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Abstract

This paper generalizes the mean–variance preferences to mean–variance–ambiguity

preferences by relaxing the standard assumption that probabilities are known and assum-

ing that probabilities are themselves random. It introduces a new measure of uncertainty,

one that consolidates risk and ambiguity, which is employed for extending the CAPM

from risk to uncertainty by incorporating ambiguity. This model makes the distinction

between systematic ambiguity and idiosyncratic ambiguity and proves that the ambiguity

premium is proportional to the systematic ambiguity. The merit of this model is twofold:

first, it can be tested empirically; second, it can serve for measuring the performance of

portfolios relative to their uncertainty.
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1 Introduction

The assumption underlying modern portfolio theory is that the probabilities of returns are

known, such that there is a unique mean–variance space on which preferences are imposed and

the capital asset pricing model (CAPM) is established. In reality probabilities are usually un-

known and an additional premium is required to induce investors to bear ambiguity (Knightian

uncertainty).1 What is the nature of this premium? Is it proportional to the entire, system-

atic and idiosyncratic, ambiguity? Or, is it proportional only to the systematic ambiguity?

Can systematic ambiguity and idiosyncratic ambiguity be differentiated? The current paper is

motivated by these questions.

This paper contributes to the existing literature in four ways. First, it introduces an objec-

tive empirically applicablemeasure of uncertainty that consolidates risk and ambiguity. Second,

it generalizes the mean–variance space (Markowitz (1952, 1959)) to a mean–uncertainty space,

i.e., a mean–standard-deviation–ambiguity space, where uncertainty is considered to be the ag-

gregation of risk and ambiguity. It establishes the efficient frontier and the capital market line

(CML) and characterizes the mean–uncertainty preferences in this space. Third, the paper gen-

eralizes the CAPM to incorporate ambiguity while making the distinction between systematic

ambiguity and idiosyncratic ambiguity. It proves that investors are rewarded for systematic un-

certainty, but not for idiosyncratic uncertainty. Fourth, the paper introduces new performance

measures by extending the Treynor and Sharpe ratios from risk to uncertainty.

Izhakian (2011), which introduces a new model of ambiguity, called shadow probability theory

(henceforth shadow theory) and studies how it affects decision makers’ choices,2 provides the

theoretical underpinning of the current paper on the implication of ambiguity for capital asset

pricing. The measure for the degree of ambiguity derived in Izhakian (2011) is a center piece

of the theoretical model established in this paper. Shadow theory assumes that not only are

the returns on assets random but the probabilities of these returns are themselves also random.

The main idea of this theory is that, just as we measure the degree of risk by the variance of

outcomes, so too can the degree of ambiguity be measured by the variance of the probability of

loss (or gain).3 To demonstrate the merits of shadow theory for asset pricing, Izhakian (2011)

1Risk is defined as a situation in which the event to be realized is a-priori unknown, but the odds of all
possible events are perfectly known. Ambiguity refers to conditions in which not only is the event to be realized
a-priori unknown, but the odds of events are also either not uniquely assigned or are unknown.

2Shadow theory generalizes Schmeidler’s (1989) Choquet expected utility and Tversky and Kahneman’s (1992)
cumulative prospect theory.

3Measuring risk by the variance of outcomes is admissible under some conditions; the same is true for
measuring ambiguity by the variance of probabilities.
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proposes a well-defined ambiguity premium, which is completely separate from the conventional

risk premium. This premium has been tested empirically by Brenner and Izhakian (2011), who

show that ambiguity has a significant impact on stock market return. The present paper takes

this line of research one step further by making the distinction between systematic ambiguity

and idiosyncratic ambiguity and employing this distinction to refine the ambiguity premium.

The neoclassical finance literature dealing with capital asset pricing usually assumes away

ambiguity and focuses on the risk–return relationship in the mean–standard-deviation space.

The ability of this literature, including the widely used CAPM (Treynor (1961) and Sharpe

(1964)), to record the full realistic picture of uncertainty has been challenged over the years. The

current paper generalizes the mean–standard-deviation space to a mean–standard-deviation–

ambiguity space and forms the relationships between risk, ambiguity and return. It relaxes the

assumption that return are normally distributed with known parameters (mean and variance)

and assumes that these parameters are themselves random. That is, ambiguity prevails and

takes the form of random probabilities, dominated by second-order probabilities. As investors

are assumed to be ambiguity averse, the reduction between first-order and second-order prob-

abilities is relaxed. To combine investors’ beliefs regrading outcomes and their probabilities,

the paper introduces a new measure of uncertainty, which aggregates risk and ambiguity into

a single consolidated measure. Given an expected return, in our model, optimal portfolios are

those with the minimal degree of uncertainty.

This paper introduces a novel capital asset pricing model, called the shadow capital asset

pricing model (SCAPM), which proves that the total uncertainty of an asset is not the relevant

determinant of its price but only the systematic component. The SCAPM makes the dis-

tinction between systematic ambiguity, dominated by economy-wide shocks, and idiosyncratic

ambiguity, dominated by firm-specific shocks.4 Formally, the ambiguity premium is extracted

by introducing a beta ambiguity, in addition to the conventional beta risk. The SCAPM asserts

that the expected return on an asset depends on the correlation of its probability of loss with

the probability of loss on the market portfolio and not on the ambiguity associated with its own

probability fluctuations. A high degree of ambiguity is not necessarily accompanied by a higher

expected return, which is a function of the systematic component of ambiguity, measured by

the beta ambiguity with respect to the market portfolio. Since risk and ambiguity are usually

negatively related (see Izhakain (2012)), in SCAPM the systematic risk and the systematic

4The CAPM makes the distinction between systematic risk, for which investors are rewarded via a higher
rate of return, and idiosyncratic risk, which is not accompanied by an additional reward.

3



ambiguity are the optimal and not necessarily the minimal for a given expected return. Their

aggregation to systematic uncertainty, however, is the minimal possible degree of uncertainty

for a given level of expected return. A special case of the SCAPM is when probabilities are

known, i.e., the degree of ambiguity is zero. In this case the beta ambiguity equals zero, the

model collapses to the classical CAPM and the optimal portfolio has minimal risk for a given

expected return.

Decomposing uncertainty into systematic and idiosyncratic components allows for extending

the Sharpe ratio and the Treynor ratio, which are commonly used for evaluating portfolio

performance, from risk to uncertainty. The Sharpe ratio evaluates the premium per unit of the

entire, systematic and idiosyncratic, risk borne by an asset, while the Treynor ratio evaluates

the premium per unit of systematic risk borne. Our extended performance measures evaluate

the uncertainty premium per unit of total, systematic and idiosyncratic, uncertainty borne and

the premium per unit of systematic uncertainty borne.

The theoretical implications of ambiguity for asset pricing have been studied mainly in the

context of the equity premium. Chen and Epstein (2002), Cao et al. (2005), Nau (2006),

Izhakian and Benninga (2011) and Ui (2011), for example, focus on decomposing the equity

premium into two components: risk premium and ambiguity premium. Dow and Werlang

(1992), Cao et al. (2005) and Easley and O’Hara (2009) attribute limited market participation

to ambiguity aversion and study its impact on the equity premium. Uppal and Wang (2003),

Maenhout (2004), Taboga (2005) and Gollier (2011), for example, study issues of optimal

portfolio selection under ambiguity. Leippold et al. (2008), Gagliardini et al. (2009) and Ju

and Miao (2011), for example, tie ambiguity to puzzling financial phenomena - such as the

equity premium puzzle, the risk-free rate puzzle and the excess volatility puzzle.5 Unlike these

papers, which consider the ambiguity premium of an asset independently of ambiguity of other

assets in the market, the current paper studies the nature of asset ambiguity relative to market

ambiguity.

Several extension of the mean–variance approach to ambiguity have been suggested by

the literature. Pflug and Wozabal (2007) add ambiguity to the mean–variance preferences

by applying the max-min approach of Gilboa and Schmeidler (1989) to a confidence set of

probability distributions. Boyle et al. (2011) assume a mean–variance space with known

variances and unknown mean. The SCAPM is broader: it assumes an unknown mean and an

unknown variance. An unknown variance plays an important role in ambiguity, especially where

5For a recent survey on ambiguity in asset pricing and portfolio choice see Guidolin and Rinaldi (2010).
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an asset portfolio is concerned. The importance of random variance is stressed by Bollerslev

et al. (1988), who show that conditional covariances are quite variable over time and are a

significant determinant of time-varying risk premia.

A study that is related to this paper, Maccheroni et al. (2011), defines the ambiguity

premium, referred to as alpha, by the residual between expected return and the risk premium

reward for systematic risk. In an earlier, Epstein and Schneider (2008) show that the ambiguity

premium depends on the idiosyncratic risk in fundamentals, which is practically equivalent to

the alpha proposed by Maccheroni et al. (2011). Even though the SCAPM is based on a

different decision-making model, it adds to these papers by providing a closed-form solution for

deriving the alpha and showing that it can be explained as the reward for systematic ambiguity.6

Chen and Epstein (2002) generalize the consumption CAPM by building dynamic recursive

multiple prior max-min preferences. Maccheroni, et al. (2009) use variational preferences to

derive a version of the CAPM that under monotone mean–variance preferences can be gener-

alized to incorporate ambiguity.7 In these models an asset’s beta is derived by the covariance

between its return and the pricing kernel, which makes no distinction between risk and am-

biguity. Unlike these models, the SCAPM achieves a complete separation between risk and

ambiguity and attains a well-defined beta ambiguity entirely separated from the beta risk.

Merton (1973) introduces a dynamic version of the CAPM and shows that the expected

returns on risky assets may differ from the risk-free rate even when these assets do not have

systematic risk. He attributes this difference to shifts in the investment opportunity set corre-

lated with a zero-beta portfolio. SCAPM suggests an alternative explanation; it attributes the

difference between expected returns on assets with zero systematic risk and the risk-free rate

to the presence of ambiguity. In particular, it suggests that this additional expected return is

proportional to the beta ambiguity.8

The theoretical model introduced in this paper paves the way for further, especially empiri-

cal, research into the risk–ambiguity–return relationship. The beta risk and the beta ambiguity

are both empirically testable.

The rest of the paper is organized as follows. For completeness, Section 2 reviews the main

principles of shadow theory. Section 3 extends the classical mean–standard-deviation space

6Maccheroni et al.’s (2011) model is based on Klibanoff et al.’s (2005) smooth model of ambiguity and
its recursive form (Klibanoff et al.(2009)). Epstein and Schneider’s (2008) model is based on Gilboa and
Schmeidler’s (1989) max-min model.

7The Giloba and Schmeidler (1989) and Hansen and Sargent (2001) models are special cases of variational
preferences.

8The CAPM has been adjusted to other sources of risk. For example, Acharya and Pedersen (2005) introduce
a liquidity-adjusted CAPM consisting of beta risk and beta liquidity.
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to mean–standard-deviation–ambiguity and forms preferences. Section 4 builds the efficient

frontier and the CML in the mean–uncertainty settings. Section 5 generalizes the CAPM to

incorporate ambiguity and discusses the implications of various components of ambiguity for

capital asset pricing. Section 6 discusses the security market line (SML) and performance

measures. Section 7 concludes.

2 The model of ambiguity

Izhakian (2011) introduce a novel ambiguity measure derived from a new model of decision

making under ambiguity, called shadow probability theory, which provides the theoretical un-

derpinning of this paper. We first review its main principles and its basic implementation for

asset pricing.

2.1 Shadow theory

Shadow theory generalizes Schmeidler’s (1989) Choquet expected utility by adding reference-

dependent beliefs. Like Tversky and Kahneman’s (1992) cumulative prospect theory, it assumes

that investors have a reference point relative to which outcomes are classified as a loss or as a

gain.9 Consequences lower than the reference point are considered as a loss and consequences

higher than the reference point are considered as a gain. The cumulative probability of loss

events plays an important role in measuring the degree of ambiguity.

Shadow theory assumes two tiers of uncertainty, one with respect to outcomes and the other

with respect to the probabilities of these outcomes, each tier of uncertainty being modeled by

a separate state space. This structure introduces a complete distinction of risk from ambiguity

with regard to both beliefs and preferences. The degree of ambiguity and the investor’s attitude

toward it are then measured with respect to one space, while risk and the investor’s attitude

toward it apply to the second space. As a consequence of random probabilities and the nonlinear

ways in which individuals may interpret probabilities, perceived probabilities are nonadditive.

Ambiguity aversion results in a subadditive probability measure, while ambiguity seeking results

in a superadditive measure.10

The main idea of shadow theory is that the probabilities of outcomes are random; thus, just

9Cumulative prospect theory generalizes the original prospect theory of Kahneman and Tversky (1979) from
risk to uncertainty. It modifies the probability weightings to allow a state space with an infinite support and
to solve issues related to stochastic dominance.

10Nonadditivity means that probabilities do not necessarily add up to unity.
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as the degree of risk can be measured by the variance of outcomes, the degree of ambiguity can

be measured by the variance of probabilities. However, where the variance of probabilities is

concerned, the question is: to the probability of which event does the variance apply? Given

a classification of outcomes as a loss or as a gain, Izhakian (2011) proves that the degree of

ambiguity can be measured as four times the variance of the cumulative probability of loss,

which is equal to four times the variance of the cumulative probability of gain.

In asset pricing ambiguity implies a premium, called the ambiguity premium, in addition to

the conventional risk premium. The risk premium is the premium that investors are willing to

pay for replacing a risky bet by its expected outcome. The ambiguity premium is the premium

that investors are willing to pay for replacing an ambiguous bet, i.e., a bet with unknown

probabilities, by a risky bet, i.e., a bet with known probabilities, having an identical expected

outcome. The uncertainty premium is the total premium that investors are willing to pay for

replacing an ambiguous bet by its expected outcome, i.e., the accumulation of the risk premium

and the ambiguity premium.

An investor is ambiguity averse if she prefers the expectations of the random probability

of an outcome over the random probability itself. These preferences concerning ambiguity are

modeled by a continuous twice-differentiable function ψ (·), called the sake function. Ambiguity

aversion takes the form of a concave sake function, while ambiguity loving takes the form of a

convex sake function and ambiguity neutrality the form of a linear sake function. Preferences

concerning risk are modeled by a continuous twice-differentiable utility function U (·). As usual,

risk aversion takes the form of a concave utility function, risk loving the form of a convex utility

function and risk neutrality the form of a linear utility function. The Arrow-Pratt coefficient of

absolute risk aversion is then defined by −U′′(·)
U′(·) . Similarly, the coefficient of absolute ambiguity

aversion is defined by −ψ′′(·)
ψ′(·) .

Let r ∈ R be the random and ambiguous return on an asset. The uncertainty premium K,

derived by shadow theory, is formed by

K ≈ −1

2

U′′ (E [r])

U′ (E [r])
Var [r]︸ ︷︷ ︸

R

−1

8

[
ψ′′ (E [PL])

ψ′ (E [PL])
+
ψ′′ (E [PG])

ψ′ (E [PG])

]
f2 [r]︸ ︷︷ ︸

A

, (1)

where R is the risk premium and A is the ambiguity premium. The parameters PL and PG are

the random probabilities of loss and gain, respectively. Their expectations, E [PL] and E [PG],

are taken with respect to the second-order probability distribution. That is,

E [PL] =
∑
i

χiPi (r < rk) and E [PG] =
∑
i

χiPi (r ≥ rk) , (2)

7



where rk is the reference return which distinguishes losses from gains, and χi is the probability

of the probability distribution Pi.

The expected return, E [r], and the variance of return, Var [r], are evaluated using expected

probabilities, i.e., a double expectation of the random probability of return and the second-order

probabilities. The component

f2 [r] = 4Var [PL] = 4Var [PG] (3)

is Izhakian’s measure of ambiguity, which is four times the variance of the probability of loss

or four times the variance of the probability of gain, taken with respect to the second-order

probability distribution χ. It is important to note that f2 ∈ [0, 1] attains its minimal value,

0, when all probabilities are known, and its maximal value, 1, only in the extreme case of a

binomial distribution with a random probability of each event that can take the probabilities

0 or 1 with equal likelihood.

2.2 Illustration

To illustrate the concept of ambiguity in the context of shadow theory, let us consider the

following binomial example of an asset with two possible future returns: d = −10% and u =

20%. Assume for the moment that the probabilities of d and u are known, say P (d) = P (u) =

0.5. The average return is, thus, 5% and the standard deviation of return, which proxies for

the degree of risk, is 15%. Obviously, in this case, since probabilities are precisely known,

ambiguity is not present and investors face only risk.

Assume now that the probabilities of d and u can be either P (d) = 0.4 and P (u) = 0.6

or alternatively P (d) = 0.6 and P (u) = 0.4, where these two alternative distributions are

equally likely. This means that investors now face not only risk but also ambiguity, which

can be measured using the variance of the probability of loss. Computing this variance yields

Var [PL] = 0.01, which in turn implies a degree of ambiguity of f = 0.2. Notice that the

degree of risk has not changed since the variance is computed using the expected probabilities

E [Pd] = E [Pu] = 0.5.

If we consider, for example, investors of the constant relative risk aversion (CRRA) type

and the constant absolute ambiguity aversion (CAAA) type, with the coefficient of risk aversion

γ = 2 and the coefficient of ambiguity aversion η = 2, Equation (1) then becomes

K ≈
1

2
γVar [r] +

1

4
ηf2 [r] = Var [r] +

1

2
f2 [r] . (4)
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The uncertainty premium when probabilities are known consists only of the risk premium

and satisfies K = Var [r] = 2.25%. The price of this alternative reflects a total return of

7.25%. In the second alternative, when probabilities are unknown, the uncertainty premium is

K = Var [r] + 1
2
f2 [r] = 2.25% + 2.0% = 4.25%, and the price reflects a total expected return

of 9.25%.

3 The mean–standard-deviation–ambiguity space

Underpinned by shadow theory, this section relaxes the standard assumption of modern port-

folio theory (MPT) that probabilities of return are known and assumes that these probabilities

are themselves random. It generalizes the mean–standard-deviation space to mean–standard-

deviation–ambiguity and analyzes the tradeoff between expected return, risk and ambiguity.

Assuming mean–standard-deviation preferences, MPT introduced by Markowitz (1952, 1959)

and Tobin (1958) asserts that a rational investor in an efficient markets selects a portfolio of

assets that maximizes expected return for a given amount of risk, measured by the standard

deviation of return. The main notion underlying MPT is the concept of diversification, which

asserts that the collectively risk of a portfolio of non-perfectly positively correlated assets is

lower than the risk of the individual assets. To allow preferences to be of the mean–standard-

deviation type and risk to be measured by the standard deviation of return, MPT usually

assumes that returns are normally distributed, so that probability distributions are completely

characterized by a known mean and a known variance.

Returns on assets, in our model, are assumed to be normally distributed, but the parameters,

governing the distribution, namely mean and variance, are assumed to be random.11 Formally,

the normal probability distribution of an asset’s return, Pi, is governed by a random mean µ

and a random standard deviation σ, designated i = 1, . . . ,m. 12 The reference point which

distinguishes losses from gains, agreed upon by all investors, is the risk-free rate of return,

denoted rf . All assets are evaluated by their returns relative to rf . Any return lower than rf ,

even if it is positive, is considered as a loss and any return higher than rf is considered as a

11This assumption can be replaced by assuming that the utility function is either quadratic or of the constant
absolute risk aversion type, for which preferences concern only the first two moments of the distribution. See,
for example, Ljungqvist and Sargent (2004, 154-155). This assumption can also be replaced by assuming an
elliptical distribution, which is characterized by the first two moments, mean and variance.

12Along this paper Greek letters stand for random variables and when the context is clear the index i
designating a possible realization is omitted.
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gain. The degree of ambiguity is then measured by

f2 [r] = 4Var

[∫ rf

−∞

1√
2πσ2

e−
(r−µ)2

σ2 dr

]
= 4Var [Φ (rf ;µ, σ)] , (5)

where Φ (·) stands for the cumulative normal probability distribution.

To generalize the mean–variance space to mean–uncertainty, the following aggregation of

the risk and the ambiguity measures to a consolidated uncertainty measure is proposed.

Model 3.1. The aggregated measure of risk and ambiguity, called the uncertainty measure,

is defined by

∇ [r] ≡

√
Var [r]

1− f2 [r]
. (6)

Model 3.1 provides a unified measure of uncertainty in units of return. This measure forms

a mapping from [0, 1], determined by the measure of ambiguity f2 [r], to [0,∞). When no

ambiguity is present f2 [r] = 0 and the uncertainty measure collapses to the simple standard

deviation, which proxies risk. In the second extreme case, when f2 [r] = 1, the degree of

uncertainty is infinite. An infinite degree of uncertainty is also attained when the standard

deviation tends to infinity. It is important to note that ∇ [·] is an objective measure, which

captures only beliefs, so that subjective preferences are not involved in measuring the degree of

uncertainty.13

The mean–uncertainty space is built in two steps. First, the mean–standard-deviation–

ambiguity space in R3 is established. Then, in a second step, using the uncertainty measure

∇ [·], triplets in R3 are projected to R2, defining a subspace, refereed to as the mean–uncertainty

space. Preferences defined in the mean–standard-deviation–ambiguity space induce the prefer-

ences in the mean–uncertainty space.

The mean–standard-deviation–ambiguity space is a subset of R3 defined by the mean E [r],

the standard deviation Std [r], and the normalized ambiguity f̂ [r], which is formed as follows:

f̂ [r] ≡ Std [r]

√
f2 [r]

1− f2 [r]
. (7)

This normalization is applied for two reasons. The first is that since ambiguity f is measured

in units of probabilities, while E [r] and Std [r] are in units of return; Equation (7) normalizes f

to the units of return. Second, f ranges between 0 and 1, while E [r] and Std [r] range between

0 and ∞; Equation (7) maps f to [0,∞).

A portfolio h = (h1, . . . , hn), consisting of n assets with a proportion hj ∈ R of asset j, is rep-

13Section 4 elaborates on the construction of ∇ [·].
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resented in the mean–standard-deviation–ambiguity space by a triplet
(
E [rh] , Std [rh] , f̂ [rh]

)
∈

R3, where rh =
∑n

j=1 hjrj. Assuming for the moment that the risk-free asset in not available,

the set of feasible portfolios can be defined by the set of parametric triplets

S =
{(

E [rh] , Std [rh] , f̂ [rh]
) ∣∣ ∑

j hj = 1
}
.14 Each point in S, defined by E [rh], Std [rh] and

f̂ [rh], designates an investment opportunity. Markets are incomplete: the set of feasible port-

folios is less than the whole
{
E, Std, f̂

}
, i.e., S ⊂ R3. To show this, the case of two perfectly

correlated returns with different means has to be ruled out. This case implies that one could

short one asset, long the other asset, and create an infinite expected return with no uncertainty.

But, such a case is a violation of the law of one price, which must be satisfied since markets

are in equilibrium. In other words, the law of one price implies that there is a bounded set of

feasible portfolios in the mean–standard-deviation–ambiguity space.15

In a two-asset economy the set of feasible portfolios, S, draws a curve in the mean–standard-

deviation–ambiguity space; for three or more assets, conditional on the relationships between

their probability moments, it draws a surface or a volume. For example, if no ambiguity is

present, S draws a plane in the mean–standard-deviation–ambiguity space. S is not necessarily

convex over the entire domain defined by the parameter h, i.e., it can possibly be non-convex

for a subdomain of h. S is bounded by a hyperbola shape in the mean–standard-deviation

section. In the mean–ambiguity section S is also bounded but not necessarily by a concave

shape. The upper boundary of S, refer to as the uncertain asset frontier, takes the shape of a

curve or a surface in R3. A portfolio that lies on the uncertain asset frontier is denoted e.

Investors are assumed to be risk averse and ambiguity averse, and characterized by the

utility function U (·) and the sake function ψ (·), respectively, which are both monotonically

increasing, concave and twice differentiable. Their decisions are considered in the context

of a static model: investments are made in the first period, and the outcomes occur in the

second period. Investors are assumed to maximize the expected utility of the end-of-period

consumption. Since life ends at the second period, there is no difference between consumption

and wealth: all end-of-period wealth is consumed. Investors can borrow or lend unlimited

quantities at the risk-free rate of return, rf , which is exogenous (see, for example, Sharpe

(1964)). All available assets for trading are risky and ambiguous, except for the risk-free asset,

which has a constant rate of return across all states of nature. All the assumptions of the

CAPM are maintained, except for the assumption that the probabilities of return are known.16

14In this case, the zero return can be taken as the reference point.
15For a formal proof see Theorem 4.2 below.
16The CAPM assumes that markets are efficient in the sense that all information is available to all investors,
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Given the decision to save an amount w of her welfare, an investor faces the decision

regarding the composition of her optimal portfolio, i.e., the proportions of the risk-free asset

and the uncertain assets. Given two portfolios with identical risk and ambiguity, a rational (risk

and ambiguity averse) investor prefers the portfolio with the higher expected return; given two

portfolios with identical expected return and risk, she prefers the portfolio with the lower degree

of ambiguity; given two portfolios with identical expected return and ambiguity, she prefers the

portfolio with the lower degree of risk.

Higher expected return shifts the distribution of future consumption toward higher levels,

implying a higher expected utility. A symmetric risk increment implies higher probabilities of

extreme events, which in turn implies a lower expected utility, since investors are risk-averse.17

Particularly, the expected utility generated by a normally distributed portfolio is a declining

function of the standard deviation of return.18 A second source of uncertainty is ambiguity,

which also has a negative impact on expected utility. Probabilities shaped by ambiguity-averse

investors are subadditive, which means that they are a decreasing function of the degree of

ambiguity f2 and aversion to it. 19 Preferences toward risk and toward ambiguity define a set

of portfolios over which the investor is indifferent. Each such set draws a hull in R3, referred

to as the indifference surface. An investor chooses from among all feasible portfolios the one

placing him on the indifferent surface representing the highest level of utility.

Assuming that there are at least three ambiguous–risky assets, Figure 1 illustrates the set of

feasible portfolios and the indifference surface in the mean–standard-deviation–ambiguity space

in an economy without a risk-free asset. The upper concave shell represents the indifference

surface describing the tradeoff, derived by preferences, between risk, ambiguity, and expected

return. The higher the indifference surface the higher the level of expected utility. The lower,

horizontal conic volume represents all feasible portfolios.

The tradeoff between the unexpected return of portfolio h, rh − E [rh], and its degree of

including possible variances, possible covariances, possible mean rates of returns and all the other parameters.
All investors have equal access to all securities in a market with no taxes and no commissions, and can short
any asset and hold any fraction of any asset. They behave competitively and are faced with a perfect capital
market in the sense that they can buy and sell as much as they want of any asset without affecting its price.

17Risk aversion implies that increasing the probabilities of high consumption levels and low consumption
levels by the same magnitude has a negative impact on expected utility.

18For a detailed discussion about mean–variance preferences see, for example, Fama and Miller (1972 ).
19Subadditive means that probabilities add up to a number lower than 1.
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Figure 1: The feasible portfolios and the indifferent surface.
This figure illustrates the set of feasible portfolios in the mean–standard-deviation–ambiguity space,
i.e., in R3, in an economy without a risk-free asset. The x-axis describes the degree of risk, measured by
the standard deviation. The y-axis describes the normalized degree of ambiguity. The z-axis describes
the expected return. The upper concave shell is the indifference surface and the lower, horizontal
conic volume represents the feasible portfolios.

uncertainty can be formulated by20

Rh =
rh − E [rh]√

Var[rh]
1−f2[rh]

, (8)

where the normalized unexpected return Rh is the random net unexpected return per unit of

uncertainty borne. Notice that Rh is normally distributed, since rh is normally distributed.

Assuming a two-period economy, the future consumption c conditional on saving w is deter-

mined by the one-period portfolio’s return rh, defined by the terminal wealth c = w (1 + rh).

Using Equation (8) the future consumption can be formulated by

c = w

(
1 + E [rh] +RhStd [rh]

1√
1− f2 [rh]

)
.

Equation (8) makes it possible to express the expected utility in terms of Rh, since the terminal

wealth is determined by Rh. The expected utility associated with the choice to save w in

portfolio h is then

E [U (c)] =
∑
i

χi

∫ ∞

−∞
U

(
w

(
1 + E [rh] +RhStd [rh]

1√
1− f2 [rh]

))
ϕ (Rh;µi,h, σi,h) dRh,

where µh and σh are the random mean and variance of the normalized return Rh, respectively,

and ϕ (Rh;µh, σh) stands for the normal probability density function of Rh conditional on µh

and σh. Since expected utility depends entirely on w, E [rh], Var [rh] and f2 [rh], it can be

20Fama and Miller (1972) apply the same idea to the tradeoff between return and standard deviation.
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written as

E [V (w,E [rh] , Std [rh] ,f [rh])] .

One can verify that the marginal expected utility with respect to E [rh] is positive:

∂E [V (·)]
∂E [rh]

= w
∑
i

χi

∫ ∞

−∞

∂U(c)

∂c
ϕ (Rh;µi,h, σi,h) dRh > 0.

That is, while all other parameters remain unchanged, expected utility is an increasing function

of expected return. The marginal expected utility with respect to Std [rh] is negative:

∂E [V (·)]
∂Std [rh]

= w
1√

1− f2 [rh]

∑
i

χi

∫ ∞

−∞

∂U(c)

∂c
ϕ (Rh;µi,h, σi,h)RhdRh < 0.

To see this, notice that µh is relatively close to 0, and, therefore, E [µh] =
∑

i χiµh ≈ 0. Because

the marginal utility is a decreasing function of consumption (a concave utility function) and

Rh is symmetrically distributed around µh, the value obtained is negative. From the same

considerations, the marginal expected utility with respect to f [rh] is also negative:

∂E [V (·)]
∂f [rh]

= wStd [rh]
f [rh]

(1− f2 [rh])
3
2

∑
i

χi

∫ ∞

−∞

∂U(c)

∂c
ϕ (Rh;µi,h, σi,h)RhdRh < 0.

The conclusion that emerges from this analysis, which proves that risk and ambiguity have a

negative impact on expected utility while expected return has a positive impact, is that expected

return can be considered as compensation for bearing risk and ambiguity. This understanding

allows for a defining of the mean–standard-deviation–ambiguity preferences, which in turn

enables the definition of efficient portfolios. A portfolio h, characterized by the mean E [rh],

the standard deviation Std [rh], and the ambiguity f [rh], is efficient if there is no other portfolio

with the same standard deviation and the same ambiguity that has a higher expected return,

E [rh]. The set of efficient portfolios establishes the efficient frontier, which takes the shape of

a surface in R3. Technically, in an economy without a risk-free asset the efficient frontier is

the upper boundary of the set of feasible portfolios—the uncertain asset frontier—which can

be constructed by employing numerical methods.

Including a risk-free asset draws infinitely many lines stretching from the point (rf , 0, 0)

and tangent to the uncertain asset frontier. Each line tangents the uncertain asset frontier at

a different point
(
E [re] , Std [re] , f̂ [re]

)
and satisfies(

E [hrf + (1− h) re] , Std [hrf + (1− h) re] , f̂ [hrf + (1− h) re]
)
, (9)

where E [re] is the expected return on portfolio e lying on the uncertain asset frontier. These

tangent lines stretching from rf are linear in h, as the following proposition proves.
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Proposition 3.2. Assuming that the reference point is rf and that the efficient portfolio e is

normally distributed then the line drawn by the parametric triplet(
E [hrf + (1− h) re] , Std [hrf + (1− h) re] , f̂ [hrf + (1− h) re]

)
,

is linear in h.

Proposition 3.2 proves that when a risk-free asset exists any efficient portfolio lies on a

straight line stretching from rf and is tangent to the uncertain asset frontier. In such an

economy the efficient frontier is drawn by the collection of these lines. Expected utility is an

increasing function of E [rh] and a decreasing function of Std [rh] and f [rh]. Hence, expected

utility maximization implies that any optimal portfolio must be a on the efficient frontier. The

particular optimal portfolio is selected by each investor individually according to her preferences

concerning risk and ambiguity.

Figure 2 illustrates the uncertain asset frontier and the efficient frontier in an economy in

which a risk-free asset exists. The straight dashed lines originating from the risk-free rate point

rf and tangent to the curved surface describe the set of efficient portfolios, i.e., the efficient

frontier. Corresponding to her preferences concerning risk and ambiguity, a rational investor

selects one of the portfolios in this set, which is determined by the tangency point of the

indifference surface and the efficient frontier.

Std[r
h
]

E[r
h
]

r
f

f̂ [rh]

Figure 2: The uncertain asset frontier and the efficient frontier
This figure illustrates the uncertain asset frontier and the efficient frontier in the mean–standard-
deviation–ambiguity space, i.e., in R3, when a risk-free asset exists. The x-axis describes the degree
of risk, measured by the standard deviation. The y-axis describes the normalized degree of ambiguity.
The z-axis describes the expected return. The upper concave shell is the indifference surface and the
lower, horizontal shaded concave surface is the uncertain asset frontier. The straight lines drawn from
rf and tangent to the lower, horizontal concave surface describe the set of efficient portfolios.
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4 The capital market line

To construct the capital market line (CML) the mean–standard-deviation-ambiguity space is

projected to the mean–uncertainty space in R2. For this purpose, the following assumption is

made.

Assumption 4.1. All investors aggregate risk and ambiguity to uncertainty by Model 3.1 and

have preferences concerning this uncertainty.

The consequence of this assumption is that all investors project the set of feasible portfolios,

the uncertain asset frontier, and the efficient frontier in the same way, which implies that these

three sets are unique in the mean–uncertainty space. It is important to note that Assumption

4.1 centers around beliefs and not around preferences. It asserts that all investors employ the

same methodology to consolidate their beliefs regarding the degree of uncertainty based on their

common beliefs regarding risk and ambiguity. As a result all investors see the same tradeoff

between risk and ambiguity. Given their beliefs about the degree of uncertainty, each of the

investors selects a portfolio depending upon their personal preferences concerning uncertainty.

It is assumed that all investors solve the same optimization problem to maximize expected

return conditional on the degree of uncertainty. Since all of them have the same investment

opportunities to choose from, the same information, and the same decision procedure, every

selected portfolio lies on the same efficient frontier.

The projection of the mean–standard-deviation–ambiguity space to the mean–uncertainty

space is obtained by the mapping
(
E [r] , Std [r] , f̂ [r]

)
7→ (E [r] ,∇ [r]), where ∇ [r] stands for

the degree of uncertainly. This mapping, defined by the Euclidean norm∣∣∣(Std [r] , f̂ [r]
)∣∣∣ =

√
Var [r] + f̂2 (r), (10)

can be written (by substituting for f̂) as∣∣∣(Std [r] , f̂ [r]
)∣∣∣ =√ Var [r]

1− f2 [r]
= ∇ [r] , (11)

which is the uncertainty measure proposed by Model 3.1. Equation (11) maps every point(
E, Std, f̂

)
∈ R3 in the mean–standard-deviation–ambiguity space to a point

(
E, Std√

1−f2

)
∈ R2

in the mean–uncertainty space. Particulary, the uncertain asset frontier is mapped to a unique

curve in the mean–uncertainty space; the efficient frontier is mapped to a unique line in the

mean–uncertainty space called the capital market line (CML); and each indifference surface is

mapped to a single curve in the mean–uncertainty space.

Assume for the moment a single uncertain asset, denoted j, and a risk-free asset. Figure 3
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shows the opportunity set available to the investors in the mean–uncertainty space. The slope

of the opportunity line is given by

dE [r]

d∇ [r]
=

E [rj]− rf
∇ [rj]

,

and its intercept is the risk-free rate. That is, the intercept is the portfolio consisting of only

the risk-free asset, which is the only portfolio associated with a zero degree of uncertainty. The

dashed line depicts the opportunities that are only possible if short sales are allowed.

E[r
h
]

r
f

h2<0

h1<0

h=(0,1)

h=(1,0)

∇ [rh]

E[rj ]−rf
∇[rj ]

Figure 3: The opportunity set of one uncertain asset and a risk-free asset
This figure describes the opportunity set in the mean–uncertainty space, when there is only one
uncertain asset and a risk-free asset. The x-axis describes the degree of uncertainty, measured
by ∇, and the y-axis describes the expected return. h = (1, 0) and h = (0, 1) represent a
portfolio consisting of only the risk-free asset and a portfolio consisting of only the uncertain
asset, respectively. Portfolio shares range from zero to one along the solid portion of the
opportunity set. Short sales of either asset extend the opportunity set along the dashed line.

As market are incomplete, the set of feasible portfolios in the mean–uncertainty space is

a subset of R2. The uncertain asset frontier in the mean–uncertainty space takes the form

of a curve which defines the minimal degree of uncertainty, ∇, for every level of expected

return. The degree of uncertainty and the expected return are always nonnegative so that this

frontier lies in the first quadrant. The frontier exists since the law of one price is satisfied

in equilibrium, such that there are no two perfectly correlated assets with different expected

return. Eliminating purely redundant assets from consideration, the next theorem proves this

formally.

Theorem 4.2. If the expected variance–covariance matrix of return is nonsingular and the

degree of ambiguity is not equal to 1, then the uncertain asset frontier and the efficient frontier

exist.
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Writing the uncertain asset frontier as a function of expected return, i.e., the minimal degree

of uncertainty as a function of expected return (see Equation (27)), shows that in almost all cases

the frontier is concave over the entire domain. Exceptions, in which the curve is non-concave

over two relatively small subdomains, might occur in the extreme case where the correlation

between every two assets is close to 1. This can happen since ambiguity and variance are not

independent. The uncertain asset frontier is bounded by a hyperbola defined by the risk of the

feasible portfolios. The following theorem proves this claim.

Theorem 4.3. The uncertain asset frontier is bounded by a hyperbola defined by risk, such that

for any level of expected return the degree of uncertainty is higher than the degree of risk.

The CML takes the form of a line in R2 originating from rf and tangents the uncertain asset

frontier at the point m, which is referred to as the market portfolio or the tangency portfolio.

In equilibrium the expected return on the market portfolio is at least as high as the risk-free

rate. The risk-free rate is lower than the return on the portfolio with the minimal possible

uncertainty; otherwise, investors with a mean–uncertainty objective would try to short the

uncertain assets, which cannot represent an equilibrium (see Cochrane (2001)). All portfolios

lying on the CML are efficient in the sense that they attain the minimal degree of uncertainty

for a given level of expected return. It is important to note that in the mean–uncertainty space

an efficient portfolio is not necessarily a portfolio with minimal risk for a given level of expected

return.

The market portfolio, m, is unique. To see this, note that since the market has already

reached an equilibrium, which is governed by supply and demand, the proportion of any asset

in the market portfolio is given by its capital market value, i.e., the total worth of its shares

divided by the capital value of the whole market. The total worth of an asset’s shares is unique,

which implies that the proportion of each asset in the portfolio is unique and, therefore, the

market portfolio is unique. The market portfolio, marked by the tangency point of the CML

and the uncertain asset frontier, can be solved numerically by equating the slope of the CML

to the slope of the uncertain asset frontier, which can be extracted from Equation (27).

Ambiguity and risk are usually negatively related (see Izhakian (2012)). Therefore, for a

given expected return the variance of the efficient portfolio is at least as high as the minimal

possible variance. Particularly, the market portfolio, m, is not necessarily a portfolio with

the minimal variance for a given expected return, but rather a portfolio with the minimal

uncertainty. Consider two economies with identical parameters, except that one is typified by

ambiguity and the other is not. If the expected return on the market portfolio is the same for
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the two economies, the volatility of the market portfolio in the ambiguous economy is not lower

than that of the market portfolio in the non-ambiguous economy.

The one-period return rm on the market portfoliom is random and ambiguous; it is normally

distributed, governed by the random mean µm and the random variance σ2
m, with an expected

return E [rm] ≥ rf . Any efficient portfolio h in the mean–uncertainty space consists of a propor-

tion (1− h) of the market portfolio and a proportion h of the risk-free asset. Thus, the CML can

be defined by the parameterized straight line (E (h) ,∇ (h)), where E (h) = (1− h) E [rm]+hrf

is the expected return and ∇ (h) = (1− h)∇ [rm] is the degree of uncertainty. Considering a

portfolio h consisting of a proportion (1− h) of m and the remainder h allocated to asset j, if

h = 0, then (E (0) ,∇ (0)) = (E [rm] ,∇ [rm]) and if h = 1, then (E (1) ,∇ (1)) = (E [rj] ,∇ [rj]).

The curve drawn by (E (h) ,∇ [h]) touches the CML at the market point (E [rm] ,∇ [rm]), but

otherwise remains off the CML, though, of course, within the feasible set of portfolios where it

also hits the point (E [rj] ,∇ [rj]).

In the mean–uncertainty space a rational investor minimizes the degree of uncertainty for

a given expected return, such that any portfolio h she chooses lies on the CML. That is, any

optimal portfolio satisfies

E [rh]− rf√
Var[rh]
1−f2[rh]

=
E [rm]− rf√

Var[rm]
1−f2[rm]

. (12)

The expected excess return over the risk-free rate, formed by E [rh]− rf , defines the uncertainty

premium associated with portfolio h, which is the reward for its uncertainty ∇ [rh] =
√

Var[rh]
1−f[rh]

.

The CML defines the relationship between the expected return and the degree of uncertainty

of a portfolio. Using Equation (12), the CML can be written as

E [rh] = rf +

(
E [rm]− rf
∇ [rm]

)
∇ [rh] , (13)

which implies a linear relationship between portfolio h’s expected return E [rh] and its degree

of uncertainty ∇ [rh]. The slope of the CML,
(

E[rm]−rf
∇[rm]

)
, defines the compensation per unit of

uncertainty borne in the market. This compensation is the same for each investor, no matter

how uncertainty averse she is.

The CML is steeper if the economy is less uncertain, i.e., if the returns on the market

portfolio or its probabilities are less volatile. The reason is that investors ask for a relatively

high premium for bearing assets’ uncertainty when the alternative—the market portfolio—is

associated with a relatively low uncertainty. A portfolio with ∇ [rh] = 0 corresponds to h = 1,

i.e., a portfolio consisting of only the risk-free asset, which implies that its expected return
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is the risk-free rate. On the other hand, h = 0 corresponds to a portfolio consisting of only

the market portfolio and, thus, its expected return satisfies E [rh] = E [rm]. All other efficient

portfolios are obtained along the CML.

The indifference surface in the mean–standard-deviation–ambiguity space is also projected

to the mean–uncertainty space using Equation (11). This projection is valid since expected

utility is positively affected by expected return and negatively affected by uncertainty, which is

driven by risk and ambiguity. Since the realized probability distributions of returns are of the

normal distribution type, which is fully characterized by its first two moments, preferences can

be formed as mean–uncertainty type.

Figure 4 describes the uncertain asset frontier and the CML in the mean–uncertainty space.

The dotted external concave frontier describes the uncertain asset frontier when ambiguity is

not present, and the solid internal concave frontier describes the uncertain asset frontier when

the economy is imbued with ambiguity. The shaded area is the set of all feasible portfolios in

an ambiguous economy without a risk-free asset. One can observe that the minimal uncertainty

that accompanies any expected return is higher when ambiguity is present. The slope of the

CML follows Equation (13), which implies a linear relationship between expected return and

uncertainty. The solid straight line is the CML in an ambiguous economy, and the dotted

straight line is the CML in a non-ambiguous economy. Any point on the CML to the right of

m implies borrowing for the risk-free rate.

Tobin’s (1958) Separation theorem asserts that any investor should hold the risk-free asset

and a single optimal portfolio of risky assets, i.e., the market portfolio. Equation (13) extends

Tobin’s theorem from risk to uncertainty. It implies that investment decisions can be broken

down into two separate phases: the first concern the choice of a unique optimal uncertain asset

portfolio and second is the allocation of funds to the risk-free asset and the uncertain portfolio.

Investors, in this theorem, are different only in their decision regarding the proportions allocated

to the risk-free asset and the uncertain portfolio. Thus, every investor holds uncertain assets

in the same proportion, as defined by the market portfolio. The nature of the market portfolio

in an ambiguous economy, however, is different than Tobin’s market portfolio. Tobin’s market

portfolio is a portfolio with the minimal variance for a given expected return, whereas in the

current model the optimal portfolio has the minimal uncertainty for a given expected return,

but not necessarily the minimal variance.

It is because individuals are different in their attitude toward uncertainty that the propor-

tions of the risk-free asset and the market portfolio are different. More conservative investors,
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Figure 4: The uncertain asset frontier and the CML
This figure describes the uncertain asset frontier and the CML in the mean–uncertainty space.
The dotted external frontier describes the risky asset frontier in a non-ambiguous economy, and
the solid internal frontier describes the uncertain asset frontier in an ambiguous economy. The
shaded area is the set of feasible portfolios in a non-ambiguous economy without a risk-free
asset. The solid straight line is the CML in an ambiguous economy, and the dotted straight
line is the CML in a non-ambiguous economy.

for example, will choose to allocate a higher fraction of their wealth to the risk-free asset. More

aggressive investors may decide to borrow capital on the money market, i.e., make a nega-

tive allocation to the risk-free asset, and invest it in the market portfolio. In any case, every

investment decision is made on the CML.

The CML defines the rewarding for an efficient portfolio per unit of the entire, systematic and

idiosyncratic, uncertainty borne. The next section refines the systematic uncertainty associated

with individual assets, and defines the premium per unit of systematic uncertainty borne.

5 Capital asset pricing

Based on the mean–uncertainty framework, this section generalizes the CAPM to incorporate

ambiguity. It introduces a novel capital asset pricing model, called shadow capital asset pricing

(SCAPM), in which the expected return on an asset corresponds to its uncertainty relative to

the market and not to its own uncertainty. The conventional CAPM is a special case of the

SCAPM, in which ambiguity is not present.

Definition 5.1. Systematic risk is the part of the risk that it is optimal not to diversify, and

idiosyncratic risk is the part that it is optimal to diversify. Systematic ambiguity is the part
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of the ambiguity that it is optimal not to diversify, and idiosyncratic ambiguity is the part that

it is optimal to diversify. Systematic uncertainty is the accumulation of systematic risk and

systematic ambiguity. Idiosyncratic uncertainty is the accumulation of idiosyncratic risk and

idiosyncratic ambiguity.

Systematic uncertainty is the minimal possible uncertainty for a given expected return.

Systematic risk in SCAPM is not the part of risk that cannot be diversified; it is the part of

risk that it is optimal not to diversify considering the tradeoff between risk and ambiguity.

Systematic ambiguity is the optimal degree of ambiguity to bear conditional on its correlation

with risk. When ambiguity is not present, risk minimization is optimal, so that the systematic

risk is the non-diversifiable risk and the idiosyncratic risk is the diversifiable risk.

It is not always true that a higher risk, measured by the variance of return, or a higher

ambiguity measured by f2, both result in a higher expected return. First, it is always the

case that only the systematic component of uncertainty, which aggregates systematic risk and

systematic ambiguity, is associated with a premium in terms of additional expected return.

An asset may have a high risk or a high ambiguity, but only a relatively small part of it is

systematic and accordingly its premium is relatively low. Second, risk and ambiguity are not

independent (see Izhakian (2012)). They may be negatively related such that increasing risk

is accompanied by decreasing ambiguity, or vice versa. Whatever the case, uncertainty is not

necessarily higher and nor is expected return.

The next theorem introduces a closed formed pricing formula which proves that only the

systematic component of uncertainty is priced, i.e., compensation is provided only for the

systematic risk and the systematic ambiguity.

Theorem 5.2. Let rm be the return on the market portfolio, rf the risk-free rate of return and

rj the return on asset j. Assuming an investor averse to risk and ambiguity, whose reference

point is rf , if the returns on all assets are normally distributed with random parameters µ and

σ, then the expected return on asset j is

E [rj] = rf + βR,j (E [rm]− rf ) + βA,j (E [rm]− rf ) , (14)

where

βR,j =
Cov [rm, rj]

Var [rm]
(15)

is the beta risk,

βA,j = 4
Cov

[
Φ (rf ;µm, σm) , ϕ (rf ;µm, σm)

(
σm,j

σ2
m

(µm − rf )− (µj − rf )
)]

1− f2 [rm]
(16)
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is the beta ambiguity,

Φ (rf ;µm, σm) =

∫ rf

−∞

1√
2πσ2

m

e
− (r−µm)2

2σ2
m dr

is the random cumulative probability of loss on the market portfolio, and

ϕ (rf ;µm, σm) =
1√
2πσ2

m

e
−
(rf−µm)

2

2σ2
m

is its probability density at the reference point.

Theorem 5.2 proves that the expected return on an asset is a function of its systematic

uncertainty, formulated by βR and βA. Beta risk, βR, is a function of the covariance between

the asset’s return and the market’s return, computed using expected probabilities, i.e., the

redacted first-order and second-order probabilities. The coefficient βA is a function of the

covariance between elements of probabilities, computed using second-order probabilities, i.e.,

the probability distribution of the random parameters µ and σ. Theorem 5.2 is empirically

testable: βR and βA can be computed from the data.

The SCAPM decomposes the price of an asset, in terms of expected return, into three

components: the price of time, the price of risk, and the price of ambiguity. The price of time,

formed by rf , is the pure interest rate on the risk-free asset. The price of risk, formed by

R =
Cov [rm, rj]

Var [rm]
(E [rm]− rf ) ,

is an additional expected return per unit of systematic risk borne, referred to as the risk

premium. The price of ambiguity, formed by

A = 4
Cov

[
Φ (rf ;µm, σm) , ϕ (rf ;µm, σm)

(
σm,j

σ2
m

(µm − rf )− (µj − rf )
)]

1− f2 [rm]
(E [rm]− rf ) ,

is a second additional expected return per unit of systematic ambiguity borne, referred to

as the ambiguity premium. The uncertainty premium on the market portfolio m, formed by

E [rm]− rf , is the aggregate excess return rewarding for both risk and ambiguity borne by m.

The risk and the ambiguity premiums of asset j are proportional to the uncertainty premium

of m, where the proportions are determined by the coefficients βR,j and βA,j, respectively.

Assume for the moment a non-ambiguous economy, i.e., µ and σ are constants. In this

case, βA = 0 and Theorem 5.2 collapses to the classical CAPM in which only a rewarding for

systematic risk is porvided.21 If βR,j = 1, then asset j’s expected return equals the market’s

expected return, i.e., E [rj] = E [rm]; if βR,j > 1 then E [rj] > E [rm]; and if βR,j < 1 then

E [rj] < E [rm], exactly as in the CAPM. If asset j’s return is negatively correlated with the

21To see this, recall that the covariance between a constant and a random variable is always 0.
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market’s return, βR,j < 0, then E [rj] < rf , implying that investors hold this asset as an

insurance against a decrease in the market return.

Theorem 5.2 proves that only the systematic component of ambiguity is accompanied by

rewarding. The sign and intensity of the relation between the probability of loss on the mar-

ket portfolio and the expected return on individual assets, formed be βA, is dominated by

two elements. First, the higher the cumulative probability of loss on the market portfolio

Φ (rf ;µm, σm) the greater βA. The reason for this is that when the probability of loss on the

market portfolio increases, assets which are positively correlated with the market are required

to provide higher premiums to induce investors to hold them. Second, assuming a positive ex-

pected excess return, i.e., rf − µm ≤ 0, a higher probability of loss implies a higher probability

density ϕ (rf ;µm, σm) and therefore a higher βA. Higher values of the random covariance, σm,j,

between the return on asset j and the return on the market portfolio m also implies a higher

beta ambiguity, which in turn implies a higher expected return. Intuitively, βA can be seen as

measuring the correlation between the probability of loss of an asset and the probability of loss

of the market portfolio.

An interesting point concerning expected return arises from Equation (16) . Writing the

expression
(
σm,j

σ2
m

(µm − rf )− (µj − rf )
)
as −∆ = −

(
(µj − rf )− σm,j

σ2
m

(µm − rf )
)
, ∆ takes the

meaning of an unexpected mean return, conditional on a probability distribution. Higher ∆s

imply a higher absolute value of βA,j. If ∆ and the probability of loss of the market portfolio,

Φ (rf ;µm, σm), are positively correlated then βA,j has a negative impact on the expected return

E [rj]; if the correlation is negative then βA,j has a positive impact on E [rj]. The intuition

of this relation is that a positive correlation between probability of loss and unexpected mean

return compensates for the (second-order) states of nature that induce a high probability of

loss. Therefore, the price of an asset with a positive correlation between Φ (rf ;µm, σm) and ∆

is relatively high and, accordingly, its expected return is relatively low. Notice that ∆ is not

a shift of return (unexpected return), but a shift of the entire distribution, which shifts the

expected return. It can be considered as a shock to parameter µ, governing the probability

distribution. Notice also that the ∆s of an asset with a zero correlation with the market (a

zero beta portfolio) can possibly be positive (see, for example, Merton (1973)).

The SCAPM allows for an asset j to have βR,j ̸= 0 and βA,j = 0. This can happen,

for example, when either the probability of return on the market portfolio or the probability

of return on asset j are perfectly known. It is also possible to observe an asset typified by

βR,j = 0 and βA,j ̸= 0. This can happen, for example, when the covariance between rj and
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rm is symmetrically volatile around zero. The following corollary defines the βR and βA of the

market portfolio.

Corollary 5.3. The market portfolio m satisfies

βR,m = 1 and βA,m = 0.

The beta risk, βR, and beta ambiguity, βR, of an asset portfolio are both linear inthe betas of

the individual assets composing the portfolio. To see this, consider a portfolio h = (h1, . . . , hn)

consisting of n assets. The expected return on portfolio h can be expressed by

E [rh]− rf =
n∑
j=1

hj (E [rj]− rf ) = (E [rm]− rf )

(
n∑
j=1

hjβR,j +
n∑
j=1

hjβA,j

)
,

which implies a linear beta pricing model, even when ambiguity is involved. In other words,

the beta risk and the beta ambiguity of an asset portfolio are equal to the weighted sum of the

individual betas of the assets composing the portfolio.

The SCAPM, modeled by Equation (14), can be written as

E [rj]− rf = βK,j (E [rm]− rf ) , (17)

where βK,j = βR,j + βA,j is referred to as the beta uncertainty. The beta uncertainty makes

the distinction between the systematic uncertainty and the idiosyncratic uncertainty associated

with an asset, as the following proposition suggests.

Proposition 5.4. The uncertainty associated with an asset j can be decomposed by

∇2 [rj] = β2
K,j

1− f2 [rm]

1− f2 [rj]
∇2 [rm] +∇2 [ϵ] , (18)

where E [ϵ] = 0, and ϵ and rm are independent for every realized probability distribution. The

term β2
K,j

1−f2[rm]
1−f2[rj ]

∇2 [rm] is the systematic uncertainty and the term ∇2 [ϵ] is the idiosyn-

cratic uncertainty.

In the special case when ambiguity is not involved, as in the classical CAPM, the risk

associated with asset j can be decomposed by

Var [rj] = β2
R,jVar [rm] + Var [ϵ] , (19)

where E [ϵ] = 0 and ϵ and rm are independent. The non-diversifiable systematic risk takes the

form β2
R,jVar [rm] and the diversifiable idiosyncratic risk takes the form Var [ϵ]. It is important

to note that Equation (19) does not hold when stocks are imbued with ambiguity: the residual

Var [ϵ] = Var [rj] − (βR,j + βA,j)
2 Var [rm] cannot be interpreted as idiosyncratic risk since the

systematic ambiguity factor βA,j is involved.
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6 The security market line

In SCAPM the security market line (SLM) characterizes the linear relation between systematic

uncertainty and expected return. Using Theorem 5.2, the SML of the conventional CAPM can

be generalized from risk to uncertainty by incorporating ambiguity. Formally, when ambiguity

is involved the SML is defined by

E [rj] = rf + βK,j (E [rm]− rf ) . (20)

The intercept, rf , is the price of time; the slope, E [rm]− rf , is the uncertainty premium on the

market portfolio; and the coefficient βK,j models the level of systematic uncertainty associated

with asset j. Figure 5 provides a graphical representation of the SML. The x-axis describes the

magnitude of βK and the y-axis describes expected return. The solid slope line describes the

SML in an ambiguous economy and the dashed line describes it in a non-ambiguous economy.

In an ambiguous economy the slope of the SML is steeper than in the case of a non-ambiguous

economy, indicating a higher uncertainty premium on the market portfolio.

E[rj]

r
f E[r

m
]-r

f

bK=1

SML

bK

Figure 5: The security market line
This figure provides a graphical representation of the SML. The x-axis describes the magnitude
of βK and the y-axis describes expected return. The solid slope line describes the SML in an
ambiguous economy and the dashed line describes it in a non-ambiguous economy. The SML
intercepts the y-axis at the risk-free rate rf and its slope is equal to the uncertainty premium
on the market portfolio E [rm]− rf .

All possible portfolios, efficient and non-efficient, lie on the SML. The reason is that the

investors who minimize uncertainty for a given expected return are effectively the ones who

determine the prices (and the uncertainty premiums) in the market. They are willing to pay a

relatively high price for any asset, which implies a relatively low expected return, such that a
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portfolio’s return is always on the SML. Another way to look at the SML is to consider it as

representing the opportunity cost of various investments. Every point on the SML represents

an investment in a combination of the market portfolio and the risk-free asset. Assets above

the SML are considered as undervalued, since for a given amount of uncertainty they yield a

relatively high return, which implies a relatively low price. Assets below the SML are considered

as overvalued, since for a given amount of uncertainty they yield a relatively low return, which

implies a relatively high price.

A point on the SML can be interpreted as the uncertainty premium on asset j per unit of

its systematic uncertainty. A natural implementation of this understanding is in measuring the

performance of asset portfolios. In an economy without ambiguity the Treynor ratio measures

the risk premium associated with an asset relative to its systematic risk. This ratio can now

be extended to incorporate ambiguity. Equation (20) can be formed by

E [rj]− rf
βK,j

= E [rm]− rf , (21)

such that its left-hand side—the ratio of the uncertainty premium and the degree of systematic

uncertainty—takes the meaning of the uncertainty premium per unit of uncertainty borne.

When ambiguity is not present βA = 0 and Equation (21) collapses to the original Treynor

ratio.

A second intensively employed performance measure is the Sharpe ratio, which measures

the risk premium on an asset relative to its overall, systematic and idiosyncratic, risk. Using

the measure of uncertainty provided by Model 3.1, the Sharpe ratio can also be extended from

risk to uncertainty. The definition of the CML in Equation (13) implies that the uncertainty

premium relative to the overall, systematic and idiosyncratic, uncertainty can be measured by

E [rj]− rf
∇ [rj]

=
E [rj]− rf

Std[rj ]√
1−f2[rj ]

. (22)

This extended ratio characterizes the uncertainty premium on asset j per unit of its entire,

systematic and idiosyncratic, uncertainty.

7 Conclusion

This paper relaxes the main assumption of modern portfolio theory that the probabilities of

returns are known. It assumes that probabilities are unknown and are themselves random.

Relying on shadow theory, recently introduced by Izhakian (2011), the current paper gener-
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alizes the mean–variance space to mean–uncertainty and defines preferences in this space. It

aggregates risk and ambiguity by introducing a new consolidated measure of uncertainty, which

is employed to incorporate ambiguity into the classical CAPM and extend it from risk to un-

certainty. A simple formalization of beta ambiguity in addition to the conventional beta risk is

proved, such that systematic ambiguity is distinguished from idiosyncratic ambiguity. Capital

price, in this model, is proportional to the systematic component of risk and to the systematic

component of ambiguity, so that investors are not rewarded either for idiosyncratic risk or for

idiosyncratic ambiguity.

The paper sheds considerable light on the relationship between the price of an asset and

the various components of its overall risk and overall ambiguity. The main advantage of the

model introduced in this paper is that it is empirically testable. A second advantage of the

model is that it can be implemented for measuring portfolio performance by generalizing the

Treynor ratio and the Sharpe ratio from risk to uncertainty. The extended ratios measure the

uncertainty premium per unit of systematic uncertainty and per unit of the entire, systematic

and idiosyncratic, uncertainty borne.
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A Appendix

Proof of Proposition 3.2. To prove that the line defined by(
E [hrf + (1− h) re] , Std [hrf + (1− h) re] , f̂ [hrf + (1− h) re]

)
,

is linear, it has to be shown that each coordinate of this triplet is linear in h. The proof that the

first two coordinates, the mean E [hrf + (1− h) re] and the standard deviation Std [hrf + (1− h) re],

are linear in h is trivial, since rf is constant. To prove that the third coordinate, f̂ [hrf + (1− h) re],

is also linear in h, the measure of ambiguity f2 can be written explicitly

f2 [hrf + (1− h) re] = 4Var

∫ rf

−∞

1√
2π (1− h)2 σ2

e

e
−
(x−((1−h)µe−hrf))

2

2(1−h)2σ2
e dx

 .
Changing the integration variable implies that

f2 [hrf + (1− h) re] = 4Var

[∫ rf

−∞

1√
2πσ2

e

e
− (x−µe)

2

2σ2
e dx

]
= f2 [re] .

Since rf is constant, Std [hrf + (1− h) re] = (1− h) Std [re], which implies

f̂ [hrf + (1− h) re] = (1− h)f2 [re] .

Proof of Theorem 4.2. Using matrix notation to write the minimization problem provides

min
h

hT
C

1− 4Var
[
Φ
(
− hTµ

hTΣh
; 0, 1

)]h s.t. ETh = E; 1Th = 1,

where bold font designates vectors and matrixes, µ is a vector of random means, Σ is a random

variance–covariance matrix, C is the expected variance–covariance matrix, and E is a constant.

Letting λ and κ be the Lagrangian multiplier, the the first-order condition of the minimization

problem is

2hTC

(
1−4Var

[
Φ

(
− hT µ

hTΣh
;0,1

)])
+2hTChCov

[
Φ

(
− hT µ

hTΣh
;0,1

)
,ϕ

(
− hT µ

hTΣh
;0,1

)(
µhTΣh−hT µhTΣ

(hTΣh)2

)]
(
1−4Var

[
Φ
(
− hT µ

hTΣh
;0,1
)])2

−λET − κ1T = 0.

(23)

One can see that Equation (23) has a solution if the following two conditions hold. First, as

C is not singular, it has an inverse matrix. Second, the degree of ambiguity is not equal to 1.

That is, 1 − 4Var
[
Φ
(
− hTµ

hTΣh
; 0, 1

)]
= 1 − f2 [rh] ̸= 0. These conditions are satisfied by the

assumptions of the theorem so that the uncertain asset frontier exists. Theorem 4.3 proves that

the frontier is bounded by a hyperbola shape, which implies that there exists a line stretching

from rf and tangent to the uncertain asset frontier.

31



Proof of Theorem 4.3. For simplicity this proof considers a portfolio consisting of two

assets. It can then be extended to any number of assets by considering each of the two assets

as a mutual fund. Let h = (h, 1− h) be a portfolio, with an expected return of

E [rh] = hE [r1] + (1− h) E [r2] , (24)

and a variance of

Var [rh] = h2Var [r1] + 2h (1− h) Cov [r1, r2] + (1− h)2Var [r2] , (25)

where r1 and r2 stand for the return on asset 1 and 2, respectively.

By Model 3.1 the degree of uncertainty associated with portfolio h is

∇2 [rh] =
h2Var [r1] + 2h (1− h) Cov [r1, r2] + (1− h)2 Var [r2]

1− 4Var

[
Φ

(
rf−hµ1−(1−h)µ2√

h2σ2
1+2h(1−h)σ1,2+(1−h)2σ2

2

; 0, 1

)] . (26)

Substituting for h = 0 provides the degree of uncertainty associated with asset 1:

∇2 [r1] =
Var [r1]

1− 4Var
[
Φ
(
rf−µ1
σ1

; 0, 1
)] .

Substituting for h = 1 provides the degree of uncertainty associated with asset 2:

∇2 [r2] =
Var [r2]

1− 4Var
[
Φ
(
rf−µ2
σ2

; 0, 1
)] .

Since f2 [r] = 4Var
[
Φ
(
rf−µ
σ

; 0, 1
)]

∈ [0, 1], the degree of uncertainty satisfies ∇2 [r1] ≥ Var [r1]

and ∇2 [r2] ≥ Var [r2].

Since the parameters µ1 and µ2 are random, the proportions of the two assets in the portfolio

are selected according to their expected return. By Equation (24), the proportion of asset 1 in

the portfolio can be writing as h = E[rh]−E[r2]
E[r1]−E[r2]

. Substituting this proportion into Equation (26)

produces

∇2 [rh] =

(
E[rh]−E[r2]

E[r1]−E[r2]

)2

Var[r1]+2
E[rh]−E[r2]

E[r1]−E[r2]

(
1−E[rh]−E[r2]

E[r1]−E[r2]

)
Cov[r1,r2]+

(
1−E[rh]−E[r2]

E[r1]−E[r2]

)2

Var[r2]

1−Var

Φ


rf−
E[rh]−E[r2]

E[r1]−E[r2]
µ1−

(
1−

E[rh]−E[r2]

E[r1]−E[r2]

)
µ2√√√√(E[rh]−E[r2]

E[r1]−E[r2]

)2

σ2
1+2

E[rh]−E[r2]

E[r1]−E[r2]

(
1−

E[rh]−E[r2]

E[r1]−E[r2]

)
σ1,2+

(
1−

E[rh]−E[r2]

E[r1]−E[r2]

)2

σ2
2

;0,1



,

which implies

∇2 [rh] =

(
1

E[r1]−E[r2]

)2
(E[rh]−E[r2])

2Var[r1]−2(E[rh]−E[r2])(E[rh]−E[r1])Cov[r1,r2]+(E[rh]−E[r1])
2Var[r2]

1−Var

[
Φ

(
rf (E[r1]−E[r2])−(E[rh]−E[r2])µ1+(E[rh]−E[r1])µ2√

(E[rh]−E[r2])
2
σ2
1−2(E[rh]−E[r2])(E[rh]−E[r1])σ1,2+(E[rh]−E[r1])

2
σ2
2

;0,1

)] .
(27)

The numerator of Equation (27) forms a parabola in the mean–uncertainty, E [r]—∇2 [r], space,

such that its square root is a hyperbola in the E [r]—∇ [r] space. The denominator ranges

between 0 and 1, implying that ∇2 [rh] ≥ Var [rh] for any h.
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Proof of Theorem 5.2. The random probability of loss, P (Lm) = P (rm ≤ rf ), on the

market portfolio, m, is defined by

P (Lm) =

∫ rf

−∞

1√
2πσ2

m

e
− (r−µm)2

2σ2
m dr.

First, we assemble a portfolio, denoted a, consisting of a proportion −h of the risk-free asset,

and the remainder, 1 + h, is allocated to the uncertain market portfolio, where h > 0. The

expected return on portfolio a is

E [ra] = (1 + h) E [rm]− hrf .

The variance of portfolio a’s return is

Var [ra] = (1 + h)2 Var [rm] ,

and its degree of ambiguity is

f2 [ra] = 4Var

∫ rf

−∞

1√
2π (1 + h)2 σ2

m

e
−
(r−((1+h)µm−hrf))

2

2(1+h)2σ2
m dr

 . (28)

We also assemble a second portfolio, denoted b, consisting of a portion 1 of m and a portion

0 < h of some asset j, which is financed by a portion h of the risk-free asset. Asset j is assumed

to be non-efficient; in the mean–uncertainty space it lies in the set of feasible portfolios, but

not on the efficient frontier. The expected return on portfolio b is

E [rb] = E [rm] + hE [rj]− hrf ,

and its variance is

Var [rb] = Var [rm] + h2Var [rj] + 2hCov [rm, rj] .

The ambiguity associated with portfolio b is formed by

f2 [rb] = 4Var

∫ rf

−∞

1√
2π
(
σ2
m + h2σ2

j + 2hσm,j

)e−(
r−(µm+hµj−hrf))

2

2(σ2
m+h2σ2

j
+2hσm,j) dr

 (29)

= 4Var

∫ (1+h)rf−µm−hµj√
σ2
m+h2σ2

j
+2hσm,j

−∞

1√
2π
e−

(r)2

2 dr

 ,
where the second equality is obtained by changing the integration variable.

As h → 0, the curve drawn by portfolio a tangents the CML at the point (E [rm] ,∇ [rm]).

Thus
dE[ra]
dh

d

√
Var[ra]

1−f2[ra]

dh

|h=0 =
E [rm]− rf√

Var[rm]
1−f2[rm]

. (30)
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The derivative of the numerator in the left-hand side of Equation (30) with respect to h satisfies

dE [ra]

dh
= E [rm]− rf . (31)

Since changing the integration variable of Equation (28) implies that∫ rf

−∞

1√
2π (1 + h)2 σ2

m

e
−
(r−((1+h)µm−hrf))

2

2(1+h)2σ2
m dr =

∫ rf

−∞

1√
2πσ2

m

e
− (r−µm)2

2σ2
m dr,

(see Proposition 3.2), the derivative of the denominator in the left-hand side of Equation (30)

with respect to h satisfies

d
√

Var[ra]
1−f2[ra]

dh
|h=0 =

Var[rm]
1−f2[rm]√

Var[rm]
1−f2[rm]

. (32)

Together, Equations (31) and (32) imply that

dE[ra]
dh

d

√
Var[ra]

1+f2[ra]

dh

|h=0 =
E [rm]− rf√

Var[rm]
1−f2[rm]

. (33)

As h→ 0, the curve drawn by portfolio b also tangents the CML at the point (E [rm] ,∇ [rm]).

Thus
dE[rb]
dh

d

√
Var[rb]

1+f2[rb]

dh

|h=0 =
E [rm]− rf√

Var[rm]
1−f2[rm]

. (34)

The derivative of the numerator in the left-hand side of Equation (34) with respect to h satisfies

dE [rb]

dh
= E [rj]− rf . (35)

The derivative of the denominator in the left-hand side of Equation (34) with respect to h

satisfies22

d
√

Var[rb]
1−f2[rb]

dh
|h=0 =

 Cov[rm,rj ]

1−f2[rm]
+ 4 Var[rm]

(1−f2[rm])2
×∑m

i=1 χi(P (Lb)−
∑m

i=1 P (Lb)) (P
′ (Lb)−

∑m
i=1 P

′ (Lb))

 1√
Var[rm]

1−f2[rm]

, (36)

where χ is the second-order probability,

P (Lb) |h=0 =

∫ rf−µm

σm

−∞

1√
2π
e−

r2

2 dr = P (Lm)

and

P′ (Lb) |h=0 =
1√
2π
e
−
(rf−µm)

2

2σ2
m

(
rf − µj
σm

+
σm,j

σ3
m

(µm − rf )

)
= ϕ (rf ;µm, σm)

(
σm,j

σ2
m

(µm − rf )− (µj − rf )

)
.

22To save on notations the descriptor i, designating random probability measure Pi, is omitted.
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Equation (36) then becomes

d
√

Var[rb]
1−f2[rb]

dh
|h=0 =

 Cov[rm,rj ]
1−f2[rm] + 4 Var[rm]

(1−f2[rm])2
×

Cov
[
Φ(rf ;µm, σm) , ϕ (rf ;µm, σm)

(
σm,j

σ2
m

(µm − rf )− (µj − rf )
)]
 1√

Var[rm]

1−f2[rm]

,

which implies
dE[rb]

dh

d

√
Var[rb]

1+f2[rb]
dh

|h=0 =
E[rj ]−rf

Cov[rm,rj]
1−f2[rm]

+4
Var[rm]

(1−f2[rm])2
Cov

[
Φ(rf ;µm,σm),ϕ(rf ;µm,σm)

(
σm,j

σ2
m
(µm−rf)−(µj−rf)

)]
√

Var[rm]

1−f2[rm]

.
(37)

Equating Equations (33) and (37) yields

E[rj ]−rf
Cov[rm,rj]
1−f2[rm]

+4
Var[rm]

(1−f2[rm])2
Cov

[
Φ(rf ;µm,σm),ϕ(rf ;µm,σm)

(
σm,j

σ2
m
(µm−rf)−(µj−rf)

)] = E[rm]−rf
Var[rm]

1−f2[rm]
.

Arranging terms provides

E [rj]− rf =

Cov[rm,rj ]

Var[rm]
(E [rm]− rf )+

4
Cov

[
Φ(rf ;µm,σm),ϕ(rf ;µm,σm)

(
σm,j

σ2
m
(µm−rf)−(µj−rf)

)]
1−f2[rm]

(E [rm]− rf ) .

Proof of Corollary 5.3. As regards βR,m = 1, it is trivial. As regards βA,m, from Equation

(16) one can see that substituting µj = µm and σm,j = σm,m into
(
(µj − rf )− σm,j

σ2
m

(µm − rf )
)

implies βA,m = 0.

Proof of Theorem 5.4. By Theorem 5.2, the return on asset j can be written as

rj − rf = βK,j (rm − rf ) + ϵ̂, (38)

where E [ϵ̂] = E [rmϵ̂] = 0, which implies that E [rj − rf ] = βK,jE [rm − rf ]. Taking the variance,

using expected probabilities, of both sides of Equation (38) yields

Var [rj] = β2
K,jVar [rm] + Var [ϵ̂] .

Normalizing by 1− f2 [rj] provides

Var [rj]

1− f2 [rj]
= β2

K,j

(
1− f2 [rm]

1− f2 [rj]

)(
Var [rm]

1− f2 [rm]

)
+

Var [ϵ̂]

1− f2 [rj]
.

Normalizing ϵ̂ by ϵ = ϵ̂
√

1−f2[ϵ]
1−f2[rj ]

yields

∇2 [rj] = β2
K,j

1− f2 [rm]

1− f2 [rj]
∇2 [rm] +∇2 [ϵ] .
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