Table 8 and Table 9 and show that the best-

performing CARS methods are shared by the Filter PoF and one of the Contextual Modeling 

approaches. The results are concordant except for three regions where the most precise 

approach is not the one with the highest F-measure (see the first column and the last two in 

Table 8 and Table 9). In contrast, there is no clear winner emerging from such comparison in 

terms of the Recall measure (Table 10). In particular, the Weight PoF method provides the 

highest Recall in three regions, EPF in two regions, Filter PoF in one region, and one of the 

Contextual Modeling approaches in the remaining ones.  

 

Fig. 2 is a graphical representation of the same results, as in Table 8, where we only report 

the CARS approach which dominates the others in each region in terms of F-measure. We 

use the F-measure here because it represents the harmonic mean of the Precision and Recall 

measures, and because using the F-measure in such cases is a common practice in the data 

mining and the recommender systems communities. We also checked the statistical 



20 
 

significance of the difference between the average accuracy of the dominant and the second-

best approaches using the t-test. The cubes with diagonal stripes in Fig. 2 represent the cases 

in which the difference of the means between the dominant and the second best approaches is 

not statistically significant (p>0.05). All the other cases are statistically significant with 

p<0.001. In the regions where the t-tests are not significant, the differences of the means 

between the second best approach and each one of the remaining CARS methods are 

statistically significant.  

 

Fig. 2. Which CARS approach dominates the others in terms of the recommendations accuracy (as 

defined by the F-measure) 

 

As commented above, in all the regions the most accurate CARS approach is either Filter PoF 

or one of the Contextual Modeling approaches. The notation “Mdl” in the figure indicates the 

“best-of-breed” among the four Contextual Modeling approaches. Fig. 2 shows that the Filter 

PoF approach dominates the others in accuracy when context is “Fine” and the type of data is 

characterized by low sparsity and high heterogeneity (DSet 1), regardless of the 

recommendation task. The Filter PoF approach also dominates (together with Mdl) when the 

type of data is characterized by high sparsity and low heterogeneity (Dset 3). The reason of 

this results is that in the regions where context is finer and in those where the type of data is 

characterized by high sparsity (DSet 3) the prediction problem is made harder due to the lack 

of information. This is consistent with the marginal analysis provided in Section 4.1. The 

Filter PoF exploits all the information available by generating the recommendations via the 
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uncontextual User x Item matrix and its accuracy may turn out to be higher than that of other 

CARS in these regions. When the type of data is characterized by medium levels of sparsity 

and heterogeneity (DSet 2) the best Contextual Modeling (CM) approach always dominates. 

However, the best CM approach is not always the same. As shown in Table 8 there may be 

differences among the four Mdl approaches. Mdl1 is the most accurate CM approach in the 

region corresponding to DSet 1, “Find-all”, “Coarse” (where it shares the dominant position 

with Filter PoF) and in the region corresponding to DSet 1, “Top-k”, “Coarse”. Mdl2 is the 

most accurate CM approach in the regions defined by DSet 2, “Find-all”, “Coarse” and 

DSet 2, “Top-k”, “Coarse”. Mdl3 is the most accurate CM approach in the regions defined by 

DSet 2, “Find-all”, “Fine” and DSet 2, “Top-k”, “Fine”. Finally, Mdl4 is never the most 

accurate approach among those in the CM category.  

 

Table 11 reports similar results for the diversity measure. We computed the average diversity 

in each region for each of the CARS methods across all the users and the three measures of 

diversity.  

 

Table 11. Average diversity of the CARS methods for the ten regions of the factor space 
Regions: 

CARS 
methods: 

DSet 1 
Find-all 
Coarse 

DSet 1 
Find-all 

Fine 

DSet 1 
Top-k 
Coarse 

DSet 1 
Top-k 
Fine 

DSet 2 
Find-all 
Coarse 

DSet 2 
Find-all 

Fine 

DSet 2 
Top-k 
Coarse 

DSet 2 
Top-k 
Fine 

DSet 3 
Find-all 
Coarse 

DSet 3 
Top-k 
Coarse 

EPF 96.07% 95.86% 94.24% 94.98% 83.98% 81.87% 91.74% 89.92% 69.64% 85.23% 

Filter PoF 87.88% 69.22% 94.12% 76.85% 52.49% 45.05% 65.58% 55.20% 47.73% 64.83% 

Weight PoF 95.58% 95.25% 94.72% 86.45% 85.20% 85.42% 93.45% 93.79% 90.11% 96.59% 

Mdl1 95.03% 96.62% 92.85% 87.96% 81.52% 81.86% 88.84% 89.77% 64.67% 83.65% 

Mdl2 95.28% 96.32% 94.32% 87.74% 76.33% 76.34% 89.34% 89.99% 74.51% 92.82% 

Mdl3 96.11% 96.53% 94.73% 87.93% 84.11% 81.84% 91.11% 89.70%   
Mdl4 96.12% 96.18% 94.83% 87.37% 82.81% 81.67% 90.37% 91.51%   

 

Fig. 3 is the graphical representation of these results from Table 11, where we only report the 

CARS approach which dominates the others in each region in terms of diversity. Also in this 

case the cubes with diagonal stripes are the cases in which the t-test between the means of the 

dominant approach and that of the second best is not significant. All the other cases are 

statistically significant with p<0.001. In the three cases where the t-test is not significant, the 

difference of the means between the second best approach and each one of the remaining 

CARS methods is significant. This means that although we cannot state that one approach 

significantly dominates the others in those three regions, we can still state that the two best 

approaches indeed statistically dominate the remaining ones.  
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Fig. 3.Which CARS approach dominates the others in terms of recommendations diversity (specified 

as the average of Simpson, Shannon and Tidemann & Hall diversity indexes) 

 

Fig. 3 clearly shows that the Weight PoF approach is the one generating the most diverse 

recommendations (where diversity is measured as an average among the three metrics 

presented in Section 3.2) in all the regions defined by DSet 2 and DSet 3. In the regions 

defined by datasets DSet 1, i.e. when the type of data is characterized by low sparsity and 

high heterogeneity, Weight PoF dominates only when the recommendation task is “Top-k” 

and the context is “Coarse” (together with a Contextual Modeling approach). In the 

remaining regions Contextual Modeling and/or EPF dominate. The reason is that when 

customers’ behavior is heterogeneous (i.e., in DSet 1) and the quantity of information is high 

(sparsity is low in DSet 1) all the CARSes are able to generate diverse recommendations 

except Filter PoF which only exploits context to filter out recommendations. When 

heterogeneity decreases and sparsity increases (i.e., moving to DSet 3) increasing diversity 

becomes a harder problem, and the best performing CARS is Weight PoF which exploits all 

the information available to generate recommendations (via the uncontextual  User x Item 

matrix) but does not filter out those irrelevant to the context, rather places them at the bottom 

of the list. This interpretation is confirmed by the marginal analysis (see Section 4.1).  

In particular, in the regions defined by DSet 1, “Find-all”, “Coarse” Mdl4 is the Contextual 

Modeling approach providing the highest diversity, as well as in the region defined by 

DSet 1, “Top-k”, “Coarse”. In the region defined by DSet 1, “Find-all”, “Fine” Mdl1 is the 
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Contextual Modeling approach providing the highest diversity.  

 

After identifying the regions of the 3-dimensional space in which each approach dominates 

the others for accuracy and diversity individually, it is important to combine accuracy and 

diversity measures and to compare the CARS methods in terms of a single combined 

performance measure for each region. The problem of combining the two measures is not 

straightforward, however. In fact, accuracy is measured by the F-measure while diversity by 

the average of three different measures D, E and TH. Although both measures are calculated 

as percentage values ranging from 0 to 1, they cannot be simply averaged because they 

represent very different performance metrics and therefore are incompatible, and because the 

two measures have very different scales. Finally, the relative importance of accuracy and 

diversity depends on several factors, including the domain, the business application and the 

specific goals of the company using the recommender system. Therefore, the problem is not 

only in combining accuracy and diversity into a single concise index and studying which 

CARS dominates the others but also studying which CARS achieves the best balance 

between accuracy and diversity in certain conditions.  

 

In order to investigate this problem, and according to the literature, we adopt three strategies. 

The first is to consider the two metrics as numerical variables expressed in an equal interval 

ratio scale. Since accuracy and diversity are percentages, they qualify for this type of 

measure. In this case, the only method needed to combine the variables is to make the scales 

homogeneous by standardizing the metrics and computing the average. The results of 

combining the two measures according to this method are plotted in Fig. 4. As Fig. 4 shows, 

the dominant CARS approach is the CM. In fact, it is the dominant approach in 9 out of 10 

regions, while the EPF outperforms all the other approaches only in the region identified by 

DSet 1, “Fine” and “Top-k. In particular, the Mdl2 is the best CM approach when the type of 

data is “DSet 3” regardless of the recommendation task used. The Mdl1 is the best contextual 

modeling approach in all the regions corresponding to DSet 1, “Find-all” regardless of the 

context granularity. In one region (DSet 1, “Find-all”, “Fine”) the EPF approach provides the 

best combined performance, while in the regions defined by DSet 2, the best performing 

approaches are Mdl2, Mdl3 and Mdl4.  
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Fig. 4. Which CARS dominates the others in terms of average of standardized accuracy and diversity 

 

The second strategy is based on the hypothesis that the two measures reflect two different 

properties which cannot be combined in a single index. In this case we can still use the 

ordinal rankings among the CARS approaches, the first based on the comparison of accuracy 

and the second on diversity. The rankings can be simply combined by calculating which 

approach is placed in the best position in both the rankings. Moreover, the Goodman and 

Kruskal’s Gamma index can be computed to compare the ranking. In general, a Gamma 

index close to 1 means that the two rankings are very similar, while a value close to -1 means 

the rankings are opposite one another. Fig. 5 reports these results. In most regions, the 

Gamma index has a negative value. This confirms the fact that the most accurate CARS 

approach tends to be one of the worst in terms of diversity. Therefore, maximizing both 

accuracy and diversity is normally impossible, while it is possible to identify a good 

compromise between the two performance measures. This observation will be confirmed by 

the analysis of the Pareto frontier. Again, the best balance is provided by the CM approaches, 

although there are differences among them.  
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Fig. 5. Which CARS approach dominates the others in terms of combined ordinal ranking of accuracy 

and diversity (numbers in brackets are the Goodman and Kruskal’s Gamma indexes) 

 

The third strategy consists of analyzing the Pareto frontier in each region 1 , therefore 

identifying the dominating approaches (those on the frontiers) and excluding the others. We 

plotted the CARS approaches in the graphs presented in Fig. 6, 7 and 8 where the accuracy 

measure is plotted on the x-axis and the diversity on the y-axis for each one of the 10 regions 

of the 3-dimensional factor space. Fig. 6 reports the plots for the four graphs for the plan 

identified by DSet 1 dataset, where sparsity is low and heterogeneity high. In this plan the 

Pareto frontier always includes at least three CM approaches. The Filter PoF is on the frontier 

in two regions, as well as the EPF, while the Weight PoF is never on the frontier. The Filter 

PoF approach is placed in the right-bottom side of the diagram, meaning that in a multi-

criteria decision-making problem it would the best approach if the weight of accuracy is 

much higher than that of diversity. Among the CM approaches, Mdl2 is the one which is not 

on the frontier in three regions.  

 

 

                                                 
 
1 Pareto frontier is a very old concept in economics, going back to (Pareto, 1896). In contrast, database 

researchers introduced a new concept of “skyline queries” (Sharifzadeh & Shahabi, 2006) recently that 
resembles the Pareto frontier to a large extent. 
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Fig. 6. Pareto frontiers in the four regions of the plan defined by DSet 1 

 

Fig. 7 presents the plots for the four regions in the vertical plan defined by DSet 2. Also in 

this case at least three CM approaches are on the frontier. The Filter PoF is never on the 

frontier, while the EPF is very close to the frontier. Weight PoF is always on the frontier, in 

the upper-left part of the diagram, meaning that it should be used if the weight of diversity is 

much higher than that of accuracy.  

 

Fig. 8 presents the plots for the two regions in the vertical plan defined by DSet 3. In this case 

Mdl2 is on the frontier, while Mdl1 and EPF are not. Filter PoF and Weight PoF are on the 

frontier, at the extreme of it. Again, Filter PoF would be considered the best if the weight of 

accuracy is much higher than that of diversity in a multi-criteria decision-making problem. 

Vice-versa for Weight PoF.  
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Fig. 7. Pareto frontiers in the four regions of the plan defined by DSet 2 

 

 

 

Fig. 8. Pareto frontier in the two regions of the plan defined by DSet 3 

 

As the graphs in Fig. 6 through Fig. 8 show, the Contextual Modeling (CM) approaches are 

the only ones appearing in each one of the ten regions. This is consistent with the results 

depicted in Fig. 4 and Fig. 5 which show that in almost all the regions the CM approaches are 

those providing the best combination of accuracy and diversity, considering both the average 

of standardized measures and only the ordinal ranking. The only region showing a little 
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inconsistency is that defined by DSet 1, “Top-k”, “Fine”, in which EPF would prevail over 

the CM if the average between standardized accuracy and diversity is used. The reason is that 

this is the only region in which EPF provides the highest diversity. For this reason, we can 

state that, in general, the CM approaches are those which provide the best balance between 

accuracy and diversity. However, as the plots of the Pareto frontiers show, there may be 

differences among the four CM approaches. Looking at the plots, Mdl1 should be preferred to 

any other CM approach when the type of data is similar to the cases of DSet 1 and DSet 2. 

Except one case, Mdl1 provides the highest accuracy while the difference in diversity is 

minor. When the type of data is similar to DSet 3, i.e., sparsity is around 98% but the users’ 

behavior is quite homogeneous, Mdl2 dominates Mdl1. The EPF approach is also always 

very close to the frontier, except in the two regions of DSet 3. Considering the EPF is 

probably the less complex CARS methods, from a practical viewpoint using this approach 

when the type of data is similar to DSet 1 and DSet 2 is reasonable. The result is confirmed 

by the fact that EPF is the only non-CM approach appearing in Fig. 4. A different comment 

has to be done for the post-filtering approaches. They should not be used if the goal is 

achieving a good balance between accuracy and diversity because they always are at the 

extreme of the Pareto frontier. Filter PoF is often the most accurate approach but its diversity 

is significantly (in a statistical way) lower than that of Weight PoF. On the contrary, Weight 

PoF provides high diversity but poor accuracy. This analysis is confirmed by Fig. 4 and Fig. 

5. 

 

5. Conclusions 

In this paper, we compared the performance of various pre-filtering, post-filtering and 

contextual modeling methods in terms of their predictive performance and diversity measures 

across various experimental conditions to determine which method dominates the others and 

under which circumstances. We have identified three key factors affecting performance of 

Context-Aware Recommender Systems (CARSes), including the type of the recommendation 

task (Find-All vs. Top-k), context granularity (coarse vs. fine granularity of the contextual 

information) and the type of the data set (DSet 1 characterized by low sparsity and high 

heterogeneity, DSet 3 characterized by high sparsity and low heterogeneity, DSet 2 with 

medium levels of sparsity and heterogeneity). Then we have compared the performance of 

different CARS methods using the marginal and regional analysis techniques. Using the 

marginal analysis, we have examined how each of the three factors separately affects the 

performance of the CARS methods and concluded that the recommendation task affects both 
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accuracy and diversity in a way which depends on the specific performance measure 

considered. Context granularity only affect accuracy: when context becomes finer, the 

accuracy of CARSes decreases. The type of data affects accuracy and diversity showing a 

trade-off: if the heterogeneity of customers’ behavior increases, the accuracy of CARSes 

decreases while diversity increases. 

 

Using the regional analysis, we have examined which of the CARS methods dominates the 

others in each of the regions of the 3-dimensional factor space defined by the 

recommendation task, context granularity and the data type. It turned out that none of the 

CARS methods uniformly dominates the others in all the regions for both the 

recommendation accuracy and diversity measures. However, the Mdl and the Filter PoF 

methods statistically outperform other CARS alternatives in terms of the accuracy measure 

across all of the factor space. Similarly, Weight PoF and the EPF methods statistically 

outperform the other CARS methods in terms of the diversity measure across most of the 10 

regions. Finally, the Mdl class of methods outperforms the rest of the CARS methods in 

terms of the combination of the accuracy and the diversity measures.  

 

Based on this analysis, the Mdl-oriented contextual modeling methods constitute a reliable 

“best bet” when choosing a sound CARS approach because these methods provides a nice 

performance balance in terms of accuracy and diversity measures. However, even such good 

CARS methods as Mdl do not dominate all other techniques across all the experimental 

settings, and other methods, such as Filter PoF and even Weight PoF, also constitute viable 

alternatives for certain regions of the factor space, certain experimental settings and specific 

performance measures. 
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