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New empirical models of consumer demand that incorporate social preferences,
observational learning, word-of-mouth or network effects have the feature that the
adoption of others in the reference group - the “installed-base” - has a causal effect on
current adoption behavior. Estimation of such causal installed-base effects is chal-
lenging due to the potential for spurious correlation between the adoption of agents,
arising from endogenous assortive matching into social groups (or homophily) and
from the existence of unobservables across agents that are correlated. In the absence
of experimental variation, the preferred solution is to control for these using a rich
specification of fixed-effects, which is feasible with panel data. We show that fixed-
effects estimators of this sort are inconsistent in the presence of installed-base effects;
in our simulations, random-effects specifications perform even worse. Our analysis
reveals the tension faced by the applied empiricist in this area: a rich control for
unobservables increases the credibility of the reported causal effects, but the incor-
poration of these controls introduces biases of a new kind in this class of models. We
present two solutions: an instrumental variable approach, and a new bias-correction
approach, both of which deliver consistent estimates of causal installed-base effects.
The bias-correction approach is tractable in this context because we are able to ex-
ploit the structure of the problem to solve analytically for the asymptotic bias of the
installed-base estimator, and to incorporate it into the estimation routine. Our ap-
proach has implications for the measurement of social effects using non-experimental
data, and for measuring marketing-mix effects in the presence of state-dependence
in demand, more generally. Our empirical application to the adoption of the Toy-
ota Prius Hybrid in California reveals evidence for social influence in diffusion, and
demonstrates the importance of incorporating proper controls for the biases we iden-
tify.
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1 Introduction

We investigate the measurement of causal installed-base effects in marketing models of consumer
adoption. We use the term “installed-base” to refer to the set of agents in a user’s reference group
that have adopted the focal product or service. Agents may care about the adoption behavior
of other users because others’ actions or welfare directly affects their utility (social preferences);
because adoption by others updates the users’ beliefs about existence or attributes (observa-
tional learning); because feedback from others affects beliefs directly (word-of-mouth); because
adoption by others affects the users’ value of the product (network effects); or because some
combination of these are at play. In Marketing parlance, these structural constructs have been
summarily referred to as “contagion” or “social effects”. An important goal of empirical models
of consumer demand that incorporate contagion is to measure the causal effects of the installed-
base on current adoption behavior. In addition, the sign of the installed-base effect may also
be of independent interest: for instance, herd behavior (Bikhchandani, Hirshleifer, and Welch,
1992) may result in positive installed-base effects, while exclusivity or snob effects (Leibenstein,
1950) may result in negative installed-base effects. A firm may then be interested in whether
the combination of potential herding, snobbery and desire for exclusivity result in net positive
or negative social influence. These measures feed into the development of targeted marketing
interventions (e.g. seeding key opinion leaders: Yoganarasimhan, 2010) and/or resource alloca-
tion decisions that exploit the measured contagion (e.g. penetration pricing in the presence of
network effects: Kalish and Lilien, 1983).

In spite of the importance for Marketing, measurement of causal installed-base effects from
behavioral data has proven to be very challenging. Installed-base effects have formed the basis
for the extensive aggregate diffusion literature in Marketing (Bass, 1969; Mahajan, Muller, and
Bass, 1990). This literature treats the entire population of past adopters as the reference group
for a representative agent’s product adoption decision. With access to more disaggregate data
on consumer’s social networks, the recent empirical literature has used a more nuanced view of
the reference group, leveraging social networks based on self-elicitation (Conley and Udry, 2008;
Kratzer and Lettl, 2009; Iyengar, van den Bulte, and Valente, 2010; Nair, Manchanda, and
Bhatia, 2010); dorm/work location (Sacerdote, 2001; Dufflo and Saez, 2003; Sorensen, 2006);
ethnic/cultural proximity (Bertrand, Mullainathan, and Luttmer, 2000; Munshi and Myaux,
2006); or as in the current application, geographic location (Topa, 2001; Arzaghi and Henderson,
2007; Bell and Song, 2007; Manchanda, Xie, and Youn, 2008; Choi, Hui, and Bell, 2010; McShane,
Bradlow, and Berger, 2010; Nam, Manchanda, and Chintagunta, 2010; Bollinger and Gillingham,
2011).

When the reference group is a subset of the population, the immediate concern that arises is
one of self-selection: unobserved tastes that cause two individuals to select to be part of the same
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group (homophily), also may also cause them to behave similarly in product adoption behavior.
In the geographic case, the concern is of assortive sorting on unobservables of households into
communities. For instance, it is possible that environmentally conscious households prefer to
live in “green” communities; at the same time, it may be that ceteris paribus, households in
green communities tend to adopt environmentally friendly automobiles like the Toyota Prius
early. Hence, an observed correlation in the data between the propensity to adopt a Prius, and
the installed-base of Prius adopters in a community could simply reflect sorting on unobserved
environmental friendliness, and not a causal effect of the past adoption on current behavior.
Similar concerns arise due to the presence of spatially and temporally correlated unobservables
that make households behave similarly. For instance, Toyota’s advertising activity or local
promotions targeted at a community could generate correlation in the adoption behavior of
community members, and generate clustering in spatial patterns of diffusion. If not controlled
for, this could manifest itself as a spurious installed-base effect. Accounting for such correlated,
but omitted unobservables has been established to be important to the inference of causal
Marketing effects using both spatial (e.g., Bronnenberg and Mahajan, 2001), and temporal
(e.g., Rao, 1986) sources of variation in observational data.1

It is now taken as fait accompli in the empirical literature that the credibility of measures
of social influence rests on the extent to which these confounds are appropriately addressed.
Recognizing this, researchers now typically include rich specifications of fixed or random effects
to control for these unobserved sources of correlation. Random effects that involve distribu-
tional assumptions suffer from specification biases if the distributional assumptions are incor-
rect. The validity of the panel-data random effects estimator also depends on the assumption
of independence with included within-group covariates, which is difficult to reconcile with an
omitted variables interpretation for unobservables. Fixed-effects address both these concerns;
and consequently, one of the most general way to control for confounding is to accommodate
a rich specification of fixed-effects. The fixed-effects provide a semi-parametric control for un-
observables that assuage the misspecification concerns, and also allow for arbitrary patterns
of correlation. In the Prius example, for instance, one may include zip-and-time fixed-effects
to flexibly control for unobserved common shocks that may be both spatially and temporally
correlated in an unknown way.

Unfortunately, we show that though attractive, fixed-effects estimators of this sort are incon-

sistent in the presence of installed-base effects. As expected, random-effects do not ameliorate

1Manski (1993) pointed out a third confound that arises if the adoption decisions of agents in the community
are simultaneously determined with that of past adopters. This is likely to be of lesser concern in the case of
installed-base effects as consumers are assumed to condition on the adoption of their installed-base, which is
taken as predetermined. Fundamentally, this requires that each adopting consumer is myopic, or alternatively,
is forward-looking, but forms beliefs under the assumption he is “small” relative to the size of the adopting
local community such that he anticipates his individual adoption decision will not significantly influence the
adoption behavior of any one consumer in the future.
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the issue: in our simulations, random-effects specifications perform even worse. We derive the
asymptotic distribution of the fixed-effects estimator and characterize the nature of the bias. Our
analysis reveals the tension faced by the applied empiricist wishing to do careful work in this
area: a rich control for unobservables increases the credibility of the reported causal effects, but
the incorporation of these controls introduces biases of a new kind in this class of models. Our
analysis is related to, but conceptually distinct from the “dynamic panel data” literature which
discusses the inconsistency generated by the presence of lagged dependent variables in models
with fixed-effects or random effects (Nerlove, 1971; Nickell, 1981; Kiviet, 1995; Judson and Owen,
1999; Bun and Carree, 2005).2 In the spatio-temporal models of diffusion we consider, there
are no lagged endogenous variables, but instead, lagged aggregations of past decisions made by
other consumers are included as explanatory variables. This is the work-horse empirical model
employed by the vast and burgeoning social effects literature.

We then present two solutions to addressing the bias: first, an instrumental variable (IV)
approach, and second, a new bias-correction approach, both of which deliver consistent estimates
of causal installed-base effects. The IV approach requires access to an exclusion restriction
implying a variable that generates exogenous variation in the installed-base. In practice, this
variation may be hard to find (we discuss one approach below). On the other hand, the bias-
correction approach is tractable in this context because we are able to exploit the structure of
the problem to solve analytically for the asymptotic bias of the installed-base estimator, and to
incorporate it into the estimation routine. The bias-correction approach utilizes an asymptotic
approximation, and requires access to a large dataset. In practice, we expect this requirement
to be easily met given the nature of data that Marketers now have access to (for example, our
data contain about 11 Million observations on automobile purchases). The approach does not
depend on finding valid instruments, and hence is quite attractive in many empirical contexts,
where it may be hard to find suitable instruments. We present Monte Carlo simulations that
establish the face validity and internal consistency of the approach in our context, and assess its
performance relative to a series of alternative estimators.

We then present an empirical application to studying social spillovers in the adoption of the
Toyota Prius Hybrid electric car in the state of California. We specify an individual-level model
to test for spillovers, and to measure their magnitude. Our individual-level adoption data come
from R.L. Polk and Company, and are drawn from local motor vehicle registration records. The

2It is easy to see that in the dynamic panel model, yit = ⌫i + �yit�1 + ✏it, with fixed-effect ⌫i for unit i,
first-differencing is problematic even if the innovations, ✏it are IID: in the first-differenced model, yit �
yit�1 = � (yit�1 � yit�2) + (✏it � ✏it�1), the errors, (✏it � ✏it�1) are correlated with the included variable,
(yit�1 � yit�2) . Clearly, random effects are more problematic because the assumption that ⌫i is uncorrelated
with the included variable, yit�1, is violated by construction. Similarly, the Least Squares Dummy Variable
(LSDV) estimator, yit � ȳi = � (yit�1 � ȳi,�1) + (✏it � ✏̄i), is inconsistent for � because the mean differenced
errors, (✏it � ✏̄i) are correlated with the mean-differenced lags, the included variable, (yit�1 � ȳi,�1). Starting
with (Anderson and Hsiao, 1981) and (Arellano and Bond, 1991), it is common to use the history of lagged-
levels and lagged-differences as instruments to address the inconsistency.
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data comprise the complete census of all Prius purchases in California since its introduction in
2001 till March 2007. We see strong spatial correlation in adoption patterns of the Prius which
are suggestive of social spillovers operating over geography. The richness of our individual-level
adoption data enable us to accommodate a rich set of controls for unobserved factors: we include
a fixed-effect for each zip-quarter combination in the data (over 64,000 fixed-effects). We specify
the installed-base at the level of a zip code and month, and explore robustness to different levels
of geographical aggregation, including the level of a city and county.

We find the incorporation of fixed-effects is important to obtain a valid measure of the social
effects. We find the correlation in the unobservables accommodated by the fixed-effects is not
easily approximated by parametric specifications (e.g., multivariate normals), underscoring the
importance of the flexible control. In general, we find that controls for homophily and corre-
lated unobservables reduces the magnitude of the installed-base effects. In our most general
fixed-effects specification without the corrections we propose, we find the installed-base effect
becomes negative and significant, suggesting snob or exclusivity effects. We discuss why this is
spurious, and driven by the downward bias we identify. Controlling for this, we find evidence
for positive and significant installed-base effects. The flip in the sign has economic consequences
for marketers, and illustrate the practical consequences of the biases we identify for empirical
work.

For the IV approach, we exploit an institutional feature of the Hybrid market that contagion
across spatially co-located households likely occurs via visual observation of consumption. The
institutional feature is that competing Hybrid vehicles such as the Honda Civic Hybrid were
visually exact versions of their non-Hybrid versions. The identifying assumption is that on
account of this aspect, Hybrid adoption of these other brands is not subject to social effects,
and may be used as instruments for the Prius installed-base. We also use the installed-bases
of flex-fuel vehicles as instruments (“flex-fuel” vehicles can use ethanol-blended gasoline). These
identifying assumptions may not be valid, and may be falsified under alternative stories of
spillover mechanisms. Hence, we also present estimates using our bias-correction approach. We
find the estimates of this approach correspond broadly to those obtained using the IV estimator
in our empirical application. In addition, under this approach, the social effects are precisely
estimated.

To assess robustness, we expect that social effects that operate via geographic proximity
should dissipate when we define the network over larger geographic areas. We find the estimated
installed-base effects are indeed weaker when we define the network at the level of the city, and
statistically insignificant when we define the network at the level of the county. These results are
consistent with social effects that operate over geographic contiguity. Further, our estimator finds
no social effects when applied to data on the adoption of the Honda Civic Hybrid, consistent with
a priori expectations. In our preferred specification for the Prius, we find an average elasticity
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of about 5.3, i.e., for every 1% increase in the installed-base of the Prius in the zip code of the
individual, there is on average a 5.3% increase in the probability of purchase of the Prius (as
a percentage of the baseline purchase probability). These numbers suggest the installed-base
effects are economically significant for the Prius, and illustrates the empirical feasibility of our
approach.

The rest of the paper is organized as follows. In section 2, we investigate the biases that result
in models with installed-base effects and fixed-effects. To develop the intuition, we first discuss
a model with installed-base as the only covariate, and then generalize the results for a model
with other (exogenous) covariates. We discuss IV and bias-correction approaches to addressing
the bias. In section 3, we present our empirical application for the Hybrid automobile market.
We present IV and bias-corrected approaches to obtain consistent estimates of the installed-base
effect and conduct a series of robustness checks. Finally, we conclude in section 4.

2 Consistent Estimation of Installed-Base Effects

2.1 No Exogenous Covariates

We present the discussion in the context of a linear probability model in which the installed-base
of past adopters in the local neighborhood of the consumer is the only included covariate (the
analysis goes through with little change for other linear models). In the Appendix, we discuss an
extension to including additional covariates. Anticipating our empirical application, we assume
the analyst has access to individual-level data on the adoption of the focal product, which
describes the location (zip code) of the individual, as well as the time of adoption (month). We
will work with a conditional set-up, in which we model the probability an individual will buy the
focal product (e.g, Toyota Prius) in a given month, conditional on the decision to buy a car that
month. Specifying a conditional model enables us to abstract from modeling the hazard-rate of
adoption, and to avoid specifying structural constructs relating to price and quality expectations
for the adopting consumer. A more detailed discussion of the use of a linear probability model,
and of the conditional set-up is presented in section (3.3.1), where we discuss our empirical
application.

Consider consumer i, who lives in market mi and has decided to purchase an automobile in
time period (month) ti. Let yi denote whether consumer i buys the Toyota Prius in month ti.
Reflecting the conditional model, yi = 1 if the consumer buys the Prius and 0 if he buys another
car (i.e., only individuals who buy a car during the observation window are included in the
dataset. The choice of whether/when to buy a car is not modeled). Let the installed-base of the
Toyota Prius in market mi and time period ti be denoted by Xmiti . Thus,
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Xmiti =
ti�1X

⌧=1

Nmi⌧X

j=1

yj (1)

where Nmi⌧ is the total number of people who purchase automobiles in market mi in time period
⌧ . We specify the decision to buy a Prius is related to the installed-base according to a linear
probability model,

yi = fmiqi +Xmiti� + "i (2)

Here, fmiqi is a fixed effect specified at the market-quarter level. The market-specific compo-
nent of the fixed effect controls for unobserved market specific characteristics on which sorting
may occur, thereby controlling for across-market selection (or homophily). The time-period
specific fixed-effects control flexibly for unobserved time-trends that may generate co-movement
in adoption over time thereby controlling for spurious temporal correlation. Here, we allow a
very general specification in which the unobservables over time are also allowed to be different
for each market in a general way (market specific time-period fixed-effects). This is possible
because we observe hundreds of individuals making purchase decisions for each market-month
combination. Since the installed-base Xmiti is the same for all consumers in market mi and
at time ti, the fixed effect cannot be specified at level of mi and ti. Therefore, we specify the
fixed effect at the level of market and an aggregation of time. In the empirical application, this
aggregation is at the level of the quarter. Thus, we include a fixed-effect for each market-quarter
combination. This results in over 64,000 fixed-effects, and is one of the most comprehensive set
of controls considered in the literature.

In Equation (2) above, �, which is the parameter of interest, is the installed-base effect, and "i

is the observation specific unobservable assumed to be independent and identically distributed
across consumers, markets and time. The IID assumption also implies the installed-base Xmiti

is independent of "i. Least Squares estimation of the above model is equivalent to the mean

differenced estimator obtained by subtracting the means of both sides of Equation (2) over all
observations within each market-quarter (the level of the fixed-effect). The fixed-effects are
eliminated in this differenced equation,

(yi � ȳmiqi) =
�
Xmiti � X̄miqi

�
� + ("i � "̄miqi) (3)

where ȳmiqi , X̄miqi and "̄miqi are the means of the respective variables taken over all the Nmiqi

observations within market mi and quarter qi. Thus,

ȳmiqi =
1

Nmiqi

NmiqiX

j=1

yj (4)

X̄miqi =
1

Nmiqi

NmiqiX

j=1

Xmjtj =
1

Nmiqi

NmiqiX

j=1

0

@
tj�1X

⌧=1

Nmj⌧X

k=1

yk

1

A (5)
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"̄miqi =
1

Nmiqi

NmiqiX

j=1

"j (6)

where we use the definition of the installed-base in Equation (1) to obtain Equation (5). Assume
there are a total of N consumers observed in the data, and T time periods per quarter.

The within-estimator of the social effect �̂, is obtained as,

�̂ =

P
i

�
Xmiti � X̄miqi

�
(yi � ȳmiqi)P

i

�
Xmiti � X̄miqi

�2 (7)

Proposition 1. The within-estimator �̂ is inconsistent, and the asymptotic bias is negative.

Proof. We present the proof by computing the probability limit of �̂ as N ! 1, holding the
number of observations within each zip code-quarter (i.e. NMiqi) fixed. The proof is construc-
tive as this will feed into the development of our bias-corrected estimator. Substituting for
(yi � ȳmiqi) from (3), we get,

�̂ � � =

P
i

�
Xmiti � X̄miqi

�
("i � "̄miqi)P

i

�
Xmiti � X̄miqi

�2 (8)

It follows from Slutsky’s Theorem (ST) and the Mann Wald Continuous Mapping Theorem
(MWCMT) that,

plim

N ! 1

⇣
�̂ � �

⌘
=

plim
N!1

1
N

P
i

�
Xmiti � X̄miqi

�
("i � "̄miqi)

plim
N!1

1
N

P
i

�
Xmiti � X̄miqi

�2 (9)

and from Khintchine’s weak law of large numbers that,

plim

N ! 1

⇣
�̂ � �

⌘
=

E
⇥�
Xmiti � X̄miqi

�
("i � "̄miqi)

⇤

E
h�
Xmiti � X̄miqi

�2i ⌘ A
B (10)

The denominator B in Equation (10) is non-zero by construction, hence inconsistency of the
within-estimator �̂ is related to the fact that the expectation in the numerator A is non-zero
even with an infinite number of consumers (N). We can write A as the sum of four terms,

A = E
⇥�
Xmiti � X̄miqi

�
("i � "̄miqi)

⇤
= E [Xmiti"i]�E [Xmiti "̄miqi ]�E

⇥
X̄miqi"i

⇤
+E

⇥
X̄miqi "̄miqi

⇤

(11)
Consider the first term. It follows from the IID assumption that, E [Xmiti"i] = 0. For the second
term, we use (1) and (6) to get,

Xmiti "̄miqi =
1

Nmiqi

2

4
ti�1X

⌧=1

Nmi⌧X

j=1

yj

3

5

2

4
NmiqiX

j=1

"j

3

5 (12)

To evaluate this, consider observations in the first period of the quarter. First, note the installed-
base for the first period includes purchases only in periods before the start of the quarter qi.
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Second, "̄miqi contains only "j terms for observations in that quarter. Hence, the expectation
E [Xmiti "̄miqi ] = 0 for these observations. For observations in the second time period, there will
be as many yi"i terms as there are observations in the first period, since the y terms for the first
period enter the installed-base for all observations in the second period and will be multiplied by
the corresponding " terms contained in "̄miqi . For the third period of the quarter, there will be
as many yi"i terms as there are observations in the first and second periods and so on. Assuming
that there are no systematic differences in the number of observations across periods - this is not
necessary, though it makes the notation simpler - the proportion of observations each period is
1/T , and Nmiqii = nT where n is the number of observations within a time period. Therefore,
the conditional expectation is,

E [Xmiti "̄miqi |period t] =
[(t� 1)n]

nT
E [yi"i] =

(t� 1)�2
"

T
(13)

The unconditional expectation is then,

E [Xmiti "̄miqi ] =
1

T


1

T
(0)�2

" +
1

T
(1)�2

" + . . .
1

T
(T � 1)�2

"

�
=

1

T 2

(T � 1)T

2
�2
"

=
T � 1

2T
�2
" (14)

With the analysis at a monthly level (i.e. T = 3) and assuming no systematic differences in the
number of observations in different months of the quarter, we have the second term is,

E [Xmiti "̄miqi ] =
1

3
�2
" (15)

Now consider the third term in Equation (11). We can compute,

X̄miqi"i =

2

4 1

Nmiqi

NmiqiX

j=1

0

@
tj�1X

⌧=1

Nmj⌧X

k=1

yk

1

A

3

5 "i (16)

To evaluate this, noting that yi ? "j , i 6= j, we need only focus on those terms in the expansion
of this expectation which contain yi"i. Consider an "i in the first period. None of the Xmjtj

(installed-base) terms for the first period contain the corresponding yi term, but each of the
installed-base terms for the subsequent periods till T contains a corresponding yi term. Thus,
for every observation in the first period, there are (T � 1)n terms of the form yi"i. For every
"i in the second period, there are (T � 2)n terms that contain yi"i and so on. For an "i in
the final period, there are no corresponding yi terms. Thus, the expectation conditional on an
observation given period t is,

E
⇥
X̄miqi"i|period t

⇤
=

1

nT
(T � t)n�2

" =
(T � t)�2

"

T
(17)

The unconditional expectation is,

E
⇥
X̄miqi"i

⇤
==

1

T


(T � 1)�2

"

T
+ . . .

�2
"

T

�
=

1

T 2

(T � 1)T

2
�2
" =

T � 1

2T
�2
"
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With analysis at the monthly level, T = 3, and therefore, E
⇥
X̄miqi"i

⇤
= �2

"
3 .

Finally, the fourth term can be evaluated using a similar logic. The conditional expectation
of the fourth term given period t is,

E
⇥
X̄miqi "̄miqi |period t

⇤
=

1

n2T 2
(T � t)n2�2

" =
T � t

T 2
�2
" (18)

This gives the unconditional expectation as,

E
⇥
X̄miqi "̄miqi

⇤
=

1

T


(T � 1)�2

"

T 2
+ . . .

�2
"

T 2

�
=

1

T 3

(T � 1)T

2
�2
"

=
T � 1

2T 2
�2
" (19)

With analysis at the month level, this expectation is �2
"
9 . Putting all four terms together,

A = 0� �2
"

3
� �2

"

3
+

�2
"

9
= �5�2

"

9
(20)

Finally, defining B ⌘ �2
X , we get,

plim

N ! 1

⇣
�̂ � �

⌘
= �5

9

�2
"

�2
X

(21)

This is the first result, establishing the inconsistency of the within-estimator for installed-base
effects. Further, it establishes the asymptotic bias is always negative and its magnitude is
proportional to the ratio of the error variance and the within-quarter variance of the installed-
base. Hence, including fixed-effects will tend to understate any positive contagion deriving from
installed-base effects. Further, depending on the variation in the unobservables relative to the
installed-base, this bias can spuriously suggest snob or exclusivity (i.e., negative installed-base
effects). We will exploit these results to develop our bias-correction estimator of �.

To see the next step, note the bias of �̂ in Equation (21) is a function of the variance of the
unobservables, �2

" . Perhaps, we can estimate this bias term by estimating �2
"? Unfortunately,

we show below the standard panel-data estimator for �2
" is also inconsistent.

Proposition 2. The estimator, s2 for �2
" is inconsistent, and the asymptotic bias is negative.

Proof. The estimator s2 given by,

s2 =
"̂
0
"̂

N �NMQ �K
(22)

where M is the total number of observations in the data, NMQ is the number of market-quarter
combinations in the data (also equal to the number of fixed-effects) and K is the number of
regressors, in this case 1.
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The ith element of the residual vector "̂ is given by

"̂i = yi � f̂miqi �Xmiti �̂

= (yi � ȳmiqii)�
�
Xmiti � X̄miqi

�
�̂

⌘ ỹi � X̃i�̂

(23)

This is the residual in the differenced equation. Moving to vector notation, and noting that
�̂ =

⇣
X̃

0
X̃
⌘
X̃

0
ỹ,

"̂ = ỹ � X̃�̂

=
⇣
ỹ � X̃�

⌘
+
⇣
X̃� � X̃�̂

⌘

= "̃� X̃
⇣
X̃

0
X̃
⌘�1

X̃
0
"̃

(24)

Thus, s2 is,
s2 = "̂

0
"̂

N�NZQ�K = N
N�NZQ�K

"̂
0
"̂

N

= N
N�NZQ�K

⇣
"̃
0
"̃

N � "̃
0
X̃
N

⇣
X̃

0
X̃

N

⌘
X̃

0
"̃

N

⌘ (25)

By Khintchine’s weak law of large numbers,

plim

N ! 1

 
"̃
0
"̃

N

!
= E

h
"̃i

0
"̃i
i
= E

h
("i � "̄i)

0
("i � "̄i)

i
= �2

" (26)

We have already seen in computing the bias for �̂ (numerator A in Equation 10) that,

plim

N ! 1

 
"̃
0
X̃

N

!
= E

h
"̃
0
iX̃i

i
= �5

9
�2
" (27)

Also, defining E
h
X̃

0
iX̃i

i
= �2

X as before (and noting plim
N!1

⇣
X̃

0
X̃

N

⌘
is equal to this expectation),

we apply ST/MWCMT to get,
plim

N ! 1s2 = �2
" �

✓
�5

9
�2
"

◆✓
1

�2
X

◆✓
�5

9
�2
"

◆
= �2

" �
25

81

�4
"

�2
X

(28)

Thus the probability limit with infinite N is,
plim

N ! 1
�
s2 � �2

"

�
= �25

81

�4
"

�2
X

(29)

Hence, the estimator of the error variance is inconsistent as well. Further, the bias is negative.

2.2 Adding Exogenous Covariates

We now augment the model to include exogenous covariates other than the installed-base. Let
the new covariate vector be denoted by Z.

Proposition 3. The within-estimator �̂ for �, and s2 for �2
" are both inconsistent, negatively

biased, and the bias terms are:
plim

N ! 1

⇣
�̂ � �

⌘
= �5

9

�2
"

�2
XMZX

(30)

plim

N ! 1
�
s2 � �2

"

�
= � 25�4

"

81�2
X

"
�4
X

�4
XMZX

+ ⌃XZ⌃
�1
ZMXZ⌃ZZ⌃

�1
ZMXZ⌃ZX

#
(31)

Proof. See Appendix.
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Discussion We have shown so far the Least Squares estimators for both the installed-base
effects and the variance of the disturbances are inconsistent. The asymptotic bias in both
cases is negative, and the magnitude of the bias is a function of the error variance and the
within market-quarter variance of the installed-base and the included covariates. With positive
social influence and assortive sorting, we expect not controlling for unobservables will result in
overstating social effects (positive bias). At the same time, the results imply that controlling for
unobservables using fixed-effects will understate any positive social effects (negative bias). The
combination of these opposing biases can manifest itself in a given dataset in a net positive or
net negative way. Credible measurement of social effects requires addressing both issues.

2.3 Two Solutions

2.3.1 Instrumental Variables Approach

The first solution is to find an instrument that is correlated with the installed-base, but un-
correlated with the included errors. While conceptually simple, in practice, this is a difficult
endeavor, as it is hard to find exogenous variation that shifts the installed-base over time but
holds current adoption fixed. We present two potential instrumental variables strategies in our
empirical application, which are based on specific stories about the mechanism of social conta-
gion. Unfortunately however, these stories are not testable with available observational data. In
other contexts, the instruments may be weak, and may not have enough power to measure the
installed-base effect precisely. Hence, it is preferable to have other practical methods to address
the bias in addition to the IV strategy.

2.3.2 Bias-Correction Approach

The basis for the second approach is the set of asymptotic results in section (2.2). The structure
of the problem has the feature that the bias results from the correlation between the mean differ-
enced installed-base and the mean differenced error. Exploiting this allows us to characterize the
magnitude of the basis as a function of quantities that are either observed or can be estimated.
To understand the procedure, recall from Equation (30) that,

plim

N ! 1

⇣
�̂ � �

⌘
= �5

9

�2
"

�2
XMZX

Thus, the asymptotic bias is a function of �2
" and �2

XMZX . The latter quantity is a function of
the data and can be computed directly. Hence, provided we have a consistent estimate for �2

"

(denoted by �̈2
"), we could find the exact magnitude of the asymptotic bias. We could then find

the bias-corrected estimate for � as,

�̈ = �̂ +
5

9

�2
"

�2
XMZX

(32)
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The intuition is simple: we adjust the estimate with an estimate of the bias. However, in order
to find the adjustment term, we need consistent estimates of the variance of the disturbance,
�2
" . For this, we rely on the asymptotic bias in the estimates from the within-regression of this

quantity, which we have computed in Equation (31) earlier. We reproduce that result here for
convenience:

plim

N ! 1
�
s2
�
= �2

" �
25�4

"

81�2
X

"
�4
X

�4
XMZX

+ ⌃XZ⌃
�1
ZMXZ⌃ZZ⌃

�1
ZMXZ⌃ZX

#

The right-hand side is a function of �2
" and a set of quantities that can all be computed directly

from the data. The left hand side is the estimate of the error variance for a large dataset (large
N). Then, this implicitly defines a quadratic equation for �2

" . Thus, we can find a consistent
estimate for the error variance by solving the above equation for �2

" . This idea is similar to
panel-data approaches for estimating the variance components in the FGLS estimation of the
random effects model (see for instance, Greene 1997, page 628). Denote,

r =
�4
X

�4
XMZX

+ ⌃XZ⌃
�1
ZMXZ⌃ZZ⌃

�1
ZMXZ⌃ZX (33)

We can compute r directly from the data. Thus, the solution of the quadratic equation gives us
the following estimator:

�̈2
" =

81�2
X

50r
± 9�X

50r

q
81�2

X � 100s2 (34)

A solution to the above equation always exists whenever 81�2
X > 100s2. Lack of existence of

a solution is unlikely to be a binding issue in practice as with large samples, we expect the
variance in the installed-base �2

X is a large relative to s2 (especially as the dependent variable
of the equation for which s2 is estimated is either 0 or 1).

A second issue is that there are two roots. Note when 81�2
X � 100s2, the larger of the two

roots (�̈2
" =

81�2
X

50r + 9�X
50r

q
81�2

X � 100s2) is usually an unrealistically large number (note the
dependent variable, yi is binary). In our Monte Carlo analysis, we found that invariably the
viable estimator is,

�̈2
" =

81�2
X

50r
� 9�X

50r

q
81�2

X � 100s2 (35)

When it exists, this estimator always gives us a positive estimate (since 9�X
50r

q
81�2

X � 100s2 <
81�2

X
50r as long as the square root exists).
Once we have the estimate �̈2

" , we can plug it into the expression for the bias-corrected
estimator �̈ in Equation (32) to obtain consistent estimates of the installed-base effect. The
standard errors of the bias-corrected estimates can be obtained using a bootstrap procedure,
which we employ in our empirical application.
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Discussion To summarize, the bias-correction approach is attractive because it exploits the
structure of the problem, and does not require IVs. The approach requires an asymptotic
approximation, and is therefore appropriate in contexts such as ours where we have a large
volume of data (large N). This is not an atypical situation, especially in recent years, wherein
increasingly better access is available to large datasets. In the context of measuring installed-
base effects, large-scale datasets are also crucially important, since it facilitates the controls for
the confounding factors referred to earlier. Further, the large volume of the data is also a factor
in identifying instruments. While high-frequency data are increasingly available, often it is hard
to find IVs with equivalent variation.

2.4 Monte Carlo Simulations

We now discuss the results of a series of Monte Carlo simulations we conducted to investigate
the empirical strategies presented above and to assess the performance of alternative estimators.

Research Design The research design for our simulations is as follows. First, we assume the
sample is drawn from Nm zip codes, Nq quarters and the lowest time period in the data is a
month. In each month, we observe N purchase decisions. For the simulations reported below,
we set Nm = 100, Nq = 3 and N = 30. For each zip code-quarter combination, we generate a
fixed effect fmiqi from a normal distribution with a variance �2

f . Errors "i are then drawn from
a standard normal distribution (probit specification). A scalar exogenous covariate Zi is drawn
from a normal distribution with mean mZ + ⇢fmiqi and standard deviation �2

Z . The mean of
this distribution allows for correlation between the fixed effect and the covariate Zi. This is the
default presumption for the researcher. When the correlation ⇢ is non-zero, the fixed-effects have
an “omitted variables” interpretation. Finally, the coefficient � for the installed-base X and �

for the exogenous covariate Z are varied across different simulations. The latent propensity of
a consumer to purchase is defined as,

ui = fmiqi +Xmiti� + Zi� + "i (36)

The dependent variable, yi, are simulated by first setting the installed-bases in the first period
to 0 in all zip codes. Then, each observation in the first period is simulated as,

yi = 1 if ui > 0 (37)

yi = 0 if ui < 0 (38)

The installed-bases for each zip code for the second period are then set to the aggregations of the
choices (yi) of all observations in the first period in that zip code (i.e. using Equation 1). Second
period choices are simulated next, and analogously for subsequent periods. Thus, synthetic data
are generated using a probit model, with fixed effects drawn from a random distribution, an
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installed-base variable constructed using observations in the periods up to the focal period, and
other covariates drawn from a random distribution. Further, the covariates are correlated with
the fixed effect in some simulations.

For ease of reference, we collect the distributions from which various variables are drawn here,

"i ⇠ N (0, 1) (39)

fmiqi ⇠ N
�
0,�2

f

�
(40)

Zi ⇠ N
�
mZ + ⇢fmiqi ,�

2
Z

�
(41)

Finally, in some simulations, we draw the fixed effects from a gamma distribution instead of a
normal distribution.

Results We run a series of alternative estimators on the above simulated dataset. These include
linear models estimated using a OLS regression without fixed or random effects, a random effects
Generalized Least Squares (GLS) regression, GLS with fixed effects separately specified for zip
code and quarters, GLS with fixed effects specified for each zip code-quarter combination, and
random effects probit and random effects logit models. Since we are comparing models which
the parameters themselves are not directly comparable, we compare marginal effects to assess
performance. The standard errors of the marginal effects are computed using the delta method.

Table 1 shows the results of the first set of Monte Carlo simulations. The first row shows the
baseline simulation, where parameter values are assumed, fixed effects are drawn from a normal
distribution and data generated from a probit model. Further, the installed-base effect is set to
zero, and the correlation between the fixed effect and the covariate is set to zero. We see that
all the models do well in recovering the true effect, with the truth within the 95% confidence
intervals of the estimated effects for all the models. We also see the fixed effects linear probability
model does as well as the probit and logit models in recovering the effects when the true data
generating process is a probit.

In the second row, we keep everything the same as the baseline simulation, but allow the fixed
effects to be correlated with the covariate in the data generating process (i.e. ⇢ 6= 0). We see
that this correlation biases the results of all models except the most general fixed effects model.
A non-zero ⇢ induces a correlation between the error term (which includes a deviation of the
fixed effect from the mean value) and the included covariate, causing an omitted variable bias
in the estimates. However, as seen, the fixed effect estimators do not suffer from any bias in the
presence of correlation between the fixed effect and covariates. This aspect is very significant
when the installed-base variable is included in the model, as then, a correlation is induced
between the included installed-base and the individual effect by construction.

15



The third row of the table shows the effect of misspecification of the distribution of the random
effect. Linear models with random effects do not require the specification of this distribution,
as the parameters can be consistently estimated using GLS without distributional assumptions.
However, models with nonlinear link functions such as the logit or probit require the analyst to
specify a distribution for the random effects. The most common assumption in empirical work
is of normality. Here, we ask how the assumption of normal random effects biases estimation
when the individual effects are in truth drawn from a skewed distribution: specifically, a gamma
distribution with shape and scale parameters fixed so the variance and mean of the fixed effect is
the same as that in the previous two simulations. Looking at Table 1 we find the linear models
do well in recovering the true effect, but the random effects probit and logit models suffer from
significant specification bias (for instance, the normality assumption on random effects biases
the marginal effect of Z in the probit model upward by about 28%, to 2.9832 from 2.3211, the
truth).

We now report on simulations with the installed-base effect turned on. The results of these
simulations are reported in Table 2. As before, we generate data using a probit model, and
estimate the effects using various estimators - linear OLS without individual effects, random
effects, separate zip and quarter fixed effects, zip-quarter fixed effects, and nonlinear models
including random effects probit and random effects logit. We also report on the performance
of our proposed bias correction estimator. We compare the marginal effect of the installed-base
variable across the models, and report the standard errors of these marginal effects computed
using the delta method.

The first row of the simulations show the results for the baseline simulations, where the
random effect is drawn from a normal distribution. We find that OLS is biased, due to both
misspecification as well as the absence of controls for homophily and correlated unobservables.
Allowing for fixed or random effects (control for sorting and correlated unobservables) reduces
the magnitude of the installed-base effect from the OLS case as expected. Consistent with the
results in section (2.2), the fixed and random effect estimates are biased downward relative to
the truth. The nonlinear models do better in recovering the true effect, though they are still
significantly different from the true value. The bias-corrected estimator locates the truth within
its 95% confidence interval.

In the next row, we switch off the effect of the exogenous covariate in the simulations and find
similar results: the bias corrected estimator is again the only one locating the truth within the
95% confidence interval. In rows 3 and 4, we vary the strength and sign of the installed-base
effect. In row 4, we allow the true data to reflect a “snob” effect (installed-base effect is negative),
and in row 5, we allow for stronger social effects (installed-base effect is fixed at a higher positive
level than the base simulation). Finally in the last row, we alter the distribution of the fixed
effects to a skewed gamma distribution instead of a normal distribution. In each of these cases,
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we that all considered estimators except the bias-corrected estimator are unable to recover the
truth precisely. Notably, the fixed effect estimate is negatively biased as expected. Overall, we
also see the bias-correction estimator does remarkably well.

3 Empirical Application

3.1 Background

As described earlier, our empirical application is to the automobile industry. We study social
spillover effects in the adoption of the Toyota Prius Hybrid electric car. The Toyota Prius was
introduced in Japan in 1997 and in the United States in 2001, and was the first successful the
mass market Hybrid electric car, achieving worldwide cumulative sales of 1.6 million units by
early 2010. Hybrid vehicles use regenerative braking to generate electricity. While familiar to
consumers now, at the time of introduction, adoption of the Prius was subject to considerable
uncertainties about quality. In particular, well-documented concerns existed about acceleration,
handling properties, reliability of the regenerative braking system and the performance of the
Prius’ battery pack; see (Taylor, 2006) for a discussion. These factors imply observational
learning may play a role. Observation of the car in use in their local neighborhoods could
update consumers’ beliefs about quality through explicit interactions with other owners, by
mere observation and through inferential learning. These could lead to a positive effect of the
number of cars in consumer’s neighborhoods on their likelihood of adoption. On the other hand,
negative social effects are also plausible. For instance, if observational learning and word of
mouth cause consumers to update their prior beliefs about the quality of the car downwards,
a larger number of cars observed in the neighborhood could have a negative impact on the
likelihood of purchase. Further, it is conceivable there may have been exclusivity or snob effects
(Leibenstein, 1950) in the purchase of the Prius, if consumers had a desire to buy cars that were
different from those owned by others in their neighborhoods. Hence, the sign and magnitude of
the overall social effect are empirical questions to be answered with data.

3.2 Data Description

We have access to an unusually detailed disaggregate dataset on automobile purchases. The
dataset was acquired from R. L. Polk and Co., a major provider of data to the US automobile
industry. The dataset contains individual-level information on all automobiles registered in the
state of California between January 2001 and March 2007, and includes time periods from before
the introduction of the Toyota Prius in the US market. We observe the details of the automobile
registered, including its make, model, fuel-type, whether it was a Hybrid vehicle etc, the zip
code of residence of the owner to whom it was registered, the month and year it was registered,
whether it was registered to an individual or a business, whether it was part of a fleet (such as
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that of a car rental company), and in the case of individuals, some details about the owners’
household income (see Shriver, 2010 for an application using similar R. L. Polk data). Overall,
there are over 11 million observations in the dataset. Each observation is an individual-level
registration event.

First, we discuss some summary statistics from the data. There are 11.1 million observations
in the full dataset: to be clear, 11.1 million vehicles were registered in the state of California
during the data period. Of these, about 10 million observations involve automobiles registered by
individual buyers, and the rest involve institutional buyers, including businesses and corporate
entities, Government agencies and fleet purchasers such as car rental firms. A total of 186,276
Hybrid vehicles were registered in California during the period of the dataset, of which 172,094
were registered to individuals. Of these, 102,949 (both individual and institutional) and 95,278
(individual only) constituted Toyota Prius cars. Thus, the Toyota Prius thus an overall adoption
rate of 0.95% (i.e. 0.95% of all automobiles registered in California during this period were
Toyota Prius). In the last month in the dataset, i.e. March 2007, 3.38% of all automobiles were
Priuses.

We first explore spatial patterns in the diffusion of the Prius. Figure 1 shows a map of the
state of California and Figures 2 through 8 documents the adoption patterns for the Toyota
Prius for 2001-2007 overlaid on the map of the state. The colored dots in these maps represent
zip codes. For each zip code, the color of the dot represents the adoption rate of adoption of
the Prius, i.e. the percentage of car purchases in that year that are Priuses. The main point
to note in these charts is that there is a relatively high degree of spatial clustering across areas.
For instance, we see high concentration of Prius adoption in the San Francisco Bay Area in
Northern California, more than the other big metropolitan areas in the state’s south, i.e. Los
Angeles and San Diego. Drilling deeper, Figure 9 shows a map of the the San Francisco Bay
Area. Figures 10 through 16 overlay the adoption rate by zip code for 2001-2007 on a map of
the region. Once again, we find a high degree of local clustering of adoption of the Toyota Prius
within this narrower geographic region. Note these are adoption rates, rather than the number
of Toyota Prius cars registered, and hence are not confounded with population concentrations
(although maps overlaying number of cars show similar spatial concentrations).

The figures demonstrate there is spatial clustering in adoption rates. This pattern is consistent
with social effects but are not conclusive. The first-order alternative explanations include in
particular, homophily and correlated unobservables. Hence, controls for these factors are critical
for attributing such clustering to social effects. Since there is no experimental variation in
the installed-bases in local geographies, we would need to econometrically control for these
confounding factors.
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3.3 Empirical Strategy

3.3.1 Data Specific Decisions

We first discuss decisions we made in implementing our empirical strategy. These decisions
reflect the nature of the data and the specifics of our application.

Level of aggregation The lowest level of geography identified in our data is a zip code, and
the lowest time interval is a month, i.e. we observe which zip code and which month a car
was registered in. Hence, we specify the installed-base at the level of a zip code and month.
Later, in checking for robustness of our specification, we allow for different levels of geographical
aggregation, including the level of a city and a county.

We also need to decide the level at which fixed-effects may be specified. The fixed-effects
control for homophily and correlated unobservables since individuals in the same geographical
neighborhood, purchasing at similar points of time would share fixed-effects. Since the installed-
base in our analysis is at the zip code-month level, we cannot include fixed-effects at the level
of zip code-month. We could specify separate zip code and month fixed-effects. However, this
set of controls would likely be incomplete since it would not be able to control for marketing
variables that vary at a local level over time (e.g. the varying availability of Toyota Prius cars
as it was rolled out across its dealer network, local-level marketing activities). Also, since the
dataset spans several years, there could be varying preferences due to the changing demographics
of a neighborhood, or other time-varying factors and these trends themselves might vary across
neighborhoods (e.g. different neighborhoods might have different trends in green conscious-
ness). Thus, we should ideally control for preferences and unobservables that vary across both
geography and time (the importance of this is also suggested by our Monte Carlo simulations
reported previously). Thus, we include market and time-specific fixed-effects in our specifica-
tion. As mentioned before, we aggregate to zip code-quarter fixed-effects due to collinearity
with the installed-base. The identifying assumption is that correlated factors such as local-level
marketing vary across quarters but not within quarters.

In order to allow for variation amongst months within quarters, we also include fixed-effects
for the first or second month of the quarter. This could, for instance, control for variation
in availabilities across months within a quarter, quarterly sales quotas for dealers and their
sales-persons, etc. We also test for the robustness of this identifying assumption by varying the
quarter definition (with the first quarter starting in February or March instead of January, and
similarly for other quarters). We found no material changes in our results. Finally, we include
a set of dummy variables for the income group that the consumer belongs to as controls. This
is the richest set of controls provided in the literature so far, and helps mitigate concerns about
unobservables.
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Why not Random Effects? As discussed above, random effects are not easy to handle in
the model since the consistency of random effects estimators depend on the assumption of the
orthogonality of these effects to all covariates in the model. By construction, random effects and
the installed-base are not uncorrelated, since the installed-base is the aggregation of purchase
decisions of other consumers who share the same random effect. By contrast, panel data fixed-
effects approaches treat the fixed-effects as parameters to be estimated, and do not depend on
assumption about their orthogonality to observed covariates. Maximum-likelihood estimation of
the random-effects model is possible, but is sensitive to misspecification if the true distribution
of unobservables differs from the ones assumed. We demonstrated this in our Monte-Carlo
simulations. With fixed-effects, the control for unobservables is semi-parametric, addressing this
concern.

Linear Specification When there are a large number of markets and/or a large number of time
periods, specifying fixed-effects for a nonlinear model using dummy variables quickly becomes
infeasible. For instance, in our empirical application of automobile purchases in California, the
local market is defined as a zip code. There are over 2000 zip codes in the data. Further,
the data is spread over 8 years. Thus, there are thousands of fixed-effects to estimate, and a
maximum likelihood based procedure such as one that would be used to estimate a binary logit
or a binary probit model would be infeasible due to the large number of parameters to maximize
the likelihood over. Further, maximum-likelihood estimates estimates of the fixed-effects in a
nonlinear model are inconsistent for fixed T (Hsiao, 2003), and this inconsistency transfers to
the estimator of the installed-base effect as well. In a linear model, this inconsistency does not
transfer to the estimator of the installed-base effect as one can eliminate the fixed-effects using
a differencing strategy. A maximum likelihood estimator for the fixed-effects logit model has
been developed using the Neyman and Scott (1948) principle (see Hsiao, 2003 for details on this
estimator), but this is estimable only conditional on the total number of purchases observed
within units.3 Hence, we adopt a linear model for our inference. Above, we reported on Monte
Carlo simulations which shows the linear probability model with a rich specification of fixed-
effects performs well in approximating social effects generated from underlying nonlinear data
generating processes.

Conditional Model An observation in our dataset is a car that was registered, and while we
know where and when it was registered, we have only limited details on who. In other words,
we do not see repeated observations for a particular customer, and we do not know whether the
customer owns other cars, or whether the focal car is a replacement for another car. Our view is
that the timing of automobile adoption is a dynamic replacement problem, and a timing model

3The logit is also a rare exception amongst nonlinear models in enabling this conditionally consistent estimation
in the presence of fixed-effects.
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is not credible without having access to the key state variable driving the dynamics (i.e. the
current car the individual is replacing from). Hence, our data do not allow us to credibly model
the decision of the consumer of whether to buy an automobile or not. Hence, we condition on
the fact that the consumer buys an automobile in that month, and our dependent variable is
whether that automobile is the Toyota Prius or not. While we do not have a panel of individuals
for which we see repeated purchases, our data are of a panel nature, in the sense that for a given
geography (zip code) and a given time (month), we see many individuals buying automobiles.
This allows us to set up a rich specification of fixed-effects as described earlier.

3.4 Empirical Specification

Incorporating these considerations, the empirical specification we use is,

yi = Xmiti� + fmiqi + Zi� + "i (1)

The notation is carried over from section (2), i.e.,

• yi is consumer i’s decision of whether to purchase a Toyota Prius or not, conditional on
purchasing an automobile in zip code mi and month ti, taking the value 1 if the Prius is
purchased and 0 otherwise.

• Xmiti is the installed-base of the Toyota Prius in zip code mi and month ti and is the total
number of Prius cars purchased in the zip code from its introduction up to and including
month ti. It is defined in Equation (1).

• fmiqi is the zip code-quarter specific fixed effect.

• Zi is a set of other controls including income dummies and dummies for the month within
the quarter (i.e. month 1, 2 or 3 within a quarter).

• "i is an independent and identically distributed unobservable.

• � and � are parameters to be estimated.

3.5 Estimation

IV Strategy We first outline a set of instrumental variables (IVs) that may address the issue
of endogeneity. Our IVs are motivated by stories about the institutional features of the Hybrid
market. The institutional feature is that other Hybrid vehicles such as the Honda Civic Hybrid
were visually almost exact versions of their non-Hybrid counterparts. For instance, the Honda
Civic Hybrid was externally distinguished from a Honda Civic non-Hybrid only by a small label
on the vehicle’s rear. It is plausible then that consumers cannot easily track the installed-base of
other Hybrids in their local community. In that case, how many have adopted non Prius-Hybrids
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is not “visually salient”, and may not affect a consumer’s beliefs about Hybrid quality generally.
This argument suggests the installed-base of other Hybrid adopters may not directly influence
the decision of the consumer to purchase the Toyota Prius. However, the installed-bases of other
Hybrid vehicles is correlated with the Toyota Prius installed-base, as the purchase of both the
Toyota Prius and other Hybrids are driven by common factors such as preferences, similarities
in commute patterns etc. This suggests using the local installed-base of other Hybrid adopters
as an IV for the installed-base of the Toyota Prius. To add moments, we could also use the
levels of the installed-bases of these other Hybrid vehicles as instruments for the differenced
installed-base in the estimation equation, thereby adding over-identifying restrictions.

In some specifications, we also use the installed-bases of flex-fuel vehicles (which can use gaso-
line blended with ethanol as fuel) as instruments. The argument for using these as instruments
is similar to that of using installed-bases of other Hybrids - the installed-bases of flex-fuel ve-
hicles and the Toyota Prius Hybrid could be correlated due to common factors such as green
consciousness, but since flex fuel vehicles are versions of existing vehicles with no significant out-
ward differences, these installed-bases are difficult for consumers to track and may be excluded
from the demand equation for the Toyota Prius.

Clearly, these IVs may not be valid if the underlying stories that motivate them are untrue.
Hence, we also compare these results to our bias-corrected estimates.

3.6 Results

In this sub-section, we report the results of our empirical analysis. In order to demonstrate
the biases we have outlined, we first estimate a set of naive regressions. The results of these
regression are reported in Table 3. The first model we estimate (labeled Model N1 in the table)
is one without any geography or time fixed-effects. This model does not control for homophily
or correlated unobservables. It is not a surprise this model finds a strongly significant positive
effect of the installed-base of the Toyota Prius on the adoption decision of the car. Indeed such
a positive coefficient is likely for any product whose adoption rates are increasing over time,
which is likely true for most new products. This is not an artifact of the specification, but
of the correlation in the data. Moving to a more sophisticated nonlinear specification will not
address this. The second model we estimate adds separate market (zip code) and time (quarter)
fixed-effects. This implies positive and significant installed-base effects. However, the separate
fixed-effects only partially control for homophily and correlated unobservable variables, since it
controls for time-invariant effects that vary by geography and geography-invariant effects that
vary with time, but not trends that vary with geography or conversely geographical differences
that vary with time. Therefore, we estimate a third model, in which we allow for market-
time fixed-effects, i.e. one fixed-effect for each zip code-quarter combination. This provides a
strong set of controls for homophily and correlated unobservables, but the installed-base effect
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is negative and significant in this case.
It is tempting to infer these as evidence of snob effects or exclusivity; but as we demonstrated,

this estimate now reflects a negative bias in the estimates for the installed-base effect demon-
strated in section 2. Thus, it might be that the true causal installed-base effect is positive, but
the bias overwhelms this positive effect.

3.6.1 Instrumental variable regression estimates

In Table 4, we report the instrumental variable estimates. Model IV1 includes zip code-quarter
fixed-effects and instruments for the installed-base using (the levels of) installed-bases for the
Honda Civic Hybrid, other Hybrid cars and flex-fuel vehicles. This model controls for homophily
and correlated unobservables, but controls for the bias that we have shown in section 2 using
instrumental variables. These are consistent estimates of the true causal effect subject to the
identifying assumptions holding true. We find that the effect is positive and significant. We also
estimate the model using only the installed-bases of flex fuel vehicles (model IV2). We find it
leads to fairly similar estimates as model IV1.

3.6.2 Bias-corrected estimates

The bias-corrected estimator starts by finding the within-estimate for the model with fixed-
effects. In other words, we specify the same model as before, but compute the OLS estimates
for the mean-differenced model. We then use the estimates to compute the asymptotic bias-
corrected estimates as described earlier.

The model we use for the bias-corrected estimator is the fixed-effects model (Model N3) in
Table 3. The estimate for the installed-base effect �̂ is -0.0010268, i.e., negative.4 On the other
hand, our instrumental variables estimates showed a strongly positive installed-base effect. In
order to compute the asymptotic bias, we first need to find consistent estimates of the error
variance. For this, we solve the quadratic Equation (35), using the smaller of the two roots.
The estimate of �2

" so computed is 0.00921226. Plugging this value back in the equation for the
bias-corrected installed-base effect (Equation 32) gives us a corrected value of the estimate at
0.0001699. The corrected estimates, along with corrected standard errors are given in Table 7,
where we also present the IV estimates discussed earlier, for comparison. The standard errors
are constructed using a bootstrap which accounts for the uncertainty associated with computing
the error variance for the bias-correction. The bias-corrected estimate of the installed-base effect
is close to that obtained using the instrumental variables approach (model IV1).

We next explore the spatio-temporal patterns in the zip code-quarter fixed effects, obtained
using the estimates from model N3. We estimate the fixed effect for each zip code-month
combination, by first obtaining the zip code-quarter fixed effect (computed as the difference

4Note that for ease of reading, the table reports estimates multiplied by 1000.
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between the zip code-quarter mean of the dependent variable and its predicted value using the
regression estimates), and then adding the estimated month fixed effects. First, we look at
the temporal patterns in the data. Figure 17 depicts box plots for the distributions of fixed
effects across zip-codes for the various months in the data. We see the fixed effects are generally
increasing over months, though there is a significant variance across zip codes in temporal growth.
The spread of the distribution is changing over time. It is clear these are hard to capture by
a priori specifying a parametric random effects specification. We also document a high degree
of temporal dependence as shown in Figure 18, which presents the temporal autocorrelation
function for the fixed effects.

We next look at the spatial patterns in the fixed effects. Figure 19 presents a three-dimensional
scatter plot of the fixed effects for various zip codes, plotted against the latitudes and longitudes
of the zip code centroids. We see the fixed effects are strongly correlated in space, with larger
values for zip codes with higher latitudes and longitudes (in absolute value). Further, the
correlation is non-systematic. Analogous to the time dimension, it is hard to capture these
by specifying a parametric spatial random effects specification. To obtain a sense for where
the unobserved covariation is spread geographically, we also depict the spatial patterns in a
temperature map of the mean fixed effects for each zip code, overlaid on a map of the state of
California (i.e., the map shows fixed effects averages across months for each zip code). In Figure
20, the color for each zip code represents the level of the mean fixed effect for that zip code. The
colors range from blue, representing the lowest levels of the fixed effects through red, representing
the highest levels. Mirroring the patterns in the raw data (Figures 2 through 8), we find that the
fixed effects are highest in the San Francisco Bay Area, with those in the Los Angeles and San
Diego metropolitan areas being somewhat lower. The lowest levels are in the smaller cities and
rural areas of the state. However, even within these different regions, there is considerable spread
in the levels of the fixed effects. Further, we see the spatial correlation is not fully explained by
inter-zip code distance. We see the fixed effects are similar within a metropolitan area, where
zip codes are very close to each other, but also similar for neighboring zip codes in rural areas,
where distances are much greater. This suggests we cannot capture these spatial dependence’s as
simple, parametric functions of distance. Finally, we compute spatial autocorrelations functions
using the “Moran’s I” measure of similarity, assuming uniformly distributed distance classes.
Figures 21 depicts the spatial ACF-s, and reveals a high degree of spatial correlation.

To summarize, the temporal and spatial autocorrelations documented above reflect a pattern of
complex correlations over both space and time for the unobservables that is hard to approximate
by a parametric specification, underscoring the need for flexible, semiparametric controls of the
type afforded by the fixed-effects we employ.

Finally, we report on the economic significance of these estimates. The estimated installed-
base coefficient measures the effect of an additional Toyota Prius in the installed-base, on the
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conditional probability of the purchase of a Toyota Prius by the focal consumer, given he pur-
chases an automobile. The parameter estimates are themselves hard to interpret, and hence
we compute the elasticity of the installed-base on the (conditional) purchase probability of the
Prius. The elasticity is 5.3, which means that for every 1% increase in the installed-base of the
Prius in the zip code of the individual, there is on average a 5.3% increase in the probability
of purchase of the Prius (as a percentage of the baseline purchase probability). These numbers
suggest that installed-base effects are non-trivial in the diffusion of the Prius.

3.7 Robustness Checks

Finally, we also report on a set of robustness checks on our results. The first, reported in Table 5,
replicates the analysis in Model IV2 (Table 4) but with the adoption of the Honda Civic Hybrid
as the dependent variable. The rationale for the validity of the installed-base of the Honda Civic
as an instrument is that it is not easily observable by consumers. If that is the case, it should also
be true that the installed-base of the Honda Civic Hybrid does not have any significant effect on
the adoption decision for the Honda Civic Hybrid itself. We therefore conduct a similar analysis
for the Honda Civic Hybrid, using the installed-base for flex fuel vehicles as instruments (Model
R1). We find that the estimated installed-base effect is insignificant, providing some support to
our strategy.

Another set of robustness checks varies the geography for which the installed-base is defined
to see if the effects are consistent with social effects. We expect that social effects are stronger
when the network is in closer proximity to the focal individual. Thus, a focal consumer is less
likely to be affected by changes in installed-base in a geography they are less likely to observe
directly. By this logic, if the installed-base is defined at the level of the city, the social effect
should be weaker than when it is defined for the zip code, and it should be weaker still if the
installed-base is defined at the level of the county. We thus estimate two other models (Models
R2 and R3) that respectively define the installed-base at the level of the city and county. The
rest of the controls remain the same, including the fixed-effects at the level of a zip code-quarter.
These estimates are reported in Table 6. We find that the installed-base effects are indeed weaker
(although still significant and positive) at the level of the city compared to the zip code level,
and they become insignificant at the county level. These results are consistent with social effects
that are moderated by geographic contiguity.

Discussion We close this section with a brief discussion of the importance of accurate measure-
ment of social effects in this category. The increase in recent years in advertising clutter, in the
widespread availability and usage of technology to skip television advertisements, in the decline
in readership of print media, combined with issues of source credibility in traditional advertising
messages imply Marketers have been increasingly adopting non-conventional elements in their
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marketing communication strategies. Several of these new methods of communicating with con-
sumers rely on the existence of social effects. For instance, Ford conducted a non-conventional
marketing campaign during the launch of the Ford Fiesta subcompact car in 2009. This cam-
paign, titled the Ford Fiesta Movement involved giving the car away to a hundred people from
amongst 4000 applicants for a period of six months. In return, users were asked to sharing
their experiences with the car on the Internet (Barry, 2009). Toyota used a similar social media
campaign for the Toyota Prius, based on making the car available to celebrities and encouraging
them to drive the car to marquee events such as the Academy Awards ceremonies. The firm’s
actions suggest social contagion in Prius demand. Many industry observers also opine the Toy-
ota Prius was under-priced initially, pointing to the absence of a price skimming strategy for
the car despite its early scarcity, and despite the long waiting periods consumers faced between
order and delivery of the car. A price penetration strategy is optimal in the context of social
spillover effects, if early adopters of the product have a positive effect on the purchase decisions
of subsequent adopters. Robust measurement of social effects is therefore an important compo-
nent of evaluating the return-on-investment of such non-conventional marketing campaigns to
firms like Toyota.

4 Conclusion

In this paper, we investigate the identification and estimation of causal installed-base effects.
Causal installed-base effects may arise from a variety of social effects including word-of-mouth,
network effects, herd behavior, observational learning and exclusivity/snobbery. A valid measure
of such causal installed-base effects requires controls for confounding factors such as homophily
and correlated unobservables. Controlling adequately for homophily and correlated unobserv-
ables is now the de facto standard in the literature for empirically establishing the presence of
social influence. A robust way to control for these is to specify a rich set of fixed-effects. We
address several issues that arise in this specification, most notably, the inconsistency of estimates
of installed-base effects in work-horse empirical models of social influence. We characterize the
sign and magnitude of the bias.

We present an empirical application to analyzing installed-base effects in the adoption of the
Toyota Prius Hybrid car. We use a rich, disaggregate level dataset for the purpose, which allows
us to specify a very detailed specification of fixed-effects. We present an instrumental variables
method and a new bias-correction method to provide consistent estimates of the installed-base
effect. The results of our empirical analysis reveal statistically significant and positive installed-
base effects in the adoption of the Toyota Prius. A naive analysis that ignores the bias in the
presence of fixed-effects indicates these effects were significantly negative. Thus, the bias changes
not just the magnitude of the results, but its sign as well. We show find social effects are effects
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are economically significant. We conduct a series of robustness checks to establish our estimates
are consistent with social effects.

This paper contributes to the literature on identification and estimation of dynamic panel
data models, and spatio-temporal models which include lagged aggregations of decisions by
other agents as covariates. The bias-correction approach provides a new, practical method to
obtain causal installed-base effects when it is hard to find suitable instruments. More generally,
this paper cautions the researcher to be careful when estimating dynamic panel data models
in the presence of controls for heterogeneity. This is particularly important in the area of
Marketing, since both heterogeneity and state dependence are important components of the
Marketing scientist’s analytical toolkit.
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Figure 1: Map of California

Figure 2: Toyota Prius Adoption Rate - California - 2001
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Figure 3: Toyota Prius Adoption Rate - California - 2002

Figure 4: Toyota Prius Adoption Rate - California - 2003

32



Figure 5: Toyota Prius Adoption Rate - California - 2004

Figure 6: Toyota Prius Adoption Rate - California - 2005
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Figure 7: Toyota Prius Adoption Rate - California - 2006

Figure 8: Toyota Prius Adoption Rate - California - 2007
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Figure 9: Map of the San Francisco Bay Area

Figure 10: Toyota Prius Adoption Rate - San Francisco Bay Area - 2001
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Figure 11: Toyota Prius Adoption Rate - San Francisco Bay Area - 2002

Figure 12: Toyota Prius Adoption Rate - San Francisco Bay Area - 2003
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Figure 13: Toyota Prius Adoption Rate - San Francisco Bay Area - 2004

Figure 14: Toyota Prius Adoption Rate - San Francisco Bay Area - 2005
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Figure 15: Toyota Prius Adoption Rate - San Francisco Bay Area - 2006

Figure 16: Toyota Prius Adoption Rate - San Francisco Bay Area - 2007
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Figure 17: Distributions of Fixed Effects Across Months

Figure 18: Temporal Autocorrelations of Fixed Effects
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Figure 19: Spatial Patterns in the Estimated Fixed Effects

Figure 20: Temperature Map of Mean Zip Code Level Fixed Effects
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Figure 21: Spatial Autocorrelation of Fixed Effects
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Table 3: Estimates of OLS and fixed-effects Regressions

Model N1 Model N2 Model N3

Variable Estimates Std. Errors Estimates Std. Errors Estimates Std. Errors

(x 1000) (x 1000) (x 1000) (x 1000) (x 1000) (x 1000)

Prius Installed-Base 0.2076 0.0007 0.1606 0.0012 -1.0268 0.0178

Month 2 -0.1923 0.0752 -0.0520 0.0750 1.6384 0.0792

Month 3 -0.3323 0.0748 -0.2189 0.0748 3.1729 0.0903

Income Level 2 -3.9815 0.1401 -5.7998 0.1566 -5.5847 0.1609

Income Level 3 -3.8062 0.2185 -5.4867 0.2270 -5.3839 0.2296

Income Level 4 -3.7869 0.1494 -5.0281 0.1600 -4.8550 0.1624

Income Level 5 -3.4416 0.1427 -4.4611 0.1522 -4.1586 0.1542

Income Level 6 -3.2661 0.1345 -4.2225 0.1439 -3.8461 0.1455

Income Level 7 -2.8263 0.0897 -3.5888 0.1020 -3.1900 0.1038

Income Level 8 -1.2436 0.0999 -2.1827 0.1094 -2.0859 0.1106

Income Level 9 0.9533 0.1242 -0.3633 0.1307 -0.4585 0.1315

Income Level 10 -4.3000 0.3255 -4.4368 0.3350 -3.9085 0.3481

Intercept 4.6073 0.0681 0.0000 0.0304 4.18375 0.5349

Fixed-effects None Zip code & Qtr fixed-effects Zip code-Qtr fixed-effects
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Table 4: Estimates of Instrumental Variable Regressions

Model IV1 Model IV2

Variable Estimates Std. Errors Estimates Std. Errors

(x 1000) (x 1000) (x 1000) (x 1000)

Prius Installed-Base 0.1621 0.0263 0.1932 0.0277

Month 2 -0.0504 0.0837 -0.0945 0.0846

Month 3 -0.2032 0.1055 -0.2914 0.1083

Income Level 2 -5.5577 0.1605 -5.5573 0.1605

Income Level 3 -5.3489 0.2290 -5.3483 0.2290

Income Level 4 -4.8189 0.1620 -4.8184 0.1620

Income Level 5 -4.1241 0.1537 -4.1236 0.1537

Income Level 6 -3.8034 0.1451 -3.8027 0.1451

Income Level 7 -3.1391 0.1034 -3.1382 0.1034

Income Level 8 -2.0237 0.1103 -2.0225 0.1103

Income Level 9 -0.3997 0.1311 -0.3986 0.1311

Income Level 10 -3.3320 0.3213 -3.3316 0.3213

Fixed-effects Zip code-Qtr fixed-effects Zip code-Qtr fixed-effects

Instruments (Installed-Bases of) Hybrids + Flex Fuel Flex Fuel
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Table 5: Robustness Check - IV Regression for Honda Civic Hybrid

Model R1

Variable Estimates Std. Errors

(x 1000) (x 1000)

Honda Civic Installed-Base 0.0738 0.0800

Month 2 0.2664 0.0562

Month 3 0.0430 0.0872

Income Level 2 -1.4499 0.0917

Income Level 3 -1.4121 0.1309

Income Level 4 -1.3936 0.0926

Income Level 5 -1.1552 0.0878

Income Level 6 -1.0102 0.0829

Income Level 7 -0.7864 0.0591

Income Level 8 -0.4162 0.0630

Income Level 9 -0.1495 0.0749

Income Level 10 -1.3423 0.1836

Fixed-Effects Zip code-Qtr Fixed-Effects

Instruments (Installed-Bases of) Flex Fuel
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Table 6: Robustness Check: Installed-Base Defined at City and County Levels

Model R2 Model R3

Variable Estimates Std. Errors Estimates Std. Errors

(x 1000) (x 1000) (x 1000) (x 1000)

Prius Installed-Base 0.0045 0.0015 0.0003 0.0002

Month 2 0.1325 0.0766 0.1340 0.0799

Month 3 0.1651 0.0810 0.1686 0.0926

Income Level 2 0.1140 0.0594 0.1140 0.0594

Income Level 3 -5.3606 0.1704 -5.3615 0.1704

Income Level 4 -5.1542 0.2361 -5.1545 0.2361

Income Level 5 -4.6185 0.1717 -4.6188 0.1717

Income Level 6 -3.9212 0.1640 -3.9208 0.1640

Income Level 7 -3.6015 0.1559 -3.6015 0.1559

Income Level 8 -2.9377 0.1181 -2.9377 0.1181

Income Level 9 -1.8236 0.1241 -1.8238 0.1241

Income Level 10 -0.2006 0.1430 -0.2009 0.1430

Fixed-Effects Zip code-Qtr Fixed-Effects Zip code-Qtr Fixed-Effects

Instruments (Installed-Bases of) Hybrids + Flex Fuel Hybrids + Flex Fuel

Table 7: Bias-Corrected Estimates

Model B1 Model IV1

Variable Estimates Std. Errors Estimates Std. Errors

(x 1000) (x 1000) (x 1000) (x 1000)

Prius Installed-Base Effect 0.1699 0.0312 0.1621 0.0263
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Appendix: Inconsistency of estimator with included covariates

We analyze the asymptotic bias of the least squares estimator in a model that includes exogenous
covariates other than the installed-base. The model is given by

yi = fmiqi +Xmiti� + Zi� + "i (A-1)

where Zi is a vector of exogenous covariates. Let the differenced value of this covariate be
denoted by Z̃ (where Z̃i = Zi� Z̄miqi). The differenced model can be written in vector notation
as,

ỹ = X̃� + Z̃� + "̃ (A-2)
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⇣
Z̃

0
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To compute the asymptotic bias in the estimate of �̂ first, we note that from Equations (A-2)
and (A-3)
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Applying ST/MWCMT, we get,
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By Khintchine’s weak law of large numbers,
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For E

h
Z̃

0
iZ̃i

i�1
6= 0 and for exogenous Z (i.e. E
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0
i "̃i
i
= 0), we have that,
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We have from before that,
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Hence, we have the asymptotic bias is,
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Thus, the within-estimator with covariates is biased, and the asymptotic bias in this case is also
negative. The magnitude of the asymptotic bias is similar to that in a model with no covariates,
except the denominator is modified to include the effect of the covariates.

We now derive the asymptotic properties of s2:
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Consider the second term in the above equation,
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Using a similar approach as before,

plim

N ! 1
1

N

⇣
"̃
0
MZX̃

⌘
= E

h
"̃
0
iX̃i

i
� E

h
"̃
0
iZ̃i

i
E
h
Z̃

0
iZ̃i

i�1
E
h
Z̃

0
iX̃i

i

= E
h
"̃
0
iX̃i

i

= �5

9
�2
" (A-16)

49



which follows from the exogeneity of Z (giving us E
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0
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i
= 0), the fact that Z̃

0
Z̃ is positive

definite. We have again used the expression for E
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evaluated earlier. Similarly,
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Turning to the last term in Equation (A-14),
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where, E
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Hence, for the model with exogenous covariates,
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The terms inside the parenthesis in this expression are all of quadratic form and hence positive.
Thus, we find once again that the asymptotic bias is negative and its magnitude is a modified
version of the expression we evaluated for the model without covariates. |
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