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1. Introduction 

The fundamental relationship between risk and return of the market portfolio in the 

mean-variance paradigm is given by the following equation 

    2E ,m f mr r     (1) 

where mr  is the return on the market portfolio, fr  is the risk free rate, 2
m  is the risk of the market 

portfolio and     is a measure of risk aversion of a representative agent (or, an aggregation of 

risk aversion coefficients of investors). This linear relationship has been subjected to several time 

series empirical tests. Merton (1980) and French, Schwert and Stambaugh (1987) are two classic 

examples of studies that conducted such tests. While Merton (1980) focuses on estimation issues 

with the expected market return, French at al. (1987) focus more on alternative measures of risk 

(volatility). In general, the tests of the risk-return relationship have low R2 and some of these 

tests result in negative coefficients of absolute risk aversion. 

We believe that a missing factor that determines the expected excess return presented in 

equation (1) is ambiguity (the so called Knightian uncertainty) and the attitude towards it. 

Though there is an abundance of research on various aspects of ambiguity and ambiguity 

aversion, there is almost no empirical work providing a measure of ambiguity and incorporating 

such a measure in tests of the relationship between risk and return. 

In this paper we introduce a measure of ambiguity, which is an additional factor 

determining the expected excess market return (also termed the equity premium). Equation (2) 

below is the expanded version of Equation (1) incorporating ambiguity. That is, 

      2E ,m f mr r        (2) 

where 2  measures the degree of ambiguity and     is a measure of investors’ attitude toward 

ambiguity. This measure is an outcome of the theoretical model developed by Izhakian (2011). 

The results are highly significant, challenging the conventional wisdom on investors’ attitudes 

towards ambiguity. To the best of our knowledge, our study is the first empirical study that uses 

market data to measure ambiguity based on a theoretically derived model that combines risk and 

ambiguity. 
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Modern portfolio theory, until recently, has practically ignored the Knightian distinction 

between risk and uncertainty. There were some exceptions like the collection of papers in a book 

edited by Bawa, Brown and Klien (1979). These papers, however, focus on estimation risk, how 

to correct for it, and how to incorporate it in portfolio selection or how it may affect capital 

market equilibrium. They did not deal with ambiguity and how it may affect asset prices and the 

relationship between ambiguity and return. Should ambiguity be priced? Can we separate risk 

and risk attitudes from ambiguity and attitudes toward ambiguity? How can we measure 

ambiguity? These are questions that, to the best of our knowledge, are still open and, in this 

paper, we try to deal with them. 

In recent years there is a surge in research that tries to incorporate Knightian uncertainty 

naming it ambiguity or ‘model risk’. For example, Uppal and Wang (2003), Epstein and 

Schneider (2008) and Ju and Miao (2011) support the model by calibration to the data. 

Anderson, Ghysels and Juergens (2009) and Dreschsler (2010), use proxies for ‘model risk’ like 

disagreement among analysts. Our approach is different, we measure ambiguity using market 

data. 

The paper by Izhakian (2011) provides the theoretical underpinning of our paper which 

focuses on issues of ambiguity measurement and tests of risk-ambiguity-return relationships. In 

his paper Izhakian (2011) introduced a novel model of ambiguity, called Shadow probability 

theory (henceforth Shadow Theory) and studied how it affects investors’ choices. The model 

provides a measure for the degree of ambiguity which is the center piece of the empirical tests 

that we employ in this paper. We focus on testing the effect of ambiguity on asset prices in a 

time series context while using the S&P500 index as a proxy for the market portfolio. Our 

empirical results show that this measure has a significant effect on stock market returns. 

We assume a representative investor whose reference point is zero excess-return. Assets' 

excess-returns are classified as gains or losses. Excess returns lower than zero are considered a 

loss and excess-returns equal or higher than zero are considered a gain. All assets' excess returns 

are assumed to be normally distributed. However, the parameters governing the distributions, 

i.e., mean and variance, are unknown and assumed to be random. 

We show that, ambiguity and the excess-return on the market portfolio (the equity 

premium) are negatively correlated which implies that the degree of ambiguity is taken into 
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account by investors when they price financial assets. It also implies that the representative 

investor, who holds the market portfolio exhibits ambiguity loving. 

What is the evidence regarding investor’s attitude toward ambiguity? It turns out that it 

depends on the states of nature that the investor faces. There is some evidence that an investor 

who faces a high probability of losses tends to embrace ambiguity, while if he faces a high 

probability of gains he may be ambiguity averse. Viscusi and Chesson (1999) found that people 

exhibit ‘fear’ effects of ambiguity for small probabilities of suffering a loss and ‘hope’ effects for 

large probabilities of loss.F

1
F Considering investors in the stock market, where the probability of 

loss is relatively high (around 50%), one would expect to observe ambiguity loving. Ivanov 

(2011) shows that more individuals exhibit ambiguity loving than ambiguity aversion. In 

particular, 32% are classified as ambiguity-loving, compared to 22% who are classified as 

ambiguity averse, the remaining 46% are considered ambiguity neutral. Assuming risk neutrality, 

Maffioletti and Michele (2005) also found ambiguity seeking in individuals' trading behavior. 

Analyzing statistical information of probabilities about health insurance, Wakker, Timmerman 

and Machielse (2007) document that individuals are ambiguity seeking. In an experimental study 

of bidders' behavior Chen, Katušcák and Ozdenoren (2007) suggests that individuals are 

ambiguity seeking. In general, most behavioral studies find ambiguity loving behavior when 

there is a relatively high probability of suffering a loss. 

Consistent with the above studies, our results show that investors are ambiguity lovers. In 

our study the average probability of loss is relatively high (almost 50%) and as found by Viscusi 

and Chesson (1999), in such cases, investors are ambiguity loving. These findings are consistent 

with our theoretical model. When returns are symmetrically distributed, an investor who 

maximizes expected return minimizes the probability of loss. Therefore, when the probability of 

loss is relatively high, given two assets with identical risk, he prefers the asset with the random 

probability over an asset with known probabilities. Such preferences imply ambiguity loving. 

The rest of the paper is organized as follow. Section 2 provides the theoretical 

framework. Section 3 discusses the data and the empirical methodology. Section 4 presents the 

empirical findings. Section 5 discusses the findings regarding investors’ attitudes toward risk and 

ambiguity and Section 6 provides summary and conclusions. 

                                                 
1 Abdellaoui, Baillon, Placido and Wakker (2011) tie ambiguity loving to the source of ambiguity. 
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2. The theoretical model 

Recently, Izhakian (2011) introduced a novel model of ambiguity, called Shadow theory, 

which provides a measure of the degree of ambiguity. This measure is the center piece of the 

empirical tests that are conducted in this paper. Next we provide a detailed summary of the main 

principles of Shadow theory and how we use it in the empirical tests. 

2.1 Preliminaries 

The theory of financial assets prices is mainly based on the expected utility (von 

Neumann-Morgenstern (1944) and Savage (1961)) paradigm, which assumes that decision 

makers know, or act as if they know, the probabilities of all states of nature. A basic issue with 

these models is that in reality the investor does not know the precise probabilities of events (see 

Ellsberg (1961)), which means that individuals are exposed not only to risk but also to ambiguity 

(Knightian uncertainty). Several models that deal with decision making under uncertainty have 

been suggested. These include the subjective nonadditive probabilities of Gilboa (1987), the 

Choquet expected utility (CEU) of Schmeidler (1989), the multiple prior (MEU) of Gilboa and 

Schmeidler (1989), the model misspecification of Hansen and Sargent (2001) and non-reducible 

second-order probabilities models of Segal (1987) and Klibanoff, Marinacci, and Mukerji (2005)).F

2
F 

While this literature made a considerable contribution to understanding the decision maker's 

preferences toward ambiguity, a complete separation between ambiguity and risk, which enables 

to measure ambiguity empirically, has not been derived. Such a measure is necessary in testing 

the effect of ambiguity on asset prices. 

Shadow Theory provides a measure of ambiguity. It assumes that probabilities of 

observable events, are random and are dominated by unobserved, with a second-order 

probability. In this framework a complete separation between risk and ambiguity and between 

preferences and beliefs is obtained. This allows us to measure the degree of ambiguity. In this 

model, random probabilities are subjectively interpreted by decision makers in a nonlinear way, 

characterized by probabilistic sensitivity to ambiguity. Ambiguity aversion, thus, takes the form 

of subadditive (subjective) probabilities (i.e., the probabilities add up to number smaller than 1). 

                                                 
2 Other models that relax the reduction between first and second order probabilities include Klibanoff et al. (2009), Ju and Miao 

(2011), Hayashi and Miao (2011), Ergin and Gul (2009), Nau (2006), and Chew and Sagi (2008). 
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In this context, when ambiguity is present, ambiguity loving implies a superadditive probability 

measure (i.e., the probabilities add up to number greater than 1). 

The Shadow theory developed in Izhakian (2011) extends the Choquet expected utility of 

Schmeidler (1989) and Tversky and Kahneman's (1992) cumulative prospect theory.F

3
F Using 

Wakker’s axioms (Wakker 2010) it models reference-dependent beliefs in a two-sided Choquet 

expected utility framework for losses and for gains, separately. Shadow theory assumes that the 

financial decision maker (henceforth DM or investor) has a reference point that separates losses 

from gains. Outcomes that are lower than this reference point are considered a loss and outcomes 

which are higher than the reference points are considered a gain. The reference point in Izhakian 

(2011) serves as the reference that separates the probabilities of gains from the probabilities of 

losses. The volatility of these probabilities is used in measuring the degree of ambiguity. 

Attitudes toward ambiguity are formed with respect to this degree of ambiguity. 

The implication of a subadditive probability measure for asset prices is that there is an 

ambiguity premium in addition to the conventional risk premium. The conventional risk 

premium is the premium that a DM is willing to pay for replacing a risky bet by its expected 

outcome. The ambiguity premium is the premium that a DM is willing to pay for replacing an 

ambiguous bet by a risky, non ambiguous, bet with an identical expected outcome. The 

uncertainty premium is the total premium that a DM is willing to pay for replacing an ambiguous 

bet by its expected outcome, i.e., it contains both, a risk premium and an ambiguity premium. 

Let r  be the random return on an asset,  U   be the utility function, for risk and     be 

the sake function for ambiguity. The uncertainty premium is provided by 
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 , (3) 

where R  is the risk premium and the second component, A , is the ambiguity premium. The 

parameters PL and PG  are the random probabilities of loss and of gain, respectively. The 

                                                 
3  Cumulative prospect theory, developed by Tversky and Kahneman (1992), generalizes the original prospect theory by 

Kahneman and Tversky (1979). It modifies the probability weighting functionals of the original prospect theory, such that it 

always satisfies stochastic dominance and supports an infinite state space.  



8 

expectation  E PL  and  E PG  are taken with respect to the likelihoods of the possible 

probability measures; i.e. with respect to the second-order probabilities. That is,  

        
1 1

E P P and E P P ,
M M

L i i k G i i k
i i

r r r r 
 

      (4) 

where kr  the reference return which distinguishes losses from gains and i  is the probability of 

the probability distribution Pi . 

The expected return is  E r , where the expectation of the outcome is evaluated using the 

expected probabilities for each outcome. It combines two expectations; with respect to the 

random outcomes and with respect to the random probabilities. The parameter 

    4Var PLr   (5) 

is Izhakian's measure of ambiguity, which is four times the variance of the probability of loss or 

four times the variance of the probability of gain, which are taken with respect to the second 

order probability distribution  .F

4
F It is important to note that,  0,1 , attains its minimum 

value, 0, when all probabilities are known, and its maximum value, 1, only in the extreme case of 

binomial distribution with a random probability for each event that can have probabilities of 0 or 

1 with equal chances. The Arrow-Pratt coefficient of absolute risk aversion is 
 
 

U"

U'





. The 

coefficient of absolute ambiguity aversion is 
 
 

"

'








. 

Equation X(3)X defines the premiums required by investors for bearing risk and ambiguity 

associated with holding the asset. 

2.2 Intuition 

To provide some intuition with regard to the measure of ambiguity,  r , lets consider 

the following binomial example. Assume an asset with the following two possible future returns 

10%d    and 20%u  . Consider the case where the probabilities of d  and u  are known, say 

                                                 
4 This equality is obtained since the variance the probability of an event is equal to the variance of the probability of its 

complement event. 
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   P P 0.5d u  . The expected return is, thus, 5%. Taking the standard deviation of outcomes, 

in terms of return, as a proxy for the degree of risk, is 15%. Obviously, since the probabilities are 

precisely known, ambiguity is not present and the investors face only risk. 

Assume now that the probabilities of d  and u  can be either  P 0.4d   and  P 0.6u   

or alternatively  P 0.6d   and  P 0.4u  , where the two possible distributions are equally 

likely. This means that the investors are now facing not only risk but also ambiguity. The main 

idea of the measure of ambiguity,   , is that, similar to measuring the degree of risk by the 

variance of outcomes, we can measure the degree of ambiguity by the variance of probabilities. 

However, concerning the variance of probabilities, the question is; to the probability of which 

event is the variance applied. The natural choice would be the probability of the cumulative 

event of gain or the probability of the cumulative event of loss, for which the variance is 

identical since the event of loss is the complement of the event of gain and the objective 

probabilities are additive. Computing the variance of the probability of loss yields 

 Var P 0.01L   which in turn indicates a degree of ambiguity of 0.2 . Notice that the degree 

of risk has not changed since the variance is computed using the expected probabilities 

   P P 0.5d u  . 

2.3 The risk-ambiguity model 

Assume an economy in which the returns on all assets are normally distributed. The 

return on the market portfolio, mr , is, therefore also normally distributed. The representative 

investor in this economy uses the risk free rate, fr , as the reference point relative to which he 

classifies outcomes as a loss or a gain. That is, any return on the market portfolio lower than fr  

is considered a loss and any return higher than fr  is considered a gain. Formally, the probability 

of loss takes the form 

 
 2

22

2

1
P Pr ,

2

f mr r
f

L m f m

r
r r e dr












 
       

 
  (6) 
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where     stands for the standard normal cumulative probability distribution. Recall, that in 

Shadow theory when ambiguity is present the variable PL  is random since the normal probability 

distribution is governed by the random parameters   and . We assume that ratio of these two 

parameters,   and  , is normally distributed and that    E P E PL G . To allow tractability, and 

without loss of generality, the representative investor in our economy exhibits constant absolute 

risk attitude (CARA) and constant absolute ambiguity attitude (CAAA)F

5
F. The uncertainty 

premium, defined by Equation X(3)X, is thus simplified to  

    1 1
Var ,

2 4m mK r r     (7) 

where 

   4 Var f
m

r
r




   
   

  
 , (8) 

  is the coefficient of the investor's risk aversion and   is the coefficient of ambiguity aversion. 

A positive (negative)   implies risk aversion (risk seeking), while a positive (negative)   

implies ambiguity aversion (ambiguity seeking). 

The expected return on the market portfolio, mr , less the risk free rate, also called excess 

return, thus takes the form  

                                                 
5 Though we assume CRRA for risk, we assume CAAA for ambiguity. The literature usually documents CRRA for investors, see 

for example Kachelmeier, and Shehata.(1992), Chetty (2006), Schechter (2007) and Cohen and Einav (2007). CRAA means 

that the impact of the attitude toward ambiguity on the subjective probabilities of an event is decreasing with its expected 

probability. That is, the subjective probabilities of highly likely events are less affected by individuals' attitude toward ambiguity. 

Whereas, CAAA means that the impact of the attitude toward ambiguity on the subjective probabilities of an event is independent 

of its expected probability. We find that CAAA is more reasonable. Technically, the subjective probability of event j  takes the 

form 
 
 

2
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 is the coefficient of 

ambiguity attitude and 2
j  is the degree of ambiguity of event j  measured by the variance of the probability, see Izhakian 

(2011). Therefore, for CRAA, the subjective probability is 2E
2E

j j j

j
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P
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 and for CAAA the subjective probability is 
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E
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      1 1
E Var ,

2 4m f m mr r r r      (9) 

where the risk premium is  1
Var

2 mR r  and the ambiguity premium is  1

4 mA r  . The 

effect of uncertainty on the return is now represented by two terms; a risk term and an ambiguity 

term. Each is measured separately and has a different effect on the excess return. In the next 

section we present the empirical tests of this model. We first provide the methodology that we 

use to measure the variables, especially the ambiguity measure, and then we apply the model to 

empirical tests. 

3. Data and methodology 

3.1 Data 

The main body of data used in the empirical research is intraday trading data (prices and 

volumes) on the exchange-traded fund SPDR (Ticker: SPY) taken from the TAQ database.F

6
F The 

Standard & Poor's Depositary Receipts (SPDR) is comprised of all the stocks in the Standard & 

Poor's 500 Index. The stocks in the SPDR have the same weights as in the index and it is 

designed to track the index, before expenses. The expense ratio is about 7-8 basis points and the 

bid-ask spread is 1-2 basis points. The quarterly dividends are added to the index every 3 

months. It can be sold short like any other stock and short interest is sometimes as high as 50 

percent. A typical volume for the SPDR is between 200- 300 million shares per day, which is the 

highest of any US stocks traded on any exchange. 

We use the SPDR as a proxy for the market portfolio and not the S&P index itself since 

the SPDR trades continuously, while the index contains illiquid stocks and so its values are stale. 

The data covers the period from February 1993 to December 2010.F

7
F Monthly returns adjusted for 

                                                 
6 The Trade And Quotes (TAQ) database; Wharton Research Data Services (WRDS). 
7 Under the ticker symbol, SPY, SPDRs began trading on the American Stock Exchange (AMEX) on January 29, 1993. 
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dividends obtained from the CRSP database.F

8
F VIX values were obtained from the CBOE site, 

and the risk free rate from Ibbotson Associates.F

9 

3.2 Methodology 

The first step in designing the empirical tests is to compute the time series values of the 

variables that will be used in the tests. We first compute the degree of ambiguity derived by 

Izhakian (2011, Equation X(8)X) for each period of one month.F

10
F We sample the prices of SPY 

every 15 minutes starting from 9:30 until 16:00 each day: 27 prices in total for each day.F

11
F

,
F

12
F In 

case there was no trade at a specific sampling time, we took the volume weighted average value 

of the closest trading prices. Using these prices we compute 15 minute returns, 26 returns for 

each day.F

13
F

 ,
F

14
F The choice of 15 minute intervals is dictated by the measure of ambiguity. To 

perform meaningful time series tests, in our 18 year period (1993 to 2010), we need to use 

monthly observations. To obtain a statistically meaningful monthly measure of ambiguity we 

need a daily estimate of probability derived from a daily distribution of rates of return, which, in 

turn, requires intraday observations. Anderson, Bollerslev, Diebold and Ebens (2001) show that 

computing returns using 5-minutes time-intervals eliminates microstructure effects. Furthermore, 

since the SPY is frequently traded its bid-ask spread is minimal, such that these returns are not 

biased. 

For each day we used its 26 observations to compute the mean and the variance of return. 

Depending on the number of trading days in the month, we have, for each month, between 440 

                                                 
8 Since dividends are added to SPDR every three months, we adjust the return on SPDR, the explanatory variable, to monthly 

dividend yields, using the dividend yields on the S&P-500 index, taken from the CRSP database. 
9 The risk free rate is one-month Treasury bill rate of return (from Ibbotson Associates). 
10 For simplicity we concentrate on one month intervals, however the same procedure can be applied for periods of less than one 

month, 10 trading days for example. 
11 We also test our model using a 10 minutes interval; the results were essentially the same. 
12 To check for robustness, while eliminating the impact of the trading noise caused by opening and closing daily positions 

during first and the last half-hour of the stock trading, we also performed our tests using only the prices from 10:00 to 15:30. The 

results were essentially the same. 
13 We have not included returns between closing prices and opening prices of the following day. We eliminated the impact of 

overnight price changes and dividend distributions. 
14 While omitting the first and last half an hour of the trading our results remain almost similar. 
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and 572 observations.F

15
F Using Equation X(6)X we compute for each day the probability to suffer a 

loss, PL . For each month, there is a vector which consists of 20 to 22 different loss-probabilities. 

Using this vector of loss-probabilities we compute its variance to obtain the degree of 

ambiguity, 2 , for that month. Assuming that the daily ratio 



  is normally distributed with 

mean  E   and variance  Var   then PL  is uniformly distributed across the month.F

16
F This 

method assigns lower weights to values of   that deviate from the monthly mean  . To 

estimate the expected probability of loss we use the realized probabilities of loss as a proxy for 

the expected. These probabilities are computed using daily means and variances,   

and computed from 15 minute intervals and their ratio, 



 , ranges between 0.72 and -0.83. 

Since this ratio is distributed normally, extreme values of daily  will get very little weight in the 

monthly estimate of   and   of  . The variation of the probability of loss, PL , is due to the 

variation of the ratio  . A closer look at the variation of this ratio shows that it is mainly driven 

by the variation of  . Over the entire sample the standard deviation of  , in terms of daily 

return, is 0.641% while the standard deviation of   is only 0.211%.F

17 

The risk factors are estimated from the daily variances over the month. We compute the 

mean of the variance, MVAR, and the variance of variance VVAR for every month. As controls, 

for each day we also compute the skewness and the kurtosis, and for each month the average 

skewness (MSKW) and the average kurtosis (MKRT). Using these variables, we next test the risk 

                                                 
15 To check for robustness, we formed randomly (without repetition) groups of 26 observations and computed a mean and a 

variance for each group. Since the results of this method were not significantly different from the first method, we conducted our 

tests using the first method. 
16 It can be shown that the density function of the random variable P

L
 as a function of the normally distributed random variable 

 is uniform. 

17 We would like to emphasize that mean realized returns measured over short intervals are very poor proxies for annual expected 

return (i.e. their standard error is very large). In our context, however, we derive the daily probability of loss from a distribution 

of the ratio of   and  , which gives very little weight to extreme observations. This results in very reasonable estimates of the 

expected probability of loss. On the average the probability of loss should be lower than 50%. In our sample the average 

probability of loss is 49.75%, even though in some days the realized probability of loss exceeded the 50%. The standard 

deviation of the probability of loss over the entire sample was 1.5%. 
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and ambiguity effect on monthly returns, i.e., Equation X(9) X is subjected to regression tests 

presented in the next section. 

3.3 Descriptive statistics 

The dependent variable is the monthly return on SPY, which serves as a proxy for the 

return on the market portfolio, mr , minus the risk free rate,
 fr  ,which is the 1 month T-bill rate. 

The market return, mr , is computed using the opening price on the first trading day of the month 

and the closing price on the last trading day of that month, and it is adjusted for monthly 

dividends. The other variables that we use in the empirical tests are as follows: MVAR is the 

mean of daily variance. The daily variance is computed every day using 15 minutes rates of 

return (ROR) and multiplied by 26 (the number of 15 minutes intervals). It is averaged over the 

number of trading days in a month. VVAR is the variance of daily variance, computed by using 

the daily variances during the month. MSKW is the mean of daily skewness, computed every day 

using 15 minute ROR, multiplied by 3 226  and averaged over the month. MKRT is the mean of 

daily kurtosis, calculated every day using 15 minute ROR multiplied by 226  and averaged over 

the month. MVIX2 is the mean of all daily squared VIX observation during the month. VVIX2 is 

the variance of all daily squared VIX observation during the month. CVAR is the variance of 15 

minutes return of the last day in the month (converted to daily). CVIX2 is the closing squared 

VIX on the last day of the month (converted to daily). DVAR is the change in variance from the 

last day in month t-1 to last day in month t. DVIX2 is the change in squared VIX from the last day 

in month t-1 to last day in month t. 

Table I panel A provides summary statistics of the variables that are used in the empirical 

tests. All variables are adjusted to daily terms. During the 1993-2010 period, the daily mean 

return on SPY, mr , is 0.025%, about 9.2 percent on an annual basis. The variance of mr  is about 

3.0E-06. The risk free rate, fr , is 0.009%, about 3.33 percent annually. The excess return, 

m fr r , is 0.016%, 5.84 percent annually. The distribution of m fr r  is somewhat negatively 

skewed. Most values, however, are to the right of the mean. The positive kurtosis, 0.995, is an 

indication of fat tails. 

The average daily variance (across all 215 months), MVAR, is about a half of the average 

daily VIX2 (0.00012 vs. 0.0002), while the variance of these two estimates is about the same 
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(4.14E-08 vs. 4.00E-08). (the average standard deviation on an annual basis is about 14 percent 

while VIX is about 21). In the same vain, the average variance of the daily variance, VVAR, is 

about 8.11E-06 percent while the average variance of the daily VIX is only about 4.65E-09. 

Thus, VIX is on the average larger than the realized volatility by about 6-7 percent, but it moves 

in a narrower range.F

18
F MSKW is the mean of the daily skewness, which is negative but not 

significant. MKRT is the mean of the daily kurtosis, which is significantly different from zero, 

indicating fat tails as observed earlier. 

Panel B in Table I provides summary statistics of the ambiguity parameters. The average 

daily probability of loss,  E LP , is 49.7 percent.  E LP  is computed using EquationX(4)X. The 

distribution of these probabilities is positively skewed, 0.054, and has thin tails (the kurtosis is -

0.596). The measure of ambiguity, , given in Equation X(8)X, is on the average 0.025, where the 

minimum and maximum observed values are 0.0088 and 0.0532 respectively.   (the square root 

of the measure  ) the daily ambiguity level measured in percentage points, is 15.6. Figure 2 

depicts the distribution of  in the period 1993 to 2010. The distribution of   is almost 

symmetric around its mean of 16%. 

Since our model predicts that the excess return should be affected by the ambiguity 

measure   in a linear manner, we use  , rather than  , in our tests. Table I, panel B, shows 

that   is positively skewed, with coefficient 0.6832, which is highly significant. Recall that the 

ambiguity measure takes on only positive values in the range between 0 and 1. The positive 

skewness thus indicates that the ambiguity level is usually concentrated around the mean with a 

long tail, where in some months we observe a relatively high level of ambiguity. The kurtosis of 

  is slightly positive, 0.2437.F

19 

To get a more intuitive feel for the measure of ambiguity we can look at   (not  ). 

During the period 1993 to 2010, the mean level of ambiguity,  , is about 15.6 percent, while its 

                                                 
18 The variance of MVAR is the variance of the monthly average variance calculated for each day separately. The variance of the 

parameter VVAR is the variance of the monthly variance base on the intraday variance. 
19 Since we also test the case of constant relative ambiguity aversion (CRAA), the summary statistics of the normalized, relative 

ambiguity measure,  E
L

P  are also presented in Table I. One can see the relative ambiguity is positively skewed, 12.5951, 

but with negative kurtosis, -0.4084, which indicates thin tails. 
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standard deviation is about 2.5%. The lowest recorded level of ambiguity is 9.3% and the highest 

is 23.1% (December 2002, when the US decided to invade Iraq). 

In Panel C, of table I, we provide summary statistics of CVAR, CVIX2, DVAR, DVIX2. 

CVIX2, the value of VIX2 on the last day of the month is practically the same as MVIX2 but the 

variance is lower since CVIX2 does not include some extremely large observations. The same is 

true for CVAR and MVAR. 

[ INSERT TABLE I ] 

Table II provides the first 6 autocorrelation coefficients, of all the variables that we use in 

our tests. The variables that have large and significant autocorrelations are those who use VIX in 

their various forms, except for DVIX2. For example, MVIX2 has a 1st order autocorrelation of 0.85 

and it decays slowly to 0.29 at the 6th order. A similar pattern is observed for VVIX2 and CVIX2. 

The main concern is how it may affect the OLS estimator in our regression tests. We therefore 

conducted first the tests proposed by Amihud and Hurvich (2004) and then used the regression 

test. 

[ INSERT TABLE II ] 

Figure 1, the upper plot describes the average daily excess returns on the SPDR (SPY) 

over the years 1993 to 2010. In the lower plot we present the monthly ambiguity,  , on a daily 

basis. Over this period we observe only a couple of months that contain big downward moves in 

the market. The two obvious ones, are September of 1998, the Russian default and the LTCM 

debacle, and September 2008, the recent financial crisis. It seems that during the 1990s 

ambiguity levels were not very high, but they have increased by at least 50% after 2000. It can be 

observed that relatively low returns are accompanied by relatively high levels of ambiguity in the 

previous month. For example, on August 1998 the excess return dropped to -0.48% and a month 

before, July 1998, the ambiguity level,  , jumped to 0.182. Or in September 2002, the return on 

SPY dropped to -0.36% while the level of ambiguity in the month before jumped up to 0.184. On 

September 2008 the return on SPY dropped to the low -0.54%, where in the months before 

ambiguity jumped to a level higher than 0.197. It is interesting to note that over the entire period 

ambiguity and excess return seem to move counter cyclically (depicted by the solid lines). 

[ INSERT FIGURE 1 ] 



17 

Figure 2 describes the distribution of the degree of ambiguity,  , in the period between 

February 1993 to December 2010. The degree of ambiguity is provided on the x-axes in 

percentages. The y-axes describes the frequency of the degree of ambiguity. Most of the 

observations are centered between 12% and 20% ambiguity. There are a few cases where the 

degree of ambiguity is higher than 20% or lower than 10%, which is very rare. 

 [ INSERT FIGURE 2 ] 

Table III provides the cross correlations of all variables used in this study. It provides a 

first look at the relationships between all possible pairs of variables. In particular, the 

relationship of the excess return,
m f

r r , and the ambiguity measure  . It is negatively correlated 

and significant, which indicates that the coefficient of ambiguity is possibly negative. Or, in 

other words, that investors love ambiguity. Also, the ambiguity measure exhibits a low 

correlation with the other variables. This basically rules out the possibility that ambiguity is a 

proxy for volatility of volatility or kurthosis. The various measures of volatility exhibit some 

correlation but those are not large enough to affect our main tests. 

[ INSERT TABLE III ] 

4. Empirical results: testing the effect of ambiguity and risk on excess 

returns 

Theoretically, the effect of ambiguity and risk on the expected excess returns, presented 

in Equation X(9)X, assumes that investor exhibit constant relative risk aversion (CRRA) and 

constant absolute ambiguity aversion (CAAA).F

20
F In table IV we present the results of the 

regression tests where the dependent variable is the excess return and ambiguity and risk are the 

independent variable. We assume that the observed excess return is the best estimate of the 

expected excess return and so it is for the other variables like measures of expected risk by the 

daily variance. 

In table IV the independent variables are measured contemporaneously with the excess 

return. 
F

21
F So the return in month t is explained by the ambiguity in month t, by the variance in 

                                                 
20 We also tested our model for the case of constant relative ambiguity attitude (CRAA). The results were not significantly 

different than the results for the CAAA case. 
21 The values of the Durbin-Watson (DW) test indicate that we don’t have a serial correlation issue. 
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month t, etc. We first used only ambiguity to explain the excess return and found that the 

ambiguity effect is negative and highly significant. When MVAR and VVAR were included, the 

R2 has increased from 5% to 18% but we were puzzled by the sign and significance of the MVAR 

coefficient, which was negative while we expected MVAR to be positive. Since these realized 

values may be poor proxies for expected variance and variance of variance, MVIX2 and VVIX2 

were used as estimates of the expected risk measures.  MVIX2 turns out to be non significant but 

VVIX2 is negative and significant. We also included a measure of Kurtosis, denoted MKRT, to see 

whether the measure of ambiguity is possibly a proxy for Kurtosis, which turns out to be non 

significant and does not affect the significance of ambiguity.F

22 

The results in table IV show that ambiguity is an important variable in explaining excess 

returns and is not a proxy for other possible factors. However, we did not find our measures of 

risk to have the effect dictated by our fundamental paradigm that implies a positive relationship 

between risk and return. In general, past empirical studies have not provided conclusive 

evidence, especially the time-series tests. French, Schwert and Stambough (1987) is possibly the 

best known time series study that provides results that could be interpreted as supporting the 

basic theory, though they also come up with some mixed results. Since they only had a long time 

series of monthly data, we thought that the use of daily data (constructed from intraday data) 

may provide us with more promising results. In fact, our contribution is twofold. First, we argue 

that there is a missing variable, namely ambiguity. Second, we use data that are more fine-tuned 

to test the basic relationship between risk and return. In our tests we also argue that the measure 

of risk is orthogonal to the measure of ambiguity, which we observe in the low correlation of 

these two measures. 

[ INSERT TABLE IV ] 

The results in table IV which use ex post measures of risk (and ambiguity), are consistent 

with the tests and results in other studies on the relationship between risk and return (e.g. French, 

Schwert and Satmbaough (1987)). In table V we use the measures of risk at t-1, coinciding with 

the market price at t-1. We argue that the level of risk and ambiguity at t-1 affect the price at t-1 

instantaneously and consequently the return from t-1 to t. The t-1 measures of risk and ambiguity 

                                                 
22  We conducted the same test for skweness. We included a measure of skewness, denoted MSKW, to see whether the 

significance of the measure of ambiguity is affected by skewness. It turns out that skewness is not significant and does not affect 

the significance of ambiguity. 
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could be considered ex ante (expected) estimates which should affect the return in time t. Since 

the explanatory variables are measured at t-1, it is likely that we obtain biased coefficients and T-

statistics due to a serial correlation. To deal with this issue, we subjected the regressions to the 

Amihud and Hurvitch (2004) test and all the regressions have “passed” the test, so no 

adjustments were necessary.F

23 

The results in table V are encouraging. In all the regressions ambiguity is highly 

significant, while the risk measures have positive coefficients, though most of them are not 

significant. To measure risk in t-1 we have used MVAR, the mean daily variance and MVIX2, the 

mean daily VIX2. To better align the measure of risk with the price at t-1, we have also used 

CVAR, the estimate of the variance on the last day of the month, adjacent to the opening price 

used for the return from t-1 to t. Similarly, the last regression on table V uses the closing VIX2, 

just before the opening price the next day. The best result is obtained when we include VVIX2, 

the volatility of VIX2, in the regression. Ambiguity is not affected; it is negative and as 

significant as in the other regressions. Expected volatility, estimated by MVIX2, is positive with a 

coefficient of 2.6 and highly significant. 

[ INSERT TABLE V ] 

Our next set of tests, provided in table VI, further support the findings in table V. As 

suggested by French, Schwert and Stambough (1987), we have used the unexpected change in 

risk to explain the excess return, m fr r . We measure this change in two ways; DVARt, the 

change in the daily variance, from t-1 to t, using the variance on the last trading day of the 

month. 2
tDVIX , the change in daily VIX2, from t-1 to t, using VIX2 on the last trading day of the 

month. The results in this table are our strongest results. We use the ambiguity measure,  , in t-

1 to be consistent with the risk measures and can be considered an ex ante measure. As seen in 

the earlier tests, it is negative and highly significant. Both of the risk measures are also negative 

and highly significant as hypothesized. The regression which uses ambiguity and DVIX2 provides 

                                                 
23 The Amihud and Hurvitch (2004) test is applied when the explanatory variable is a lagged variable. The residual from the OLS 

regression (the main model) is regressed against the residual from the autoregressive regression of the explanatory variable. 

According to this test, the estimated statistics are biased only if both of the following two conditions are satisfied. (i) the 

explanatory variables are highly autocorrelated. (ii) there is a statistically significant correlation between the residuals of the 

autoregressive regression of the explanatory variable and the residuals of the main regression, explaining m fr r  in our case. 

These two conditions have not been satisfied together in any of the regressions we tested. 
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even stronger result, the R2 is about 46 percent. The ambiguity measure turns out to be 

significantly negative in any specification of the determinants of excess return. As stated in the 

introduction, previous evidences regarding the attitudes of ambiguity are mixed at best. Our 

results are consistent with the studies that show ambiguity loving. The effect of risk, measured 

by the unexpected change in volatility, can be interpreted as “indirect evidence of a positive ex 

ante relation” (see French, Schwert and Stambough (1987, p. 4)). 

[ INSERT TABLE VI ] 

5. Investors attitude toward risk an ambiguity 

Examining further the results in table V we see, for example, that in the regression with 

2
1tMVIX   and 2

1tVVIX  , the coefficient of ambiguity 2
1t , 1  equals -0.0492 and the coefficient 

of risk ( 2MVIX ), 4  equals 2.62. These results imply that the investor's coefficient of constant 

relative risk aversion is 5.24.F

24
F Though this number is in the range of estimates obtained in other 

studies (e.g. Brown and Gibbons (1985), French, Schwert and Stambough (1987)), it is on the 

high end indicating strong aversion to risk. The investors' coefficient of constant absolute 

ambiguity attitude, however, indicates that investors are typically ambiguity lovers characterized 

by a coefficient of ambiguity loving of -0.2. To the best of our knowledge, this is the first 

empirical study which provides an estimate of the degree of the attitude toward ambiguity. 

At first it seems puzzling that investors exhibit risk aversion and ambiguity loving at the 

same time. To explain this puzzle let’s assume two assets with identical expected return, but the 

first asset has a random probability of loss/gain and the second asset's probability of loss/gain is 

equal to the expected probability of loss/gain of the first asset. By definition, an ambiguity lover 

prefers the first asset over the second asset. In our setting, returns are normally distributed, yet 

with random mean and random variance, such that if 

    
      E

E P | , E P | E ,E
E

f fr r
L L

 
   

 
     

                
, (10) 

                                                 
24 For completeness, we tested the impact of investors' loss aversion by controlling for different levels of risk aversion after 

facing a loss compared with the level of risk aversion after facing a gain. The results did not indicate a significantly different 

level of risk aversion for losses than for gains. That is, no evidences for loss-aversion preference were found. 
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then the investors prefers the first asset with the random probabilities over the second asset with 

the constant probabilities. Since the returns on assets are assumed to be symmetrically 

distributed, a rational investor who maximizes expected return also minimizes the probability of 

loss. Thus, if inequality X(10)X holds a rational investor prefers the asset with the random 

probability. In other words, he must exhibit ambiguity loving. 

Figure 3 provides a graphical representation of inequality X(10) X. This figure assumes two 

possible normal probability distributions characterized by  1 1,   and  2 2,  . The y-axes 

depicts the probability of loss and the x-axes depicts the adjusted reference point (adjusted to the 

standard normal distribution). Given the random probabilities of loss, the expected probability of 

loss is  E P | ,L     . Assume now a second asset with constant mean,   1 2E
2i

   
   

and constant standard deviation,   1 2E
2i

   
  . The probability of loss of this asset is 

    P | E ,EL   . Figure 3 shows a case where the expected probability of loss is smaller than 

the probability of loss conditional on the expected mean and the expected variance, i.e., 

      E P | , P | E ,EL L      . 

[ INSERT FIGURE 3 ] 

To check empirically that inequality X(10)X holds, for each month we compute monthly (i) 

the expected probability of loss assuming that the mean and variance governing the probability 

of loss are random and (ii) the probability of loss using the expected mean and expected variance 

in that month. The average expected probability of loss using (i) is 49.74%, while using (ii) the 

probability of loss is 50.17%. The difference between (i) and (ii) is negative (-0.43%) and 

significant (t = -2.06). This result proves that the expected probability of loss when the 

parameters of the distribution are random, is lower than a constant probability of loss, using the 

expected parameters. A rational investor, who minimizes the expected probability of loss, prefers 

(i) over (ii) and therefore by definition he is an ambiguity lover. 

Behavioral studies of decision making under ambiguity document that sometimes 

decision makers exhibit different attitudes toward ambiguity after facing a loss compared with 

the case where they face a gain (see for example, Bier and Connell (1994), and Chakravarty and 

Roy (2009a, 2009b)). Different attitudes toward ambiguity can be either different levels of 
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ambiguity aversion/seeking or a change in attitude from ambiguity aversion to ambiguity 

seeking. We tested this hypothesis and found no evidences for different attitudes toward 

ambiguity. Ambiguity loving was observed for gains and for losses and the degree of ambiguity 

loving after facing a loss was not significantly different than the level of ambiguity loving after 

facing a gain. 

6. Conclusions 

The basic tenet in asset pricing is the relationship between risk and return, which has 

been tested a multitude of times using a variety of models and factors. While this relationship 

could be tested on the market as a whole using time series data, most of these tests were cross-

sectional. The results of these tests are mixed at best. In several studies the factor that measures 

the risk of the asset has a negative coefficient or is non significant while other factors (e.g. 

liquidity or liquidity risk) turn out to have the desired sign and are significant, which is a puzzle. 

One possibility is that the missing variable is ambiguity. In this study we introduce for the first 

time a measure of ambiguity, developed in Izhakian (2011). We use it in conjunction with 

measures of risk in time series tests.  

We claim that excess return on the market as a whole, known as the equity premium, is 

determined by two orthogonal factors; ambiguity and risk. We measure risk in a variety of ways, 

e.g., using rate of return variance and implied volatility. Our principle hypothesis is that both of 

the factors affect the excess return. While, consistent with our asset pricing paradigm of risk 

aversion, we expect, that the measures of risk will be positively related to the excess return, we 

have no a-priori view of the effect of ambiguity. The results that we obtain are rather 

encouraging. The effect of ambiguity is negative and highly significant in all the tests that we 

employ. This is consistent with several recent studies that show that financial decision makers 

tend to be ambiguity loving. The effect of risk is generally positive, which is consistent with risk 

aversion but its significance depends on the risk measure that we use. The best result that we 

obtain is when we use the unexpected change in volatility as the explanatory variable. Though 

this is an indirect test of the effect of risk on return, it provides the strongest evidence and is 

consistent with the results obtained by French, Schwert and Stambaghu (1987). 
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Figure 1: Market excess return and the degree of ambiguity for the period 1993-2010 
The upper plot of this figure describes the daily, adjusted for dividend, excess return on the SPY, which serves as a 
proxy for the market portfolio, between February 1993 and December 2010. The values are the average daily excess 
return in each month. The lower plot describes the daily level of ambiguity, measured by  , for each month 
between February 1993 and December 2010.   is computed using 15 minutes rates of return during the month. For 
each day the probability of loss is computed using the mean and the variance of that day. For each month there are 
20-22 probabilities of loss over which the standard deviation is computed to provide the squared degree of 
ambiguity,  . The solid smooth lines are created by a polynomial of the 4th degree. The red doted vertical lines 
designate special events that had a significant impact on the average monthly excess returns. 
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Figure 2: The distribution of ambiguity level. 
This figure describes the distribution of the daily level of ambiguity measured by,  , for the months between 
February 1993 and December 2010.   is computed using 15 minutes rates of return during the month. For each day 
the probability of loss is computed using the mean and the variance of that day. For each month there are 20-22 
probabilities of loss over which the standard deviation is computed to provide the squared degree of ambiguity,  . 
Each column depicts the number of observations observed in the range describes on the x-axes.  
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Figure 3: Ambiguity Loving 
This figure describes the probability of loss as a function of the threshold differentiating gains form losses, when 
to probability distribution is normal. The y-axes depicts the probability of loss and the x-axes depicts the value 
differentiating gains from losses. It assumes two possible normal probability distributions characterized by 

 1 1,   and  2 2,  . The expected portability of loss is  E P | ,L     . The probability of loss, when the 

mean and the variance,     E ,E   are the expected mean and the expected variance, respectively, of 

 1 1,   and  2 2,   is     P | E ,EL   . 
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Table I 

Summary Statistics of Regression Variables for the Period 1993-2010 

Panel A reports summary statistics for the entire sample between February 1993 and December 2010. All 

parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on the SPDR. 
f

r  is the daily 

return on the risk-free asset. MVAR  is mean of daily variance. The variance is calculated every day using 15 
minutes rates of return (ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number 
of trading days in a month. VVAR  is variance of daily variance. The variance is calculated by using the daily 
variances during the month. MSKW  is mean of daily skweness. The skweness is calculated every day using 15 
minute ror, multiplied by 26 and averaged over the month. MKRT is the mean of daily kurtosis. The kurtosis is 

calculated every day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX  is the mean of all 

daily VIX observation during the month. 2VVIX  is the variance of all daily VIX observation during the month. 

Panel B reports summery statistics for the measure of ambiguity.  is the daily ambiguity level during the 

month,  E
L

P  is the daily expected probability of loss and  E
L

P - is the normalized measure of ambiguity. 

Panel C reports summery statistics for the volatility indicators. CVAR is the daily variance of the last trading day 

of the month. 2CVIX  is the VIX observed in the last trading day of the month. 2DVIX  is the difference of the 
observed VIX in the last trading day of the current month and the last trading day of the previous month. 

Panel A:  

 Mean Variance Skewness Kurtosis Min Max Median N 

m
r  0.000252 2.938E-06 -0.696084 1.018086 -0.005457 0.003368 0.000460 215 

fr  9.116E-05 2.870E-09 -0.314441 -1.264361 0.000000 0.000187 0.000103 215 

m f
r r  0.000160 2.147E-06 -0.671609 0.995231 -0.005484 0.003364 0.000328 215 

MVAR  0.000121 4.142E-08 5.777216 40.727858 1.660E-05 0.001787 6.925E-05 215 

VVAR  8.115E-06 8.973E-09 14.298609 207.352920 1.11E-09 0.001378 3.86E-08 215 

MSKW  -0.014659 0.0241834 0.124007 -0.487596 -0.365049 0.387104 -0.018444 215 

MKRT  0.961168 0.5630023 1.433304 2.859667 -0.059868 4.707871 0.762767 215 

2MVIX  0.000200 4.007E-08 3.900617 20.981768 4.658E-05 0.001582 0.000158 215 

2VVIX  4.654E-09 5.459E-16 8.935092 87.099827 8.42E-12 2.64E-07 4.25E-10 215 

Panel B: 

  0.024988 6.606E-05 0.675753 0.240998 0.008802 0.053262 0.023582 215 

 E
L

P  0.497510 0.0002281 0.050747 -0.587161 0.458340 0.538600 0.497787 215 

 E
L

P  0.050227 0.289621 13.316224 -0.410446 0.019203 0.098890 0.047374 215 

  0.156041 0.0006425 0.274433 -0.221245 0.093817 0.230787 0.153565 215 
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Panel C: 

CVAR  0.000111 3.680E-08 8.754059 101.518093 5.53E-06 0.002436 6.481E-05 215 

2CVIX  0.000198 3.319E-08 3.209620 14.729752 4.309E-05 0.001423 0.000154 215 

DVAR  -1.457E-07 5.926E-08 0.892633 61.464498 -0.002097 0.002284 -3.00E-06 214 

2DVIX  2.631E-07 1.232E-08 1.735123 19.411058 -0.000578 0.000808 -1.82E-06 214 
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Table II 

Autocorrelations  

This table reports the autocorrelations of all the different variables, explained and explanatory, which are 
used in the regressions. The autocorrelations are measured for the period between February 1993 and 

December 2010. All parameters are normalized to one day. 
m

r is the daily adjusted to dividend return on 

the SPDR. MVAR  is mean of daily variance. The variance is calculated every day using 15 minutes rates 
of return (ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of 
trading days in a month. VVAR  is variance of daily variance. The variance is calculated by using the daily 
variances during the month. MSKW  is mean of daily skweness. The skweness is calculated every day 
using 15 minute ror, multiplied by 26 and averaged over the month. MKRT  is the mean of daily kurtosis. 
The kurtosis is calculated every day using 15 minute ror multiplied by 26 and averaged over the month. 

2MVIX  is the mean of all daily VIX observation during the month. 2VVIX  is the variance of all daily 

VIX observation during the month.   is the daily ambiguity level during the month, CVAR  is the daily 

variance of the last trading day of the month. 2CVIX  is the VIX observed in the last trading day of the 

month. 2DVIX  is the difference of the observed VIX in the last trading day of the current month and the 
last trading day of the previous month. 

 1t   2t   3t   4t   5t   6t   

m f
r r  0.0965 -0.0363 0.1213 0.0419 0.0442 -0.0481 

  0.3836 0.3930 0.3777 0.2890 0.3499 0.3546 

MVAR  0.4399 0.2375 0.2034 0.1837 0.0896 0.0376 

VVAR  -0.0050 -0.0065 -0.0064 -0.0058 -0.0074 -0.0075 

2MVIX  0.8498 0.6424 0.5265 0.4601 0.3768 0.2859 

2VVIX  0.6542 0.3492 0.0998 0.0326 0.0226 -0.0117 

MSKW  0.0262 0.1692 0.0525 -0.0388 0.1217 0.0506 

MKRT  0.6299 0.5722 0.5702 0.5290 0.5338 0.5944 

CVAR  0.1977 0.0834 0.0834 0.0839 0.0840 0.0806 

2CVIX  0.8149 0.5253 0.5253 0.4821 0.4123 0.3192 

DVAR  -0.4326 -0.0033 -0.0033 0.0003 0.0021 0.0076 

2DVIX  0.0751 -0.0898 -0.0898 0.0725 0.0602 -0.1295 
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Table III 

Cross Correlations of Variables 

This table reports the cross-correlations between the different variables, explained and explanatory, which are used in the regressions. The cross-

correlations are measured for the period between February 1993 and December 2010. All parameters are normalized to one day. 
m

r is the daily 

adjusted to dividend return on the SPDR. MVAR is mean of daily variance. The variance is calculated every day using 15 minutes rates of return (ror) 
and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of trading days in a month. VVAR is variance of daily 
variance. The variance is calculated by using the daily variances during the month. MSKW  is mean of daily skweness. The skweness is calculated 
every day using 15 minute ror, multiplied by 26 and averaged over the month. MKRT is the mean of daily kurtosis. The kurtosis is calculated every 

day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX  is the mean of all daily VIX observation during the month. 2VVIX is 

the variance of all daily VIX observation during the month.   is the daily ambiguity level during the month,  E
L

P is the daily expected probability 

of loss. CVAR  is the daily variance of the last trading day of the month. 2CVIX  is the VIX observed in the last trading day of the month. 2DVIX is 
the difference of the observed VIX in the last trading day of the current month and the last trading day of the previous month 

Panel A: 

 m f
r r     E

L
P  MVAR  VVAR  MSKW  MKRT  2MVIX  2VVIX  

1.0000 -0.2294 -0.7083 -0.3499 -0.0513 -0.0336 0.0770 -0.2853 -0.3093 
m f

r r  
_ (0.0007) (<.0001) (<.0001) (0.4541) (0.6239) (0.2611) (<.0001) (<.0001) 

-0.2294 1.0000 0.1885 0.2042 0.0412 0.0120 -0.3183 0.2778 0.1983 
  

(0.0007) _ (0.0055) (0.0026) (0.5478) (0.8612) (<.0001) (<.0001) (0.0035) 

-0.7083 0.1885 1.0000 0.1777 0.0314 0.0432 -0.1261 0.1719 0.1025  E
L

P  
(<.0001) (0.0055) _ (0.0090) (0.6476) (0.5287) (0.0651) (0.0116) (0.1340) 

-0.3499 0.2042 0.1777 1.0000 0.6132 0.1866 -0.0949 0.7339 0.6926 
MVAR  

(<.0001) (0.0026) (0.0090) _ (<.0001) (0.0061) (0.1656) (<.0001) (<.0001) 

-0.0513 0.0412 0.0314 0.6132 1.0000 0.1702 0.0983 0.0629 0.0269 
VVAR  

(0.4541) (0.5478) (0.6476) (<.0001) _ (0.0124) (0.1511) (0.3589) (0.6948) 

-0.0336 0.0120 0.0432 0.1866 0.1702 1.0000 0.0498 0.1017 0.0497 
MSKW  

(0.6239) (0.8612) (0.5287) (0.0061) (0.0124) _ (0.4672) (0.1374) (0.4682) 

MKRT  0.0770 -0.3183 -0.1261 -0.0949 0.0983 0.0498 1.0000 -0.2851 -0.0725 
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(0.2611) (<.0001) (0.0651) (0.1656) (0.1511) (0.4672) _ (<.0001) (0.2897) 

-0.2853 0.2778 0.1719 0.7339 0.0629 0.1017 -0.2851 1.0000 0.7978 
2MVIX  

(<.0001) (<.0001) (0.0116) (<.0001) (0.3589) (0.1374) (<.0001) _ (<.0001) 

-0.3093 0.1983 0.1025 0.6926 0.0269 0.0497 -0.0725 0.7978 1.0000 
2VVIX  

(<.0001) (0.0035) (0.1340) (<.0001) (0.6948) (0.4682) (0.2897) (<.0001) _ 

Panel B 

 m f
r r    1tCVAR   1tCVIX   DVAR  DVIX  

1.0000 -0.2294 0.0824 -0.0091 -0.3806 -0.6483 
m f

r r  
_ (0.0007) (0.2301) (0.8951) (<.0001) (<.0001) 

-0.2294 1.0000 0.0125 0.2141 0.0552 0.1007 
  

(0.0007) _ (0.8557) (0.0016) (0.4216) (0.1421) 

0.0824 0.0125 1.0000 0.5515 -0.6332 -0.1535 
1tCVAR   

(0.2301) (0.8557) _ (<.0001) (<.0001) (0.0248) 

-0.0091 0.2141 0.5515 1.0000 -0.2182 -0.3054 2
1tCVIX   

(0.8951) (0.0016) (<.0001) _ (0.0013) (<.0001) 

-0.3806 0.0552 -0.6332 -0.2182 1.0000 0.4796 
DVAR  

(<.0001) (0.4216) (<.0001) (0.0013) _ (<.0001) 

-0.6483 0.1007 -0.1535 -0.3054 0.4796 1.0000 2DVIX  
(<.0001) (0.1421) (0.0248) (<.0001) (<.0001) _ 
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Table IV 

Contemporaneous Regression Tests 

This table presents the contemporaneous regressions, i.e. explaining the market return at time t by the explanatory variables characterized in time t. The 

regressions use data for period between February 1993 and December 2010. All parameters are normalized to one day. The explained variable,
m

r is the 

daily adjusted to dividend return on the SPDR. MVAR is mean of daily variance. The variance is calculated every day using 15 minutes rates of return 

(ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of trading days in a month. VVAR  is variance of daily 

variance. The variance is calculated by using the daily variances during the month. MKRT is the mean of daily kurtosis. The kurtosis is calculated 

every day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX is the mean of all daily VIX observation during the month. 

2VVIX  is the variance of all daily VIX observation during the month.   is the daily ambiguity level during the month. 

2 2 2
1 2 3 4 5 6t t t t t t t tr MVAR VVAR MVIX VVIX MKRT                

  2
t  t

MVAR  
t

VVAR  2

t
MVIX  2

t
VVIX  tMKRT  2R  

2Adj R  DW  

0.0012 -0.0413      0.0525 0.0481 1.9875 

(3.7636) (-3.4285)         

0.0012 -0.0297 -2.2773     0.1484 0.1403 2.0892 

(3.9130) (-2.5404) (-4.8742)        

0.0012 -0.0259 -3.3785 3.7486    0.1846 0.1730 2.0546 

(4.0144) (-2.2439) (-5.7941) (3.0543)       

0.0012 -0.0294   -1.7589   0.1058 0.0973 2.0135 

(4.0325) (-2.4035)   (-3.5442)      

0.0011 -0.0304   -0.3703 -14769.4049  0.1259 0.1134 2.0903 

(3.3488) (-2.5095)   (-0.4625) (-2.1984)     

0.0012 -0.0411     0.0000 0.0526 0.0436 1.9867 

(2.9914) (-3.2258)     (0.0611)    
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0.0013 -0.0281 -3.4286 3.8875   -0.0001 0.1863 0.1708 2.0684 

(3.6004) (-2.3340) (-5.8327) (3.1216)   (-0.6385)    

0.0011 -0.0309   -0.4103 -14510.4128 0.0000 0.1261 0.1094 2.0913 

(2.6626) (-2.4615)   (-0.4828) (-2.0827) (-0.1423)    
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Table V 

Prediction Regression Tests 

This table presents the predictive regressions, i.e. explaining the market return at time t by the explanatory variables characterized in time t-1. The regressions 

use data for period between February 1993 and December 2010. All parameters are normalized to one day. 
m

r is the daily adjusted to dividend return on the 

SPDR. MVAR  is mean of daily variance. The variance is calculated every day using 15 minutes rates of return (ror) and multiplied by 26 (number of 15 
minutes intervals). It is averaged over the number of trading days in a month. VVAR  is variance of daily variance. The variance is calculated by using the 
daily variances during the month. MSKW is mean of daily skweness. The skweness is calculated every day using 15 minute ror, multiplied by 26 and 
averaged over the month. MKRT  is the mean of daily kurtosis. The kurtosis is calculated every day using 15 minute ror multiplied by 26 and averaged over 

the month. 2MVIX  is the mean of all daily VIX observation during the month. 2VVIX  is the variance of all daily VIX observation during the month.  is 

the daily ambiguity level during the month. CVAR  is the daily variance of the last trading day of the month. 2CVIX  is the VIX observed in the last trading 
day of the month. 

2 2 2
1 1 2 1 3 1 4 1 5 1 6 1 7 1t t t t t t t t tr MVAR VVAR MVIX VVIX CVAR CVIX                        

  2

1t
  1t

MVAR


 
1t

VVAR


 2

1t
MVIX


 2

1t
VVIX


 1t

CVAR


 2

1t
CVIX


 2R  

2Adj R  DW  

0.0013 -0.0451       0.0625 0.0581 1.9385 

(4.0805) (-3.7589)          

0.0013 -0.0466 0.3022      0.0642 0.0553 1.9069 

(4.0798) (-3.8004) (0.6167)         

0.0013 -0.0455 -0.0396 1.1629     0.0677 0.0543 1.9068 

(4.0854) (-3.6806) (-0.0635) (0.8860)        

0.0013 -0.0475   0.3513    0.0646 0.0557 1.9256 

(4.0379) (-3.7991)   (0.6923)       

0.0010 -0.0492   2.6214 -24163.5678   0.1185 0.1059 2.0224 

(3.0691) (-4.0437)   (3.2638) (-3.5833)      

0.0012 -0.0466     0.7915  0.0731 0.0644 1.8958 

(3.9160) (-3.8864)     (1.5573)     

0.0013 -0.0483      0.5225 0.0664 0.0575 1.9109 

(3.9967) (-3.8708)      (0.9383)    
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Table VI 

Regression Tests Using Unexpected Changes 

This table presents the changes regressions, i.e. explaining the market return at time t by the changes in the explanatory 
variables between time t-2and time t-1. The regressions use data for period between February 1993 and December 2010. All 

parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on the SPDR.   is the daily ambiguity 

level during the month. DVAR  is the difference of the observed VAR in the last trading day of the current month and the last 

trading day of the previous month. 2DVIX is the difference of the observed VIX in the last trading day of the current month 
and the last trading day of the previous month. 

2 2
, 1 1 2 3m t t t t tr DVAR DVIX         . 

  2
1t  t

DVAR  2

t
DVIX  2R  

2 Adj R  DW  

0.0012 -0.0404 -2.1990  0.1947 0.1870 1.9517 

(3.9799) (-3.6142) (-5.8852)     

0.0011 -0.0379  -8.4014 0.4642 0.4591 1.8360 

(4.6313) (-4.1587)  (-12.5774)    

0.0002  -2.2957  0.1448 0.1408 1.8091 

(1.7097)  (-5.9918)     

0.0002   -8.5763 0.4203 0.4175 1.7145 

(2.1103)   (-12.3971)    

 

 


